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ABSTRACT

SIGNAL RECOVERY FROM PARTIAL FRACTIONAL
FOURIER DOMAIN INFORMATION AND PULSE

SHAPE DESIGN USING ITERATIVE PROJECTIONS

H. Emre Güven

M.S. in Electrical and Electronics Engineering

Supervisors: Prof. Dr. A. Enis Çetin and

Prof. Dr. Haldun M. Özaktaş

July, 2005

Signal design and recovery problems come up in a wide variety of applications in sig-

nal processing. In this thesis, we first investigate the problem of pulse shape design

for use in communication settings with matched filtering where the rate of communi-

cation, intersymbol interference, and bandwidth of the signal constitute conflicting

themes. In order to design pulse shapes that satisfy certain criteria such as bit rate,

spectral characteristics, and worst case degradation due to intersymbol interference,

we benefit from the wellknown Projections Onto Convex Sets. Secondly, we inves-

tigate the problem of signal recovery from partial information in fractional Fourier

domains. Fractional Fourier transform is a mathematical generalization of the ordi-

nary Fourier transform, the latter being a special case of the first. Here, we assume

that low resolution or partial information in different fractional Fourier transform

domains is available in different intervals. These information intervals define convex

sets and can be combined within the Projections Onto Convex Sets framework. We

present generic scenarios and simulation examples in order to illustrate the use of

the method.

Keywords: Projections onto convex sets, fractional Fourier transform, iterative signal

design, iterative signal recovery.

4



ÖZET

ÖZYİNELİ İZDÜŞÜMLER KULLANARAK KISMİ
KESİRLİ FOURIER DÖNÜŞÜMÜ BİLGİSİNDEN İŞARET

GERİ KAZANIMI VE DARBE ŞEKLİ TASARIMI

H. Emre Güven

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Yöneticileri: Prof. Dr. A. Enis Çetin ve

Prof. Dr. Haldun M. Özaktaş

Temmuz, 2005

İşaret tasarım ve geri kazanım problemleri işaret işleme uygulamalarında sık olarak

karşımıza çıkmaktadır. Bu tezde ilk olarak, uyumlu filtre kullanılan bir iletişim sis-

teminde bant genişliği, iletişim oranı ve semboller arası girişim gibi çelişen temalar

arasında belirli ölçütleri sağlayan bir darbe şekli tasarlama problemini inceliyoruz.

Bit oranı, spektral dağılım ve semboller arası girişimden dolayı en kötü durum

başarımı gibi kriterleri sağlayan bir çözüm bulmak için dışbükey kümeler üzerine

izdüşümler yöntemini kullanıyoruz. Tezin ikinci bölümünde ise, kesirli Fourier uza-

ylarında kısmi bilgilerden işaret geri kazanımı problemini inceliyoruz. Kesirli Fourier

dönüşümü, iyi bilinen Fourier dönüşümünün matematiksel genelleştirilmesidir. Bu-

rada, kesirli Fourier uzaylarında düşük çözünürlükte veya farklı aralıklarda kısmi

bilgilerin var olduğunu varsayıyoruz. Bu bilgi aralıkları dışbükey kümeler tanımlar

ve Dışbükey Kümeler Üzerine İzdüşüm çerçevesinde birleştirilebilir. Yöntemin kul-

lanımını göstermek için genel senaryolar ve benzetim örnekleri sunuyoruz.

Anahtar sözcükler : Dışbükey kümeler üzerine izdüşüm, kesirli Fourier dönüşümü,

özyineli işaret tasarımı, özyineli işaret geri kazanımı.
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Chapter 1

Introduction

Signal design and recovery problems come up in a wide variety of applications in

signal processing. Among the myriad of mathematical tools used developed for

these problems, the technique of projections onto convex sets (POCS) [1–3, 5–10,

48] is of special interest due to its success in incorporating knowledge that can be

tedious to work with using analytical methods. POCS presents a straightforward

approach in finding a solution to a given problem, by imposing several constraints

on consecutive iterations. Furthermore, another desired property of POCS is its

guaranteed convergence, regardless of the initial point of iterations. In this thesis,

we use the method of POCS in two different problems.

First, we investigate problem of pulse shape design for use in communication

settings with matched filtering where the rate of communication, intersymbol in-

terference (ISI), and bandwidth of the signal constitute conflicting themes [44]. In

order to design pulse shapes that satisfy certain criteria such as bit rate, spectral

characteristics, and worst case degradation due to intersymbol interference, we bene-

fit from the method of POCS. We design several exemplary pulse shapes that satisfy

certain constraints such as spectral masks and bounds on worst case degradation

due to ISI, through iterative methods.

Next, we investigate the problem of signal recovery from partial information in

11



CHAPTER 1. INTRODUCTION 12

fractional Fourier domains. Fractional Fourier transform (FRT) [11–39] is a mathe-

matical generalization of the ordinary Fourier transform, the latter being a special

case of the first. It has found many applications in optics and signal processing,

adding an order dimension to the concept of spectral analysis. Here, we assume

that low resolution or partial information in different fractional Fourier transform

domains is available in differend bands. These information bands define convex sets

and can be combined within a POCS framework. We present generic application

scenarios and simulation examples in order to illustrate the use of the method.

The outline of the thesis is as follows: In Chapter 2, we introduce some back-

ground on the method of Projections Onto Convex Sets and fractional Fourier trans-

form. Chapter 3 presents the pulse shape design problem and several examples

illustrating the use of iterative design method. We expose the signal recovery prob-

lem in Chapter 4 along with several application scenarios and simulation examples.

Finally, we present the conclusions of the thesis and future work in Chapter 5.



Chapter 2

Background

2.1 Projections Onto Convex Sets

In this section we present a background on the method of projections onto convex

sets (POCS) [1–3] that has been successfully used in many signal recovery and

restoration problems [4–10]. The key idea is to obtain a solution which is consistent

with all the available information. In this method the set of all possible signals is

assumed to constitute a Hilbert space with an associated norm in which the prior

information about the desired signal can be represented in terms of convex sets.

In this thesis, the Hilbert space is L2 or `2 with Euclidian norm for continuous-

time and discrete-time signals, respectively. Let us suppose that the information

about the desired signal is represented by M sets, Cm, m = 1, 2, . . . ,M . Since

the desired signal satisfies all of the constraints it must be in the intersection set

Co = ∩Mm=1Cm. Any member of the set Co is called a feasible solution [7]. If

all of the sets Cm are closed and convex then a feasible solution can be found by

making successive orthogonal projections onto the sets Cm. Let Pm be the orthogonal

projection operator onto the set Cm. The iterates defined by the following equation

y(l+1) = P1P2 · · ·PMy(l), l = 0, 1, 2, . . . (2.1)

converge to a member of the set Co, regardless of the initial signal y(0). The number

of convex sets can be infinite. The rate of convergence can be improved by using

13



CHAPTER 2. BACKGROUND 14

non-orthogonal projections as well. We do not devote further space to the underlying

mathematical concepts, which can be found in [3].

2.2 Fractional Fourier Transform

In this section, the fractional Fourier transform is briefly reviewed and the signal

recovery problem is formulated. The fractional Fourier transform (FRT) has found

many applications in signal and image processing and optics [11–39]. The ath-order

fractional Fourier transform operation corresponds to the ath power of the ordinary

Fourier transform operation. The zeroth-order fractional Fourier transform of a

function is the function itself and the first-order transform is equal to the ordinary

Fourier transform. The relationship of the FRT to wave and beam propagation is

well established [40–42]. It is well-known that the Fourier transform of the original

object, aperture, or source distribution is observed in the far field. It has been

shown that at closer distances, one observes the fractional Fourier transforms of the

original object. As the wave propagates, its distribution evolves through FRTs of

increasing order. In other words, it is continually fractional Fourier transformed as

it propagates, starting from the original function and finally reaching its ordinary

Fourier transform in the far field. Thus the problem of recovering signals from

partial FRT information naturally finds applications in wave propagation problems

where the measured information is partial, spread over several observation planes,

or not of sufficient spatial resolution or accuracy. For a comprehensive treatment of

the transform and its properties the reader is referred to [11].

Let us denote the ath-order fractional Fourier transform operator by F a. When

a = 1 we have the ordinary Fourier transform operator F . The FRT may be

defined by standard eigenvalue methods for finding a function G(H) of a linear

operator H. Hermite-Gaussian functions are the eigenfunctions of the ordinary

Fourier transform: Fψn(u) = exp(−jnπ/2)ψn(u), where ψn(u), n = 0, 1, 2, . . .,

are the set of Hermite-Gaussian functions: 21/4(2nn!)−1/2Hn(
√

2π u) exp(−πu2) and

Hn(u) are the standard Hermite polynomials. The fractional Fourier transform is

defined in terms of the eigenvalue equation F aψn(u) = [exp(−jnπ/2)]aψn(u) with
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the fractional ath power [exp(−jnπ/2)]a = exp(−janπ/2). An analytic expression

for the FRT of an arbitrary square-integrable function x(u) can be obtained by

expanding it in terms of the complete orthonormal set of functions ψn(u) and then

applying the above eigenvalue equation to each term of the expansion. This leads

to the following expression for the ath order fractional Fourier transform xa(u) ≡
Fax(u) [11]:

xa(u) =

√
1− j cot(

aπ

2
)

∫ ∞

−∞
du′x (u′) (2.2)

· exp
{
jπ
[
cot(

aπ

2
) u2 − 2 csc(

aπ

2
) uu′ + cot(

aπ

2
) u′2

]}

The zeroth-order fractional Fourier transform of a function is the function itself.

Positive and negative integer values of a simply correspond to repeated application

of the ordinary forward and inverse Fourier transforms respectively. The fractional

Fourier transform operator satisfies index additivity: F a2Fa1 = Fa2+a1 . The opera-

tor Fa is periodic in a with period 4 since F 2 equals the parity operator which maps

x(u) to x(−u) and F 4 equals the identity operator.

The ath-order discrete fractional Fourier transform xa of an N × 1 vector x is

defined as xa = Fax, where Fa is the N × N discrete fractional Fourier transform

matrix [47], which is essentially the ath power of the ordinary discrete Fourier trans-

form matrix F. Let the discrete-time vector x contain the samples of the continuous

time signal x(u). If N is chosen equal to or greater than the space-bandwidth

product of the signal x(u), then the discrete fractional transform approximates the

continuous fractional transform in the same way as the ordinary discrete transform

approximates the ordinary continuous transform.



Chapter 3

Pulse Shape Design

The problem of pulse shape design often comes up in communication systems in-

cluding pulse amplitude modulation, frequency shift keying, and phase shift keying

with the challenge of utilizing the bandwidth efficiently while having a low complex-

ity receiver. One way is to use a suboptimal demodulator with a matched filter for

complexity reduction and defining constraints on the spectrum, intersymbol inter-

ference, and duration of the pulse. Each of these conflicting constraints are convex

sets in L2, which are known to provide a useful base in optimization, laying ground

for the method of projections onto convex sets [1–10]. This approach was previ-

ously used in designing pulse shapes for digital communication systems [46], where

a communication without a matched filtering scheme is considered. However, the

difficulty of associating the matched filter output to the corresponding time-domain

signal still remains, which is a similar problem to phase retrieval [8, 43]. This in-

formation corresponds to a non-convex set in L2. The autocorrelation function of

the pulse is obtained by performing orthogonal projections onto convex sets corre-

sponding to intersymbol interference, finite duration and spectral mask constraints,

and we propose to find associated time-domain signals using linear phase signals or

cepstral deconvolution.

The criteria of bandlimitedness, finite duration, and finite energy correspond

to closed and convex sets in L2 or `2 and they are widely used in various signal

design and restoration problems [1–10]. The advantage of the method comes from

16



CHAPTER 3. PULSE SHAPE DESIGN 17

its convenient use and guaranteed convergence. At each step of the iteration, an

orthogonal projection Pm is made onto a convex set Cm as:

xp = Pmx = arg min ‖x− xm‖ , xm ∈ Cm (3.1)

and the iterates defined by the equation:

yk+1 = P1P2 · · ·PMyk (3.2)

reaches a feasible solution, which is a member of the intersection C0 =
⋂M
m=1 Cm.

Note that the feasible solution may not be unique. However, the intersection C0 of

the convex sets is also a convex set and at each step of the iterations we get closer

to a solution, so that the convergence is guaranteed regardless of the initial iterate,

when C0 is nonempty.

In this thesis, we develop a design approach for finding a solution to the pulse

shape design problem which satisfies bandwidth, duration, and intersymbol inter-

ference (interference due to other information bits) constraints. In the next section,

we define the convex sets used in the pulse shape design problem and describe the

iterative design algorithm.

3.1 Iterative Signal Design Algorithm

In this section, convex sets of autocorrelation functions corresponding to intersym-

bol interference (ISI) information, power spectrum, and duration constraints on the

pulse shape are defined. Therefore, all desired properties of the pulse shape can

be iteratively imposed as constraints on iterates defined by the POCS procedure.

This approach leads to a globally convergent algorithm because all constraints cor-

respond to closed and convex sets in `2. Once an autocorrelation function satisfying

the constraints are obtained a time-domain pulse shape is estimated from the auto-

correlation function determined by the POCS procedure. The estimated pulse-shape

may be of infinite length. In this case, the tail of the time-domain signal is removed.

This may lead to violation of some of the original constraints on the autocorrelation

function. Therefore iterations are continued with the new autocorrelation function

computed from the time-limited pulse shape.
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Below are the convex sets defined for our design purposes. The convexity of

these sets are shown in Appendix A.1.

Let x[n] be the samples of the pulse shape and rx[k] =
∑
n

x[n]x∗ [n− k] be

the corresponding autocorrelation function. The set C1 is defined as the set of

autocorrelation functions in `2 whose Fourier Transform is below a spectral mask

D (w):

C1 =
{
rx ∈ `2 | Sx (ω) ≤ D (ω)

}
(3.3)

where Sx is the power spectrum of the pulse, or equivalently the Fourier transform

of rx[k]. This set represents a bound on the pulse energy.

Secondly, another convex set is defined by the time-limitedness of the signal by

an interval of duration Tp. Thus, the corresponding autocorrelation function is also

time-limited. When the pulse is nonzero for [0, Tp], the corresponding autocorre-

lation function is possibly nonzero in the interval [−Tp, Tp] and the convex set C2

describing the time-limitedness information is defined as

C2 =
{
rx ∈ `2 | rx[k] = 0, |kTs| > Tp

}
(3.4)

where Ts is the discretization period of the underlying continuous signal.

Finally, we define the third convex set as the `2 signals whose autocorrelation

samples at integer multiples of a period K (except 0th sample) magnitude-wise sum

up to less than a certain bound b. This corresponds to putting a bound on worst

case degradation due to ISI. Formally,

C3 =

{
rx ∈ `2 |

∑

k 6=0

|rx [k ·K]| ≤ b, b > 0

}
(3.5)

where rx[k] =
∑
n

x[n] · x∗ [n− k] is the autocorrelation of the signal.

This way, we define three convex sets of autocorrelation functions, which we can

use in a POCS framework. Furthermore, we need to use the fact that the Fourier

transform of the autocorrelation function is real due to the conjugate symmetry of

the autocorrelation function. The associated convex set with this property can be

denoted by:

C4 =
{
rx ∈ `2 | Sx(ω) ∈ R,∀ω ∈ R

}
(3.6)
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Additionally, the autocorrelation function rx[k] has to have its maximum at k =

0. Without loss of generality, we can define another convex set with the assumption

of a unit energy pulse, as follows:

C5 =
{
rx ∈ `2 | rx[0] = 1; |rx[k]| ≤ 1, k 6= 0

}
(3.7)

Next we describe the projection operators onto sets C1, . . . , C5. The projection

of a signal r[k] onto the set C1 is given by the following equation:

P1r[k] = F−1 {S ′(ω)} (3.8)

where

S ′(ω) =

{
S(ω), |S(ω)| ≤ D (ω)

D(ω) · ejΦ(ω), otherwise
(3.9)

and Φ(ω) is the phase of S (ω), and S (ω) is the Fourier transform of r[k].

The projection of a signal r[k] onto the set C2 is given by:

P2r[k] =

{
r[k], kTs ∈ [−Tp, Tp]
0, otherwise

(3.10)

where Ts is the sampling period.

Although the following projection operator may not be orthogonal, a signal in

C3 corresponding to a given r[k] can be obtained as follows:

P3r[k] =





bP
m6=0

|r[m·K]| · r[k],
∑
m6=0

|r [m ·K]| > b, k = m ·K,m 6= 0

r [k] , otherwise

(3.11)

Note that the above operation leaves r[0] unaltered.

Finally, projections of a signal r[k] onto the sets C4 and C5 are given by the

following equations, respectively:

P4r[k] = F−1 {Re {F {r[k]}}} (3.12)

and

P5r[k] =

{
r[k], r[k] ≤ 1, k 6= 0
r[k]
|r[k]| , otherwise

(3.13)



CHAPTER 3. PULSE SHAPE DESIGN 20

The orthogonality of the projection operators in Equations (3.8),(3.10),(3.12),

and (3.13) are shown in Appendix A.2. Using the projection operators P1, P2, . . . , P5

onto the convex sets C1, C2, . . . , C5, we can define a globally convergent iterative

scheme as in Equation 3.2 for finding an autocorrelation function. However, we still

need to find the time-domain signal associated with the autocorrelation function.

Although we can achieve a conjugate symmetric function time-limited between

[−Tp, Tp] satisfying

|rx[k]| < 1, k 6= 0

rx[k] = 1, k = 0
, (3.14)

we can not guarantee that the resulting autocorrelation sequence belongs to a time-

limited signal. For example, when we apply cepstral deconvolution to the resulting

rx in order to find a minimum phase solution, we may not achieve a time-limited

function which has the same autocorrelation function.

To obtain a finite extent signal, we modify the iterative POCS procedure in two

ways. It is important to note that these modifications may eliminate the property

of global convergence, however, this approach helps find an association between the

time domain signal and the autocorrelation function. In the first case, a linear phase

component is added to the square root of the spectrum after projecting the current

interate onto the sets C1, C2, . . . , C5. Let the lth iterate be r
(l)
x [k]. The signal x(l)[n]

is obtained as:

x(l)[n] = F−1

{√
F
{
r

(l)
x [k]

}
· e−jωn0

}
(3.15)

where S
(l)
x (ω) = F

[
r

(l)
x [k]

]
and n0 is a nominal time delay for ensuring realizability

[44]. The signal x(l)[n] may turn out to be of infinite length. So it is forced to be a

finite extent signal as follows

x(l)[n] =

{
x(l)[n], nTs ∈ [0, Tp]

0, otherwise
(3.16)

Next, a new autocorrelation sequence is obtained from x(l)[n] described as:

r(l+1)
x [k] =

∑

n

x(l)[n] · x(l)∗[n− k] (3.17)

and it is used in the next iteration cycle of the POCS scheme. The above iterations

described in Equations (3.15),(3.16), and (3.17) need not be carried out in every
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iteration cycle. It can be implemented afer a reasonable r
(l)
x [k] satisfying (or almost

satisfying) Fourier domain constraints is obtained.

Our second approach is based on cepstral deconvolution. A minimum phase

signal is obtained after projecting the current iterate onto the sets C1, C2, . . . , C5.

Let the current iterate be denoted by r
(l)
x [k]. The minimum phase signal x

(l)
m [n] is

defined as [45]:

x(l)
m [n] = F−1

{
exp

[
F
{
H
(
F−1 {lnF {rx[k]}}

)}]}
(3.18)

where

Hxc[n] =





0, n < 0
xc[0]

2
, n = 0

xc[n], n > 0

(3.19)

is the operator which takes the causal part of the cepstrum xc[n]. The resulting

minimum phase signal may also be of infinite length. So it is forced to be a finite

extent signal as follows

x(l)
m [n] =

{
x

(l)
m [n], nTs ∈ [0, Tp]

0, otherwise
(3.20)

Similar to the previous approach, a new autocorrelation sequence is obtained from

r(l+1)
x [k] =

∑

n

x(l)
m [n] · x(l)

m

∗
[n− k] (3.21)

and it is used in the next iteration cycle of the POCS scheme.

In the next section, we illustrate the design approach with some examples.

3.2 Design Examples

In this section, we present some exemplary design approaches through our method.

The definition of the pulse shape design problem is as follows: We want to de-

sign a pulse shape that is below a spectral mask in frequency domain, can be used

with a matched filtering demodulation scheme not causing a worst case degradation
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in signal-to-noise ratio due to intersymbol interference more than a certain value,

yields a certain communication rate, and is also finite duration. The spectral mask

and pulse duration used in the following design examples remain constant, while we

use several different values of SNR degradation (bound on ISI) and rate of commu-

nication. In each example, we modify these constraints in order to illustrate the

tradeoffs between them. We first use the method associated with finding the linear

phase signal as given in Equation (3.11). In order to achieve a feasible solution

quickly, we start from an initial root raised-cosine signal with roll-off factor α = 1.

Although this is not a part of the conventional procedure, we are aware of a signal

(root raised-cosine) which is somewhat close to satisfying our requirements; and we

simply use that fact by making the root raised-cosine signal our starting point.

First we identify the values that result in the worst case degradation for the kth

bit as:

Ik (j) =

{
1, rx (|j − k|T ) > 0

0, otherwise
, j 6= k (3.22)

where T is the sampling interval of the matched filter output. This is simply because

the intersymbol interference term should be the negative of the matched filter output

at zero lag, for the worst case degradation to occur.

Then we can define the worst case ISI for a unit energy pulse shape x (t) as:

ISI =
∑

k 6=0

|rx (kT )| (3.23)

for which the degradation in signal-to-noise ratio (SNR) is:

d = −20 log10 (1− ISI) (3.24)

Note that d′ = −20 log10 (1 + ISI) is not the worst case degradation since d′ < d,

ISI > 0. Placing a constraint on the worst case degradation d < 0.25 dB directly

puts a bound on the ISI as:

−20 log10(1− ISI) < 0.25 =⇒ ISI < 1− 10−
0.25
20 (3.25)

which constitutes the b value in (3.11). Henceforth, we apply the iterative scheme

proposed in the previous section.
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Figure 3.1: Linear phase pulse shape designed via proposed method

To achieve the outcome of successive projections onto the sets we defined in the

previous section, we stop the iterations immediately as we reach a feasible solution.

The pulse shape given below in Fig. 3.1 yields a symbol rate of 218 kHz, causing a

worst case degradation less than 0.25 dB, with a pulse duration of 40 µsec.

Fig. 3.2 illustrates the matched filter output at the receiver, and the power spec-

trum of the designed pulse. The mask is nowhere exceeded by the pulse spectrum,

as expected.

In our second design approach, we take the minimal phase root and therefore

apply the corresponding operations defined in the previous section. The initial

iterate was chosen to be random. Below is the pulse shape in Fig. 3.3 and the

matched filter output, spectral mask and power spectrum of the pulse in Fig. 3.4.

In order to improve the speed of convergence, we specified tighter bounds in the

projection onto the spectral mask set. In this case the worst case degradation in

SNR turned out to be 1.75 dB. We observe the tradeoff between speed of convergence

(projection with a tighter spectral mask) and the worst case degradation in SNR
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Figure 3.2: a) Matched filter output, b) Spectral mask and pulse spectrum

due to ISI. Since we make the projections onto a narrower set defined by a tighter

constraint, the intersection set also gets narrower; hence, we can only achieve a lower

SNR with the resulting pulse shape.

Figures 3.5-3.10 illustrate two other pulse shapes in time-domain, their auto-

correlation functions, and their spectral characteristics, respectively. The pulses

designed with this method yields a bit rate of 228 kHz (Fig. 3.5) and 234 kHz

(Fig. 3.6), respectively, with a worst case degradation of 0.5 dB.

In all the examples, the iterates converged in about 10000 cycles, making the

design algorithm convenient for implementation on an ordinary personal computer.

Figures 3.11-3.12 illustrate the square error between the pulse spectrum and the

spectral mask for the first two pulse shapes. The error appears to increase after an

initial abrupt decrease. This is due to the negative error (where the pulse spectrum

is below the spectral mask), even if the iterates get closer to a feasible solution, error

defined this way may increase.
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Figure 3.3: Minimum phase pulse shape
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Figure 3.4: a) Matched filter output, b) Spectral mask used in projections (dashdot),
spectral constraint mask (dash), power spectrum of the pulse (solid)
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Figure 3.5: Minimum phase pulse shape that yields a bit rate of 228 kHz
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Figure 3.6: Minimum phase pulse shape that yields a bit rate of 234 kHz
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Figure 3.7: Autocorrelation function of the pulse with 228 kHz bit rate
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Figure 3.8: Autocorrelation function of the pulse with 234 kHz bit rate
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Figure 3.9: Spectral mask (solid) and spectrum of the pulse with 228 kHz bit rate
(dash)
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Figure 3.11: Square error vs iteration cycles for the pulse shape in Fig. 3.1
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Figure 3.12: Square error vs iteration cycles for the pulse shape in Fig. 3.3
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3.3 Discussion and Conclusion

In this part of the thesis, we present a method for designing pulse shapes that obey

certain constraints defined in time and frequency domains. Other constraints that

can be represented as convex sets can be included in the procedure, as well. In order

to find time-domain signals satisfying bandwidth, ISI, and duration constraints, we

define convex sets of autocorrelation functions and associate them to time-domain

signals within iterative projections. This association comes with a possible com-

promise of the global convergence propery. However, we are able to find feasible

solutions for various criteria in our design examples which illustrate the procedure.

Although not investigated in this thesis, the set given in Equation (3.5) can be

extended to include more index values, particularly in the neighboring intervals of

the sampling times, in order to reduce possible degradation due to sampling jitter.

This approach may provide robustness against sampling jitter as well. Here, we only

considered the intersymbol interference due to other information bits.

In our examples iterations converged in reasonable numbers of cycles, satisfying

all of the requirements. When the constraints are defined to be too tight, the

algorithm oscillates between the projections on the constraint sets, which have an

empty intersection set. In this case, one should restart the procedure with looser

constraints, until the intersection of the constraint sets is nonempty. Also, defining

the constraints a little tighter than necessary improves the speed of convergence,

with a compromise between finding the minimum mean square distance solution, a

higher degradation in SNR occurs as a result.



Chapter 4

Signal Recovery from FRT

Information

The signal recovery problem under consideration is the reconstruction of x(u) from

xa(u), u ∈ U ⊂ R , at one or more domains a = a1, a2, . . .. The set U may consist

of the union of an arbitrary collection of bands (intervals) in the ath fractional

Fourier domain. It may also contain or consist of isolated discrete points representing

measurements of xa(u) at u = ui, i = 1, 2, . . .. As in the case of signal recovery

from partial ordinary Fourier transform information, the reconstruction problem is

very noise sensitive in the event that U represents a narrow band in the ath FRT

domain.

4.1 Iterative Signal Recovery Algorithm

This section presents the signal recovery algorithm which is devised by using the

method of projections onto convex sets (POCS) [1–3] that has been successfully

used in many signal recovery and restoration problems [5–10, 48]. The key idea is

to obtain a solution which is consistent with all the available information. In this

method the set of all possible signals is assumed to constitute a Hilbert space with

an associated norm in which the prior information about the desired signal can be

31
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represented in terms of convex sets. In this thesis, the Hilbert space is L2 or `2 with

Euclidian norm for continuous-time and discrete-time signals, respectively. Let us

suppose that the information about the desired signal is represented by M sets,

Cm, m = 1, 2, . . . ,M . Since the desired signal satisfies all of the constraints, it

must be in the intersection set Co = ∩Mm=1Cm.

We define the set C1 in L2 as the set of signals whose a1th fractional Fourier

transforms are equal to x̂a1(u) in the band u ∈ U in the a1th fractional domain.

C1
∆
= {x : xa1(u) = x̂a1(u), u ∈ U} (4.1)

This set is convex because the integral operator in Equation (2.2) is a linear operator.

The proof of closedness can be established as in [1]. If data is also available in another

a2th fractional domain, another set C2 can be defined in a similar manner, and so

on. If the signal is a finite extent signal then this information can be modeled as

a closed and convex set as in other well-known signal recovery problems. Actually,

time/space-domain information about the original signal including the knowledge

that x(u) = 0 in a bounded or unbounded window in the time/space domain already

belongs to the above class of sets since the time/space-domain merely corresponds

to the special case of a = 0. Equation (2.2) simply becomes the identity operator

for the fraction a = 0.

Partial information in the discrete fractional Fourier domains can be represented

as convex sets in `2:

Cd
∆
= {x : xa[n] = x̂a[n], n ∈ Ud} (4.2)

where Ud is a set of discrete index points.

Another convex set which can be used in the signal recovery algorithm is the

bounded energy set, Ce which is the set of sequences whose energy is bounded by

εo, i.e.,

Ce
∆
= {x : ||x||22 ≤ εo } (4.3)

This set provides robustness against noise, if εo is known or some idea about εo is

available. Yet other convex sets describing partial fractional Fourier domain infor-

mation can be defined. Non-negativity information about the signal samples also
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leads to a closed and convex set Cp in `2 or L2 [1, 2]. The same also holds when

we know that the signal is real. The key operation of the method of POCS is

the orthogonal projection onto a convex set. Projection operations onto the sets

C1, C2, ..., CK are straightforward to implement. Let x(l)(u) be the lth iterate of

the iterative recovery process. Let x
(l)
a (u) be fractional Fourier transform of x(l) in

the ath domain. The projection operator replaces the fractional Fourier transform

values of x
(l)
a (u) in the band U

x(l+1)
a (u) = x̂a(u), u ∈ U, (4.4)

where x̂a(u) is the known fractional Fourier transform in the ath domain and the

projection operator retains the rest of the data outside the band U :

x(l+1)
a (u) = x(l)

a (u), u /∈ U. (4.5)

Projection onto the energy set Ce is described in [3]. It simply consists of scaling

the signal x(u) such that the energy of the scaled signal is εo. Projection onto the

non-negativity set Cp is carried out by simply forcing the negative values of x(u) to

zero.

Let us now summarize the signal recovery algorithm from partial fractional

Fourier transform information. The algorithm starts with an arbitrary initial es-

timate y(0) ∈ L2. The initial estimate y0 is successively projected onto the sets Cm,

m = 1, 2, . . . ,M , representing the partial fractional Fourier domain information in

domains am, m = 1, 2, . . . ,M by using Equations (4.4) and (4.5). The order of

projections is immaterial [3]. In this manner the first iteration cycle is completed

and the Kth iterate x(K) is obtained. If energy and/or non-negativity information

is available then the current iterate is also projected onto the set Ce and/or Cp.

This iterative procedure is repeated until a satisfactory level of error difference in

successive iterations is obtained.
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4.2 Application Examples

The problem formulated and solved in this thesis is very general and encompasses

a variety of application scenarios. In this section we will present several such pro-

totypical application scenarios and examples; other variations can be easily imag-

ined. To rephrase the general problem, it is assumed that measurements xa(u) at

u = ui, i = 1, 2, . . . , Ia for a = aj, j = 1, 2, . . . are available. This may also include

the assumption that the signal is of finite support. Non-negativity and/or real-

ness information may be additionally available. The fractional Fourier transform

integral (1) is either numerically approximated or, if the fractional Fourier domain

data is available on a uniform grid, the problem can be directly posed in terms of

the discrete fractional Fourier transform. The latter is assumed in the following

examples.

Scenario 1: Low-resolution version of signal is available in the FRT domain

together with finite-extent information. [49]

In the examples we consider, it is known that the desired signal is zero outside

a certain interval, and only one out of every three samples in the fractional Fourier

domain are known over a certain extent.

We assume that the N = 128 point discrete fractional Fourier transform x0.5[n]

of the desired signal x = {0, . . . , 0, 1
↑
, 2, 3, 2, 1, 3, 3, 1, 1, 1, 3, 3, 1, 2, 3, 2, 1, 0, . . . , 0}

defined in the interval −64 ≤ n < 64, is available for n = −64,−61,−58, . . . , 59, 62.

It is also known that x[n] = 0 outside the interval −5 ≤ n < 25. We define

percentage restoration error as follows: 100× ||x(l) − x||2/||x||2 where x(l) is the lth

iterate. In this example (1a), the percentage error drops below 1% after 25 iterations,

a result which may be sufficient for many applications. However, in this example

further iterations reduce the error only marginally, since the available information

is not sufficient to uniquely recover the signal; a signal close but not identical to the

original signal is obtained. The iterates converge to a member of the set Co which

is the intersection of all the sets used in the reconstruction process.

Let us consider a variation of this example where the available information allows
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the recovery of the original signal with a much higher accuracy (1b). We assume

the fractional Fourier domain information about the original signal is the same as

above but the available time-domain information about the signal is that x[n] = 0

for n < 0 and x[n] is everywhere real. In this case, the error drops below 0.0001%

after 200 iterations.

Let us now consider the same example as in 1a, but add stationary zero-mean

Gaussian white noise onto the measured fractional Fourier transform data, with a

signal-to-noise ratio of unity. Due to the substantial amount of noise, the iterates

fluctuate around the solution, and the percentage error does not fall below 2%.

Scenario 2: Low-resolution version of signal is available in two different FRT

domains, possibly with additional information. [49]

In the examples we consider, only one out of every two samples of the FRT at

two or three domains is known.

First we assume that we have all odd samples of x0.5[n] for −64 ≤ n < 64 and

all even samples of x0.75[n] for −64 ≤ n < 64. In this example (2a), the error falls

below 1% after 50 iterations and falls near 0.01% after 500 iterations.

In the next example (2b), odd samples of x0.5[n] and x0.75[n] are available within

a limited range −25 ≤ n < 25. Additionally we have all even samples of x[n] for

−64 ≤ n < 64. This time, even after 500 iterations, the error is reduced only

to around 2-3%. This relatively large error is not surprising since the available

information, in terms of the number of available complex samples, is not sufficient

to specify a unique solution.

If we additionally know that the signal is zero outside the interval −32 ≤ n < 32,

performance is much improved and in this case (2c), the error falls below 0.0001%

after 100 iterations.

Scenario 3: The FRT of the signal is known over a limited interval in a single

domain, together with additional constraints.

In the example we consider (3a) the signal is known at full resolution in the 0.3rd
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fractional domain over the interval −15 ≤ n < 15. We additionally know that the

original signal in the time/space domain is real. The error drops below 0.1% after

100 iterations.

Scenario 4: The FRT of the signal is known over a limited interval in two or

more domains, possibly with additional constraints.

First we assume (4a) that x0.5[n] is known in the interval 0 ≤ n < 55 and x0.75[n]

is known in −55 ≤ n < 0. The error drops below 0.1% after 100 iterations.

Next, we consider the case where the signal is known over a rather small interval

in several domains (4b). The signal is known in the 0.2nd, 0.3rd, 0.5th, 0.6th, 0.75th

domains in the interval −5 ≤ n < 5 and we additionally know that x[n] takes real

values for all n. The error drops below 0.5% after 100 iterations.

Finally, to further illustrate the application of the method, we consider the case

of a finite extent radar pulse corrupted by wideband chirp interference. The time-

domain radar pulse x[n] and the interference term y[n] are given by (Fig. 4.1):

x[n] =
1√

1600π
exp

[
− n2

1600
+ j

πn2

256
tan
(

0.2
π

2

)]
, (4.6)

y[n] =
1√
4π

exp

[
− n2

400
+ j

πn2

256
tan
(
−0.6

π

2

)]
, (4.7)

for −128 ≤ n < 128. The Wigner distribution of the corrupted signal is shown in

Fig. 4.2, where we can clearly see the distribution of energy of x[n] and y[n]. We will

employ the following strategy to recover the radar pulse. Recall that the axis mak-

ing angle aπ/2 with the time/space axis is the ath fractional Fourier domain. Both

the desired radar signal and the corrupting signal exhibit different degrees of com-

pactness in different domains. Therefore we may transform to domains where their

separation is relatively large and eliminate those parts which are heavily corrupted

by the distorting signal and then use interpolation to recover the complete signal.

We will make use of two domains, the domain in which the desired signal is maxi-

mally spread, and the domain in which it is most compact. The domain in which

the desired signal is maximally spread is a = 0.2, and the corrupted signal in this

domain is shown in Fig. 4.3. We will eliminate the corrupted interval −24 ≤ n < 24

from this data and assume that the 0.2nd FRT of the signal is known only outside
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this interval, in addition to the support information x[n] = 0, |n| ≥ 75. Second, we

look at the −0.8th domain in which the desired radar pulse is most compact, shown

in Fig. 4.4. Here we know that the desired signal is of negligible value outside the

interval −4 ≤ n < 4 so that we will assume the −0.8th fractional Fourier transform

of the signal is zero outside this interval. The signal is assumed not to be known

inside the interval −4 ≤ n < 4. The available information in the two domains now

fulfills scenario 4 and the signal can be recovered by the interpolation procedure

presented in this chapter of the thesis. The error falls to 0.2% after 200 iterations.

We also solved the same problem after adding additive zero-mean white Gaussian

random noise to the corrupted radar pulse in the original a = 0th domain. The

noise variance is (0.002)2, which leads to noise sample values comparable to the

uncorrupted signal. The error falls to around 2-3% after 50 iterations.

Although not used in this example, two additional domains could have been

employed: (i) The domain in which the distorting signal is maximally distributed;

here we would have eliminated all samples outside of a centrally located interval.

(ii) The domain in which the distorting signal is most compact; here we would have

eliminated the centrally located interval where the distorting signal is dominant.

4.3 Discussion and conclusion

In this part of the thesis, we present an iterative algorithm for signal recovery from

partial fractional Fourier transform domain information. This problem finds appli-

cations in wave and beam propagation problems where the measured information

is partial, spread over several observation planes, or not of sufficient spatial resolu-

tion. The signal recovery algorithm is developed by using the method of projections

onto convex sets and convergence is assured regardless of the initial estimate. After

presenting the general formulation, we presented several generic application scenar-

ios illustrating a wide variety of prototypical situations which are covered by our

framework. We also presented an application example involving the recovery of a
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Figure 4.1: Real parts of the time-domain radar pulse and interference signal: radar
pulse (solid line), interference signal (dashed line).
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Figure 4.2: Wigner distribution of the corrupted signal.
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Figure 4.3: Real parts of the 0.2nd fractional Fourier transforms of the radar pulse
and interference signal: radar pulse (solid line), interference signal (dashed line).
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Figure 4.4: Real parts of the −0.8th fractional Fourier transforms of the radar pulse
and interference signal: radar pulse (solid line), interference signal (dashed line).
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corrupted radar pulse. The presented signal recovery technique can be easily ex-

tended to multi-dimensional problems as well. It can also be generalized to the case

where signal information is available or can be deliberately measured in a number of

generalized “domains” which are related through linear transformations other than

the FRT, such as the family of linear canonical transforms [51].

In all the examples considered we have observed consistent behavior of the al-

gorithm. If the FRT measurements are available in a very narrow interval, the

corresponding entries of the neighboring rows of the transform matrix may get very

close to each other and this structure may lead to unstable reconstruction results

from noisy measurements. This is not especially related to the FRT case; in this

respect, the problem is very similar to the problem of signal reconstruction from

narrow-band ordinary Fourier transform information.

The relative overlap and separation of signal and noise (desired and undesired

information), the localization of this overlap, and therefore the signal-to-noise ratio

at a certain interval will in general be different in different domains. By choosing

regions in each domain where the signal-to-noise ratio is relatively favorable and

discarding those regions where it is unfavorable and then using the generalized in-

terpolation strategy presented in this thesis to combine these partial signals, is a

general approach which we believe will find widespread applicability in a variety of

situations.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we investigated some applications of projections onto convex sets in

signal design and recovery problems. We applied the method to the pulse shape de-

sign problem in communication scenarios with matched filtering, where intersymbol

interference, spectral mask, and finite duration constraints are imposed on the pulse

shape to be designed. We modeled these mathematical properties as convex sets, and

we used a POCS framework in order to find a solution to the signal design problem.

The problem of associating the autocorrelation function with a time-domain signal

still persists. Nevertheless, we get around the problem by defining association rules

with linear or minimum phase signals. Secondly, we apply the method of POCS to

fractional Fourier transform domains, where partial information in different bands

correspond to closed and convex sets. Accordingly, we define an iterative scheme for

signal reconstruction from partial information in fractional Fourier domains. The

method is globally convergent and straightforward to implement as compared to

possible analytical approaches such as minimum mean square error, etc. We pre-

sented several prototypical scenarios and application examples to the signal design

and recovery problems.

41



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 42

5.2 Future Work

As a future work on the pulse shape design problem, a mathematical set of con-

straints that define a legitimate autocorrelation function are to be sought. If one

can define a convex set which consists of the autocorrelation functions with an ex-

act root in time-domain, the procedure will become globally convergent and one can

guarantee finding a solution given that there exists at least one.

Possible extensions of the signal recovery framework investigated in this thesis

are:

1. Reconstruction of signals where measurements are made over an arbitrary

curve on the propagating field. In fact, this is nothing but a special case of the

general procedure defined in Chapter 4. Another interesting problem is the re-

construction of the field from random point measurements over the field, which

finds application with swarm robots. Due to the nature of these problems, the

iterative signal recovery method is suitable for use in their solutions.

2. Unification of the interpolation and phase retrieval problems. Phase retrieval

problem appears in areas such as optics, astronomy, and cryptography. Due

to the non-convex nature of the problem, it is more difficult to obtain a so-

lution and convergence is not guaranteed in many cases. There may be some

advantage in generalizing the problem to fractional Fourier domains together

with the interpolation issue. Iterative methods remain promising due to their

ability of incorporating a diverse set of information to find a solution.



Appendix A

Additional material on Chapter 3

A.1 Convexity of Sets

In this section of the appendix, we prove that the sets given in Equations (3.3-3.7)

are convex. We will use the following definition of convexity throughout this section:

Definition 1. A set C is convex if:

∀ x,y ∈ C ⇒ αx + (1− α)y ∈ C (A.1)

where 0 < α < 1.

Now we present the propositions and their proofs on the convexity of the sets

given in Equations (3.3-3.7).

Proposition 1. The set C1 defined in Equation (3.3) is convex.

Proof. For any x,y ∈ C1, the Fourier transforms X,Y of x,y will have the following

relationship:

αX(ω) + (1− α)Y (ω) ≤ αD(ω) + (1− α)D(ω) (A.2)

= D(ω) (A.3)
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and due to the linearity of the Fourier transform, we have

αx + (1− α)y ∈ C1 (A.4)

Hence, C1 is convex.

Proposition 2. The set C2 defined in Equation (3.4) is convex.

Proof. For any x,y ∈ C2, we have:

x[k] = y[k] = 0, k ≥ N (A.5)

where N =
⌊
Tp
Ts

⌋
. Then,

αx[k] + (1− α)y[k] = 0, k ≥ N (A.6)

Thus, αx + (1− α)y ∈ C2 and C2 is convex.

Proposition 3. The set C3 defined in Equation (3.5) is convex.

Proof. For any x,y ∈ C3, we have:

∑

k 6=0

|αx[k ·K] + (1− α)y[k ·K]| ≤
∑

k 6=0

|αx[k ·K]|+ |(1− α)y[k ·K]| (A.7)

= α
∑

k 6=0

|x[k ·K]|+ (1− α)
∑

k 6=0

|y[k ·K]|(A.8)

≤ αb+ (1− α)b (A.9)

= b (A.10)

Therefore, αx + (1− α)y ∈ C3 and C3 is convex.

Proposition 4. The set C4 defined in Equation (3.6) is convex.

Proof. For any x,y ∈ C4, where X,Y are the Fourier transforms of x,y, respectively,

we have:

X(ω), Y (ω) ∈ R,∀ω ∈ R⇒ αX(ω) + (1− α)Y (ω) ∈ R,∀ω ∈ R (A.11)

Due to the linearity of the Fourier transform, we have:

αx + (1− α)y ∈ C4 (A.12)

Hence, C4 is convex.
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Proposition 5. The set C5 defined in Equation (3.7) is convex.

Proof. ∀ x,y ∈ C5, we have the following relations:

αx[0] + (1− α)y[0] = α + (1− α) (A.13)

and

|αx[k] + (1− α)y[k]| ≤ |αx[k]|+ (1− α) |αy[k]| (A.14)

≤ α + (1− α) (A.15)

= 1 (A.16)

Therefore, αx + (1− α)y ∈ C5 and C5 is convex.

A.2 Orthogonal Projections

In this section of the appendix, we investigate the conditions for defining orthogonal

projection operators given in Equations (3.8),(3.10),(3.12), and (3.13) onto the sets

given in Equations (3.3),(3.4),(3.6), and (3.7), respectively.

Proposition 6. The projection operator defined in Equation (3.8) is orthogonal.

Proof. Let us define the norm squared error for the projection Sp(ω) of S(ω) onto

the set C1 in Equation (3.3):

‖Sd − S‖2 =

∫
|Sd(ω)− S(ω)|2 dω (A.17)

=

∫

|S(ω)|>D(ω)

|Sd(ω)− S(ω)|2 dω +

∫

|S(ω)|≤D(ω)

|Sd(ω)− S(ω)|2 dω(A.18)

≥
∫

|S(ω)|>D(ω)

|D(ω)− S(ω)|2 dω +

∫

|S(ω)|≤D(ω)

|Sd(ω)− S(ω)|2 dω(A.19)

≥
∫

|S(ω)|>D(ω)

|D(ω)− S(ω)|2 dω (A.20)
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with equality if and only if

Sp(ω) =

{
S(ω), |S(ω)| ≤ D (ω)

D(ω) · ejΦ(ω), otherwise
(A.21)

where Φ(ω) is the phase of S(ω). Therefore, the projection operator in Equa-

tion (3.8) is orthogonal.

Proposition 7. The projection operator defined in Equation (3.10) is orthogonal.

Proof. Let us define the norm squared error for the projection rp[k] of r[k] onto the

set C2 in Equation (3.4):

‖rp − r‖2 =
∑

k

|rp[k]− r[k]|2 (A.22)

=
∑

k≤N
|rp[k]− r[k]|2 +

∑

k>N

|rp[k]− r[k]|2 (A.23)

=
∑

k≤N
|rp[k]− r[k]|2 +

∑

k>N

|r[k]|2 (A.24)

≥
∑

k>N

|r[k]|2 (A.25)

where N =
⌊
Tp
Ts

⌋
. The equality is satisfied if and only if rp[k] = r[k], k ≤ N .

Therefore the projection operator given in Equation (3.10) is orthogonal.

Proposition 8. The projection operator defined in Equation (3.12) is orthogonal.

Proof. Let us begin with the norm squared error for the projection rp of r onto the

set C4 in Equation (3.6):

‖rp − r‖2 = ‖Sp − S‖2 (A.26)

=

∫
|Sp(ω)− S(ω)|2dω (A.27)

=

∫
{Re [Sp(ω)− S(ω)]}2dω +

∫
{Im [Sp(ω)− S(ω)]}2dω(A.28)

=

∫
{Re [Sp(ω)− S(ω)]}2dω +

∫
{Im [Sp(ω)− S(ω)]}2dω(A.29)

≥
∫
{Im [S(ω)]}2dω (A.30)
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where the equality is satisfied if and only if

Sp(ω) = Re [S(ω)] (A.31)

Therefore the projection operator given in Equation (3.12) is orthogonal.

Proposition 9. The projection operator defined in Equation (3.13) is orthogonal.

Proof. Similarly, let us begin with the norm squared error for the projection rp[k]

of r[k] onto the set C5 in Equation (3.7):

‖rp − r‖2 =
∑

k

|rp[k]− r[k]|2 (A.32)

=
∑

|r[k]|≤1

|rp[k]− r[k]|2 +
∑

|r[k]|>1

|rp[k]− r[k]|2 (A.33)

=
∑

|r[k]|>1

|rp[k]− r[k]|2 (A.34)

≥
∑

k>N

|r[k]|2 (A.35)

with equality if and only if

rp[k] =

{
r[k], |r[k]| ≤ 1
r[k]
|r[k]| , |r[k]| > 1

(A.36)

Therefore, the projection operator defined in Equation (3.13) is orthogonal.
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