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ABSTRACT

The design and control of many industrial and service systems require the analysts

to account for uncertainty. Computer simulation is a frequently used technique for

analyzing uncertain (or stochastic) systems. One disadvantage of simulation modeling is

that simulation results are only estimates of model performance measures. Therefore, to

obtain better estimates, the outputs of a simulation run should undergo a careful statistical

analysis. Simulation studies can be classified as terminating and nonterminating

according to the output analysis techniques used. One of the major problems in the output

analysis of nonterminating simulations is the problem of initial transient. This problem

arises due to initializing simulation runs in an unrepresentative state of the steady-state

conditions.

Many techniques have been proposed in the literature to deal with the problem of

initial transient. However, existing studies try to improve the efficiency and effectiveness

of currently proposed techniques. No research has been encountered that analyzes the

behavior of the transient period. In this thesis, we investigate the factors affecting the

length of the transient period for nonterminating manufacturing simulations, particularly

for serial production lines and job-shop production systems. Factors such as variability of

processing times, system size, existence of bottleneck, reliability of system, system load

level, and buffer capacity are investigated.

Keywords: Nonterminating simulations, behavior of transient period, serial production

lines, job-shop systems, MSER heuristics.
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ÖZET

Birçok endüstriyel ve servis sisteminin tasarım ve kontrolü için analizi yapan

kimselerin berlirsizliği hesaba katlamaları gerekir. Bilgisayar benzetim tekniği belirsiz

(veya rassal) sistemlerin analizinde sıkça kullanılan bir yöntemdir. Benzetim

modellerinin önemli bir eksiği performans değerleri için sadece tahminler üretmesidir. Bu

nedenle, daha doğru sonuçlar elde edebilmek için benzetim çıktıları dikkatli istatistiki

analize tabi tutulmalıdır. Benzetim çalışmaları, kullanılan çıktı analizi tekniklerine göre

sonu belirli ve sonu belirsiz olarak sınıflandırılabilirler. Sonu belirsiz benzetimlerin çıktı

analizinde karşılaşılan en önemli problemlerden biri geçiş dönemi problemidir. Bu

problem benzetim modelini uzun vadedeki durumundan uzak bir konumda başlatmaktan

ötürü ortaya çıkar.

Başlangıçtaki geçiş dönemi probleminin çözümüne dair önerilmiş pekçok teknik

literatürde mevcuttur. Fakat mevcut çalışmalar daha çok önerilen tekniklerin etkinlik ve

yeterliliğini geliştirmeye çalışmaktadır. Geçiş döneminin davranışını inceleyen bir

çalışma ile karşılaşılmamıştır. Biz bu tezde, sonu belirsiz benzetimlerle analiz edilen

imalat sistemlerinin geçiş dönemini etkileyen faktörleri inceliyoruz. Özellikle seri üretim

hatları ve atölye sistemleri üzerinde duruyoruz. İşlem zamanının değişkenliği, sistemin

büyüklüğü, darboğazın mevcudiyeti, sistemin güvenilirliği, sistemin yük seviyesi ve

tamponların kapasitesi incelenen faktörler arasındadır.

Anahtar Sözcükler: Sonu belirsiz benzetim, geçiş dönemi davranışı, seri üretim hatları,

atölyeler, MSER bulgusalları.
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1 INTRODUCTION

The need for modeling

The idea of conceptualization and modeling plays a crucial role in our understanding of

our environment. The modeling concept is often used to represent and express ideas and

objects.

A model is defined as a representation of a system for the purpose of studying the

system. In other words, models are used because there is a need for learning something

about a system, such as relationships among various components, or performance under

some specified conditions, which cannot be observed or experimented directly either due

to non-existence of the system or difficulty in manipulation of the system. A carefully

built model can throw away the complexity and leave only the necessary parts that an

analyst is looking for.

The word “system” comprises the vital part of the definition of a model. A system

is defined as a group of objects that are joined together in some regular interaction or

interdependence toward the accomplishment of some purpose (Banks et al., 1996). The

relationships among these objects and the manner in which they interact determine how

the system behaves and how well it fulfills its overall purpose. If it is possible and cost-

effective to alter the system physically, then it is probably desirable to do so rather than

working with a model. However, it is rarely feasible to do this, because such
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experimentation would often be too costly or too disruptive to the system. Moreover, the

system might not even exist, but it can be of interest to study it in its various proposed

alternative configurations to see how it should be built in the first place. For these

reasons, it is usually necessary to build a model as a representation of the system and

study it as a surrogate for the actual system.

Simulation modeling

Various kinds of models can be built to study systems, where our focus is only on

mathematical models. Mathematical models represent a system in terms of logical and

quantitative relationships. Mathematical models can be grouped into two categories,

namely, analytical models and simulation models. Analytical models make use of

mathematical methods, such as algebra, calculus, or probability theory, which obtain

exact information on the questions of interest. On the other hand, simulation models

evaluate a system numerically and produce only estimates of the true characteristics of

the system.

A formal definition of simulation by Fishman (1978) is given as follows:

“Simulation is the creation of a model that imitates the behavior of a system, running the

model to generate observations of this behavior, and analyzing the observations to

understand and summarize this behavior.”

If the model, hence the system is simple enough, then analytical solutions may be

possible. If an analytical solution to a model is possible and computationally efficient, it

is usually desirable to study the model in this way rather than via a simulation. However,

most real-world systems are too complex to allow realistic models to be evaluated

analytically, and simulation takes the first place.

Simulation models can be static or dynamic according to the involvement of the

passage of time. Another classification of simulation models is on the basis of the

characteristics of the input components. If all the inputs are constants than it is called

deterministic simulation, whereas a model that contains at least one random input is

called stochastic simulation. Stochastic simulation models produce output that is itself

random, and therefore must be treated only as an estimate of the true characteristic of the
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model. A further classification can be made with regard to the occurrence of events. A

discrete-event simulation concerns the modeling of a system as it evolves over time by a

representation in which the state variables change instantaneously at separate points in

time. A continuous simulation concerns the modeling of a system over time by a

representation in which the state variables change continuously with respect to time (Law

and Kelton, 2000). In this study, we build discrete, dynamic, and stochastic models. The

steps needed for successful application of a simulation study, and advantages/disadvanta-

ges of simulation are discussed well in Banks et al. (1996) and Law and Kelton (2000).

There are many application areas of simulation where it is used extensively in the

design and analysis of manufacturing systems due to the high degree of complexity. In

this thesis, we will focus only on manufacturing system simulations, particularly, serial

production lines and job-shop production systems. Other application areas are well listed

in Banks et al. (1996) and Winter Simulation Conference (WSC) proceedings are good

sources to find interesting applications.

The need for analysis of simulation outputs

From the definition of simulation given above, it can be seen that simulation is just a

computerized experiment of a model. Since random samples from probability

distributions are typically used as inputs to simulation experiments, the outputs of the

experiments will clearly be random variables, too. And the outputs (or estimates) are just

particular realizations of random variables that may have large variances. As a result,

these estimates could, in a particular run, differ greatly from the corresponding true

characteristics of the model. Therefore, there may be a significant probability of making

faulty inferences about the system under study. In order to correctly interpret the results

of such an experiment, it is necessary to use appropriate statistical analysis tools.

Two crucial problems with an output sequence obtained from a single simulation

run are the nonstationarity and the autocorrelation. Nonstationarity means that the

distributions of the successive observations change over time, whereas autocorrelation

means the observations in the sequence are correlated with each other. Unless carefully

analyzed, these two problems may lead the analyst to wrong conclusions.
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The problem of initial transient in simulation outputs

Simulation experiments can be classified as either terminating or nonterminating when

the output analysis methods are concerned (Law and Kelton, 2000; Fishman, 1978). A

terminating simulation is the one for which the starting and stopping conditions are

determined a priori by reasoning from the underlying system. Although the starting and

stopping conditions are determined by the analyst, which in fact is decided by the nature

of the underlying system, these conditions need not only be deterministic but they can

very well be stochastic, as well. Since starting and stopping conditions are part of the

terminating simulations, relatively straightforward techniques can be used to estimate the

parameters of interest in these experiments (e.g., method of independent replications.)

A nonterminating simulation, on the other hand, is the one for which there is no

natural starting and stopping conditions. And the aim of a nonterminating simulation is to

estimate the parameter of a steady-state distribution. An important characteristic of

nonterminating simulations is that steady-state parameter of interest does not depend on

the initial conditions of the simulation. However, steady-state exists only in the limit, that

is, as the run length goes to infinity. And the run length of any simulation needs to be

finite. Therefore, the initial conditions, which normally may not represent the system

conditions in the steady-state, will apparently bias the estimates based on the simulation.

This is called the problem of initial transient in the simulation literature. Many

techniques have been proposed in the literature to remedy this problem (see, for example,

Kelton, 1989; Kelton and Law, 1983; Schruben, 1981; Schruben et al., 1983; Goldsman

et al., 1994; Vassilacopoulos, 1989; Welch, 1982; and White, 1997; among many others).

The initial transient problem deserves particular attention in any successful

simulation study. Almost all of the studies in the literature are in the form of either

method developments that try to mitigate the effects of initialization bias or works that

compare the effectiveness of proposed techniques via applying them to analytically

tractable models. That is, the studies done so far try to assess and improve the efficiency

and efficacy of the earlier proposed techniques. We have never seen a study explicitly

investigating how the initial transient period behaves with respect to different system

conditions. We, in this thesis, are primarily interested in the behavior of the initial
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transient. More specifically, we are trying to observe the change in the length of the

transient period of nonterminating simulations with changes in the system parameters.

Motivation of the proposed study

The primary motivation for this study comes from the often negligence of initial transient

problem in practice, especially when using method of independent replications, and, more

importantly, from non-existence of objective procedures to deal with this problem that

are guaranteed to work well in every situation. In practice, most practitioners and even

academic researchers, as well, often neglect the bias induced by the initial transient

period in doing their simulation studies. The analysts, in general, truncate some initial

portion of the whole sequence to mitigate the effects of initialization bias, however, they

do this truncation in a rather informal way.

Furthermore, in comparing several alternative system designs, the truncation point

is chosen by observing only one particular design, which may have a relatively short

transient period, and the same amount of data is truncated from all other designs. This

strategy, apparently, will not mitigate the effects of bias induced by initial conditions, if

some designs have longer transient periods. In making unbiased comparisons among

alternative designs, deleting the same amount of data from each design makes sense.

However, the length of the transient period, i.e., the number of data to be truncated, might

change drastically from one design to the other. Hence, if the same amount of truncation

is to be made, then this should be chosen by selecting the longest transient period.

Initialization bias induces more severe problems in the simulation results if the

output analysis has to be done by the method of independent replications, which is often

the case due to its simplicity. Moreover, there is no objective criterion for data truncation

that works well in every situation, which makes the problem even harder. This is,

perhaps, one of the main reasons for its negligence. If some guidelines can be given by

the researchers about the behavior of the transient period with respect to different system

parameters, then the problem discussed above about the comparison of several system

designs would be minimized, if not completely eliminated.
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For the time being, we restrict our attention only to manufacturing systems,

particularly serial production lines and job-shop production systems. The reason for

choosing serial production lines and job-shop systems is that they are the building blocks

of most manufacturing systems, and one can observe the simplest form of interactions

among system components, which than can be generalized to larger systems.

Additionally, these systems are of economic importance as they are still the most widely

used ones in practical manufacturing. The contribution of this study to the literature can

be stated as follows:

•  It provides an extensive review of the literature on initial transient problem, which

might be a starting point for future research in this area.

•  It applies a relatively new truncation technique in addition to a frequently used

visual tool, which allows us to assess its applicability in real-world system

simulations, to discuss its theoretical limitations, and to give guidelines for its

implementation.

•  By giving detailed results for manufacturing systems, it provides a framework for

simulation practitioners to validate their model findings regarding the transient

period, a problem which has not received enough attention.

The organization of the thesis is as follows: after a short introduction to the initial

transient problem in Chapter 1, it continues with presenting basic statistical results for the

analysis of simulation outputs in Chapter 2. It then continues with a more precise

definition of the problem of initial transient, which is followed by a literature survey.

After giving some of the solution techniques to the problem of initial transient the chapter

ends with a summary. We present the proposed study and the methodology used for this

purpose in Chapter 3. Also, the methodology is illustrated by a detailed example. This

chapter also discusses the system considerations and experimental parameters that are

used in this study. Chapters 4 and 5 present the results of experiments for serial and job-

shop production systems, respectively. This thesis ends with a conclusion chapter in

which the results of the previous sections are summarized and future research directions

are elaborated.
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2 THE PROBLEM OF INITIAL TRANSIENT

2.1 Introduction

In this chapter, we study the problem of initial transient in more detail. The inherent

variability in simulation data necessitates the use of statistical techniques to have

meaningful conclusions from the simulation results. Unless appropriate statistical

techniques are used to make the analysis, the results of a simulation experiment are

always subject to suspect.

A classification of simulation studies based on the output analysis methods is

made as either terminating or nonterminating (Law and Kelton, 2000; and Fishman,

1978). The starting and stopping conditions in a terminating simulation are in the nature

of the system; hence the analyst has no control over it. Thus, by making several

independent replications of the model one can use classical statistical techniques to

analyze the output of terminating simulations. There is no natural starting and stopping

conditions for the nonterminating simulations, hence both the way of starting and

stopping do affect the performance measures to be estimated by these experiments. This

problem should be remedied by careful statistical analysis instead of directly applying the

classical methods. In the literature of initial transient problem, almost all the authors try
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to improve the efficiency and efficacy of the solution techniques proposed. We, in this

study, primarily focus on the behavior of the initial transient (warm-up or start-up)

period. We are interested in observing this behavior in the simulation of manufacturing

systems, particularly in serial production lines and job-shop production systems. The

reason for choosing these systems is that, they are the basic building blocks of more

complex manufacturing systems. Additionally, the simplest forms of interaction among

system entities can be observed easily, which than can aid to understand the behavior of

larger systems.

One can skip Sections 2.2, 2.3, and 2.4 if s/he has enough statistical background

and knowledge about the initial transient problem in simulation literature. Specifically, in

Section 2.2 we present the basic results, such as calculation of the mean, variance, and

confidence interval, from statistical theory. Then, we describe the behavior of a typical

simulation output and define the initial transient problem in more precise terms in

Sections 2.3 and 2.4, respectively. They are followed, in Section 2.5, by a presentation of

the literature done so far on the initial transient problem. The chapter ends with

presenting two of the data truncation techniques proposed in the literature in Section 2.6,

which are used in this study.

2.2 Basic statistical concepts

Case 1. Independent and identically distributed sequences

Estimating a population mean from a sample data is a common objective of the statistical

analysis of a simulation experiment. The mean is a measure of the central tendency of a

stochastic process. The median is an alternative measure of the central tendency. In the

cases when the process can take on very large and very small values, the median can be a

better measure than the mean, since extreme values can greatly affect the mean.

However, almost all the studies in the simulation literature deal with the mean rather than

the median. Hence, in this study we will not use median, but mean instead.

By estimating the population mean we obtain a single number that serves as the

best candidate for the unknown performance parameter. Although this single number, i.e.,
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the point estimate, is important, it should always be accompanied by a measure of error.

This is usually done by constructing a confidence interval for the performance measure of

interest, which is helpful in assessing how well the sample mean represents the

population mean. The first step in doing this is to estimate the variance of the point

estimator. The variance is a measure of the dispersion of the random variable about its

mean. The larger the variance, the more likely the random variable is to take values far

from its mean.

Now, suppose that we have a stochastic sequence of n numbers, X1, X2,…, Xn.

Further suppose that, this sequence is formed by independent and identically distributed

random variables having finite mean μ and finite variance σ2. Independence means that

there is no correlation between any pairs in the sequence. Identically distributed means

that all the numbers in the sequence come from the same distribution. Then, an unbiased

point estimator for the population mean, μ, is the sample mean, X , that is [ ] µ=XE ,

where

∑
=

=
n

i
iX

n
X

1

1 (2.1)

An unbiased estimator of the population variance, σ2, is the sample variance, S2,

that is [ ] 22 σ=SE , where

( )∑
=

−
−

=
n

i
i XX

n
S

1

22

1
1 (2.2)

Now, due to independence, the variance of the point estimator, [ ]XVar , can be

written as:

[ ] ( ) .
)1(

1
1

2
2

∑
=

−
−

==
n

i
i XX

nnn
SXVar (2.3)

The bigger the sample size n, the closer X should be to μ.

If n is sufficiently large, then an approximate 100(1-α) percent confidence interval

for μ is given by

][2/1 XVarzX α−± (2.4)

Law and Kelton (2000) explain this confidence interval as follows: if a large

number of independent 100(1-α) percent confidence intervals each based on n
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observations are constructed, the proportion of these confidence intervals that contain

(cover) μ should be 1-α. However, the confidence interval given by (2.4) holds only when

the distribution of X  can be approximated by a normal distribution, that is for

sufficiently large n. If n is chosen too small, the actual coverage of the desired 100(1-α)

percent confidence interval will generally be less than 1-α. To remedy this problem, z-

distribution can be replaced by a t-distribution.

][2/1,1 XVartX n α−−± (2.5)

Since tn-1,1-α/2 > z1-α/2, the confidence interval given by (2.5) will be larger than the

one given by (2.4) and will generally have coverage closer to the desired level 1-α (Law

and Kelton, 2000).

Case 2. Correlated sequences

It is important to notice that the results presented so far are valid only if the assumptions

of independence and identical distribution holds. If any of these assumptions is violated,

then the results might change drastically. Now, we will examine the results when the

assumption of independence is violated. We start with a definition of the covariance and

correlation.

Let X and Y be two random variables, and let μX = E[X], μY = E[Y], σ2
X = Var[X],

and σ2
Y = Var[Y]. The covariance and correlation are measures of the linear dependence

between X and Y. The covariance between X and Y is defined as (Fishman, 1973b);

Cov[X, Y] = E[(X- μX)·( Y- μY)] = E[X·Y] - μX ·μY (2.6)

The covariance can take on values between -∞ and ∞. The correlation coefficient,

ρ, standardizes the covariance between –1 and 1.

[ ]
YX

YXCov
σσ

ρ ,= (2.7)

If ρ is close to +1, then X and Y are highly positively correlated. On the other

hand, if ρ is close to –1, then X and Y are highly negatively correlated. The closer ρ is to

zero in both sides, the more independence between X and Y.
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Now, suppose that we have a sequence of random variables X1, X2,… that are

identically distributed but may be dependent. In such a time-series data, we can speak of

lag-j autocorrelation.

ρj = ρ (Xi, Xi+j) (2.8)

This means that the value of the autocorrelation depends only on the number of

observations between Xi and Xi+j, not on the actual time values of Xi and Xi+j. If the Xi’s

are independent , then they are uncorrelated, and thus ρj = 0 for j = 1, 2,… .

When we have an autocorrelated sequence X1, X2, …, Xn, the sample mean, X ,

given by (2.1) is still an unbiased estimator of the population mean, μ. However, the

estimation of the variance of the point estimate becomes a hard job (Banks et al., 1996);

[ ] ( )∑∑
= =

=
n

i

n

j
ji XXCov

n
XVar

1 1
2 ,1 (2.9)

Obtaining the above estimate is certainly a hard job since each term Cov(Xi, Xj)

may be different, in general. Fortunately, systems that have a steady-state will produce an

output process that is approximately covariance-stationary (Law and Kelton, 2000). If a

time-series is covariance-stationary, then the statement given in (2.9) can be simplified to

(Moran 1959; Anderson, 1971):

[ ] ( ) 







−+= ∑

−

=

1

1

2

121
n

j
jnj

n
SXVar ρ (2.10)

It can be shown (see, Law, 1977) that the expected value of the variance

estimator, S2/n, is:

[ ]XVarB
n

SE ⋅=






 2

(2.11)

where,

1
1

−
−=

n
cnB (2.12)

and c is the quantity in brackets in (2.10). Now,

(i) If Xi’s are independent , then ρj = 0 for j = 1, 2,… . Hence, c = 1 and (2.10) simply

reduces to the familiar expression, S2/n. Note also that B = 1, hence S2/n is an

unbiased estimator of [ ]XVar .
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(ii) If Xi’s are positively correlated, then ρj > 0 for j = 1, 2,… . Hence c > 1, which

results that n/c < n, and B < 1. Therefore S2/n is biased low as an estimator of

[ ].XVar . If this correlation term were ignored, the nominal 100(1-α) percent

confidence interval would be misleadingly too short and its true coverage would

be less then 1-α.

(iii) If Xi’s are negatively correlated, then ρj < 0 for j = 1, 2,… . Hence 0 ≤ c < 1,

which results that n/c > n, and B > 1. Therefore S2/n is biased high as an estimator

of [ ].XVar . In this case, the nominal 100(1-α) percent confidence interval would

have true coverage greater than 1-α. This is a less serious problem then the one in

case (ii).

Conway (1963) gave an upper bound on the variance estimator for the correlated

case, assuming that the correlation decreases geometrically with distance. That is, if the

correlation between adjacent measurements is ρ, the correlation between non-adjacent

measurements separated by one is ρ2, separated by 2 is ρ3, etc. The upper bound on this

variance is given by:

[ ] 







−

+<
ρ

ρ
1
21

2

n
SXVar (2.13)

In queuing systems the autocorrelations are positive, i.e., if customer i has to wait

relatively long then the next customer (i+1) probably has to wait long, too. The effect of

positive autocorrelations was discussed above. Kleijnen (1984) states that the

autocorrelations of M/M/1 systems might be so high that, the quantity in brackets in

(2.10), c, would be as large as 360 when the traffic intensity is 0.90 and 10 when the

traffic intensity is as low as 0.50.

To make the discussion complete, we make the definition of a covariance-

stationary process. A discrete-time stochastic process X1, X2,… is said to be covariance-

stationary if

μi = μ for i=1,2,… and -∞< μ <∞

σi
2 = σ2 for i=1,2,… and σ2 < ∞

cov(Xi, Xj) is independent of i for j = 1, 2,…
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Thus, for a covariance-stationary process the mean and the variance are stationary

over time (common mean and variance), and the covariance between two observations Xi

and Xi+j depends only on the lag j and not on the actual time values of i and i+j.

2.3 The behavior of simulation outputs and analysis methods

Simulations of dynamic, stochastic systems can be classified as either terminating or

nonterminating depending on the criterion used for determining the run length. The terms

transient-state and steady-state are also used extensively for terminating and

nonterminating simulations, respectively.

In a terminating simulation, the starting and stopping conditions of the model are

explicitly dictated by the system to be modeled and the analyst has no control over it.

That is, the starting and stopping conditions used in a terminating simulation is

determined by the “nature” of the system to be modeled. Hence, a transient-state

simulation is needed if the performance of a stochastic system under some pre-

determined initial and terminating conditions is of interest. This means that the measures

of performance for a terminating simulation depends explicitly on the state of the system

at time zero. Therefore, special care should be given in choosing the initial conditions for

the simulation at time zero in order those conditions to be representative of the initial

conditions for the corresponding system. In a terminating system, a possible transient

behavior forms part of the response (Kleijnen, 1975). Although determined explicitly by

the nature of the system, the initial and terminating conditions need not be deterministic;

rather, they can very well be of stochastic nature, as well. The only way to obtain a more

precise estimate of the desired measures of performance for a terminating simulation is to

make independent replications of the simulation. This will produce estimates of the

performance measure of interest that are independent and identically distributed. Hence

the formulas presented under “Case 1” heading of Section 2.2 are readily applicable to

have a point estimator for the population mean of the process and to assess the precision

of this point estimator. However, note that confidence intervals are approximate because

certainly they depend on the assumption that estimates are normally distributed, which is

merely satisfied in practice. If enough replications are done, the output analysis for a
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terminating simulation becomes fairly simple since the classical methods of statistical

analysis can be directly applied. However, this is not the case for a steady-state (or non-

terminating) simulation.

In a nonterminating simulation, however, there is no explicitly defined way of

starting and stopping the model. A steady-state simulation is applicable if the system’s

performance, which is independent of any initial and terminating conditions, is to be

evaluated. In other words, the desired measure of performance for the model is defined as

a limit as the length of the simulation goes to infinity. The usual assumption is that a

nonterminating simulation achieves a stochastic steady-state in which the distribution of

the output is stationary in some sense (typically in the mean) and ergodic (independent of

any specific initial or final run conditions) (Law, 1984).

Note that stochastic processes for most real-world systems do not have steady-

state distributions, since the characteristics of the system change over time. On the other

hand, a simulation model may have steady-state distributions, since the characteristics of

the model are often assumed not to change over time. It is also important to note that a

simulation for a particular system might be either terminating or nonterminating,

depending on the objectives of the study. Law (1980) contrasts these two types of

simulations in several examples, and discusses the appropriate framework for statistical

analysis of the terminating type (i.e., method of independent replications).

Let X1, X2,… be an output process from a single simulation run. The Xi’s are

random variables that will, in general, be neither independent nor identically distributed.

The data are not independent, because there will, in general, be a significant amount of

correlation among observations, i.e., autocorrelated sequence. For example, in the

simulation of a simple queuing system, if the jth customer to arrive waits in line for a long

amount of time, then it is quite likely that the (j+1)st customer will also wait in line for a

long amount of time, and vice versa. Additionally, they are not identically distributed,

either because of the nature of the simulation model or of the initial conditions selected to

start the simulation. Not identically distributed means that the sequence is nonstationary,

that is the distributions of the output observations change over time, i.e., E[Xi] ≠ E[Xi+1].

However, for some simulations Xd+1, Xd+2,… will be approximately covariance-stationary

if d is large enough, where the number d is the length of the warm-up period (Nelson,
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1992). For example, the first observation on the process of interest is a function of the

initial conditions, because of the inherent dependence among events. The second

observation is also a function of the initial values but usually to a lesser extent than the

first observation is. Successive observations are usually less dependent on the initial

conditions so that eventually events in the simulation experiment are independent of

them. If the initial conditions are not chosen from the steady-state behavior of the output

process, then the rate of this dependence scheme will hardly diminish compared to the

rate when appropriate initial conditions are chosen. For these two reasons, classical

statistical techniques, which are based on independent and identically distributed data are

not directly applicable to the outputs of steady-state simulation experiments. Note that the

problem of dependence can be solved by simply making several independent replications

of the entire simulation. However, the problem with not identically distributed

(nonstationary) data can not be solved by independent replications. It needs further

careful analysis, which is, in fact, a major part of this thesis.

Several works have been done on the statistical analysis of steady-state

simulations. These techniques can be classified under one of the following six methods

(Law and Kelton, 2000), for which we also give short descriptions; replication, batch

means, autoregressive method, spectrum analysis, regenerative method, and standardized

time-series modeling. A detailed survey about the first five methods can be found in Law

and Kelton (1982, 1984). (Note that due to the main focus of this study, we give the

method of independent replications in more detail in a separate heading.)

•  Method of batch means. This method is based on a single long run and seeks to

obtain independent observations. However, since it is based on a single run, it has

to go through the transient period only once. Transient period is the period in a

simulation run that starts with initialization and continues until the output

sequence reaches a stationary distribution. More precise definition will be given

in the next section. The output sequence X1, X2, …Xk (assuming that the initial

transient is removed) is divided into n batches of length m (note that, k = m·n).

Letting ( )∑ =
= m

i ij XmX
1

1 , for j = 1, 2,…, n, be the sample mean of the m

observations in the jth batch, we obtain the grand sample mean as
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( )∑ =
= n

j jXnX
1

1 . Hence, X  serves as the point estimator for the true

performance measure. If the batch size, m, is chosen sufficiently large, then it can

be shown that jX ’s will be approximately uncorrelated (Law and Carson, 1979).

Then classical statistical techniques can be applied. If the batch size is not chosen

large enough, then jX ’s will be highly correlated. The effect of negligence of

correlation in a sequence was discussed in the “Case 2” heading of Section 2.2.

•  Autoregressive method. This method was developed by Fishman (1971, 1973b,

and 1978). It tries to identify the autocorrelation structure of the output sequence

and then makes use of this structure to estimate the performance measures. A

major concern in using this approach is whether the autoregressive model

provides a good representation of the stochastic process.

•  Spectrum analysis. This method is very similar to the autoregressive method.

Likewise, it also tries to use the estimates of the autocorrelation structure of the

underlying stochastic process to obtain an estimate of the variance of the point

estimator. However, it is, perhaps, the most complicated method of all, requiring a

fairly sophisticated background on the part of the analyst.

•  The regenerative method. This method was simultaneously developed by Crane

and Iglehart (1974a, 1974b, and 1975) and Fishman (1973a). The idea is to

identify random times at which the process probabilistically starts over, i.e.,

regenerates, and use these regeneration points to obtain independent and

identically distributed random variables to which classical statistical analysis can

be applied to estimate the point estimator and its precision. In order for this

method to work well, there should be short but a large number of cycles, where a

cycle is defined as the interval between two regeneration points. The difficulty

with using regenerative method in practice is that real-world systems may not

have easily identifiable regeneration points, or even if they do have, expected

cycle length may be so large that only a few cycles can be simulated. A fairly

good discussion is given in Crane and Lemoine (1977).

•  The standardized time-series method. This method is based on the same

underlying theory as Schruben’s test (1982). It assumes that the process X1, X2,…
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is strictly stationary with μ for all i and is also phi-mixing. Strictly stationary

means that the joint distribution of X1+j, X2+j,…,Xn+j is independent of j for all

time indices 1, 2,…,n, where j is the analyst specified batch size. Also, X1, X2,…

is phi-mixing if Xi and Xi+j become essentially independent as j becomes large.

The major source of error for this method is choosing the batch size, j, small.

It should be noted that one important common characteristic of all the methods

given above is that they are based on only a single long run of the simulation model.

Standardized time-series may be applied to either a single long run or multiple short runs.

This is an important difference between these methods and the method of independent

replications, which we discuss in the next subsection. The comparison of having one long

run versus having multiple independent short runs is made by Whitt (1991). He provides

examples showing that each strategy can be much more efficient than the other, thus

demonstrating that a simple unqualified conclusion is inappropriate. He also adds that

doing fewer runs (e.g., only one) is more efficient when the autocorrelations decrease

rapidly compared to the rate the process approaches steady-state. Furthermore, the

method of batch means, the autoregressive approach, and the spectrum analysis assume

that the process X1, X2,… is covariance-stationary, which will rarely be true in practice.

However, this problem can be remedied by choosing a sufficiently large d, and keeping

only the sequence after d, i.e., Xd+1, Xd+2,… .Additionally, all the methods, including the

method of independent replications suffer, from the initial transient problem except the

regenerative method (Kleijnen, 1984).

The most serious problem in the method of independent replications is the bias in

the point estimator, whereas the most serious problem in the other methods is the bias in

the variance of the point estimator (Law and Kelton, 2000). They actually have a bias

problem in the point estimator, however, since the run length is relatively very large

when compared to the run length of the method of replications, this problem diminishes

out. Next, we discuss the method of independent replications in more detail.
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Method of independent replications

The motivation for this study was in the method of independent replications. Here,

several independent and identically operated simulations are made in order to produce

independent and identically distributed observations ,...,, 21 XX where jX  is the output

measure of interest from the jth entire simulation run. In outline, this method is identical

to that used for terminating simulations (Law, 1980). Independence is satisfied by using a

separate random number stream for each replication. And, the assumption of identical

distribution is satisfied by initializing and terminating the replications exactly in the same

way.

A more precise explanation of the method is as follows. Suppose we make n

independent replications of a simulation model each of length m.

Table 2.1 Typical simulation output using method of independent replications.

Simulation Observations
Replications O1 O2 … Od Od+1 Od+2 … Om jX

R1 X11 X21 … Xd1 Xd+1,1 Xd+2,1 … Xm1 1X
R2 X12 X22 … Xd2 Xd+1,2 Xd+2,2 … Xm2 2X

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

Rn X1n X2n … Xdn Xd+1,n Xd+2,n … Xmn nX

X

Note that the observations within a single replication (row) are not independent.

However, the observations in a single column are apparently independent. Additionally,

the expectation of the sample mean of each replication (i.e., jX ’s) is not equal to the

population mean, μ. That is, the observations within a single run are not identically

distributed, as well. The reason for this biasing effect is that the initial conditions for the

replications cannot be specified to be representative of the steady-state conditions. Each

run, therefore, will involve the same problem of achieving steady-state as the first.

For the time being, assume that the observations within a replication come from

an identical distribution. Given this assumption, and the observations obtained from each
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replication, since each row shows an independent replication of the simulation model, we

obtain point estimates, jX  for j = 1, 2,…,n, of the population mean, μ, where jX is given

by:

njX
m

X
m

i
ijj ,...2 1,for      ,1

1
== ∑

=

(2.14)

and, Xij is the ith observation in the jth replication. Thus, the grand mean, X , is the

ultimate point estimator for μ and is given by:

∑
=

=
n

j
jX

n
X

1

1 (2.15)

The variance of the point estimator and the confidence interval for the mean can

be estimated by equations given in (2.3) and (2.5), respectively.

The method of independent replications has two principal advantages (Kelton,

1989):

(i) It is a very simple method to apply, by far the simplest of the six techniques

mentioned above. Also, most simulation languages have some facility for

specifying that a model be replicated some number of times,

(ii) It produces the independent and identically distributed sequence 21, XX ,…, nX  of

observations on the system, to which the methods of classical statistics may be

directly applied. This includes not only the familiar confidence interval

construction and hypothesis testing, but also methods such as multiple ranking

and selection procedures, a very useful class of techniques in simulation since

several alternative system designs are frequently of interest.

Now, if the assumption of identically distributed data is relaxed the situation

becomes complicated. Identically distributed data can not be obtained from a single

simulation run, because the initialization methods used to begin most steady-state

simulations are typically far from being representative of the actual steady-state

conditions. This leads to bias in the simulation output, at least for some early portion of

the run. It should be noted that increasing the number of replications will not cure this
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problem, rather each replication will be effected by the initialization bias problem. This is

a major problem in the method of independent replications.

2.4 Problem definition

The problem of initial transient was tried to be explained in previous sections, but rather

in an informal and inconvenient manner. Here, we will define the problem of initial

transient in a mathematically more precise way and also discuss the effects of this

problem on the simulation results. In order for the section to be complete in itself we first

draw the borders of our environment.

Two types of simulation studies that should be distinguished are terminating

(transient-state) and nonterminating (steady-state) simulations, when the output analysis

methods are of concern. Output analysis deals with the estimation of some performance

measures of interest. The analyses of the outputs for terminating simulations can easily be

done by employing classical statistics, if caution was taken in determining independent

and identically distributed outcomes. By simply replicating the entire simulation run with

different random number streams, this goal can be achieved. However, this job, i.e.,

estimating performance measures, is not as easy for steady-state simulations as it is for

terminating ones. Several techniques have been proposed in the literature to obtain

accurate and precise steady-state performance measures, where we solely concentrate our

study on the method of independent replications.

Two curses of steady-state discrete-event simulation are the autocorrelations and

the initial bias. Autocorrelations occur because new states of the process typically depend

strongly on previous ones. The existence of autocorrelations in a sequence produces bias

in the estimate of the variance of the point estimator. This problem can be remedied by

simply having multiple independent runs of the model. Since the output sequence of a

single run exhibits autocorrelated behavior, the initially specified conditions can and will

greatly affect the outputs obtained. Bias is the difference between the expected value of

the point estimator, here presumed to be the sample mean, and the true value of the

quantity to be estimated, μ. Initialization bias is the bias occurring due to initializing the

simulation model in a condition that is not representative of the steady-state conditions.
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The biasing effect of initial conditions can not be mitigated by having multiple

independent runs, because each run is initialized in the same way as the others and this

bias, if exists, occurs in all the runs.

A formal definition of the problem of initial transient can now be given as

follows:

Suppose that X1, X2,…,Xm is the output process from a single run of the simulation

for which a set of initial conditions, denoted by I0, exist at i = 0. Also suppose that these

random variables have a steady-state distribution, denoted by F, which is independent of

the initial conditions I0, with the first moments given as follows:

µ==
∞→∞→

][lim]|[lim 0 iiii
XEIXE (2.16)

where μ is the steady-state mean value. The goal of a steady-state simulation of the

process X1, X2,… is to estimate this mean μ and construct a confidence interval for this

mean. Note that, in practice, any simulation run will necessarily be finite. Therefore, the

initial conditions will clearly affect the point estimators. Also, since it will generally not

be possible to choose the initial conditions for the simulation to be representative of

“steady-state behavior,” the distribution of the Xi ’s (for i = 1, 2,…) will differ from F

over time. Furthermore, an estimator of μ based on the observations X1, X2, …, Xm will

not be “representative.” For example, the sample mean, X  that is given by (2.14), will be

a biased estimator of μ for all finite values of m. The problem that has just been described

is called the problem of initial transient or the start-up (or warm-up or initialization bias)

problem in the simulation literature.

Once this problem is recognized by the analyst, it should be given enough effort

to mitigate its effects. There is an agreement in the literature on using the mean-squared

error (MSE) of the point estimator to assess the efficacy of any proposed remedial

procedure to this problem. We defer a rigorous definition of the MSE until Section 2.6

and content with stating that it is the sum of the variance of the point estimator and the

square of the bias in the point estimator. The smaller the MSE, the better the output

sequence is.
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Mitigating the effects of initialization bias

Some authors suggest, for special systems, that retaining the whole sequence and

estimating the performance measures of interest with this whole sequence would

minimize the MSE (Kleijnen, 1984). Indeed, Law (1984) proved that for simple queuing

systems MSE is minimized by using the whole series, assuming that the system started in

the empty and idle state and the length of the run is long. However, even if the MSE

would be minimal, the resulting confidence interval may be inconsistent. If significant

bias remains in the point estimator and a large number of replications are used to reduce

the point estimator variability, then a narrow confidence interval will be obtained but

around the wrong quantity (Adlakha and Fishman, 1982; Law, 1984). This happens,

because bias is not affected by the number of replications; it is affected only by deleting

more data or extending the length of each run. In the presence of initial-condition bias

and a tight budget, the number of replications should be small and the length of each

replication should be long (Nelson, 1992).

Conway (1963) suggests using a common set of starting conditions for all

systems, when two or more alternative systems are compared.

The length of the transient period will certainly depend on the method used for

initialization. Having this fact in mind, one can suggest to start the simulation in a state,

which is “representative” of the steady-state distribution. This method is sometimes

called intelligent initialization (Banks et al., 1996). This approach can be implemented in

two ways. The first is called deterministic initialization, where the initial conditions are

chosen as constant values such as the mean or the mode of the steady-state behavior of

the process. A second way, called stochastic initialization, tries to estimate the steady-

state probability distribution of the process and then uses this estimated distribution to

draw the initial conditions instead of specifying it to be the same deterministic value for

each replication. Estimating this distribution can be done either by having pilot runs or by

using the results of similar systems that can be solved analytically. The replications in

stochastic initialization, though actually begin in generally different numerical positions,

are still independent and identically distributed since the rule by which the initial states

are chosen is always the same.
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Indeed, the ideal in intelligent initialization techniques would be to draw the

initial state from the steady-state distribution itself. But an analyst in possession of this

information would have no reason to execute a simulation. Even if this is done

satisfactorily, this can only decrease, but not completely eliminate, the time required to

for the simulation to achieve steady-state. There will still be an initial period during

which the expected system state will differ from the desired steady-state expectation, but

hopefully, both the duration of the transient period and the magnitude of the bias will be

diminished.

Another, yet more practical and most often suggested technique in the literature

for dealing with the problem of initial transient is known as the initial data deletion (or

truncation) or warming-up the model. The idea is to delete some number of observations

from the beginning of a run and to use only the remaining observations to estimate the

steady-state quantities of interest. Since our thesis mainly concentrates around this

technique we devote a separate section for data truncation techniques and discuss the

detailed mechanics in Section 2.6.

2.5 Literature survey

The literature in the initial transient problem can be divided into two broad categories;

studies centered around intelligent initialization and studies centered around truncation

heuristics. Truncation heuristics, indeed, can also be classified as either heuristics that

suggest a truncation point or recursive applications of hypothesis testing to detect the

existence of initialization bias. Furthermore, some authors have studied the assessment of

proposed techniques both in theoretical limitations and in practical applicability. Here,

we review the important studies that have taken considerable attention in the literature.

The problem of initial transient has challenged the researchers so much that even

PhD dissertations solely devoted to this problem have been done (see, for example,

Morisaku, 1976; Murray, 1988). Table 2.2 summarizes the literature on the initial

transient problem.
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Table 2.2 Summary of the literature on the initial transient problem.

Type of study Studies conducted
Intelligent initialization

Deterministic initialization Madansky, 1976; Kelton and Law, 1985; Kelton, 1985;
Murray and Kelton 1988a; Blomqvist, 1970

Stochastic initialization Kelton, 1989; Murray, 1988; Murray and Kelton, 1988b
Antithetic initial conditions Deligönül, 1987

Truncation heuristics
Graphical techniques Welch, 1981, 1982, 1983

Repetitive hypothesis testing
Schruben 1982, Schruben et al., 1983; Schruben and
Goldsman, 1985; Goldsman et al., 1994; Schruben,
1981; Vassilacopoulos, 1989

Analytical techniques
Kelton and Law, 1983; Asmussen et al., 1992;
Gallagher et al., 1996; White, 1997, White et al., 2000;
Spratt, 1998

Surveys Gafarian et al., 1978; Wilson and Pritsker, 1978a,
1978b; Chance, 1993

Assessments

Conway, 1963; Gafarian et al. ?; Law, 1975, 1977,
1984; Kelton, 1980; Kelton and Law, 1981, 1985;
Fishman, 1972, 1973a; Adlakha and Fishman, 1982;
Kleijnen, 1984; Cash et al., 1992; Nelson, 1992; Ma and
Kochhar, 1993; Snell and Schruben, 1985;

Others Glynn and Heidelberger, 1991, 1992a, 1992b;
Heidelberger and Welch, 1983; Nelson, 1990

The first study that deals with the initial bias in the simulation output data is due

to Conway (1963). Although the problem of initial transient was recognized so early, and

many efforts was given to solve the problem, there still does not exist a general objective

rule or procedure as a solution to the problem. Conway (1963) also proposed a method,

which is perhaps the first formal truncation heuristic. Applying this rule, the output

sequence is scanned using a forward pass, beginning with the initial condition, to

determine the earliest observation (in simulated time), which is neither the maximum nor

the minimum of all later observations. This observation is taken as the truncation point

for the current run.

Several other methods have been developed in the literature. Gafarian et al.

(1978) found that none of the methods available at that time performed well in practice

and they stated that none of them should be recommended to practitioners. They also

proposed an alternative heuristic, similar to the Conway’s rule. Applying this alternative,

the output sequence is scanned using a backward pass, beginning with the last



25

observation, to find the earliest observation (in simulated time) that is neither the

maximum nor the minimum of all earlier observations. This observation is taken as the

truncation point for the current run. Gafarian et al. (?), in another study, suggest the

following criteria to assess the efficiency and effectiveness of a proposed technique;

accuracy, precision, generality, simplicity, and cost. However, all these criteria are

subjective and hard to accurately estimate in practice.

Wilson and Pritsker (1978a) also surveyed the various simulation truncation

techniques. They concluded that the truncation rules of thumb are very sensitive to

parameter misspecification, and their use can result in excessive truncation. Wilson and

Pritsker (1978b), in another study, evaluated finite state space Markov processes and

found that choosing an initial state near the mode of the steady-state distribution produces

favorable results. However, in practice that mode is unknown. Anyhow, these results

suggest that the empty state is not the best starting point for data collection if runs are

replicated. They also noted that it is more effective to choose good initial conditions than

to allow for long warm-up periods.

Chance (1993) also provides a survey of the works done in the initial transient

problem in simulation literature, which is fairly recent when compared to the above

surveys.

Perhaps the simplest and most general technique for determining a truncation

point is a graphical procedure due to Welch (1981, 1982, and 1983). In general, it is very

difficult to determine the truncation point from a single replication due to the inherent

variability of the process X1, X2,… . As a result Welch’s procedure is based on making n

independent replications of the simulation and averaging across replications. Further

reduction in the variability of the plot is achieved by applying a moving average. The

moving average window size, w, and the number of replications, n, are increased until the

steady-state stabilization point is obvious to the practitioner. Law and Kelton (2000)

recommended Welch’s plotting technique, with its subjective assessment, as the simplest

and most general approach to detect the completion of the transient phase. One drawback

of Welch’s procedure is that it might require a large number of replications to make the

plot of the moving averages reasonably stable if the process itself is highly variable.
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Kelton (1989) suggested estimating the steady-state distribution from a “pilot”

run, and then independently sampled from this estimated distribution in order to

determine the initial conditions for each production run, which is also known as random

initialization. He used the maximum entropy rule proposed by Jaynes (1957). He found

that random initialization reduces the severity and duration of the initial transient period

as compared to starting the simulation in a fixed deterministic state. He also reported that

bias reduction comes at no substantial increase in the variance of the point estimator, and

the mean-squared error is often reduced; confidence intervals exhibit improved coverage

probabilities without significant increase in half-length. It is recommended that, for

relatively short runs in the context of the method of independent replications, steady-state

simulations are initialized stochastically rather than deterministically. However, this

technique would be harder to apply in the case of many real-world simulations (Murray,

1988). A similar approach was followed by Deligonul (1987), with the exception of

starting with antithetic conditions rather than random conditions.

Murray and Kelton (1988b), in an accompanying study, described the results of an

analytical study on the effectiveness of random initialization. They used a first-order

autoregressive process, and showed that random initialization is effective in reducing bias

in the point estimate and increasing coverage of the interval estimate without unduly

increasing variance or mean square error.

Schruben (1982) developed a very general procedure based on standardized time-

series for determining whether the observations Xd+1, Xd+2, …, Xm (d not need be zero)

contain initialization bias with respect to the steady-state mean, μ. However, this

procedure is not an algorithm for determining a deletion amount d, but rather a test to

determine whether a set of observations contains initialization bias. It could be applied to

the observations remaining after some amount of deletion has been done on a set of

output data, in order to determine if there is remaining bias. Another way of

implementing this method can be recursively deleting some amount of data and checking

for initialization bias until the test concludes that no bias is left in the sequence. However,

this might be a too time consuming task. This study has been the building block of

several other studies (Schruben and Goldsman, 1985; Schruben et al., 1983). One
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restriction of this test is that it is applicable to only univariate output. The theoretical

framework for the multivariate case is also given by Schruben (1981).

Goldsman et al. (1994) present a family of tests to detect the presence of a

transient mean in a simulation output, which are natural generalizations of Schruben’s

work. The tests, namely, the batch means test (BM), area test (AREA), maximum test

(MAX), combined BM+AREA test, and combined BM+MAX test, compare the variance

estimators from different parts of a simulation output, and are based on the method of

batch means and standardized time-series. They also provide a power analysis of the

tests. Roughly, tests work as follows: The output process X1, X2, …, Xm is partitioned into

two contiguous, nonoverlapping portions. An estimate of the variance of the sample mean

is calculated based solely on the first portion of the output, and then based solely on the

latter portion of the output. A large difference between these two estimates is unlikely if

the process is stationary. Otherwise, the null hypothesis of no initial bias is rejected.

Cash et al. (1992) tested some initial condition bias detection tests on analytically

tractable models such as first-order autoregressive model, M/M/1 queue, and a Markov

chain model. The tests under consideration were the ones developed by Goldsman et al.

(1994). They reported that the tests were powerful in detecting bias when the bias is

severe at the very beginning of the output sequence, but dies out quickly. However, if the

bias decays slowly, it became harder for the tests to detect the bias. The MAX test was

found to be the most powerful.

Vassilacopoulus (1989) proposed a hypothesis test based truncation point

detection procedure. It has the advantage of not requiring the estimation of the variance

of a given stochastic sequence.

Ma and Kochhar (1993) presented a comparison study of two initial bias detection

tests, namely the optimal test of Schruben (1982) and the rank test of Vassilacopoulus

(1989), using output sequences with known transient functions. Their results showed that

both tests perform satisfactorily in a similar way and appear to be powerful and efficient,

although the optimal test tends to be able to detect a few more biased sequence than the

rank test, especially in the situations in which the initialization bias is less prominent.

However, they recommended using rank test due to its ease of implementation and

negligible difference between the performances of two tests.



28

White (1997) introduced a relatively new truncation heuristic named as Marginal

Confidence Rule (MCR) and compared it with several alternative truncation heuristics

proposed earlier. Simply stated, this rule minimizes the width of marginal (within run)

confidence interval about the sample mean of the reserved observations. His results

showed that MCR dominated other rules while all were effective in improving the

accuracy of the point estimator without undue loss of precision. Ease of understanding

and implementation, inexpensive computation, efficiency in preserving representative

simulation data, and effectiveness in mitigating the initial bias were stated as the

advantages of the new rule.

White et al. (2000) further elaborated on the MCR rule and renamed it as the

Marginal Standard Error Rule (MSER) with almost no modification. They tested two

variants of the MSER rule and three variants of Schruben’s test in mitigating the effects

of initialization bias using a second-order autoregressive process with known bias

function. Results confirmed that four of the five rules were effective and reliable,

consistently yielding truncated sequences with reduced bias. In particular, the MSER

heuristics outperformed the BM, MAX tests presented in Goldsman et al. (1994) and IE

test presented in Nelson (1992), with Spratt’s (1998) MSER-5 being the most effective

and robust choice for general-purpose method. Additionally, BM test was found to be the

least effective and the other methods generally fell somewhere between that of BM and

MSER-5. Another advantage of MSER-5 rule was stated as that it requires least amount

of computation time.

Madansky (1976) considered simulation of an M/M/1 queue with any number of

customers present at time zero. He showed that, for large m (run length), initializing the

system empty and idle minimizes the mean-squared error of the point estimate. He notes

that empty state is the mode of the steady-state distribution of the number in system. He

also concludes that increasing the run length is more advantageous than replication in

terms of mean-squared error.

Kelton and Law (1985), Kelton (1985), and Murray and Kelton (1988a) found

that, for M/M/s, M/Em/1, Em/M/2, and M/Em/2 queues, initializing in a state at least as

congested as the steady-state mean (as opposed to the mode) induced comparatively short

transients. Optimal initial states were also found. In order to implement such ideas, some
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a priori estimate of the mode or the mean of the steady-state distribution would be

required, perhaps from debugging or pilot runs of the model.

Kelton and Law (1983) developed an alternative algorithm for choosing d (the

deletion point) and m (the run length ) simultaneously that worked well for a wide variety

of stochastic models based on linear regression. Their method entails generating the

output sequence for each simulation replication in incremental blocks. After each output

increment, the estimated mean for small batches is modeled as a population mean plus a

zero-mean noise term. By fitting regressions on the means of the batches for the

replications and testing the hypothesis of zero slope, the simulation run length and

truncation point are estimated. However, a theoretical limitation of the procedure is that it

basically makes the assumption that [ ]iXE  is a monotone function of i. Additionally, a

practical drawback of the algorithm is that it requires the analyst to set nine parameters.

Moreover, they found that the steady-state mean appears to provide a better guide to

initialization than does the mode. They also suggest to start in an undercongested state

rather than in an “equally” overcongested state; i.e., “undershooting d* is better than

overshooting it by the same amount. In particular, empty and idle initialization is better

than initializing with 2d*.

Fishman (1972) used a first-order autoregressive scheme to investigate the effects

of initial conditions in a simulation on the estimation of the population mean. The effects

are measured by bias and variance, that is by mean-squared error. The results show that

elimination of observations near the beginning of the simulation reduces bias, as

intended, but increases variance, sometimes significantly.

Fishman (1973a) presents the well-known regenerative method for estimating the

sample performance measures in queuing simulations, for removing bias in the sample

measures due to initial conditions.

Gallagher et al. (1996) provides an algorithm for determining the appropriate

initial data truncation point for univariate output using a Bayesian technique called

Multiple Model Adaptive Estimation (MMAE) with three Kalman filters. The estimated

truncation is selected when the MMAE mean estimate is within a small tolerance of the

assumed steady-state. The technique also entails averaging across independent

replication.
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Asmussen et al. (1992), in a very technical paper, studied analytical detection of

stationarity in the initial transient problem. They particularly interested in regenerative

processes and Markov processes with finite, countable, or general state space. Eight

algorithms were presented for different cases, where the results were reported as both

positive and negative. They also proved, in a mathematically precise sense, that without

some restrictions on the class of simulations to be considered, there can exist no

universally satisfactory means of detecting stationarity in a stochastic sequence.

Glynn and Heidelberger (1991) studies the theoretical problems in initial transient

deletion in the multiple replicate steady-state simulation. They show that without any

transient deletion, significant convergence problems can arise if the length of each

replication is not considerably larger than the total number of replications. They further

studied this problem in a theoretical and experimental framework for simulation

replications executed on multiple processors in parallel in Glynn and Heidelberger

(1992a and 1992b), respectively.

Heidelberger and Welch (1983) considered the problem of automatic generation

of a confidence interval of prespecified width when there is an initial transient present in

the output sequence. They gave a procedure by combining the Schruben’s initial transient

removal scheme and a run length control procedure of their own. The procedure is

evaluated empirically for a variety of output sequences. The results show that, if the

output sequence contains strong transient, then the procedure gives point estimates with

lower bias, narrower confidence interval, and shorter run lengths when compared to the

case of no check for the initial transient.

Variance reduction techniques, which is a very broad area in the simulation

literature, in the presence of initial condition bias is studies by Nelson (1990).

2.6 Data truncation techniques to reduce initialization bias

In this section, we discuss data truncation techniques to remedy the problem of initial

bias in general, and concentrate on two remedial approaches that are used in this thesis,

namely, cumulative averages plot and Marginal Standard Error (MSER) heuristics.
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Consider a discrete-event simulation that generates output sequences {Xij : i = 1,

2,…, m; j = 1, 2,…,n} with i being the observation number and j being the replication

number. Each replication is started with the same set of initial conditions, I0. Under the

usual interpretation, the steady-state mean for the process

[ ] 00           lim I j,IXE iji
∀=

∞→
µ (2.17)

could be determined from any single run, regardless of the run number or initial

conditions, if only the output sequence could be extended to include an infinite number of

observations. Clearly, this is not practically possible.

The usual technique to deal with initialization bias, within the context of the

method of independent replications, is deletion (or truncation). This is accomplished by

deleting a portion of the output data from the beginning of each replication, and the

deleted portion is assumed to account for the warming up of the system to steady-state

conditions. Mathematically, d observations are truncated from the output sequence, and
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are used as a basic unit for analysis.

The objective is to remove observations that are rare and therefore atypical of

individual observation sequences of a fixed length. The truncation assumption is that,

given the arbitrary selection of initial conditions, these rare observations (if present) are

most likely massed at the beginning of the output sequence. Hence, after the simulation

has run for a sufficient “start-up” or “warm-up” period, the current observations should

be more representative of steady-state than an arbitrary initial condition. Therefore, if we

discard the observations collected during the warm-up period, in effect we are letting the

behavior of the simulation choose a less biased initial condition for the reserved

sequence. By truncating some data from the initial portion of the sequence, we are trying

to improve the accuracy of the point estimator. However, extensive truncation would

imply a loss of information and, more importantly, a loss of precision. Furthermore, it is

not guaranteed to produce a better point estimate when truncation is applied to any

particular sequence. Attention should be given to the character of the actual sequence

deleted, relative to the actual sequence reserved, and not simply to the length or duration

of the truncation sequence.
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The practical difficulty with this deletion idea is determining values for d and m.

For our purposes, we assume m to be fixed and deal only with determining d. If the sole

purpose was to minimize the bias in a strict, mathematical programming sense, then

clearly m should be as large as possible (ideally, m → ∞) and d should be chosen as m-1

(Kelton, 1989). Such a formulation is not appropriate, since this solution would be

unnecessarily wasteful of data. Instead, our problem is to find a value for d such that

( )[ ]dmXE j ,  is sufficiently near μ (if it exists) to allow us to treat the ( ) s, 'dmX j  as being

independent and identically distributed and unbiased for μ. If m, in addition to d, was also

a parameter of interest to be determined by the analyst, then clearly several alternative

{(m,d)} pairs would satisfy this goal.

Some authors have questioned the efficacy of data deletion. Although deletion

often decreases bias, in some cases it might also increase the variance of the estimator.

The most commonly suggested measure of point estimator quality is the mean-squared

error (Fishman, 1972), which is given by

( )[ ] ( )[ ] ( )[ ]
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For the first-order autoregressive process, Fishman (1972) showed that variance

of the point estimator increases while the bias in the estimator decreases. This was further

studied by Snell and Schruben (1985), Kelton (1980), and Kelton and Law (1981). They

showed that deletion may either increase or decrease the MSE of the point estimator,

depending on m, d, and the values of the process parameters. They reported that deletion

most significantly reduce the MSE when the initialization bias was high and the

autocorrelation was heavy, causing the bias to dissipate slowly. In these cases, the value

of d that minimized MSE decreased as m increased. Also, Blomqvist (1970) showed that

for the M/M/1 queue and for certain other queuing systems with m sufficiently large, zero

is that value of d which minimizes the MSE of ( )., dmX  However, MSE is a theoretical

statistic that involve expectations taken over an infinite number of replications. As a
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practical matter, estimating MSE of the truncated mean is more difficult than the original

problem of estimating μ (White, 1997).

Some authors also studied the effect of deletion on confidence interval

construction. Kelton (1980) showed for a first-order autoregressive process that

replication performed well in terms of coverage when m and d are appropriately chosen.

For a fixed value of m, he also observed that deletion (d > 0) increased the expected value

of the confidence interval half-length. Results in Law (1975, 1977) and Kelton and Law

(1985) for the M/M/1 queue indicate that deletion has negligible impact on the coverage

of a confidence interval when m is large enough to produce acceptable coverage for μ.

There have been a number of methods proposed for choosing d, ranging from

very simple rules-of-thumb to complicated statistical techniques. Some of these rules

have already been stated in Section 2.5. Here, we will focus on the techniques that we

will use extensively in the remainder of this study.

If the value of d is too large relative to the value of m, then deletion could result in

a degradation in coverage. As a rough rule, the length of each replication, beyond the

deletion point, would be at least ten times the amount of data deleted. Given this run

length, the number of replications should be as many as time permits, up to 25

replications (Kelton, 1986). Whitt (1991) suggests that the appropriate amount to delete

should usually be a relatively small portion of the total simulation run length (as low as

5%).

Plotting the cumulative average graph

Different approaches to truncation apply different means to estimate the truncation points

and imply different criteria for what makes an observation “representative” of steady-

state. Perhaps the most venerable approach is visualization. The human faculty for

recognizing visual patterns should not be underestimated, and, to the extent practicable in

a given study, individual and cumulative observations should be plotted and inspected

visually (Kleijnen, 1984).

A deletion point d from a cumulative average graph can be obtained by looking

for a point where the curve seems to become nearly horizontal. As can be understood
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from the criterion statement this is a very subjective way of selecting a truncation point.

Since it does not provide any quantitative value to assess the truncation point, deciding

on the length of the transient period might differ drastically from one analyst to the other.

Formally stated, given a stochastic output sequence {Xi, i = 1, 2, …, m} the

cumulative average statistic is calculated as
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and kX  for k = 1, 2, …, m is plotted against k. A truncation point d is selected visually

from the plot where the curve flattens out.

Marginal Standard Error Rules (MSER and MSER-5)

The MSER (White, 1997) and MSER-5 (Spratt, 1998) rules determine the truncation

point as the value of d that best balances the tradeoff between improved accuracy

(elimination of bias) and decreased precision (reduction in sample size) for the reserved

series Xd+1, Xd+2,…, Xd+m. These methods select a truncation point that minimizes the

width of the confidence interval, instead of selecting the truncation point to minimize

MSE due to the difficulty in its estimation. They try to mitigate the bias by removing

initial observations that are far from the sample mean, but only to the extent this distance

is sufficient to compensate for the resulting reduction in sample size in the calculation of

the confidence interval half-width.

The determination of the truncation point for a given output sequence X1, X2,…,

Xm. is formally stated as follows:
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where zα/2 is the value of the unit normal distribution associated with a 100(1-α) percent

confidence interval, S2(d) is the sample variance of the reserved sequence, and m-d is the

number of observations in the reserved sequence. Notice that the quantity in square

brackets in (2.21) is the half-length of the confidence interval for μ. For a fixed

confidence level, zα/2 is a constant, and the expression in (2.21) can be rewritten as:
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For a given output sequence, d* is determined by solving the unconstrained

minimization problem defined in (2.22). While the MSER heuristic applies (2.22) to the

raw output series {Xi}, MSER-m instead uses the series of  nmb =  batch averages

{Zj}, where  ⋅ is the maximum integer function, and
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Although the authors of the MSER heuristics state that they are trying to

minimize the marginal confidence interval half-length, for a fixed confidence level α, the

problem reduces to minimizing a very simply statistic, i.e., standard error (s.e.) of the

estimate.
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Perhaps the most important advantage of this technique is that it provides

quantitative values for truncation point, hence can be an objective criterion. Another

advantage is that this statistic is so easy to compute. Even for very large sample sizes it

can readily be solved by complete enumeration. However, when investigated critically,

the technique involves a crucial problem in estimating the truncation point. In estimating

the standard error, it makes use of the sample variance, S2(d). In fact, it calculates the

sample variance from a single simulation output, where we know that the outputs of a

single simulation run are sequentially correlated. And this autocorrelation might induce a

significant amount of bias in the variance estimation. This means that standard error

estimates will also be biased. At first sight, this might provide some skepticism to the

analyst regarding the credibility of the heuristic. However, the developers of the heuristic

states that the sole purpose in using this statistic is to measure the homogeneity of the

truncated series reserved for analysis (White, 2001). That is, the statistic is not used to

estimate the precision of any performance measure, rather it is used to see how

homogenous are the output sequences. In other words, the MSER heuristics try to
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observe the behavior of the standard error estimate and detect the truncation point from

its behavior. The underlying assumption, which is not explicitly stated by the authors of

MSER heuristics, is that the behavior of the standard error estimate of the sequence will

approximately remain same regardless of the existence of autocorrelation in the sequence.

Another disadvantage of the technique is that it is very sensitive to the existence of

outliers (extreme values) in the sequence. Unless extreme values are carefully deleted

from a sequence MSER heuristics can behave badly, even backfiring might occur.
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3 THE PROPOSED STUDY

The problem of initial transient for nonterminating simulations is discussed in

considerable detail and an extensive review of the literature on this problem is given in

the previous chapter. The studies conducted in this area, in a very broad sense, can be

grouped as the ones that propose a method to mitigate the effects of initialization bias and

the ones that compare and give recommendations about the efficiency and effectiveness

of the proposed methods. It has been realized that almost none of the studies have

analyzed the behavior of the transient period with respect to different system parameters.

The purpose of this study is to answer the following research questions:

1. How and in what way is the transient period affected by different system

parameters (or factors)?

2. Which factors most significantly affect the transient period?

3. How do the proposed methods to remedy the initialization bias problem comply

with each other?

The first question should not be confused with the following one: “How does the

initial conditions affect the length of the transient period?” This problem investigates the

effect of different initial conditions on the length of transient period and is extensively

studied in the literature (see, for example, Conway, 1963; Blomqvist, 1970; Madansky,

1976; Kelton, 1980, 1989, 1985; Murray and Kelton 1988a, 1988b; Murray, 1988; Kelton

and Law, 1981, 1985; Adlakha and Fishman, 1982; Snell and Schruben, 1985; and others

in Table 2.2). However, the problem stated in this study investigates the effect of different

system parameters on the length of the transient period given a fixed set of initial
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conditions. The second question tries to point out the factors, which will be defined in the

following sections that have the most significant effect on the length of the transient

period. In question three, we try to find out the consistency between two alternative

remedial procedures for the initial bias problem, namely, cumulative averages plot and

MSER heuristics, by comparing their performances under various experimental

conditions.

Specifically, we will try to answer these questions by experimentally analyzing

the simulation of manufacturing systems, particularly, serial production lines and job-

shop production systems.

3.1 The methodology used in this study

In this section, we outline the environment used for building and generating the

output sequences. Furthermore, the implementation of techniques used for the analyses of

outputs is discussed. We used AutoMod Ver. 9.1 (see AutoMod User’s Manual, 1999),

which is one of the most popular software for simulation of manufacturing systems, to

build our simulation models.

While comparing the effects of different factors on a specific behavior of interest

via real-life experimentation, the experimenter tries to prepare samples as identical to

each other as possible except for the factors that are investigated. Successful

experimentation is done in this manner, because otherwise it would be impossible to

relate the changes in the performance measures of interest to the changes in the factor

levels, if there is any difference among the results of experiments. This phenomenon is

sometimes called as comparing the like with likes. An excellent text about the design and

analysis of experiments is provided by Montgomery (1984).

The above caution about physical experimentation also applies to simulation

experiments. In order to make unbiased comparisons between different simulation

experiments (or designs), one needs to build the simulation models with a common base

and differentiate only for the specified factors.

It is important to remember that simulation experiments use inputs that are

themselves random variables. As a result, the outputs (or performance measures) of
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interest will clearly be random variables, too. Having this fact in mind, one questions the

main reason for the changes in the performance measures of a system, if there is any. It

might be either due to changes in the factor levels, which is, in fact, the main purpose of

experimentation or due to inherent variability of system that results with the violation of

the idea of comparing the like with likes.

Every simulation experiment makes use of pseudo-random number generators

that produce the necessary data for input to the simulation. The outputs generated by

these generators are called pseudorandom numbers, rather than random numbers, because

generator itself uses a predetermined algorithm. However, although the numbers are

generated by a deterministic algorithm they are viewed as random, because it is unlikely

for statistical tests to recognize that they were produced in a deterministic fashion.

In particular, we used the famous Linear Congruential Generator (LCG) in our

models, which was first introduced by Lehmer (1951) and is well-discussed in Law and

Kelton (2000) and Banks et al (1996). This generator produces an ordered sequence of

random numbers u1, u2,…,ug, where 0 ≤ ui < 1 and g is the period of the generator and is

equal to 231-1 (see AutoMod User’s Manual, 1999). Pseudo-random numbers are

controlled through streams that take subsequences from the whole sequence by simply

defining a reference point. The subsequences between streams will be independent of

each other, since the whole sequence is composed of independent and identically

distributed numbers. The use of streams gives a considerable advantage to the analyst. In

particular, using the same random number streams for different designs will induce

dependence, whereas using different random number streams will induce independence

between the simulation replications.

In order to facilitate the idea of comparing like with likes, we used a popular

method called common random numbers (CRN), which is also used frequently for the

purpose of variance reduction. A detailed discussion of using common random numbers

and other variance reduction techniques is given in Law and Kelton (2000). We need

complete synchronization to properly implement CRN. For this purpose, we divided the

entire random number sequence generated by LCG into several subsequences (streams)

and each subsequence that is used for a specific purpose in one design is used exactly for

the same purpose in each of the other designs. Tables A.1 and A.2 in Appendix A show
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the streams with their reference points and their use in serial production and job-shop

models, respectively.

For example, “stream1” in serial production models is used for generating the

operation times on machine 1 for the first replications of the models. The usage of other

streams is interpreted in a similar manner.

Table 3.1 Number of random numbers used in each stream for design “312121221”.
Usage Purpose Run #1 Run #2 Run #3 Run #4 Run #5
M/C #1 Operation Time 38,250 38,358 38,268 38,006 38,368

M/C #2 Operation Time 38,064 38,426 38,166 37,876 38,366

M/C #3 Operation Time 38,442 38,168 38,326 38,444 38,168

Mean Breakdown of M/C #1 20,144 18,786 20,128 19,046 19,876

Mean Breakdown of M/C #2 20,418 19,048 19,380 19,278 20,250

Mean Breakdown of M/C #3 20,120 18,706 20,422 19,516 20,268

Mean Repair Time of M/C #1 19,182 17,668 19,268 18,442 18,840

Mean Repair Time of M/C #2 19,480 18,570 19,134 18,508 19,378

Mean Repair Time of M/C #3 19,218 17,764 19,504 18,684 19,284

The length of each stream is chosen so as to avoid any overlaps between adjacent

streams, which otherwise would induce uncontrolled dependence. In choosing the lengths

of the streams we made pilot runs to observe how many random numbers are used for

each activity in the models given a fixed run length. Table 3.1 lists the random numbers

used for a specific activity for a particular pilot run to produce 30,000 parts. (The choice

of 30,000 parts as the run length will be discussed in the sequel.) For instance, to generate

the operation time of parts on machine #1 38,250 random numbers are used from

stream1 in replication #1. Similarly, 38,358 – 38,268 – 38,006 and 38,368 random

numbers are used from stream11–stream21–stream31 and stream41 to generate

the operation times of parts on machine #1 in replications #2, #3, #4, and #5, respectively

(see Table A.1 to view which streams are used for what purpose). The rest of the Table

3.1 is interpreted in a similar manner.

Although we generate 30,000 random variates as the operation time of parts on

each machine for each replication, the number of random numbers used for this purpose

from each stream is above 38,000 except for the operation times on the second machine

for the fourth replication (37,876). This is because of the random variate generation

technique used. The distribution of operation times is assumed to be lognormal (see

Section 3.3). AutoMod Ver 9.1 uses acceptance/rejection technique to generate random
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variates from lognormal distribution (AutoMod technical support, 2001). The number of

random numbers used by this technique to generate a random variate is itself a random

variable. Hence, to generate 30,000 random variates according to a lognormal distribution

we need at least 30,000 random numbers, however, it can be any number greater than

30,000. A detailed discussion of random variate generation techniques is given by Law

and Kelton (2000). Furthermore, we assume that the mean time between failures and

mean repair times are gamma distributed (see Section 3.3). AutoMod Ver 9.1 uses

acceptance/rejection technique to generate gamma variates, as well (AutoMod Technical

support, 2001). Therefore, the number of random numbers used to generate time between

failures and repair times are well above from the number of breakdown and repair events,

respectively. Moreover, the number of random numbers used for generating time between

failures is always greater than that of repair times (compare the values in the following

row pairs in Table 3.1: (5, 8), (6, 9) and (7, 10)). This is due to the fact that a repair event

does not occur unless a breakdown event occurs. However, the occurrence of a

breakdown event is independent of the breakdowns occurred before.

Since each stream is dedicated to a specific activity and the run length is fixed, the

choice of 1,000,000 random numbers for the length of a stream seems reasonable to avoid

overlapping between streams and to provide similarity among different designs. By doing

so, we become more confident about the effects of system configurations on the

performance measures of interest.

We used the method of independent replications to generate the output sequences.

Consider Table 3.2 for clarity (notice that it is a slightly modified version of Table 2.1).

Table 3.2 The format of outputs for a particular model.
Simulation Observations
Replications O1 O2 … Od Od+1 Od+2 … Om

R1 X11 X21 … Xd1 Xd+1,1 Xd+2,1 … Xm1
R2 X12 X22 … Xd2 Xd+1,2 Xd+2,2 … Xm2

·
·
·

·
·
·

·
·
·

·
·
·

Rn X1n X2n … Xdn Xd+1,n Xd+2,n … Xmn

iX 1X 2X … dX 1+dX 2+dX …
mX



42

The simulation model is run for a total of m observations. Additionally, this is

repeated for n times. Xij in Table 3.2 is the ith observation in the jth replication (i =1, 2,…,

m; j = 1, 2,…,n). The determination of m is based on making pilot runs. We wanted to run

the simulation long enough to allow all the events in the system to occur considerable

number of times so as not to neglect their effect on the system behavior. On the other

hand, we did not want to take an unnecessarily long run, which would waste computer

time. With its subjective assessment, we decided to take m = 30,000 observations, which,

we believe, balances between collection of enough information versus wasting computer

time. The index i represents the number of the observation in the output sequence where

it might also have represented the observations taken at fixed increments of simulated

time (Fishman, 1971). The number of replications, n, is taken to be 5, which is the

recommended number for extensive experimentation (Law and Kelton, 2000).

Table 3.3 Effect of common random numbers (CRN) and independent replications.
Machine #1 Machine #2 Machine #3Design Run # MOT* Utilization MOT Utilization MOT Utilization

1 1852.46 0.096 16309.86 0.849 1812.13 0.094

2 1752.80 0.092 16214.55 0.854 1817.69 0.096

3 1744.34 0.066 23843.18 0.901 1646.72 0.062

4 1893.12 0.097 16804.45 0.860 1651.07 0.084

5 1739.49 0.080 18962.42 0.874 1815.79 0.084

31221

Mean 1796.442 0.086 18426.892 0.868 1748.680 0.084

1 1852.04 0.106 16307.69 0.935 1812.13 0.104

2 1752.49 0.102 16209.48 0.941 1817.69 0.106

3 1743.93 0.070 23480.95 0.962 1646.72 0.066

4 1892.67 0.106 16804.45 0.942 1651.07 0.093

5 1738.93 0.087 18962.42 0.948 1815.79 0.091

31222

Mean 1796.442 0.094 18424.998 0.946 1748.680 0.092
* MOT stands for Mean Operation Time and is measured in minutes.

The independence between different replications is provided by devoting different

random number streams. Table 3.3 shows the ultimate purpose of using common random

numbers and independent replications.

Design 31221 is a 3-staged serial production line containing a 10% bottleneck

station in the middle of the line with highly variable processing times (coefficient of

variation of the processing times in each machine is 2.5) and zero intermediate buffer

capacity (see Section 3.3 and Table C.1 of Appendix C for a more complete definition of



43

model assumptions and design parameters, respectively.) Design 31222 is exactly the

same as 31221 except for the buffer capacities. Design 31222 includes intermediate

buffers each having a capacity of 10.

Mean operation times in machines #1, #2, and #3 for each replication are

approximately the same for designs 31221 and 31222, which is a result of using

dedicated common random numbers. In particular, the mean operation time of machine

#1 on replication #1 is 1852.46 and 1852.04 minutes for designs 31221 and 31222,

respectively (a difference of only 0.02267%). These numbers are obtained by averaging

the individual operation times of each part processed in that machine. The maximum

deviation between two designs occurs in the mean operation time of machine #1 on

replication #5 (a change from 1739.49 minutes to 1738.93 minutes causes 0.03219%

deviation). The deviations occur, because of the additional buffer spaces in design

31222. The simulation models terminate as soon as the 30,000th part leaves the last

station. Since there are no intermediate storage areas in design 31221, 30,000 operation

times are averaged to calculate the mean operation times. However, for design 31222,

more than 30,000 parts enter the system, which causes the use of more than 30,000

operation times in calculating the mean operation times for machines #1 and #2. Notice

also that the mean operation times on machine #3 for each replication are exactly the

same for both designs, because exactly 30,000 observations are used to calculate the

mean operation time on machine #3 in both designs. Similar results are observed for the

breakdown statistics but they are not reported here.

Additionally, the mean operation times of machine #1 in design 31221 is

1852.46 minutes for replication #1, which is totally different from the mean operation

times of this machine in the other four replications of the same design. Furthermore, the

mean operation times of machine #1 in each of the other four replications differ from

each other for design 31221, as well. This is a result of using independent random

number streams. Similar results are also observed for machines #2 and #3, and for design

31222, as well. Utilization statistics are provided only to show the difference between

the two designs.
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Once all the observations for each replication are collected, we average them

across replications and obtain iX ’s for i = 1, 2,…, m, where

miX
n

X
n

i
iji ,...,2 1,for      ,1

1
== ∑

=

(3.1)

Notice that this average is different from that of (2.14), which was discussed

before. Referring to Table 3.2, since the replications produce independent sequences,

averaging across replications will give an unbiased estimator of observation Oi, i = 1,

2,…, m. However, the autocorrelation structure of the iX ’s is still the same as that of the

original Xij’s. Therefore, one needs to use equation (2.3) to estimate the variance of the

point estimator, which might be obtained by averaging over iX ’s. In consequence, the

sole purpose of using multiple replications in this study is to enhance the ability of

determining the end of the warm-up period, since averaging over multiple runs will result

in more precise, or less variable, observations. The effect of averaging across replications

is shown in Figure 3.1*. The oscillations in the plots of individual replications are

apparently higher than that of replication average.

Additionally, in Tables D.1 and D.2 of Appendix D the statistics such as hourly

throughput, hourly work-in-process, mean flow-time of parts and utilization of each

individual machine in the system are given, which are obtained from serial line and job-

shop models, respectively.

                                                          
* Note that outliers in the output sequence are deleted in drawing Figure 3.1.

Figure 3.1 Effect of averaging across several replications on the variability of the process.
(a) (b)
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All of the statistical results discussed above are used in verifying our models,

which means that our computer program performs as intended. Additionally, the

animation capability of and the existence of a debugger program in AutoMod extended

the credibility of our models.

Once our models are built and verified, and all the necessary information are

gathered by having appropriate runs we come to the process of analyzing the results for

the length of the transient period. Although many statistics have been reported in this

study, we used only the flow-time of parts in the system to analyze the length of the

transient period phenomena. All of the following analyses have been completed in

Matlab Ver 5.3 by writing appropriate computer codes.

We started our analysis with a pilot study by examining the plots of the individual

observations against observation number. Although it helped for certain instances, most

of the time it was inconclusive due to high variability. Due to extensive experimentation

we reported only a few samples of these figures in Appendix F.

In addition to the decrease in the variability of the output sequences attained by

independent replications, we used a batching strategy with a batch size of 5 to further

smooth the observations. The batching strategy suggests grouping the observations as in

the following manner. Suppose we have m observations (Oi) and batch size is given as b,

where m is an integer multiple of b, i.e., m = k⋅b (k is positive integer). Then observations

can be grouped as;

1O 2O kO

where,

, ..., k, for iO
b

O
ib

bij
ji 21             1

1)1(
== ∑

+−=

The iO ’s are called the batched sequence. This kind of batching strategy is

extensively used in the literature (see Nelson, 1992, for example) and has nothing to do

with the method of batch means, which is a totally different output analysis technique.

Since we are simulating the models for a total of 30,000 observations, by using this

strategy we will be left with 6,000 (= 30,000/5) observations.

O1, O2,…,Ob, Ob+1, Ob+2,…,O2b,…, O(k-1)b+1, O(k-1)b+2,…,Okb
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We used two methods for determining the length of the transient period, namely

cumulative averages plot and Spratt’s (1998) MSER-5 heuristic. In using the cumulative

averages plot we apply equation (2.20) with m = 6,000. Once the cumulative average

statistics, jX , are calculated, we plot the jX 's against j for j = 1, 2,..., 6,000.

Conway (1963) cautions about using the cumulative statistics for the purpose of

detecting the length of the transient period. He states that such statistics will typically lag

behind the current state of the system and their use can cause the discard of unnecessarily

great quantities of information. However, our purpose in doing this study is to observe

the behavior of the transient period. Though overestimation might occur, cumulative

averages will retain the behavior and will not cause any problem in our conclusions.

Welch’s moving average is another very popular graphical technique used for

detecting the length of the initial transient period. However, a disadvantage of this

technique is that the analyst needs to decide on a windows size (w) by trial-and-error. We

applied both graphical techniques in the example provided in Section 3.2 and found that

Welch’s technique does not suggest a significantly different transient period than

cumulative averages plot.

Furthermore, our sole purpose is not to determine a single numeric result for the

transient period, but to observe the behavior of this period. Even if any of the techniques

used in this study includes some error, then this will be reflected to all experiments,

which we believe will not disturb the behavior.

Additionally, although cumulative averages plot gives an excellent way of

assessing the length of the transient period, a major problem in its use is that it is an

informal subjective way of assessment. Even for the same output sequences different

analysts might end up with different conclusions about the length of the transient period.

Hence, we need a formal statistical procedure in support to the cumulative averages plot,

which can detect the length of the transient period. We used MSER-5 to close this gap. In

using this approach we apply equation (2.22) to the batched sequences. In fact, MSER-5

simply uses a batching strategy that is discussed above before applying White's (1997)

MSER heuristic. A theoretical drawback of this method is its negligence of the

autocorrelation structure of the sequence and is discussed in Section 2.6. A practical
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drawback of this method, which was also discussed in Section 2.6, is its high sensitivity

to the existence of outliers in the sequence.

3.2 An Example

We further explain our methodology with an example, in this section. This example is

drawn from among hundreds of experiments that have been conducted in this study,

which entail all of the discussions in Section 3.1 The details of model assumptions are

presented in Section 3.3 This deference does not impose any problem in understanding

the following discussions.

In this study, to easily keep track of the parameter levels we gave specific names

to each experiment conducted. These names with their corresponding parameter levels

are tabulated in Appendix C. The particular system under consideration is a 9-stage serial

production line, which is named as “91122” under our naming logic and parameter

levels for this design are given in Table C.1 of Appendix C.

Once all replications of the above model are completed the results can be

tabulated as in Table 3.4. The values in the table are flow-time statistics in minutes of

each part in the system.

The flow-time of each part for individual replications are shown in rows R1

through R5. The replication average over 5 replications are shown in iX  row. The effect

of averaging across 5 replications on the variability of the process was shown in Figure

3.1. All further discussion is based on the replication averages.

Table 3.4 An example output.
Simulation Observations
Replications O1 O2 … O30.000

R1 26.88 29.23 … 348.97

R2 29.37 31.16 … 252.19

R3 32.09 33.76 … 268.03

R4 25.86 33.20 … 248.95

R5 24.51 45.76 … 286.39

iX 27.74 34.62 … 280.91
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If no detection about the existence of outliers in the sequence is made than the

plots of each individual values would look like the one in Figure 3.2. There are 8 outliers

in this sequence that conceal the values of other observations, namely observations 8078,

11830, 13689, 15292, 19945, 22198, 24347, and 24369. The values of these observations

are so high that all other values seem to coincide the horizontal x-axis. For instance, the

smallest of these is observation 8078 with a value of 11,478 is approximately 43 times

greater than the average (264.8).

Removing these outliers from the sequence leaves only 29,992 observations in the

sequence and we obtain the plot of the individual observations as in Figure 3.3. This is a

more realistic figure that presents the behavior of the process. Although much effort was

given to reduce the variability of the process by averaging across replications, there still

Figure 3.2 A plot of the replication averages without deleting outliers.

Figure 3.3 A plot of the replication averages with deleting outliers.
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exists a considerable amount of variability, which makes it incredibly hard to determine

the length of the transient period from this figure. Even the batched sequence would

behave in the same way when outliers are deleted.

We continue our analysis by calculating the cumulative averages as discussed in

Section 3.1 both for the sequence that contains outliers and for the one that outliers are

excluded*. Figure 3.4 illustrates graphically the results of these calculations. We

determine the truncation point in a plot, which in turn gives the length of the transient

period, by visually investigating the flattening point of the plot. The data up to this

flattening point are assumed to represent a transient behavior. As can be seen from the

plots, there is no significant change in the length of the transient period when outliers are

deleted as compared to the retained case. The only difference between the two sequences

is that the one that excludes outliers is shifted slightly towards the x-axis. Both plots

suggest approximately the same number of data truncation. This is roughly estimated as

350 observations for the batched sequence. If we were to remember that we applied a

batching strategy to the original sequence with a batch size of 5, this will result in the

truncation of 2,000 observations from the original sequence. One should keep this fact in

mind before continuing with the analyses of the output, but this fact does not cause any

harm for our purposes.

                                                          
* The result of Welch’s technique applied to this example for several windows sizes are presented in Figure
4.22. It roughly suggests 300 observations to be in the transient state.

Figure 3.4 Cumulative averages plot for the outliers retained and deleted sequences
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Then, we apply the MSER-5 truncation heuristic to the original sequence both

when there are outliers in the sequence and when the outliers are deleted. Figures 3.5(a)

and 3.5(b) illustrate graphically the standard error calculations for the no-outliers-deleted

and outliers deleted sequences, respectively. Furthermore, Figure 3.6 gives a zoomed

version of Figure 3.5(b), which enables to observe the behavior of the standard error

statistics more easily. The x-axis of these figures shows the number of data deleted in

calculating the standard error statistic, while the y-axis shows the value of the statistic.

The plot starts with an average standard error value when the whole sequence is used,

i.e., d = 0, and slowly decreases up to some point due to unrepresentative behavior of the

data in the initial portion of the sequence. From this point on, the plot changes its

direction and the values of the statistics begin increasing. This is due to the decrease in

the number of data in the sequence, which behave in a similar fashion (i.e., come from

the same probability distribution).

A more rigorous explanation of the above discussion can be made by rewriting

the standard error formula:
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Figure 3.5 Effect of outliers in MSER calculations.
(a) (b)
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where s.e.(d) is the standard error estimate of the whole sequence with d observations

deleted from the beginning, S2(n-d) is the sample variance of the last n-d observations,

and n-d is the number of observations in the retained sequence. This formula can be

divided into two parts; the first consisting of ( )dn −1  and the second of

( ) ( )( )∑ −−

=
−−− 1

1

2,11 dn

i i dnXXdn . The first part is simply the reciprocal of the number

of retained data and the second part is the sample variance of the retained sequence. The

first portion of the formula has its minimum value when the whole sequence is used, i.e.,

d = 0. Then, it gradually increases as more data are left out, i.e., 0 < d < n. The behavior

of the second part is more complicated. If the whole sequence were to come from the

same probability distribution then this part would also have its minimum at d = 0, and as

d gets larger its value would gradually increase, too, which is due to the decrease in the

denominator of the sample variance. If, however, the whole sequence can be separated

into two portions where after a certain point d*, the remaining sequence seems to come

from the same stationary distribution then the above result would still be valid. That is,

the second part of the formula would gradually increase as d gets larger (d* ≤ d < n). On

the other hand, for the points that are before d* in the sequence, the second part of the

formula would gradually decrease as d gets larger (0 ≤ d < d*). This is because of the fact

that the data in the initial portion of the sequence do not come from the same probability

distribution as others. As we remove more data from this portion, the distributions of the

remaining sequence becomes closer to each other.

Figure 3.6 The behavior of standard error statistic.
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Now, we see from Figures 3.5(a) and 3.5(b) that the standard error statistic gets its

minimum value at d* = 4875 and d* = 339, respectively, which suggests the truncation of

4875 and 339 observations from the batched sequence. 4875 seems to be rather too much

when the result of the cumulative averages plot is considered. Noting that Figure 3.5(a) is

drawn for the sequence that involves outliers, we conclude that 339 is a more reasonable

truncation point for this sequence, which also complies with the result of cumulative

averages plot.

In determining the length of the transient period in the rest of this study, we

follow exactly the same steps described in this example.

3.3 System Considerations and Experimental Design

We consider two types of manufacturing systems. The first system under consideration is

a serial production line. A typical serial production line with N stages is shown in Figure

3.7.

As can be seen from Figure 3.7, the system consists of a sequence of serially

arranged machines Mi, i = 1, 2,…, N, with a buffer Bi, i = 1, 2,…, N-1, in between two

machines. We assume the system works under the following set of assumptions:

1. The system under consideration is an asynchronous system. That is, machines

within the system have random processing times usually drawn from certain

probability distributions, hence they do not have to start and stop their

operations at the same instant.

2. Each machine in the system has mutually independent processing time

distributions.

3. Each machine has a maximum processing capacity of one unit of product at a

time and has internal storage capacity for that unit.

Figure 3.7 A schematic view of N-staged serial production line.

B1M1 B2M2 BN-1 MN…
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4. The system is a saturated system. That is, there is an infinite supply of raw

materials into the system and there is infinite demand for the finished parts.

5. All the buffers in the system have finite storage capacities, hence the

machines, except the first and the last, can starve or get blocked. A machine,

Mi, is said to be blocked if the completed item in Mi can not be transferred to

its downstream buffer, Bi, which occurs when the downstream buffer Bi is full

(blocking-after-service policy, see Dallery and Gerhswin, 1992). Furthermore,

a machine Mi is said to be starving if it is ready to process an item but there is

either no item to be processed by that machine or the machine is blocked,

which occurs when the upstream buffer, Bi-1, is empty or the downstream

buffer, Bi, is full, respectively.

6. First machine never starves, because there is an infinite supply of raw

materials, and the last machine never gets blocked, because there is infinite

demand for finished products (also see assumption 4.)

7. The machines are subject to random failures, with independent inter-failure

time and repair time distributions. The occurrence of a failure event does not

depend on how many parts being processed by that machine, rather it is

determined by the passage of time (time-dependent failures policy, see

Buzacott and Hanifin, 1978). If there is a part being processed on a machine at

the time of a failure, then the part stays on machine during the repair period

and upon completion of the repair its processing is resumed exactly at the

point it stopped, i.e., no rework or scrap.

8. Machines continue processing unless they are blocked, starved, or in down

state.

9. There is only one type of product produced by the system, i.e., no setup times.

10. A part has to visit all the machines in the system in the given sequence.

11. The production line assumes empty and idle initial conditions. That is, there

are no unfinished parts in the buffers and all the machines are idle but ready to

operate at the beginning.

12. The system need not have a steady-state operating regime.
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The second system under consideration is a job-shop production system for which

a schematic view is given in Figure 3.8. This system shares many of the assumptions

given for the serial line system with slight modifications. Hence, instead of repeating

most assumptions we will refer to serial line assumptions when it is valid for the job-shop

system, too, and write the ones that are valid for job-shop only. Assumptions 1, 2, 3, 7, 8,

9, 11, and 12 of the serial line system are also valid for the job-shop system, as well. In

addition to these, we have the following assumptions:

1. There are no intermediate storage buffers in the system.

2. Parts arrive to the system according to a Poisson process. In other words, the

interarrival time of parts is exponentially distributed with parameter λ.

3. A part has to visit all the machines in the system, but the processing sequence

of a part is not known in advance, rather it is determined randomly. The same

machine can not be visited by the same part more than once. Each machine

are equally likely to be selected in the sequence.

4. A newly arrived part waits in the system until the first machine in its sequence

is available for processing.

5. A machine is blocked if it can not dispose the finished part to the next

machine in the processing sequence of the part. Moreover, a part can never

block the machine, which is in the last position of its processing sequence.

6. Every machine in the system can starve if there is no part to process.

These systems are extensively studied in the literature (see, for example, Dallery

and Gershwin, 1992; Papadopoulos and Heavey, 1996; Altıok, 1997; Buzacott and

Shanthikumar, 1992, 1993).

As discussed in section 3.1, the simulation models are developed in AutoMod.

Data on five statistics are collected, which are the flow-time of parts, hourly throughput

hourly work-in-process, interdeparture time, and utilization of servers. The last four of

Figure 3.8 A schematic view of N-machine job-shop production system.

M2M1 MN…
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these performance measures are reported only for the purpose of verifying the simulation

models. These summary statistics are reported in Appendix D. We base our analyses on

the flow-time of parts. The length of the transient period is investigated under various

experimental conditions. Tables 3.5 and 3.6 summarize the factors and their levels in

serial line and job-shop systems, respectively.

Table 3.5 Experimental factors and their levels for serial line system.
Factors Levels
System size 3, 9
Load type Uniform,

Bottleneck (10%),
bottleneck (20%),
bottleneck (99%),

Load level 1, 0.9, 0.5
Processing time coefficient of variation 0.3, 2.5
Processing time variance 0.3, 2.5
Machine type Reliable,

unreliable (90% availability, FBSR1),
unreliable (90% availability, RBLR2),
unreliable (80% availability, FBSR),
unreliable (80% availability, RBLR),
unreliable (50% availability, FBSR),
unreliable (50% availability, RBLR)

Buffer capacity 0, 10, 100
1 FBSR: Frequent Breakdown Short Repair Time
2 RBLR: Rare Breakdown Long Repair Time

Table 3.6 Experimental factors and their levels for job-shop system.
Factors Levels
System size 3, 9
Load type Uniform,

bottleneck (5%),
bottleneck (10%)

Load level 80%, 50%
Processing time coefficient of variation 0.3, 1.0
Processing time variance 0.3, 1.0
Machine type Reliable,

unreliable (90% availability, FBSR1),
unreliable (90% availability, RBLR2),

1 FBSR: Frequent Breakdown Short Repair Time
2 RBLR: Rare Breakdown Long Repair Time

Two levels are chosen for system size, namely 3 and 9. In serial line system this

corresponds to 3- and 9-stage lines, whereas in the job-shop system it corresponds to 3-
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and 9-machine systems, respectively. These are, roughly, the most commonly used

system size parameters in the literature.

The existence of bottleneck stations (machines) in a system induces considerable

problems in terms of the performance measures. The location of bottleneck station(s) is

studied by Erel et al (1996). We allow only one station to be bottleneck. And, it is chosen

to be the one in the middle of the line for serial line system. A 9-stage line, for example,

will have its bottleneck station as the 5th station. For job-shop system the choice of a

location for bottleneck machine does not have any meaning, because the layout is not

specified. Hence, a bottleneck machine is randomly assigned for job-shop system.

Additionally, for both systems, we kept the total workload of the system constant while

forming a bottleneck station. In serial line systems, three different levels are chosen for

the depth of bottleneck, namely 10%, 20%, and 99%. If we were to generate a 10%

bottleneck station for the 3-stage uniform serial line, then we would transfer 10% of the

mean processing times of non-bottleneck stations to the bottleneck station. More

specifically, if the mean processing times of the machines for the 3-stage serial line in the

uniform case were 1-1-1 time units, then its 10% bottleneck counterpart would have

mean processing times as 0.9-1.2-0.9 time units for machines 1-2-3, respectively. For the

job-shop experiments, only two levels are chosen for the depth of bottleneck, namely, 5%

and 10%. We decreased the number of levels from three to two, because the results

showed that there occurs a consistent pattern in the outputs. The direction of change in

the outputs remains constant, which enables us to make generalized conclusions.

Furthermore, The first level is chosen as 5% instead of 10%, because job-shop systems

are harder to simulate in terms of computer time (i.e., computer run time increases

exponentially with an increase in the depth of bottleneck).

Load level is another factor that is investigated in this study. For the serial line

system, its levels represent the mean processing time of machines. The smaller the value

of the load level in serial lines the higher loaded the system is. For the job-shop system,

load level is adjusted by changing the arrival rate. The higher the value of the load level

in job-shop the higher loaded the system (Sabuncuoğlu and Karapınar, 1999). Three and

two levels are chosen for the serial line and job-shop systems, respectively.
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Knott and Sury (1987) experimentally found that the processing time coefficient

of variations ranges between 0.22 and 0.57. We chose 0.3 as the low level of the

processing time variability in serial lines and 2.5 as the high level (Erel et al., 1996). For

the job-shop system, the low level is also chosen as 0.3, however the high level is chosen

as 1.0 because of the longer runtime requirement for these systems (Enns, 2000). In

forming bottlenecks, we have to differentiate between variance of processing times and

coefficient of variation of processing times, because the values of the mean processing

times changes. If the variance is kept constant, then the non-bottleneck stations will have

higher coefficient of variation as compared to their uniform counterparts. Similarly, the

bottleneck station will have lower coefficient of variation as compared to its uniform

counterpart. Table 3.7 illustrates this case for a 3-stage serial line.

Table 3.7 Differentiating between constant PV and constant CV.
Bottleneck SystemUniform System Constant PV Constant CVMachine

MPTa PVb CVc MPT PV CV MPT PV CV
1 1 0.09 0.3 0.9 0.09 0.333 0.9 0.0729 0.3

2 1 0.09 0.3 1.2 0.09 0.25 1.2 0.1296 0.3

3 1 0.09 0.3 0.9 0.09 0.333 0.9 0.0729 0.3
a MPT : Mean Processing Time
b PV : Processing time Variance
c CV : Processing time Coefficient of Variation

The reliability of machines is an important issue that is often neglected in

analytical studies. We differentiate between reliable and unreliable systems. Furthermore,

we investigate the depth of unreliability by taking three levels for the serial line systems.

This is done by setting downtime and uptime parameters so as to achieve a machine

efficiency, e, of 90%, 80% and 50%. For the reasons discussed above, we chose only one

level, i.e., 90% availability, for the job-shop system. Moreover, the type of breakdowns is

shown to have significant effect on the performance measures such as throughput and

work-in-process inventory (Hopp and Spearman, 2000). They showed that, given the

availabilities, a system that experiences frequent breakdowns but short repair times is

preferable to a system that experience rare breakdowns but long repair times. Table 3.8

shows the parameters selected for breakdown phenomena (Table B.1 in Appendix B is

the detailed version of this).
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Table 3.8 Different breakdown scenarios.
Availability MTBFa MRTb TSTc Breakdown Type

9 1 10 Frequent breakdown short repair time90%
90 10 100 Rare breakdown long repair time
8 2 10 Frequent breakdown short repair time80%
80 20 100 Rare breakdown long repair time
5 5 10 Frequent breakdown short repair time50%
50 50 100 Rare breakdown long repair time

a MTBF: Mean Time Between Failures (in hours)
b MRT: Mean Repair Time (in hours)
c TST: Total System Time (in hours)

Finally, for serial line systems, the effect of buffer capacities is also investigated.

Conway et al. (1988) found that the throughput of serial line systems is not affected

significantly if the buffer capacity is increased further beyond six. We have chosen three

levels for the buffer capacity, namely, 0, 10, and 100. However, the effect of buffers can

not be observed in job-shops, because of the no intermediate buffers assumption.

Additionally, we assume that the processing times on machines for both systems

have lognormal distribution. We choose this distribution for the processing times as often

used in practice (Law and Kelton, 2000; D’angelo et al., 2000; Kadıpaşaoğlu et al.,2000).

Chow (1990) also recommends using a positively skewed distribution for this purpose.

Furthermore, we assume that the machine uptime and downtime has a gamma

distribution with shape parameters αU = 0.7 and αD = 1.4, respectively. These parameter

values are suggested by Law and Kelton (2000). The scale parameters βU and βD for the

uptime and downtime distributions are given as:
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respectively, where μD is the mean downtime specified by the analyst and e is the long-

run efficiency of the machines (The derivation of scale parameter formulas are reported

in Appendix B). If we let μU to be the mean uptime of the machine, then e is defined as:
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We use this information in determining the parameters of the uptime and

downtime distributions for a specified efficiency level, which forms the levels of the

factor “machine type”.
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4 RESULTS FOR SERIAL PRODUCTION LINES

We discussed the initial transient problem and remedial approaches to this problem in the

preceding sections. We also cleared out the methodology used in this study. The system

under consideration in this chapter is a serial arrangement of several machines, which is

discussed in considerable detail in Section 3.3. The experimental factors for this system

are also discussed in the same section. Hence, it might sometimes necessitate visiting

Section 3.3 in order to better follow up the results presented in this section.

There are 7 experimental factors for this system with differing levels each. If full

factorial experimentation were to be made than we would need 2 × 4 × 3 × 2 × 2 × 7 × 3

= 2,016 different design points. Additionally, we noted that we make 5 replications for

each design point, which in turn would require 2,016 × 5 = 10,080 different simulation

runs. However, after recognition of a pattern in the outputs, we decided not to experiment

with all design points, which otherwise would be a waste of time and other resources. In

summary, we have done 363 experiments (18%), for which we present the results below.



60

The structural framework in the presentation of outputs

Before proceeding with the results, we outline the structural relationships among the

figures presented in this section. The figures can be viewed as a 4 × 2 matrix format. That

is, there are 4 rows and 2 columns in most of the figures, with each row-column

intersection containing a small figure. To ease the job of following the relationships

between different designs, we structure the figures in the following manner.

The first column of each figure is composed of the designs with low variable

(either CV or PV) processing times, whereas the second column is composed of the

designs with highly variable (either CV or PV) processing times. Moreover, the rows

within a figure present the designs with different workload distributions. The first row is

composed of the designs where the total workload is distributed uniformly among

machines. The second row is composed of designs that include a 10% bottleneck station

in the middle of the line, i.e., the total work processing time is distributed to the machines

in such a manner that the machine in the middle of the line takes 10% of the processing

times of the other machines. Similarly, the third and fourth rows are composed of designs

that involve a 20% and 99% bottleneck station, respectively. Furthermore, each of the

small figures in a row-column intersection includes three separate lines. These lines

correspond to the cumulative averages plot of flow-time statistic for the designs that

differ only in buffer capacities. The name of the design is shown next to the

corresponding plots. (Note that the complete list of design names with their parameter

levels is presented in Appendix C.) Additionally, the numbers in parentheses next to the

design names are the truncation points suggested by the MSER-5 heuristic. The x-axis of

each figure shows the number of observations in the sequence, whereas the y-axis shows

the flow-time of parts in minutes.

The following example clarifies the discussion. The three lines in Figure 4.1 (a)

correspond to designs 31111, 31112, and 31114. The truncation points suggested by

MSER-5 heuristic for these designs are 8, 33, and 5999, respectively. The designs in

Figures 4.1 (a) (i.e., 31111, 31112, and 31114) and 4.1 (b) (i.e., 31211, 31212, and

31214) are exactly the same designs having a buffer capacity of 0, 10, and 100,

respectively, except the variability. The former designs have a CV of 0.3 whereas the

latter ones have a CV of 2.5. The figures in other rows are interpreted similarly.
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Additionally, the designs in Figures 4.1 (a) and 4.1 (c) differ only on the distribution of

total processing time to the machines. Processing times of the machines in Figure 4.1 (a)

are 1-1-1 minutes, whereas it is 0.9-1.2-0.9 minutes for the machines in Figure 4.1 (c)

(10% bottleneck machine). The depth of the bottleneck is further increased to 20% and

99% in Figures 4.1 (e) and 4.1 (g) resulting in a workload distribution of 0.8-1.4-0.8 and

0.01-2.98-0.01, respectively. The same pattern is followed in the second column, as well.

Most of the figures in this section share the above discussed structure. However,

since we did not perform a full factorial experimentation due to a recognized pattern,

some of the figures are left incomplete in the sense that they do not have 4 × 2 matrix

structure. Nevertheless, the basic structure of these figures also complies with the above

discussion.

4.1 The effect of buffer capacity

The experimental results show that buffer capacity has significant negative effect on the

length of the transient period. This counterintuitive result is observed by viewing the

individual plots in each of the small figures in Figures 4.1 through 4.19*. Or, with the

language of the matrix structure discussed above, this result is apparent by examining the

plots in each cell of the matrix for each figure.

Although increasing buffer capacities positively affects many of the performance

measures in serial lines, such as throughput of the system, interdeparture time variability,

utilization of the machines (see Appendix D), its effect on the length of the transient

period is negative. In other words, the length of the transient period increases, as there is

an increase in the capacity of the buffers. This is mainly due to the existence of more

space availability in a system with more buffer capacity. Such a system needs more time

to fill all the spaces, which is an indicator of steady-state.

                                                          
* The scale of these figures might differ from each other. We present the figures with same scales in
Appendix E. However, due to extremely large values for the y-axis, those figures in Appendix E do not all
have the same scale, as well.
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For instance, consider the 3-stage serial line containing all reliable machines with

a total processing time of 3 minutes per job, which is uniformly distributed among all

machines and the CV of the processing times is 2.5. The results for these designs are

presented in Figure 4.1 (b). The cumulative averages plots suggest the end of the transient

period as the 1500, 1200, and 1000th observation for designs 31211, 31212, and 31214,

respectively. The buffer capacities in these designs increase from 0 in design 31211 to 10

in design 31212, and further to 100 in design 31214. The truncation points suggested by

the MSER-5 heuristic for these designs are 1167, 1169, and 1187, respectively, which

also comply with the results of the cumulative averages plots.

We make exactly the same observation for other system configurations (i.e.,

systems containing bottleneck machine, systems with low variable processing times,

longer lines, and unreliable systems).

4.2 The effect of processing time variability

We have distinguished between two alternative measures of the variability, namely, the

variance (PV) and the coefficient of variation (CV). The experimental results for the

effect of variability measured by CV on the 3-stage reliable serial line are shown in

Figures 4.1, 4.2, and 4.3, and results for the unreliable case are shown in Figures 4.7, 4.8,

and 4.9. The effect of variability measured by PV for the same system considerations are

shown in Figures 4.4, 4.5, and 4.6 for the reliable case, and in Figures 4.10, 4.11, and

4.12 for the unreliable case.

As expected variability of the processing times of the machines has significant

negative effect on the length of the transient period (i.e., transient period increases as

variability increases.) Variability of the processing times of the machines contributes to

the overall system variability, which indeed is the determination criterion for achieving

steady-state. In other words, it is assumed that transient period ends when the

performance measure reaches approximately a constant value (minimum variability).

Consider Figures 4.1 (c) and 4.1(d) for low variable and highly variable systems,

respectively. According to cumulative averages plot, the system with high buffer

capacities in the low variable case, i.e., design 31124, reaches steady-state at the 500th
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observation whereas the corresponding system in the highly variable case, i.e., design

31224, reaches steady-state at the 4000th observation. MSER-5 heuristic also complies

with the cumulative averages findings by suggesting a truncation amount of 271 and

5970 observations for designs 31124 and 31224, respectively. Similar observations can

be made for the rest of Figure 4.1.

Although, scaling factor is in the favor of graphs that are in the first column of the

matrix, that is, they are more detailed, it is still apparent that the transient period takes

longer time for the systems on the second column. This observation is valid both for the

systems having no intermediate buffers and the ones having intermediate storage areas.

Additionally, this conclusion also holds for highly loaded systems (Figures 4.2 and 4.3),

for the variability measured by PV (Figures 4.4 through 4.6), for unreliable systems

(Figures 4.7 through 4.17), and for longer lines (Figures 4.18 and 4.19), too.

There is one exception to this discussion. Design 31114 in Figure 4.1 (a) and its

counterparts in Figures 4.2 (a), 4.3 (a), …, 4.6 (a) seems to have a longer transient period

than their highly variable versions, i.e., design 31214 in Figure 4.1 (b) and its

counterparts in Figures 4.2 (b), 4.3 (b), …, 4.6 (b). This is mainly due to the special

structure of these designs. It is important to recognize that design 31114 and its

counterparts are unstable systems (in the flow-time sense) due to the large buffer spaces

but short and uniform processing times. This causes the flow-time statistic to increase

consistently. This can be explained in more detail as follows.

The first column of Figure 4.20 plots the “number of jobs in system” for 3-stage

reliable serial line with low variable processing times that is distributed uniformly among

machines. Their highly variable versions are presented in the second column of Figure

4.20. The designs in the first row of Figure 4.20 (i.e., 31114 and 31214) have a buffer

capacity of 100. Those in the second (i.e., 31112 and 31212) and third (i.e., 31111 and

31211) rows have a buffer capacity of 10 and 0, respectively. The x-axes in Figure 4.20

show the number of jobs completed by the system, and y-axes show the number of jobs

currently either being processed or waiting in buffers. Since there are no available

intermediate storage areas in designs 31111 and 31211 the number in system statistic for

both low and highly variable designs becomes stable from the beginning of the

simulation, i.e., there is no accumulation of jobs in the system (see Figures 4.20 (e) and
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4.20 (f)). Almost the same kind of behavior is also observed for the designs that contain

intermediate storage areas of 10 units (see Figures 4.20 (c) and 4.20 (d)). The only

difference in these figures is the degree of variability. This means that although there are

intermediate storage areas, this is not large enough to allow great accumulation of jobs.

Figure 4.20 (b) that present the results for highly variable system containing a buffer

capacity of 100 units also show the same kind of behavior with the only exception of high

amount of variability. However, its low variable counter part, i.e., design 31114, which

is presented in Figure 4.20 (a) consistently increases up to 10,000th observation and then

becomes stable. The cumulative averages plot of number in system statistic for designs

31114 and 31214 are presented in Figure 4.21 (a) and 4.21 (b), respectively. Apparently,

31214 stabilize earlier than 31114 in terms of number in system. Hence, the consistent

increase in number of jobs residing in system causes the flow-time statistics for design

31114 to be never stable for the given run length. This can be generalized to the similarly

behaving designs in Figures 4.2 (a) through 4.6 (a).

In short, variability is found to be the most significant factor affecting the

transient period. The higher the variability of the machines measured either by CV or by

PV, the higher the overall system variability is, the more coupling events between the

machines, hence longer the transient period.

4.3 The effect of line length

The results indicate that line length also has a significant negative effect on the length of

the transient period. As can be seen from the comparison of systems with all reliable

machines, increasing line length in the system slightly increases the length of the

transient period (each individual plot in Figure 4.1 (a) is compared to that of Figure

4.18(a), 4.1 (b) to 4.18 (b), and so on.) In case of considering the systems with a buffer

capacity of 100 units, it is seen that the transient period increases as the line length

increases. For example, design 31124 in Figure 4.1 (c) reaches steady-state at the 271st

observation whereas its counterpart, i.e., design 91124, in Figure 4.18 (c) reaches steady-

state at the 290th observation. The systems with medium and no buffer capacities also
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confirm to the fact that as the number of stations in the line increases, the length of the

transient period also increases.

The inverse effect of line length is mainly due to more coupling in larger systems.

The higher the amount of coupling in a system, the harder the system reaches steady-

state. This result can also be explained by the following analogy. If the process of

achieving steady-state can be viewed as warming-up (or heating) a room (or a building)

by several stoves then the determination of the length of the transient period can be

viewed as determining the time required to warm-up the stoves to heat the entire room or

the building. The short lines can be viewed as small buildings for which the heating of

the entire building can be achieved by warming only a few stoves. However, for larger

buildings to be heated entirely many more stoves are needed and their warming period

will require much energy and time. This results with the conclusion that in order a system

to reach steady-state, all the entities of the system would reach steady-state collectively.

Since there are more entities in a longer line than shorter ones it will take longer time to

reach steady-state for larger system when compared to shorter ones. Similar results can

be seen for the systems with all unreliable machines (see Figures 4.13 with their

counterparts in Figure 4.19.)

4.4 The effect of distribution of system load

By the distribution of system load we mean the allocation of total processing times

among the machines. If any of the machines receive more processing time than the

others, then that machine automatically becomes the bottleneck station and controls (or

dominates) the flows of jobs in the system. We investigate the effect of bottlenecks on the

length of the transient period in two cases, namely the constant CV case and the constant

PV case. Furthermore, in each case, we present the results for low and high variability

separately. Before presenting the results we further note the following observation.

Observation 1: “As we transfer processing times from other machines to a single

machine, we are in essence moving towards a system that is smaller in size. Hence, also

considering the results of line length discussed above, it is expected for the length of the
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transient period to decrease as the depth of the bottleneck is increased given a constant

workload.”

For example, consider a 3-stage uniform system with mean processing times

given as 1-1-1 minutes. If we form a 99% bottleneck station by transferring the

processing times of the outer stations to the middle one we will obtain a 3-stage system

with mean processing times given as 0.01-2.98-0.01. The mean processing times of the

1st and 3rd stations are so small when compared to that of the 2nd station that they can

even be neglected. Hence, the 99% bottleneck station can be viewed as a shorter line than

its uniform counterpart.

We first consider the constant CV case. It can further be divided into two

subclasses, namely the low CV and the high CV. Figures 4.1 (a), (c), (e), and (g) show

the results for 3-stage reliable system having a CV of 0.3 with a total processing time of 3

minutes per job, which is distributed uniformly, unevenly with 10% bottleneck, 20%

bottleneck, and 99% bottleneck, respectively. As we move from Figure 4.1 (a) to 4.1 (g)

the cumulative averages plots suggest a slight decrease in the length of the transient

period. This is also valid for the MSER-5 statistics. Hence, the results are consistent with

Observation 1, which states that as the domination of the bottleneck station increases the

size of the system decreases and eventually the transient period gets shorter. In this

situation, the most important entity in the system becomes the bottleneck station and its

arrival to steady-state results in the entire system’s arrival to steady-state. Remembering

the stove analogy, heating the biggest stove in the building is more important than

heating smaller ones to heat the entire building. Similar results are observed for the

highly loaded systems (Figures 4.2 (a), (c), (e), and (g), and Figures 4.3 (a), (c), (e), and

(g)), and for unreliable systems (Figures 4.7 through 4.12.)

The experimental results for the high CV case of the above example are presented

in Figures 4.1 (b), (d), (f), and (h). As we move from Figure 4.1 (b) to 4.1 (h) the

cumulative averages plots suggest an increase in the length of the transient period, which

is also confirmed by the MSER-5 statistics. This finding is just the opposite of the result

obtained from the low CV case. Notice that in order to keep the CV constant we need to

increase the variance (or PV) of bottleneck station since its processing time is higher.

Recall that in Section 4.2 we have found that the increase in the variability would
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significantly increase the length of the transient period. In this section, Observation 1

suggests a decrease in the transient period. In the final analysis, the negative effect of

variability dominates the positive effect of system size. Therefore, in the high CV case

increasing the depth of the bottleneck also increases the length of the transient period. It

may also be argued that this should also hold for the low CV case, but it should be

noticed that the CV in its low level is very low. The results for the high CV case also hold

for highly loaded systems (Figures 4.2 (b), (d), (f), and (h), and Figures 4.3 (b), (d), (f),

and (h)), and for unreliable systems (Figures 4.7 through 4.12.), as well.

Next, we consider the constant PV case. This can also be investigated in two

subclasses as low PV and high PV. Figures 4.4 (a), (c), (e), and (g) show the results for

the above discussed example with the only difference that PV is set to 0.3. The decrease

in the system size when moved from uniform to bottleneck systems is valid for this case,

too (recall Observation 1). The cumulative averages plots and the MSER-5 heuristic

show a slight decrease in the length of the transient period.

However, in the high PV case, which are shown in Figures 4.4 (b), (d), (f) and (h),

neither the cumulative averages plots nor the MSER-5 statistics suggest a change in the

length of the transient period. Keeping the PV constant in its high level causes no change

in the length of the transient period. An expected behavior due to Observation 1 is not

observed from the results. The reason is that although the CV is decreased by keeping the

PV constant, its value (i.e., 2.5) is still high enough to compensate for any change due to

a change in the system size. These results are also valid for highly loaded systems

(Figures 4.5 and 4.6) and for unreliable systems (Figures 4.10 through 4.12).

4.5 The effect of system load level

In this section, we first identify what we mean by system load level. Then, we make two

observations that help explain the results. Afterwards, we continue with presenting the

results. In presenting the results, we distinguish between constant CV and constant PV

cases. We investigate the results for low and high variability separately for each case.

System load level is the factor that determines the total work content (TWK) of a

system. The higher the TWK of a system the higher loaded a system is, because
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increasing the TWK causes the system to work faster than the one that has lower TWK.

In other words, increasing the TWK will cause the system to process more parts per unit

time. From programming point of view, we increase the system load by decreasing the

total processing time per job. For instance, consider a 3-stage serial line with a total

processing time of 3 minutes per job, which is distributed uniformly among machines,

i.e., 1-1-1 minutes. Also, consider a second system with a total processing time of 1.5

minutes per job, which is distributed uniformly, too, i.e., 0.5-0.5-0.5 minutes for each

machine. The second system will clearly process more parts per unit time than the first

system. Then, it can be stated that a system with smaller total processing times is a zipped

version of the system with greater total processing times. This result yields the following

observation about the length of the transient period.

Observation 2: “Since a highly loaded system will process more parts per unit time, the

buffers in this system will fill up faster, which in turn will cause a shorter transient

period.”

On the other hand, a second observation about the effect of the change on the load

level is as follows.

Observation 3: “Increasing the load level of a system in essence causes an increase in

the congestion level of the system. The increase in congestion level results with more

interaction among system entities, which in turn causes more coupling events and an

increase in the length of transient period.”

The analyses of the results for system load level are investigated in two cases as

constant CV and constant PV. We first consider the constant CV case. Figures 4.1, 4.2,

and 4.3 show the experimental results for a 3-staged reliable serial line with a total

processing time of 3, 2.7, and 1.5 minutes per job, respectively, for the constant CV case.

For the high CV case (i.e., the graphs in the second column of each figure matrix)

cumulative averages plots suggest a decrease in the length of the transient period as we

move from the system with a total work content of 3 minutes to the one with 2.7 minutes

and further to the one with 1.5 minutes. This decrease is most apparent when 3- and 1.5-

minutes systems are compared. This observation is also supported by the MSER-5
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statistics. For instance, consider design 31214 in Figure 4.1 (b), which has a total

processing time of 3 minutes per job. The cumulative averages plot and the MSER-5

heuristic suggest the truncation point as 1600 and 1187, respectively. The truncation

point for its counterpart, (i.e., design 31244 in Figure 4.2 (b) that has a total processing

time of 2.7 minutes per job) is found as 1500 and 1187 by the cumulative averages plot

and the MSER-5 heuristic, respectively. If we further reduce total processing time per job

down to 1.5 minutes, the truncation point for that design, i.e., design 31274 in Figure

4.3(b), is found as 1000 and 374 by the cumulative averages plot and the MSER-5

heuristic. We see the effect of Observation 2, which states that increasing the load level

of a system causes the buffers to fill faster and the transient period becomes shorter.

Observation 3 might also have shown its effect, but as noted earlier variability is the most

significant factor that affects the length of the transient period. Hence, the increase in

transient period caused by the increase in the congestion level of the system is dominated

by the decrease in transient period caused by the decrease in the variability of the system.

Similar observations are made for other designs containing high CV processing times.

The results also hold for unreliable systems (Figures 4.7, 4.8, and 4.9), as well.

Now, we continue with low CV case. The first column of Figures 4.1, 4.2, and 4.3

show the results for the low CV case. The effect of Observation 3 is more apparent in this

case, because the variability of the system is too low. Hence, the decrease in transient

period caused by the decrease in the variability of the system is dominated by the

increase in transient period caused by the increase in the congestion level of the system.

In other words, increasing the load level of a system in the low CV case increases the

length of the transient period, however only slightly. This observation is not apparent

from the cumulative averages plots, but from the MSER-5 statistics. Consider, for

instance, design 31124 in Figure 4.1 (c) that has a total processing time of 3 minutes per

job, for which MSER-5 suggests 271 observations to be truncated. Designs 31154 and

31184 in Figures 4.2 (c) and 4.3 (c) that have a total processing time of 2.7 and 1.5

minutes per job, have 273 and 277 observations to be truncated. Other low CV designs

also confirm these results. The results are also valid for unreliable systems (Figures 4.7,

4.8, and 4.9), as well.
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Next, we consider the high PV case whose results are presented in the second

column of Figures 4.4, 4.5, and 4.6 for the 3-, 2.7-, and 1.5-minutes systems,

respectively. Both the cumulative averages plots and the MSER-5 statistics suggest no

change in the length of the transient period as the load level is increased. Neither

Observation 2 nor Observation 3 shows their effect, because of the dominance of high

variability. The difference of constant PV from the constant CV case is that the variance

of the processing times are kept constant in constant PV, whereas there occurs a change

in the variances in the constant CV case. Keeping the variance constant at its high level,

i.e., 2.5, causes no change in the length of the transient period. Cumulative averages plots

and MSER-5 heuristics suggest truncating 1600-1600-1500 and 1187-1187-1187

observations for designs 31714-31744-31774, respectively. This result holds for other

reliable high PV designs and unreliable designs (Figures 4.10, 4.11, and 4.12), as well.

The results for the low PV-reliable case are shown in the first column of Figures

4.4, 4.5, and 4.6. There occurs a slight increase on the length of the transient period, as

we move from 3-minute reliable system to 2.7-minute and further to 1.5-minute systems.

The explanation of this result is exactly the same as the low CV case. That is,

Observation 3 becomes dominant, and the increase in the congestion level of the system

causes a slight increase in the length of the transient period, which is only apparent from

the MSER-5 statistics. For instance, designs 31624, 31654, and 31684 in Figures 4.4

(c), 4.5 (c), and 4.6 (c) reach steady-state at the 231, 233, and 237th item, respectively.

Unreliable designs also confirm the above finding (Figures 4.10, 4.11, and 4.12).

4.6 The effect of reliability

The reliability issue has been investigated from two aspects; first is the level of

availability and the second is the type of breakdowns. Availability is the long-run ratio of

uptime of the machines to the total system time. And, for the type of breakdowns we

consider two extreme case: frequent breakdowns/short repair times and rare

breakdowns/long repair times.

Firstly, we consider the existence of unreliable machines. Figures 4.7 through

4.12 present the results for 3-stage serial line containing machines that are available only
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for 90% of the total time, whose reliable counterparts are also given in Figures 4.1

through 4.6, respectively. (Figures 4.7 (h) and 4.8(h) are missing, because we did not

allow a computer runtime of more than 1 day, where approximately 2500 parts –less then

10%– were simulated for these designs during this time.) For the highly variable case

(either measured by CV or PV), the length of the transient period remains same for each

design, which can be observed by comparing the second columns of each figure, e.g., the

designs in the second column of Figure 4.7 should be compared to that of Figure 4.1. For

instance, design 31214 in Figure 4.1 (b), reaches steady-state at the 1187th observation,

whereas its unreliable version, i.e., design 312141221 in Figure 4.7 (b) reaches exactly

at the same observation, according to MSER-5 heuristic. Cumulative averages plot also

confirm this finding. This result can be explained with the following analogy: If the

variability of a sequence can be viewed as a series of waves in a sea, then a highly

variable sequence can be viewed as a sequence of highly wavy ocean. Waves that are

generated by an artificial source will have no effect in the big ocean unless the source is

very powerful. By allowing the machines to fail we are in effect introducing additional

variability to system. However, the variability introduced by breakdowns is so small

when compared to the original variability of the system that its effect is negligible.

Hence, we can not observe any change in the length of the transient period for the highly

variable case. Same result is observed for other highly variable 3- and 9-stage designs,

too.

The effect of reliability in the low variable case is somewhat more complicated. If

we compare first columns of Figures 4.1 through 4.6 (reliable designs) to Figures 4.7

through 4.12 (unreliable designs), we observe a slight decrease in the length of the

transient period (the type of unreliability in these designs is chosen as frequent

breakdowns/short repair times). However, this decrease is not apparent from the

cumulative averages plot, but from the MSER-5 heuristic. For instance, design 31124 in

Figure 4.1 (c) ends its transient period at the 271st observation, whereas its unreliable

counterpart, i.e., design 311241221 in Figure 4.7 (c), ends its transient period at the 29th

observation. If, on the other hand, we were to compare the unreliable design that works as

rare breakdown/long repair time, we would observe a slight increase in the length of the

transient period (compare the first column of Figure 4.1 to that of Figure 4.13). Allowing
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breakdown events has twofold effect on a system. The first, which is discussed in the

previous paragraph, is introduction of additional variability to the system. On the other

hand, breakdown events slow down a system, which in turn causes the buffers to fill up

earlier. Referring to the effect of buffers, a system that fills its buffers faster will reach

steady-state earlier. Therefore, we conclude that for the frequent breakdown/short repair

time case the negative effect of the variability introduced by breakdown events is

negligible when compared to the positive effect of the buffers. This result is observed for

other 3-stage designs and 9-stage designs (compare Figure 4.18 and 4.19), as well.

However, for the rare breakdown/long repair time case, the effect if variability introduced

by breakdown events dominates the effect of buffers.

Next, we consider increasing the depth of breakdowns from 90% availability to

80% and further to 50%. Figures 4.7, 4.14, and 4.15 present the results for 90%, 80%,

and 50% availability cases, respectively. For the high variability case, the CV of

processing times is the dominant factor as in previous discussions. Hence, there is no

change in the length of the transient period. The MSER-5 heuristic suggests truncating

1187 observations from designs 312141221, 312141223, and 312141227, which differ

only for the availability of machines and can be seen in Figures 4.7 (b), 4.14 (b), and 4.15

(b), respectively. However, in the low variability case, there is a slight increase in the

length of the transient period, which is due to the increase in the variability introduced by

breakdown events. That is, the more breakdown events, the higher variability introduced.

This can be seen in Figures 4.7 (a), 4.14 (a) and 4.15 (a). Other 3-stage designs also

confirm this result.

Finally, we consider the type of breakdown events. Figures 4.7 and 4.13 illustrate

the results for frequent but short and rare but long breakdowns, respectively, when the

machine availability is 90%. Similarly, Figures 4.14 and 4.16 show the results for 80%

availability, and Figures 4.15 and 4.17 for 50% availability. Experimental results show

that in the high variability case the situation is similar to the previous ones, i.e., there is

no change in the length of the transient period between two breakdown types, which is

demonstrated both by the cumulative averages plots and the MSER-5 statistics. However,

for the low variability case, the results show that rare but long breakdowns attain a

longer transient period than frequent but short breakdowns. This due to the increase in



73

the variability inserted by breakdown events. For instance, designs 311141221 and

311141222 that are based on 90% availability are found to have a transient period of

312 and 374 observations according to the MSER-5 heuristic (see Figures 4.7 (a) and

4.13 (a)). The results are similar for the designs that are 80% and 50% available.

4.7 The effect of utilization

In this study, we also investigated if there is any relation between the length of the

transient period and the utilization level of a system. However, our results indicated that

there is no direct relation between these two measures. The following example illustrates

this case.

Table 4.1 Effect of utilization on the length of the transient period.
Design Average ρ1 Length of Tp

2 Change in ρ Change in Tp

31121 0.753 5 - -

31124 0.814 271 Increase Increase
31181 0.864 5 Increase No change
31221 0.346 2302 Decrease Increase
311a1 0.356 2 Decrease Decrease

1 ρ   : Utilization
2 Tp : Transient period

By using the previous results and the ones reported in Appendix D we could find

four counter examples. The results are tabulated in Table 4.1 for which the length of

transient period is determined by the MSER-5 heuristic. First consider a design, say

31121 (3-stage reliable serial line containing 10% bottleneck station and having no

intermediate buffers), for which the transient period and average system utilization

statistics are determined as 5 and 75.3%, respectively.

By adding additional buffer capacities to this design we obtain design 31124

(buffer capacity is increase from 0 to 100), which is 8% more utilized than 31121 and

has a transient period of length 271 observations. The increase in the utilization of the

system causes an increase in the length of the transient period, as well.

If we increase the load level of the system by decreasing the total processing time

per job from 3 to 1.5 minutes, we obtain design 31181, which is 15% more utilized than
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31121. However, this increase in utilization caused no change in the length of the

transient period (i.e., the transient period for design 31181 ends at the 5th observation).

Then, we increase the variability of the processing times and obtain design

31221, which is 54% less utilized then 31121. Although this design is significantly less

utilized than 31121, we observe a significant increase in the length of the transient period

(from 5 to 2302).

Finally, by forming a 99% bottleneck station we obtain design 311a1, which is

53% less utilized than 31121. However, this decrease caused a decrease in the length of

transient period.

In conclusion, we don’t have a direct relation between the length of the transient

period and the utilization level of the system.



Figure 4.1 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 3 minutes per job.
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(c) CV = 0.3, 10% bottleneck, varying buffer sizes
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(d) CV = 2.5, 10% bottleneck, varying buffer sizes
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(e) CV = 0.3, 20% bottleneck, varying buffer sizes
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(f) CV = 2.5, 20% bottleneck, varying buffer sizes
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Figure 4.2 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 2.7 minutes per job.
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(c) CV = 0.3, 10% bottleneck, varying buffer sizes
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(d) CV = 2.5, 10% bottleneck, varying buffer sizes
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(e) CV = 0.3, 20% bottleneck, varying buffer sizes
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Figure 4.3 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 1.5 minutes per job.
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Figure 4.4 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 3 minutes per job.
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(e) PV = 0.3, 20% bottleneck, varying buffer sizes
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Figure 4.5 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 2.7 minutes per job.
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Figure 4.6 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 1.5 minutes per job.
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Figure 4.7 Experimental results for 3-stage serial line containing 90% unreliable machines with 
frequent breakdowns/short repair times and a total processing time of 3 minutes per job.
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Figure 4.8 Experimental results for 3-stage serial line containing 90% unreliable machines with frequent 
breakdowns/short repair times and a total processing time of 2.7 minutes per job.
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Figure 4.9 Experimental results for 3-stage serial line containing 90% unreliable machines with frequent 
breakdowns/short repair times and a total processing time of 1.5 minutes per job.

Cumulative average of flow-time statistic

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(a) CV = 0.3, uniform workload, varying buffer sizes

Design 311741221  (312)

Design 311721221  (33)

Design 311711221  (6)

Cumulative average of flow-time statistic

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(b) CV = 2.5, uniform workload, varying buffer sizes

Design 312741221  (374)

Design 312721221  (53)

Design 312711221  (32)

Cumulative average of flow-time statistic

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(c) CV = 0.3, 10% bottleneck, varying buffer sizes

Design 311841221  (270)

Design 311821221  (10)

Design 311811221  (5)

Cumulative average of flow-time statistic

0

100

200

300

400

500

600

700

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(d) CV = 2.5, 10% bottleneck, varying buffer sizes

Design 312841221  (464)

Design 312821221  (69)

Design 312811221  (63)

Cumulative average of flow-time statistic

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(e) CV = 0.3, 20% bottleneck, varying buffer sizes

Design 311941221  (70)

Design 311921221  (7)

Design 311911221  (2)

Cumulative average of flow-time statistic

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(f) CV = 2.5, 20% bottleneck, varying buffer sizes

Design 312941221  (1187)

Design 312921221  (107)

Design 312911221  (91)

Cumulative average of flow-time statistic

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(g) CV = 0.3, 99% bottleneck, varying buffer sizes

Design 311c41221  (23)

Design 311c21221  (4)

Design 311c11221  (2)

Cumulative average of flow-time statistic

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(h) CV = 2.5, 99% bottleneck, varying buffer sizes

Design 312c41221  (5999)

Design 312c21221  (5705)

Design 312c11221  (5703)

 83



Figure 4.10 Experimental results for 3-stage serial line containing 90% unreliable machines with 
frequent breakdowns/short repair times and a total processing time of 3 minutes per job.
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Figure 4.11 Experimental results for 3-stage serial line containing 90% unreliable machines with frequent 
breakdowns/short repair times and a total processing time of 2.7 minutes per job.
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Figure 4.12 Experimental results for 3-stage serial line containing 90% unreliable machines with frequent 
breakdowns/short repair times and a total processing time of 1.5 minutes per job.
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Figure 4.13 Experimental results for 3-stage serial line containing 90% unreliable machines with rare 
breakdowns/long repair times and a total processing time of 3 minutes per job.
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Figure 4.14

Figure 4.15

Experimental results for 3-stage serial line containing 80% unreliable machines with 
frequent breakdowns/short repair times and a total processing time of 3 minutes per job.

Experimental results for 3-stage serial line containing 50% unreliable machines with 
frequent breakdowns/short repair times and a total processing time of 3 minutes per job.
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Figure 4.16

Figure 4.17 Experimental results for 3-stage serial line containing 50% unreliable machines with rare 
breakdowns/long repair times and a total processing time of 3 minutes per job.

Experimental results for 3-stage serial line containing 80% unreliable machines with rare 
breakdowns/long repair times and a total processing time of 3 minutes per job.

Cumulative average of flow-time statistic

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(a) CV = 0.3,  uniform workload, varying buffer sizes

Design 311141224  (389)

Design 311121224  (69)
Design 311111224  (29)

Cumulative average of flow-time statistic

0

2000

4000

6000

8000

10000

12000

14000

16000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(b) CV = 2.5,  uniform workload, varying buffer sizes

Design 312141224  (1187)

Design 312121224  (1169)

Design 312111224  (1167)

Cumulative average of flow-time statistic

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(a) CV = 0.3,  uniform workload, varying buffer sizes

Design 311141228  (967)

Design 311121228  (107)
Design 311111228  (33)

Cumulative average of flow-time statistic

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

(b) CV = 2.5,  uniform workload, varying buffer sizes

Design 312141228  (1187)

Design 312121228  (1169)

Design 312111228  (1167)

 89



Figure 4.18 Experimental results for 9-stage serial line containing all reliable machines with a total 
processing time of 9 minutes per job.
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Figure 4.19 Experimental results for 9-stage serial line containing 90% unreliable machines with rare 
breakdowns/long repair times and a total processing time of 9 minutes per job.
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Figure 4.20

Figure 4.21

Number of jobs in system for 3-stage reliable serial line.

Cumulative averages plot of number in system for 3-stage serial line
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Figure 4.22 Determining the length of transient period using Welch's technique for design 91122.
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5 RESULTS FOR JOB-SHOP PRODUCTION SYSTEMS

This chapter is an extension of the research presented in Chapter 4. Specifically, it

includes the results of the investigation for factors affecting the length of the transient

period in job-shop production systems. Similar to the previous chapter, we first outline

the structural framework for the presentation of outputs, which slightly differ from that of

serial line results. Then, we continue in each section with presenting the effects of

different system factors on the length of the transient period.

The structural framework in the presentation of outputs

The figures in this section can be viewed as a 3 × 2 matrix format. That is, there are 3

rows and 2 columns in most of the figures, with each row-column intersection containing

a small figure. Where appropriate, we followed the same structure used for presenting the

serial line results. However, there still exist slight differences. To ease the job of

following the relationships between different designs, we structure the figures in the

following manner.
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The first column of each figure is composed of the designs with low variable

(either CV or PV) processing times, whereas the second column is composed of the

designs with highly variable (either CV or PV) processing times. Moreover, the rows

within a figure present the designs with different workload distributions. The first row is

composed of the designs where the total workload is distributed uniformly among

machines. The second row is composed of designs that include a 5% bottleneck station,

i.e., the total processing time is distributed to the machines in such a manner that a

randomly selected machine, say machine #2 in 3-machine systems, takes 5% of the

processing times of the other machines. Similarly, the third row is composed of designs

that involve a 10% bottleneck machine. Furthermore, each of the small figures in a row-

column intersection includes two separate lines. These lines correspond to the cumulative

averages plot of flow-time statistic for the designs that differ only in load levels. The

name of the design is shown next to the corresponding plots. (Note that the complete list

of design names with their parameter levels is presented in Table C.2 of Appendix C.)

Additionally, the numbers in parentheses next to the design names are the truncation

points suggested by the MSER-5 heuristic. The x-axis of each figure shows the number of

observations in the sequence, whereas the y-axis shows the flow-time of parts in minutes.

The following example clarifies the discussion. The two lines in Figure 5.1 (a)

correspond to designs 31111 and 31171. The truncation points suggested by MSER-5

heuristic for these designs are 25 and 13, respectively. Designs in Figures 5.1 (a) (i.e.,

31111 and 31171) and 5.1 (b) (i.e., 31211 and 31271) are exactly the same designs

with a load level of 80% and 50%, respectively, except the variability. The former

designs have a CV of 0.3 whereas the latter ones have a CV of 1.0. The figures in other

rows are interpreted similarly. Moreover, the designs in Figures 5.1 (a) and 5.1 (c) differ

only on the distribution of the total processing time to the machines. The processing

times per job of the machines in Figure 5.1 (a) are 1-1-1 minutes, whereas it is 0.95-1.1-

0.95 (the order of sequence is random) minutes for the machines in Figure 5.1(c) (5%

bottleneck machine). The depth of the bottleneck is further increased to 10% in Figure

5.1 (e) resulting in a workload distribution of 0.9-1.2-0.9, respectively. The same pattern

is followed in the second column, as well.
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Most of the figures in this section share the above discussed structure. However,

since we did not perform a full factorial experimentation due to a recognized pattern,

some of the figures are left incomplete in the sense that they do not have 3 × 2 matrix

structure. Nevertheless, the basic structure of these figures also complies with the above

discussion.

5.1 The effect of processing time variability

As we did for the serial line systems, we distinguish between two alternative measures of

variability, namely, coefficient of variation (CV) and variance (PV). The experimental

results for the effect of variability measured by CV on the 3-machine reliable job-shop

are shown in Figure 5.1 and results for the unreliable case are shown in Figures 5.3 and

5.5. The effect of variability measured by PV for the same system considerations are

shown in Figures 5.2 for the reliable case, and in Figure 5.4 and 5.6 for the unreliable

case. Experimentally, it is found that variability of the processing times of the machines

has significant negative effect on the length of the transient period (i.e., transient period

increases as variability increases.) The explanation discussed in Section 4.2 about the

effect variability on the length of the transient period for serial line systems is also valid

for the job-shop systems, as well. That is, as the variability of the processing times of

machines increases, the overall system variability increases, too, which in turn results

with longer transient periods.

Consider, for example, Figures 5.1 (a) and 5.1 (b) for low variable and highly

variable job-shop systems, respectively. According to cumulative averages plot, the

highly loaded system in the low variable case, i.e., design 31111, reaches steady-state at

the 100th observation whereas the corresponding system in the highly variable case, i.e.,

design 31211, reaches steady-state at the 250th observation. MSER-5 heuristic also

complies with the cumulative averages findings by suggesting a truncation amount of 25

and 43 observations for designs 31111 and 31211, respectively. The results for low

loaded system also confirm this observation. Similar observations about the effect of

variability can be made for the rest of Figure 5.1. The same observations are also made
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for the variability measured by PV (see Figure 5.2), for unreliable systems (see Figures

5.3, 5.4, 5.5, and 5.6), and for larger systems sizes (see Figures 5.7, 5.8, and 5.9).

5.2 The effect of system size

As was found for serial lines systems, our observations show that system size measured in

terms of number of machines in the system has a significant negative effect on the length

of the transient period. As can be seen from the comparison of systems with all reliable

machines, increasing number of machines in the system increases the length of the

transient period (each individual plot in Figure 5.1 (a) is compared to that of Figure

5.7(a), and 5.1 (b) to 5.7 (b).) In case of considering the highly loaded systems, it is seen

that the transient period increases as the system size increase. For example, design 31111

in Figure 5.1 (a) reaches steady-state at the 25th observation whereas its counterpart, i.e.,

design 91111, in Figure 5.7 (a) reaches steady-state at the 28th observation. The systems

including low load levels also confirm to the fact that as the number of machines in the

system increases, the length of the transient period also increases. This is mainly due to

more coupling in larger systems. The stove analogy described in Section 4.3 can be used

for job-shop systems, as well. Similar results can be seen for the systems with all

unreliable machines (compare Figure 5.3 to Figure 5. 8, and Figure 5.5 to Figure 5.9.)

5.3 The effect of distribution of system load

The results of simulation experiments also indicated that the distribution of system load

(or the bottleneck issue) has significant negative effect on the length of the transient

period. This behavior is observed for both constant CV and constant PV cases. This

results is a little bit different than the serial line results as it was explained in detail.

Consider, for instance, the highly loaded, uniform, 3-machine reliable job-shop,

i.e., design 31171 in Figure 5.1 (a), which reaches steady state at the 13th observation

according to the MSER-5 heuristic. The 5% and 10% bottleneck versions of this design,

i.e., designs 311y1 and 31181 in Figures 5.1 (c) and 5.1 (e) reaches steady-state at the

15th and 36th observation, respectively.
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The explanation of this kind of behavior in job-shop system regardless of the type

of variability is as follows. Firstly, it is important to recognize that Observation 1 which

is stated in Section 4.4 (i.e., “as the depth of bottleneck increases the size of the system

decreases”) is also valid for the job-shop systems. However, two basic differences

between job-shop and serial line systems are:

1. The type of flow in two systems differs. That is, there is single fixed flow

sequence of jobs in serial lines that regulates the system. However, the jobs

follow a random processing sequence in a job-shop system, which results with

additional variability.

2. There is a structural difference between two systems. The collection of time in

system statistic of a job in serial line systems is started as the job begins being

processed in the first machine. However, the same statistic in a job-shop system is

started as the job first arrives the system (notice that a job may not start

processing immediately it arrives to a system in job-shop). This difference causes

a significant change in the congestion levels of two systems. Clearly, job-shop

systems is more congested than serial line systems. Congestion causes a job-shop

system that contains bottleneck to become unstable. However, a similar serial line

system is limited with the buffer sizes. Hence, the significant change in the

congestion level causes significant degree of variability.

This can be observed for the examples discussed above. The mean and variance of

time in system statistic for design 31171 is 12.465 and 19.67, respectively. The mean for

designs 311y1 and 31181 has slightly increase to 12.749 and 13.587, whereas the

variances increased up to 23.12 and 35.23, respectively.

In summary, by allowing bottleneck machines in a job-shop we are in essence

disturbing the balance between machines, which in turn causes an introduction of

additional variability. A reduction in system size might also occur, which suggest a

decrease in the transient period. However, the negative effect of variability dominates the

positive effect of system size. The same kind of behavior is observed for unreliable

systems (see Figures 5.3 thorough 5.6) and larger systems (see Figures 5.7 thorough 5.9).
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5.4 The effect of system load level

System load level as also measured by the average utilization of system, which is

adjusted by the rate of the arrival process. The interarrival time of jobs for a 50% utilized

low variable system is set to 5.65 minutes. To increase the average utilization of this

system to 80% the interarrival time of jobs is decreased down to 3.55 minutes. This

decrease in interarrival time will lead to frequent arrival of jobs, which in turn will give

less opportunity to machine for being idle.

The results indicate that increasing the load level in job-shop systems causes a

significant increase in the length of the transient period. Similar to the effect of

distribution of system load, the same kind of behavior is observed for the effect of load

level in job-shop experiments for constant CV and constant PV cases, which was also

differentiated in serial line experiments.

Each individual plot within a row-column intersection of Figures 5.1 thorough 5.9

should be compared to each other to see the effect of different load levels. For instance,

the 80% utilized 3-machine reliable system with low variable processing times, i.e.,

design 31111 in Figure 5.1 (a) should be compared to design 31171 in Figure 5.1 (a),

which is exactly the same design except the decrease in load level (from 80% to 50%).

MSER-5 heuristic suggests truncating 25 and 13 observations for designs 31111 and

31171, respectively. Cumulative averages plots also confirm MSER-5 findings. Similar

observations are made for highly variable designs (see right column of Figure 5.1),

designs containing bottleneck (see second and third row of Figure 5.1), unreliable designs

(see Figures 5.3 through 5.6), and for larger systems (see Figures 5.7 thorough 5.9).

This is a counterintuitive result, because as we increase the load level we are in

essence reducing the coupling in system. In job-shop systems, coupling occurs only in the

form of starvation, because as long as a machine finishes it’s processing on a job it can

dispose it to the system regardless of anything. Since increased load level will increase

the number of jobs residing in system, this will in turn give less opportunity for the

starvation of machines. Hence, this will result with less coupling which suggests a shorter

transient period.



100

However, if investigated carefully one would observe that increasing the load

level of a system also increases the variability of the system. This is the main reason for

the increase in the length of the transient period.

Let us define the lead time of a job in a machine be the total time a job spends for

being processed in a machine plus the time it spends for waiting the machine to be

available. Hence, lead time of a job is always greater than or equal to its processing time.

By this definition, it can easily be seen that total lead time (i.e., the sum of lead times in

each machine) is equal to the flow-time of the job in the system. The congestion level of

a low loaded system is lower than that of high loaded system. Therefore, mean total lead

time is clearly greater for a highly loaded system than that of low loaded one. Since

common random numbers is used, mean processing times in each machine for each

system will exactly be equal to each other. However, the mean lead time and its variance

in each machine will differ for each system. Tables 5.1 presents the mean, variance and

the coefficient of variation of both lead time and processing time in each machine for

both low loaded and highly loaded 3-machine reliable job-shop designs (i.e., designs

31171 and 31111, respectively.) As discussed above, both designs have exactly the

same mean processing times in each machine. For example, the mean and variance of the

processing time in machine #1 is 2.8492 minutes and 0.7591, respectively, for both low

and highly loaded designs. The coefficient of variation of total processing times is

0.1170. Mean and variance of the lead time in each machine for low loaded design is

approximately 4.1 minutes and 0.5, respectively. These statistics increase up to

approximately 7.5 minutes and 0.7, respectively, for the highly loaded design. The 80%

increase in the mean (from 12.4691 to 22.5189) of the total lead time is accompanied by a

545% increase in the variance (from 19.6715 to 126.7942).

Table 5.1 Comparison of the variability of low and highly loaded designs.
Lead Time Processing Time

M/C #1 M/C #1 M/C #1 Total M/C #1 M/C #1 M/C #1 Total
Design 31171 (low loaded system)

Mean 4.1817 4.1419 4.1454 12.4691 2.8492 2.8430 2.8469 8.5390

Variance 5.3243 5.0087 4.9977 19.6715 0.7591 0.7462 0.7646 2.2839

CV 0.5518 0.5403 0.5393 0.3557 0.3058 0.3038 0.3072 0.1170

Design 31111 (highly loaded system)

Mean 7.6131 7.3943 7.5115 22.5189 2.8492 2.8430 2.8469 8.5390

Variance 31.3240 27.8359 28.2791 126.7942 0.7591 0.7462 0.7646 2.2839

CV 0.7352 0.7135 0.7080 0.5000 0.3058 0.3038 0.3072 0.1170
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To summarize, increasing the load level of a system in job-shops increases the

length of the transient period due to significant increase in the variability of the system.

5.5 The effect of reliability

We included only one level for the reliability of machines, and chose it as 90%

availability. It is experimentally found that introducing unreliable machines to the system

increases the length of the transient period. As discussed in Section 4.6, allowing

unreliable machines introduces additional variability to the system. This variability is

much more greater for job-shop systems than that of serial line systems. Consider, for

example, design 31111 in Figure 5.1 (a) whose unreliable version (311111221) is given

in Figure 5.3 (a). MSER-5 heuristic suggests a truncation point of 25 and 149 for these

designs, respectively. Similar observation is made for other designs, as well (compare

Figures 5.1 to 5.3, 5.2 to 5.4, and 5.7 to 5.8).

As was found for the serial line system, type of breakdown also has significant

effect on the length of the transient period. Frequent but short breakdowns attains shorter

transient period than rare but long breakdowns. The degree of variability introduced by

rare but long breakdowns is significantly higher than that of frequent but short

breakdowns. Design 311111221 in Figure 5.3 (a) reaches steady-state at the 149th

observation whereas its counterpart, i.e., design 311111222 in Figure 5.5 (a) reaches

steady-state at the 2217th observation. Similar observation is made for other designs, as

well (compare Figures 5.3 to 5.5, 5.4 to 5.6, and 5.8 to 5.9).

5.6 The effect finite buffer capacities

Finally, we introduced capacitated buffers in a job-shop system as in serial lines and

investigated the effect of limiting the buffer capacities to 10. It is experimentally found

that systems with finite buffer capacities attains longer transient period than that of

systems with no buffer phenomenon. Figure 5.10 presents the capacitated (in the buffer

capacity sense) versions of the designs in Figure 5.1. Apparently capacitated designs have

longer transient period than their uncapacitated counterparts.
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Notice that, it was assumed for job-shop designs that there is no buffer in the

system. Hence, there was only one type of coupling event, which is in the form of

starvation. However, when we introduce a capacitated buffer to the system we are in

effect allowing machine blockages, as well. Therefore, the degree of coupling for

capacitated systems is higher, which in turn will result with longer transient period.

This result seems to be different from that of serial lines. However, when

considered carefully, the results are consistent. In serial lines, there assumed to be only

finite capacitated intermediate storage buffers. However, in job-shops we assume that

there exists an infinite storage area plus finite capacitated buffers in front of each

machine. Adding finite buffers also adds a second dimension of coupling, i.e., blocking.

This increase in coupling causes an increase in transient period, as well.

For instance, consider design 31111 in Figure 5.10 (a). The capacitated version of

this design is also given in Figure 5.10 (c). The uncapacitated and capacitated designs

reaches steady-state at 25th  and 134th observation, respectively. The mean and variance

of the uncapacitated system is found as 22.514 and 126.79, respectively. And, for the

capacitated system they are found as 38.283 and 193.14, respectively.



Figure 5.1 Experimental results for 3-machine job-shop containing all reliable machines with a total 
processing time of 3 minutes per job.
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Figure 5.2 Experimental results for 3-machine job-shop containing all reliable machines with a total 
processing time of 3 minutes per job.
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Figure 5.3 Experimental results for 3-machine job-shop containing 90% unreliable machines with 
frequent breakdown/short repair times and a total processing time of 3 minutes per job.
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Figure 5.4 Experimental results for 3-machine job-shop containing 90% unreliable machines with 
frequent breakdown/short repair times and a total processing time of 3 minutes per job.
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Figure 5.5 Experimental results for 3-machine job-shop containing 90% unreliable machines with 
rare breakdown/long repair times and a total processing time of 3 minutes per job.
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Figure 5.6 Experimental results for 3-machine job-shop containing 90% unreliable machines with 
rare breakdown/long repair times and a total processing time of 3 minutes per job.
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Figure 5.7

Figure 5.8

Figure 5.9 Experimental results for 9-machine job-shop containing 90% unreliable machines with 
rare breakdown/long repair times and a total processing time of 9 minutes per job.

Experimental results for 9-machine job-shop containing all reliable machines with a total 
processing time of 9 minutes per job.

Experimental results for 9-machine job-shop containing 90% unreliable machines with 
frequent breakdown/short repair times and a total processing time of 9 minutes per job.
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Figure 5.10 Experimental results for 3-machine job-shop containing all reliable machines with a total 
processing time of 3 minutes per job (Finite vs. infinite buffers).
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6 CONCLUSIONS

Simulation studies are often conducted for stochastic systems that are hard to analyze

analytically. Since random number sequences are used to represent the stochastic nature

of the process, simulation studies do not give exact solutions for the systems under

consideration. Simulation results are particular realizations (or estimates) of some

performance measure(s) of interest. Careful statistical analyses of the simulation outputs

should be made to have better (true) estimates.

One of the important problems in the output analysis literature of nonterminating

simulations is the initial transient problem, which is a result of initializing the simulation

run in a state that is unrepresentative of the steady-state conditions. Although there is

much literature about this problem, we did not encounter any research explicitly studying

the behavior of the initial transient period. There are studies that investigate the length of

the transient period when different initial conditions are chosen (see, for example,

Fishman, 1972; Kelton, 1989; Kelton and Law, 1985; Madansky, 1976; Murray and

Kelton, 1988b). However, these do not totally match with our study. In this thesis, we

studied the behavior of initial transient period for nonterminating manufacturing

simulations, particularly, serial production lines and job-shop production systems. The

results for serial lines and job-shops are summarized in Tables 6.1 and 6.2, respectively.
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Table 6.1 Summary of the results for serial production lines.
Factors Transient Period

Variability of processing time Increase Increase
Line length Increase Increase

Low CV Increase Decrease (slight)
High CV Increase Increase
Low PV Increase Decrease (slight)Bottleneck

High PV Increase No change
Low CV Increase Increase (slight)
High CV Increase Decrease
Low PV Increase Increase (slight)Load level

High PV Increase No change

Low CV, PV - Varies according to
type of breakdownsExistence of unreliable

machines High CV, PV - No change
Low CV, PV Increase Increase (slight)Depth of breakdown High CV, PV Increase No change
Low CV, PV - Tp (RARE) > Tp (FREQUENT)

Reliability

Type of breakdown High CV, PV - No change
Buffer capacity Increase Increase

Table 6.2 Summary of the results for job-shop production systems.
Factors Transient Period

Variability of processing time Increase Increase
System size Increase Increase

Low CV Increase Increase
High CV Increase Increase
Low PV Increase IncreaseBottleneck

High PV Increase Increase
Low CV Increase Increase
High CV Increase Increase
Low PV Increase IncreaseLoad level

High PV Increase Increase
Low CV, PV - IncreaseExistence of unreliable

machines High CV, PV - Increase
Low CV, PV - Tp (RARE) > Tp (FREQUENT)

Reliability
Type of breakdown High CV, PV - Tp (RARE) > Tp (FREQUENT)

Capacitated buffer - Tp (CAP.) > Tp (UNCAP.)

Before continuing with a discussion of the results, the following should be noted.

As Conway (1963) suggested most people uses the same transient period in comparing

alternative system designs. Actually, this is the true behavior from statistical comparison

point of view. However, from efficiency point of view, this might cause two problems.
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An underestimation will occur if a decision about the length of the transient period is

based on a system that has a relatively short transient period (best case scenario). This

might remain significant amount of initialization bias in other designs that have

significantly longer transient periods. However, on the other hand, if this decision is

based on a system that has a relatively very long transient period (worst case scenario),

then overestimation might occur, which would result with unnecessary loss of data from

other designs. Therefore, from practical point of views, there should exist a tradeoff

between statistical reliability and practical efficiency. Practitioners should take care of

this tradeoff and should not base their decisions about the length of transient period on a

single pilot run. Rather, they should try much more designs and have an idea of the

tradeoff and than conclude about the length of the transient period.

Considering both serial line and job-shop results we can make the following

discussion:

1. As the variability of processing times is increased the length of the transient period

increases significantly both for serial line and job-shop production systems.

Additionally, variability is found to be the most significant factor among all factors

affecting the transient period. If a system that has a highly variable processing times

(i.e., CV≥1) were to be analyzed, then the analyst should take a fairly long run to

have enough observations from the steady-state distribution. The above discussion

about deciding the length of transient period based on best and worst case scenarios is

apparent in the variability case. Based on our experimental results, the increase in the

length of the transient period ranges from approximately 3000 times to approximately

1.3 times as the variability of processing times is increased from 0.3 to 2.5. Therefore,

the analyst should decide on the tradeoff instead of a single best or worst case.

2. Increasing the system size for both serial line and job-shop production systems also

increases the length of the transient period. System size is increased (decreased) by

adding (removing) stages in a serial line and by adding (removing) machines in a job-

shop. Therefore, an analyst studying a system that contains several entities should

expect a long transient period.
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3. The existence of bottleneck machines given a constant workload has a more

complicated effect on the length of the transient period. For job-shop systems,

forming bottleneck machines and further increasing the depth of the bottleneck

simply increases the length of the transient period (maximum increase is

approximately 76 times that of uniform system, i.e., compare designs 31611 and

31621 in Figure 5.2). However, for serial line systems, introducing bottleneck

increases the length of transient period only in the high CV case, where there occurs

no change in the high PV case. In the low variability case (either in the form of CV or

PV), the length of the transient period slightly decreases by increasing the depth of

bottleneck. In practice, if uniform systems were to be compared to systems containing

bottleneck in a constant workload case and if the overall variability of the system can

be assumed to be low, then the transient period for each system can be assumed same,

although a slight decrease is observed in our results. However, if the overall

variability of the system is high, then long transient periods would be expected.

4. System load level, which is measured by the mean processing time per job in serial

lines and by the arrival rate in job-shops, also has complicated effect on the length of

the transient period. For job-shop systems, increasing the load of the system also

increases the length of the transient period (maximum increase is approximately 141

times that of uniform system, i.e., compare designs 311211221 and 311811221 in

Figure 5.2). For serial line systems, increases the length of transient period only in

low variability case (either measured by CV or PV). However, the behavior changes

for the high CV and PV cases. Transient period decreases in the high CV case,

whereas there occurs no change in the high PV case.

5. The existence of unreliable machines in job-shops, which is a more realistic case than

all reliable machines, increases the length of transient period. However, for serial

lines, the length of transient period remains same as the reliable versions in the high

variability case (either measured by CV or PV). Type of breakdown affects the effect

of unreliability. For instance, for 90% availability, if frequent breakdowns/ short

repair times is allowed than then there occurs a slight decrease in the transient period.

However, if, for exactly the same system, rare breakdowns/long repair times are

allowed than there occurs an increase in the transient period. Increasing the depth of
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unreliability increases the length of transient period in the low variability case,

whereas it has no effect in the high variability case. Additionally, breakdown type has

no effect on the length of transient period in high variability case, whereas rare but

long breakdowns attains a longer transient period than frequent but short breakdowns.

Based on our experiments, the increase in the length of the transient period ranges

from 2 times to 10 times as we increase the size of the system from 3 to 9 machines.

6. For serial line systems, increasing the buffer capacities also increases the length of

transient period (e.g., it can be as much as 750 times, compare designs 31111 and

31114 in Figure 4.1). Similar conclusion can be made for job-shops: introducing a

finite capacity buffer increases the transient period.

A very general recommendation about comparing the transient periods of two or

more alternative system designs can be given as follows: The system having more

variable output sequences will apparently have longer transient periods. Then one should

first investigate the change in the variability of the output sequences. If any of the factors

are suspected to introduce additional variability to a system, then a longer transient period

should be expected for that design. For example, including unreliable machines to a

system will introduce additional variability to the overall process. However, the degree of

this additional variability is determined by the depth and type of unreliability. Hence, in

comparing alternative system designs one should truncate exactly the same amount of

data from each design, which should be determined from the most variable design.

If the variability of alternative designs are very close to each other but one of

them has much more entities (i.e., machines, complicated material handling, etc.) then the

analyst should base his decision about the length of the transient period on this particular

design. The degree of coupling in manufacturing systems is an important factor that

affects the transient period.

For extreme cases, intelligent initialization techniques might help reducing the

length of the transient period, which, if works, apparently will save computer run time.

It is also found that, in most of the cases, both cumulative averages plots and

MSER heuristic results comply with each other, with cumulative averages usually

overestimating the transient period. Since MSER heuristic is an objective criterion and is
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very simple and computationally efficient, we recommend using this heuristic for

determining the length of transient period. However, care must be given to the remove

any outliers from the sequence, which otherwise would lead the analyst to wrong

conclusions. Moreover, if there is enough time to use both techniques simultaneously,

then it would be preferable.

For future research, we identify the following topics:

•  Other systems such as distribution systems, inventory, network, and military

applications can be considered within the provided framework.

•  As an extension of our study and studies that might be done as stated in the above

item, a research can be conducted to develop a formula for determining the length

of the transient period which is a function of system parameters.
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APPENDIX A. RANDOM NUMBER STREAMS

Table A.1 Usage purpose of different random number streams and their reference points in serial production line experiments.

Stream Number Skip First Usage Purpose
Streams 1, 11, 21, 31, 41

"      2, 12, 22, 32, 42
·
·
·

"    10, 20, 30, 40, 50

1.000.000, 11.000.000, 21.000.000, 31.000.000, 41.000.000
2.000.000, 12.000.000, 22.000.000, 32.000.000, 42.000.000

·
·
·

10.000.000, 20.000.000, 30.000.000, 40.000.000, 50.000.000

Operation times on 1st machine for run 1, 2, 3, 4, 5.
"           "     "  2nd      "        "     "   1, 2, 3, 4, 5.

·
·
·

"           "     "  10th     "        "     "  1, 2, 3, 4, 5.
Streams 51, 61, 71, 81, 91

"      52, 62, 72, 82, 92
·
·
·

"    60, 70, 80, 90, 100

51.000.000, 61.000.000, 71.000.000, 81.000.000, 91.000.000
52.000.000, 62.000.000, 72.000.000, 82.000.000, 92.000.000

·
·
·

60.000.000, 70.000.000, 80.000.000, 90.000.000, 100.000.000

Mean breakdown time of 1st machine for run 1, 2, 3, 4, 5.
"           "            "    "  2nd      "        "     "   1, 2, 3, 4, 5.

·
·
·

"           "            "    "  10th      "        "     "   1, 2, 3, 4, 5.
Streams 101, 111, 121, 131, 141

"      102, 112, 122, 132, 142
·
·
·

"    110, 120, 130, 140, 150

101.000.000, 111.000.000, 121.000.000, 131.000.000, 141.000.000
102.000.000, 112.000.000, 122.000.000, 132.000.000, 142.000.000

·
·
·

110.000.000, 120.000.000, 130.000.000, 140.000.000, 150.000.000

Mean repair time  of 1st machine for run 1, 2, 3, 4, 5.
"        "       "     "  2nd      "        "     "   1, 2, 3, 4, 5.

·
·
·

"        "       "     "  10th      "        "     "   1, 2, 3, 4, 5.
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Table A.2 Usage purpose of different random number streams and their reference points in job-shop experiments.

Stream Number Skip First Usage Purpose
Streams 1, 11, 21, 31, 41

"      2, 12, 22, 32, 42
·
·
·

"    10, 20, 30, 40, 50

1.000.000, 11.000.000, 21.000.000, 31.000.000, 41.000.000
2.000.000, 12.000.000, 22.000.000, 32.000.000, 42.000.000

·
·
·

10.000.000, 20.000.000, 30.000.000, 40.000.000, 50.000.000

Operation times on 1st machine for run 1, 2, 3, 4, 5.
"           "     "  2nd      "        "     "   1, 2, 3, 4, 5.

·
·
·

"           "     "  10th     "        "     "  1, 2, 3, 4, 5.
Streams 51, 61, 71, 81, 91

"      52, 62, 72, 82, 92
·
·
·

"    60, 70, 80, 90, 100

51.000.000, 61.000.000, 71.000.000, 81.000.000, 91.000.000
52.000.000, 62.000.000, 72.000.000, 82.000.000, 92.000.000

·
·
·

60.000.000, 70.000.000, 80.000.000, 90.000.000, 100.000.000

Mean breakdown time of 1st machine for run 1, 2, 3, 4, 5.
"           "            "    "  2nd      "        "     "   1, 2, 3, 4, 5.

·
·
·

"           "            "    "  10th      "        "     "   1, 2, 3, 4, 5.
Streams 101, 111, 121, 131, 141

"      102, 112, 122, 132, 142
·
·
·

"    110, 120, 130, 140, 150

101.000.000, 111.000.000, 121.000.000, 131.000.000, 141.000.000
102.000.000, 112.000.000, 122.000.000, 132.000.000, 142.000.000

·
·
·

110.000.000, 120.000.000, 130.000.000, 140.000.000, 150.000.000

Mean repair time  of 1st machine for run 1, 2, 3, 4, 5.
"        "       "     "  2nd      "        "     "   1, 2, 3, 4, 5.

·
·
·

"        "       "     "  10th      "        "     "   1, 2, 3, 4, 5.
Streams 151, 152, 153, 154, 155 151.000.000, 152.000.000, 153.000.000, 154.000.000, 155.000.000 Choosing the operation sequence of  parts for run 1, 2, 3, 4, 5.
Streams 156, 157, 158, 159, 160 156.000.000, 157.000.000, 158.000.000, 159.000.000, 160.000.000 Interarrival time of parts to the system for run 1, 2, 3, 4, 5.
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APPENDIX B. BREAKDOWN PARAMETERS
Parameters;

μU = mean uptime of the machine

μD = mean downtime of the machine

αU = shape parameter of the uptime distribution

αD = shape parameter of the downtime distribution

βU = scale parameter of the uptime distribution

βD = scale parameter of the downtime distribution

e = efficieny of the machine

Assumptions due to Law and Kelton 59:

•  Uptime distribution is gamma

•  Downtime distribution is gamma

Given:

•  Shape parameter for uptime distribution is αU = 0.7

•  Shape parameter for downtime distribution is αD = 1.4

•  Mean downtime, μD

•  Efficiency, e.

Efficiency is defined as:

DU

Ue
µµ

µ
+

= (B.1)

Then the scale parameters of uptime and downtime distributions can be obtained

by using the following relation: “The mean of a gamma distribution is simply obtained by

multiplying its shape and scale parameters.”

For downtime distribution;

μD = αD·βD (B.2)

Rewriting equation (XXX.2) for βD and substituting αD = 1.4 we obtain the scale

parameter for downtime distribution as;

4.1
D

D
µβ = (B.3)
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For uptime distribution;

μU = αU·βU (B.4)

Solving equation (A.1) for μU we get,

e
e D

U −
=

1
µµ (B.5)

Substituting μU and αU = 0.7 in (XXX.5) and rewriting (XXX.5) for βU, we obtain

the scale parameter for uptime distribution as;

)1(7.0 e
e D

U −
=

µβ (B.6)

For instance, let e =90 % and μD = 1 hours. Then,

714.0
4.1

1 ==Dβ

857.12
)9.01(7.0

)1)(9.0( =
−

=Uβ

which states that the uptime distribution of machines should be modeled with gamma

(0.7, 12.857) and that of downtime distribution with gamma (1.4, 0.714). Table B.1 lists

these calculations for different efficiency (availability) rates and breakdown types.

Table B.1 Parameter selection for downtime and uptime distributions.
Parameters of gamma distributionAvailability MTBFa MRTb TSTc Breakdown

Type αU βU αD βD
9 1 10 FBSRd 0.7 12.857 1.4 0.714

90%
90 10 100 RBLRe 0.7 128.571 1.4 7.143

8 2 10 FBSR 0.7 11.429 1.4 1.429
80%

80 20 100 RBLR 0.7 114.286 1.4 14.286

5 5 10 FBSR 0.7 7.143 1.4 3.571
50%

50 50 100 RBLR 0.7 71.429 1.4 35.714
a MTBF: Mean Time Between Failures (in hours)
b MRT: Mean Repair Time (in hours)
c TST: Total System Time (in hours)
d FBSR: Frequent breakdown short repair time
e RBLR: Rare breakdown long repair time
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APPENDIX C. EXPERIMENTAL FACTORS

Table C.1 Designs for serial line experiments
Design Line Length Proc. Time Dist. Proc. Var. Workload Buffer

1 31111 3 LogNormal 0.3 (CV) uniform(1) 0
2 31112 3 " " " 10
3 31114 3 " " " 100
4 31121 3 " " bottleneck(1,10%) 0
5 31122 3 " " " 10
6 31124 3 " " " 100
7 31131 3 " " bottleneck(1,20%) 0
8 31132 3 " " " 10
9 31134 3 " " " 100

10 31141 3 " " uniform(0.9) 0
11 31142 3 " " " 10
12 31144 3 " " " 100
13 31151 3 " " bottleneck(0.9,10%) 0
14 31152 3 " " " 10
15 31154 3 " " " 100
16 31161 3 " " bottleneck(0.9,20%) 0
17 31162 3 " " " 10
18 31164 3 " " " 100
19 31171 3 " " uniform(0.5) 0
20 31172 3 " " " 10
21 31174 3 " " " 100
22 31181 3 " " bottleneck(0.5,10%) 0
23 31182 3 " " " 10
24 31184 3 " " " 100
25 31191 3 " " bottleneck(0.5,20%) 0
26 31192 3 " " " 10
27 31194 3 " " " 100
28 311a1 3 " " bottleneck(1,99%) 0
29 311a2 3 " " " 10
30 311a4 3 " " " 100
31 311b1 3 " " bottleneck(0.9,99%) 0
32 311b2 3 " " " 10
33 311b4 3 " " " 100
34 311c1 3 " " bottleneck(0.5,99%) 0
35 311c2 3 " " " 10
36 311c4 3 " " " 100
37 31211 3 " 2,5 (CV) uniform(1) 0
38 31212 3 " " " 10
39 31214 3 " " " 100
40 31221 3 " " bottleneck(1,10%) 0
41 31222 3 " " " 10
42 31224 3 " " " 100
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Table C.1 Designs for serial line experiments (continued)
Design Line Length Proc. Time Dist. Proc. Var. Workload Buffer

43 31231 3 LogNormal 2,5 (CV) bottleneck(1,20%) 0
44 31232 3 " " " 10
45 31234 3 " " " 100
46 31241 3 " " uniform(0.9) 0
47 31242 3 " " " 10
48 31244 3 " " " 100
49 31251 3 " " bottleneck(0.9,10%) 0
50 31252 3 " " " 10
51 31254 3 " " " 100
52 31261 3 " " bottleneck(0.9,20%) 0
53 31262 3 " " " 10
54 31264 3 " " " 100
55 31271 3 " " uniform(0.5) 0
56 31272 3 " " " 10
57 31274 3 " " " 100
58 31281 3 " " bottleneck(0.5,10%) 0
59 31282 3 " " " 10
60 31284 3 " " " 100
61 31291 3 " " bottleneck(0.5,20%) 0
62 31292 3 " " " 10
63 31294 3 " " " 100
64 312a1 3 " " bottleneck(1,99%) 0
65 312a2 3 " " " 10
66 312a4 3 " " " 100
67 312b1 3 " " bottleneck(0.9,99%) 0
68 312b2 3 " " " 10
69 312b4 3 " " " 100
70 312c1 3 " " bottleneck(0.5,99%) 0
71 312c2 3 " " " 10
72 312c4 3 " " " 100
73 31611 3 " 0.3 (PV) uniform(1) 0
74 31612 3 " " " 10
75 31614 3 " " " 100
76 31621 3 " " bottleneck(1,10%) 0
77 31622 3 " " " 10
78 31624 3 " " " 100
79 31631 3 " " bottleneck(1,20%) 0
80 31632 3 " " " 10
81 31634 3 " " " 100
82 31641 3 " " uniform(0.9) 0
83 31642 3 " " " 10
84 31644 3 " " " 100
85 31651 3 " " bottleneck(0.9,10%) 0
86 31652 3 " " " 10
87 31654 3 " " " 100
88 31661 3 " " bottleneck(0.9,20%) 0
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Table C.1 Designs for serial line experiments (continued)
Design Line Length Proc. Time Dist. Proc. Var. Workload Buffer

89 31662 3 Lognormal 0.3 (PV) bottleneck(0.9,20%) 10
90 31664 3 " " " 100
91 31671 3 " " uniform(0.5) 0
92 31672 3 " " " 10
93 31674 3 " " " 100
94 31681 3 " " bottleneck(0.5,10%) 0
95 31682 3 " " " 10
96 31684 3 " " " 100
97 31691 3 " " bottleneck(0.5,20%) 0
98 31692 3 " " " 10
99 31694 3 " " " 100

100 316a1 3 " " bottleneck(1,99%) 0
101 316a2 3 " " " 10
102 316a4 3 " " " 100
103 316b1 3 " " bottleneck(0.9,99%) 0
104 316b2 3 " " " 10
105 316b4 3 " " " 100
106 316c1 3 " " bottleneck(0.5,99%) 0
107 316c2 3 " " " 10
108 316c4 3 " " " 100
109 31711 3 " 2,5 (PV) uniform(1) 0
110 31712 3 " " " 10
111 31714 3 " " " 100
112 31721 3 " " bottleneck(1,10%) 0
113 31722 3 " " " 10
114 31724 3 " " " 100
115 31731 3 " " bottleneck(1,20%) 0
116 31732 3 " " " 10
117 31734 3 " " " 100
118 31741 3 " " uniform(0.9) 0
119 31742 3 " " " 10
120 31744 3 " " " 100
121 31751 3 " " bottleneck(0.9,10%) 0
122 31752 3 " " " 10
123 31754 3 " " " 100
124 31761 3 " " bottleneck(0.9,20%) 0
125 31762 3 " " " 10
126 31764 3 " " " 100
127 31771 3 " " uniform(0.5) 0
128 31772 3 " " " 10
129 31774 3 " " " 100
130 31781 3 " " bottleneck(0.5,10%) 0
131 31782 3 " " " 10
132 31784 3 " " " 100
133 31791 3 " " bottleneck(0.5,20%) 0
134 31792 3 " " " 10
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Table C.1 Designs for serial line experiments (continued)
Design Line Length Proc. Time Dist. Proc. Var. Workload Buffer

135 31794 3 Lognormal 2.5 (PV) bottleneck(0.5,20%) 100
136 317a1 3 " " bottleneck(1,99%) 0
137 317a2 3 " " " 10
138 317a4 3 " " " 100
139 317b1 3 " " bottleneck(0.9,99%) 0
140 317b2 3 " " " 10
141 317b4 3 " " " 100
142 317c1 3 " " bottleneck(0.5,99%) 0
143 317c2 3 " " " 10
144 317c4 3 " " " 100
145 91111 9 " 0.3 (CV) uniform(1) 0
146 91112 9 " " " 10
147 91114 9 " " " 100
148 91121 9 " " bottleneck(1,10%) 0
149 91122 9 " " " 10
150 91124 9 " " " 100
151 91131 9 " " bottleneck(1,20%) 0
152 91132 9 " " " 10
153 91134 9 " " " 100
154 911a1 9 " " bottleneck(1,99%) 0
155 911a2 9 " " " 10
156 911a4 9 " " " 100
157 91211 9 " 2,5 (CV) uniform(1) 0
158 91212 9 " " " 10
159 91214 9 " " " 100
160 91221 9 " " bottleneck(1,10%) 0
161 91222 9 " " " 10
162 91224 9 " " " 100
163 91231 9 " " bottleneck(1,20%) 0
164 91232 9 " " " 10
165 91234 9 " " " 100
166 912a1 9 " " bottleneck(1,99%) 0
167 912a2 9 " " " 10
168 912a4 9 " " " 100
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Table C.2 Designs for job-shop experiments
Design Line Length Proc. Time Dist. Proc. Var. Workload

1 31111 3 LogNormal 0.3 (CV) uniform(80%)

2 31121 3 " " bottleneck(80%,10%)
3 31171 3 " " uniform(50%)

4 31181 3 " " bottleneck(50%,10%)
5 311x1 3 " " bottleneck(80%,5%)
6 311y1 3 " " bottleneck(50%,5%)
7 31211 3 " 1 (CV) uniform(80%)

8 31221 3 " " bottleneck(80%,10%)
9 31271 3 " " uniform(50%)

10 31281 3 " " bottleneck(50%,10%)
11 312x1 3 " " bottleneck(80%,5%)
12 312y1 3 " " bottleneck(50%,5%)
13 31611 3 " 0.3 (PV) uniform(80%)

14 31621 3 " " bottleneck(80%,10%)
15 31671 3 " " uniform(50%)

16 31681 3 " " bottleneck(50%,10%)
17 316x1 3 " " bottleneck(80%,5%)
18 316y1 3 " " bottleneck(50%,5%)
19 31711 3 " 1 (PV) uniform(80%)

20 31721 3 " " bottleneck(80%,10%)
21 31771 3 " " uniform(50%)

22 31781 3 " " bottleneck(50%,10%)
23 317x1 3 " " bottleneck(80%,5%)
24 317y1 3 " " bottleneck(50%,5%)
25 91111 9 " 0.3 (CV) uniform(80%)

26 91171 9 " " uniform(50%)

27 91211 9 " 1 (CV) uniform(80%)

28 91271 9 " " uniform(50%)

Unreliable design names for both serial line and job-shop systems are given in the following
manner:

We include 4 additional digits to the reliable design names to identify the unreliable versions. For

example, the unreliable version of design 31111, which is 90% available with frequent

breakdown/short repair times is named as 311111221. The additional four digits contain the

following information.

Table C.3 Unreliable design names for both serial and job-shop experiments.

Design Efficiency Uptime dist. Downtime Dist. Breakdown Type
1221 90% Gamma Gamma FBSRa

1222 90% " " RBLRb

1223 80% " " FBSR
1224 80% " " RBLR
1227 50% " " FBSR
1228 50% " " RBLR

a FBSR: Frequent Breakdown/Short Repair Time
b RBLR: Rare Breakdown/Long Repair Time
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APPENDIX D. SUMMARY STATISTICS

Table D.1 Summary statistics for serial line experiments
Utilization HourlyDesign

M/C #1 M/C #2 M/C #3 Average Throughput WIP

Interdeparture
Time (min)

Time in System
(min.)

31111 0,804 0,804 0,802 0,803 16,9431 2,57 3,54 10,31

31112 0,988 0,988 0,987 0,988 20,8376 13,18 2,88 36,56

31114 1,000 0,999 0,996 0,998 21,0365 59,43 2,85 167,63

31121 0,667 0,926 0,666 0,753 15,6756 2,54 3,83 11,36

31122 0,720 1,000 0,719 0,813 16,9209 12,95 3,55 46,06

31124 0,722 1,000 0,719 0,814 16,9209 102,56 3,55 363,09

31131 0,506 0,979 0,506 0,664 13,2483 2,52 4,53 13,55

31132 0,517 1,000 0,516 0,678 13,5333 12,68 4,33 57,61

31134 0,518 1,000 0,516 0,678 13,5333 102,51 4,33 405,09

31141 0,820 0,820 0,819 0,820 19,2757 2,58 3,11 9,09

31142 0,991 0,990 0,989 0,990 23,2814 13,11 2,58 32,52

31144 1,000 0,999 0,997 0,999 23,4144 54,59 2,56 138,26

31151 0,695 0,932 0,694 0,774 17,9949 2,54 3,33 9,90

31152 0,746 1,000 0,745 0,830 19,3166 12,96 3,11 40,35

31154 0,748 1,000 0,745 0,831 19,3166 102,51 3,11 317,89

31161 0,544 0,980 0,543 0,689 15,5116 2,52 3,87 11,57

31162 0,555 1,000 0,554 0,703 15,8320 12,68 3,79 49,25

31164 0,557 1,000 0,554 0,704 15,8320 102,48 3,79 388,92

31171 0,893 0,893 0,892 0,893 32,1090 2,58 1,87 5,52

31172 0,997 0,997 0,996 0,997 35,8640 12,74 1,67 20,85

31174 1,000 0,999 0,998 0,999 35,9282 30,94 1,67 50,76

31181 0,817 0,957 0,817 0,864 30,9820 2,5384 1,9364 5,7744

31182 0,855 1,000 0,854 0,903 32,3849 12,97 1,8526 24,0623

31184 0,857 1,000 0,854 0,904 32,3849 102,04 1,85 188,72

31191 0,719 0,986 0,719 0,808 28,7112 2,52 2,09 6,26

31192 0,730 1,000 0,729 0,820 29,1286 12,68 2,06 26,76

31194 0,732 1,000 0,729 0,820 29,1286 102,25 2,06 210,87

311a1 0,034 1,000 0,034 0,356 2,0396 2,50 29,42 88,24

311a2 0,034 1,000 0,034 0,356 2,0396 12,50 29,42 382,31

311a4 0,034 1,000 0,034 0,356 2,0396 102,49 29,42 3024,54

311b1 0,050 1,000 0,050 0,367 2,9648 2,50 20,24 62,54

311b2 0,050 1,000 0,050 0,367 2,9648 12,50 20,24 262,99

311b4 0,050 1,000 0,050 0,367 2,9648 102,49 20,24 2080,58

311c1 0,205 1,000 0,205 0,470 12,2232 2,50 4,91 14,72

311c2 0,205 1,000 0,205 0,470 12,2233 12,50 4,91 63,79

311c4 0,205 1,000 0,205 0,470 12,2233 102,46 4,91 504,49

31211 0,358 0,386 0,347 0,364 1,0003 2,36 163,33 437,31

31212 0,456 0,491 0,442 0,463 1,0005 12,88 128,25 1620,03

31214 0,647 0,685 0,615 0,649 1,0010 104,32 92,16 9414,87

31221 0,086 0,868 0,084 0,346 1,0002 2,37 353,01 1035,06

31222 0,094 0,946 0,092 0,377 1,0002 12,82 324,35 4203,28

31224 0,010 0,997 0,097 0,368 1,0002 102,28 308,1 31656,79

31231 0,009 0,988 0,009 0,335 1,0001 2,39 1891,55 5662,97

31232 0,009 0,999 0,009 0,339 1,0001 12,77 1873,40 24342,96

31234 0,009 1,000 0,009 0,339 1,0001 102,70 1870,61 192468,00

31241 0,370 0,386 0,347 0,368 1,0004 2,36 147,79 395,69

31242 0,456 0,491 0,442 0,463 1,0006 12,88 116,04 1465,86

31244 0,715 0,746 0,694 0,718 1,4247 104,21 42,02 4299,60
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Table D.1 Summary statistics for serial line experiments (continued)
Utilization Hourly

Design
M/C #1 M/C #2 M/C #3 Average Throughput WIP

Interdeparture
Time (min)

Time in System
(min.)

31251 0,123 0,823 0,121 0,356 1,0003 2,38 139,89 406,94

31252 0,141 0,938 0,138 0,406 1,0008 12,85 122,89 1591,97

31254 0,150 0,998 0,147 0,432 1,0015 102,35 115,58 11870,88

31261 0,020 0,976 0,020 0,339 1,0002 2,39 529,23 1581,15

31262 0,020 0,997 0,020 0,346 1,0002 12,79 518,13 6731,74

31264 0,020 1,000 0,020 0,347 1,0002 102,72 516,89 53167,00

31271 0,490 0,491 0,485 0,489 8,1543 2,39 7,36 20,19

31272 0,782 0,783 0,773 0,779 13,0001 13,29 4,61 59,93

31274 0,962 0,961 0,948 0,957 15,9501 100,05 3,76 372,42

31281 0,344 0,655 0,394 0,464 6,9738 2,41 8,6 25,02

31282 0,497 0,946 0,570 0,671 10,0771 13,96 5,95 82,66

31284 0,527 1,000 0,520 0,682 10,6473 102,74 5,63 576,31

31291 0,221 0,839 0,219 0,426 5,3779 2,43 11,15 32,6

31292 0,263 0,997 0,261 0,507 6,3888 12,95 9,38 121,88

31294 0,264 1,000 0,262 0,509 6,4099 102,86 9,36 961,39

312a1 0,000 1,000 0,000 0,333 1,0000 2,75 1,02E+11 3,05E+11

312a2 0,000 1,000 0,000 0,333 1,0000 12,88 1,02E+11 1,32E+12

312a4 0,000 1,000 0,000 0,333 1,0000 102,88 1,02E+11 1,05E+13

312b1 0,000 1,000 0,000 0,333 1,0000 2,69 2,86E+09 8,58E+09

312b2 0,000 1,000 0,000 0,333 1,0000 12,85 2,86E+09 3,72E+10

312b4 0,000 1,000 0,000 0,333 1,0000 102,85 2,86E+09 2,95E+11

312c1 0,000 1,000 0,000 0,333 1,0001 2,55 4,48E+03 1,34E+04

312c2 0,000 1,000 0,000 0,333 1,0001 12,87 4,48E+03 5,83E+04

312c4 0,000 1,000 0,000 0,333 1,0001 102,87 4,48E+03 4,61E+05

31611 0,804 0,804 0,802 0,803 16,9431 2,57 3,54 10,31

31612 0,988 0,988 0,987 0,988 20,8376 13,18 2,88 36,56

31614 1,000 0,999 0,996 0,998 21,0365 59,43 2,85 167,63

31621 0,684 0,923 0,683 0,763 15,9394 2,53 3,76 11,16

31622 0,741 1,000 0,740 0,827 17,2627 12,96 3,48 45,15

31624 0,743 1,000 0,740 0,828 18,4529 94,16 3,29 315,61

31631 0,538 0,981 0,537 0,685 13,8631 2,51 4,33 12,94

31632 0,549 1,000 0,548 0,699 14,1341 12,65 4,24 55,15

31634 0,551 1,000 0,548 0,700 14,1341 102,46 4,24 435,63

31641 0,804 0,804 0,802 0,803 18,7243 2,57 3,20 9,33

31642 0,988 0,988 0,987 0,988 23,0297 13,18 2,61 33,08

31644 1,000 0,999 0,996 0,998 23,2492 59,43 2,58 151,67

31651 0,698 0,914 0,697 0,770 17,7948 2,54 3,37 9,98

31652 0,764 1,000 0,762 0,842 19,4636 13,01 3,08 40,04

31654 0,766 1,000 0,762 0,843 19,4636 102,51 3,08 315,37

31661 0,567 0,974 0,566 0,702 15,8299 2,52 3,79 11,32

31662 0,583 1,000 0,582 0,722 16,2586 12,69 3,69 47,95

31664 0,585 1,000 0,582 0,722 16,2586 102,47 3,69 378,61

31671 0,804 0,804 0,802 0,803 27,9338 2,57 2,15 6,25

31672 0,988 0,988 0,987 0,988 34,3552 13,18 1,75 22,18

31674 1,000 0,999 0,996 0,998 34,6828 59,43 1,73 101,67

31681 0,750 0,871 0,748 0,790 27,3905 2,55 2,19 6,44

31682 0,861 1,000 0,859 0,907 31,4545 13,21 1,91 24,77

31684 0,863 1,000 0,859 0,907 31,4545 102,26 1,91 194,28

31691 0,684 0,923 0,683 0,763 26,2781 2,53 2,28 6,77

31692 0,741 1,000 0,740 0,827 28,4615 12,96 2,11 27,39

31694 0,743 1,000 0,740 0,828 28,4615 102,52 2,11 215,79

316a1 0,051 1,000 0,051 0,367 2,9116 2,5 20,61 61,82

316a2 0,051 1,000 0,051 0,367 2,9116 12,5 20,61 267,84
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Table D.1 Summary statistics for serial line experiments (continued)
Utilization Hourly

Design
M/C #1 M/C #2 M/C #3 Average Throughput WIP

Interdeparture
Time (min)

Time in System
(min.)

316a4 0,051 1,000 0,051 0,367 2,9116 102,49 20,61 2118,85

316b1 0,069 1,000 0,069 0,379 3,9223 2,5 15,3 45,89

316b2 0,069 1,000 0,069 0,379 3,9223 12,5 15,29 198,82

316b4 0,069 1,000 0,069 0,379 3,9223 102,49 15,29 1572,78

316c1 0,226 1,000 0,226 0,484 12,9178 2,5 4,64 13,93

316c2 0,227 1,000 0,226 0,484 12,9179 12,5 4,64 60,36

316c4 0,227 1,000 0,226 0,484 12,9179 102,46 4,64 477,35

31711 0,358 0,386 0,347 0,364 1,0003 2,36 163,33 437,31

31712 0,456 0,491 0,442 0,463 1,0005 12,88 128,25 1620,03

31714 0,637 0,685 0,615 0,646 1,0010 104,32 92,16 9414,87

31721 0,317 0,462 0,308 0,362 1,0003 2,36 166,62 452,76

31722 0,4 0,582 0,388 0,457 1,0004 12,86 132,09 1677,43

31724 0,549 0,796 0,531 0,625 1,0010 103,01 96,73 9878,83

31731 0,275 0,540 0,267 0,361 1,0002 2,37 173,98 479,89

31732 0,342 0,670 0,331 0,448 1,0004 12,82 140,12 1787,73

31734 0,450 0,878 0,435 0,588 1,0007 102,65 107,08 10928,00

31741 0,358 0,387 0,347 0,364 1,0004 2,36 147,79 395,69

31742 0,456 0,491 0,442 0,463 1,0006 12,88 116,04 1465,86

31744 0,637 0,685 0,615 0,646 1,0022 104,32 83,39 8518,92

31751 0,322 0,454 0,312 0,363 1,0003 2,36 150,31 407,82

31752 0,407 0,573 0,394 0,458 1,0005 12,86 119,01 1510,53

31754 0,560 0,787 0,541 0,629 1,0022 103,14 86,79 8863,80

31761 0,284 0,524 0,275 0,361 1,0003 2,37 155,77 428,40

31762 0,354 0,653 0,343 0,450 1,0004 12,83 125,01 1593,55

31764 0,497 0,864 0,454 0,605 1,0012 102,88 94,60 9661,74

31771 0,358 0,386 0,347 0,364 1,0006 2,36 99,07 265,24

31772 0,456 0,491 0,442 0,463 1,0022 12,88 77,79 982,60

31774 0,637 0,685 0,615 0,646 1,0961 104,32 55,89 5710,41

31781 0,338 0,423 0,328 0,363 1,0006 2,36 99,77 269,10

31782 0,429 0,537 0,416 0,461 1,0021 12,87 78,64 996,00

31784 0,643 0,744 0,576 0,654 1,0866 103,92 56,81 5810,94

31791 0,317 0,462 0,308 0,362 1,0006 2,36 101,06 274,61

31792 0,400 0,582 0,388 0,457 1,0020 12,86 80,12 1017,42

31794 0,549 0,796 0,531 0,625 1,0655 103,01 58,67 5991,81

317a1 0,045 0,939 0,043 0,342 1,0000 2,43 485,86 1441,81

317a2 0,047 0,984 0,046 0,359 1,0000 12,62 463,63 6016,95

317a4 0,048 0,999 0,046 0,364 1,0000 102,56 456,65 46944,00

317b1 0,063 0,909 0,062 0,345 1,0001 2,42 372,28 1099,01

317b2 0,068 0,971 0,066 0,368 1,0001 12,66 348,70 4522,67

317b4 0,070 0,998 0,068 0,379 1,0001 102,53 339,32 34876,00

317c1 0,158 0,750 0,153 0,354 1,0003 2,39 137,03 393,09

317c2 0,183 0,868 0,179 0,410 1,0005 12,74 118,37 1527,01

317c4 0,208 0,980 0,201 0,463 1,0009 102,33 105,01 10766,00

311111221 0,595 0,595 0,594 0,595 12,5504 2,56 4,78 13,58

311121221 0,764 0,764 0,763 0,764 16,1300 13,67 3,72 48,89

311141221 0,865 0,863 0,860 0,863 18,1700 102,11 3,30 332,57

311211221 0,495 0,687 0,494 0,559 11,6313 2,53 5,16 14,89

311221221 0,585 0,813 0,584 0,661 13,7486 13,03 4,36 56,21

311241221 0,653 0,905 0,651 0,736 15,3106 101,59 3,92 397,02

311311221 0,378 0,731 0,377 0,495 9,8861 2,50 6,06 17,65

311321221 0,430 0,832 0,429 0,564 11,2486 12,72 5,33 68,95

311341221 0,469 0,905 0,467 0,614 12,2470 101,89 4,90 499,91
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Table D.1 Summary statistics for serial line experiments (continued)
Utilization Hourly

Design
M/C #1 M/C #2 M/C #3 Average Throughput WIP

Interdeparture
Time (min)

Time in System
(min.)

311411221 0,607 0,607 0,606 0,607 14,2788 2,57 4,20 11,96

311421221 0,764 0,764 0,763 0,764 17,9171 13,55 3,34 43,48

311441221 0,863 0,860 0,858 0,860 20,1797 98,94 2,97 289,71

311511221 0,512 0,689 0,511 0,571 13,2315 2,53 4,53 13,06

311521221 0,599 0,806 0,598 0,668 15,5002 13,07 3,87 50,11

311541221 0,674 0,905 0,671 0,750 17,4047 101,71 3,45 349,52

311611221 0,404 0,728 0,404 0,512 11,5355 2,50 5,20 15,12

311621221 0,457 0,825 0,456 0,579 13,0104 12,73 4,61 59,43

311641221 0,504 0,905 0,502 0,637 14,3500 101,64 4,19 425,98

311711221 0,654 0,654 0,653 0,654 23,5022 2,58 2,55 7,30

311721221 0,755 0,755 0,754 0,755 27,1359 13,51 2,21 28,43

311741221 0,847 0,846 0,843 0,845 30,3062 101,31 1,98 197,72

311811221 0,600 0,702 0,599 0,634 22,7123 2,53 2,64 7,61

311821221 0,663 0,776 0,663 0,701 25,1200 13,07 2,39 30,64

311841221 0,757 0,883 0,754 0,798 28,5771 100,62 2,09 209,49

311911221 0,529 0,725 0,529 0,594 21,0874 2,51 2,84 8,21

311921221 0,572 0,784 0,572 0,643 22,8327 12,76 2,62 33,65

311941221 0,654 0,894 0,651 0,733 25,9979 100,87 2,30 231,54

311a11221 0,028 0,827 0,028 0,294 1,6863 2,43 35,58 105,35

311a21221 0,031 0,901 0,031 0,321 1,8373 12,42 32,66 424,59

311a41221 0,031 0,901 0,031 0,321 1,8384 102,42 32,64 3355,92

311b11221 0,040 0,806 0,040 0,295 2,3911 2,44 25,09 74,02

311b21221 0,045 0,900 0,045 0,330 2,6686 12,43 22,48 292,25

311b41221 0,045 0,903 0,045 0,331 2,6762 102,43 22,42 2305,41

311c11221 0,154 0,753 0,154 0,354 9,2183 2,48 6,52 19,04

311c21221 0,173 0,845 0,173 0,397 10,3355 12,47 5,81 75,28

311c41221 0,186 0,903 0,185 0,425 11,0431 102,31 5,43 557,83

312111221 0,327 0,316 0,315 0,319 1,0002 2,32 185,18 496,26

312121221 0,420 0,406 0,404 0,410 1,0003 12,83 143,14 1809,22

312141221 0,593 0,572 0,569 0,578 1,0006 104,03 102,28 10448,1

312211221 0,086 0,757 0,084 0,309 1,0001 2,33 395,92 1159,88

312221221 0,096 0,841 0,093 0,343 1,0002 12,80 360,66 4674,08

312241221 0,102 0,896 0,100 0,366 1,0002 102,25 342,18 35166

312311221 0,010 0,885 0,010 0,302 1,0001 2,34 2105,16 6301,17

312321221 0,010 0,898 0,010 0,306 1,0001 12,71 2081,60 27047,96

312341221 0,010 0,900 0,010 0,307 1,0001 102,66 2078,51 213833,00

312411221 0,329 0,324 0,322 0,325 1,0004 2,33 92,40 248,13

312421221 0,450 0,444 0,440 0,445 1,0045 12,89 66,84 847,20

312441221 0,651 0,640 0,635 0,642 1,2825 104,23 46,77 4784,65

312511221 0,116 0,713 0,114 0,314 1,0002 2,34 171,79 513,49

312521221 0,136 0,834 0,133 0,368 1,0003 13,41 147,24 2050,32

312541221 0,146 0,898 0,144 0,396 1,0007 11,97 132,88 14767,49

312611221 0,020 0,870 0,020 0,303 1,0001 2,35 591,09 1764,65

312621221 0,021 0,897 0,021 0,313 1,0002 12,76 575,78 7481,11

312641221 0,021 0,900 0,021 0,314 1,0002 102,62 574,12 59064,62

312711221 0,376 0,377 0,373 0,375 6,2485 2,38 9,6 26,21

312721221 0,633 0,635 0,627 0,632 10,5342 13,23 5,69 73,69

312741221 0,844 0,844 0,833 0,840 13,9192 102,69 4,31 436,66

312811221 0,280 0,533 0,278 0,364 5,6514 2,39 10,61 29,83

312821221 0,421 0,800 0,417 0,546 8,5561 13,04 7,02 90,81

312841221 0,476 0,902 0,470 0,616 9,6247 102,84 6,22 637,94

312911221 0,176 0,668 0,175 0,340 4,2826 2,41 13,99 40,29



139

Table D.1 Summary statistics for serial line experiments (continued)
Utilization Hourly

Design
M/C #1 M/C #2 M/C #3 Average Throughput WIP

Interdeparture
Time (min)

Time in System
(min.)

312921221 0,228 0,870 0,226 0,441 5,5333 12,89 10,84 140,9

312941221 0,240 0,906 0,237 0,461 5,8086 102,78 10,33 1061,04

312c11221 0,000 0,899 0,000 0,300 1,0001 2,49 4983,59 14947,2

312c21221 0,000 0,900 0,000 0,300 1,0001 12,74 4980,67 64732,7

312c41221 0,000 0,900 0,000 0,300 1,0001 102,72 4980,71 512570,80

316111221 0,595 0,595 0,594 0,595 12,5500 2,56 4,78 13,58

316121221 0,764 0,764 0,763 0,764 16,1300 13,67 3,72 48,89

316141221 0,865 0,863 0,860 0,863 18,1700 102,1 3,3 332,57

316211221 0,507 0,685 0,507 0,566 11,8106 2,52 5,07 14,63

316221221 0,602 0,812 0,601 0,672 14,0227 13,04 4,28 55,19

316241221 0,673 0,905 0,654 0,744 15,6323 101,53 3,84 388,79

316311221 0,401 0,730 0,400 0,510 10,3330 2,49 5,81 16,91

316321221 0,455 0,828 0,454 0,579 11,7082 12,71 5,12 66,22

316341221 0,498 0,905 0,496 0,633 12,7985 101,75 4,69 477,74

316411221 0,595 0,595 0,594 0,595 13,8572 2,56 4,33 12,29

316421221 0,763 0,763 0,762 0,763 17,7526 12,51 4,37 43,81

316441221 0,862 0,860 0,857 0,860 19,9989 99,33 2,99 293,63

316511221 0,517 0,677 0,516 0,570 13,1847 2,53 4,55 13,09

316521221 0,615 0,805 0,613 0,678 15,6634 13,09 3,83 49,55

316541221 0,692 0,904 0,688 0,761 17,5866 101,76 3,41 345,81

316611221 0,421 0,723 0,421 0,522 11,7486 2,50 5,10 14,80

316621221 0,477 0,818 0,476 0,590 13,3087 12,74 4,51 58,08

316641221 0,529 0,906 0,527 0,654 14,7265 101,69 4,07 414,73

316711221 0,593 0,593 0,592 0,593 20,5912 2,56 2,91 8,25

316721221 0,748 0,748 0,746 0,747 25,9762 13,59 2,31 29,91

316741221 0,847 0,846 0,844 0,846 29,3532 101,84 2,04 205,43

316811221 0,554 0,642 0,552 0,583 20,2056 2,54 2,97 8,48

316821221 0,666 0,773 0,665 0,701 24,3437 13,29 2,46 31,77

316841221 0,762 0,884 0,759 0,802 27,7951 99,97 2,16 213,89

316911221 0,504 0,680 0,503 0,562 19,3496 2,53 3,09 8,92

316921221 0,581 0,784 0,580 0,648 22,3366 12,98 2,69 34,44

316941221 0,665 0,895 0,662 0,741 25,4379 101,09 2,35 236,97

316a11221 0,041 0,803 0,041 0,295 2,3355 2,43 26,68 75,72

316a21221 0,046 0,901 0,046 0,331 2,6229 12,43 22,87 297,35

316a41221 0,047 0,902 0,046 0,332 2,6268 102,42 22,84 2348,16

316b11221 0,040 0,806 0,040 0,295 2,3911 2,44 25,09 74,02

316b21221 0,045 0,900 0,045 0,330 2,6686 12,43 22,48 292,25

316b41221 0,045 0,903 0,045 0,331 2,6762 102,43 22,42 2305,42

316c11221 0,170 0,752 0,170 0,364 9,7059 2,48 6,18 18,03

316c21221 0,191 0,841 0,190 0,407 10,8615 12,48 5,52 71,45

316c41221 0,205 0,903 0,204 0,437 11,6769 102,26 5,14 527,74

317111221 0,316 0,340 0,306 0,321 1,0002 2,32 185,18 496,26

317121221 0,408 0,440 0,396 0,415 1,0003 12,83 143,14 1809,22

317141221 0,573 0,617 0,554 0,581 1,0006 104,03 102,28 10448,15

317211221 0,280 0,408 0,272 0,320 1,0002 2,33 188,72 512,68

317221221 0,359 0,522 0,348 0,410 1,0003 12,84 147,43 1872,36

317241221 0,495 0,717 0,478 0,563 1,0006 103,04 107,24 10957,34

317311221 0,243 0,477 0,235 0,318 1,0001 2,33 197,00 543,24

317321221 0,307 0,601 0,267 0,392 1,0002 12,80 156,28 1994,96

317341221 0,405 0,791 0,391 0,529 1,0004 102,51 118,97 12136,43

317411221 0,315 0,340 0,305 0,320 1,0002 2,32 167,72 449,21

317421221 0,408 0,440 0,395 0,414 1,0004 12,87 129,63 1638,95
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Table D.1 Summary statistics for serial line experiments (continued)
Utilization Hourly

Design
M/C #1 M/C #2 M/C #3 Average Throughput WIP

Interdeparture
Time (min)

Time in System
(min.)

317441221 0,573 0,616 0,554 0,581 1,0010 104,84 92,69 9502,16

317511221 0,283 0,399 0,274 0,319 1,0002 2,33 170,69 463,35

317521221 0,364 0,513 0,352 0,410 1,0004 12,85 132,99 1687,85

317541221 0,503 0,708 0,487 0,566 1,0010 103,05 96,47 9837,89

317611221 0,250 0,462 0,242 0,318 1,0002 2,33 176,79 486,06

317621221 0,316 0,585 0,307 0,403 1,0003 12,81 139,69 1780,06

317641221 0,422 0,777 0,408 0,536 1,0007 103,01 105,21 10749,22

317711221 0,313 0,338 0,303 0,318 1,0004 2,32 113,22 303,29

317721221 0,407 0,438 0,394 0,413 1,0012 12,85 87,17 1101,74

317741221 0,573 0,617 0,555 0,582 1,0279 104,32 62,05 6336,62

317811221 0,296 0,371 0,287 0,318 1,0004 2,33 113,88 306,99

317821221 0,383 0,479 0,371 0,411 1,0011 12,87 88,05 1117,67

317841221 0,536 0,669 0,519 0,575 1,0259 103,91 63,13 6461,38

317911221 0,278 0,404 0,269 0,317 1,0004 2,33 115,39 313,54

317921221 0,358 0,521 0,347 0,409 1,0010 12,82 89,61 1137,77

317941221 0,494 0,716 0,478 0,563 1,0180 103,11 65,19 6660,17

317a11221 0,040 0,839 0,039 0,306 1,0000 2,37 543,53 1611,56

317a21221 0,042 0,886 0,041 0,323 1,0000 12,58 515,18 6685,70

317a41221 0,043 0,899 0,042 0,328 1,0000 102,49 507,26 52148,60

317b11221 0,053 0,818 0,051 0,307 1,0000 2,36 413,89 1222,29

317b21221 0,056 0,876 0,055 0,329 1,0000 12,59 386,29 5011,10

317b41221 0,058 0,899 0,056 0,338 1,0000 102,49 376,79 37734,05

317c11221 0,139 0,660 0,135 0,311 1,0002 2,35 155,63 445,69

317c21221 0,165 0,779 0,159 0,368 1,0003 12,69 131,86 1702,20

317c41221 0,187 0,881 0,180 0,416 1,0005 102,51 116,68 11969,52

311111222 0,589 0,589 0,588 0,589 12,74 2,57 4,68 13,31

311121222 0,714 0,714 0,712 0,713 15,63 13,16 3,81 48,18

311141222 0,759 0,760 0,757 0,759 16,34 92,53 3,63 341,41

311211222 0,475 0,660 0,474 0,536 11,76 2,53 5,12 14,64

311221222 0,533 0,740 0,532 0,602 12,88 12,95 4,63 59,56

311241222 0,572 0,795 0,571 0,646 13,97 103,63 4,28 439,84

311311222 0,350 0,678 0,350 0,459 9,82 2,51 6,12 17,58

311321222 0,368 0,712 0,367 0,482 10,21 12,66 5,87 74,08

311341222 0,414 0,800 0,413 0,542 11,31 102,13 5,29 533,48

311a11222 0,026 0,749 0,026 0,267 1,53 2,49 39,11 114,05

311a21222 0,028 0,814 0,028 0,290 1,67 12,46 36,01 465,61

311a41222 0,031 0,900 0,031 0,321 1,85 102,25 32,42 3330,29

312111222 0,310 0,300 0,298 0,303 1,00 2,34 196,03 524,51

312121222 0,410 0,396 0,394 0,400 1,00 12,86 147,62 1866,08

312141222 0,59 0,569 0,566 0,575 1,0006 104,27 103,05 10549,9

312211222 0,083 0,733 0,081 0,299 1,00 2,35 406,91 1188,19

312221222 0,094 0,829 0,092 0,338 1,00 12,76 365,14 4729,43

312241222 0,102 0,895 0,099 0,365 1,0002 102,27 341,68 35113,21

312311222 0,01 0,88 0,01 0,300 1,0001 2,36 2117,13 6332,11

312321222 0,01 0,898 0,01 0,306 1,0001 12,69 2084,39 27085,1

312341222 0,010 0,902 0,010 0,307 1,00 102,54 2077,56 213758,00

311111223 0,420 0,420 0,419 0,420 8,91 2,56 6,76 18,88

311121223 0,553 0,553 0,552 0,553 11,66 13,49 5,14 66,06

311141223 0,703 0,703 0,701 0,702 14,87 101,13 4,02 404,33

311211223 0,279 0,270 0,269 0,273 1,00 2,29 217,16 582,21

311221223 0,369 0,357 0,355 0,360 1,00 12,88 163,43 2068,53

311241223 0,524 0,506 0,503 0,511 1,00 104,19 115,60 11826,87
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Table D.1 Summary statistics for serial line experiments (continued)
Utilization Hourly

Design
M/C #1 M/C #2 M/C #3 Average Throughput WIP

Interdeparture
Time (min)

Time in System
(min.)

311111224 0,401 0,401 0,400 0,401 8,95 2,57 6,71 18,50

311121224 0,515 0,515 0,513 0,514 11,52 13,16 5,17 64,15

311141224 0,545 0,545 0,543 0,544 12,48 92,79 4,76 449,82

311211224 0,242 0,234 0,233 0,236 1,00 2,33 250,41 670,91

311221224 0,332 0,321 0,320 0,324 1,00 12,81 181,15 2283,67

311241224 0,518 0,500 0,498 0,505 1,00 103,41 118,72 12104,44

311111227 0,106 0,106 0,106 0,106 2,25 2,52 26,49 71,71

311121227 0,167 0,167 0,166 0,167 3,45 8,83 17,35 219,47

311141227 0,320 0,320 0,319 0,320 6,80 103,05 13,20 911,74

311211227 0,142 0,138 0,137 0,139 1,00 2,16 426,43 1147,21

311221227 0,218 0,211 0,210 0,213 1,00 12,73 276,58 3509,29

311241227 0,326 0,314 0,313 0,318 1,00 104,83 186,65 19228,74

311111228 0,099 0,099 0,099 0,099 2,20 2,56 28,06 73,67

311121228 0,123 0,123 0,123 0,123 2,80 13,30 21,02 253,91

311141228 0,149 0,149 0,149 0,149 3,42 98,16 17,15 1612,76

311211228 0,084 0,081 0,081 0,082 1,00 2,27 723,84 1935,32

311221228 0,149 0,145 0,144 0,146 1,00 12,66 404,07 5120,72

311241228 0,285 0,275 0,274 0,278 1,00 100,34 211,51 21202,54
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Table D.1 Summary statistics for serial line experiments (continued)
Utilization Hourly

Design
M/C #1 M/C #2 M/C #3 M/C #4 M/C #5 M/C #6 M/C #7 M/C #8 M/C #9 Average Throughput WIP

Interdeparture
Time (min)

Time in System
(min.)

91111 0,727 0,727 0,725 0,726 0,729 0,726 0,727 0,723 0,726 0,726 15,3134 8,15 3,92 32,13

91112 0,984 0,984 0,982 0,983 0,987 0,982 0,983 0,978 0,982 0,983 20,7109 51,01 2,90 146,21

91114 1,000 0,999 0,997 0,996 0,997 0,992 0,993 0,988 0,992 0,995 20,9176 168,16 2,87 476,94

91121 0,357 0,357 0,356 0,357 0,988 0,357 0,357 0,355 0,357 0,427 8,4508 6,47 7,10 50,34

91122 0,362 0,362 0,361 0,361 1,000 0,361 0,361 0,360 0,361 0,432 8,5516 46,50 7,02 271,34

91124 0,366 0,366 0,364 0,363 1,000 0,361 0,361 0,360 0,361 0,434 8,5392 385,01 7,03 2639,37

91131 0,124 0,124 0,123 0,123 0,999 0,123 0,124 0,123 0,123 0,221 3,2740 5,45 18,33 116,88

91132 0,124 0,124 0,124 0,124 1,000 0,124 0,124 0,123 0,124 0,221 3,2764 45,45 18,32 707,50

91134 0,125 0,125 0,125 0,124 1,000 0,124 0,124 0,123 0,124 0,222 3,2692 384,92 18,36 6926,34

911a1 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,111 1,0000 5,00 265272,30 1,59E+06

911a2 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,111 1,0000 45,00 265272,30 1,14E+07

911a4 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,111 1,0000 405,00 265272,30 1,06E+08

91211 0,153 0,148 0,147 0,172 0,168 0,160 0,145 0,138 0,142 0,153 1,0000 5,56 393,67 2401,37

91212 0,250 0,242 0,241 0,281 0,274 0,261 0,236 0,225 0,231 0,249 1,0000 48,94 237,39 11523,55

91214 0,449 0,434 0,435 0,501 0,491 0,464 0,420 0,400 0,411 0,445 1,0000 429,89 133,93 57648,83

91221 0,000 0,000 0,000 0,000 0,999 0,000 0,000 0,000 0,000 0,111 1,0000 5,51 81509,53 3764,45

91222 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,111 1,0000 47,24 81411,75 3,74E+06

91224 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,111 1,0000 387,50 80574,04 2,58E+07

91231 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,111 1,0000 5,46 5,21E+08 3,13E+09

91232 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,111 1,0000 46,26 5,21E+08 2,40E+10

91234 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,111 1,0000 386,05 5,14E+08 1,56E+11

912a1 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,111 1,0000 8,5717 3,92E+32 2,35E+33

912a2 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,111 1,0000 48,5815 3,92E+32 1,68E+34

912a4 0,000 0,000 0,000 0,000 1,000 0,000 0,000 0,000 0,000 0,111 1,0000 408,58 3,92E+32 1,39E+35

911111222 0,259 0,259 0,259 0,259 0,260 0,259 0,259 0,258 0,259 0,259 5,9170 8,0593 10,165 53,7871

911121222 0,412 0,412 0,411 0,411 0,413 0,411 0,411 0,409 0,411 0,411 8,9942 50,3803 6,7852 321,4086

911141222 0,608 0,606 0,605 0,605 0,608 0,604 0,604 0,599 0,601 0,604 12,5941 442,02 4,70 2084,67

911211222 0,134 0,134 0,134 0,134 0,134 0,371 0,134 0,134 0,134 0,160 3,3981 6,41 17,74 112,32

911221222 0,184 0,184 0,184 0,184 0,508 0,183 0,184 0,183 0,183 0,220 4,5157 46,40 13,28 616,99

911241222 0,311 0,310 0,309 0,308 0,850 0,307 0,307 0,306 0,307 0,368 7,0650 430,89 8,42 3632,73

912111222 0,118 0,115 0,114 0,133 0,130 0,124 0,112 0,107 0,110 0,118 1,0000 5,4731 508,1284 3106,87

912121222 0,217 0,210 0,209 0,244 0,238 0,227 0,205 0,195 0,201 0,216 1,0000 49,1238 272,93 13301,35

912141222 0,403 0,389 0,389 0,449 0,440 0,416 0,377 0,359 0,369 0,399 1,0000 436,26 151,40 65300,49

912211222 0,000 0,000 0,000 0,000 0,899 0,000 0,000 0,000 0,000 0,100 1,0000 5,39 90631,14 543771,90

912221222 0,000 0,000 0,000 0,000 0,900 0,000 0,000 0,000 0,000 0,100 1,0000 47,45 79180,89 3,64E+06

912241222 0,000 0,000 0,000 0,000 0,900 0,000 0,000 0,000 0,000 0,100 1,0000 408,28 107068,63 3,50E+07
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Table D.2 Summary statistics for job-shop experiments
Utilization Hourly

Design
M/C #1 M/C #2 M/C #3 Average Throughput WIP

Interdeparture
Time (min)

Time in System
(min.)

31111 0,800 0,790 0,799 0,796 16,9128 7,35 3,5466 22,97

31121 0,596 0,925 0,595 0,705 16,8785 77,54 3,5545 271,75

31171 0,502 0,501 0,502 0,502 10,6281 3,14 5,64 12,53

31181 0,380 0,712 0,378 0,490 10,6280 3,31 5,64 13,59

311x1 0,702 0,856 0,703 0,754 16,9118 8,65 3,55 27,72

311y1 0,423 0,626 0,425 0,491 10,6280 3,18 5,64 12,75

31211 0,807 0,799 0,809 0,805 10,8133 18,19 5,55 94,12

31221 0,587 0,942 0,586 0,705 8,8800 1838,03 6,76 10201,88

31271 0,504 0,499 0,504 0,502 6,7469 4,85 8,89 32,76

31281 0,362 0,724 0,358 0,481 6,7456 8,71 8,89 64,42

312x1 0,700 0,864 0,701 0,755 10,8087 82,08 5,55 445,75

312y1 0,418 0,635 0,417 0,490 6,7468 5,43 8,89 37,37

31611 0,800 0,798 0,799 0,799 16,9128 7,35 3,55 22,97

31621 0,603 0,910 0,605 0,706 16,9070 23,65 3,55 80,74

31671 0,502 0,501 0,502 0,502 10,6281 3,1438 5,644 12,5345

31681 0,385 0,700 0,380 0,488 10,6280 3,26 5,6441 13,28

316x1 0,71 0,848 0,709 0,756 16,9119 8,3432 3,5468 26,5528

316y1 0,441 0,610 0,438 0,496 10,6280 3,17 5,64 12,69

31711 0,807 0,799 0,809 0,805 10,8133 18,19 5,55 94,12

31721 0,592 0,931 0,591 0,705 10,8100 61,49 5,55 332,99

31771 0,504 0,499 0,504 0,502 6,7469 4,85 8,89 32,76

31781 0,370 0,712 0,369 0,484 6,7469 5,15 8,89 35,37

317x1 0,704 0,851 0,703 0,753 10,8137 20,52 5,55 107,19

317y1 0,423 0,624 0,425 0,491 6,7469 4,91 8,89 33,32

311111221 0,799 0,797 0,798 0,798 16,8633 68,07 3,55 234,23

311211221 0,764 0,765 0,762 0,764 15,5052 1277,98 3,87 4543,26

311711221 0,502 0,501 0,502 0,502 10,6248 12,61 5,64 55,18

311811221 0,501 0,503 0,503 0,502 10,6246 13,54 5,64 60,83

311x11221 0,794 0,797 0,799 0,797 16,8051 175,91 3,57 624,32

311y11221 0,501 0,502 0,507 0,503 10,6246 12,7518 5,6438 56,0703

312111221 0,807 0,799 0,809 0,805 10,7627 74,5153 5,5744 405,3373

312211221 0,815 0,813 0,815 0,814 7,9887 2007,1321 7,5154 11088,1

312711221 0,504 0,499 0,504 0,502 6,7453 11,9187 8,8923 86,417

312811221 0,525 0,530 0,520 0,525 6,7444 22,3164 8,896 176,8408

312x11221 0,778 0,782 0,779 0,780 10,0134 1103,6204 5,9898 6120,71

312y11221 0,510 0,506 0,509 0,508 6,7454 13,21 8,89 97,54

316111221 0,799 0,797 0,798 0,798 16,8633 68,07 3,55 234,23

316211221 0,805 0,806 0,807 0,806 15,8021 963,25 3,80 3418,91

316711221 0,502 0,501 0,502 0,502 10,6248 12,614 5,6436 55,1818

316811221 0,505 0,499 0,502 0,502 10,6246 13,30 5,64 59,33

316x11221 0,794 0,795 0,799 0,796 16,7436 78,6089 3,5825 271,6965

316y11221 0,500 0,503 0,499 0,501 10,6246 12,70 5,64 55,84

317111221 0,807 0,799 0,809 0,805 10,7627 74,5153 5,5744 405,3373

317211221 0,772 0,782 0,779 0,778 10,0547 1032,18 5,97 5717,85

317711221 0,504 0,499 0,504 0,502 6,7453 11,92 8,89 86,42

317811221 0,506 0,502 0,509 0,506 6,7456 12,76 8,89 93,61

317x11221 0,803 0,801 0,806 0,803 10,7348 101,24 5,59 555,60

317y11221 0,503 0,504 0,504 0,504 6,7454 12,08 8,89 87,96

311111222 0,792 0,796 0,792 0,793 16,6808 235,00 3,60 794,06

311211222 0,787 0,791 0,789 0,789 14,7438 1501,24 4,07 5264,06

311711222 0,502 0,501 0,502 0,502 10,5794 85,46 5,64 368,15

311811222 0,509 0,504 0,508 0,507 10,5766 88,43 5,64 384,82
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Table D.2 Summary statistics for job-shop experiments (continued)
Utilization Hourly

Design
M/C #1 M/C #2 M/C #3 Average Throughput WIP

Interdeparture
Time (min)

Time in System
(min.)

311x11222 0,791 0,795 0,789 0,792 16,5179 721,46 3,63 2524,52

311y11222 0,502 0,499 0,506 0,502 10,5828 85,34 5,64 367,22

312111222 0,802 0,790 0,794 0,795 10,5908 349,81 5,66 1853,67

312211222 0,796 0,804 0,799 0,800 7,5622 2090,04 7,94 11880,30

312711222 0,503 0,497 0,502 0,501 6,7460 67,41 8,88 464,81

312811222 0,524 0,523 0,527 0,525 6,7363 97,45 8,89 745,58

312x11222 0,807 0,806 0,812 0,808 9,7981 1438,47 6,05 8963,62

312y11222 0,507 0,512 0,509 0,509 6,7464 69,85 8,88 486,84

316111222 0,792 0,796 0,792 0,793 16,6808 235,00 3,60 794,06

316211222 0,794 0,798 0,801 0,798 14,7518 1589,36 4,06 5915,53

316711222 0,502 0,501 0,502 0,502 10,5794 85,4587 5,6405 368,1502

316811222 0,505 0,506 0,504 0,505 10,5773 87,33 5,64 378,66

316x11222 0,787 0,791 0,790 0,789 16,5232 679,99 3,6294 2368,47

316y11222 0,500 0,502 0,501 0,501 10,5828 85,26 5,64 366,70

317111222 0,802 0,790 0,794 0,795 10,5908 349,81 5,66 1853,67

317211222 0,774 0,774 0,772 0,773 9,9581 1531,56 6,02 8601,10

317711222 0,503 0,497 0,502 0,501 6,7460 67,40 8,88 464,81

317811222 0,505 0,503 0,505 0,504 6,7463 70,16 8,88 489,58

317x11222 0,820 0,819 0,817 0,819 10,6859 401,96 5,61 2183,76

317y11222 0,503 0,502 0,501 0,502 6,7465 67,81 8,88 468,62
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Table D.2 Summary statistics for job-shop experiments (continued)
Utilization HourlyDesign

M/C #1 M/C #2 M/C #3 M/C #4 M/C #5 M/C #6 M/C #7 M/C #8 M/C #9 Average Throughput WIP

Interdeparture
Time (min)

Time in System
(min.)

91111 0,799 0,798 0,799 0,802 0,798 0,799 0,795 0,799 0,798 0,799 16,9045 20,89 3,55 70,72

91171 0,502 0,501 0,502 0,504 0,502 0,502 0,500 0,502 0,501 0,502 10,6264 7,78 5,64 38,43

91211 0,807 0,799 0,808 0,822 0,807 0,809 0,792 0,802 0,802 0,805 10,7984 53,70 5,55 297,28

91271 0,504 0,498 0,504 0,513 0,504 0,505 0,495 0,501 0,501 0,502 6,7446 12,39 8,89 99,98

911111221 0,800 0,797 0,798 0,796 0,797 0,799 0,797 0,799 0,797 0,798 16,7468 241,99 3,58 858,60

911711221 0,504 0,503 0,503 0,502 0,504 0,504 0,503 0,504 0,503 0,503 10,5943 35,62 5,66 185,24

912111221 0,815 0,805 0,811 0,798 0,818 0,811 0,802 0,808 0,810 0,810 10,7245 267,56 5,60 1485,35

912711221 0,509 0,502 0,505 0,498 0,510 0,506 0,500 0,504 0,505 0,505 6,7257 33,26 8,92 280,11

911111222 0,807 0,804 0,807 0,809 0,808 0,808 0,804 0,804 0,810 0,806 16,4788 1089,92 3,64 3891,57

911711222 0,504 0,502 0,504 0,505 0,504 0,500 0,502 0,502 0,505 0,503 10,5339 220,25 5,69 1084,62

912111222 0,793 0,783 0,781 0,779 0,790 0,787 0,779 0,787 0,784 0,786 10,2181 1371,81 5,87 7755,91

912711222 0,506 0,497 0,503 0,495 0,507 0,503 0,497 0,501 0,502 0,502 6,6568 180,89 9,01 1449,09



APPENDIX E. SAME SCALE FIGURES

Figure 4.1 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 3 minutes per job.
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Figure 4.2 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 2.7 minutes per job.
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Figure 4.3 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 1.5 minutes per job.
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Figure 4.4 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 3 minutes per job.
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Figure 4.5 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 2.7 minutes per job.
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Figure 4.6 Experimental results for 3-stage serial line containing all reliable machines with a total 
processing time of 1.5 minutes per job.
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Figure 4.7 Experimental results for 3-stage serial line containing 90% unreliable machines with 
frequent breakdowns/short repair times and a total processing time of 3 minutes per job.
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Figure 4.8 Experimental results for 3-stage serial line containing 90% unreliable machines with frequent 
breakdowns/short repair times and a total processing time of 2.7 minutes per job.
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Figure 4.9 Experimental results for 3-stage serial line containing 90% unreliable machines with frequent 
breakdowns/short repair times and a total processing time of 1.5 minutes per job.
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Figure 4.10 Experimental results for 3-stage serial line containing 90% unreliable machines with 
frequent breakdowns/short repair times and a total processing time of 3 minutes per job.
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Figure 4.11 Experimental results for 3-stage serial line containing 90% unreliable machines with frequent 
breakdowns/short repair times and a total processing time of 2.7 minutes per job.
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Figure 4.12 Experimental results for 3-stage serial line containing 90% unreliable machines with frequent 
breakdowns/short repair times and a total processing time of 1.5 minutes per job.
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Figure 4.13 Experimental results for 3-stage serial line containing 90% unreliable machines with rare 
breakdowns/long repair times and a total processing time of 3 minutes per job.
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Figure 4.14

Figure 4.15

Experimental results for 3-stage serial line containing 80% unreliable machines with 
frequent breakdowns/short repair times and a total processing time of 3 minutes per job.

Experimental results for 3-stage serial line containing 50% unreliable machines with 
frequent breakdowns/short repair times and a total processing time of 3 minutes per job.
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Figure 4.16

Figure 4.17 Experimental results for 3-stage serial line containing 50% unreliable machines with rare 
breakdowns/long repair times and a total processing time of 3 minutes per job.

Experimental results for 3-stage serial line containing 80% unreliable machines with rare 
breakdowns/long repair times and a total processing time of 3 minutes per job.
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APPENDIX F. SAMPLE INDIVIDUAL PLOTS

Figure F.1 Individual plots of flow-time sta
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