

CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY
SERVER TO SUPPORT WEB BASED CONTEXT-AWARE

SERVICES AND APPLICATIONS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Alper R. Uluçınar

January, 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52939951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. David Davenport (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. Ali Aydın Selçuk

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Asst. Prof. Dr. İbrahim Körpeoğlu

Approved for the Institute of Engineering and Science:

 Prof. Dr. Mehmet Baray

 Director of the Institute

 iii

ABSTRACT

CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY
SERVER TO SUPPORT WEB BASED CONTEXT-AWARE

SERVICES AND APPLICATIONS

Alper R. Uluçınar
M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. David Davenport
January, 2005

The pervasion of computing in our physical world promises more than the ubiquitous

availability of computing resources; totally new and exciting interaction schemes are to

be explored. Context-awareness, one of the most important aspects of ubiquitous

computing, enables applications that make use of their users’ context to provide

dynamically adapting information and services to their users or to other applications.

Although the technological infrastructure to support ubiquitous and context-aware

applications is being deployed rapidly, the standards and the best practices for the

interactions of various components in a context-aware application are still missing. In

our work we have developed a location-aware HTTP proxy server, called ContextProxy

that runs on the popular Symbian platform. ContextProxy acts as a standard HTTP proxy

server from the client application’s perspective but it augments the service request of the

client with the available location information while submitting the request to the service

provider. This allows the existing nomadic applications to immediately become location-

aware if they can be configured to make use of a standard HTTP proxy which is a

common scheme for web based applications. And also it is possible to write new

nomadic applications without considering the context-awareness aspect at the service

requestor level. The contextual information added by ContextProxy can then be utilized

by the service provider to dynamically adapt its services according to the service

requestor’s context.

Keywords: Context-Aware/Nomadic Computing, Symbian, Bluetooth, GSM

 iv

ÖZET

CONTEXTPROXY: AĞ TABANLI BAĞLAMDAN-
HABERDAR HİZMETLERİ VE UYGULAMALARI

DESTEKLEMEK İÇİN YERDEN-HABERDAR HTTP PROXY
SUNUCUSU

Alper R. Uluçınar

Bilgisayar Mühendisliği, Yüksek Lisans
Tez Yöneticisi: Asst. Prof. Dr. David Davenport

Ocak, 2005

Gündelik yașamımıza hızla giren bilgi ișleme ve haberleșme yeteneğine sahip tașınabilir

cihazlar, bizlere sadece her an her yerde hesaplama yapabilme ve haberleșebilmeden

daha fazlasını vaat etmektedirler. Hızla gelișen ve gün geçtikçe yașamımıza daha

derinden nüfuz eden bu altyapı bileșenleri tamamen yeni etkileșim yöntemlerini ve

uygulamaları mümkün hale getirmișlerdir. Bu yeni uygulama ve hizmet sağlama

yaklașımlarından bir tanesi de bağlamdan-haberdar uygulamalardır. Bağlamdan-

haberdar uygulamalar, kullanıcılarına sağladıkları hizmetleri ve bilgiyi kullanıcılarının

içlerinde bulundukları bağlama göre devingen olarak uyarlayabilen uygulamalardır.

Bağlamdan-haberdar uygulamaları desteklemek için gerekli altyapısal bileșenlerin hızla

yaygınlașmalarına karșın bu uygulamalarda rol alacak çeșitli bileșenlerin birbirleriyle

etkileșimlerinde kullanılacak kabul görmüș yaklașımlar ve standartlar henüz mevcut

değildir. Bu çalıșmamızda ContextProxy adını verdiğimiz yaygın olarak kullanılan

Symbian düzleminde çalıșan yerden-haberdar bir HTTP proxy sunucusu geliștirdik.

ContextProxy’nin istemci uygulama tarafından standart bir HTTP proxy sunucusu olarak

algılanmasına karșın esas ișlevi, istemciye ait istekleri hizmet sağlayıcıya aktarırken

kullanıcının bağlamından çıkardığı yer bilgisiyle zenginleștirmesidir. Böylelikle

halihazırda kullanılmakta olan uygulamalar veya yeni geliștirilecek olanlar standart bir

HTTP proxy sunucusu kullanmaya ayarlanabilir oldukları sürece yerden-haberdar hale

gelebilmektedirler.

Anahtar sözcükler: Bağlamdan-haberdar programlama, Symbian, Bluetooth, GSM

 v

Acknowledgements

I gratefully thank my supervisor Asst. Prof. Dr. David Davenport for his invaluable

supervision and guidance. He has encouraged me all the way and without his

encouragement and guidance, this work would have never been completed.

I would also like to address my special thanks to my thesis committee members

Asst. Prof. Dr. Ali Aydın Selçuk and Asst. Prof. Dr. İbrahim Körpeoğlu for kindly

accepting to review my thesis and for guiding me with their invaluable comments.

And finally I would like to express my gratitude to my mother and to my father.

Throughout this work I once again appreciated the value of having a family.

vi

Contents

1. Introduction..1

1.1 Definition of Context and Context-aware computing...2

 1.1.1 Definition of Context..2

 1.1.2 Definition of Context-Aware Computing...4

1.2 Sensor Technologies ...4

 1.2.1 Infrared ...4

 1.2.2 Bluetooth ..9

 1.2.2.1 Bluetooth Stack ...10

 1.2.2.2 Masters, Slaves, Slots and Frequency Hoping12

 1.2.2.3 Piconets and Scatternets ..13

 1.2.2.4 Overview of the Bluetooth Profiles...14

 1.2.2.5 The Dialup Networking Profile...15

 1.2.3 Global Positioning System ...17

 1.2.4 GSM and GPRS..19

 1.2.5 Wireless Local Area Networks...20

 1.2.6 Hybrid Technologies ..21

2. ContextProxy: A Location-Aware HTTP Proxy Server ..23

CONTENTS

vii

2.1 Motivations ...23

2.2 Usage Scenarios ..25

 2.2.1 Emergency Requestor with Active Human Intervention............................25

 2.2.2 Location Information Point and Nearest Printer Service27

 2.2.3 Persistent Messages Left to a Place..29

2.3 Design and Implementation ..31

 2.3.1 Main Design Considerations ..31

 2.3.2 Definitions of Architectural Components ..32

 2.3.2.1 Service Client ..32

 2.3.2.2 ContextProxy...33

 2.3.2.3 Remote Proxy..34

 2.3.2.4 Context Server...34

 2.3.3 Extracting Location Information from User’s Context34

 2.3.4 Why Symbian? ...36

 2.3.5 Using ContextProxy in Centralized Architectures37

 2.3.5.1 Configuring the Remote Proxy ...37

 2.3.5.2 Configuring the Local Bind Port ...38

 2.3.5.3 Configuring the Context Server ..38

 2.3.5.4 Configuring the Internet Access Provider39

 2.3.5.5 Message Traffic in the Centralized Architecture40

 2.3.6 Using ContextProxy in Decentralized Architectures43

 2.3.6.1 Configuring the Bluetooth Access Point45

 2.3.6.2 Setting up a Bluetooth Access Point on Windows XP Systems ...46

3. Concluding Remarks and Future Work ..48

viii

List of Figures

Figure 1-1. IR Transducer Module...6

Figure 1-2. The ORL Active Badge...7

Figure 1-3. ORL Badge Sensor and Sensor Network ..8

Figure 1-4. The MessagePad and the IR positioning prototype...9

Figure 1-5. The Bluetooth Stack ..11

Figure 1-6. Piconets with different modes of operation...13

Figure 1-7. Bluetooth DUN..16

Figure 1-8. DUN and the Bluetooth Stack ...17

Figure 1-9. The ORL mobile transmitter ...21

Figure 2-1. Emergency Requestor..26

Figure 2-2. Local Information Server and Printing Service...28

Figure 2-3. Persistent Messages Left to a Place...30

Figure 2-4. Configuring the remote proxy's IP address ...37

Figure 2-5. Configuring the remote proxy's TCP port ...37

Figure 2-6. Configuring the local TCP bind port...38

Figure 2-7. Configuring the context server’s IP address ...39

LIST OF FIGURES

ix

Figure 2-8. Configuring the context server’s TCP port ...39

Figure 2-9. Configuring the IAP ..40

Figure 2-10. Message traffic in a centralized architecture - Content request41

Figure 2-11. Message traffic in a centralized architecture - Virtual host request42

Figure 2-12. Message traffic in a decentralized architecture - Virtual host request44

Figure 2-13. Instructing ContextProxy to connect to a Bluetooth access point...............45

Figure 2-14. Selecting the access point from the list of discovered devices....................45

Figure 2-15. Mobile Device and the Access Point...46

1

Chapter 1

Introduction

Although the necessary technological infrastructure to support context-aware

applications is being deployed rapidly, applications themselves are still few. Today’s

concept of a smart phone is a good example for this. According to a recent strategic

market research report [1], the shipments of feature rich smart mobile devices reached

9.8 millions in 2003. And according to the same report the number of devices featuring

applications platforms such as Java, BREW, and GVM reached 115 million units in

2003. The report suggests that in 2008, 89 million units of high-end smart devices will

be sold and 627 million units of lower-end devices with one or more of these platforms

will be sold. We have more and more computing and communications power with us in

our daily lives but still we don’t know how to make real use of it. For instance the

standard applications shipped with the popular Nokia Series 60 smart phone platform

are:

• Calendar application

• Contacts application

• Text and multimedia and email messaging applications

• WAP and HTML browsers

• Digital imaging applications to support the onboard camera

• Multimedia playback applications

CHAPTER 1. INTRODUCTION

2

• Games and some other similar PIM (personal information management) and

multimedia applications.

As this list of applications suggests, these smart mobile platforms are treated just as

“desktops” that you can carry along with yourself. However the availability of

computing and communications infrastructure in our daily lives promises much more

than that. We can make use of this infrastructure to support ourselves in various contexts

that we run into by running context-aware applications on these mobile smart devices.

For instance we can develop phone software which automatically switches to a silent

profile after sensing the presence of other nearby people. Or we can make use of the

location information of a nomadic user to give him details of the place’s history or to

offer him a printing service which automatically chooses the nearest printer available.

The time has come to develop applications that do not just assume what context their

users are in. Applications of the new era should actively collect information about their

users’ contexts and accordingly adapt their services to accommodate their users’

changing needs.

1.1 Definition of Context and Context-aware computing

1.1.1 Definition of Context

Context is defined as “the whole situation, background, or environment relevant to a

particular event, personality, creation, etc.” in Webster’s New World Dictionary [2].

Giving a formal definition for context is not as easy as it first seems because every

existence or every happening is bound to some kind of context and so giving a clear,

non-self-referencing definition of what a context is a serious problem in itself. In a

computing environment, we have many uses for the word context such as context-aware

computing, context sensitive help, and so on. Many researchers in computer science

have attempted to define the notion of context using synonyms and/or enumerations

(examples). Schilit and Theimer [3] define context as the location, the identities of the

CHAPTER 1. INTRODUCTION

3

nearby people and other objects of interest and changes to these entities. In another study

Schilit et al. point to three main classes of context in a computing environment [4]:

• Computing context which constitutes of the relevant hardware and software

infrastructure such as the workstations, network infrastructure or the operating

system,

• User context which is determined by the various aspects related to the entities

which carry the operational role of being a user in the system, such as the

location of the user, identities of the nearby (‘relevant’) entities, or what the user

aims to do,

• Physical context which constitutes of the various physical aspects of the

surrounding physical world such as the temperature, lighting level, time of the

day and so on.

Schmidt et al. define context as “knowledge about the user’s and the IT device’s state

including surroundings, situation and to a less extent, location” [5]. All these definitions

are partly based on enumerations of different sub-contexts such as the ‘location’, the

‘identities of the nearby entities’ and are based partly on synonyms such as ‘situation’,

‘state’ and so on. Some other researchers have tried to give more general definitions for

context by avoiding enumerations. For instance Dey defines context as [5] “any

information that can be used to characterize the situation of an entity. An entity is a

person, a place or an object that is considered relevant to the interaction between a user

and an application, including the user and the applications themselves”. And likewise

Pascoe defines context to be the subset of physical and conceptual states of interest to a

particular entity [3]. Although these definitions are inherently more general since

specific concrete sub-contexts are not enumerated, it becomes vaguer to apply these

definitions in deciding whether a piece of information is part of the context or not. In our

work we have not attempted to give a better definition for context but instead we have

investigated the ways of making specific contextual information (such as the location

information) available to the services and applications used in everyday life so that they

may adapt themselves dynamically and appropriately according to the changing

contexts’ of their users.

CHAPTER 1. INTRODUCTION

4

1.1.2 Definition of Context-Aware Computing

Context-aware computing is a mobile computing paradigm [5] in which applications

make use of contextual information such as the location of the user of the application,

locations of other entities related with the application (such as the location of the nearest

display), the time of the day, identities of nearby people, and so on. Context-aware

applications dynamically adapt themselves and provide services and/or information

according to the context they are (ideally their users are) in.

For a context-aware application, wide availability is a key concern, because the users

of the application will in most circumstances be nomadic. The context-aware application

will have to use different infrastructures (different data networks, different sensors, etc.)

to provide its services. In order to support nomadic users without much configuration

effort on the user side, wireless data networks and wireless sensors are preferred in

context-aware applications.

In the following sections we will discuss various sensor and wireless networking

technologies that can be the underlying infrastructure for context-aware applications

with special emphasis on Bluetooth and GSM, since these are the two key technologies

that we have employed in our applications. For each technology we will reference the

applications that have employed that technology and we are aware of.

1.2 Sensor Technologies

1.2.1 Infrared

Since infrared (IR) is in use for quite a long time in the industry, it has proved itself to

be a reliable and cheap means of communication. IR is widely in use in the consumer

CHAPTER 1. INTRODUCTION

5

electronics industry for purposes such as the remote controlling of electronic devices or

for wireless data communications in cellular phones. The main standards body behind IR

is IrDA (Infrared Data Association). IrDA is a non-profit organization whose primary

goal is to develop globally adopted specifications for infrared wireless communication

[6]. It embodies various special interest groups responsible for defining new

specifications for tasks such as making infrared wireless payments at POS terminals

(IrFM), or transferring digital content at speeds up to 100Mb/s (IrBurst). IrDA also

embodies committees such as the Architectural Council, the Marketing Committee, the

Technical Committee, and the Test and Interoperability Committee. The main objective

of the Architectural Council is to provide architectural support in the early definitions of

new specifications for ensuring compatibility and consistency with earlier specifications.

The Marketing Committee handles marketing issues related with the IR technology. The

Technical Committee resolves technical issues encountered during the specification

development process. The Test and Interoperability Committee provides testing and

certification services for the implementations of the IrDA specifications to ensure

compliance and interoperability between various vendors.

Although the IrDA Serial Infrared Physical Layer Specification [7] only defines the

serially encoded output and input IR signals, a simplified block diagram for a typical end

of a serial IR link is as follows:

CHAPTER 1. INTRODUCTION

6

Figure 1-1. IR Transducer Module

In this diagram the electrical signals at region (1) represent the serial data that’s to be

communicated over the IR link and passed to the transducer module for transmission or

data that’s been received by the transducer. The electrical signals at region (2) are the

electrical representations for the optical IR signals at region (3) and are interpreted into

optical signals by the output driver and the IR LED or are generated by the detector and

the receiver upon receiving the optical signals. The specification defines a serial infrared

link to be of length between 0 and at least 1 meter but common implementations provide

wireless infrared signal transmission over 3-6 meters.

The Olivetti Research Center’s (ORL) Active Badge Location System [8] uses an

infrared tagging device to track the location of people in a building. The tagging device

is called as an Active Badge and is worn on the outside of clothing in order not to

prevent the IR signals emitted by the device from reaching the sensor network. The

device emits a unique identifier revealing the identity of the person who is carrying it

IR Transmit

Encoder

Encoder/
Decoder

IR Receive

Decoder

Output Driver

& LED

IR Transducer
Module

Detector &
Receiver

Active
Output

Interface

IR Out

Active
Input

Interface

IR In

(1) (2) (3)

CHAPTER 1. INTRODUCTION

7

encoded as an infrared signal for an interval of about 100 ms at every 15 seconds. The

schematic diagram of an active badge is as follows:

Figure 1-2. The ORL Active Badge [8]

The badge is packaged in a 55x55x7 mm box and weights 40 g. The relatively long

delay of 15 s between emissions and the short emission interval of 100 ms were chosen

to lower the average current consumption of the device and to decrease the probability

that two active badges in the same room emit their ids simultaneously. These two

parameters assume that people in a building generally move slowly. The signals emitted

by the active badges reach a sensor network providing thorough coverage in the

building. The schematic diagram of a badge sensor and the network topology for the

sensor network is shown below:

IR

Emitter
Driver

PAL
FSM

Commercial
Remote
Control
Encoder

Test Button

15 Second
Astable

Light Dependent
Timing Circuit

Unique IR Signal

CHAPTER 1. INTRODUCTION

8

Figure 1-3. ORL Badge Sensor and Sensor Network [8]

The data collected by the sensor network is processed by a central server. Up to 128

sensors are connected to the central server through the RS232 port of a standard

workstation. The central server and the workstations communicate using conventional

network protocols. Each sensor is connected to a 4-wire network. Two of these wires

carry the network power supply. One wire is used to serially address sensor nodes in a 7-

bit address space. And the other wire carries serial data (the sensed badge identifiers)

back to the workstation. Each sensor node utilizes a FIFO buffer of length 20 badge

identifiers so that a sensed badge identifier will not be lost if a new badge is sensed

before the sensor node is polled.

The Future Computing Environments (FCE) group within the College of Computing

and the Graphics, Visualization and Usability (GVU) center at Georgia Tech developed

another location-aware application called the Cyberguide [9]. Cyberguide has many

prototypes and one prototype of it which is to be used indoors, utilizes infrared

technology to collect location information from surrounding beacons. The positioning

component of this Cyberguide prototype is based on using commercial TV remote

IR Signal
Received

DETECTOR

DECODER

FIFO

NETWORK IF

ADDRESS

4-WIRE
NETWORK

SENSOR STATION

WORKSTATION

WORKSTATION

Badge
Network

Sensor
Station

ETHERNET

CHAPTER 1. INTRODUCTION

9

controls as infrared beacons. These beacons are mounted on the walls of the GVU center

and each beacon periodically emits an infrared signal which carries the unique identifier

of the location of the beacon. The tourist visiting the GVU center carries an Apple

MessagePad running the Cyberguide application on it. In order to receive the location

identifiers emitted by the infrared beacons, an infrared receiver interfaced by a Motorola

68332 microcontroller is plugged on each MessagePad. When a location identifier is

detected by the receiver, the microcontroller serializes the identifier and transmits the

serialized identifier to the MessagePad using the serial port. This location information is

then utilized by the Cyberguide application running on the MessagePad:

Figure 1-4. The MessagePad and the IR positioning prototype

1.2.2 Bluetooth

Bluetooth is a low cost, low power, short range radio technology, originally developed

as a cable replacement technology to connect devices such as mobile phones, headsets

and portable computers. Bluetooth has created the notion of a Personal Area Network

(PAN). Bluetooth technology development was started in 1994 by Ericsson and Version

1.0 of the Bluetooth specification came out in 1999. Current version of the core

Bluetooth specification is 1.2 although most Bluetooth devices currently available in the

Apple
MessagePad

68332
MC

IR Receiver

IR
Beacon

Location ID over IR
link

CHAPTER 1. INTRODUCTION

10

market support version 1.1. The Bluetooth SIG was founded in 1998 and the current list

of core promoter companies include Ericsson Mobile Communications AB., Intel Corp.,

IBM Corp., Toshiba Corp., Nokia Mobile Phones, Microsoft, Lucent, 3COM and

Motorola.

1.2.2.1 Bluetooth Stack

Bluetooth specification aims to allow devices from different manufacturers to work with

one another. Bluetooth specification does not only cover a radio system but also defines

a software stack to enable applications to find other Bluetooth devices in the vicinity,

discover the services they offer, and use those services. The Bluetooth stack is defined

as a series of layers:

• At the bottom of the stack, the radio modulates and demodulates data for

transmission and reception on air.

• The baseband and link controller controls the physical links via the radio, assembling

packets and controlling frequency hopping. A Bluetooth device changes the radio

frequency at which it is transmitting 1600 times a second.

• The link manager controls and configures links to other devices.

• The Host Controller Interface handles communications between a separate host and a

Bluetooth module.

• Logical Link Control and Adaptation multiplexes data from higher layers, and

converts between different packet sizes.

• RFCOMM provides RS232 serial line emulation.

• WAP and OBEX provide interfaces to the higher layer parts of other

communications protocols.

• SDP (Service Discovery Protocol) lets Bluetooth devices discover what services

other Bluetooth devices offer.

• TCS (Telephony Control Protocol) provides telephony services.

CHAPTER 1. INTRODUCTION

11

The Bluetooth stack can be visualized as follows:

Figure 1-5. The Bluetooth Stack

Also Bluetooth SIG defines Bluetooth profiles, which give guidelines on how

applications should use the Bluetooth protocol stack. These Bluetooth profiles provide

interoperability among different manufacturers and products.

vCard/vCal

OBEX

WAE

WAP

TCP

IP

UDP

PPP

AT
Commands

RFCOMM

L2CAP

TCS-BIN SDP
Audio

Baseband

Bluetooth Radio

LMP

HCI

CHAPTER 1. INTRODUCTION

12

1.2.2.2 Masters, Slaves, Slots and Frequency Hoping

A Bluetooth device operates in one of the two modes: as a master or as a slave. The

master defines the frequency hoping sequence. Slaves that connect to the master device

synchronize with the master device's clock and use the master device's unique Bluetooth

address together with the timing information to calculate the frequency hopping

sequence. This way all slave devices that connect to a master device become

synchronized with the master device's frequency hopping sequence. The master device

also controls when devices are allowed to transmit data. The master allows slaves to

transmit by allocating slots for voice traffic or data traffic. In data traffic slots, the slaves

are only allowed to transmit when replying to a transmission to them by the master. In

voice traffic slots, slaves are required to transmit regularly in reserved slots for them

whether or not they are replying to the master. The master controls how the total

available bandwidth is divided among the slaves by deciding when and how often to

communicate with each slave. The number of time slots each slave gets depends on its

data transfer requirements.

In order to support both time critical voice data and time insensitive packet data,

Bluetooth specification defines two different types of links between Bluetooth devices.

These are SCO (synchronous connection oriented) links for voice communication and

ACL (asynchronous connectionless) links for data communication. The largest ACL

packet defined by the specification is five time slots long and can carry 2858 bits of data

together with the ACL packet headers. If it is assumed that such an ACL packet is

replied with a single slot length ACL packet then the maximum baseband data rate in

one direction is about (1600/6) * 2858 = 762 kb/s. But the other direction will only

transmit with an available capacity of about 58 kb/s. If the overhead added by the higher

layer protocols is also considered, the maximum available bandwidth decreases to about

650 kb/s on average. For voice traffic (the SCO link) the available bandwidth is 64 kb/s.

CHAPTER 1. INTRODUCTION

13

1.2.2.3 Piconets and Scatternets

Two or more units sharing the same channel form a piconet. As explained above one

Bluetooth unit acts as the master of the piconet, whereas the other unit (or units) acts as

slave(s). Up to seven slaves can be active in the piconet. In addition many more slaves

can remain locked to the master in a so-called parked state. These parked slaves cannot

be active on the channel, but remain synchronized to the master. Both for active and

parked slaves, access to the channel is controlled by the master device.

Figure 1-6. (a) Piconet with a single slave operation. (b) Piconet with multi-slave

operation. (c) Scatternet operation. [10]

Multiple piconets being connected through slaves form scatternets. Each piconet can

only have a single master (so a master of a piconet cannot be the master of another

separate piconet, by definition these devices are in the same piconet). However slaves

can participate in different piconets on a time-division multiplex basis. In addition a

(a) (b) (c)

Master

Slave

CHAPTER 1. INTRODUCTION

14

master in one piconet can be a slave in another piconet. The piconets constituting a

scatternet will not be frequency synchronized. Each piconet will have its own hopping

sequence.

1.2.2.4 Overview of the Bluetooth Profiles

Bluetooth profiles give guidelines to applications about how they should make use of the

Bluetooth protocol stack. Some profiles are defined on top of other profiles (i.e. the dial-

up networking profile makes use of the serial port profile which in turn makes use of the

generic access profile). Some profiles like the generic access profile or the serial port

profile are implemented as part the core stack. Bluetooth profiles ensure that the

Bluetooth enabled applications developed by independent developers will work on any

device that conforms to the Bluetooth specification. At a minimum, each profile

specification contains guidelines on the following topics [11]:

• Dependencies on other profiles: Every Bluetooth profile depends on the

functionality provided by the Generic Access Profile (GAP) and some profiles

also depend on the functionalities provided by the other higher level profiles (i.e.

the Dialup Networking Profile depends on GAP and the Serial Port Profile).

• Suggested GUI approaches: Each profile specification also suggests GUI formats

for Bluetooth profile implementers to ensure a consistent Bluetooth end-user

experience.

• Information about the configuration of the parts of the Bluetooth protocol stack

used by the profile: To provide its functionality each profile makes use of the

parts of the Bluetooth protocol stack with some defined options and parameters.

For instance this may include a service record in the SDP layer. The profile

specification should include every detail about the required configuration of the

protocol stack so that it can be implemented in a consistent way.

CHAPTER 1. INTRODUCTION

15

Some of the profiles defined by the Bluetooth SIG consist of: Human Interface

Device (HID) Profile, Generic Object Exchange Profile (GOEP), Serial Port Profile

(SPP), Dialup Networking (DUN) Profile, Cordless Telephony Profile (CTP), Personal

Area Networking (PAN) Profile, File Transfer Profile (FTP, specified as part of the PAN

profile).

The generic access profile defines a consistent way to establish a baseband link

between two Bluetooth devices. In addition the GAP defines the features common to all

Bluetooth devices such as procedures for discovering and being discovered by other

Bluetooth devices and the basic UI terminology. All other profiles are based on the

GAP. This allows other profiles to be specified more easily since the basic definitions

and the procedures are provided readily by the GAP. Also having GAP common to all

profiles at the lowest level of the profile hierarchy ensures better interoperability

between Bluetooth devices and applications.

The serial port profile defines RS232 serial cable emulation for Bluetooth devices.

The SPP provides ordinary serial communication ports operating over Bluetooth to

higher level profiles and other applications and so with the SPP, legacy applications

based on serial communication can exchange data between Bluetooth devices. The SPP

makes use of the RFCOMM protocol.

In the following section we mention about the Dialup Networking (DUN) profile in

detail because some parts of our work are based on this profile.

1.2.2.5 The Dialup Networking Profile

The dialup networking profile defines the protocols and procedures that shall be used by

devices implementing the usage model called "Internet Bridge". The most common

CHAPTER 1. INTRODUCTION

16

examples of such devices are modems and cellular phones. The scenarios covered by

this profile are:

• Usage of a cellular phone or modem by a computer as a wireless modem for

connecting to a dial-up internet access server, or using other dial-up services.

• Usage of a cellular phone or modem by a computer to receive data calls.

The DUN profile makes use of the Serial Port Profile (SPP) and Generic Access

Profile (GAP) as shown in the following figure:

Figure 1-7. Bluetooth DUN

In this figure each profile contained in another profile’s box makes use of the containing

profile. The DUN Profile makes use of the following Bluetooth stack layers:

Generic Access Profile

Service Discovery
Profile

TCS-BIN-based Profiles

Cordless Telephony
Profile

Intercom Profile

Serial Port Profile

Dial-up Networking

Fax Profile

Headset Profile

LAN Access Profile

Generic Object Exchange Profile

File Transfer Profile

Object Push Profile

Synchronization Profile

CHAPTER 1. INTRODUCTION

17

Figure 1-8. DUN and the Bluetooth Stack

The dialing and control layer defines the commands and procedures used for automatic

dialing and control over the asynchronous serial link provided by the SPP. The modem

emulation layer is the entity emulating the modem, and the modem driver is the driver

software in the data terminal. The roles defined in the DUN Profile are the gateway and

the data terminal. The gateway is the device that provides access to the public network.

Typical devices acting as gateways are cellular phones and modems. The data terminal

is the device that uses the dial-up services of the gateway. Typical devices acting as data

terminals are laptops and desktop PCs.

1.2.3 Global Positioning System

Global Positioning System (GPS) is a popular outdoor positioning technology that’s

based on 24 satellites orbiting the Earth. GPS is managed by the Interagency GPS

Executive Board [12] (IGEB). Whereas GPS was designed primarily for the U.S.

Data terminal side Gateway side

Application
(Modem emulation)

Dialing and control

RFCOMM SDP

LMP L2CAP

Baseband

Application
(Modem driver)

Dialing and control

RFCOMM SDP

LMP L2CAP

Baseband

CHAPTER 1. INTRODUCTION

18

military forces, it has an increasing number of civil users worldwide. GPS has three

main applications [13]:

1. Navigation in three dimensions: This is the main functionality provided by the

GPS. GPS based navigation receivers are manufactured for ground vehicles,

ships and aircraft. Also there are small form factor GPS navigation receivers for

use by individuals.

2. Precise positioning: By measuring the distance relative to three or more GPS

satellites, the precise location of a GPS receiver can be calculated. Until May

2000, GPS had two separate positioning services. The first one, called the Precise

Positioning Service (PPS), was for authorized users with special cryptographic

equipment and keys. And the second one, called the Standard Positioning Service

(SPS), was for civil users worldwide without any charge or restrictions. The SPS

accuracy was intentionally degraded from 30 m to 100 m (selective availability).

But as of May 2000, selective availability is no longer applied in GPS signals.

3. Time and velocity determination: Precise time measurements can be performed

by the GPS receivers because each of the GPS satellites maintains precise clocks

that are controlled by the monitoring stations on the Earth and the satellites send

their time values in the GPS signals. From the positioning information and

timing, the velocity of a GPS receiver can be calculated.

At any given time, a GPS receiver can communicate with three or more satellites.

However for the reception of the GPS signals, there has to be a line of sight between the

receiver and the satellites, which makes GPS inadequate for indoor positioning purposes.

In order to calculate its position, the GPS receiver measures the amount of time it takes

for the satellite signals to reach it. Mathematically at least four measurements are

required but usually only three measurements also provide accurate positioning

information.

GPS receivers are commonly used in conjunction with a Geographical Information

System (GIS) because in typical positioning and tracking applications, positioning

CHAPTER 1. INTRODUCTION

19

information by itself is not useful [14]. Also the topographical information of the

position of the GPS receiver obtained from a GIS is generally an integral part of the

application.

1.2.4 Global System for Mobile Communications and General Packet

Radio Service

Global System for Mobile Communications (GSM) is the most popular 2G technology

in the world [14, 15]. The media access control method used in GSM is a combination of

Frequency Division Multiple Access (FDMA) and Time Division Multiple Access

(TDMA). GSM operates on three distinct frequencies. 900 MHz and 1800 MHz are used

in Europe and 1900 MHz is used in North America. GSM is deployed in over 100

countries and in order to provide international roaming, handsets are available that

support all of the three frequencies of GSM. The data transfer rate of GSM networks is

9.6 Kbps. This rate is enough for the popular text-messaging applications like SMS and

for WAP browsing but for applications that require higher rates, a transitional

technology named High Speed Circuit Switched Data (HSCSD) was developed. HSCSD

allows data transfer rates of up to 57.6 Kbps. Later another technology called General

Packet Radio Service (GPRS) was introduced to replace HSCSD. GPRS is a nonvoice

2.5G packet-switching technology that allows data transfer rates of up to 171 Kbps if the

transmission uses no error-correction and it is able to allocate all of the eight GSM time

slots. Actual data rates for GPRS are around 30 Kbps.

GSM is deployed as a cellular communications network and in some parts of our

work we have made use of the cell identity provided by the GSM network. We use the

cell identity to determine which cell of the GSM network the mobile phone is registered

to and since the base station for each cell is in a fixed location, the cell identity can be

translated into a location for the mobile user. However by using this approach, we can

only determine the mobile user’s location inside the large boundaries of a GSM cell.

CHAPTER 1. INTRODUCTION

20

1.2.5 Wireless Local Area Networks

Wireless Local Area Networks (WLANs) comprise one of the fastest growing segments

of the telecommunications industry [14]. In some instances WLAN solutions are

employed to save costs and avoid structural cabling while in other cases it is the only

option for providing high speed Internet access to the public (i.e. at an airport). Two

standards bodies regulate WLAN standards: IEEE and European Telecommunications

Standards Institute (ETSI). The leading WLAN standard is IEEE’s 802.11b, or Wi-Fi,

short for Wireless Fidelity. The IEEE 802.11 specification was approved in 1997,

making it the first WLAN standard to be defined. It uses the same switching protocols as

wired Ethernet. 802.11b uses the unlicensed 2.4 GHz industrial, scientific, and medical

(ISM) band. 802.11b has a maximum raw data transmission rate of 11 Mbps. In practice

the maximum throughput of 802.11b is about 6 Mbps. 802.11a is a high speed

alternative to 802.11b and operates at the 5 Ghz band. It is possible to achieve data

transmission rates of 54 Mbps with 802.11a. Also since the bandwidth available to

802.11a is larger than the bandwidth available to 802.11b, 802.11a supports more

simultaneous users. 802.11g also operates at the 2.4 GHz ISM band like 802.11b but

offers data transmission rates of up to 54 Mbps. 802.11g is also backward-compatible

with 802.11b meaning that a 802.11g access point can communicate with an 802.11b

client or a 802.11b access point can communicate with a 802.11g client.

In typical indoor configurations an 802.11b access point can communicate with

devices up to 100 meters away. 802.11a access points are often limited to between 25

and 50 m.

As in the Bluetooth and the GSM case, WLAN access points may provide coarse

grained location information for mobile clients and at the same time provide the

necessary communications infrastructure. In our work we have not made use of the

CHAPTER 1. INTRODUCTION

21

WLAN technologies but it is possible to deploy a solution which is based on any of the

WLAN standards within our architecture.

1.2.6 Hybrid Technologies

There are also some projects in which multiple location tracking technologies are

utilized in order to gain better accuracy. Researchers at the Olivetti and Oracle Research

Laboratory (ORL) developed such a hybrid location tracking scheme for their Active

Office project [16]. The ORL ultrasonic location tracking system requires a small,

wireless transmitter to be attached on each identity to be tracked. The transmitter

hardware consists of an array of five ultrasonic transducers arranged in a hemispherical

geometry, a 418 MHz radio transceiver, a microprocessor and a Xilinx FPGA:

Figure 1-9. The ORL mobile transmitter [16]

The dimensions of the mobile transmitter are 100x60x20 mm. Each transmitter has a 16-

bit unique address. In order to track the locations of these mobile devices, an array of

receivers is mounted on the ceiling of the room in which moving objects are to be

tracked. Each of these receivers consists of an ultrasonic detector, an ADC, and a Xilinx

FPGA. A controller workstation can uniquely address each receiver through a serial

interface. The controller workstation emits a radio signal every 200 ms at 418 MHz,

containing the address of the mobile transmitter whose location is being asked for.

CHAPTER 1. INTRODUCTION

22

Simultaneously it sends a reset signal to the array of receivers in order to put them in an

ultrasonic signal receiving state. Upon receiving the radio signal, the mobile transmitter

which is uniquely addressed sends ultrasonic signals through its ultrasonic transducers

for a relatively short interval of 50 µs. And upon receiving the reset signal through the

serial network, each of the receivers enters into a listening state for a relatively long

interval of 20 ms. During this interval, the ultrasonic detector on the receiver records the

signals emitted by the addressed mobile transmitter and the ADC samples these analog

signals passing them to the FPGA on the receiver. The FPGA records the moment at

which the signal level reaches its maximum. The relatively short interval of the emission

of the ultrasonic signal from the mobile transmitter ensures that the FPGA on the

receiver can recognize a sharp peak in the received ultrasound level. The controller

workstation then polls each of the receivers to retrieve the time elapsed between the

moment reset signal was sent and the moment the ultrasonic signal was at its peak.

These intervals combined with the known locations of the receivers reveal the position

of the mobile transmitter.

The ORL ultrasonic location system was later utilized in the Bat project of AT&T

Laboratories using the same basic principles [17]. The mobile transmitter developed in

the Bat project measures 50x30x20 mm and weights just 35 g. This small form factor

makes the Bat mobile transmitter very comfortable to wear.

The Cricket location support system [18] from MIT also uses ultrasound and radio

waves to provide a location support service to nomadic and stationary users. The system

consists of wall or ceiling mounted beacons that periodically broadcast location

information on RF signals. Each beacon also emits an ultrasonic signal simultaneously

with the RF signal. Upon receiving both signals, the listener device of a user then

estimates the distance to the beacon that originated the signal pair using the fact that

light and sound waves propagate at different speeds in space. Using distance estimations

to several beacons, the listener device infers the location of its user.

23

Chapter 2

ContextProxy: A Location-Aware HTTP

Proxy Server

2.1 Motivations

The main motivations behind this work are:

1. To suggest a generic client/server architecture to support context-aware

computing in web based services where legacy clients, which have been

implemented without the context-awareness concern in mind, do exist and cannot

be changed easily and cost effectively. Since legacy clients that do not embody

context-awareness concern can be employed in this generic architecture, new

clients can also be developed without the context-awareness concern in mind.

2. To give a proof of concept implementation of this architecture on a popular

mobile platform.

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

24

Any client/server architecture that aims to support applications which are aware of

their clients’ contexts should include a component operating in the client’s context for

collecting contextual data belonging to the client. And today, we have a vast amount of

web based services which are based on well established client and server side

components (i.e. HTML browsers and web application servers) with well defined

interaction schemes (i.e. the HTTP protocol). Any new architecture to be suggested

should be designed in such a way that it should be easily pluggable into this existing

infrastructure to be of most value.

Starting with these motivations, we suggest an architecture in which a special

purpose HTTP proxy server, called ContextProxy, running in the service client’s context

collects contextual data. HTTP proxies are very common and there are several publicly

available HTTP proxy servers on the Internet. The Hypertext Transfer Protocol 1.1

(HTTP/1.1) specification [19] defines a proxy server as follows: A proxy server is an

intermediary program which acts as both a server and a client for the purpose of making

requests on behalf of other clients. The specification mentions two kinds of proxies:

1. Transparent proxies: Transparent proxies do not modify their clients’ requests

while sending them to the actual servers and do not modify the responses of the

actual servers.

2. Non-transparent proxies: Non-transparent proxies may choose to modify the

requests or responses in order to provide their clients with some added service.

ContextProxy is a non-transparent HTTP proxy server. It augments the user agent’s (i.e.

an HTML browser application) HTTP requests with the contextual information it

collects from the user’s context. This makes it possible to deliver web based services

that dynamically adopt themselves according to their nomadic clients’ contexts without

modifying existing nomadic applications, as long as they are configurable to make use

of a standard HTTP proxy. Also by leaving the task of providing contextual information

to an intermediary proxy server, new nomadic web based applications can be developed

without the context-awareness concern in mind. So ContextProxy promotes the

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

25

separation of concerns [20, 21] on the client side of the context-aware application

development in web based service oriented architectures.

2.2 Usage Scenarios

This section gives three usage scenarios which are based on the suggested architecture.

For each usage scenario the necessary architectural components are specified in detail.

2.2.1 Emergency Requestor with Active Human Intervention

A driver is involved in a car accident at a location unknown to him. He has not lost his

consciousness but he is stuck in his car. Since he does not know where he is, he cannot

just phone and request for help. But he has got a mobile device on which ContextProxy

is running. He just follows a bookmark previously added among his mobile browser’s

bookmarks (i.e. http://mycontext./emergency/traffic). The browser makes its request to

the virtual host ‘mycontext’ through ContextProxy and ContextProxy modifies this

request with the location information that it gathers from the driver’s context and sends

the augmented request to the real server ‘www.911.gov.tr’ through a GPRS link. So the

request for help has been automatically extended with the location information of the

accident. In this scenario two important parts of the driver’s context are reported to the

service running on www.911.gov.tr. The first one is the information that the driver is

involved in a traffic accident. This information is statically provided through the visited

URL (i.e. /emergency/traffic). The other part is the dynamic location information.

www.911.gov.tr maintains a central service throughout the country which informs the

nearest emergency unit about an accident together with the reported location of the

accident. This service does not have to resolve the identity of the nearest emergency unit

by itself. It may choose to delegate the resolution of the emergency unit to more local

servers. Here is a schematic representation of this scenario:

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

26

Figure 2-1. Emergency Requestor

This diagram shows the original request (a) made by the mobile browser and the

modified request (A) sent by ContextProxy to the central service provider. The central

service provider delegates the task of resolving the nearest emergency unit to a local

server. The local server resolves the nearest emergency unit and makes an emergency

call (b) to this unit supplying it the location information of the accident. Although not

shown on the diagram, the driver is also notified by the central service provider about

the estimated time it will take for the emergency unit to arrive.

In this scenario, the difficult part is establishing a country wide location-to-

emergency-unit resolution service. However this difficulty is not introduced by the

Driver’s context. Important aspects are:
1. Driver is involved in a traffic

accident
2. Location information

Mobile
Browser

Context-
Proxy

http://mycontext./emergency/traffic

www.911.gov.tr

http://www.911.gov.tr/gsm/123/456/emergency/traffic

GPRS

Internet

Local Service Provider
gsm/123/456ß à unit1
gsm/456/789ß à unit2

…
.

Emergency Unit 1

Emergency Call

PSTN

a

A

A

b

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

27

architecture but rather it is inherently difficult to establish such a service that has to take

care of so many diverse contexts.

2.2.2 Location Information Point and Nearest Printer Service

In an art museum, wireless local information points are set up in each room. Each

information point serves digital reproductions of the paintings in that room together with

some detailed information about each painting formatted as HyperText Markup

Language (HTML) documents. A visitor can connect to the local information point of

the room he is visiting using his mobile device and browse the information offered by

the local service. On the mobile device ContextProxy is running and ContextProxy is

configured to access the local information point residing in the room over a Bluetooth

link. The visitor’s HTML browser is configured to use ContextProxy as its proxy server.

This way when the visitor makes a request for the local content, his browser sends this

request to the virtual host ‘mycontext’ through ContextProxy; not even knowing that the

request will be fulfilled by a local server accessed through an ad-hoc link. All the

connection details are hidden from the legacy HTML browser application and are

handled by ContextProxy (assuming that the browser application can be configured to

make use of a proxy server which is a very common feature for web clients). The local

information point also offers a printing service through which the digital reproductions

can be printed. The printing service has HTML user interfaces to allow the visitor to

select and to adjust various parameters of the service such as the print quality, size and

etc. After selecting the reproduction, the visitor then specifies these settings and submits

his request from the browser application. The browser application sends the request to

ContextProxy and through the Bluetooth link ContextProxy accesses the printing

service. The printing service is preconfigured with the location information of the

nearest printer and in response to the request, it guides the user to this nearest printer. In

this scenario since short range wireless links are utilized, ContextProxy does not have to

augment the requests to provide contextual information. Just accessing the local

information server defines the user’s related context. ContextProxy can just act as a

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

28

transparent proxy server or it may add some identifying information about the visitor

such as the Bluetooth device address of the visitor. Using this identifying information

the visitor may then be charged for the printing service when he goes to the nearest

printer to get the printed reproduction he purchased. Below we give a schematic

representation of this scenario:

Figure 2-2. Local Information Server and Printing Service

As it can be seen on the diagram, ContextProxy replaces the virtual host name in the

original request (a) of the mobile browser with the address of the local printing service

and appends the Bluetooth device address of the mobile client to the request so that the

printing service can identify the client for charging purposes. ContextProxy then sends

the modified request (A) to the local printing service. The printing service then translates

and forwards the request to the nearest printer (b). Although not shown on the diagram,

the visitor is responded with a map showing the location of the nearest printer by the

printing service.

Visitor’s context. Important aspects are:
1. Visitor is in the room
2. Identity information

Mobile
Browser

Context-
Proxy

http://mycontext./print?item-code=23&size-
code=2&quality-code=1

Printing Service

http://10.0.0.1/dev-addr=aa-bb-cc-
dd-ee-ff/print?item-code=23&size-
code=2&quality-code=1

Bluetooth

USB

b

a

A

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

29

2.2.3 Persistent Messages Left to a Place

A student goes to his instructor’s office on the last day for adding/dropping courses to

add a new course. But the instructor is not in the room. But luckily he has left the local

information server which resides in his room running. The student knows that his

instructor is operating a local information server in his room and he checks the

availability of this service by initiating a service discovery using his mobile device. The

discovery process is carried by ContextProxy which is running on the student’s mobile

device. ContextProxy discovers the instructor’s local service and notifies the student

with a graphical user interface with an option to connect to the local service. After

connecting to the local service over a Bluetooth link, the student follows a hyperlink

which resides on the home page of the local information server to see if his instructor

has left a message for him. The instructor was also expecting to see the student and so

before urgently leaving his office, he has left a message to his student giving information

about his whereabouts for the next fifteen minutes. The instructor has also specified a

time-to-live value for this message so that the message can only be viewed by the

student during fifteen minutes. Also the instructor has targeted the message directly to

the student because he does not want other people to learn where he is. The identity

information of the student can be provided to the local service using digital certificates

or if the security level is acceptable and the Bluetooth device address is accessible, it can

be provided by ContextProxy by augmenting the request of the mobile browser with the

Bluetooth device address of the student. Here is a schematic representation of this

scenario:

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

30

Figure 2-3. Persistent Messages Left to a Place

In this figure, the original request made by the mobile browser is labeled with (a) and the

modified request is labeled with (A). The messaging service responds to the student with

the HTML document labeled with (b). Although the request and response are shown as

HTML documents, any other document/messaging format such as XML could be

employed as long as it is supported by the mobile client.

Messaging Service
Service context. Important aspect is:
1. Time (to manage message lifetimes)

Bluetooth

http://10.0.0.1/dev-addr=aa-
bb-cc-dd-ee-ff/check-
messages

A

Student’s context. Important aspects are:
1. Student has come to the office
2. Identity information

Mobile
Browser

Context-
Proxy

http://mycontext./check-messages

a

b

<html>
 <head><title>
 You have a message
 </title><h1/>

b

Bluetooth

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

31

2.3 Design and Implementation

2.3.1 Main Design Considerations

ContextProxy was developed in an attempt to provide location-based services and

information to nomadic users. The main design goals behind ContextProxy are:

1. Use of existing software/hardware infrastructures and standards to the largest

extent possible: This design goal aims the rapid adaptation of a new context-

aware application infrastructure into the widely available existing

hardware/software infrastructures. There are well established content-delivery

protocols (like HTTP) through which huge amounts of content can readily be

accessed. Also the Internet contains a vast amount of services with well

established interaction schemes. A new application or infrastructure should be

easily pluggable into these existing systems if it expects acceptance.

2. Decentralized content and service delivery: One of our goals was to design an

architecture in which everyone could set up his own local information server,

probably publishing content about himself and about the locality, for nomadic

users visiting his place. Such a scenario is best realized with a decentralized

architecture because there is actually no need for centralized content and it would

be inconvenient to deploy and administer such systems in the presence of a

centralized authority. ContextProxy allows for both centralized and decentralized

architectures.

3. Easy to use, simple end-user interfaces: Since the nomadic user constantly roams

and needs to access a variety of services, he should not be frustrated with

complex configuration tasks to access these services. Also the location

information should be automatically extracted from the user’s context without

the user’s attention. If necessary, single-click user interfaces should be provided

that will take care of the configuration tasks.

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

32

4. Simple and small-footprint mobile device applications: Mobile devices have

serious limitations on the computational resources they offer to the application

developers. So any architectural component that will reside on these devices

should be kept as simple as possible. This will also ensure better portability for

these components among various hardware platforms because a specific

implementation of an architectural component that will reside on the mobile

device will require minimal functionality to be provided by the hardware

platform on which it will run, if it leaves as much functionality as possible to the

server side.

2.3.2 Definitions of Architectural Components

2.3.2.1 Service Client

Service client is the architectural component that resides on the user’s mobile device and

makes service requests on behalf of the nomadic user. The nomadic user primarily

interacts with the user interface provided by the service client. The actual

implementation of the service client may change from scenario to scenario. For instance

in a scenario where the nomadic user gets information from a local information server,

the service client could be the HTML browser running on the mobile phone. Or another

example for a typical service client is any mobile application that accesses a web service

using Simple Object Access Protocol (SOAP) over HTTP. In the architecture we

suggest, service clients can be legacy applications written without the context-awareness

concern in mind. The two limitations that our architecture imposes on service clients are:

1. They should communicate with their services using HTTP.

2. They should be configurable to make their requests through a standard HTTP

proxy server.

In today’s web oriented world, both of these requirements are met by the vast majority

of the web applications. And most of the popular software platforms (i.e. Java, .NET,

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

33

Symbian, etc.) readily provide the necessary web based infrastructure on which new

service clients meeting these requirements can be developed.

2.3.2.2 ContextProxy

ContextProxy is the architectural component that resides on the user’s mobile device and

proxies the requests made by the service client to a remote proxy server (which does not

reside on the mobile device). From the service client’s perspective, ContextProxy is a

standard HTTP proxy server and from the remote proxy’s perspective, it is a standard

HTTP client. In most scenarios this is the primary architectural component which will

have to be implemented on the mobile software platform. As stated among our main

design goals, our architecture aims to keep the functionality of ContextProxy as simple

as possible to promote portability and to reduce software development costs. So

ContextProxy is not required to provide a full HTTP proxy server implementation.

Instead, it relies on another remote proxy server which has to be a complete HTTP proxy

server implementation. The main functionalities that will be provided in a typical

implementation of ContextProxy are:

1. Augmenting the service client’s requests with the necessary contextual data

which will be interpreted by the context server implementation. The notion of a

context server as an architectural component will be explained in a later section.

2. Shielding the service client from the diversity of the connectivity options

encountered in today’s common mobile computing environments (i.e. Bluetooth,

Infrared, GPRS, Wifi).

The quality and the types of the services provided by ContextProxy will again differ

from scenario to scenario. For instance in an implementation where a GPS receiver is

available, ContextProxy could augment the service client’s requests with high accuracy

GPS coordinates for outdoor positioning. But in another implementation where a GPS

receiver is not available, very low accuracy GSM base station location area codes and

cell-ids might be utilized.

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

34

2.3.2.3 Remote Proxy

Remote proxy is an architectural component which should normally reside outside of the

mobile device. It’s a complete HTTP proxy server implementation and it accepts service

requests augmented by ContextProxy. In most web infrastructures remote proxy is

readily deployed to secure the clients, to provide anonymity or to increase performance.

From the remote proxy’s perspective, ContextProxy is a standard HTTP client making

service requests. The remote proxy forwards these service requests to their actual targets

(i.e. a context server, or an ordinary content server) and conveys the responses back to

ContextProxy.

2.3.2.4 Context Server

Context server is the architectural component that satisfies the service requests of the

clients. The implementation of the context server will change from scenario to scenario

but a context server can be as simple as a standard web server with a special

configuration (section 2.3.5.5 illustrates such a scenario). Service requests augmented

with contextual data reach the context server as their final destinations and it is the

context server’s responsibility to interpret the contextual data. After extracting the

contextual data from the service request and interpreting it, a common implementation

will adopt its services according to the context the nomadic user is currently in. In the

following sections the term ‘content server’ is used instead of ‘context server’ in

situations where the context server does not extract any contextual information from the

request but just serves static or dynamic content to the client.

2.3.3 Extracting Location Information from User’s Context

Our implementation of ContextProxy has two ways to extract the location information

from the user’s context:

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

35

1. From the telephony APIs provided by the operating system it runs on, it can

extract the GSM Location Area Code (LAC) and the GSM cell identifier (cell-id)

of the GSM base station to which the phone is currently registered. In order to

make use of this contextual information a database service of (LAC, cell-id) pair

to physical location information mappings should be provided to the context

server that will make use of this contextual information. This database of (LAC,

cell-id) pair to physical location information mappings can be kept as part of the

configuration of the context server as explained in the following sections.

2. It does a Bluetooth device inquiry to determine which other Bluetooth units are

within the range of the smart phone ContextProxy is running on. At the end of

the inquiry ContextProxy has the device addresses of those units which were in

discoverable mode during the inquiry scan initiated by ContextProxy. Again a

database of Bluetooth device-address to physical location information mappings

is needed to make use of this contextual information. The database may provide

more information (i.e. device-address to device-owner mappings) so that more of

the user’s context can be revealed. If for example device-address to device-

owner mappings are also provided to the context server, it may adopt its services

dynamically according to presence and identities of other people in vicinity of

the user of the service.

GSM LAC and GSM cell-id pair only provides a very coarse grained outdoor

positioning information since GSM base station coverage is overlapping. But it may be

of use in a large settlement like a university campus.

Again just the device addresses of the nearby Bluetooth units do not provide fine

grained indoor positioning information. It is generally not enough even to estimate the

location of the user at a room level (estimate the room where the user is) because the

radio frequency waves used by Bluetooth can penetrate through the walls of a room. But

the HCI layer of the Bluetooth stack provides a READ_RSSI command through which it

makes the Receiver Signal Strength Indicator (RSSI) related to an active L2CAP link

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

36

available. The RSSI values for links established to each of the discovered devices may

provide a better estimation of the user’s position. Please refer to chapter 3 for more

about this.

2.3.4 Why Symbian?

ContextProxy has been implemented in the Symbian [22] platform. Symbian is a

powerful mobile operating system commercially available on various smart phone

models from a variety of manufacturers. The choice of Symbian has three main reasons:

1. Since Symbian is an operating system, it allows interaction with low level

hardware which is necessary to gather information about the user’s context. It

has various communication and networking APIs and it supports sockets. It has

telephony APIs to gather information about the currently registered GSM base

station and it has Bluetooth APIs. Although not utilized in ContextProxy,

Symbian also provides APIs for infrared communications.

2. Since Symbian runs on smart phones, the developer has many means for

communication. For the development of ContextProxy, a Nokia 6600 smart

phone was used. This smart phone has various connectivity options [23]

including Bluetooth, infrared, General Packet Radio Service (GPRS) and High

Speed Circuit Switched Data (HSCSD).

3. Besides the variety of the connectivity options, most smart phones offer on-

device peripherals that can be utilized to collect contextual information. For

instance the Nokia 6600 has an on-board VGA camera. Symbian APIs allow

interaction with these peripherals but currently ContextProxy does not make use

of them.

For the implementation of ContextProxy, other mobile platforms such as Pocket PC

2003 can of course be used. The only limitation imposed on the platform is that it should

support server side sockets. Also the platform needs to support the contextual sensing

technologies (such as GPS) which are to be used to collect data from the user’s context.

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

37

2.3.5 Using ContextProxy in Centralized Architectures

The main component of ContextProxy is a light-weight HTTP proxy server

implementation that relies on another HTTP proxy server for operation. This second

proxy server is generally available on the network ContextProxy is connected to (i.e. the

GSM data network); because most service providers prefer to deploy proxy servers for

improved performance and security of their clients.

2.3.5.1 Configuring the Remote Proxy

The IP address and the TCP port number for the remote proxy server is configured

through the configuration screen of the ContextProxy application as shown below:

Figure 2-4. Configuring the

remote proxy’s IP address

Figure 2-5. Configuring the

remote proxy’s TCP port

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

38

2.3.5.2 Configuring the Local Bind Port

ContextProxy listens for incoming TCP connections on the default local IP address

0.0.0.0. The client application whose requests will be augmented with location

information should be configured to use the proxy server running at address 127.0.0.1.

The local TCP port to which ContextProxy binds can be specified by the user. The proxy

port configuration of the client application has to be set to the port ContextProxy is

configured to listen to. The TCP port number which ContextProxy listens to can be

configured through the configuration screen of the application as shown below:

Figure 2-6. Configuring the

TCP port on which

ContextProxy will accept

incoming connections

2.3.5.3 Configuring the Context Server

The IP address and the TCP port number for the context server are configured through

the configuration screen of the application as shown below:

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

39

Figure 2-7. Configuring the

context server’s IP address

Figure 2-8. Configuring the

context server’s TCP port

2.3.5.4 Configuring the Internet Access Provider

ContextProxy can be configured to use any of the Internet Access Providers (IAPs)

available in the Symbian’s communications database to relay the client requests to the

configured remote proxy. But it is the user’s responsibility to choose a suitable IAP

which connects to a network through which the configured remote proxy is accessible.

Symbian maintains a communications database in which communications related

settings are stored. This database holds information about IAPs, Internet Service

Providers (ISPs), GPRS settings, modems, dialing locations, charge cards, proxies and

WAP settings. The internet access provider that will be used to access the remote proxy

is configured through the configuration screen of the application as shown below:

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

40

Figure 2-9. Configuring the IAP

2.3.5.5 Message Traffic in the Centralized Architecture

When the service client makes a request through ContextProxy, ContextProxy first

checks the uniform resource locator (URL) of the resource the client is trying to access.

If the URL of the resource does not start with “http://mycontext.”, then ContextProxy

acts as a transparent proxy and forwards the request without modifying (augmenting) it

to the remote proxy. The remote proxy fetches the requested content on behalf of

ContextProxy and responds to ContextProxy with the fetched content. Upon receiving

the requested content, ContextProxy in turn responds to the client application. Below we

give a schematic representation of this message flow:

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

41

Figure 2-10. Message traffic in a centralized architecture - Content request

But if the URL of the resource starts with “http://mycontext.”, then ContextProxy takes a

special action. It acts as a non-transparent proxy and modifies the HTTP headers

belonging to the request of the client before relaying them to the remote proxy. It

replaces the virtual host name “mycontext.” with the IP address and port number of a

context server which can make use of the contextual information provided by

ContextProxy. This replacement has to be performed at two locations. The first one is in

the URL string which follows the HTTP method name (i.e. GET) and the second one is

in the Host HTTP header. It also inserts the location information extracted from the

user’s context in the URL before relaying it to the remote proxy. Below is a schematic

representation of this case:

GET
http://www.abc.com

Context
Proxy

Service
Client

GET
http://www.abc.com

 Content

Mobile
Device

 Content

Remote
Proxy

Content
Server

GET
http://www.abc.com

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

42

Figure 2-11. Message traffic in a centralized architecture - Virtual host request

A sample conversion of the HTTP headers is shown below:

1. HTTP headers of the request sent from the service client to ContextProxy (some

of the headers are truncated):

GET http://mycontext./location HTTP/1.0

User-Agent: Mozilla/4.1 (compatible; MSIE 5.0; Symbian OS; Nokia 6600;452) Opera 6.20 [tr]

Host: mycontext.

Accept: text/html, multipart/mixed, application/xml;q=0.9

Accept-Charset: windows-1252;q=1.0, utf-8;q=1.0, utf-16;q=1.0, iso-8859-1;q=0.6, *;q=0.1

Accept-Encoding: deflate, gzip, x-gzip, identity,*;q=0

Proxy-Connection: Keep-Alive

X-OS-Prefs: fw:176; fh:208; cd:16c; pl:3; pj:1; pa:0;

2. HTTP headers of the request sent from ContextProxy to the remote proxy (some

of the headers are truncated):

GET http://195.142.153.6/gsm/32306/42256/location HTTP/1.0

User-Agent: Mozilla/4.1 (compatible; MSIE 5.0; Symbian OS; Nokia 6600;452) Opera 6.20 [tr]

Host: 195.142.153.6

Accept: text/html, multipart/mixed, application/xml;q=0.9

Accept-Charset: windows-1252;q=1.0, utf-8;q=1.0, utf-16;q=1.0, iso-8859-1;q=0.6, *;q=0.1

Context
Proxy

Service
Client

GET
http://mycontext.

Service
Response

Mobile
Device

GET
http://195.142.
153.6/gsm/...

GET
http://195.142.
153.6/gsm/...

Service
Response

Remote
Proxy

Context Server
IP:195.142.153.6

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

43

Accept-Encoding: deflate, gzip, x-gzip, identity,*;q=0

Proxy-Connection: Keep-Alive

X-OS-Prefs: fw:176; fh:208; cd:16c; pl:3; pj:1; pa:0;

3. HTTP headers of the request sent from the remote proxy to context server (some

of the headers are truncated):

GET /gsm/32306/42256/location HTTP/1.0

User-Agent: Mozilla/4.1 (compatible; MSIE 5.0; Symbian OS; Nokia 6600;452) Opera 6.20 [tr]

Host: 195.142.153.6

Accept: text/html, multipart/mixed, application/xml;q=0.9

Accept-Charset: windows-1252;q=1.0, utf-8;q=1.0, utf-16;q=1.0, iso-8859-1;q=0.6, *;q=0.1

Accept-Encoding: deflate, gzip, x-gzip, identity,*;q=0

X-OS-Prefs: fw:176; fh:208; cd:16c; pl:3; pj:1; pa:0;

In these messages the IP address 195.142.153.6 is the IP address of a context server.

And this specific context server services its clients on the default HTTP port (port 80).

The context server might be as simple as just a static web server. In order to demonstrate

this, the current version of ContextProxy submits the location information as part of the

requested URL. This makes it possible to give a location-aware ‘redirector’ service

using just a static web server with some special configuration on the server side.

For example the following configuration entry on the popular Apache web server will

redirect mobile clients whose phones are registered to the GSM base station with LAC

32306 and cell id 42256 to “http://www.cs.bilkent.edu.tr/contact.html“ once they access

the URL “http://mycontext./location” on their mobile browsers:

Redirect /gsm/32306/42256/location http://www.cs.bilkent.edu.tr/contact.html

2.3.6 Using ContextProxy in Decentralized Architectures

So far we have mentioned about the usage of ContextProxy in a centrally managed

architecture. But it is also possible to use ContextProxy in a decentralized architecture.

To support decentralized architectures, ContextProxy makes use of the Bluetooth

wireless technology. Once a Bluetooth access point is set up and configured for

ContextProxy, ContextProxy can use a proxy server running on that access point to relay

the requests of service clients. For this scheme to work, the “Remote Proxy IP”

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

44

configuration parameter must be set to the IP address of the private network interface of

the access point and the “Remote Proxy Port” configuration parameter must be set to the

port number which the proxy server running on the access point listens to. After

ContextProxy is configured, the flow of messages between the service client,

ContextProxy, the remote proxy server and the context server is very similar to the flow

in the centralized architecture. Below we give a schematic representation for this traffic:

Figure 2-12. Message traffic in a decentralized architecture - Virtual host request

In this figure, the proxy server which was referred to as the ‘remote proxy’ in our

previous architecture is now termed the ‘local proxy’. This proxy server is still remote

from the perspective of ContextProxy but now it is a part of the local context. Also,

although they are depicted as two separate systems, in a typical implementation, the

architectural components local proxy and context server will reside on the same

computer system.

Context
Proxy

Service
Client

GET
http://mycontext.

Service
Response

Mobile
Device

Local
Proxy

Context Server

GET
http://10.0.0.x/

GET
http://10.0.0.x/

Service
Response

Bluetooth

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

45

The configuration task of specifying the IP address and the port number of the

remote proxy server can in fact be eliminated in a decentralized scenario if fixed values

are assumed. For instance, there may be a convention that the private network interface

of the Bluetooth access point will be assigned an IP address of 10.0.0.1 and the proxy

server will listen to port 8080. Or this configuration task can be automated if Bluetooth

Service Discovery Protocol (SDP) records containing these parameters are kept on the

access point. Please refer to chapter 3 for a more detailed discussion.

2.3.6.1 Configuring the Bluetooth Access Point

To instruct ContextProxy to connect to an access point, the “Connect to BT AP” menu

option should be selected from the “Options” menu:

Figure 2-13. Instructing

ContextProxy to connect to a

Bluetooth access point

Figure 2-14. Selecting the access

point from the list of discovered

devices

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

46

2.3.6.2 Setting up a Bluetooth Access Point on Windows XP Systems

The current implementation of ContextProxy uses Bluetooth RFCOMM protocol to dial-

up the access point. We have chosen Bluetooth DUN because it is common to find

Point-to-Point Protocol (PPP) and Password Authentication Protocol (PAP)

implementations in most communication devices. The access point should make a

Bluetooth Serial Port service (Bluetooth service class UUID 0X1101) available. When

instructed to connect, the mobile device will establish an RFCOMM connection with the

access point and they will set up a PPP link over Bluetooth. On the access point and on

the mobile device, there is no need for a real modem because the serial link will be

emulated using Bluetooth RFCOMM. But on the access point, a dial-up networking

daemon should be running:

Figure 2-15. Mobile Device and the Access Point

Mobile
Device

Access
Point

Dial-up Networking
Daemon

Bluetooth
RFCOMM

CHAPTER 2. CONTEXTPROXY: A LOCATION-AWARE HTTP PROXY

47

Sample configuration steps for setting up an access point on Windows XP are as

follows. On Windows XP, a Remote Access Server (RAS) is configured as the dial-up

networking daemon to accept connections from the mobile device:

1. Configure the Bluetooth stack to offer a serial port service on a specified COM

port (i.e. COM4).

2. Install the “communications cable between two computers” modem driver on

this communications port using the “Add Modem” wizard available on Windows

XP systems.

3. Set the software modem’s maximum port speed parameter to 115200 bps

because ContextProxy configures its modem with this value.

4. Set up a Remote Access Server on the new software modem by disabling virtual

private connections on the RAS and granting access to a user named “rasuser”.

The password for this user should also be “rasuser”. Again the username and the

password to access the RAS are hard-coded in ContextProxy.

48

Chapter 3

Concluding Remarks and Future Work

In this thesis we have suggested a new architecture which is, to a large extent, based on

existing widely available architectural components to provide an infrastructure for

context-aware applications. Our architecture introduces one new component,

ContextProxy, which in fact acts as a standard non-transparent HTTP proxy server. Our

architecture can be applied both in scenarios where a centrally managed server handles

all requests from clients of different independent contexts or in scenarios where a local

server handles requests of clients belonging to a common context. Within our

architecture, legacy clients capable of using a standard HTTP proxy server can be

employed in new context-aware applications without any further modification. Also new

clients can be developed without the context-awareness concern in mind. As part of the

thesis, we have also developed a proof-of-concept implementation of ContextProxy.

The current implementation of ContextProxy is a prototype rather than a complete

product. We have been using it to explore the technologies and standards available and

to seek ways in which these infrastructure components can be put together to support

context-aware services within our architecture. Future work to improve this prototype

may consist of the following tasks:

CHAPTER 3. CONCLUDING REMARKS AND FUTURE WORK

49

1. Current prototype needs to be manually configured to be able to relay the service

requests to a remote proxy. This is quite unavoidable when ContextProxy is

configured to use an IAP that connects to the network of an external GSM

service provider (i.e. in a centralized scenario). But in a decentralized scenario

where ContextProxy connects to a Bluetooth access point, manual configuration

can be avoided either by assuming fixed values for the remote proxy IP address

and TCP port parameters or by making use of the Bluetooth SDP. Assuming

fixed values (i.e. 10.0.0.1 for the remote proxy IP address and 8080 for the remote

proxy port) results in a less flexible architecture. But both of these parameters

could be put in an SDP record of a new service handle in the SDP database. This

way ContextProxy would be able to query the SDP records of the access point

for this record and configure itself automatically.

2. The device addresses of the inquired Bluetooth units do not provide a good

approximation of the user’s indoor location especially if more than one Bluetooth

beacons are in discoverable mode. But the receiver signal strength values which

can be read using the READ_RSSI command of the HCI layer could be

employed to estimate the relative distances of the discovered Bluetooth beacons

to the user. This approach would provide more accurate location information. We

have been exploring this possibility in our project. Unfortunately, Symbian

Bluetooth APIs do not expose the functionality to read the RSSI status value of

an established L2CAP link. But in order to overcome this limitation we have

implemented a new custom Bluetooth service called “RSSIService” that accepts

L2CAP connections from ContextProxy and sends the RSSI value available

through the access point’s Bluetooth HCI layer to ContextProxy. This way

ContextProxy is able to provide the RSSI values to the context server. But what’s

missing in our prototype is the client side implementation of this scheme.

3. GPS would be a much better choice for outdoor positioning. There are

commercial GPS receivers available on the market which can serially transmit

the GPS coordinates of the device to a Symbian phone using Bluetooth

RFCOMM. If such a GPS receiver is available, ContextProxy can be modified to

read those GPS coordinates and pass them to the context server.

CHAPTER 3. CONCLUDING REMARKS AND FUTURE WORK

50

The suggested tasks should not be difficult to implement for a researcher who is

skilled at using the related technologies, although realizing the complete architecture

requires considerable time and expertise.

51

Bibliography

[1] Mobile Application platforms and Operating Systems 2003-2008. ARC

Group. March 2004.

(http://www.arcgroup.com/NASApp/cs/ContentServer?pagename=marlin

/home&siteid=30000000461&mp_channelid=30000000378&MarlinView

Type=ARTICLEVIEW&mp_pubcode=IA&mp_articleid=20017281653)

[2] Webster’s New World Dictionary of American English, Third College

Edition. Simon & Schuster, Inc. 1988.

[3] Dey A K. Understanding and Using Context. Personal and Ubiquitous

Computing, 5:4-7. Springer-Verlag London Ltd. 2001.

[4] Schilit B, Adams N, Want R. Context-Aware Computing Applications.

Proceedings of Workshop on Mobile Computing Systems and

Applications. IEEE. December 1994.

[5] Chen G, Kotz D. A Survey of Context-Aware Mobile Computing

Research. Dartmouth Computer Science Technical Report. 2000.

[6] Infrared Data Association Web Site (http://www.irda.org).

[7] Infrared Data Association Serial Infrared Physical Layer Specification

version 1.4. May 2001.

BIBLIOGRAPHY

52

[8] Want R, Hopper A, Falcao V, Gibbons J. The Active Badge Location

System. ACM Transactions on Information Systems, 10(1):91-102.

January 1992.

[9] Abowd G D, Atkeson C G, Hong J, Long S, Kooper R, Pinkerton M.

Cyberguide: A Mobile Context-Aware Tour Guide. ACM Wireless

Networks, 3:421-433. 1997.

[10] Specification of the Bluetooth System, Core. Version 1.1. Bluetooth SIG.

February 2001.

[11] Working with Bluetooth Devices. Apple Computer, Inc. January 2004.

[12] Interagency GPS Executive Board (IGEB) Web Site

(http://www.igeb.gov).

[13] Dana P H. The Geographer’s Craft Project. Department of Geography,

The University of Colorado at Boulder. 2000.

[14] Mallick M. Mobile and Wireless Design Essentials. Wiley Publishing,

Inc. 2003.

[15] Rappaport T S. Wireless Communications Principles and Practice,

Second Edition. Prentice Hall PTR. 2002.

[16] Ward A, Jones A, Hopper A. A New Location Technique for the Active

Office. IEEE Personnel Communications, 4(5):42-47. October 1997.

[17] Harter A, Hopper A, Steggles P, Ward A, Webster P. The Anatomy of a

Context-Aware Application. Proceedings of the ACM/IEEE MobiCom.

August 1999.

[18] Priyantha N B, Chakraborty A, Balakrishnan H. The Cricket Location-

Support System. 6th ACM International Conference on Mobile

Computing and Networking. August 2000.

[19] Hypertext Transfer Protocol – HTTP/1.1, World Wide Web Consortium

RFC 2616. Available at

http://www.w3.org/Protocols/rfc2616/rfc2616.html

BIBLIOGRAPHY

53

[20] Aksit M, Elrad T, Kiczales G, Lieberherr K, Ossher H. Discussing

Aspects of AOP. Communications of the ACM, 44(10):33-38. October

2001.

[21] Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold W G.

An Overview of AspectJ. Proceedings of the European Conference on

Object-Oriented Programming. June 2001.

[22] Symbian Web Site (http://www.symbian.com)

[23] Nokia 6600 smart phone product features, available at

http://www.nokia.com

