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ABSTRACT

ENTANGLEMENT IN ATOM-PHOTON SYSTEMS

Muhammet Ali Can

PhD in Physics

Supervisor: Prof. Dr. Alexander S. Shumovsky

October, 2004

In this work we propose a new principle from the point of view of quantum fluc-

tuations of observables. This new principle can be considered as an operational

definition of ME states. Moreover, we show the existence of perfect entangled

states of a single “spin-1” particle. We give physical examples related to the

photons, and particle physics. We show that a system of 2n identical two-level

atoms interacting with n cavity photons manifests entanglement and that the set

of entangled states coincides with the so-called SU(2) phase states. In particular,

violation of classical realism in terms of Greenberger-Horne-Zeilinger (GHZ) and

Clauser-Horne-Shimoni-Holt (GHSH) conditions is proved. We also show that

generation of entangled states in the atom-photon systems under consideration

strongly depends on the choice of initial conditions

In order to obtain maximally robust entangled states we have combined max-

imum principle with minimum of energy requirement for stabilization, called

Mini-max principle. We discuss the generation and monitoring of durable atomic

entangled state via Raman-type process, which can be used in the quantum in-

formation processing. It is shown that the system of two three-level atoms in Λ

configuration in a cavity can evolve to a long-lived maximum entangled state if

the Stokes photons vanish from the cavity by means of either leakage or damping.

We presented some results based on the application of spherical wave repre-

sentation to description of quantum properties of multipole radiation generated

by atomic transitions. In particular, the angular momentum of photons including

the angular momentum entanglement, the quantum phase of photons, and the

spatial properties of polarization are discussed.

Keywords: Quantum Information Theory, Cavity Quantum Electrodynamics, En-

tanglement, Maximally Entangled States, Mini-max Principle, Robust entangle-

ment, Multipole Radiation, Angular Momentum of Photons .
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ÖZET

ATOM-FOTON SİSTEMLERİNDE DOLAŞIKLIK

Muhammet Ali Can

Fizik, Doktora

Tez Yöneticisi: Prof. Dr. Alexander S. Shumovsky

Ekim, 2004

Bu çalışmada kuvantum dalgalanmaları bakış açısından yeni bir prensip önerildi.

Bu yeni prensip maksimum dolaşık durumların işlevsel tanımı olarak ele alınabilir.

İlaveten spin-1 tek bir parçacığın da maksimum dolaşık durumda olabileceği

gösterilmektedir. Bu durum fotonlar ve parçacık fiziği için örneklendi. 2N

sayıdaki iki seviyeli atom ve N fotonlu bir oyukta(odacık) atom-foton etkileşimi

sonucu oluşan dolaşık durumların SU(2) faz durumlarıyla örtüştüğünü gösterdik.

Özel olarak klasik gerçelliğin yadsınması Greenberger-Horne-Zeilinger(GHZ) ve

Clauser-Horne-Shimoni-Holt(CHSH) koşullarına uygun olarak gösterildi. Bunun

ötesinde atom-foton sistemlerinde dolaşık durumların üretimi başlangıç duru-

muna bağlıdır.

Maksimum dolaşık durağan durumların yaratılması, maksimum dolaşıklılık ve

minimum enerji koşullarının sağlanmasıyla Minimum-maksimum prensibini elde

ettik. Raman tipi süreçlerle, kuvantum bilgi işlemlenmesinde kullanılmaya uygun

durağan dolaşık durumların yaratılması ve gözlemlenmesini tartıştık. İki Lambda

tipi atomun oyukta Stokes fotonların emilimi ya da oyuktan kaçması sonucu uzun

ömürlü maksimum dolaşık duruma ulasabileceği gösterildi.

Küresel dalgalar kullanarak, atomik geçişler sonucu oluşan çok kutuplu

ışınımın kuvantum özellikleriyle ilgili bir takım yeni sonuçlar sunulmuştur. Özel

olarak fotonların açısal momentumu ve dolaşık açısal momentum durumları, faz

ve polarizasyon özellikleri ele alındı.

Anahtar sözcükler : Kuvantum Bilgi Teorisi, Oyuk Kuvantum Elektrodinamiği,

Dolaşıklık, Maksimum Dolaşık Durumlar, Mini-maks Prensibi, Kalıcı Dolaşıklık,

Çok Kutuplu Radyasyon, Fotonların Açısal Momentumu .
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Chapter 1

Introduction

The notion of entanglement lies in the very heart of quantum information, which

is a modern branch of science based on quantum mechanics and information

theory. In particular, the use of quantum information protocols can lead to an

unprecedent security of communication channels and high speed of computations.

The two main problems related to the entanglement are on the one hand to

describe entanglement quantitatively as a physical phenomenon and to find con-

ditions under which entanglement becomes robust. These problems are discussed

in the present Thesis. The main physical objects, that we discuss in the context

of realization of entangled states, are atoms and photons.

Atoms and ions, interacting with cavity photons, are basic building blocks of

quantum information processing. At least, they represent a useful tool for test-

ing quantum algorithms in communications, cryptography, and computing [1, 2].

Realization of different quantum information processes, such as teleportation [3],

requires perfect (maximum) and long-lived (robust) entangled states. In general,

two-level atoms are used for realization of entangled states. Unfortunately, the

lifetime of entanglement in atomic systems is mostly specified by the lifetime of

excited atomic states with respect to dipole transitions and therefore is quite

short.

1
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|e>
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|g>

Atom-1 Atom-2

Detector

Figure 1.1: Two two-level atoms in a single mode leaky cavity, proposed in Ref.[4]

An interesting proposal has been made in Ref.[4] (for further discussion, see

Refs. [5] and [6]). It was shown that a pure entangled state of two atoms in

an optical resonator can be obtained through the exchange by a single photon

(see Fig.(1.1)). Since the excitation of the system either is carried by a cavity

photon or is shared between the atoms, the absence of the photon leakage from

the resonator can be associated with the presence of atomic entanglement. This

entanglement can be observed in the process of continuous monitoring of the

cavity decay [4]. The importance of this scheme is caused by the fact that its

realization seems to be easy available with present experimental technique. The

result can also be generalized on the multi-atom systems [6].

In view of the practical realization, it seems to be more convenient if the

existence of atomic entanglement would manifest itself via a certain signal photon

rather than via the absence of photons. This implies that there should be at least

two different modes interacting with the atoms such that the photon of one of

them provides the correlation between the atoms, while the photon of the other

mode can freely leave the resonator to signalize the rise of atomic entanglement.

This leads to the idea of
∧

-type atoms instead of two level atoms. As we will see

in proceeding chapters, it is much more practical than the previous scheme.

Two-photon entangled states are the most popular and practical realizations

for fundamental and applied physics [7]. They are generated by a nonlinear crystal

or by a quadrupole transition from an atom. It is well known that the atomic
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and molecular transitions emit the multipole radiation represented by spherical

electromagnetic waves [8]. In classical picture, either plane or spherical waves

can be used since both of them form the complete orthogonal sets of solutions

of the wave equation. However, in quantum picture, there is a fundamental

difference between these two representations of electromagnetic field. First of

all, the plane waves of photons correspond to the states of the field with given

linear momentum. At given wave number k, they are specified by only four

operators of creation and destruction with two different polarizations [9, 10]. At

the same time, the spherical waves of photons correspond to the states with given

angular momentum. At given k, total angular momentum j ≥ 1 and parity, they

are specified by 2(2j + 1) ≥ 6 different operators of creation and destruction

[10, 11]. Since the components of linear and angular momenta do not commute

with each other, the two representations correspond to the physical observables,

which cannot be measured simultaneously. Therefore, in order to describe the

quantum multipole radiation, we have to deal with the spherical waves of photons

rather than plane waves [10]. The quantum properties of multipole radiation

important for quantum information processing are discussed in this Thesis.

The Thesis is organized as follows.

First, we summarize some introductory concepts for developments of Quantum

Information Theory such as qubits, density matrix, reduced density matrix, en-

tanglement, information entropy, reduced information entropy and concurrence.

Then we give some physical realizations for qubits based on two level atoms,

spin-1
2

states and photon polarizations.

In the third chapter, we discuss variational principle for definition of com-

pletely entangled states, which is based on the idea that complete entanglement

is a manifestation of quantum fluctuations at their extreme. Next, we use the

phase states of the SU(2) algebra to describe the maximally entangled states of

qubits.

In the fourth chapter, we consider a certain Mini-max Principle that can

be used to stabilize the entangled states. As an example of some considerable

interest, we examine the system of two-
∧

type atoms in a cavity.
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In the fifth chapter, we consider quantum properties of multipole photons

important for quantum information processing, such as polarization, angular mo-

mentum, and orbital part of the angular momentum. We also discuss the possi-

bility of creation of entangled photon pairs and single-particle entanglement.

Finally, at the last chapter, we summarize the obtained results.



Chapter 2

Entanglement of Qubits

In this chapter, as an introduction, I will summarize the necessary concepts for

the development of quantum information theory starting from the definition of

qubit. Next I will give some examples about physical realizations of qubits in

various systems like polarization of photons, spin systems and atomic levels.

2.1 Bits and Qubits

The fundamental indivisible notion of classical information theory is a BIT which

is 0 or 1, false or true. Every computational tasks are done on the collection of

these fundamental ingredients. The corresponding unit of quantum information

theory is called the Quantum Bit or QUBIT. Although classical bit can only take

either 0 or 1, a quantum bit can take both with some probability. Actually it is a

representation of a physical system in the two dimensional Hilbert space H2 with

basis {|0〉, |1〉}. The most general state (vector) in this two dimensional Hilbert

space is a linear superposition of base vectors with complex coefficients,

|ψ〉 = a|0〉+ b|1〉 (2.1)

where |a|2 + |b|2 = 1 conserves the probabilities. A qubit can contain any value

of coefficients a and b in Eq(2.1).

5
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Another possible way to describe a two dimensional Hilbert space is to use

vector-column notations. For this aim, we can map our basis to the following

orthogonal and normalized vectors

|0〉 ←→

 1

0


 , |1〉 ←→


 0

1


 . (2.2)

One of the main differences between classical and quantum bits is that in

quantum domain we cannot measure a qubit without disturbing it. In quan-

tum mechanical language, measurement is projection of the unknown qubit onto

the basis {|0〉, |1〉}. Then, the probability to obtain |0〉 is |a|2 and for |1〉 it is

|b|2. After the measurement, the state of the quantum system is in one of the

measurement bases.

Because of the superposition principle in quantum mechanics, the power of

quantum information increases with the number of qubits. For N-qubit system,

we have tensor product of two-dimensional Hilbert spaces H =
⊗N

n=1 H2 with

the basis {|0...0〉, |0...01〉, |0...10〉, |0...11〉, ...|1...1〉}, which can also be written as

{|0〉N , |1〉N , ...|2N − 1〉N} in binary basis. Then, the most general N-qubit state

can be written as

|ψ〉 =
2N−1∑

x=0

ax|x〉N (2.3)

with the normalization condition
∑

x |ax|2 = 1 over complex numbers ax. Now

the probability to get |x〉N is |ax|2.

In order to generalize N-qubit system into matrix notation we should follow

the tensor product rule for two qubit system


 x0

x1


⊗


 y0

y1


 =




x0y0

x0y1

x1y0

x1y1




. (2.4)
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2.2 Density Matrix

Representation of a quantum system as a state vector in a Hilbert Space is a

complete description of its physical properties however this is not always possible.

Most of the times the state of the system is not known precisely, and usually we

are interested in a small subsystem of a larger system. This is always true when

we have an open quantum system, where the system of interest is interacting with

a larger system called environment. Then, our subsystem is a part of a bigger

system, and we cannot represent its state as a state vector. We need another

object called density matrix representation. For a pure state, density matrix can

be defined as

ρ = |ψ〉〈ψ| (2.5)

and due to the normalization condition 〈ψ|ψ〉 = 1,

Trρ = 1. (2.6)

Expectation value of any operator acting globally in the space of the system can

be written as

〈A〉 = 〈ψ|A|ψ〉 = Tr(Aρ) = Tr(ρA). (2.7)

It is clear that every measurable information is included in the density matrix

representation, therefore it is an physically equivalent representation to the state

vector formalism.

If we know that the state of the system is prepared with some probability pk

in various states |ψk〉, then we can write the density matrix as

ρ =
∑

k

pk|ψk〉〈ψk|. (2.8)

In this case, expectation value of an operator is

〈A〉 =
∑

k

pk〈ψk|A|ψk〉 = Tr(Aρ). (2.9)

Note here that probabilities enter two times in Eq(2.9), quantum (〈ψk|A|ψk〉) and

statistical (pk) probabilities. Such states are called mixed states.

There are some properties of density matrix;
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• ρ is Hermitian; ρ = ρ†,

• ρ is positive semi-definite; for any |ψ〉, 〈ψ|ρ|ψ〉 ≥ 0,

• Trρ = 1 and Trρ2 ≤ 1, equality holds for pure states,

2.2.1 Reduced Density Matrix

Assume that we have two systems A and B with orthonormal and complete bases

{|ai〉} and {|bj〉} in Hilbert spaces HA and HB. The Hilbert space of this bipartite

system HA ⊗HB has basis {|ai〉 ⊗ |bj〉}. Then, any pure state can be written as

|ψ〉AB =
∑

i,j

cij|ai〉 ⊗ |bj〉 (2.10)

with normalization condition
∑

i,j |cij|2 = 1. Now, the expectation value of an

observable acting only one of the subsystem A is

〈OA ⊗ IB〉 = AB〈ψ|OA ⊗ IB|ψ〉AB

=
∑

i,j,i′,j′
c∗ijci′j′〈ai| ⊗ 〈bj|(OA ⊗ IB)|ai′〉 ⊗ |bj′〉

=
∑

i,i′,j
c∗ijci′j〈ai|OA|ai′〉

= Tr(OAρA), (2.11)

where

ρA = TrB(|ψ〉ABAB〈ψ|)
=

∑

i,i′,j
c∗ijci′j|ai〉〈ai′| (2.12)

is called reduced density matrix. There is partial trace over the complete basis of

subsytem B. Reduced density matrix has the same properties of density matrices

described in previous section.

2.3 Entanglement of Qubits

Entanglement is one of the most mysterious concepts in quantum world. It

touches on the conceptual problems of reality and locality in quantum physics
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as well as the more technological aspects of quantum communications, cryptog-

raphy, and computing. In particular, the methods of quantum key distribution

in communication channels secured from eavesdropping are based on the use of

entangled states.

The term verschränkt is first used by Schrödinger Ref.[12] in German and

translated to English as entangled state by himself. It became popular after

the famous paper by Einstein, Podolsky and Rosen Can Quantum mechanical

description of physical reality be considered complete? Ref.[13] is used as an

objection to quantum reality of the nature. In turn, the realization of quantum

computer, quantum communication, and quantum teleportation Ref.[14, 15, 16,

17, 18] depend on the ability to form entangled states of initially uncorrelated

single-particle states. Non-classical correlations between the systems can be the

signature for entanglement. We can simply define an entangled state as one,

which cannot be represented as the product states of individual sub-systems or

subspaces. Therefore, in general it is a property of multi-party systems. If there

is no entanglement between the two parties, it cannot be created applying local

operations. In addition the amount of entanglement cannot be changed via local

unitary operations so that it is an invariant quantity under local transformations.

The most general 2-qubit state in a product Hilbert space H2 ⊗H2 can be

written as

|ψ〉 = a|00 > +b|01〉+ c|10〉+ d|11〉. (2.13)

Depending on the coefficients a, b, c, d this state can describe either an entangled

state or not. For example if c = d = 0, then it reduces to a|00〉+ b|01〉 which can

be written as |0〉 ⊗ (a|0〉 + b|1〉). In other words, the subsystem A can be factor

out, which means that this state is unentangled one. However, if b = c = 0, then

Eq(2.13) becomes a|00〉 + d|11〉, which can not be written as a tensor product

of its constitutes, so it is an entangled state. Since the complex coefficients

a, b, c, d are only limited with normalization condition, there are infinite number

of entangled states in H2 ⊗ H2. Historically the most famous and important

example to entangled state is EPR states

|φ±〉AB =
1√
2
(|00〉AB ± |11〉AB)
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|ψ±〉AB =
1√
2
(|01〉AB ± |10〉AB) (2.14)

which form a basis for the four-dimensional Hilbert space, H2 ⊗H2. They are

important, because the amount of entanglement is maximal for these states, which

means that Bell inequalities Ref.[19] are maximally violated.

2.4 Information Entropy

Entropy of any probability distribution,p1, p2, ...pn can be defined as

H(p1, ..., pn) ≡ −∑
x

pxlogpx. (2.15)

It is called the Shannon entropy, Ref.[20]which quantifies how much information

is gained after the measurement or the amount of uncertainty about the measure-

ment before we learn its value. In a sense, entropy quantify the lack of knowledge.

If the system is in a definite state then, entropy is zero, but if we know nothing

about the system, it is equally likely to find the system in any of its possible

states so that entropy is maximum. Here we take 0log0 ≡ 0.

When we have binary outcomes for the measurements of the system, we can

define binary entropy as

H(p) ≡ −plogp− (1− p)log(1− p) (2.16)

where p and 1−p are the probabilities of the outcomes. Binary entropy is maximal

H(p) = 1 when p = 1
2
, i.e. both outcomes are equally probable.

Quantum counterpart of the probability distribution is the density matrix.

Then, the Von Neumann entropy Ref.[21, 22]is the corresponding quantity for

Shannon entropy in quantum information theory. It is defined as

S(ρ) ≡ −Tr(ρlogρ) (2.17)

where ρ is the density matrix of the system. In terms of the eigenvalues of the

density matrix λx (represents the spectrum of ρ ) it can be re-written as

S(ρ) = −∑
x

λxlog2λx (2.18)
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Since it depends only on eigenvalues, it is invariant under unitary transformation

of basis, S(UρU−1) = S(ρ). For a pure state ρ = |ϕ〉〈ϕ|, whether it is entangled

or not in a n-dimensional space, S(ρ) = 0 meaning that there is no uncertainty in

the knowledge of the system. Everything is known. If we have completely mixed

state ρ = I/n in n-dimensional space, then S(ρ) = logn, that is our knowledge

about the system is minimal.

What happens when we measure only one of the subsystems of the whole

system? To do this we insert reduced density matrices in the Von Neumann

entropy formula Eq(2.17). Let’s first do this for a separable state for 2-qubits,

|ψ〉 = |00〉AB. Here total density matrix of the whole system is ρ = |00〉〈00|, but

the reduced density matrix for the sub-system A is ρA = TrBρ =B 〈0|ρ|0〉B +B

〈1|ρ|1〉B. If we calculate the entropy, S(ρA) = S(ρB) = 0. This means that

there is no uncertainty about the information of the system whether we measure

only one of its subsystems, A or B. They are called uncorrelated systems. Now

we can repeat the same calculation for one of the maximally entangled states in

Eq(2.14) and we get ρA = ρB = 1
2
I2×2 for reduced density matrices. It is clear

that although the combined system AB is in a pure state, the reduced density

matrices are in completely mixed states so that S(ρA) = S(ρB) = log22 = 1. In

other words we have maximum uncertainty about the whole system AB when

we only measure the sub-systems. We cannot extract any information about the

whole system by only looking at its subsystem. Rather the information is encoded

in the nonlocal quantum correlations.

2.5 Concurrence

Two qubit entanglement is very well understood, moreover there is a successful

measure of entanglement called Concurrence or Entanglement of formation (a

function of Concurrence) Ref.[24, 25], describing the amount of entanglement

in the system. Its aim is to quantify the amount of quantum communication

necessary to create a given quantum state. Any measure of entanglement should

satisfy some properties. One of them is that it should be invariant under local
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transformations. Concurrence of a state described by density matrix ρ has the

form

C(ψ) = Max{0, λ1 − λ2 − λ3 − λ4} (2.19)

where λi’s are square roots of eigenvalues of ρρ̃ in descending order λ1 > λ2 >

λ3 > λ4. Here ρ̃ = (σy⊗σy)ρ
∗(σy⊗σy) and σy is one of the Pauli matrices and ρ∗

is the complex conjugation of ρ. This definition of Concurrence is valid both for

mixed (Trρ2 < 1) and pure states (Trρ2 = 1). For a pure state like in Eq(2.13),

Concurrence can be written as Ref.[26]

C(ψ) = 2
√

detρA = 2|ad− bc|. (2.20)

This can be proven using the definition of concurrence. Since it is a pure state

ρ = ρ∗ = |ψ〉〈ψ| and σy = −i(|0〉〈1| − |1〉〈0|). We obtain

(σy ⊗ σy)|ψ〉 = −(d|00 > −c|01〉 − b|10〉+ a|11〉).

Then

ρρ̃ = 2(ad− bc)




ad −ac −ab aa

bd −bc −bb ba

cd −cc −cb ca

dd −dc −db da




.

This matrix has only one nonzero eigenvalue, 4(ad−bc)2. After taking the square

root of this, the concurrence can easily be found as in Eq(2.20). For the sake of

simplicity, we take the coefficients a, b, c, d as real numbers.

For separable or unentangled states, ρAB = ρA⊗ ρB, concurrence, C = 0, and

for completely entangled states like Bell states, C = 1. Although concurrence

can be used as a measure of entanglement in the system, we can really check the

amount of information in the system by looking the information entropy.

The entanglement of formation is a function of the concurrence. It is given as

E = H(
1 +

√
1− C2

2
) (2.21)

where H is the binary entropy function in Eq(2.16). Entanglement of formation

gives the same result as we get form the entropy of the reduced density matrices.

In other words, E = S(ρA) = S(ρB).



CHAPTER 2. ENTANGLEMENT OF QUBITS 13

2.6 Some Physical Realizations of Qubits

As we indicated before, a qubit can be realized by any two level quantum system.

Some examples can be a spin-1
2
, system like spin of an electron, ground and

excited levels of an atom and polarization states of a photon. Now, let’s consider

them one by one.

2.6.1 Spin-1
2 qubits

For a realization of a qubit we need two distinct well separated and orthogonal

levels to identify them with |0〉 and |1〉. A spin-1
2

system has spin up | ↑〉 and spin

down | ↓〉 states along one of the chosen axis like z-axis. Then any particular qubit

Eq(2.1) with arbitrary coefficients can be described by a particular orientation of

the spin in real space as

|ψ(θ, φ)〉 =


 cos θ

2

sin θ
2
eiφ


 . (2.22)

Here θ and φ describe the orientation of the qubit on a sphere called Bloch Sphere,

Fig2.1. Every points on the surface of this sphere identifies a particular qubit.

However this is not the only story. To see the correspondence, we should pass to

the density matrix representation.

ρ(θ, φ) = |ψ(θ, φ)〉〈ψ(θ, φ)|

=


 cos θ

2

sin θ
2
eiφ




(
cos θ

2
sin θ

2
e−iφ

)

=
1

2
I +

1

2


 cos θ sin θe−iθ

sin θeiθ − cos θ




=
1

2
(I + n̂.~σ) (2.23)

where n̂ = (sin θ cos φ, sin θ sin φ, cos θ) identifies the point on the Bloch sphere.

Every point on the surface of the sphere identifies a pure state of the qubit while

points inside the sphere identify mixed states and for this case we can replace n̂
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|0>

|1>

x

y

z

θ

φ

|Ψ>

Figure 2.1: Visualization of a Qubit in Bloch sphere

with a vector ~P identifying a point inside the sphere, 0 < |~P | < 1. For mixed

states, there can be a decomposition like

ρ(~P ) = λρ(n̂1) + (1− λ)ρ(n̂2), (2.24)

if ~P = λn̂1+(1−λ)n̂2.Therefore there are infinitely many statistical combinations

of pure states to result in a particular mixed state.

An applied magnetic field can rotate this orientation in desired way to realize

the qubit gate operations which, is necessary in order to realize any quantum

computation protocol.
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E1

E0

��
= E1-E0

|0>

|1>

Figure 2.2: Energy levels of a two level atom

2.6.2 Two Level Atoms

It is well known that EM field, interacting with a two level atom, is mathemat-

ically equivalent to a spin-1
2

particle interacting with the field. This makes the

two level atom one of the possible candidate for quantum computation. We can

store information in a two level atom and process the information by applying

unitary transformations; moreover, we can carry this information from one atom

to another, using photon mediated interaction. Thus, photons are carriers of the

information and atoms are the memory for storing the information.

Besides these advantageous, physical realization of a two level atom can be

difficult. Normally, atoms have many electronic levels, but if we use a single

mode (frequency) and very well defined energy for the field, we can select only

two of these levels and use them for our purposes. In other words, there are only

two limitations; conservation of energy and selection rules, i.e. conservation of

angular momentum and parity.

The incident photon should have the energy close to the difference of the

energy levels of atoms like in the Fig2.2.

h̄ω = E1 − E0.

Under the dipole approximation, from the expansion of ~r in terms of spher-

ical harmonics in the calculation of matrix elements of interaction Hamilto-

nian, 〈l1,m1|~r|l2,m2〉, we get that the matrix elements are nonzero only if
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∆m = m2 − m1 = ±1 and ∆l = l2 − l1 = ±1. This is the selection rule for

the dipole interaction.

2.6.3 Polarization States of a Photon

Photon is another example of a two-level system since it has two independent

polarizations (helicities). Photons are massless particles and have a propagation

direction perpendicular to the ~E and ~B fields (in the case of plane waves). There-

fore we can only talk about rotations about the direction of propagation. Since

photons are massless particles, there is no rest frame. Therefore, we cannot talk

about the properties of a general rotation like in the case of a massive particles.

There are linear and circular polarization of photons. We can call linear

polarization states as |x〉 (horizontal) and |y〉 (vertical). Under the rotations

about the axis of propagation, they transform as

 |x′〉
|y′〉


 =


 cos θ sin θ

− sin θ cos θ





 |x〉
|y〉


 (2.25)

This 2× 2 matrix has eigenstates and eigenvalues as

|R〉 =
1

2


 1

i


 =

1

2
(|x〉+ i|y〉), eiθ

|L〉 =
1

2


 i

1


 =

1

2
(i|x〉+ |y〉), e−iθ. (2.26)

They are called right and left circular polarization states which are also the eigen-

states of Pauli matrix σy =


 0 −i

i 0


. Then both linear and circular polariza-

tion states can be used as qubits.

2.7 Summary

In this chapter we have discussed some fundamental notions of quantum infor-

mation theory such as qubits, density matrix, entanglement, information entropy
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and concurrence. Some realizations of a single qubit is also discussed at the last

part of this introductory chapter.



Chapter 3

Maximum Principle For

Entanglement

In this chapter, I will summarize a new approach to maximum entangled states

from the point of view of quantum fluctuations. In the second part, following the

relation between two-level atoms and spin-1
2

systems and using the machinery of

group theory, I will show the importance and advantageous of using SU(2) phase

states for entangled two-level atomic systems.

3.1 Maximum Principle

Very often, the existence of entanglement is verified in terms of violation of Bell’s

inequalities and their generalizations Ref.[27, 28, 29, 30, 31, 32]. Another way is

based on the use of Greenberger-Horne-Zeilinger (GHZ) theorem Ref.[33]. A pos-

sibility to introduce more general inequalities is also discussed (see Ref.[34]). It

should be noted that the use of Bell’s inequalities and their numerous generaliza-

tions demonstrate nothing but the nonexistence of hidden variables in quantum

mechanics. Moreover, it is possible to say that the unique, general, and mathe-

matically correct definition of entanglement still does not exist (e.g., see Ref.[34]).

18
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An interesting approach has been proposed in Ref.[34]. Considering the state

shared between Alice and Bob as a quantum communication channel, the authors

concluded that the information in the case of entanglement is carried mostly by

the correlations between the ends of the channel. These correlations manifest

themselves by means of the local measurements on the sides of the channel.

The maximum (complete) entangled state corresponds to a pure state of a

system and can be associated with the amount of quantum fluctuations in this

state Ref.[6]. In particular, it was shown that the maximum entanglement can be

defined to be the manifestation of quantum fluctuations at their extreme Ref.[35].

It should be stressed that entangled states are equivalent to the maximum en-

tangled states to within a certain local transformation such as stochastic local

transformations assisted by classical communications Ref.[36] and Lorentz trans-

formations Ref.[37]

The main ideas of the approach developed in Ref.[35, 36, 37, 38] consist in the

definition of the fundamental set of observables {O}, specifying a given system S

in the Hilbert space HS, and in the calculation of the total amount of fluctuations

of those observables.

Consider an arbitrary quantum system S defined in the Hilbert space HS,

spanned by the vectors

|0〉, |1〉, · · · |d− 1〉, (3.1)

where d = dimHS. Depending on the specification of the system S, this space

may contain either the states of a single particle or the states of a composite

system. In the latter case, the space HS is represented by a tensor product

of the states, corresponding to the individual particles (bipartite or multipartite

system). The results we are going to list below are independent of the specification

of the system S.

The fundamental observables can be associated with the dynamic symmetry

group G in HS Ref.[38, 39]. Namely, the fundamental observables form a ba-

sis of the Lie algebra L such that G = exp(L). Since the observables should be
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represented by the Hermitian operators, sometimes it is necessary to use the com-

plexified Lie algebra Lc = L⊗C instead of L because some certain symmetries of

the quantum system S can be hidden, so that they can only manifests themselves

in complexified algebra. An example is provided by the dynamical symmetry

group SU(2) of the Hilbert space, when the observables are represented by the

spin operators, forming an infinitesimal representation of the SL(2,C) algebra,

which is known to be the complexification of the SU(2) algebra.

It should be stressed that the complexification of the dynamic symmetry

group plays very important role in the description of entanglement. In particu-

lar Stochastic Local Operations Assisted by Classical Communications (SLOCC)

corresponds to the transformations g ∈ SL(2,C) Ref.[36].

For example, in the simplest case of a single qubit (spin-1
2

particle), the dy-

namic symmetry group of the two-dimensional Hilbert space H1/2 is G = SU(2),

while the observables are given by the Pauli operators





σx = |0〉〈1|+ H.c.

σy = −i|0〉〈1|+ H.c.

σz = |0〉〈0| − |1〉〈1|
(3.2)

forming the two-dimensional representation of the Lie algebra LC = SL(2,C).

It is known that the corresponding group GC = SL(2,C) represents the com-

plexification of the dynamic symmetry group G = SU(2) of the two-dimensional

Hilbert space of spin-1
2

system.

If the system consists of more than one qubit, the Lie algebra LC = SL(2,C)

specifies the local observables, and the dynamic symmetry groups have the form

G =
n∏

k=1

SU(2), GC =
n∏

k=1

SL(2,C),

where n denotes the number of qubits.

The quantum fluctuation of an observable Oi, forming a basis of Lie algebra

L, in a state ψ ∈ HS is represented by the variance

Vi(ψ) = 〈ψ|O2
i |ψ〉 − 〈ψ|Oi|ψ〉2. (3.3)
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or

Vi(ρ) = Tr(ρO2
i )− (Tr(ρOi))

2 (3.4)

for mixed states.

Then, the total amount of quantum fluctuations in a given state takes the

form

Vtot(ψ) =
∑

i

Vi(ψ). (3.5)

This quantity is similar to the so-called skew information that has been intro-

duced by Wigner Ref.[40] as a measure of knowledge with respect to the physical

quantities, whose measurement requires the use of the macroscopic apparatuses.

By definition given in Ref.[35], the maximum entanglement in the system S

corresponds to the maximum of the total amount of quantum fluctuations

V (ψME) = max
ψ∈HS

Vtot(ψ) (3.6)

or

V (ρME) = max
{ρ}

Vtot(ρ). (3.7)

for mixed states.

By construction, this condition expresses a variational principle, defining the

ME states in the similar way with the equilibrium states in quantum statistical

mechanics (principle of the maximum entropy). It is very easy to check that

conventional ME states in qubit, qutrit, and so on systems obey the condition

(3.6).

From the physical point of view, the above definition (3.6) aligns ME with the

known phenomena of coherence and squeezing, which are also defined in terms of

quantum fluctuations. In particular, the coherent states can be defined as those,

manifesting the minimal amount of quantum fluctuations (minimal remoteness).

Thus, the coherent and ME states represent the two opposite poles of the quantum

world with respect to the classical description of a system - the maximally closed

pole and the maximally remote pole, respectively.
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This condition (3.6) is further simplified when the Lie algebra L of the essential

observables form a Casimir operator.

∑

i

O2
i = C. (3.8)

In this case

V (ψME) = max
ψ∈HS

Vtot(ψ) = C

under the condition that

〈ψME|Oi|ψME〉 = 0,∀i, (3.9)

or

Tr(ρMEOi) = 0,∀i, (3.10)

for maximally entangled mixed states.

This last conditions are very useful and operational comparing to the variation

principle. It is the definition of maximally entangled states in terms of what can

be measured. As an example for spin states there is always one or more Casimir

operators. Therefore we can easily apply this conditions for such cases.

Before we begin to discuss some examples of the variational principle, it should

be noted that from there could be different choices of observables, corresponding

to a given Hilbert space. From the physical point of view, they correspond to

the measurements we are going to perform over the system or its parts. For

example, the system with 3-dimensional Hilbert space can be specified either by

the dynamic symmetry group SU(3), corresponding to the states of a three-level

system, or by the dynamic symmetry SU(2), corresponding to the spin-1 particle

(qutrit). In the former case, the number of independent observables, provided by

the independent generators of the SU(3) algebra, is equal to 8, while in the letter

case there are only 3 independent observables, represented by the generators of

the SU(2) algebra in three dimensions. Now lets consider some examples.
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3.1.1 single qubit case

Since the definition of ME states (3.9) is independent of the specification of the

system S, it should also be valid in the case of a single particle.

Consider first as an illustrative example the case of a single qubit, when an

arbitrary pure state in H1/2 can be represented in the following form

|ψ(1/2)〉 =
1∑

`=0

ψ`|`〉,
1∑

`=0

|ψ`|2 = 1, (3.11)

where |0〉 and |1〉 are the base states in H1/2. Since the measurements in this

case are provided by the Pauli operators (3.2), the conditions (3.9) take the form





Re(ψ0ψ
∗
1) = 0

Im(ψ0ψ
∗
1) = 0

|ψ0|2 − |ψ1|2 = 0

In view of the normalization condition in (11), these equations have only trivial

solution ψ0 = ψ1 = 0. Thus, the ME state of a single qubit does not exist.

3.1.2 2-qubits case

For two level systems such as spin states of an electron, electronic levels of a two

level atoms or polarization states of a photon etc. we have SU(2) or SL(2,C)

algebra as an underlying symmetry. Then the fundamental or essential set of

observables are the well known Pauli spin operators.

σx = |0〉〈1|+ |1〉〈0| =

 0 1

1 0


 ,

σy = −i|0〉〈1|+ i|1〉〈0| =

 0 −i

i 0


 ,

σz = |0〉〈0| − |1〉〈1| =

 1 0

0 −1


 . (3.12)
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They form an infinitesimal representation of the compact Lie algebra SL(2, C)

and the Casimir operator is
∑

i=x,y,z

σ2
i = 3. (3.13)

Now, let us drive the well known EPR states from the variational principle.

Here there are two spin-1
2

particle. Then the Hilbert space is a direct product of

two individual spaces or H2⊗2 = H2 ⊗H2. In this direct product space a most

general pure state can be written as

|ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉 (3.14)

with the normalization condition |a|2 + |b|2 + |c|2 + |d|2 = 1. The dynamical

symmetry group is G = SU(2) × SU(2). Therefore, there are, as a total, 6

observables, which are the Pauli matrices for each spin-1
2

particle. The maximum

of the total variance for N spin-1
2

particles is

max
ψ

Vtot(ψ) = 3N (3.15)

and for two qubits case N = 2.

Applying the condition Eq.(3.9) gives

Re(ac∗) + Re(bd∗) = 0

Re(ab∗) + Re(cd∗) = 0

Im(ac∗) + Im(bd∗) = 0

Im(ab∗) + Im(cd∗) = 0

|a|2 + |b|2 − |c|2 − |d|2 = 0

|a|2 − |b|2 + |c|2 − |d|2 = 0.

The well known EPR-states are one of the solutions of these set of equations. In

general, there are infinitely many solutions for N ≥ 2 qubits and all of them are

maximally entangled states.

Another set of maximally entangled states forming a basis and obeying the

condition Eq.(3.9)is

1

2
(−|00〉+ |01〉+ |10〉+ |11〉),
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1

2
(|00〉 − |01〉+ |10〉+ |11〉),

1

2
(−|00〉+ |01〉 − |10〉+ |11〉),

1

2
(−|00〉+ |01〉+ |10〉 − |11〉) (3.16)

For both of the above states concurrence is 1. The relation between concur-

rence and variational definition of entanglement is

C(ψ) =

√
Vtot(ψ)− Vmin

Vmax − Vmin

. (3.17)

For 2-qubit case, Vmax(ψ) = 6 and Vmin(ψ) = 4 and it directly gives C(ψ) = 2|ad−
bc| for pure states Eq.(3.14). In other words, both definitions of entanglement

measures Concurrence and Variational Principle are equivalent for 2 qubit case.

3.1.3 single qutrit case

The single-photon entanglement is usually considered in terms of the two-qubit

entanglement. One of qubits is intrinsic property of the photon like polarization,

while the second qubit corresponds to the spatial degrees of freedom, defined by

the two spatial modes of a single photon. These modes can be produced either

by a beam splitter or through the use of two identical cavities, containing single

excitation.

Consider now the case of a single qutrit (spin-1 particle), when the general

state in the Hilbert space H1 takes the form

|ψ(1)〉 =
2∑

`=0

ψ`|`〉,
2∑

`=0

|ψ`|2 = 1. (3.18)

The observables in this case correspond to the three-dimensional representation

of the SL(2,C) algebra and have the form





Sx = 1√
2
(|0〉〈1|+ |1〉〈2|) + H.c.

Sy = −i√
2
(|0〉〈1|+ |1〉〈2|) + H.c.

Sz = |0〉〈0| − |2〉〈2|
(3.19)
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It is seen that

Ĉ = S2
x + S2

y + S2
z = 2 (3.20)

in this case. Thus, the condition Eq.(3.9), that can be applied instead of the

condition Eq.(3.6), leads to the equations





Re(ψ0ψ
∗
1) + Re(ψ1ψ

∗
2) = 0

Im(ψ0ψ
∗
1) + Im(ψ1ψ

∗
2) = 0

|ψ0|2 − |ψ2|2 = 0

which have infinitely many solutions described by the relations




|ψ2| = |ψ0|
2|ψ0|2 + |ψ1|2 = 1

arg ψ0 − 2 arg ψ1 + arg ψ2 = ±π + 2kπ

(3.21)

Thus, there are infinitely many ME states of a single qubit.

In particular, solutions (3.21) determine the following three ME states




|1〉
1√
2
(|0〉 ± |2〉) (3.22)

forming a basis of ME states in the Hilbert space H1 of a single qubit.

It should be noted that, unlike |1〉, the states |0〉 and |2〉 provide the minimal

remoteness with the observables (3.19):

V(|0〉) = V(|2〉) = 1.

Hence, by definition, these states can be associated with the coherent states of a

single qutrit.

To make the connection between single particle entanglement and well known

two-qubits formalism let us consider first Clebsch-Gordon decomposition

H 1
2
⊗H 1

2
= H1 ⊕H0, (3.23)

of two spin-1
2

systems into symmetric component H1 of spin 1, and skew sym-

metric scalar component H0. If we denote the base states in H 1
2

by | ↑〉 and | ↓〉,
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then the basis of H1 is represented by the symmetric triplet





| ↑↑〉
| ↓↓〉
1√
2
(| ↑↓〉+ | ↓↑〉)

(3.24)

while the antisymmetric singlet

1√
2
(| ↑↓〉 − | ↓↑〉) (3.25)

corresponds to H0. Since the states of spin-1 system under consideration can

always be specified by the projection of spin onto the quantization axis |m〉, the

states (3.24) can be interpreted as the states |m = 1〉, |m = −1〉, and |m = 0〉,
respectively. From the physical point of view, this means that if a single spin-1

system, prepared initially in the state |m = 0〉, decays into the two spin-1
2

objects,

they should be observed in the EPR (Einstein-Podolsky-Rosen) state (the last

state in (3.24)). This is an indication that spin-1 state |m = 0〉 is entangled.

The other two states |m = ±1〉 in the triplet (3.24) are coherent and decay into

disentangled spin-1
2

components.

Taking into account that the general state of the spin-1 system

|ψ〉 = ψ+1|+ 1〉+ ψ−1| − 1〉+ ψ0|0〉 (3.26)

can be formally represented in the form of the two-qubit state

|ψ〉 = ψ↑↑| ↑↑〉+ ψ↓↓| ↓↓〉+ ψ↑↓(| ↑↓〉+ | ↓↑〉)

in the symmetric sector, and that the concurrence (measure of entanglement in

the case of two qubits) has the form

C(ψ) = 2| det[ψ]| = 2|ψ↑↑ψ↓↓ − ψ↑↓ψ↓↑|,

we can conclude that the amount of entanglement in state (3.26) can be measured

by the expression [41]

C(ψ) = 2|ψ+1ψ−1 − ψ2
0/2|, (3.27)
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which represents the concurrence in the case of spin-1 system. It is interesting that

the concurrence can also be expressed in terms of the total amount of fluctuations

as follows

C(ψ) =

√
Vtot(ψ)− Vmin

Vmax − Vmin

.

Concerning physical realizations, let us mention first that the three-

dimensional entanglement in orbital angular momentum of photons provides an

example, illustrating the above theory. Namely, a single photon in Laguerre-

Gauss beam in the state |m = 0〉 is entangled by itself. Let us stress that in the

usual treatment, entanglement with respect to the orbital angular momentum of

a pair of photons is discussed.

According to these results, a single dipole photon with angular momentum

j = 1 and projection m = 0 is always in the ME state. In view of the above inter-

pretation, we can assume that such a photon may decay into a pair of entangled

particles. In other words, the electron-positron pair created by the photodecay

of the dipole photon with m = 0 should be prepared in the ME EPR state (the

last state in (3.24)) with respect to the spin of charged particles. This may be

observed in the presence of a strong electric field, which separates the particles

with opposite charge and, unlike the magnetic field, does not influence the spin

state. Other photon decay processes such as resonance down-conversion and Ra-

man scattering with creation of the entangled pairs can also be described using

the above formalism.

Another example of single-particle ME state is provided by the isodoublet of

quarks with only two flavors, namely up- and down-quarks, forming π-mesons.

The π±-mesons represent the coherent states with respect to the quarks

π+ = ud̄, π− = ūd.

In contrast, π0-meson is prepared in the ME state of the type of |ψ0〉 in (3.22)

π0 =
uū− dd̄√

2
.

Since ME corresponds to the maximum of the total amount of fluctuations, all
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one can expect is that π0 meson should be less stable than π±. In fact, the

experimental ratio of the lifetimes is τ0/τ± ∼ 10−9.

ME states of other qudits (particles with ”spin” (d− 1)/2) can be considered

in the same way.

3.2 Maximum Principle and SU(2) Phase States

for Qubits

In this part, I will show that the SU(2) phase states of spin j defined as

j =
1

2





 2n

n


− 1


 (3.28)

in a 2n + n-type atom-photon system obey the non-separability conditions, have

the maximum principle explained in the previous section, and manifest the vio-

lation of classical realism expressed in terms of the Greenberger-Horne-Zeilinger

(GHZ) [33] and Clauser-Horne-Shimoni-Holt (CHSH) [42] conditions.

For this aim, I will consider the representation of the SU(2) phase states.

As a particular example, I examine the system of two identical two-level atoms,

interacting with a single cavity photon and show that the maximum entangled

atomic states of the Ref. [4] belong to the class of the SU(2) phase states of spin

j = 1/2. Let me stress that hereafter the maximum entanglement is defined in the

usual way by the maximum of reduced entropy (e.g., see Refs. [35, 43, 28, 34]).

Then, I generalize this result on the case of 2n+n system. As a nontrivial example

I consider the system of four identical two-level atoms interacting with the two

cavity photons. In this case, the set of entangled, maximum excited atomic

states is provided by the six orthogonal SU(2) phase states of spin j = 5/2. For

these states, violation of classical realism is proved through the use of GHZ and

CHSH conditions. After that, I discuss how the entangled atomic states can be

achieved in the process of steady-state evolution. In particular, I show that the

maximum entanglement can be achieved if the initial state of the system contains
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the photons and does not contain the atomic excitations. I also show that the

presence of the cavity detuning hampers the creation of pure entangled states

and that the parasitic influence of detuning can be compensated through the use

of the Kerr medium inside the cavity.

3.2.1 Entanglement of 2-level atoms

Variational principle can be illustrated by the atoms-plus-photons systems. Con-

sider first the set of two identical two-level atoms. Let |e`〉 and |g`〉 denote the

excited and ground atomic states of the `th atom, respectively. Then, the en-

tangled, maximum excited atomic states in the system ”2 atoms plus 1 photon”

considered in Ref.[4] are

|ψ±〉 =
1√
2
(|e1g2〉 ± |g1e2〉). (3.29)

Then, the local measurement g can be described by the Pauli matrices

σ
(`)
1 = |e`〉〈g`|+ |g`〉〈e`|,

σ
(`)
2 = −i|e`〉〈g`|+ i|g`〉〈e`|,

σ
(`)
3 = |e`〉〈e`| − |g`〉〈g`|, (3.30)

i.e., by the infinitesimal generators of the algebra SL(2, C). It is now a straight-

forward matter to check that

∀i, ` 〈ψ±|σ(`)
i |ψ±〉 = 0, (3.31)

where averaging is taken over the states Eq.(3.29). Another example is provided

by the GHZ states Ref.[33]

|ψ(GHZ)
± 〉 =

1√
2
(|e1e2e3〉 ± |g1g2g3〉), (3.32)

corresponding to the maximum atomic excitation in the 3+3-system. It is easily

seen that the averaging of the local operators Eq.(3.30) over Eq.(3.32) gives the

same result as Eq.(3.31).
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3.2.2 Representation of the SU(2) phase states

SU(2) is isomorphic to the SO(3) which describes the rotations in three dimen-

sional space. The Pauli matrices (3.12) are the lowest dimensional realizations of

infinitesimal rotations in this three dimensional space.

Moreover they are the generators of the SU(2) algebra.

The SU(2) phase states were introduced in Ref.[44] for an arbitrary spin and

then generalized in Ref.[45, 46] to the case of the SU(2) subalgebra in the Weyl-

Heisenberg algebra of photon operators (for recent review, see Ref.[47]).

An arbitrary spin j can be described by the generators J+, J−, Jz of the SU(2)

algebra such that

[J+, J−] = 2Jz, [Jz, J±] = ±J±,

J2 = J2
z +

1

2
(J+J− + J−J+) = j(j + 1)× 1, (3.33)

where 1 is the unit operator in the 2j + 1 dimensional Hilbert space. Since

J± = Jx ± iJy,

it is possible to say that the generators J+, J−, Jz in Eq(3.33) correspond to

the Cartesian representation of the SU(2) algebra. Following Ref.[44], one can

introduce the representation in spherical coordinates via the polar decomposition

of Eq(3.33) of the form

J+ = Jrε, Jr = J+
r , εε+ = 1, (3.34)

where the Hermitian operator Jr corresponds to the radial contribution, while

ε gives the exponential of the azimuthal phase operator. It is a straightforward

matter to show that ε can be represented by the following (2j + 1) × (2j + 1)

matrix

ε =




0 1 0 0 · · · 0

0 0 1 0 · · · 0
...

...
...

...
...

...

0 0 0 0 · · · 1

eiψ 0 0 0 · · · 0




(3.35)
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in the 2j + 1-dimensional Hilbert space. Here ψ is an arbitrary real parameter

(reference phase). The eigenstates of the operator Eq(3.35)

ε|φ(j)
n 〉 = eiφ

(j)
n |φ(j)

n 〉, n = 1, · · · , (2j + 1), (3.36)

form the basis of the so-called phase states

|ψ(j)
n 〉 =

1√
2j + 1

2j∑

k=0

eikφ
(j)
n |ψk〉 (3.37)

dual with respect to the basis of individual states |ψk〉 of the Hilbert space.

As a physical example of some considerable interest, consider now the system

of the two identical two-level atom interacting with the single cavity photon (see

Ref.[4]). If the cavity photon is absorbed by either atom, the atomic subsystem

can be observed in the following states

|ψ1〉 = |e1g2〉, |ψ2〉 = |g1e2〉, (3.38)

where |e1g2〉 = |e1〉 ⊗ |g2〉 and |e〉 and |g〉 denote the excited and ground atomic

states, respectively. The subscript marks the atom. Using the atomic basis

Eq(3.38), we can construct the following representation of the SU(2) algebra:

J+ = |e1g2〉〈g1e2|, J− = |g1e2〉〈e1g2|,
J3 =

1

2
(|e1g2〉〈e1g2| − |g1e2〉〈g1e2|). (3.39)

This representation formally corresponds to Eq(3.33) at the spin j = 1/2. Then,

the corresponding exponential of the phase operator Eq(3.35) takes the form

ε = |e1g2〉〈g1e2|+ eiψ|g1e2〉〈e1g2|. (3.40)

In turn, the phase states Eq(3.36) and Eq(3.37) are

|φ±〉 =
1√
2
(|e1g2〉+ eiφ±|g1e2〉), (3.41)

φ± = ψ/2 + (1∓ 1)π/2.

It is easily seen that the phase states Eq(3.41) form the set of entangled atomic

states in the two-atom system under consideration. Definitely, these states obey
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the nonseparability condition. It is also seen that Eq(3.41) coincides with the

maximally entangled states Eq(3.29) of Ref. [4] when the reference phase ψ = 0.

Consider now a general 2n + n system at n ≥ 1. Then, the maximum excited

atomic states

|ψi〉 = |{e}n, {g}n〉, (3.42)

can be used to construct a representation of the SU(2) algebra Eq(3.33) of spin

j defined in (1). Here i = 1, 2, · · · , N and

N = 2j + 1 =


 2n

n




is the total number of such a states. In the basis Eq(3.42), we can construct the

polar decomposition of the SU(2) algebra of spin Eq(3.28) and the corresponding

exponential of the phase operator Eq(3.35) and the phase states Eq(3.37). Let

us rename the states Eq(3.42) as follows

|ψk〉 → |ψk′〉, k′ ≡ k − 1 = 0, · · · , N − 1.

Then, the SU(2) phase states Eq(3.37) take the form

|φk〉 =
1√
N

N−1∑

k′=0

eik′φk |ψk′〉, (3.43)

where

φk = (ψ + 2kπ)/N.

These states Eq(3.43) form a basis dual with respect to Eq(3.42) and spanning

the Hilbert space of the maximum excited atomic states in the 2n + n system

under consideration. By construction, the phase states Eq(3.43) are nonseparable

with respect to contributions of individual atoms and thus entangled [48]. Let us

stress that the choice of the phase factors in Eq(3.43) is irrelevant to entanglement,

which holds for arbitrary phase factors. This choice is caused by the aspiration

for getting the dual with respect to Eq(3.42) basis of entangled states.

It is easily seen that the states Eq(3.43) obey the maximum condition

Eq(3.31). In fact, the action of the flip-operators σ
(`)
1,2 in Eq(3.30) on the states
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Eq(3.43) leads to the change of the number of either excited or de-excited atoms:

σ
(`)
1,2|ψk〉 →




|{e}n−1, {g}n+1〉 ` ∈ {g}
|{e}n+1, {g}n−1〉 ` ∈ {e}

and therefore 〈σ(`)
1,2〉 = 0 in the case of averaging over the states Eq(3.43). Since

each state Eq(3.42) contains equal number of excited and de-excited atoms, the

action of the parity operator in Eq(3.30) on the phase states Eq(3.43) should lead

to the state which differ from Eq(3.43) by the multiplication of a certain n terms

by the factor of −1. Hence

〈σ(`)
3 〉 =

1

N




N/2∑

i=1

1−
N∑

i=N/2+1

1


 = 0.

By construction, N is always an even number. Thus, the SU(2) phase states

Thus, the SU(2) phase states Eq(3.43), corresponding to the maximum excited

atomic states in the 2n + n system, are entangled because they are nonseparable

and, at the same time, obey the condition Eq(3.31) for the local measurements. In

the next Section, we show that the states Eq(3.43) manifest violation of classical

realism as well.

Before we begin to discuss this subject, let us note that the SU(2) phase

states of the atomic system under consideration with integer spin do not provide

the entanglement. Consider as an example the system of three identical two-level

atoms, interacting with a single cavity photon. There are the three excited atomic

states

|e1g2g3〉, |g1e2g3〉, |g1g2e3〉 (3.44)

and the three dual phase states of the type of Eq(3.43)

|ψk〉 =
1√
3
(|e1g2g3〉+ eiφk |g1e2g3〉+ e2iφk |g1g2e3〉). (3.45)

It is clear that the states Eq(3.45) are the phase states of spin j = 1. Here

φk = (ψ + 2kπ)/3, k = 0, 1, 2.

It is easily seen that the phase states Eq(3.45) cannot be factorized with respect

to atoms. At the same time, the average of the parity operator σ
(`)
3 in Eq(3.30)
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over the states Eq(3.45) is

∀k, ` 〈ψk|σ(`)
3 |ψk〉 = −1

3
,

although the averages of the flip-operators are

∀k, ` 〈ψk|σ(`)
1,2|ψk〉 = 0.

Thus, the nonseparable states Eq(3.45) do not obey the condition Eq(3.31). At

the same time, these states do not manifest the maximum entanglement as well.

Let us stress that the nonseparability is not a sufficient condition of maximum

entanglement Ref.[48]. For example, from the measurement of the state of the

first atom we can only learn that either the atoms 2 and 3 are both in the ground

state with reliability or they are in the two-atom entangled state of the type

discussed in Ref.[4]. Similar result can be obtained for the system of three atoms,

interacting with two cavity photons. The only maximum entangled state of the

system of three atoms is provided by the superposition of GHZ states Eq.(3.32).

3.2.3 An example

Here 4+2 system i.e. four two level atoms with two photons will be considered.

To show that the phase states Eq(3.43) of a 2n + n system violate the classical

realism, consider the system of four identical two-level atoms interacting with two

cavity photons. The maximum excited atomic states at n = 2 are

|e1e2g3g4〉, |e1g2e3g4〉, |e1g2g3e4〉,
|g1e2e3g4〉, |g1e2g3e4〉, |g1g2e3e4〉. (3.46)

These orthonormal states form the six-dimensional basis of the Hilbert space in

which the representation of the generators Eq(3.33) has the form

J+ =
√

5|e1e2g3g4〉〈e1g2e3g4|+
√

8|e1g2e3g4〉〈e1g2g3e4|
+ 3|e1g2g3e4〉〈g1e2e3g4|+

√
8|g1e2e3g4〉〈g1e2g3e4|

+
√

5|g1e2g3e4〉〈g1g2e3e4|,
J3 =

5

2
|e1e2g3g4〉〈e1e2g3g4|+ 3

2
|e1g2e3g4〉〈e1g2e3g4|
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+
1

2
|e1g2g3e4〉〈e1g2g3e4| − 1

2
|g1e2e3g4〉〈g1e2e3g4|

− 3

2
|g1e2g3e4〉〈g1e2g3e4| − 5

2
|g1g2e3e4〉〈g1g2e3e4|

By construction, they describe the spin j = 5/2 system. In turn, the exponential

of the phase operator Eq(3.35) takes the form

ε = |e1e2g3g4〉〈e1g2e3g4|+ |e1g2e3g4〉〈e1g2g3e4|
+ |e1g2g3e4〉〈g1e2e3g4|+ |g1e2e3g4〉〈g1e2g3e4|
+ |g1e2g3e4〉〈g1g2e3e4|+ eiψ|g1g2e3e4〉〈e1e2g3g4|.

Then, the six phase states Eq(3.36) have the form Eq(3.43) with N = 6 and

φk =
ψ

6
+

kπ

3
, k = 0, 1, · · · , 5. (3.47)

As well as Eq(3.43), these states are nonseparable and hence entangled and obey

the condition Eq(3.31) for local variables.

To show that these phase states violate the classical realism, let us first rep-

resent the states Eq(3.43) at N = 6 in the following way

|φk〉 =
1√
3
(|χ1k〉+ eiφk |χ2k〉+ e2iφk |χ3k〉), (3.48)

where

|χ1k〉 =
1√
2
(|e1e2g3g4〉+ e5iφk |g1g2e3e4〉),

|χ2k〉 =
1√
2
(|g1e2e3g4〉+ e3iφk |e1g2g3e4〉),

|χ3k〉 =
1√
2
(|g1e2g3e4〉+ eiφk |e1g2e3g4〉). (3.49)

It is easily seen that each set of six states |χpk〉 with p = 1, 2, 3 and k = 0, · · · , 5
consists of the nonseparable and hence entangled states. Consider, for example,

the states |χ1k〉 in Eq(3.49). Because of the definition of the phase angle φk at

N = 6, they consist of the three sets of the pairwise orthogonal states

{|χ10〉, |χ13〉}, {|χ11〉, |χ14〉}, {|χ12〉, |χ15〉}.

It is also seen that the second and third sets here are obtained from the first set

by the successive rotations of the reference frame.
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Now the violation of classical realism can be proved through the use of the

GHZ theorem Ref.[33]. Consider first the state |χ10〉 in Eq(3.49). It is easy to

verify that this state obey the conditions

∀i, `
4⊗

`=1

σ
(`)
i |χ10〉 = |χ10〉 (3.50)

and

σ
(1)
1 σ

(2)
1 σ

(3)
2 σ

(4)
2 |χ10〉 = −|χ10〉,

σ
(1)
2 σ

(2)
2 σ

(3)
1 σ

(4)
1 |χ10〉 = −|χ10〉,

σ
(1)
1 σ

(2)
2 σ

(3)
1 σ

(4)
2 |χ10〉 = |χ10〉,

σ
(1)
1 σ

(2)
2 σ

(3)
2 σ

(4)
1 |χ10〉 = |χ10〉,

σ
(1)
2 σ

(2)
1 σ

(3)
2 σ

(4)
1 |χ10〉 = |χ10〉,

σ
(1)
2 σ

(2)
1 σ

(3)
1 σ

(4)
2 |χ10〉 = |χ10〉. (3.51)

It is possible to say that these equalities Eq(3.50) and Eq(3.51) express a kind of

EPR ”action at distance” in the maximum excited states of the system of four

atoms interacting with two photons. In other words, the correlations represented

by Eq(3.50) and Eq(3.51) permit us determine in a unique way the state of the

fourth atom via measurement of the states of other three atoms.

The operator equalities Eq(3.50) and Eq(3.51) can be used to obtain the

relations similar to those in the GHZ theorem. Following Ref.[33], we have to

assign the classical quantities m
(`)
i to the local operators. Here

m
(`)
1 ,m

(`)
2 = ±1.

Then, it follows from Eq(3.50) that

4∏

`=1

m
(`)
1 = 1. (3.52)

At the same time, it follows from Eq(3.51) that

[σ
(1)
1 σ

(2)
1 σ

(3)
2 σ

(4)
2 ][σ

(1)
1 σ

(2)
2 σ

(3)
1 σ

(4)
2 ][σ

(1)
1 σ

(2)
2 σ

(3)
2 σ

(4)
1 ]|χ10〉 = −|χ10〉.

Employing the classical variables instead of the local operators allows this to be

cast into the form

(m
(1)
1 )3m

(2)
1 (m

(2)
2 )2m

(3)
1 (m

(3)
2 )2m

(4)
1 (m

(4)
2 )2 = −1.



CHAPTER 3. MAXIMUM PRINCIPLE FOR ENTANGLEMENT 38

Since (m
(`)
1 )2 = (m

(`)
2 )2 = 1, we get an equivalent equality

m
(1)
1 m

(2)
1 m

(3)
1 m

(4)
1 = −1,

which contradicts Eq(3.52). Hence, the state |χ10〉 in Eq(3.49) obey the GHZ

theorem. Similar result can be obtained for all other states in Eq(3.49) and

hence, for the phase states Eq(3.48).

Our consideration so far have applied to the local measurements touching on

a single atom. We now note that the phase states Eq(3.48) allow another kind

of entanglement in the case of pairwise measurement. Consider again the state

|χ10〉 in Eq(3.49) and assume that the measurements a and b corresponds to a

pair of atoms:

a = cos θa|e1e2〉〈e1e2|+ sin θa(|e1e2〉〈g1g2|
+ |g1g2〉〈e1e2|)− cos θa|g1g2〉〈g1g2|,

b = cos θb|e3e4〉〈e3e4|+ sin θb(|e3e4〉〈g3g4|
+ |g3g4〉〈e3e4|)− cos θb|g3g4〉〈g3g4|. (3.53)

Assume now that we make the two measurements a and a′ with the angles θ1 = π

and θ′a = π/2 and the two more measurements b and b′ with the angles θ′b = −θb,

respectively. Then, the averaging over the state |χ10〉 gives

〈ab〉 = 〈ab′〉 = cos θb, 〈a′b〉 = sin θb = −〈a′b′〉.

Employing the CHSH inequality Ref.[42]

|〈ab〉+ 〈a′b〉+ 〈a′b′〉 − 〈ab′〉| ≤ 2 (3.54)

then gives

| cos θb − sin θb| ≤ 1.

Violation of this inequality and hence, of the classical realism occurs at small

negative θb, when we can put

| cos θb − sin θb| ∼ 1 + |θb| > 1.



CHAPTER 3. MAXIMUM PRINCIPLE FOR ENTANGLEMENT 39

Similar consideration can be done for all over states in Eq(3.49) through the use

of proper pairwise measurements. At the same time, the phase states Eq(3.48)

do not manifest entanglement with respect to the pairwise measurements.

The phase states Eq(3.43) for the 6 + 3, 8 + 4, · · · systems, corresponding

to the spin Eq(3.28) equal to 19/2, 69/2, · · ·, respectively, can be considered as

above.

3.2.4 Effect of Initial Conditions on Atomic Entanglement

It is clear that the evolution of the 2n+n system strongly depends on the choice of

initial conditions. To trace the proper choice leading to the atomic entanglement,

let us ignore the relaxation processes. Then, the steady-state evolution of the

2n + n system under consideration is governed by the Hamiltonian

H = ∆a+a + ω0N + γ
∑

`

(R+
` a + a+R`). (3.55)

Here ∆ is the cavity detuning, ω0 is the atomic transition frequency, γ is the

atom-field coupling constant, operators a and a+ describe the cavity photons,

N = a+a +
∑

`

|e`〉〈e`|
⊗

`′ 6=`

1(`),

and the atomic operators are defined as follows

R+
` = |e`〉〈g`|

⊗

`′ 6=`

1(`′).

Here 1(`) denotes the unit operator in the two-dimensional Hilbert space of the

`th atom. It is seen that [N , H] = 0. It is also seen that the atomic operators are

similar, in a certain sense, to the local operators Eq(3.30). In fact

R±
` =

σ
(`)
1 ± iσ

(`)
2

2
.

Consider first the case of two atoms and single cavity photon when ` = 1, 2 and

the Hamiltonian Eq(3.55) coincides with that of Ref.[4]. For simplicity, we use
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here the same coupling constant γ for both atoms. Our consideration can easily

be generalized on the case of coupling constant depending on the atomic position.

Let us note that, in the case of only two atoms, the Hamiltonian Eq(3.55) can be

represented as follows

H → Hφ = ∆a+a + ω0Nφ + γ
√

2(R+a + a+R), (3.56)

where

Nφ = a+a +
∑

k=±1

|φk〉〈φk|

and

R+ = |φ+〉〈g1g2|.

Here |φ±〉 denote the phase states Eq(3.41).

Using the Hamiltonian Eq(3.56) as the generator of evolution, for the time

dependent wave function we get

|Ψ(t)〉 = e−iHφt|Ψ(0)〉
= [C−(t)|φ−〉+ C+(t)|φ+〉]⊗ |0〉ph + C(t)|g1g2〉 ⊗ |1〉ph, (3.57)

where | · · ·〉ph denotes the states of the cavity field. The coefficients C±(t) and C(t)

in Eq(3.57) are completely determined by the initial conditions and normalization

condition.

It is easily seen that the state |φ−〉⊗|0〉ph is the eigenstate of the Hamiltonian

Eq(3.56). Hence, at

C−(0) = 1, C+(0) = C(0) = 0,

the atomic phase state |φ−〉 in Eq(3.41) provides the stationary, maximum entan-

gled atomic state in the system under consideration Ref.[4]. At the same time, it

is not very clear how to prepare such a state.

Therefore we consider a more realistic initial state provided by excitation of

either atom, while the cavity field is in the vacuum state. To realize such a state,
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we can assume, for example, that one of the atoms (initially de-excited) is trapped

in the cavity, while the second atom (initially excited) slowly passes through the

cavity like in the experiments discussed in Ref.[49, 50]. assume for definiteness

that

|Ψ(0)〉 = |e1g2〉 ⊗ |0〉ph. (3.58)

Then, the coefficients of the wave function Eq(3.57) take the form

C−(t) =
1√
2
e−iω0t,

C+(t) =
1√
2

(
cos Ωt +

i∆

2Ω
sin Ωt

)
e−i(ω0+∆/2)t,

C(t) = −iγ

Ω
e−i(ω0+∆/2)t sin Ωt,

where Ω = [2γ2 + (∆/2)2]1/2. At first site, the probabilities

P±(t) = |〈0|ph ⊗ 〈φpm|Ψ(t)〉|2 = |C±(t)|2

to observe the states Eq(3.41) corresponding to the maximum atomic entangle-

ment, are

P−(t) =
1

2
,

P+(t) =
∆2

8Ω2
+

γ2

Ω2
cos2 Ωt ≤ 1

2
,

respectively. At the same time, the absence of photon counts, which is considered

in Ref.[4] as a sign of the atomic entanglement, corresponds here to the case when

both probabilities P±(tk) = 1/2 at a certain time tk. In other words, the mutually

orthogonal entangled states Eq(3.41) have the same probability to be observed at

t = tk. This means that there is no atomic entanglement at all but we definitely

know which atom is in the excited state.

Consider one more realistic initial state when both atoms are trapped in the

cavity in de-excited state, while the cavity field contains a photon:

|Ψ(0)〉 = |g1g2〉 ⊗ |1〉ph. (3.59)
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Then, for all times we get C−(t) = 0 and

C+(t) = −iγ
√

2

Ω
e−i(ω0+∆/2)t sin Ωt,

C(t) =
(
cos Ωt− i∆

2Ω
sin Ωt

)
e−i(ω0+∆/2)t.

Hence, under this initial condition, the entangled state |φ−〉 cannot be achieved at

all, while the second entangled state |φ+〉 in Eq(3.41) can be achieved. It is seen

that, in the case of initial state Eq(3.59), the probability to detect the photon is

Pph(t) = |C(t)|2 = cos2 Ωt +
∆2

4Ω2
sin2 Ωt.

This expression takes the minimum value

min Pph = Pph(tm) =
∆2

4Ω2

at t = tm = π(2m + 1)/2Ω, m = 0, 1, · · ·. At the same time tm, the probability

to have the entangled atomic state |φ+〉 takes the maximum value

P+(tm) = |C+(tm)|2 =
2γ2

2γ2 + (∆/2)2
.

It is seen that the pure atomic entanglement with P+(tm) = 1 is realized at t = tm

only in the absence of the cavity detuning when ∆ → 0.

The parasitic influence of the cavity detuning can be compensated through

the use of Kerr medium filling the cavity. In this case, the Hamiltonian Eq(3.55)

should be supplemented by the term

Hκ = κ(a+a)2,

which leads to the following renormalization of the Rabi frequency

Ω → Ωκ =
√

2γ2 + (∆ + κ)2/4.

Then, the proper choice of the Kerr parameter κ = −∆ should lead to the pure

entangled atomic state |φ+〉 at a certain times.

Consider now the case of four atoms and two photons. In contrast to the

previous case, neither phase state in Eq(3.48) is an eigenstate of the Hamiltonian
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Eq(3.55). Then, the choice of the initial state either as a state with two excited

atoms or as a state with one excited atom plus cavity photon does not lead

to a pure atomic entanglement. As in the case of two atoms, the pure atomic

entanglement can be reached under the choice of the state with the absence of

the atomic excitations in the initial state. The influence of the cavity detuning

can be compensated by the presence of Kerr medium as well as in the case of two

atoms.

3.3 Summary

In this chapter we have explained a new variational principle defining the maxi-

mally entangled states from operational point of view or what can be measured.

Next we have applied this principle for a single qubit, 2 qubit and a single qutrit.

We have shoved that although it doesn’t lead to single entanglement for two level

system, it is possible to obtain a single three level entangled state. Finally in the

last section of the chapter using SU(2) phase states we have generalized N-two

level entangled atomic states.



Chapter 4

Mini-max Principle for Robust

Entanglement

In the previous chapter, we have discussed a new principle which defines the

maximally entangled states. To produce maximally entangled state is not enough

for practical application since they are very sensitive to environmental effects,

these states can easily be disappear. Therefore it is also necessary to produce

robust or stable entangled states. In this chapter, we will discuss how to make

them robust that is immune to specific environmental effects such as decoherence

and spontaneous emission.

In the first part of this chapter, the requirements to obtain persistent entan-

gled states are explained. In other words maximum principle of the previous

chapter for definition of maximally entangled states and minimum principle for

robustness are combined to a key principle Mini-max principle which is neces-

sary and practical for different applications in quantum information processing

and quantum computing.
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4.1 Mini-max Principle

Quantum information technologies desires high amount of entanglement and long

life time. For atomic systems which are one of the main models for realizations of

qubits, lifetime of maximally entangled states is usually governed by spontaneous

decay time of the excited atomic levels, which is quite short.

In order to obtain practically applicable states we have to achieve some re-

quirements for candidate physical system

• the highest level of quantum fluctuations,

• the minimum or at least local minimum of energy.

In other words, the state of the system S with maximum amount of quantum

fluctuations should be prepared then the energy of the system should be decreased

up to a local minimum under the condition of conservation of the level of quantum

fluctuations. This is called Mini-max principle.

Time evolution of a physical system is governed by the Hamiltonian which is

hermitian and expectation value of this Hamiltonian gives the amount of energy

in the system at a given time. If the quantum system is well separated from its

environments this leads to the conservation of energy and the time evolution is

unitary. That is it is reversible in time. However in most cases and all of the

realistic situations quantum systems are open to the environmental effects. In a

sense they are a part of a bigger system or the dynamics is open. In statistical

point of view there is in and out of energy from the system to the environment.

In unitary evolution case that is the quantum system S is closed to the envi-

ronmental effects, |ψ〉 is stable if it is the eigenstate of the system Hamiltonian.

H|ψ〉 = E|ψ〉. (4.1)

However in the most cases we have non-unitary evolution provided by the presence

of the dissipative environment. Then we should talk about the density matrix
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instead of state vectors. For stability we have required the condition that in the

long time limit

lim
t→∞ ρ(t) = |ψ′〉〈ψ′| (4.2)

or

〈ψ′|H|ψ′〉 = min
ψεH

〈ψ|H|ψ〉. (4.3)

If the resulting vector |ψ′〉 is one of the maximally entangled states obtained

from the maximum principle

V (ψME) = max
ψ∈HS

Vtot(ψ) (4.4)

and it satisfies the stability condition

〈ψ′
ME|H|ψ

′
ME〉 = min

ψεH
〈ψ|H|ψ〉, (4.5)

this state is maximally entangled as well as robust. The Mini-max principle

[51]is a general principle applicable to whole range of physical systems. In the

next section we will demonstrate an example.

4.2 An Example: Entanglement of two Λ-type

atoms

The generation and manipulation of entangled states in atom-photon systems has

recently attracted a great deal of interest in the context of quantum information

processing and quantum computing [52, 53, 54, 55, 56, 57, 58]. In particular, the

entangled states were engineered through the use of cavity QED[52] and technique

of ion traps[54]. Most studies on entanglement in atomic systems have used the

two-level atoms, interacting with photons via dipole transitions [4, 5, 59]. It

was shown that a pure entangled state of two atoms in an optical resonator can

be obtained through the exchange by a single photon. Since the excitation of

the system either is carried by a cavity photon or is shared between the atoms,

the absence of the photon leakage from the resonator can be associated with

the presence of atomic entanglement. This entanglement can be observed in
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the process of continuous monitoring of the cavity decay[4]. The importance of

this scheme is caused by the fact that its realization seems to be easy available

with present experimental technique. The result can also be generalized on the

multi-atom systems[6].

The lifetime of maximum entangled state (MES) in atomic subsystem is chiefly

determined by the life of excited atomic state, that is by the natural line breadth.

Usually, this time is quite short [60, 61]. At the same time, the quantum infor-

mation processing needs more or less durable entanglement.

According to the result obtained in the previous section, the maximum entan-

glement in a system corresponds to the maximum total local variance, describing

the quantum fluctuations of all local measurements. Thus, to achieve a long-lived

maximum entanglement, we should first prepare a state with maximum quantum

fluctuations and then stabilize it by draining energy right up to a (local) mini-

mum, conserving at the same time the level of quantum fluctuations. This can

be done via an interaction with a proper environment.

In view of the practical realization, it seems to be more convenient if the

existence of atomic entanglement would manifest itself via a certain signal photon

rather than via the absence of photons as in Ref.[4]. This implies that there should

be at least two different modes interacting with the atoms such that the photon

of one of them provides the correlation between the atoms, while the photon

of the other mode can freely leave the resonator to signalize the rise of atomic

entanglement.

In this example we discuss a way how to obtain a durable maximum entan-

gled state of atoms in an optical resonator which can be monitored through the

detection of signal photons.

Consider the Raman-type process in a three-level atom shown in Fig.4.1. Here

1 ↔ 2 and 2 ↔ 3 are the dipole transitions corresponding to the pump and Stokes

modes, while the dipole transition between the levels 1 and 3 is forbidden because

of the parity conservation. We assume that the two identical atoms of this type

are located in a high-quality cavity tuned to resonance with 1 ↔ 2 transition,
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Figure 4.1: Scheme of Raman-type process in an atom. Solid arrows show the
allowed transitions. Wavy lines show the pump and Stokes photons, respectively.

while the Stokes photons can leak away freely (Fig. 4.2).

Assume that initially both atoms are in the ground state (level 1) and there

is a single cavity photon, so that the initial state is

|ψ0〉 = |1, 1〉|1P 〉|VS〉. (4.6)

Here |nP 〉 denotes the n-photon state of the cavity (pump) mode and |VS〉 denotes

the vacuum state of the Stokes field. Then, the absorption of the cavity photon

by atomic system should lead to the state

|ψ1〉 =
1√
2
(|2, 1〉+ |1, 2〉)|0P 〉|VS〉, (4.7)

which manifests the entanglement of atoms excited to the level 2. This atomic

entanglement is similar to that discussed in Ref.[4] and has a very short lifetime

defined by the atom-field coupling constants for the allowed transitions. The

decay of the excited atomic state Eq.(4.7) can either return the system into the

initial state Eq.(4.6) or turn Eq.(4.7) into the state

|ψk〉 =
1√
2
(|3, 1〉+ |1, 3〉)|0P 〉|1Sk〉, (4.8)

where |nSk〉 denotes the state of n Stokes photons with frequency ωSk. This

state again manifests the maximum atomic entanglement. Since the cavity walls



CHAPTER 4. MINI-MAX PRINCIPLE FOR ROBUST ENTANGLEMENT49

21

�

P
�

Sk

Figure 4.2: Scheme of creation of a durable two-atom entanglement. Atom 1 is
trapped in a cavity, while atom 2 can pass through the cavity. Wavy lines show
the cavity and leaking out Stokes photons.

are supposed to be transparent for the Stokes photons and 3 ↔ 1 is the dipole-

forbidden transition, the atomic entanglement described by Eq.(4.8) would exist

for a very long time determined by the weak interaction between the atoms excited

to the level 3 and a certain dissipative environment. The creation of this atomic

entanglement manifests itself by the Stokes photon that can be detected outside

the cavity.

It should be noted that, in addition to |ψ1〉 and |ψk〉, the following maximum

entangled states

|φ1〉 =
1√
2
(|2, 1〉 − |1, 2〉)|0P 〉|VS〉,

|φk〉 =
1√
2
(|3, 1〉 − |1, 3〉)|0P 〉|1Sk〉

also contribute into the base states of the system under consideration. Both of

them are stabile states but they cannot be achieved in the process of evolution

beginning with the initial state Eq.(4.6) (see Ref.[4]). Therefore, they can be

discarded.

To describe the quantum dynamics of the system, we note that the upper

atomic level |2〉 can be adiabatically removed [62] (also see Ref.[63] and references

therein). In this case, the two-photon transitions in effective two-level atoms
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described by the effective interaction Hamiltonian

Hint =
∑

k

2∑

f=1

λk{R31(f)a+
SkaP + H.c} (4.9)

should be considered. Here λk denotes an effective coupling constant has been

defined in Ref. [62] and Rij(f) is the atomic operator corresponding to the

transition j → i in the f -th atom. Under the influence of Eq.(4.9), the initial state

Eq.(4.6) is directly transformed into Eq.(4.8), so that the intermediate entangled

state Eq.(4.7) can be omitted. Then, the time-dependent wave function of the

system takes the form

|Ψ(t)〉 = C0(t)|ψ0〉+
∑

k

Ck(t)|ψk〉, (4.10)

where the time-dependent coefficients are defined by the Schrödinger equation

together with the initial condition

|Ψ(0)〉 = |ψ0〉, C0(0) = 1, Ck(0) = 0. (4.11)

Taking into account that the total Hamiltonian has the form

H = H0 + Hint,

H0 = ωP a+
P aP +

∑

k

ωSka
+
SkaSk + ω31

2∑

f=1

R33(f),

we get the following system of linear differential equations

iĊ0 = ωP C0 +
∑

k

λk

√
2Ck,

iĊk = (ωSk + ω31)Ck + λk

√
2C0. (4.12)

Here ω31 = E3 − E1 denotes the energy difference between the levels |3〉 and

|1〉 connected by the two-photon transition. These Eqs.(4.12) together with

the initial conditions Eq.(4.11) completely determine the evolution of the state

Eq.(4.10). Using the standard methods [64], it is easy to show that the system

evolves from the initial state Eq.(4.6) into the final state

|Ψ(t)〉 → ∑

k

Jk|ψk〉,



CHAPTER 4. MINI-MAX PRINCIPLE FOR ROBUST ENTANGLEMENT51

corresponding to the maximum atomic entanglement described by Eq.(4.8). Here

Jk =
−iλk

√
2

γ/2− i(ωSk + ω31 − ωP −∆)
,

and

γ = 2πp(ωSk)λ
2
k|ωSk+ω31=ωP

is the parameter describing the rapidity of the exponential evolution to the en-

tangled atomic state, p(ωk) denotes the density of states corresponding to the

Stokes field, and

∆ = −P
{∫ ∞

−∞
p(ωSk)λ

2
kdωk

ωk + ω31 − ωP

}

is a small frequency shift (P denotes the principle value of the integral). Thus

|Ψ(t)〉 = e−γt/2e−i(ωP−∆)t|ψ0〉

−∑

k

iλk

√
2

γ/2− i(ωSk + ω31 − ωP −∆)
×

×(e−i(ωSk+ω31)t − e−γt/2e−i(ωP−∆)t)|ψk〉

and the system evolves exponentially to the maximum entangled atomic state

Eq.(4.8). In fact, this is a durable maximum entangled atomic state because

the direct single-photon transition |3〉 ↔ |1〉 is forbidden. The lifetime of this

entangled state is defined by the slow non-radiative processes only.

Let us stress that the two advantages of the above considered three-level two-

photon process in comparison with the previous scheme [4, 5] are on the one hand

the durability of the entangled state and on the other hand the simple monitoring

of entanglement via detection of Stokes photon. We reckon that the quantum

information processing in the system under consideration can be arranged in the

same way as in Ref.[65].

The above long-life atomic entanglement can be interpreted as the long-

distance entanglement as well within the following experimental scheme. Assume

that one of the atoms is trapped in the cavity which supports a single-photon

Fock state of the pump mode. The second atom passes through the cavity as
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shown in Fig. (4.2). Time of the propagation of the atom through the cavity de-

fined by the velocity of the atom should be long enough to provide the preparing

of the entangled state Eq.(4.8) with high probability. The creation of this state

is signalized by detection of the Stokes photon. Then, the measurement of the

state of the moving atom at any distance from the cavity uniquely determines

the state of the trapped atom.

Concerning the practical realization of the above discussed scheme, we should

stress that the observation of single-atom Raman-type process in an optical cavity

has been reported recently [66]. In this work, the 85Rb atom was used. The excited

state |2〉 corresponds to 5P3/2 level, while the ground |1〉 and intermediate |3〉
states are the 5S1/2 hyperfine levels separated by frequency ω31 = 3GHz, while

Stokes field has the wavelength λS = 780nm. In this case, the lifetime of the

state |3〉 is at least ten times longer than that for the excited state |2〉.

Let us stress that the obtained result can be generalized on the multi-atom

case [69, 70, 71]in the same way as for the conventional single-photon process

in two-level atoms [6]. The increase of the number of atoms should lead to a

speeding-up of the evolution to the entangled atomic state because of the Dicke-

type process caused by the photon exchange between the atoms (see Ref.[67]).

4.3 Summary

In this chapter we have discussed how to obtain robust entangled states as well as

maximally entangled states. We have defined a new practical principle Mini-max

principle applicable for all range of physical systems. At the last part of the

chapter we have demonstrated the effect of the principle on 2 − Λ type atoms

in a cavity for obtaining maximally entangled and robust states [68] which are

immune to the spontaneous decay of the individual atoms.



Chapter 5

Entanglement of Photons

In this chapter we will discuss the polarization properties of the photons produced

by an atomic transition from a localized atom [72]. We have used spherical wave

representation to describe quantum properties of multipole radiation.

5.1 Introduction

It is well known that the time-varying classical electromagnetic (EM) field can

be expanded in vector spherical waves and that this representation is convenient

for electromagnetic boundary-value problems possessing spherical symmetry and

for the discussion of multipole radiation from a local sources (e.g., see Ref.[73,

8]). Since both plane and spherical waves form complete sets of orthonormal

functions, they are equivalent, so that the use of either representation of classical

electromagnetic radiation is caused by the usability reasons.

The underlying motive for consideration of quantum EM radiation in terms of

spherical waves of photons is the fact that the atomic and molecular transitions

create the multipole photons, in other words, the photons with given angular mo-

mentum and parity rather than plane photons specified by the linear momentum

and polarization [74, 11].
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Although there is no principle difference between the plane and spherical

waves within the classical domain since both represent the complete orthogonal

sets of solutions of the homogeneous wave equation [8] and can be re-expanded

with respect to each other, the quantum counterparts of these two representations

are non-equivalent because they describe the physical quantities (the linear and

angular momenta respectively) which cannot be measured at once. The point is

that the vector potential of classical EM field is defined in the three-dimensional

Euclidian spaceR3, while the operator vector potential of quantum EM radiation

is defined in the space

H = R3 ⊗Hph, (5.1)

where Hph denotes the Hilbert space of photons.

According to Wigner’s approach [75], the general properties of a quantum

mechanical system are specified by the dynamic symmetry of the corresponding

Hilbert space. The Hilbert spaces of plane and spherical photons have different

symmetry properties. Viz, the former manifests the SO(2) symmetry caused by

invariance with respect to rotations in xy-plane whose positive normal coincides

with direction of propagation ~k/k. In turn, the latter has the SU(2) symmetry

agreed upon the invariance with respect to rotations in three dimensions about

a local source (say, atom or molecule).

In particular, the symmetry reasons imply the different sets of quantum num-

bers, specifying the photons in the two representations [74, 11, 10]. A photon in

the plane wave representation (PWR) is specified by given energy, linear momen-

tum, and polarization. In turn, a photon in the spherical wave representation

(SWR) has given energy, angular momentum, and parity that corresponds to the

type of radiation, either electric or magnetic.

A number of modern experiments with trapped atoms interacting with pho-

tons corresponds to the interatomic distances that are much shorter than the

wave length [76, 77]. It should be stressed that the difference between the prop-

erties of photons in PWR and SWR is particularly strong just in the near and

intermediate zones.
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Another reason to use SWR is connected with the problem of use of the

angular momentum (AM) of photons in quantum information processing that

has attracted recently a great deal of interest [78, 79, 80, 81, 82].

5.2 Quantization of Multipole Radiation

Following [10], let us construct a representation of photons with given AM and

parity. This means that we have to represent the vector potential in terms of a

superposition of states with given AM and parity.

As for any other particle, AM of a photon consists of the spin and OAM

contributions. Since rest mass of photons is equal to zero, the spin is defined to

be the minimum possible value of AM. From the atomic spectroscopy we know

that the minimum j = 1 (in the units of h̄). Thus, the angular momentum of a

photon is

~J = ~S + ~L, (5.2)

where ~S and ~L denote the spin and OAM, respectively. The eigenfunctions of the

operators Jz and ~J2 are the vector spherical harmonics [8, 74, 83]

~J2~Yj`m = j(j + 1)~Yj`m, Jz
~Yj`m = m~Yj`m. (5.3)

The eigenstates of spin 1 are the columns

~ε+ =




1

0

0


 , ~ε0 =




0

1

0


 , ~ε− =




0

0

1


 ,

that can be associated with the base vectors in R3 as follows

~ε± = ∓~ex ± i~ey√
2

, ~ε0 = ~ez. (5.4)

In fact, the vectors (5.4) form the so-called helicity basis [8, 84]. In particular, the

vectors ~ε± can be associated with unit vectors of polarization with either positive
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or negative helicity. Let us stress that quantum electrodynamics interprets the

polarization as a given spin state of photons [74].

In turn, the eigenstates of quantum mechanical OAM operator −i(~r× ~∇) are

the spherical harmonics Y`m(~k/k). Thus, the vector spherical harmonics (5.3) can

be constructed as the linear combinations of spin states and spherical harmonics

~Yj`m =
∑
µ

〈1`µ,m− µ|jm〉~εµY`,m−µ, (5.5)

where 〈· · · | · · ·〉 denotes the Clebsch-Gordon coefficients of vector addition of spin

and OAM. Taking into account the properties of Clebsch-Gordon coefficients [85],

it is easy to conclude that the quantum numbers j and ` connected in the following

way

j = ` + 1, `, |`− 1|. (5.6)

Thus, for each value of AM j, there are three different states specified by the

vector spherical harmonics (5.5) under the condition (5.6).

Since under inversion ~εµ changes sign and function Y`,m−µ is multiplied by

(−1)`, the vector spherical harmonics have given parity (−1)`+1. Thus, the func-

tions ~Yjjm have the parity (−1)j+1, while the parity of functions ~Yj,j±1,m is (−1)j.

The vector spherical harmonics (5.5) form a complete orthonormal set of func-

tions:

∫ 2π

0
dφ

∫ π

0

~Y +
j`m · ~Yj′`′m′ sin θdθ = δjj′δ``′δmm′ . (5.7)

It is seen that (~k/k) · ~Yjjm(~k/k) = 0. This function ~Yjjm is usually told the

transversal vector spherical harmonics of magnetic type. Another transversal

function can be constructed as a combination of the functions with ` = j ± 1

~Y E
jm ≡ 1√

2j + 1
(
√

j~Yj,j+1,m +
√

j + 1~Yj,j−1,m), (5.8)

which is called the transversal spherical harmonics of electric type. It is seen that

~Yjjm and ~Y E
jm are mutually orthogonal for the same ~k/k.
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The functions with ` = j ± 1 can also be used to construct the longitudinal

vector spherical function

~Y L
jm = −

√
j + 1

2j + 1
~Yj,j+1,m +

√
j

2j + 1
~Yj,j−1,m,

which is orthogonal to both ~Yjjm and ~Y E
jm. Nevertheless, this longitudinal function

should be discarded because the Poincaré invariance allows only two degrees of

freedom for a particle on the light cone.

Thus, the states of the field with given AM and parity can be obtained by

expansion of vector potential over the transversal vector spherical harmonics.

Taking into account the expansion [8]

ei(~k·~r−ωkt) = 4π
∑

`,m

(i)`j`(kr)Y ∗
`m(~k/k)Y`m(~k/k)e−iωkc,

where j`(kr) denotes the spherical Bessel function, we can conclude that the

positive-frequency part of the vector potential has the form

~AMkjm = NMj`
~YjjmaMkjm, (5.9)

~AEkjm = NE[
√

jjj+1(kr)~Yj,j+1,m −
√

j + 1jj−1(kr)~Yj,j−1,m]aEkjm (5.10)

in the case of parity (−1)j+1 and (−1)j, respectively. Here Nλ denotes the nor-

malization factor. In order to have vector potential with discrete values of k, the

right-hand sizes in (5.9) and (5.10) should be defined inside an ideal spherical

cavity of big radius R. Then, the spectrum is defined by the roots of equation

j`(kR) = 0.

In this case, it is convenient to renormalize the spherical Bessel functions by the

condition

∀`
∫ R

0
j`(kr)j`(k

′r)r2dr =
4πR3

3
δkk′ .

In Eqs. (5.9) and (5.10), the complex amplitudes aλkjm specify the amount of

the corresponding multipole field. The harmonic time dependence is usually in-

cluded into these amplitudes. In classical electrodynamics, the amplitudes aλkjm

are determined by the properties of the source of radiation (harmonically varying
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current or intrinsic magnetization) [8]. Within the quantum picture, the ampli-

tudes aλkjm are supposed to be the annihilation operators of multipole photons

[10, 83] that obey the commutation relations

[aλkjm, a+
λ′k′j′m′ ] = δλλ′δkk′δjj′δmm′ . (5.11)

Hence, they form a representation of the Weyl-Heisenberg algebra of multipole

photons. In this case, (5.9) and (5.2) should be considered as the positive fre-

quency parts of the operator vector potential of the magnetic-type radiation (with

λ = M and parity (−1)j+1) and of the electric-type radiation (with λ = E and

parity (−1)j), respectively.

Hereafter, we consider expressions (5.9) and (5.10) as the quantum operators.

Let us now note that the operators (5.9) and (5.10) can be represented in R3

as follows

~Aλkjm =
∑
µ

(−1)µε−µAλkjmµaλkjm,

where Aλkjmµ denotes the mode function of the multipole field. By construction,

this function obey the homogeneous Helmholtz wave equation

∇2Aλkjmµ + ω2
kAλkjmµ = 0.

In fact, the vector ~Aλkjm can be considered as a function from R3 to the Hilbert

space H of complex linear functions on R3 in (5.1). The operators (5.9) and

(5.10) obey the same wave equations but assumes values in the Hilbert space

H×H, where the second factor H comes from the spin states.

In view of the wave equation, the mode functions ~Aλkjm can be interpreted

as the wave functions of multipole photons [74].

It should be emphasized that under rotations the vector spherical functions

are transformed along an irreducible representations of the O+(3) group. Thus,

they are the irreducible tensors of rank j rather than vectors.

It is useful to show that the operators (5.9) and (5.10) are invariant with

respect to the SU(2) group. Consider first the electric-type multipole radiation
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and introduce an auxiliary operator

~A`(~r/r) =
∑
µ,m

Y1µY`m~εµ ⊗ a`m (5.12)

For simplicity, we drop here all other indexes. Because rotations do not influence

the radial dependence in (5.10) provided by the spherical Bessel functions, the

auxiliary function (5.12) depends only on the direction ~r/r in R3.

Let ϕ be an arbitrary transformation belonging to the SU(2) group. Then

~A`(ϕ~r/r) =
∑
µ,m

Y1µ(ϕ~r/r)Y`m(ϕ~r/r)

=
∑

µ,µ′

∑

m,m′
Y1µ′(~r/r)ϕµµ′Y`m′(~r/r)~εµ ⊗ ϕmm′a`m

=
∑

µ,µ′

∑

m,m′
Y1µ′(~r/r)Y`m′(~r/r)[ϕµµ′~εµ]⊗ [ϕa`m]

=
∑

mu′,m′
Y1µ′(~r/r)Y`m′(~r/r)[ϕ~εµ′ ]⊗ [ϕa`m] = ϕ~A`(~r/r).

Thus, the auxiliary operator (5.12) is invariant with respect to the SU(2) group.

Since the spherical harmonics form a basis of an irreducible representation

M` of the SU(2) group, the product Y1µY`m in (5.12) form a basis of

M1 ⊗M` = M`−1 ⊕M` ⊕M`+1. (5.13)

The operator (5.10) is defined just in (5.13).

Let (Y1µY`m)s (s = `, ` ± 1) be the component (projection) of Y1µY`m in Ms.

Then the vector operator

~A`s =
∑
µ,m

(Y1µY`m)s~εµ ⊗ a`m

is also invariant with respect to the SU(2) group. This implies the invariance

of (5.10), because rotations do not influence the radial dependence. The SU(2)

invariance of (5.9) can be proven in the same way.
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5.3 Angular Momentum of Multipole Photons

A classical distribution of electromagnetic field in vacuum carries AM of the form

~J =
1

4πc

∫
~r × ( ~E × ~B)d3r, (5.14)

where

~E =
1

c

∂ ~A

∂t
, ~B = ~∇× ~A

are the electric and magnetic fields. For the fields produced a finite time in the

past and so localized to a finite region, this expression can be rewritten in the

form

~J =
1

4πc

∫ [
~E × ~A +

∑
µ

Eµ(~r × ~∇)Bµ

]
d3r. (5.15)

The first term is usually identified with the spin contribution, while the second

term represents OAM because of the presence of the quantum mechanical angular

momentum operator−i(~r×~∇) [9]. Let us stress that Eq. (5.15) is obtained within

the classical picture, so that the use of notions of spin and OAM has a conditional

meaning.

Within the quantum domain, both terms in the right-hand side of (5.15) are

represented by the bilinear forms in the photon operators (5.11). Since within the

quantization scheme [73, 10, 9] ~E and ~A are usually associated with the canonical

variables of the field, the first term in (5.15) can be interpreted as an intrinsic

AM of a photon.

Consider first PWR, when the operator vector potential has the form

~A(~r) = N
∑

µ=±

∑

k

~εkµ(ei~k·~rakµ + H.c.)

because the third direction εk0 is forbidden in this case [9]. Averaging the first

term in the right-hand side of (5.15) over time to eliminate the rapidly oscillation

terms with a2 and (a+)2 and changing summation over k by integration, we get

for the spin operator

~S =
N2

2πc

∫ d3k

2π

3

~k(a+
k+ak+ − a+

k−ak−). (5.16)



CHAPTER 5. ENTANGLEMENT OF PHOTONS 61

j´ 0

j  1
m 1 m 0

m´ 0

m -1

Figure 5.1: Energy diagram of triple degenerated excited and ground states of a
dipole transition j = 1 ↔ j′ = 0.

Thus, the photons with given energy, linear momentum and polarization µ = ±1

in PWR have no spin about z-axis defined by the direction of propagation. In

particular, this leads to the wrong commutation relations for the components of

the operator (5.16) [78, 86]:

[Sα, Sβ] = 0, α, β = x, y, z. (5.17)

We now show that this result can be improved through the use of SWR.

Consider first a single-mode photon emitted by an electric dipole (E1) transition

in a two-level atom located at the center of an ideal spherical cavity. Let us stress

that E1 photons represent the most frequently encountered type of EM radiation

in visible and IR regions. If AM of the excited atomic state is j = 1, then this

state is triple degenerated with respect to the quantum number m = 0,±1, see

Fig.(5.1) The Jaynes-Cummings Hamiltonian of such a system has the form [87]

H = H0 + Hint, (5.18)

H0 =
∑
m

(ωa+
mam + ω0Rmm),

Hint = γ
∑
m

(Rmgam + a+
mRgm).

Here ω is the cavity mode frequency, ω0 is the atomic transition frequency, γ is

the coupling constant, am, a+
m are the E1 photon operators (5.11), and R denotes

the atomic operators:

Rmm′ = |j = 1,m〉〈j = 1,m|, Rmg = |j = 1,m〉〈j′ = 0, 0|.
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Since the angular momentum is conserved in the atom-photon interaction [11],

the total angular momentum

~J = ~J (a) + ~J (ph) (5.19)

should be an integral of motion with the Hamiltonian (5.18). Here the super-

scripts denote the atom and photon contributions. It is clear that the photon,

created by the atom, takes away AM of the excited atomic state. The latter is

specified by the operators

J (a)
x =

1√
2
(R0+ + R0− + H.c.),

J (a)
y =

1√
2
(R0+ −R−0 −H.c.),

J (a)
z = R++ −R−−, (5.20)

that obey the commutation relations

[J (a)
α , J

(a)
β ] = iεαβκJ

(a)
κ , α, β, κ = x, y, z. (5.21)

It is now a straightforward matter to arrive at conclusion that the photon op-

erator, complementing (5.20) with respect to the integral of motion with the

Hamiltonian (5.18), has the components

J (ph)
x =

1√
2
{a+

0 (a+ + a−) + H.c.},

J (ph)
y =

i√
2
{a+

0 (a+ − a−)−H.c.},

J (ph)
z = a+

+a+ − a+
−a−. (5.22)

It follows from (5.11) that the operators (5.22) obey the same commutation re-

lations as (5.21), that are the true commutation relations for the components of

AM operator. By construction, the operators (5.22) define AM carried away by

the photon from the atom. Thus, the use of SWR leads to the true commutation

relations for AM of photons.

Let us stress a principle difference in the operator structure of Eqs. (5.15)

and (5.22). In the former, the symbols ± denote the circular polarization, while

in the latter, the subscripts m = 0,±1 correspond to the projection of angular

momentum j = 1 on the quantization axis.
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Assume that the atom emits E1 photon with given m. Then, for the mean

values of AM operators (5.21) we get

∀m 〈1m|J (ph)
x,y |1m〉 = 0, 〈1m|J (ph)

z |1m〉 = m.

In turn, the variances are

〈1m|(∆J (ph)
x,y )2|1m〉 =





1
2
, at m = ±1

1, at m = 0

and

〈1m|(∆J (ph)
z )2|1m〉 = |m|.

Thus, the Fock number state of E1 photon manifests strong quantum fluctuations

of AM.

Eqs. (5.21) can be used to specify mean values and variances of AM of many

E1 photons as well. Assume for example that the local source emits E1 photons

in coherent state |αm〉 with given m. Then

〈αm|J (ph)
x,y |αm〉 = 0, 〈αm|J (ph)

z |αm〉 = m|αm|2

and

〈αm|(∆J (ph)
x,y )2|αm〉 =





1
2
|α±|2, m = ±1

|α0|2, m = 0
, 〈αm|(∆J (ph)

z )2|αm〉 = |m||αm|2.

Thus, the state of radiation with m = 0 again manifests more strong quantum

fluctuations of the components of AM. In PWR, the operators J (ph)
x,y do not fluc-

tuate at all.

Let us now establish a contact with the definitions of AM given by Eqs. (5.13)

and (5.14). Consider first the spin density operator

~S(~r) =
1

4πc
~E(~r)× ~A(~r) (5.23)

in the case of E1 monochromatic radiation. Using (5.10), one can see that the

components of (5.23) contain all possible bilinear combinations of photon opera-

tors (5.11). Taking into account the property of spherical Bessel functions that
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j0(kr) → 1 and j2(kr) → 0 at r → 0, we can conclude that the components of the

spin operator (5.23) have the same structure in the photon operators as (5.21).

Moreover, it is seen that the integrand of the second term in (5.14) vanish in

the same limit. Thus, in a certain vicinity of the origin (atom), AM of photons

consists of spin while OAM contribution arises with distance from the source.

Taking into account that the photon localization appears in the form of a

wavefront [88], we should integrate (5.23) over a spherical shall of radius r to-

gether with averaging over time to calculate the amount of spin carried by E1

photon at any distance r from the source. Performing straightforward but tedious

calculations, we can conclude that

~S(r) ≡
∫ 4π

0
dφ

∫ π

0

~S(~r) sin θdθ = f(kr) ~J (ph), f(kr) ∼ j2
0(kr)− j2

2(kr)/4.

In turn, OAM of E1 photons at distance r from the source can be calculated in

the same fashion as ~S(r):

~L(r) ≡
∫ 4π

0
dφ

∫ π

0

~L(~r) sin θdθ ∼ j2
2(kr)~j.

The fact that OAM has the same operator structure as the spin and total AM

reflects the known property of electric-type photons [74, 83]. Viz, in the states

described by the vector spherical harmonics of electric type (5.8), OAM does not

have a given value but is a superposition of states with ` = j ± 1. Thus, in these

states, the total AM cannot be divided into spin and OAM contributions.

A more detailed examination shows that, unlike the energy of electromagnetic

field, AM is not contained in the pure wave zone and the main contribution to

AM comes from the near and intermediate zones.

The situation becomes different as soon as we take into account continuum

mode distribution corresponding to the natural line breadth. In this case, we

should extend the model Hamiltonian (5.17) on the multi-mode case by adding

integration over k and use the Markov approximation, which is similar to the

Wigner-Weisskopf approach [89, 90]. Then, the time-dependent wave function of

the atom-photon system can be written in the form

|ψ(t)〉 = C(t)|ψ(a)〉+
∫

B(k, t)|ψ(k)〉dk (5.24)



CHAPTER 5. ENTANGLEMENT OF PHOTONS 65

with the initial conditions

C(0) = 1, ∀k B(k, 0) = 0.

Here |ψ(a)〉 corresponds to the excited atomic state and vacuum for photons, while

|ψ(k)〉 gives the ground atomic state and single E1 photon with given k and m.

Employing the standard analysis than gives

C(t) = e−iω0t−Γt, B(k, t) =
−k3/2

ωk − ω0 + iΓ

(
1− ei(ωk−ω0)−Γt

)
,

where Γis the radiative decay width.

Carrying out the averaging of z components of spin and OAM contributions

in (5.14) over the state (5.24), we get

〈Sz(t)〉 = 〈Lz(t)〉 =
1

2
(1− e−2Γt) (5.25)

in the units of h̄. Since the Markov approximation corresponds to the ”rough”

scale t À Γ−1 [90], Eq. (5.25) shows that spin and OAM contribute equally into

the total AM of E1 photons at the distances r ≥ c/Γ À c/ω0, corresponding to

the wave zone.

The obtained results can also be applied to the problem of entanglement of

photon twins created by an electric quadrupole (E2) transition between the states

|j = 2,m = 0〉 and |j′ = 0, m′ = 0〉. The cascade decay of this state gives rise to

the two E1 photons propagating in the opposite directions, see Fig.(5.2). Because

of the conservation law, the state of the radiation field has the form

|ψ〉 =
1√
3
(|1+, 1−〉+ |1−, 1+〉+ |10, 10〉), (5.26)

where the subscripts correspond to the quantum numbers m and |1m, 1m′〉 is the

product of number states of ”left” and ”right” photons. Let us stress that photons

with m = 0 may have the most probable direction of propagation different from

that for the photons with m = ±1 because of the structure of the radiation

pattern.

We now show that (5.26) represent the maximum entangled qutrit state. It

was shown in Refs. [6, 91] that the maximum entangled states of a composite
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j’= 0

j = 2

m’=0

m=0 m= 1 m= 2m= -1m= -2

Figure 5.2: Generation of two E1 type photons from an atomic transition, j =
2 → j′ = 0.

system obey the following criterion. The local measurements at all subsystems

have maximum uncertainty in comparison with the other states allowed for a

system under consideration. The complete set of local measurements is defined

by the dynamic symmetry group of the Hilbert state of the composite system [91].

In the case of qutrit system, this is the SU(3) group. Then, the local (”left” and

”right”) measurements in the system described by the state (5.26) are described

by the nine Hermitian generators of the SU(3) subalgebra in the Weil-Heisenberg

algebra of E1 photons (5.11):

M =





a+
+a+ − a+

0 a0, a+
0 a0 − a+

−a−, a+
−a− − a+

+a+,
1
2
(a+

+a0 + a+
0 a+), 1

2
(a+

0 a− + a+
−a0),

1
2
(a+
−a+ + a+

+a−),
1
2i

(a+
+a0 − a+

0 a+), 1
2i

(a+
0 a− − a+

−a0),
1
2i

(a+
−a+ − a+

+a−).

(5.27)

It is easily seen that

〈ψ|Mn|ψ〉 = 0 for all n = 1, · · · , 9 in (5.27).

Thus, the uncertainties of the measurements (5.27)

〈(∆Mn)2〉 ≡ 〈(Mn)2〉 − 〈Mn〉2

achieve the maximum value 〈(∆Mn)2〉 = 〈(Mn)2〉 in the case of averaging over

the state (5.26).
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Let us stress that similar qutrit estates have been considered in the context

of quantum information processing and quantum cryptography [92, 93].

It is easily seen that AM operators (5.22) can be constructed as the linear

combinations of the generators (5.27). Thus, 〈J (ph)
α 〉 = 0 in the state (5.26).

At the same time, this state provide the maximum quantum fluctuations of the

components of AM

〈(∆J (ph)
α )2〉 =

2

3
, α = x, y, z,

as well as the maximum correlation of measurements at the opposite sides of the

”quantum information channel” provided by the state (5.26):

〈[J (ph)
α ]left, [J

(ph)
α ]right〉 =

2

3
.

Here 〈A,B〉 ≡ 〈AB〉 − 〈A〉〈B〉. This results illustrates the idea that the en-

tangled states carry information in the form of correlations between the local

measurements [94].

5.4 Quantum Phase of Electric Dipole (E1)

Photons

The problem of quantum phase was discussed in quantum optics for a long time

(for review, see Refs. [95, 96, 97]). Among the results in the field, the two should

be mentioned, first of all. One is the so-called Pegg-Barnett approach [98, 99]

(for further references, see [96]). Their method is based on a contraction of the

infinite-dimensional Hilbert space of photons H. Viz, the quantum phase is first

defined in an arbitrary s-dimensional subspace in H. The formal limit s →∞ is

taken only after the averaging of the operators, describing the physical quantities,

have been calculated. The weak spot of the approach is that any restriction of

dimension of the Hilbert-Fock space of photons leads to an effective violation of

the algebraic properties of the photon operators. This, in turn, can lead to an

inadequate picture of quantum fluctuations.
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Another approach has been proposed by Noh, Fougères, and Mandel [100,

101]. It is based on the operational definition of the quantum phase (in terms

of what can be measured). The main result of the approach is that there is no

unique quantum phase variable, describing universally the measured phase prop-

erties of the light. This very strong statement has obtained a totally convincing

confirmation in a number of experiments.

The use of SWR permits us to define the quantum phase of photons, corre-

sponding to the azimuthal phase of their AM [87, 102], in the whole Hilbert space

without any contraction. The approach proposed in Ref. [87] complements, in a

sense, the Noh-Fougères-Mandel approach. In fact, it defines the quantum phase

in terms of what can be emitted by a source.

Let us use again the Jaynes-Cummings Hamiltonian (5.18) and the atomic

angular momentum (5.20). The latter can be specified by the operators

J
(a)
+ =

√
2(R+0 + R0−), J

(a)
− = (J

(a)
+ )+, J (a)

z = R++ −R−−, (5.28)

forming a representation of the SU(2) algebra:

[J
(a)
+ , J

(a)
− ] = 2J (a)

z , [J (a)
z , J

(a)
± ] = ±J

(a)
± . (5.29)

Since the enveloping algebra of (5.28)-(5.29) contains the uniquely defined Casimir

operator

( ~J (a))2 = 2
1∑

m=−1

Rmm = 2× 1,

where 1 denotes the unit operator in the three-dimensional Hilbert space, describ-

ing the excited atomic state, a dual phase-dependent representation of (5.28) can

be constructed through the use of method proposed by Vourdas [44]. Viz, the

rising and lowering operators in (5.28) can be represented in the ”polar” form

J
(a)
+ = J (a)

r E, J
(a)
− = E+J (a)

r ,

where J (a)
r in the Hermitian ”radial” operator and E is the unitary (EE+ = 1)

”exponential of the phase” operator. It is easily seen that

E = R+0 + R0− + eiψR−+, (5.30)
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where ψ denotes an arbitrary real reference phase. Using (5.30), one can define

the cosine and sine of the atomic AM azimuthal phase operators

C(a) =
1

2
(E + E+), S(a) =

1

2i
(E − E+), (5.31)

such that

[C(a), S(a)] = 0 and (C(a))2 + (S(a))2 = 1.

The phase states of the atomic AM are then defined to be the eigenstates of the

operator (5.30)

E|φm〉 = eiφm |φm〉,

which leads

|φm〉 =
1√
3

1∑

m′=−1

e−im′φm |j = 1,m〉, φm =
ψ + 2mπ

3
, (5.32)

where m acquires the values 0 and ±1 as above. Through the use of the phase

states (5.32), it is easy to define the following dual representation of the SU(2)

algebra (5.28)-(5.29):

J (a)
± =

∑
m

√
2−m(m± 1)|φm±1〉〈φm|, J (a)

z =
∑
m

m|φm〉〈φm|. (5.33)

It should be stressed that the SU(2) phase states can be constructed for an

arbitrary number of two-level atoms. In particular, it can be shown that the

SU(2) phase states form the set of maximum entangled 2N -qubit states [6]

The representation of the SU(2) subalgebra in the Weyl-Heisenberg algebra

of E1 photons (5.11) has the form

J
(ph)
+ =

√
2(a+

+a0 + a+
0 a−), J

(ph)
− = (J

(ph)
+ )+, J (ph)

z =
∑
m

ma+
mam. (5.34)

This expressions can be obtained directly from (5.22). The operators (5.34)

complement the atomic operators (5.28) with respect to an integral of motion

with the Hamiltonian (5.18). Unfortunately, there is no isotype representation

of the SU(2) subalgebra in the Weyl-Heisenberg algebra [103]. In other words,
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there is no uniquely defined Casimir operator in the enveloping algebra of (5.34).

Therefore, Vourdas’ [44] approach cannot be directly used here to describe the

phase properties of AM of E1 photons.

At the same time, we again can use the conservation of AM in the process

of radiation, which is independent of whether we use the standard form of AM

operators or their dual representation. In particular, it is seen that [87]

[(E + ε), H] = 0,

where

ε = a+
+a0 + a+

0 a− + eiψa+
−a+ (5.35)

is the photon counterpart of the exponential of the phase operator (5.30). In

contrast to (5.30), Eq. (5.35) does not determine a unitary operator. At the

same time, (5.35) represents the normal operator

[ε, ε+] = 0,

commuting with the total number of photons

[ε,
∑
m

a+
mam] = 0.

The quantum phase properties of E1 photons can now be described in terms

of the dual representation of photon operators that has been introduced in Ref.

[102]. Let us use the following Bogolubov-type [105] canonical transformation

am =
1√
3

1∑

m′=−1

e−im′φmam′ , am =
1√
3

1∑

m′=−1

eim′φmam′ , [am, a+
m′ ] = δmm′ .(5.36)

Here φm represents the same phase angle as above. It is seen that the operator

(5.35) takes the diagonal form in the representation (5.36):

εφ =
1∑

m=−1

eiφma+
mam. (5.37)

Let us note that the atomic operator (5.30) is also diagonal in the representation

of phase states (5.32)

Eφ =
∑
m

eiφm |φm〉〈φm|
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and that

[(Eφ + εφ), H] = 0.

Thus, all one can conclude is that the operators am and a+
m (5.36) provide a

representation of E1 photon operators of annihilation and creation with given

quantum phase that, by construction, is the azimuthal phase of AM of photons.

In particular, the annihilation operators in the phase representation (5.36)

obey the stability condition

∀m am|0〉 = 0,

where |0〉 is the vacuum state. Thus, the conjugated creation operator can be

used to construct the Fock number states in the phase representation in usual

way:

|νm〉 =
1√
νm

(a+
m)νm|0〉, a+

mam|νm〉 = νm|νm〉, νm = 0, 1, · · · , (5.38)

such that

〈νm|νm′〉 = δmm′ ,
1⊗

m=−1

∑
νm

|νm〉〈νm| = 1. (5.39)

Thus, the photon phase states |νm〉 form a complete orthonormal denumerable

set of states of E1 photons, spanning the ”phase” Hilbert-Fock space. This space

is dual to the conventional space of states of E1 photons. It is seen that

εφ|νm〉 = νmeiφm|νm〉.

Thus, (5.37) can be interpreted as the non-normalized exponential of the phase

operator. In turn, the cosine and sine of the photon phase operators can be

defined as follows

C
(ph)
φ = K

∑
m

a+
mam cos φm, S

(ph)
φ = K

∑
m

a+
mam sin φm, (5.40)

where the normalization coefficient K is defined by the condition

〈(C(ph)
φ )2 + (S

(ph)
φ )2〉 = 1 (5.41)
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for the averaging over an arbitrary state of the radiation field. Similar coefficient

was used in the Noh-Fougères-Mandel operational approach as well [101].

The phase representation (5.36) can be used to describe the azimuthal phase

of AM of E1 photons [87, 106, 107, 102, 97]. In particular, it is possible to

show that the eigenvalues of the azimuthal quantum phase of AM of photons

have a discrete spectrum, depending on the number of photons. All eigenvalues

lie in the interval [0, 2π]. In the classical limit, provided by the high-intensity

coherent state of radiation, the phase eigenvalues are distributed uniformly over

the interval [0, 2π] as all one can expect in classical domain [102, 97].

The comparison with the Pegg-Barnett approach shows the qualitative coin-

cidence of results for mean value of the cosine and sine operators. At the same

time, there is a striking difference in the behavior of variance of quantum phase

in the case of very few photons, corresponding to the quantum domain [106, 97].

5.5 Polarization of Multipole Photons

The polarization is usually defined to be the measure of transversal anisotropy of

electromagnetic field with respect to the direction of propagation provided by the

Poynting vector ~P [84]. Quantum electrodynamics interprets the polarization as

given spin state of photons [74]. In spite of the fact that spin is equal to 1 and

hence has three states, the photons have only two polarizations because of the

Poincarë invariance.

In PWR, direction of ~P always coincides with ~k/k. Thus, the polarization is

a global property of photons in PWR. However, this is no longer a case for SWR,

where (~r × ~P ) is not equal to zero, at least in a certain vicinity of the source.

As a matter of fact, E1 radiation obey the condition (~r · ~B) = 0, while the

electric field ~E is not orthogonal to the radial direction [8]. Therefore, if we

discuss the radiation in the ”laboratory frame” spanned by the basis (5.4) with

the origin at the atom location, the three polarizations should be taken into
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account [108, 109].

This fact can be illustrated in the following way. Within the relativistic pic-

ture, the field is described by the field-strength tensor

Fαβ = ∂αAβ − ∂βAα =




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0−Bx

−Ez −By Bx 0




. (5.42)

Since the anisotropy of the field can be specified by the lengths of the vectors and

angles between the components, consider the following (4× 4) matrix

R = F+F =


 ( ~E+ · ~E) ~P

~P+ P


 .

Here F (F+) denotes the positive- (negative)-frequency part of (5.42), ~P , apart

from an unimportant factor, coincides with the positive-frequency part of the

Poynting vector, and P is the Hermitian (3× 3) matrix additive with respect to

contributions coming from electric and magnetic fields

P = PE + PB, (5.43)

where

PEαβ = E+
α Eβ, α, β = x, y, z (5.44)

and

PBαβ =





~B+ · ~B −B+
α Bα at α = β

−B+
α Bβ otherwise

. (5.45)

Thus, the matrix (5.43)-(5.45) specifies the magnitudes of the components and the

angles between the components of the complex field strengths in the ”laboratory

frame” with the origin at the source location. We chose to interpret (5.43) as the

general polarization matrix[104].

To justify this choice, consist first the case of plane waves propagating in the

z-direction. Then, because of relations Bx = −Ey and By = Ex, both terms in
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(5.43) are reduced to the same (2× 2) matrix of the form


 E+

x Ex E+
x Ey

E+
y Ex E+

y Ey


 ,

that is, to the conventional polarization matrix [84]. In the case of multipole

radiation, the matrices (5.44) and (5.45) can also be reduced to the (2 × 2)

conventional polarization matrices by a local unitary transformation, rotating

the z-axis in the direction of Poynting vector ~P (~r) at any point ~r.

The diagonal terms in (5.44) give the radiation intensities of the components.

The off-diagonal terms give the ”phase information” described by the phase dif-

ferences

∆αβ = arg Eα − arg Eβ, ∆xy + ∆yz + ∆zx = 0.

The polarization matrices (5.44) and (5.45) can also be expressed in the helicity

basis (5.4) through the use of the unitary transformation

U




Ex

Ey

Ez


 =




E+

E0

E−


 , U =

1√
2




1 i 0

0 0
√

2

−1 i 0




and similar transformation for ~B. Then, UPEU+ coincides, to within the trans-

position of columns, with the polarization matrix with elements

P̃µµ′ = E+
µ Eµ′ , µ, µ′ = 0,±1, (5.46)

have been introduces in [108].

Since ~E(~r) · ~B(~r) at any point ~r and ~r · ~B = 0 for the electric-type radiation,

the complete information about the phase differences is provided by the matrix

(5.44) or by the equivalent matrix (5.46) in this case. In the case of magnetic-type

radiation with ~r · ~E = 0, the matrix (5.45) should be used instead of (5.44) [110].

Consider now the quantum E1 radiation. In this case, the field amplitudes

should be changed by corresponding operators. Let us note that in addition
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to (5.46) defined in terms of normal product of photon operators, we can also

construct the anti-normal ordered polarization matrix

P̃(an)
µµ′ = Eµ′E

+
µ .

Then, the difference

P̃(0)
µµ′ ≡ P̃(an)

µµ′ − P̃µµ′ = [Eµ, E
+
µ′ ] (5.47)

defines the elements of the vacuum polarization matrix, in other words, the zero-

point oscillations (ZPO) of polarization [111]. It is easily seen that ZPO of po-

larizations depend on the distance from the source r and have a uniform angular

distribution. Consider first the z-direction when θ = 0 and

Yj±1,m−µ(0, φ) =

√
2(j ± 1) + 1

4π
δmµ

for all φ. Then, taking into account the definition of vector spherical harmonics

(5.5), operator vector potential (5.10), and commutation relations (5.11), for the

right-hand side of (5.47) we get

P̃(0)
µµ′(r, 0, φ) =





N2
E

[
j2(kr)〈12µ0|1µ〉

√
5
4π
− j0(kr)

√
1
2π

]2
at µ = µ′

0 otherwise
(5.48)

Because of the SU(2) invariance of the operator vector potential, proven in

Sec. II, there is a local unitary transformation V (~r), transforming (5.47) into

(5.48) at any point. For explicit form of V see Ref. [97]. Since 〈1210|11〉 =

〈12,−1, 0|1,−1〉 = 1/
√

10 and 〈1200|10〉 = −
√

(2/5), the transversal (with re-

spect to ~r) elements P̃(0)
±± in (5.48) have equal magnitude. In view of definition of

spherical Bessel functions, it is seen that ZPO of polarization are strong enough

in the near and intermediate zones, while vanish at r →∞.

Let us now apply the above unitary transformation to the components oper-

ator vector potential of E1 field V (~r) ~AE1kµ(~r) and calculate the commutator

[V (~r) ~AE1kµ(~r), ~A+
E1kµ′(~r)V

+(~r)] = δµµ′ ×



P̃(0)

++(r) at µ = ±1

P̃(0)
00 (r) at µ = 0
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It is seen that these relations coincide with (5.11) to within the distance-

dependent factors, describing ZPO of polarization. In turn, the normalized oper-

ators

bkµ(~r) =
V (~r) ~AE1kµ(~r)√

P̃(0)
µµ (r)

(5.49)

obey the commutation relations (5.11) at any point ~r and hence form a local

representation of the Weyl-Heisenberg algebra of E1 photons. Instead of the

global index m, specifying AM, they depend on the coordinates µ. In other

words, they specify the field oscillations in the ”laboratory frame” spanned by

the helicity basis (5.4) and hence can be interpreted as the local operators of E1

photons with given polarization [111]. This means that the eigenstates of the

number operators b+
µ (~r)bµ(~r) give the number states of E1 photons with given

polarization µ at any point ~r.

In fact, Eq. (5.49) represents a local Bogolubov-type canonical transformation

from the photon operators with given m to the photon operators with given µ

bkµ(~r) =
1√

P̃(0)
µµ (r)

∑
m

∑

µ′
(−1)µ′Vµµ′(~r)Akmµ′(~r)am ≡ ∑

m

Bmµ(~r)am, (5.50)

where A denotes the mode function. Since det[B] 6= 0, there is an inverse trans-

formation, representing operators am in terms of bµ.

It is a straightforward matter to show that, in the representation of local

operators (5.49)-(5.50), the polarization matrix (5.46), apart from an unimportant

constant factor, takes the form

P̃µµ′(r̃) = b+
µ (~r)bµ′(~r). (5.51)

Assume now that the two-level E1 transition have been discussed in previous

sections emits a single photon in the state |1m〉. Then the averaging of (5.51)

over this state gives the polarization at any point ~r described by the matrix with

elements

〈P̃µµ′(~r)〉 =
B∗mµ(~r)Bmµ′(~r)

P̃(0)
µµ (r)

. (5.52)
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Taking again into account that the properties of a multipole photon correspond

to a spherical shall of radius r, we should integrate (5.52) over sin θdθdφ to get

the polarization matrix of the photon at any distance r from the atom like we

did in Sec. III for the spin carried by photon. In particular, it can be seen that

the photons with any m have only two circular polarizations µ = ±1 in the wave

zone [109] even in the ”laboratory frame”.

It should be emphasized that the polarization can also be described in terms

of Stokes parameters that become the Stokes operators in quantum domain [112].

In the case of polarization of photons in SWR and in the ”laboratory frame”

defined by the basis (5.4), we have three independent directions of electric field

oscillations. Since we have three degrees of freedom, the set of Hermitian Stokes

operators is provided by the generators of the SU(3) subalgebra in the local Weyl-

Heisenberg algebra of operators (5.49). In other words, the Stokes operators in

”laboratory frame” coincide with (5.27) with the substitution of bµ(~r) instead of

am [97].

In this way, the quantum properties of polarization of E1 photons can be

described, including the quantum fluctuations of polarization [109, 97].

5.6 Summary

We have reviewed some recent results concerning the quantum radiation by mul-

tipole transitions in atoms and molecules. It is shown that because of the radical

difference of the dynamic symmetry group of the Hilbert spaces, the use of SWR

leads to a more adequate picture of AM in quantum domain than PWR. In par-

ticular, SWR permits us to evaluate the quantum fluctuations of AM of photons.

It is also shown that spin and OAM contribute equally into the total AM of pho-

tons in the wave zone, while spin prevail over OAM in the near and intermediate

zones [114].

It is also shown that the cascade decay of E2 transition can lead to creation

of E1 photon twins in the qutrit maximum entangled with respect to AM state.
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This state correspond to the criterion of maximum entanglement of Refs. [6, 91]

and manifests maximum correlation of local measurements. Let us stress that

usually the qubit polarization entangled states of photons created by the cascade

decay of two-level atom are considered in PWR (e.g., see [9]).

The use of SWR permits us to define the inherent quantum phase of multipole

photons that is the azimuthal phase of AM. This definition develops the opera-

tional approach by Noh, Fougëres and Mandel [100, 101]. The approach based on

the polar decomposition of AM does not violate the algebraic properties of photon

operators and leads to a qualitatively different picture of quantum fluctuations

of phase from that obtained within the Pegg-Barnett approach [96, 98, 99].

It should be stressed that the approach based on the consideration of the

SU(2) phase states has shown its efficiency in the problem of definition of maxi-

mum entangled N-qubit states [6] in the atomic entanglement has been proposed

in Ref. [4, 113] and in quantum cryptography [44]. In particular, it can be used to

specify the qubit multipartite states in three-level atoms [68]. It can also be ap-

plied to classification of maximum entangled states that can be obtained through

the use of strong-driving-assisted processes in cavity QED.

Finally, the use of SWR permits us to describe the quantum properties of

polarization at any distance from the source. Since the polarization is a local

property of multipole radiation, the representation of the Weyl-Heisenberg al-

gebra of photons with given polarization at any distance from the source can

be constructed through the use of SWR. It should be stressed that usually the

problem of photon localization is discussed in terms of wave functions (see [115]

and references therein). At first sight, there is no principle contradiction between

the approaches based on the use of operators and wave functions. A connection

between the approaches deserves a more detailed investigation.
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Conclusions

Let us briefly summarize our results. We have proposed a new variational prin-

ciple for definition of maximally entangled (ME) states which can be used as an

operational definition i.e. what can be measured. Using this approach we have

shown that well known ME states like EPR states can be derived from this princi-

ple. In addition to this, we have also shown that a single particle entangled state

(a qutrit) exists. We have proposed some physical realizations of single particle

entanglement.

Next, it is shown that the maximum entangled atomic states are represented

by the SU(2) phase states of spin 1/2. Moreover, the SU(2) phase states of

the half-integer spin j form a certain class of maximum entangled atomic states

in the system of 2n two-level atoms interacting with n photons. In particular,

the violation of classical realism is shown. The SU(2) phase states represent

an important example of the atomic entangled states. First of all, they can be

easily realized in the atomic systems in a cavity. The realization of a pure atomic

entanglement in the 2n+n-type atom + photon systems strongly depends on the

choice of initial state. Viz, the entangled states can be reached in the process of

steady-state evolution only if all 2n atoms are initially in the de-excited states,

while the cavity contains just n photons. This condition has an intuitively clear

explanation: the excitations of different atoms have the same probability and

therefore each photon in the 2n + n-system is shared with a couple of atoms.

79
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It is well known that producing maximally entangled states are not enough for

physical applications like quantum coding or resources for quantum teleportation.

They should be robust for certain environmental destructive effects. In Chapter

4, we have proposed a new Mini-max principle in order to stabilize the maximum

entangled state. It is necessary to prepare the system S in a state, which obey the

condition for maximally entangled state together with the condition of minimum

(at least local minimum) of energy. This can be achieved by means of interaction

of the system S with a certain dissipative environment. As an example we have

considered two
∧

-type atom in a cavity. Using the adiabatic elimination of the

upper atomic levels we have shown that long standing entangled state is gener-

ated. Another advantage of using this proposed schema is the simple monitoring

of entanglement via detection of Stokes photon.

In the last chapter, we have discussed the properties of multipole radiation

generated by atomic transitions. Although plane and spherical wave representa-

tions are the same in classical picture, they are quite different in quantum domain

because they describe different physical observables which cannot be measured at

once such as linear and angular momentum. We have discussed angular momen-

tum (AM) of a photon generated by a multipole transition from an atom using

spherical wave representation. In particular, we examine AM entanglement of

two photons emitted by a cascade decay of an electric quadrupole transition i.e.

generation of two qutrit entangled state . In the last part of the chapter we have

discussed spatial properties of polarization for multipole radiation.
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[69] M.A.Can, Ö.Çakır, A.A.Klyachko, and A.S.Shumovsky, Physical Review A,

68, 022305 (2003).
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