
COMBINED USE OF PRIORITIZED AIMD

AND FLOW-BASED TRAFFIC SPLITTING

FOR ROBUST TCP LOAD BALANCING

a thesis

submitted to the department of electrical and

electronics engineering

and the institute of engineering and sciences

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Onur Alparslan

January 2005

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Ezhan Karaşan(Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof Dr. Nail Akar

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Erdal Arıkan

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet Baray
Director of Institute of Engineering and Sciences

ii

ABSTRACT

COMBINED USE OF PRIORITIZED AIMD

AND FLOW-BASED TRAFFIC SPLITTING

FOR ROBUST TCP LOAD BALANCING

Onur Alparslan

M.S. in Electrical and Electronics Engineering

Supervisor: Asst. Prof. Dr. Ezhan Karaşan

January 2005

In this thesis, we propose a multi-path TCP load balancing traffic engineering

methodology in IP networks. In this architecture, TCP traffic is split at the flow

level between the primary and secondary paths in order to prevent the adverse

effect of packet reordering on TCP performance occuring in packet-based load

balancing schemes. Traffic splitting is done by using a random early rerouting

algorithm that controls the queuing delay difference between the two alterna-

tive paths. We apply strict priority queuing in order to prevent the knock-on

effect that arises when primary and secondary path queues have equal prior-

ity. Probe packets are used for getting congestion information from the output

queues of links along the paths and AIMD (Additive Increase/Multiplicative De-

crease) based rate control using this congestion information is applied to the

traffic routed over these paths. We compare two queuing architectures, namely

first-in-first-out (FIFO) and strict priority. We show through simulations that

strict priority queuing has higher performance, it is relatively more robust than

FIFO queuing and it eliminates the knock-on effect. We show that avoiding

packet reordering by flow level splitting significantly improves the performance

iii

of long flows. The capabilities of ns-2 simulator is improved bu using optimiza-

tions in order to apply the simulator to relatively large networks. We show that

incorporating a-priori knowledge of the traffic demand matrix into the proposed

architecture can further improve its performance in terms of load balancing and

byte rejection ratio.

Keywords: Traffic engineering, load balancing, multi-path routing, TCP, AIMD

rate control.

iv

ÖZET

ÖNCELİKLENMİŞ AIMD VE AKIM TABANLI TRAFİK

BÖLÜMÜ KULLANARAK DAYANIKLI TCP YÜK

DENGELEMESİ

Onur Alparslan

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Ezhan Karaşan

Ocak 2005

Bu tezde, IP ağları için çokyollu TCP yük dengelemesi tabanlı bir trafik

mühendisliği yöntemi önerilmektedir. Bu mimaride, TCP trafiği birincil ve

ikincil yollara akım seviyesinde bölünmektedir. Bunun nedeni paket tabanlı

yük dengeleme sistemlerinin paket sırası değişikliğine neden olarak TCP per-

formansını düşürmesidir. Trafik bölmesi bir rasgele erken tekrar yönlendirme

algoritması tarafından yapılmaktadır. Bu algoritma, iki alternatif yolun kuyruk

gecikmesi farkını kontrol etmektedir. Birincil ve ikincil yollardaki kuyruk-

ların eşit öncelikli olması durumunda oluşan zincir etkisini önlemek için kesin

öncelikli kuyruklama kullanılmaktadır. Sonda paketleri kullanılarak yollar-

daki çıkış kuyruklarındaki tıkanıklık bilgisi elde edilmektedir. Bu bilgi kul-

lanılarak AIMD-tabanlı hız kontrolü uygulanmaktadır. Bu çalışmada iki kuyruk-

lama sistemi karşılaştırılmaktadır. Bunlar ilk-giren-ilk-çıkar (FIFO) ve kesin

öncelikli kuyruklamalardır. Simülasyonlarla kesin öncelikli kuyruklamanın daha

yüksek performansa sahip olduğu, göreceli olarak daha dayanıklı olduğu ve

zincir etkisini önlediği gösterilmektedir. Akım tabanlı bölme sayesinde paket

sırası değişikliğinin engellenmesi uzun akımların performansını önemli oranda

v

arttırmaktadır. Ayrıca ns-2 simülatörünün çokgen ağ topolojisi simülasyon kapa-

sitesi bu simülasyonları gerçekleştirebilmek için ciddi oranda arttırılmıştır. Trafik

istek matriksi hakkında önsel bilginin önerdiğimiz yapıya dahil edilmesi duru-

munda yük dağılımı ve bayt reddetme oranı bakımından performansın daha da

arttırılabileceği gösterilmektedir.

Anahtar kelimeler: Trafik Mühendisliği, Yük Dengelemesi, Çokyollu Yönlendirme,

TCP, AIMD Hız Kontrolü

vi

ACKNOWLEDGEMENTS

I gratefully thank my supervisor Asst. Prof. Dr. Ezhan Karaşan and co-

supervisor Asst. Prof. Dr. Nail Akar for their supervision and guidance

throughout the development of this thesis.

vii

Contents

1 Introduction 1

1.1 Traffic Engineering . 2

1.1.1 Connectionless Multipath Traffic Engineering 4

1.1.2 Connection-oriented Multipath Traffic Engineering 5

1.2 Proposed Traffic Engineering Framework and Contributions . . . 9

2 Traffic Engineering Framework 12

2.1 Path Establishment . 13

2.1.1 Path Selection with no Traffic Knowledge 13

2.1.2 Path Selection with Traffic Knowledge 13

2.2 Queuing in Edge And Core Nodes 16

2.3 Feedback Mechanism and AIMD Rate Control 18

2.4 Traffic Splitting At The Edge Nodes 19

3 Numerical Results 23

viii

3.1 Simulator Architecture . 24

3.2 Three-node Topology Simulations 26

3.3 Mesh Topology Simulations . 36

3.3.1 Simulations Without Prior Traffic Matrix 36

3.3.2 Simulations for the Case With Estimated Traffic Matrix

Available . 44

4 Conclusions 48

A Simulator 56

A.1 Installing And Using The Simulator 56

A.1.1 Installing The Module . 56

A.1.2 Simulation Scripts . 57

A.2 Unoptimized Path Set For Hypothetical US Topology 58

A.3 Optimized Path Set For Hypothetical US Topology 62

ix

List of Figures

2.1 Example Architecture . 14

2.2 Lexicographic optimization: (a) Unbalanced load distribution, (b)

After first step in lexicographical optimization, (c) Lexicographi-

cally optimal solution . 15

2.3 Traffic Splitting . 20

2.4 Random Early Reroute . 21

2.5 Queuing Architecture . 22

3.1 Goodput as a function of flow size for α = 1.06 and (a) γ = 1.0,

(b) γ = 0.4, and (c) γ = 0.0. 31

3.2 Goodput as a function of flow size for α = 1.20 and (a) γ = 1.0,

(b) γ = 0.4, and (c) γ = 0.0. 32

3.3 Average per-flow goodput as a function of γ for α = 1.20. 33

3.4 Normalized goodput as a function of γ for α = 1.20. 34

3.5 Hypothetical US Topology. 37

x

3.6 As a function of RIF and RDF : (a) Gnet for the multi-path

TE with strict-priority and RER, (b) Gnet for the shortest-path

routing, (c) BRR for the multi-path TE with strict-priority and

RER (d) BRR for the shortest-path routing 39

3.7 As a function of minth and maxth: (a) Gnet for the multi-path TE

with strict-priority and RER (b) BRR for the multi-path TE with

strict-priority and RER . 39

3.8 As a function of traffic scaling parameter γ: (a) Gnet and Gnorm−avg

(denoted by G in the figure) (b) Byte Rejection Ratio 40

3.9 Gnorm−avg as a function of traffic scaling parameter Tr 43

3.10 BRR as a function of traffic scaling parameter Tr 44

3.11 As a function of RIF and RDF : (a) Gnet for the multi-path

TE with strict-priority and RER, (b) Gnet for the shortest-path

routing, (c) BRR for the multi-path TE with strict-priority and

RER (d) BRR for the shortest-path routing 45

3.12 Gnorm−avg as a function of traffic scaling parameter Tr 46

3.13 BRR as a function of traffic scaling parameter Tr 47

xi

List of Tables

2.1 The AIMD algorithm . 19

3.1 Relative increase/decrease of normalized goodput, ∆TE, for four

TE algorithms with respect to shortest path routing. 35

xii

To My Family. . .

Glossary

ABR Available Bit Rate, 10

AIMD Additive Increase/Multiplicative Decrease, 6

AMP Adaptive Multi-Path, 4

ATR Allowed Transmission Rate, 18

BRR Byte Rejection Ratio, 38

CE Congestion Experienced, 18

CPN Cognitive Packet Networks, 5

ECMP Equal Cost Multi-path, 4

ECN Explicit Congestion Notification, 10

FIFO First-In-First-Out, 11

IGP Interior Gateway Potocol, 5

IS-IS Intermediate System - Intermediate System, 2

ISP Internet Service Provider, 1

MPLS-OMP MPLS Optimized Multipath, 5

MPTE Multipath Traffic Engineering, 3

MTR Minimum Transmission Rate, 19

xiv

OSPF Open Shortest Path First, 2

OSPF-OMP OSPF Optimized Multipath, 4

P-RM packet Resource management packet of primary path,

18

PP Primary path, 9

PTR Peak Transmission Rate, 19

RDF Rate Decrease Factor, 19

RDF Rate Increase Factor, 19

RED Random Early Detect, 10

RER Random Early Reroute, 10

RM packet Resource Management packet, 16

s-d source-destination, 9

S-RM packet Resource management packet of secondary

path, 18

SD Shortest Delay, 28

SMR Split Multipath Routing, 6

SP Secondary path, 9

TE Traffic Engineering, 2

xv

Chapter 1

Introduction

Today, Internet is a very important communications infrastructure. Many com-

panies, governments, academic institutions, people etc. are using Internet for

their economic, social, political, cultural, educational activities. The rapid in-

crease in the amount of activities, also bring the rapid increase in the amount

of traffic created and carried on the Internet. This rapid increase of traffic can

decrease the performance of Internet unless precautions are taken. Therefore

ISPs (Internet Service Providers) must cope with rapid traffic increase, higher

quality service expectations of their customers and higher service requirements

of new applications. There are two main approaches that ISPs make use of:

• Network Planning and Capacity Expansion

• Traffic Engineering

Network Planning and Capacity Extension is a very long-term process that

aims to develop the network architecture, design, capacity, and the configuration

of network elements to accommodate current expectations and also expanding

current network capacity in order to accommodate future traffic expectations

that are obtained from traffic forecasts.

1

Internet Traffic Engineering (TE) is defined as the set of mechanisms for per-

formance evaluation and performance optimization of operational IP networks.

In particular, traffic engineering controls how traffic flows through a network so

as to optimize resource utilization and network performance. These evaluations

and optimizations are carried on measures like delay, delay variation, packet loss,

and throughput [1].

1.1 Traffic Engineering

TE mechanisms can be applied to hop-by-hop, explicit, or multi-path routed

networks. Traditional hop-by-hop routed IP networks using IS-IS (Intermediate

System - Intermediate System) or OSPF (Open Shortest Path First) routing

protocols, which are link-state protocols based on the Dijkstra algorithm, make

use of simple link weights such as hop-count, delay or bandwidth. Due to their

simplicity and fast convergence, hop-by-hop routing algorithms allow IP routing

to scale to large networks. However, they do not optimize resource utilization

and network performance very well. There are a number of studies on optimizing

the resource utilization and network performance in hop-by-hop routed networks

by using traffic engineering. By using a given traffic demand matrix information,

these studies try to calculate the optimal set of link weights that optimize the

resource utilization and network performance [2, 3, 4]. However the success of

these methods depends on the accuracy of traffic demand matrix, which can be

difficult to achieve [5]. An extension that can handle failures is available in [6] for

robust OSPF routing. However these methods can not always find the optimal

solution, because there are some cases where there is no possible set of link

weights achieving the optimal solution. Also they can cause severe oscillations

due to coarse adjustments in link weights that bring instability.

2

In overlay networks, service providers establish logical connections between

the edge nodes of a backbone, and then overlay these logical connections onto

the physical topology. The established logical connections can take any feasible

path through the network. Using a long-term traffic matrix and constraint-based

routing, possible logical connection layouts are calculated and one of them is se-

lected. In case of a big traffic increase in a logical connection, extra bandwidth

is requested from the network. If it is possible, problem is solved by accepting

this request and increasing the bandwidth of the logical connection. If it is not

possible to give extra bandwidth, it is possible to perform path re-optimization

by rearranging the logical connections, so that logical connections using the con-

gested physical link can be re-routed to less congested paths. On the other hand,

if there is a big traffic decrease in a logical connection, it is possible to deallocate

unused bandwidth from this connection so that it can be used by other logical

connections in case they need more bandwidth. One problem of the overlay ap-

proach is that for large networks, it may bring significant messaging overheads.

Also current implementations of most of the routing protocols do not support a

very large number of peers that limit the number of logical links adjacent to a

node.

Another TE method is Multipath Traffic Engineering (MPTE). The goal

of multi-path routing is to increase the resource utilization of the network by

intelligently splitting the traffic between a source-destination pair among multiple

alternative paths. Multipath traffic engineering can be classified into two groups:

Connection-oriented and connectionless. Connectionless techniques are based

on improving the shortest-path algorithms or routing metrics in IP networks.

Connection-oriented techniques use signalling for path setup, such as MPLS or

ATM, based on virtual connections between a source destination pair.

3

1.1.1 Connectionless Multipath Traffic Engineering

One connectionless MPTE technique is ECMP (Equal Cost Multi-path) exten-

sion of OSPF [7]. ECMP evenly divides the traffic among all available shortest

paths with equal lowest cost. This allows a good load distribution in some

network topologies. Also it has robustness due to the good failure detection

capability and efficiency of OSPF. The packets can be divided by using either

packet based round robin or according to a hash function applied to the source

and desination pair. Hashing based routing solves the packet reordering prob-

lem within flows. Also ECMP is integrated into OSPF, so it is readily available

in OSPF routers. The main problem of this technique is that it requires mul-

tiple paths with equal lowest cost. In a typical network, usually there are a

limited number of paths that satisfy this requirement. Also uneven traffic split-

ting is better in many cases. Another technique based on OSPF and capable of

uneven traffic splitting is OSPF Optimized Multipath (OSPF-OMP) [8], which

uses a hashing based splitting algorithm based on source and destination address.

Routers generally do not know the congestion status of distant links in the net-

work, so they do not know the best traffic splitting ratio. OSPF-OMP solves

this problem by using a link-state protocol flooding mechanism for informing

all routers in the network about the load level of each link in the network. By

using this information, routers can calculate the best traffic splitting ratios in

order to decrease the load in congested links and minimize the maximum link

utilization in the network. However storing detailed information about all links

in the network brings scalability problems. Also there is an increased signalling

overhead for informing all routers in the network about the load level of each link.

There is a recent proposal called Adaptive Multi-Path routing (AMP) in [9] that

restricts the distribution of load information to a local scope, thus simplifying

both signaling and load balancing mechanisms.

4

1.1.2 Connection-oriented Multipath Traffic Engineering

In connection-oriented MPTE, multiple logical connections with disjoint paths

are established between edge nodes. These logical connections can be considered

as explicitly routed paths that are readily implementable using standard-based

layer 2 technologies such as ATM or MPLS or using source routed IP tunnels.

These logical connections can be determined by using the long-term traffic ma-

trix. One technique based on MPLS is MPLS Optimized Multipath (MPLS-

OMP) [10]. It requires an Interior Gateway Potocol (IGP) such as OSPF or

IS-IS to provide link state information. Like OSPF-OMP, it uses a hashing

based algorithm based on source and traffic address for uneven traffic splitting.

Splitting ratio is adjusted gradually for stability.

In [11], a dynamic multi-path routing scheme for connection oriented ho-

mogeneous high speed networks is proposed. In this scheme, the ingress node

starts making use of multiple paths as the shortest path becomes congested in

order to distribute the load and reduce packet loss in the network. If no al-

ternate path exists it only uses the shortest path, because propagation delay is

much larger than queuing and transmission delay in high speed networks. It uses

source routing and the routing tables are calculated off-line. In [12, 13, 14, 15],

a network architecture called “Cognitive Packet Networks (CPN)”, which makes

use of adaptive techniques to find routes based on user defined QoS criteria like

packet loss or delay, is proposed. In this approach, smart packets explore and

learn optimal routes by using reinforcement learning in an adaptive manner and

inform the source with acknowledgment packets. Then dumb packets that carry

actual payload follow these routes selected by smart packets.

There are also works that adapt multi-path routing methods to wireless net-

works. For ad-hoc wireless networks, a distributed QoS routing scheme that

selects a network path with sufficient resources to satisfy a QoS requirement (de-

lay or bandwidth) in a dynamic multihop mobile environment is proposed in [16].

5

In [17], a mechanism for adaptive computation of multiple paths with an objec-

tive to minimize end-to-end delay is proposed. In a wireless environment that has

continuously changing topology and no infrastructure, a routing mechanism that

uses multiple paths simultaneously by splitting the packets into smaller blocks

and distributing the blocks over available paths based on the failure probabilities

of paths is proposed in [18]. An on-demand routing scheme called Split Multipath

Routing (SMR) that establishes and utilizes multiple routes that are the short-

est delay route and the one that is maximally disjoint with the shortest delay

route is proposed in [19]. However, choosing the multiple paths with link-disjoint

criteria may not be enough for wireless networks. Route coupling, which occurs

when two routes are located physically close enough to interfere with each other

during data communication, must be considered. In [20], zone-disjointness of

routes to minimize the effect of interference among routes in wireless medium is

proposed besides link-disjointness. It proposes using directional antennas instead

of omni-directional antennas to help decoupling interfering routes.

Recently, there have been a number of multi-path traffic engineering pro-

posals specifically for MPLS networks that are amenable to distributed online

implementation. One of them is [21], which transmits probe packets periodically

in order to obtain one-way LSP statistics such as packet delay and packet loss.

Based on these statistics, it uses a gradient projection algorithm for load bal-

ancing. In this approach, intermediate nodes do not perform traffic engineering

or measurements, except for normal packet forwarding. Also it does not impose

any particular scheduling, buffer management, or a priori traffic characterization

on the nodes. However, it gives equal priority to all paths between an s-d pair,

which may be problematic in scenarios in which some paths may have signifi-

cantly longer hop lengths than their corresponding min-hop paths.

Additive Increase/Multiplicative Decrease (AIMD) feedback algorithms are

used generally for flow and congestion control in computer and communication

6

networks [22, 23]. In [24], a multipath-AIMD algorithm, which uses binary feed-

back information regarding the congestion state of each of the LSPs and assumes

that each traffic source has a primary path and may utilize the capacity of other

secondary paths, is proposed. It tries to minimize the total volume of traffic sent

along secondary paths. However, it assumes that all sources have access to all

LSPs, which is unrealistic in many networking contexts.

A critical problem in multi-path routing is the potential de-sequencing (or

reordering) of packets of a flow due to sending successive packets of a flow over

different paths with different delays. Some resequencing algorithms are analyzed

in [25]. Their queuing analysis examine the end-to-end delay encountered in the

network. Today, the majority of the traffic in the Internet is based on TCP,

so the impact of packet reordering on TCP performance is crucial. TCP has

a complex receiver behavior and there are many different TCP versions, so for

a network with many TCP flows, it is not possible to apply a queuing analy-

sis similar to [25]. Experiments must be carried out for more reliable results.

The experiments in [26] on different TCP versions show that packet reordering,

which produces false congestion signals, can cause unnecessary and significant

throughput degradation. Therefore it is concluded that packet reordering should

be prevented when splitting traffic. In [27], it is shown that when the traffic

is split in a static manner (i.e., splitting ratios are fixed over time), hashing

based splitting algorithms can give a good performance while preventing packet

reordering and providing scalability.

The main problem of static traffic splitting is that it is not able to adapt

to wide and rapid fluctuations in traffic from variations in traffic demand and

changes in the network configuration. Static traffic splitting requires detection

of the problem and manually adjusting the network configuration. However in

dynamic traffic splitting algorithms, the problems are detected in a very short

time by using the information coming from the network and the splitting ratios

7

are changed adaptively by the algorithm in a short time without requiring manual

configuration. Similar to static traffic splitting, it is better to prevent packet

reordering when dynamically splitting traffic. Flow based multi-path routing

algorithms in [28, 29] detect long-lived and short-lived flows and forward the long-

lived flows to the shortest path and the short-lived flows to secondary paths. Such

a differentiation between long-lived flows and short-lived ones is done, because it

is suggested that short-lived flows have more bursty arrival characteristics than

long-lived flows. Bursty behavior is shown to have a bad impact on network

performance as it can abruptly increase the queue length at routers, causing

packet losses. In [30, 31], flow-based routing of elastic flows by applying admission

control for blocking flows under congested network conditions is proposed. They

try to maximize the throughput of elastic flows at light loaded conditions and

preserve the network efficiency at high loaded conditions. In [30], the Maximum-

Utility Path algorithm is proposed where least loaded paths are preferred at low

load and shortest paths are preferred at high load. In [31], trunk reservation

technique of circuit-switched networks is compared with the Maximum-Utility

Path algorithm. Unlike hashing based splitting, these dynamic traffic splitting

algorithms have scalability problems, because they require flow aware nodes in

order to do flow based splitting.

There are some recent dynamic traffic splitting methods proposed for optical

networks. A suite of dynamic multipath traffic splitting strategies, each making

use of a different type of information regarding the link congestion status is

presented in [32]. It shows that traffic splitting decisions using information about

the current state of the OBS network perform significantly better than shortest

path routing. Some other load balancing traffic splitting methods are proposed

in [33, 34].

In [35], a scalable flow-based multi-path TE approach for best-effort

IP/MPLS networks is proposed. It uses max-min fair bandwidth sharing with

8

an explicit rate control mechanism. Only the edge nodes of the MPLS network

are flow aware, so it is scalable unlike other flow based dynamic traffic splitting

algorithms. Its flow-based splitting solves the reordering problem. It is compared

with single path routing and packet based multipath routing with streaming UDP

flows and it is shown that it has much lower packet loss rates than single path

routing and very close packet loss rates to packet based multipath routing. It can

be used in networks where the rate of flow arrivals is large enough for performing

traffic engineering via flow-based splitting. However, in this paper only UDP

flows are considered, so the impact of packet reordering on TCP flow goodputs is

not studied. Lower packet loss rate of packet-based splitting does not guarantee

higher TCP goodput than flow-based splitting, because TCP receiver behavior

is very complex and it also depends on other factors like packet reordering.

1.2 Proposed Traffic Engineering Framework

and Contributions

In this thesis, the work in [35] is extended using elastic traffic (TCP flows)

instead of UDP traffic, applying AIMD-based rate control instead of the explicit

rate flow control and utilizing more realistic models for the Internet traffic. This

TCP TE architecture is implemented over ns-2 (Network Simulator) version 2.27

[36]. During the implementation of this TE architecture, many improvements

are introduced to ns-2 architecture. These optimizations made it possible to

simulate a mesh network with much lower memory requirements.

In the proposed architecture, two link disjoint paths, one being the primary

path (PP) and the latter being the secondary path (SP), are established between

edge nodes, which have traffic between. Link disjointness is required because in

case a congestion occurs on a link shared by the PP and SP of a source-destination

(s-d) pair, it would effect the traffic routed over the both paths between this s-d

9

pair and multipath routing would not help. For an s-d pair, PP is chosen as the

shortest path found using Dijkstra’s algorithm. SP is computed after pruning the

links used by PP and using Dijkstra’s algorithm in the remaining network graph.

The traffic between these two edge nodes are split between PP and SP for load

balancing. The splitting algorithm gives the decisions by using the information

coming from the network and the local queue lengths. The information coming

from the network is carried by probe packets that are periodically sent to the

destination nodes by each edge node and sent back to the edge node by the

destination nodes. In [35], the information carried in the probe packets is based

on the explicit rate feedback mechanism that is motivated by the ABR (Available

Bit Rate) service category used for flow control in ATM networks. However in

this thesis, a binary feedback mechanism is used instead of the explicit rate

feedback mechanism, because it is much simpler to implement. Also it can be

implemented with little additional complexity with the help of standards-based

ECN (Explicit Congestion Notification) of MPLS, in case it is used over MPLS.

Edge nodes maintain two drop-tail queues, one for the PP and one for the SP.

The drain rate of these queues change with an AIMD algorithm by using the

congestion information provided by the binary feedback mechanism.

The splitting algorithm detects the individual flows and and perform flow-

based splitting by probabilistically assigning each flow to one of the two paths

based on the moving average difference between the delays of the corresponding

queues. We propose the Random Early Reroute (RER) algorithm for traffic

splitting, which is inspired by the Random Early Detect (RED) algorithm used

for active queue management in the Internet. Flow based splitting is used instead

of packet-based load balancing in order to prevent packet reordering within a flow.

This TE architecture is adaptive to the changes in traffic, so it does not

require the availability of any prior information on the traffic matrix. However,

we also show that its efficiency can be further improved by selecting PP and

10

SP optimized for the expected traffic load in case an estimated traffic matrix is

provided.

When using multiple paths, queuing method used in the architecture has

a big impact on its performance. It is well-known that giving equal priority

to PPs and SPs may decrease the performance of PPs since SPs typically use

longer paths (more hops) than PPs, i.e. they use more resources, and an SP

may share links with PPs of other node pairs. Traffic increase on an SP may

force sources of PPs sharing links with this SP to move traffic to their own SPs.

This further decreases performance, because SPs typically use longer routes and

this in turn forces other PPs to move traffic to their SPs. Therefore, this can

move the network to an operating point where the performance is even lower

than the single path routing. This fact is called the knock-on effect in literature,

and precautions should be taken to minimize this effect [37]. For example in

[37], the impact of knock-on effect is limited by preferring min-hop paths and

discriminating against alternative paths. In [31], when the network is congested,

Trunk Reservation is used to prevent the use of long paths in order to deal with

the knock-on effect. In [35], a queuing architecture in the MPLS data plane is

proposed that assigns Strict Priority to packets of PPs over those of SPs in order

to deal with the knock-on effect. In this thesis, we compare the performances

of the Strict Priority mechanism with the First-In-First-Out (FIFO) queuing

discipline in dealing with the knock-on effect. We show that the Strict Priority

queuing proposed in this thesis is more effective and relatively more robust with

respect to the changes in the traffic demand matrix than FIFO queuing.

The rest of the thesis is organized as follows. In Chapter 2, we present our TE

framework. Our numerical results are presented in Chapter 3 and conclusions

and future work are provided in the final chapter.

11

Chapter 2

Traffic Engineering Framework

In this study, we envision an IP backbone network which consists of edge and

core nodes (i.e., routers) and which is capable of establishing explicitly routed

paths. In this network, edge (ingress or egress) nodes are gateways that orig-

inate/terminate explicitly routed paths. Core nodes carry only transit traffic.

Edge nodes are responsible for per-egress and per-class based queuing, flow clas-

sification, traffic splitting, and rate control. Core nodes are responsible for per-

class queuing and Explicit Congestion Notification (ECN) marking. In this ar-

chitecture, only the edge nodes are flow aware, so the overall architecture scale

better than some other flow-based architectures.

The proposed architecture is composed of four components:

• path establishment

• queuing in edge and core nodes

• feedback mechanism and rate control

• traffic splitting at the edge nodes

12

2.1 Path Establishment

We assume that edge nodes are single-homed, i.e., they have a link to a single

core node. We set up one PP and one SP, which are link disjoint in the core

network, from an ingress node to every other egress node for which there is direct

TCP/IP traffic. Link disjointness is required because in case a congestion occurs

on a link shared by the PP and SP of a source-destination (s-d) pair, it would

affect traffic between this s-d pair independent of the path used for a particular

flow, and multipath routing will not provide any performance enhancement.

2.1.1 Path Selection with no Traffic Knowledge

For an s-d pair, PP is chosen as the shortest path found using Dijkstra’s algo-

rithm. If there are multiple min-hop paths, the one with the minimum propaga-

tion delay is chosen as the PP. SP is selected as the shortest path obtained after

pruning the links used by PP. If there are multiple min-hop paths, the one with

the minimum propagation delay is chosen as the SP. In case the connectivity

is lost after pruning the links from the graph, the SP is not established. As an

example, PP and SP are shown in Figure 2.1 where PP is using the shortest path

and SP is using a link-disjoint shortest path. In this framework, a-priori knowl-

edge on traffic demands is not required when establishing the paths. However

when an accurate estimate of the traffic demand matrix is known a-priori, more

sophisticated algorithms might be used to select the routes. Next, we discuss

how PP and SP can be determined when traffic estimates are available.

2.1.2 Path Selection with Traffic Knowledge

In this section, we optimize the selection of PPs and SPs based on the estimated

traffic matrix applied to the network. Instead of using shortest path algorithm,

13

Core Network

Edge Node
Flow identification
Per-destination queuing
Traffic splitting
AIMD-based rate control
Per-class queuing

Core Node
Per-class queuing
Congestion notification marking

POP A

POP B

Ingress Node

Egress Node

PP

POP: Point of Presence

SP

Figure 2.1: Example Architecture

we apply a lexicographic optimization by using the estimated traffic matrix infor-

mation. Using shortest path can cause some of the links to be heavily congested

as it does not consider the traffic distribution. However lexicographic optimiza-

tion tries to balance the load in the network. It chooses the maximum loaded

link in the network and first tries to reduce its load as much as possible. Then

among all possible solutions that minimize the maximum load it tries to reduce

the load of the next highest loaded link in the network, and goes on until all

links are considered. The definition of lexicographically smaller is given in [38]

as follows:

Given an n-dimensional real vector x define by Φ(x) the n-dimensional vector

whose coordinates are those of x arranged in non-increasing order, i.e.,

Φ(x) = (Φ1(x), Φ2(x), . . . , Φn(x)) = (xi1 , xi2 , . . . , xin)

14

(a)

A

B

C

D

F

E G

H

1
1

1

(b)

A

B

C

D

F

E G

H

1/2

1/2

1/2

1/2

1/2

1/2

(c)

A

B

C

D

F

E G

H

1/4

1/4

1/2

1/2

1/4

1/4

1/4
1/4

1/4

1/4

Figure 2.2: Lexicographic optimization: (a) Unbalanced load distribution, (b)
After first step in lexicographical optimization, (c) Lexicographically optimal
solution

where xi1 ≥ xi2 ≥ . . . ≥ xin . Vector x is called lexicographically smaller than or

equal to vector y, if either Φ(x) = Φ(y), or there exists a number l, 1 ≤ l ≤ n

such that Φi(x) = Φi(y), for 1 ≤ i ≤ l − 1 and Φl(x) < Φl(y). We write x ¹ y,

and if in addition Φ(x) 6= Φ(y), x ≺ y.

For example, an eight-node topology is given in Figure 2.2a [38]. There is

traffic from node A to node H. The capacity of all links are the same and the

traffic from A to H is equal to this capacity. The numbers assigned to each link

correspond to the traffic load over that link. In Figure 2.2a, only a single path

is used, so the load of the links on this path equal to 1 and the load of the other

links equal to 0. We can split the the traffic between two paths as seen in Figure

2.2b. Now the maximum link utilization becomes 1/2. It is possible to further

distribute the load by using four paths (not link-disjoint) as seen in Fig. 2.2c.

Now two links have a load of 1/2 and the other links have a load of 1/4. This

is the lexicographically optimal solution, because there is no other distribution

that is lexicographically smaller than this distribution.

15

We applied lexicographic optimization to our topology and estimated traffic

matrix with two conditions.

• The maximum number of paths for each s-d pair is two, as one PP and one

SP.

• PP and SP are link-disjoint.

Lexicographic optimization gives a set of possible solutions. Inside these

solutions, we chose the path set where the usage of SPs is the lowest, because

the Strict Priority queuing gives higher priority to PPs.

2.2 Queuing in Edge And Core Nodes

In the proposed framework, core nodes employ output queuing and they support

differentiated services (diffserv) with the gold, silver, and bronze services (i.e.,

olympic services). These services can be implemented with per-class queuing with

three drop-tail queues, namely gold, silver, and bronze queues, at each outgoing

physical interface. Strict priority scheduling is applied where gold queue has strict

priority over the silver queue, and the bronze queue. The gold service is given to

Resource Management (RM) packets used for gathering binary congestion status

from the network and TCP ACK (i.e., acknowledgment) packets. RM packets

are allowed to use gold service, because we want to protect RM packets from the

possible side effects of a congestion caused by data packets in the network. TCP

ACK packets are allowed to use gold service because we want to be able to provide

prompt feedback to TCP end users. ACK packets are usually much smaller in

size when compared with data packets, so they do not affect the transmission of

RM pakets using the same queue as much as the data packets.

16

For the silver and bronze queues, two queuing models based on the work in

[35] are studied. These are strict priority queuing and FIFO (first-in-first-out)

queuing. In FIFO queuing, data packets of PPs and SPs join the same silver

queue and we do not make use of the bronze queue at all. Therefore, there is

no preferential treatment for PP packets that use fewer resources (i.e., traverse

fewer hops) over SP packets that typically use more resources. However, it is well-

known that giving equal priority to PPs and SPs may degrade the performance

of PPs by causing a problem called the knock-on effect[37]. Traffic increase on

an SP may force sources of PPs sharing links with this SP to move traffic to their

own SPs. This further decreases performance, because SPs typically use longer

routes and can in turn force other PPs to move traffic to their SPs. Therefore

this can move the network to an operating point that has a performance even

worse than the single path routing. In order to mitigate this cascading effect,

longer secondary paths should be resorted to only if primary paths can no longer

accommodate additional traffic. Based on the work described in [35, 39, 40],

we propose to solve this problem by using strict priority queuing where silver

service is used for data packets routed over PPs and bronze service is used for

data packets routed over SPs. It is possible to implement these queuing models

by marking packets using three bits in the packet header. For example, when

MPLS is used, packet marking can be implemented by using the standards-based

E-LSP (EXP-inferred-PSC LSP) method by using the three-bit experimental

(EXP) field in the MPLS header. EXP bits can be used for marking the packet

as a

1. Forward RM packet for a P-LSP,

2. Backward RM packet for a P-LSP,

3. Forward RM packet for an S-LSP,

4. Backward RM packet for an S-LSP,

17

5. TCP data packet for a P-LSP,

6. TCP data packet for an S-LSP,

7. TCP ACK packets.

2.3 Feedback Mechanism and AIMD Rate Con-

trol

In our proposed architecture, ingress nodes periodically send RM packets to

egress nodes, one over the PP (P-RM) and the other over the SP (S-RM). Egress

nodes send them back to the ingress nodes. These RM packets are sent every TRM

seconds. The direction of the RM packet must be specified in the packet header,

because only the RM packets going towards the ingress node are processed at

the core nodes. Also it allows the ingress and engress nodes to find out whether

this RM packet is on its forward or backward path. If strict priority queuing is

used and when an P-RM packet arrives at the core node on its forward path,

the node compares the percentage queue occupancy of its silver queue on its out-

going interface with a threshold level parameter µ and sets the CE (Congestion

Experienced) bit (if not already set) of the P-RM packet accordingly. Likewise,

if strict priority queuing is used and when an S-RM packet arrives at the core

node on its forward path, the node compares the percentage queue occupancy

of its bronze queue on its outgoing interface with a threshold level parameter µ

and sets the CE (Congestion Experienced) bit (if not already set) of the S-RM

packet accordingly.

An ingress node maintains two per-egress queues, one for the PP and the other

for the SP. These are drained at the rates determined by the AIMD-based rate

control. When the ingress node receives back the RM packet, it invokes the AIMD

algorithm in order to calculate the new ATR (Allowed Transmission Rate) value

18

Table 2.1: The AIMD algorithm

if RM packet marked as CE
ATR := ATR− RDF× ATR

else
ATR := ATR + RIF× PTR

ATR := min(ATR, PTR)
ATR := max(ATR, MTR)

of the path of the RM packet received. The AIMD algorithm is given in Table 2.1.

In the AIMD algorithm, RDF and RIF denote the Rate Decrease Factor and Rate

Increase Factor, and MTR and PTR denote the Minimum Transmission Rate and

Peak Transmission Rate, respectively.

2.4 Traffic Splitting At The Edge Nodes

We propose flow-based splitting, so the edge nodes detect flows and keep a list

of active flows. For each egress node, there are two drop-tail queues, namely the

PP and SP queues that are maintained at the edge nodes and drained at a rate

calculated by the AIMD algorithm given in Table 2.1. As in Figure 2.3, when

a packet arrives, which is not associated with an existing flow, a decision on

which path to forward the packets of this new flow needs to be made. The delay

estimates for the PP and SP queues (denoted by DPP and DSP , respectively)

in the edge nodes are used for this purpose. These are calculated by dividing

the occupancy of the corresponding queue with the current drain rate ATR. The

notation dn denotes the exponential weighted moving averaged difference between

the delay estimates, DPP and DSP , at the epoch of the nth packet arrival which

is updated as follows:

dn = β(DPP −DSP) + (1− β)dn−1,

where β is the smoothing parameter. When the first packet of a new flow arrives

at the ingress node, if d(n) ≤ minth (d(n) ≥ maxth), then we forward the flow

19

Traffic Splitting Units Per-egress queuing Per-class queuing

PP Queue

SP Queue

Silver Queue

Bronze Queue

Gold Queue

RM + TCP ACK

DPP

DPP
PP Queue

SP Queue

DSP

DSP

+

-

+

-

Incoming Flows
For Destination 1

Incoming Flows
For Destination 2

Figure 2.3: Traffic Splitting

over the PP (SP). When minth ≤ dn ≤ maxth, then the new flow is forwarded

over the SP with probability p0(dn−minth)/(maxth−minth) where minth,maxth

and p0 are algorithm parameters to be set. If the delay estimates of the PP

or the SP queues exceed a pre-determined threshold, the packets destined to

these queues are dropped. The traffic splitting probability is shown in Figure

2.4, which is similar to the Random Early Detect (RED) curve used for active

queue management [41]. We call this policy for multi-path traffic engineering

as the Random Early Reroute (RER) policy. RED has the goal of controlling

the average queue occupancy whereas in multi-path TE, the average (smoothed)

delay difference between the two queues is controlled by the RER. RER uses a

proportional control (maxth > minth) rather than a simple threshold policy in

order to control the potential fluctuations in the controlled system. RER gives

priority to the PP (i.e., minth > 0), which usually uses less network resources

than SP, and resorts probabilistically to the SP when the PP queue builds up.

Once a path is selected upon the arrival of the first packet of a new flow, all

successive packets of the same flow will be forwarded over the same path.

An example network with three edge nodes (0-2) and three core nodes showing

the proposed architecture is given in Figure 2.5. In this figure, the internals

of only the edge node 0 are shown. For each egress node, two link-disjoint

paths (PP and SP) are created prior to data transmission as described in Section

20

p(d)

d (ms)maxthminth

p0

1

Figure 2.4: Random Early Reroute

2.1. The PP(n) queue, n=1,2, refers to the queue maintained for TCP data

packets destined for the egress node n and using the primary path. These packets

then join the silver queue of the per-class queuing stage for later transmission

towards the core node. The SP(n) queue, n=1,2, is similarly defined for packets

to be routed over the SP. If strict priority is used, TCP data packets using the

secondary paths will join the bronze queue in the second stage. If FIFO queuing

were employed instead of the Strict Priority queuing, TCP data packets routed

over the SP would also join the silver queue as those packets routed over the PP.

All queues in the per-destination queuing stage are drained by the ATR of the

corresponding queue, which is calculated by the AIMD-based algorithm. RM

packets and TCP ACK packets directly join the gold queue of the second stage

by bypassing the first stage.

21

Backbone Network

Per-egress Queuing Per-class Queuing

Egress Node 2

Egress Node 1

PP Queue

SP Queue

Silver Queue

Bronze Queue

Gold Queue

RM + TCP ACK

SP Queue

PP Queue

Egress Node 0

Strict

Priority

Figure 2.5: Queuing Architecture

22

Chapter 3

Numerical Results

The proposed TCP TE architecture is implemented over ns-2 (Network Simula-

tor) version 2.27 [36]. During the implementation of this TE architecture, many

improvements are introduced to ns-2 architecture. In this chapter, we will first

present our simulator architecture. Then, we will present the simulation results

to show the performance of our multipath TE architecture. First, the results on

a simple three node network will be presented for showing the basic results. In

these simulations, the proposed methods are applied over MPLS architecture.

Then simulation results on a meshed network will be presented for more realistic

results. In these simulations, the proposed methods are generalized and made

suitable for applying over any architecture that supports explicit routing. Al-

though it is not necessary to know the traffic matrix for applying the proposed

TE architecture, its efficiency can be further improved by selecting PP and SP

optimized for traffic load in case a prior traffic matrix is available. The simulation

results for both cases are presented for comparision with the mesh network.

23

3.1 Simulator Architecture

Some new modules required by the new architecture are implemented for ns-

2. For the output links of ingress nodes, a new per destination based queuing

system, where on the same link many queues drain according to their ATR and

adapt to updates in their ATR independent of link speed and other queues, is

implemented. For routing of packets, a new source routing module accepting

multiple possible paths for flows is implemented. The link agent on these links

stores and updates the ATR of queues and delay differences by checking the CE

bit of returning probe packets. This agent also decides on whether primary or

secondary path will be used upon a flow arrival.

In order to be able to simulate mesh topologies, we introduced a number

of optimizations to the ns-2 simulator. The default source routing module in

ns-2 does the routing of flows by using tables on source nodes which contain a

different route entry for each flow id. This table becomes too large in case of large

number of flows. We minimized and made its size independent of number of flows

by using a hashing based on source-destination addresses and path numbers.

The input traffic is created offline by calculating the arrival time, size and

s-d pair of all flows according to the traffic demands of s-d pairs and chosen

distribution of flow sizes. Each run of the simulator accepts this scenario file

as input. Therefore, the flow arrival sequence is the same in all simulations. In

ns-2, the approach of creating all the flows at the beginning of the simulation

brings the problem of high memory requirements. Also the high number of flows

used in the simulation brings the problem of simulation speed due to slowness

of ns-2 in creating new flows. Therefore, direct simulation of mesh networks for

a long duration brings high memory and processing power requirements. We

solved these problems by implementing a new architecture that optimizes the

usage of existing flows. In our architecture, when a flow finishes sending its data,

24

it informs the simulator. The simulator resets the variables of the flow object,

detaches its source and sink from s-d nodes and puts it into a list of unused

flows. Upon a new flow arrival information, simulator checks the list of unused

flows. If there is a flow available in the list, it takes the flow, attaches its source

and sink to the new s-d pair and sets the amount of the data it must transfer

according to the offline created input traffic information. The simulator creates

a new flow, only if there is no flow left in the list of unused flows. Unless there

is an accumulation of flows for an s-d pair, the peak amount of flows required in

the simulations becomes fixed independent of the duration of the simulation after

the traffic load in network reaches an equilibrium. Also re-using the previously

created but finished flows, further improves the speed of the simulation as it solves

the problem of the slowness of ns-2 in creating new flows. For example, in some

of the simulations given in the next sections, over 1.000.000 flows are applied to

the network in each simulation. Our method allowed us to do the simulation by

creating only at most 10.000-20.000 flows in most of the simulations independent

of simulation duration and number of flows listed in the offline created traffic.

These optimizations make it possible to simulate 5 minutes of an offline traffic

injected meshed network with 12 nodes and 19 links by using only around 300

Megabytes of memory that does not increase much with increase in simulation

duration and most of which was used by the scheduler for storing the events.

Without optimizations, it would require around 5 Gigabytes of memory and this

amount increases proportionally to the simulation duration.

Flows do not stop until transferring the amount of data it was given to, and

there is no limit on the maximum number of possible flows between a s-d pair,

so it is possible to observe the accumulation of flows on a s-d pair in case of a

congestion on a link.

Calendar Scheduler [42], which is the default scheduler of ns-2 and the sched-

uler used in our simulations, is known to have important performance problems

25

in case the time distribution of events in its event list is highly non-uniform.

Populating the event list at the beginning of the simulation with the arrival

times of all flows which will be applied throughout the simulation, causes such

non-uniform distribution as flow arrivals are spread over a long period of time

while events created during the simulation are usually spread over a short period

of time. In order to solve this problem, in our architecture the list of flows, which

will be applied, is divided into small time blocks like 0.1 seconds and stored inside

functions responsible for that time block. Each function schedules the execution

time of the function carrying the flows of next time block to the beginning time of

that block, so the event table of the scheduler is not populated at the beginning

of the simulation. This increases the speed by decreasing the initial size of event

list and solving possible the performance problems of calendar queues on non-

uniform distributions caused by applying offline traffic. Also some enhancements

are made to optimize the selection of parameters like bucket width and number

of calendar queues for simulation of mesh topologies.

3.2 Three-node Topology Simulations

The performance of our TE algorithm is evaluated first for the three-node topol-

ogy shown in Figure 2.5. In these simulations, the proposed methods are applied

over MPLS architecture. Bandwidth of each link between core nodes is 50 Mbit/s

and each has a propagation delay of 10 msec. Also bandwidth of each link be-

tween edge nodes and core nodes is 1 Gbit/s. Therefore the potential bottleneck

links in the network are the core-to-core links.

In the simulations, flow arrivals occur according to a Poisson process. Flow

sizes have a bounded Pareto distribution [43]. The bounded Pareto distribu-

tion is used as opposed to the normal Pareto (similar to [44]) because the latter

26

distribution has infinite variance requiring excessively long simulations for con-

vergence. Moreover, the bounded Pareto distribution exhibits the large variance

and heavy tail properties of the flow size distribution of Internet traffic and al-

lows us to set a bound on the largest flow size. Therefore, it is much suitable

for simulations. The distribution of bounded Pareto is denoted by BP (k, p, α),

where k and p denote the minimum and maximum flow sizes, respectively, and

the shape parameter α is the exponent of the power law. As α is increased, the

tail gets shorter, and the ratio of long flows decreases. The probability density

function for the BP (k, p, α) is given by

f(x) =
αkα

1− (k/p)α
x−α−1, k ≤ x ≤ p, 0 ≤ α ≤ 2.

The average flow size, m, for the BP (k, p, α) distribution is given by [43]

m =
α

(1− α)(pα − kα)
(pkα − kpα).

The parameters used for bounded Pareto in our simulations are as follows:

k = 4KBytes, p = 50MBytes, and α = 1.20 or 1.06, corresponding to a mean

flow size of m = 20,362 Bytes for α = 1.20 and m = 30,544 Bytes for α = 1.06 .

The average outgoing traffic from each edge node is fixed to 70 Mbit/s in our

simulations. The offered traffic from ingress node i to egress node j is denoted

by Ti,j. For simplicity, we assume that Ti,((i+1) mod 3) = γTi,((i−1) mod 3) for all

0 ≤ i ≤ 2. The traffic spread parameter, γ, is introduced in order to characterize

the traffic distribution on multi-path TE. γ = 1 corresponds to fully symmetric

traffic and γ = 0 corresponds to totally asymmetric traffic. In the case of γ = 1,

we have 35 Mbit/s average outgoing traffic in each direction, whereas all the

outgoing traffic takes the counter-clockwise direction in the γ = 0 scenario.

27

The performance of the flow-based multi-path TE algorithm is compared

with single-path routing and packet-based TE algorithms. In packet-based TE,

the RER mechanism splits the packets to the PP or the SP, irrespective of the

flow they belong to. Therefore it can cause out-of-order packet delivery at the

destination, and this may adversely affect the TCP performance [28, 29]. We

study this packet reordering effect on TCP-level goodput in our simulations.

Single-path routing uses the minimum-hop path with the AIMD-ECN capability

turned on. We use the term “shortest-path routing” to refer to this scheme. Two

sets of buffer threshold parameters for the RER curve are used in this study:

• Shortest Delay (SD): minth = maxth = 0 msec and p0 = 1.

• RER: minth = 1 msec, maxth = 15 msec and p0 = 1.

SD forwards each flow or packet simply to the path with the shorter estimated

queuing delay at the ingress node, and thus it does not favor the PP. SD is used

in conjunction with the FIFO queuing discipline where there is no preferential

treatment between the PP and the SP at core nodes. We experimented exten-

sively with different RER parameters but we observed that in the neighborhood

of the chosen RER parameter set, the performance of RER is quite robust. The

delay averaging parameter is selected as β = 0.3. If the delay estimate of either

the PP or the SP queue exceeds 360 msec, the packets destined to these queues

are dropped.

The data packets are assumed to be 1040 Bytes long including the MPLS

header. We assume that the RM packets are 50 Bytes long. All the buffers at

the edge and core nodes, including per-destination (primary and secondary) and

per-class queues (gold, silver and bronze), have a size of 104,000 Bytes each. The

TCP receive buffer is of length 19,840 Bytes.

The following parameters are used for the AIMD algorithm:

28

• TRM = 0.1 s

• RDF = 0.0625

• RIF = 0.125

• PTR = 50 Mbit/s

• MTR = 0

• µ = 50%

TCP-Reno is used in our simulations. The simulation runtime is selected as

300 s. In the calculation of simulation results, only the flows arrive in the period

[95 s, 295 s] are used. The following five algorithms are compared and contrasted

in terms of their performance:

• Flow-based multi-path with RER and Strict Priority

• Flow-based multi-path with Shortest Delay and FIFO

• Packet-based multi-path with RER and Strict Priority

• Packet-based multi-path with Shortest Delay and FIFO

• Shortest-path (i.e., Single Path using the min-hop path)

The goodput of a TCP flow i (in bit/s), Gi, is defined as the service rate

received by flow i during its lifetime or equivalently it is the ratio ∆i/Ti, where

∆i is the number of Bytes successfully acknowledged by the TCP receiver within

the simulation duration. The parameter Ti is the sojourn time of the flow i within

the simulation runtime. We note that if flow i terminates within the simulation

runtime, ∆i will be equal to the flow size in Bytes. The average goodputs for

TCP flows as a function of the flow size are given in Figure 3.1 for the flow size

parameter α = 1.06. The average goodput for each flow size range is computed

29

by taking the arithmetic mean of all the individual goodputs of the flows having

sizes within the given range.

Based on the simulation results on this three-node topology, the following

observations can be made:

• It is seen that the average goodputs generally increase with the flow size

since larger flows have the advantage of achieving larger TCP congestion

windows. However the shorter flows cannot reach large TCP congestion

windows due to the slow-start mechanism of TCP.

• The RER policy and Strict Priority queuing always gave the highest av-

erage goodput for all tested values of the traffic spread parameter γ and

all flow size ranges. For asymmetrical traffic (γ = 0), the Shortest Path

policy has a very poor performance. Even for fully symmetrical traffic

(γ = 0), it is slightly outperformed by the proposed flow-based TE with

RER and Strict Priority. As the traffic becomes more asymmetric, its per-

formance decreases sharply and gives worse performance than also other

TE algorithms tested.

• Due to the packet reordering problem, both packet-based TE algorithms,

i.e., Strict Priority/RER and FIFO/Shortest Delay give bad performance

when compared with their flow-based counterparts. The negative impact

of the packet reordering on TCP performance is more on large flows that

are active for a longer period, because they have large window sizes. Its

impact on the shorter flows is much less due to their small TCP window

sizes during their lifetimes. This effect is much more visible when the

packet-based TE algorithm with Shortest Delay and FIFO is compared

with the packet-based algorithm with RER and Strict Priority, because

the former causes relatively larger number of out-of-order packet arrivals

30

size<=10 10<size<=50 50<size<=100 100<size<=500 500<size
0

1

2

3

4

5

6

7
(a) γ=1.0

Flow size, packets

G
oo

dp
ut

 (
M

bi
t/s

)

Flow Based/Strict Priority/RER
Shortest Path
Packet Based/Strict Priority/RER
Flow Based/FIFO/Shortest Delay
Packet Based/FIFO/Shortest Delay

size<=10 10<size<=50 50<size<=100 100<size<=500 500<size
0

1

2

3

4

5

6
(b) γ=0.4

Flow size, packets

G
oo

dp
ut

 (
M

bi
t/s

)

Flow Based/Strict Priority/RER
Packet Based/Strict Priority/RER
Shortest Path
Flow Based/FIFO/Shortest Delay
Packet Based/FIFO/Shortest Delay

size<=10 10<size<=50 50<size<=100 100<size<=500 500<size
0

0.5

1

1.5

2

2.5

3

3.5
(c) γ=0.0

Flow size, packets

G
oo

dp
ut

 (
M

bi
t/s

)

Flow Based/Strict Priority/RER
Flow Based/FIFO/Shortest Delay
Packet Based/Strict Priority/RER
Packet Based/FIFO/Shortest Delay
Shortest Path

Figure 3.1: Goodput as a function of flow size for α = 1.06 and (a) γ = 1.0, (b)
γ = 0.4, and (c) γ = 0.0.

31

size<=10 10<size<=50 50<size<=100 100<size<=500 500<size
0

1

2

3

4

5

6

7
(a) γ=1.0

Flow size, packets

G
oo

dp
ut

 (
M

bi
t/s

)

Flow Based/Strict Priority/RER
Shortest Path
Packet Based/Strict Priority/RER
Flow Based/FIFO/Shortest Delay
Packet Based/FIFO/Shortest Delay

size<=10 10<size<=50 50<size<=100 100<size<=500 500<size
0

1

2

3

4

5

6
(b) γ=0.4

Flow size, packets

G
oo

dp
ut

 (
M

bi
t/s

)

Flow Based/Strict Priority/RER
Packet Based/Strict Priority/RER
Shortest Path
Flow Based/FIFO/Shortest Delay
Packet Based/FIFO/Shortest Delay

size<=10 10<size<=50 50<size<=100 100<size<=500 500<size
0

0.5

1

1.5

2

2.5
(c) γ=0.0

Flow size, packets

G
oo

dp
ut

 (
M

bi
t/s

)

Flow Based/Strict Priority/RER
Flow Based/FIFO/Shortest Delay
Packet Based/Strict Priority/RER
Packet Based/FIFO/Shortest Delay
Shortest Path

Figure 3.2: Goodput as a function of flow size for α = 1.20 and (a) γ = 1.0, (b)
γ = 0.4, and (c) γ = 0.0.

32

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

γ

G
oo

dp
ut

 (
M

bi
t/s

)

Flow Based/Strict Priority/RER
Packet Based/Strict Priority/RER
Shortest Path
Flow Based/FIFO/Shortest Delay
Packet Based/FIFO/Shortest Delay

Figure 3.3: Average per-flow goodput as a function of γ for α = 1.20.

as it alternates packets between the PP and SP as dn fluctuates around

zero.

• RER, Strict Priority queuing, and flow-based splitting are three important

components of the proposed architecture. Joint use of all them makes the

architecture more robust and effective, because each of them solves some

of the possible problems of the architecture under different conditions.

• When Figures 3.2 and 3.1 are compared, it is seen that there is not a

big difference between the results of the relative performances of the five

algorithms for flow size parameter α = 1.20 and α = 1.06.

Figure shows the average goodputs calculated as the arithmetic mean of all

flow goodputs for the five routing algorithms as a function of the traffic distri-

bution parameter γ. It is seen that flow-based TE algorithm with RER and

Strict Priority gives the highest performance. The performance of the flow and

packet-based TE algorithms with RER and Strict Priority decrease as γ decreases

33

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

γ

G
oo

dp
ut

 (
M

bi
t/s

)

Flow Based/Strict Priority/RER
Shortest Path
Packet Based/Strict Priority/RER
Flow Based/FIFO/Shortest Delay
Packet Based/FIFO/Shortest Delay

Figure 3.4: Normalized goodput as a function of γ for α = 1.20.

because the traffic becomes more asymmetrical and the traffic load on some links

increase. We see that the performance of flow-based TE algorithm with RER

and Strict Priority and the shortest path routing algorithm are almost the same

for very large γ, because flow-based TE algorithm with RER and Strict Priority

behaves like the shortest path routing when γ is large as PP becomes lightly

loaded. When we look at the performances the flow and packet-based TE al-

gorithms with Shortest Delay and FIFO, we see that they are almost constant

as γ changes because of the equal treatment of the PP and the SP with these

algorithms.

In order to have a more fair representation of the goodputs achieved by in-

dividual flows by also considering the flow lengths, we compute the normalized

goodput performance metric which is defined as

Gnorm−avg =

∑
i niGi∑

i ni

34

where Gi is the average goodput of flow i, and ni is the number of packets

successfully delivered by flow i. This metric gives a normalized goodput average

weighted by the flow lengths. Figure 3.4 shows the normalized goodputs of

all flow goodputs for the five routing algorithms as a function of the traffic

distribution parameter γ. It gives more weight to the performance of large flows,

so the effect of our TE algorithm is seen more clearly.

Table 3.1: Relative increase/decrease of normalized goodput, ∆TE, for four TE
algorithms with respect to shortest path routing.

γ Flow-based Packet-based
SP/RER FIFO/SD SP/RER FIFO/SD

0.00 42.55 34.99 19.83 13.21
0.06 5.71 2.18 2.48 0.47
0.13 3.03 0.18 1.05 -0.26
0.21 2.10 -0.05 0.79 -0.43
0.30 1.65 -0.20 0.63 -0.53
0.40 1.36 -0.32 0.51 -0.60
0.67 0.15 -0.67 -0.20 -0.81
1.00 0.02 -0.71 -0.23 -0.83

In order to show the performance difference between algorithms more clearly,

the relative change of the normalized goodputs with the four TE algorithms with

respect to the shortest path routing are given in Table 3.1. This relative change,

∆TE, is computed for a generic TE method as

∆TE =
GTE

norm−avg −GShortestPath
norm−avg

GShortestPath
norm−avg

where GShortestPath
norm−avg is the normalized goodput with the shortest path routing, and

GTE
norm−avg denotes the normalized goodput with one of the four TE algorithms

used for the calculation of the corresponding ∆TE. The highest normalized good-

puts is achieved by the flow-based TE algorithm with RER and Strict Priority

compared with the other TE algorithms. Although the flow-based TE algorithm

with Shortest Delay and FIFO has higher goodput relative to the shortest path

algorithm for small values of γ, for large values of γ, i.e., with more symmetric

35

traffic distribution and less congested PP, its performance degrades to worse than

the shortest path routing. The packet-based TE algorithms also perform worse

than the shortest path routing for large values of γ.

3.3 Mesh Topology Simulations

The performance of our TE algorithm is evaluated for the mesh topology shown

in Figure 3.5. This topology and the traffic matrix used in our simulations are

taken from [45]. This mesh network is called the hypothetical US topology and

has 12 POPs (Point of Presence).

In our simulations, we scaled the speed of 155 Mbit/s links to 45 Mbit/s and

the speed of 310 Mbit/s links to 90 Mbit/s for increasing the simulation speed.

Also the traffic demands are scaled down accordingly. An edge node is connected

to each core node in the topology as there is a traffic demand between all nodes.

We assume that edge nodes are connected to the core nodes with 1 Gbit/s links,

so they do not create any bottleneck.

First, we will present the simulation results when a prior traffic matrix is

not available. However the efficiency our algorithm can be further improved

by selecting PPs and SPs optimized for traffic load in case a prior traffic ma-

trix is available. Therefore, we will also present the simulation results when an

estimated traffic matrix is available.

3.3.1 Simulations Without Prior Traffic Matrix

Like the three-node topology simulations in previous section, in these simulations

we used a traffic model where flow arrivals occur according to a Poisson process

and flow sizes have a bounded Pareto distribution. The following parameters

36

s f

la

s j

d e

c h
c l

ny

d c
s l

d a

h s

a t

Figure 3.5: Hypothetical US Topology.

are used for the bounded Pareto distribution in this study: k = 4000 Bytes,

p = 50 × 106 Bytes, and α = 1.20, corresponding to a mean flow size of m =

20,362 Bytes.

The delay averaging parameter is selected as β = 0.3. TCP data packets

are assumed to be 1040 Bytes long. We assume that the RM packets are 50

Bytes long. All the buffers at the edge and core nodes, including per-destination

(primary and secondary) and per-class queues (gold, silver and bronze), have a

size of 104,000 Bytes each. The TCP receive buffer is of length 20,000 Bytes.

The following parameters are used for the AIMD algorithm:

• TRM = 0.02 s

• MTR = 1 bit/s

• µ = 20%

PTR is chosen as the speed of the slowest link on its path. MTR is chosen as

1 bit/s, in order to eliminate cases causing division by zero in the simulations. If

the expected delay of a buffer exceeds 0.36 s, the packets destined to this queue

37

are dropped due to its high delay. The simulation runtime is selected as 300 s.

In the calculation of simulation results, only the flows arrive in the period [90 s,

250 s] are used.

Again, we use the Gnorm−avg as a performance metric. However, we note that

some flows are not fully carried due to overloading of certain links in the network.

In order to take this effect into account, we introduce a new performance measure,

called the net average goodput, denoted by Gnet (bit/s)

Gnet =

∑
i ∆iGi∑

i Si

,

where ∆i is the number of bits successfully delivered to the application layer by

the TCP receiver for flow i and Si is the real flow size. If flow i terminates before

the end of the simulation, then ∆i will be equal to the flow size Si. Gnet equates

the service rate of uncarried packets to zero. In order to show the same effect,

we suggest a new measure, called the Byte Rejection Ratio (BRR), which shows

the portion of data that cannot be delivered within the simulation duration, in

percentage. It is denoted by BRR

BRR =

∑
s,d N(s, d)−∑

s,d Γ(s, d)∑
s,d N(s, d)

∗ 100,

where N(s, d) is the sum of the sizes of flows demanded from node s to node d,

and Γ(s, d) is the total number of Bytes successfully delivered to the application

layer from node s to node d.

In Figure 3.6a and 3.6b, the effects of AIMD parameters RIF and RDF

on Gnorm−avg are shown. Similarly, in Figure 3.6c and 3.6d the effect of these

AIMD parameters on BRR is depicted. In these simulations, RER parameters

are chosen as minth = 1 msec, maxth = 15 msec and the strict-priority policy is

used. It is seen that the performance of multi-path strict-priority with RER is

better in both means than single-path policy. RDF = 0.0625 and RIF = 0.0625

38

0.1 0.2 0.3 0.4 0.5

0.02
0.04

0.06
0.08

0.1
0.12

4

4.4

4.8

5.2

5.6

6

RDF

(a)

X

RIF

G
oo

dp
ut

, M
bi

t/s

0.1 0.2 0.3 0.4 0.5

0.02
0.04

0.06
0.08

0.1
0.12

4

4.4

4.8

5.2

5.6

6

RDF

(b)

X

RIF

G
oo

dp
ut

, M
bi

t/s

0.1 0.2 0.3 0.4 0.5

0.02
0.04

0.06
0.08

0.1
0.12

0
2.5

5
7.5
10

12.5
15

RDF

(c)

X

RIF

B
yt

e
R

ej
ec

tio
n

R
at

io

0.1 0.2 0.3 0.4 0.5

0.02
0.04

0.06
0.08

0.1
0.12

0
2.5

5
7.5
10

12.5
15

RDF

(d)

X

RIF

B
yt

e
R

ej
ec

tio
n

R
at

io

Figure 3.6: As a function of RIF and RDF : (a) Gnet for the multi-path TE
with strict-priority and RER, (b) Gnet for the shortest-path routing, (c) BRR for
the multi-path TE with strict-priority and RER (d) BRR for the shortest-path
routing

0
5

10
15

0

0.5

1
3.2

4.8

6.4

max
th

(a)

min
th

G
oo

dp
ut

, M
bi

t/s

0
5

10
15

0

0.5

1
0

1

2

3

4

max
th

(b)

min
th

B
yt

e
R

ej
ec

tio
n

R
at

io

Figure 3.7: As a function of minth and maxth: (a) Gnet for the multi-path TE
with strict-priority and RER (b) BRR for the multi-path TE with strict-priority
and RER

39

0.5 0.6 0.7 0.8 0.9 1

3

3.5

4

4.5

5

5.5

6

6.5

γ

G
oo

dp
ut

, M
bi

t/s

(a)

Strict Priority/RER (G)
Strict Priority/RER (G

net
)

Shortest Path (G)
Shortest Path (G

net
)

FIFO/Shortest Delay (G)
FIFO/Shortest Delay (G

net
)

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

γ

B
yt

e
R

ej
ec

tio
n

R
at

io

(b)

Shortest Path
Strict Priority/RER
FIFO/Shortest Delay

Figure 3.8: As a function of traffic scaling parameter γ: (a) Gnet and Gnorm−avg

(denoted by G in the figure) (b) Byte Rejection Ratio

point gives good performance in both figures and it is in a robust region, so we

use these parameters in the rest of the simulations.

The effects of RER parameters on Gnorm−avg and BRR are shown in Fig-

ures 3.7a and 3.7b, respectively. We observe that, except for the points close

to minth = maxth = 0, which basically corresponds to the SD policy, the per-

formance of the RER is high. When SD policy is used, the performance dete-

riorates. This performance degration is because of the knock-on effect. As we

increase minth and maxth, we observe that the performance of RER converges

to the single-path routing. In the rest of the simulations, the RER parameters

are used as minth = 1 msec and maxth = 15 msec.

In order to show the effect of the total amount of the traffic demand, the traffic

is scaled by multiplying the flow sizes with a traffic scaling parameter γ where

0.5 ≤ γ < 1, while keeping the flow arrival times same. As seen in Figure 3.8a,

at high traffic rates the multi-path TE with strict-priority and RER achieves

the highest Gnorm−avg. In fact, there are node pairs, that have the maximum

traffic demand in the network, for which the increase in goodput is more than

10 times with the multi-path TE with strict-priority and RER compared to

the single-path routing. For these node pairs the PP is heavily congested, and

the SP substantially improves the performance. On the other hand, for many

40

node pairs multi-path routing does not improve the goodput since the PP is

not congested. The overall performance, represented by Gnorm−avg which is the

average normalized goodput taken over 132 node pairs, still shows a significant

improvement for the congested cases.

It is also observed from Figure 3.8a that at high traffic rates the multi-path

TE with strict-priority and RER achieves the highest Gnorm−avg. This shows that

the multi-path TE with strict-priority and RER not only carries more traffic, but

also the carried traffic is transported faster.

In Figure 3.8b, we observe that the BRR of the policy of multi-path routing

with strict-priority and RER is approximately half of the BRR for the single-path

routing. This indicates a drastic improvement in the performance of congested

paths when multi-path routing with strict-priority and RER is used. As the

traffic demand decreases, we see that the gap between the multi-path routing

with strict-priority and RER and the single-path routing disappears. This is due

to the fact that at light traffic loads, PP is not congested, and the multi-path

routing effectively behaves as single-path routing. In Figure 3.8b, BRR for the

multi-path routing with SD and FIFO is less than the multi-path routing with

strict-priority and RER, but the net goodput of the multi-path routing with SD

and FIFO queuing is 25-50% lower than the proposed TE approach when γ is

changing between 0.5 and 1.0, as shown in Figure 3.8(a).

Since a-priori knowledge of traffic demands is not considered during path set

selection, paths are not optimized in terms of minimizing the link utilizations.

Consequently, we observe in the simulations that many s-d pairs use multiple

bottleneck links on their PPs. Also many of them have SPs that traverse heavily

congested links, which limits efficient usage of SPs. In spite of these limitations,

our proposed architecture is shown to give better or equal results than the single-

path routing policy in both normalized goodputs and BRR.

41

Simulations With Flow Rerouting

A known problem of using strict priority is the possible starvation of low priority

flows. For example, assume that the PP of a s-d pair is heavily congested, but

its SP is not congested. In such a case, the traffic splitting algorithm will start

forwarding some of the new flows to the SP as expected. However it is not possible

to guarantee that the SP will never be congested. In case congestion occurs on a

link, the flows that have their PPs traversing this link will have strict priority, so

they will not be affected from this congestion unless the total traffic of PP flows

exceeds the link capacity. On the other hand, flows that have their SPs traversing

this link will be affected by the congestion and the bronze queue on that link

will start building up and possibly start dropping SP packets. Consequently, s-d

pairs that have their SPs traversing this link, will stop forwarding new flows over

their SPs. However, the flows previously assigned to SP will continue using this

path irrespective of the status of PP and suffer from this congestion. In case

the total traffic of PPs is equal to or more than the link capacity, PP flows use

the whole link capacity and the link stops transferring SP packets resulting in

starvation of SP flows using that link.

When we check the goodputs of the s-d pairs in the mesh network simulations,

we see that this starvation occurs for some s-d pairs such as ny-sf. Therefore we

consider a mechanism for avoiding negative effects of starvation. A possible

solution is periodically rerouting of existing flows. We store the arrival time of

each flow and apply flow rerouting to each flow every Tr seconds. Rerouting

must be applied carefully, because choosing a low Tr value may decrease the flow

goodput due to frequent packet reordering for that flow. Choosing a high Tr

value decreases the number reroutings resulting in prolonged adverse effects of

starvation. For limiting the extra complexity due to flow rerouting, we apply flow

rerouting to only long flows. This can be achieved by considering the average flow

42

0 50 100 150
5.25

5.3

5.35

5.4

5.45

5.5

T
r
, s

G
oo

dp
ut

, M
bi

t/s

Figure 3.9: Gnorm−avg as a function of traffic scaling parameter Tr

lengths so that short flows will finish transmitting their data before a rerouting

occurs.

The parameters used in the simulations are the same as the parameters in

the previous section. As seen in Figure 3.9, applying flow rerouting decreases the

overall speed. Overall speed decreases, because when we apply flow rerouting,

in case the SP gets worse than PP, we forward SP flows to PP. This increases

the load on PPs and queue lengths on PP links and therefore decreases the

performance of other PP flows. In other words, we decrease performances of

several PP flows in order to increase the performance of some SP flows so that we

have a more fair distribution of goodputs among flows. We see a sharp decrease

near the point Tr = 0 s, because choosing a very low Tr value decreases the

flow goodput due to frequent packet reordering in that flow. As seen in Figure

3.10, improvement in BRR is very low, because this path set is not optimized

for applied traffic matrix, so its capability of being improved in terms of BRR

is very limited. However we will show that there is a big improvement in case a

path set optimized with prior traffic matrix is used.

43

0 50 100 150
0

0.5

1

1.5

2

2.5

T
r
, s

B
R

R

Figure 3.10: BRR as a function of traffic scaling parameter Tr

3.3.2 Simulations for the Case With Estimated Traffic

Matrix Available

The parameters used in the simulations are the same as the parameters in the sim-

ulations without prior traffic information. All simulations, including the single-

path simulations, use the optimized paths. Flow splitting is not used.

In Figure 3.11a and 3.11b, the effects of AIMD parameters RIF and RDF

on Gnorm−avg are shown. Similarly, in Figure 3.11c and 3.11d the effect of the

AIMD parameters on BRR is depicted. In these simulations, RER parameters

are chosen as minth = 1 msec, maxth = 15 msec and the strict-priority policy is

used.

The same observations as in the case of without estimated traffic information

can be made. It is seen that the performance of multi-path strict-priority with

RER policy is better in both considered metrics than the single-path policy.

44

0.1 0.2 0.3 0.4 0.5

0.02
0.04

0.06
0.08

0.1
0.12
3.2
3.6

4
4.4
4.8
5.2
5.6

RDF

(a)

RIF

G
oo

dp
ut

, M
bi

t/s

0.1 0.2 0.3 0.4 0.5

0.02
0.04

0.06
0.08

0.1
0.12
3.2
3.6

4
4.4
4.8
5.2
5.6

RDF

(b)

RIF

G
oo

dp
ut

, M
bi

t/s

0.1 0.2 0.3 0.4 0.5

0.02
0.04

0.06
0.08

0.1
0.12

0
2.5

5
7.5
10

12.5
15

RDF

(c)

RIF

B
yt

e
R

ej
ec

tio
n

R
at

io

0.1 0.2 0.3 0.4 0.5

0.02
0.04

0.06
0.08

0.1
0.12

0
2.5

5
7.5
10

12.5
15

RDF

(d)

RIF

B
yt

e
R

ej
ec

tio
n

R
at

io

Figure 3.11: As a function of RIF and RDF : (a) Gnet for the multi-path TE
with strict-priority and RER, (b) Gnet for the shortest-path routing, (c) BRR for
the multi-path TE with strict-priority and RER (d) BRR for the shortest-path
routing

When compared with the results of simulations without prior traffic informa-

tion, it is seen that simulations without prior traffic information have a lower

overall speed. However, the BRR performance with prior traffic information is

more than two times better compared with the case without prior traffic infor-

mation. The higher overall goodput for the case without prior traffic information

is due to the unbalanced load distribution in the network. Some of the links are

heavily congested, while some of them have a very low load. The flows using the

low loaded links get very high goodput results and increase the overall average

rate. Also the path set in the simulations with prior traffic information is not

optimized in terms of path lengths. Many s-d pairs use paths longer than their

min-hop paths. This increases the end-to-end delay that decreases the perfor-

mance. However, it balances the load in the network, so it the goodputs are

45

0 50 100 150
4.5

4.6

4.7

4.8

4.9

5

5.1

T
r
, s

G
oo

dp
ut

, M
bi

t/s

Figure 3.12: Gnorm−avg as a function of traffic scaling parameter Tr

more fair distributed among flows compared with the case without prior traf-

fic information. Consequently, BRR decreases significantly since overall BRR is

dominated by a few flows with very high congestion

As a result, if traffic matrix is available, lexicographic optimization can be

used for a much fair load distribution and improved BRR results.

Simulations With Flow Rerouting

Flow rerouting can be used for the case with prior traffic matrix just like the

case where there is no prior traffic matrix available. Even though the estimated

traffic matrix is available and the paths are lexicographically optimized, due to

the bursty nature of Internet traffic, it is not possible to guarantee that the SPs

will never be congested.

The parameters used in the simulations are the same as the parameters in the

previous section. As seen from in Figures 3.12 and 3.13, applying flow rerouting

46

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

T
r
, s

B
R

R

Figure 3.13: BRR as a function of traffic scaling parameter Tr

on optimized path set decreases the overall goodput, but improves the BRR.

Without flow rerouting, in case of a problem in SP, we penalize the SPs for the

benefit of PPs. In other words, we decrease performance of many PP flows in

order to increase the performance of SP flows, which are much less. We see a

sharp decrease near the point Tr = 0 s, because choosing a very low Tr value

decreases the flow goodputs due to frequent packet reorderings. BRR value of

flow rerouting is more than two times better than without rerouting. Here there

is a big improvement on BRR, unlike the simulations on unoptimized path set.

By using flow rerouting on optimized path set, we get the lowest BRR value in

the mesh network simulations. It is around 10 times lower compared with the

single-path routing without estimated traffic matrix. However, we see that there

is a trade-off between goodput and BRR.

47

Chapter 4

Conclusions

In this thesis, we proposed a multi-path TCP load balancing traffic engineering

methodology in IP networks. In this architecture, TCP traffic is split at the flow

level between the primary and secondary paths. Flow based splitting prevented

packet reordering problem of TCP flows. Traffic splitting is done by using a

random early rerouting algorithm that controls the queuing delay difference be-

tween the two alternative paths. Probe packets are used for getting congestion

information from the output queues of the links along the paths and AIMD-

based rate control is applied to the paths by using this congestion information.

Strict-priority is applied to the queues in the network in order to eliminate the

knock-on effect. By using a three-node network and a publicly used mesh net-

work, we show that our proposed architecture consistently outperforms the case

of a single path in terms of goodput and the byte rejection ratio, and the perfor-

mance of the algorithm is good for relatively large networks. We also show that

load balancing with FIFO queuing and shortest delay policies does not always

produce better results than that of a single path due to the knock-on effect. We

showed that incorporating a-priori knowledge of the estimated traffic demand

matrix into the proposed architecture can further improve its performance in

48

terms of load balancing and byte rejection ratio. For the simulations, we im-

proved the mesh topology simulation capability of ns-2 simulator by applying

many optimizations. As a future work, its performance can be compared with

other rate control algorithms like ERICA and the path set can be extended to

the case where more than two paths are considered for some s-d pairs.

49

Bibliography

[1] D. O. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview

and principles of Internet traffic engineering,” IETF Informational RFC-3272,

May 2002.

[2] L. Berry, S. Kohler, D. Staehle, and P. Trangia, “Fast heuristics for opti-

mal routing in IP networks,” Universitat Wurzburg Institut fur Informatik

Research Report Series, Tech. Rep. 262, July 2000.

[3] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing OSPF

weights,” in Proceedings of INFOCOM, Tel-Aviv, Israel, 2000, pp. 519-528.

[4] Y. Wang, Z. Wang, and L. Zhang, “Internet traffic engineering without full

mesh overlaying,” in Proceedings of INFOCOM, Anchorage, USA, 2001.

[5] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot, “Traffic

matrix estimation: Existing techniques and new directions,” in Proceedings

of the ACM SIGCOMM, Pittsburgh, USA, August 2002.

[6] D. Yuan, “A bi-criteria approach for robust OSPF routing,” in Proceedings of

IEEE Workshop on IP Operations and Management, Kansas City, Missouri,

USA, 2003, pp. 91-98.

[7] J. Moy, “OSPF version 2,” http://www.ietf.org/rfc/rfc2328.txt, Network

Working Group, RFC 2328, Apr. 1998.

50

[8] C. Villamizar, “OSPF Optimized Multipath (OSPF-OMP), Internet Draft

〈draft-ietf-ospf-omp-02.txt〉, 1998.

[9] I. Gojmerac, T. Ziegler, and P. Reichl, “Adaptive Multipath Routing Based

on Local Distribution of Link Load Information,” in Proceedings of QoFIS,

2003.

[10] C. Villamizar, “MPLS Optimized Multipath (MPLS-OMP), Internet Draft

〈draft-ietf-mpls-omp-01.txt〉, 1999.

[11] S. Bahk and M. E. Zarki, “Dynamic multi-path routing and how it compares

with other dynamic routing algorithms for high speed wide area networks,”

in Proceedings of ACM SIGCOMM, Maryland, USA, 1992, pp. 53-64.

[12] E. Gelenbe, R. Lent, and Z. Xu, “Towards networks with cognitive packets,”

in Proceedings of the 8th International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems, San Francisco, CA,

2000, pp. 3-12.

[13] E. Gelenbe, R. Lent, and Z. Xu, “Measurement and performance of cognitive

packet networks,” Computer Networks, vol. 37, pp. 691-701, 2001.

[14] E. Gelenbe, R. Lent, and Z. Xu, “Design and performance of cognitive packet

networks,” Performance Evaluation, vol. 46, pp. 155-176, 2001.

[15] E. Gelenbe, R. Lent, A. Montuori, and Z. Xu, “Cognitive packet networks:

QoS and performance,” in Proceedings of the 10th International Symposium

on Modeling, Analysis and Simulation of Computer and Telecommunication

Systems, Fort Worth, TX, 2002, pp. 3-12.

[16] S. Chen and K. Nahrstedt, “Distributed quality of service routing in ad-

hoc networks,” IEEE Jour. Selected Areas in Comm., vol. 17, pp. 1488-1504,

1999.

51

[17] S. K. Das, A. Mukherjee, S. Bandyopadhyay, K. Paul, and D. Saha, “Improv-

ing Quality-of-Service in Ad hoc Wireless Networks with Adaptive Multi-path

Routing,” in Proceedings of GLOBECOM 2000, San Francisco, California,

Nov. 27-Dec 1, 2000.

[18] A. T. Z. J. Haas, and S. S. Tabrizi, “Multi-path Routing in mobile ad

hoc networks or how to route in the presence of frequent topology changes,”

Military Communications Conference, 2001.

[19] S.J. Lee and M. Gerla, “Split Multi-path Routing with Maximally Disjoint

Paths in Ad Hoc Networks,” in Proceedings of the IEEE ICC, 2001, pp. 3201–

3205.

[20] S. Roy, D. Saha, S. Bandyopadhyay, T. Ueda, and S. Tanaka, “Improving

End-to-End Delay through Load Balancing with Multipath Routing in Ad

Hoc Wireless Networks using directional Antenna,” 5th International Work-

shop on Distributed Computing (IWDC 2003), 27-30 December 2003, IIM

Calcutta, India.

[21] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS Adaptive Traffic

Engineering,” in Proceedings of INFOCOM, Alaska, USA, 2001, pp. 1300-

1309.

[22] D. M. Chiu and R. Jain, “Analysis of the increase/decrease algorithms for

congestion avoidance in computer networks,” Computer Networks and ISDN

Systems, vol. 17, no. 1, pp. 1-14, June 1989.

[23] V. Jacobson, “Congestion avoidance and control,” ACM Computer Com-

munication Review; Proceedings of the Sigcomm 88 Symposium in Stanford,

CA, August, 1988, vol. 18, no. 4, pp. 314-329, 1988.

[24] J. Wang, S. Patek, H. Wang, and J. Liebeherr, “Traffic engineering with

AIMD in MPLS networks,” in Proceedings of 7th IFIP/IEEE International

52

Workshop on Protocols for High-Speed Networks, Berlin, Germany, 2002, pp.

192-210.

[25] F. Baccelli, E. Gelenbe, and B. Plateau, “An end to end approach to the

resequencing problem,” Journal of the ACM, vol. 31, no. 3, pp. 474-485, 1984.

[26] M. Laor and L. Gendel, “The effect of packet reordering in a backbone

link on application throughput,” IEEE Network Magazine, vol. 16, no. 5, pp.

28-36, 2002.

[27] Z. Cao, Z. Wang, and E. W. Zegura, “Performance of hashing-based schemes

for internet load balancing,” in Proceedings of INFOCOM, Tel Aviv, Israel,

2000, pp. 332-341.

[28] A. Shaikh, J. Rexford, and K. G. Shin, “Load-sensitive routing of long-lived

IP flows,” in Proceedings of ACM SIGCOMM, 1999, pp. 215-226.

[29] Y. Lee and Y. Choi, “An adaptive flow-level load control scheme for multi-

path forwarding,” in Proceedings of Networking - ICN, Colmar, France, 2001.

[30] S. Oueslati-Boulahia and E. Oubagha, “An approach to elastic flow routing,”

in Proceedings of International Teletraffic Congress, Edinburgh, UK, June

1999.

[31] S. Oueslati-Boulahia and J. W. Roberts, “Impact of trunk reservation on

elastic flow routing,” in Proceedings of Networking 2000, Paris, France, March

2000.

[32] L. Yang and G. N. Rouskas, “Path Switch-

ing in Optical Burst Switched Networks,”

http://www.csc.ncsu.edu/faculty/rouskas/Ar0ra/Submitted/Submitted-

Yang-2004.pdf.

53

[33] G. Thodime, V. Vokkarane, and J. P. Jue, “Dynamic Congestion-Based

Load Balanced Routing in Optical Burst-Switched Networks,” IEEE Globe-

com 2003, San Francisco, CA, December 2003.

[34] F. Farahmand, V. Vokkarane, and J. P. Jue, “Practical Priority Contention

Resolution for Slotted Optical Burst Switching Networks,” in Proceedings,

First International Workshop on Optical Burst Switching (WOBS 2003), Dal-

las, TX, Oct. 2003.

[35] N. Akar, I. Hokelek, M. Atik, and E. Karasan, “A reordering-free multipath

traffic engineering architecture for Diffserv/MPLS networks,” in Proceedings

of IEEE Workshop on IP Operations and Management, Kansas City, Mis-

souri, USA, 2003, pp. 107-113.

[36] S. McCanne and S. Floyd. ns Network Simulator. Web page:

http://www.isi.edu/nsnam/ns/, July 2002.

[37] S. Nelakuditi, Z. L. Zhang, and R. P. Tsang, “Adaptive proportional routing:

A localized QoS routing approach,” in Proceedings of INFOCOM, Tel Aviv,

Israel, 2000.

[38] L. Georgiadis, P. Georgatsos, S. Sartzetakis, and K. Floros, “Lexicographi-

cally Optimal Balanced Networks,” IEEE Infocom 2001, April 2001.

[39] O. Alparslan, N. Akar and E. Karasan, “Combined Use of Prioritized AIMD

and Flow-Based Traffic Splitting for Robust TCP Load Balancing,” Lecture

Notes in Computer Science, Vol. 3266, pp. 124-133, Sep. 2004.

[40] O. Alparslan, N. Akar and E. Karasan, “AIMD-Based Online MPLS Traffic

Engineering for TCP Flows via Distributed Multi-Path Routing,” in Annales

Des Telecommunications, To Appear.

[41] S. Floyd and V. Jacobson, “Random early detection gateways for congestion

avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-

413, 1993.

54

[42] R. Brown, “Calendar queues: a fast 0(1) priority queue implementation for

the simulation event set problem,” Communications of the ACM, vol. 31, no.

10, pp. 1220-1227, 1998.

[43] I. A. Rai, G. Urvoy-Keller, and E. W. Biersack, “Analysis of LAS schedul-

ing for job size distributions with high variance,” in Proceedings of ACM

Sigmetrics, CA, USA, 2003, pp. 218-228.

[44] L. Guo and I. Matta, “The war between mice and elephants,” in Proceedings

of ICNP’2001: The 9th IEEE International Conference on Network Protocols,

Riverside, CA, 2001.

[45] “Optimized Multipath,” Internet drafts, simulations, examples, and tutori-

als available at www.faster-light.net/omp, 2002.

[46] The multi-path routing project at Bilkent University In-

formation Networks Laboratory (BINLAB). Web page:

http://www.binlab.bilkent.edu.tr/onur/index.html, July 2004.

55

Appendix A

Simulator

A.1 Installing And Using The Simulator

A.1.1 Installing The Module

1. First download the extension from [46]. Create a new directory called

“multipath” under the “ns-2.27” directory of ns-2. Untar the files and

copy them to the “multipath” directory.

2. Module requires modifications in some of the existing files of ns-2. First

download the modifications file from [46]. It is the output of “diff” com-

mand of linux applied to a modified ns-2 version 2.27 and an unmodified

ns-2 version 2.27. The output shows the name of the files and the line

numbers that must be modified, added or deleted.

3. In the Makefile, add the following lines to the end of OBJ CC

multipath/drop-tail2.o\
multipath/drop-tail3.o\
multipath/drop-tail4.o\

56

multipath/hdr mp.o\
multipath/mpdelay.o\
multipath/mpdelay2.o\
multipath/mpsragent.o\
multipath/hdr mpsrc.o\
multipath/cprobe.o\

4. In case a problem with patching the TCP source files with the diff file, just

replace the tcp.cc, tcp.h, tcp-sink.cc, tcp-sink.h files under “ns-2.27/tcp”

directory with the modified versions from [46]. There are some speed opti-

mizations and functions for logging the stats of tcp flows in these files.

A.1.2 Simulation Scripts

Simulation script set can be downloaded from [46]. It includes routes of first and

second paths, flow arrivals and a sample simulation script. A directory called

“log” must be created under the directory where ns-2 is running. Simulation log

files will be created in and written to that directory. Also a file called “out.tr” will

be created and written to the same directory you are running ns-2. “out.tr” file

shows the starting and ending times of the flows and their source, destination,

number of successfully carried packets information. The performance of the

system can be learned by processing “out.tr” file by using another program like

Matlab.

57

A.2 Unoptimized Path Set For Hypothetical

US Topology

In these tables, the primary and the secondary paths for s-d pairs are given. This

path set is used in the mesh network simulations in which prior traffic matrix is

not available. The path from a source node to destination node is the same as

the path from the destination node to source node, so we give only the half of

the paths for s-d pairs.

From-to Primary Path Secondary Path

sf-de sf-de sf-sj-de

sf-ch sf-de-ch sf-sj-de-sl-cl-ch

sf-cl sf-de-ch-cl sf-sj-de-sl-cl

sf-ny sf-de-ch-cl-ny sf-sj-de-sl-dc-ny

sf-sj sf-sj sf-la-sj

sf-sl sf-de-sl sf-sj-da-sl

sf-dc sf-de-sl-dc sf-la-hs-at-dc

sf-la sf-la sf-sj-la

sf-da sf-sj-da sf-la-hs-da

sf-at sf-la-hs-at sf-de-sl-dc-at

sf-hs sf-la-hs sf-sj-da-hs

58

From-to Primary Path Secondary Path

de-ch de-ch de-sl-cl-ch

de-cl de-ch-cl de-sl-cl

de-ny de-ch-cl-ny de-sl-dc-ny

de-sj de-sj de-sf-sj

de-sl de-sl de-ch-cl-sl

de-dc de-sl-dc de-ch-cl-dc

de-la de-sj-la de-sf-la

de-da de-sl-da de-sj-da

de-at de-sl-dc-at de-sj-la-hs-at

de-hs de-sl-da-hs de-sj-la-hs

From-to Primary Path Secondary Path

ch-cl ch-cl ch-de-sl-cl

ch-ny ch-cl-ny ch-de-sl-dc-ny

ch-sj ch-de-sj ch-cl-sl-da-sj

ch-sl ch-cl-sl ch-de-sl

ch-dc ch-cl-dc ch-de-sl-dc

ch-la ch-de-sj-la ch-cl-sl-de-sf-la

ch-da ch-cl-sl-da ch-de-sj-da

ch-at ch-cl-dc-at ch-de-sl-da-hs-at

ch-hs ch-cl-sl-da-hs ch-de-sj-la-hs

59

From-to Primary Path Secondary Path

cl-ny cl-ny cl-dc-ny

cl-sj cl-ch-de-sj cl-sl-da-sj

cl-sl cl-sl cl-dc-sl

cl-dc cl-dc cl-ny-dc

cl-la cl-ch-de-sj-la cl-sl-de-sf-la

cl-da cl-sl-da cl-dc-at-hs-da

cl-at cl-dc-at cl-sl-da-hs-at

cl-hs cl-sl-da-hs cl-dc-at-hs

From-to Primary Path Secondary Path

ny-sj ny-cl-ch-de-sj ny-dc-sl-da-sj

ny-sl ny-cl-sl ny-dc-sl

ny-dc ny-dc ny-cl-dc

ny-la ny-dc-at-hs-la ny-cl-ch-de-sj-la

ny-da ny-cl-sl-da ny-dc-at-hs-da

ny-at ny-dc-at ny-cl-sl-da-hs-at

ny-hs ny-dc-at-hs ny-cl-sl-da-hs

From-to Primary Path Secondary Path

sj-sl sj-de-sl sj-da-sl

sj-dc sj-de-sl-dc sj-da-sl-cl-dc

sj-la sj-la sj-sf-la

sj-da sj-da sj-la-hs-da

sj-at sj-da-hs-at sj-de-sl-dc-at

sj-hs sj-da-hs sj-la-hs

60

From-to Primary Path Secondary Path

sl-dc sl-dc sl-cl-dc

sl-la sl-de-sj-la sl-da-hs-la

sl-da sl-da sl-de-sj-da

sl-at sl-dc-at sl-da-hs-at

sl-hs sl-da-hs sl-dc-at-hs

From-to Primary Path Secondary Path

dc-la dc-at-hs-la dc-sl-de-sj-la

dc- da dc-sl-da dc-at-hs-da

dc-at dc-at dc-sl-da-hs-at

dc-hs dc-at-hs dc-sl-da-hs

From-to Primary Path Secondary Path

la-da la-hs-da la-sj-da

la-at la-hs-at la-sj-de-sl-dc-at

la-hs la-hs la-sj-da-hs

From-to Primary Path Secondary Path

da-at da-hs-at da-sl-dc-at

da-hs da-hs da-sj-la-hs

From-to Primary Path Secondary Path

at-hs at-hs at-dc-sl-da-hs

61

A.3 Optimized Path Set For Hypothetical US

Topology

This path set is used in the mesh network simulations in which prior traffic

matrix is available. In some cases, the path from a source node to destination

node is the different from the path from the destination node to source node, so

we give the paths for all s-d pairs.

From-to Primary Path Secondary Path

sf-ny sf-de-ch-cl-ny sf-sj-de-sl-dc-ny

sf-dc sf-de-sl-dc sf-sj-de-ch-cl-dc

sf-cl sf-sj-de-sl-cl sf-de-ch-cl

sf-at sf-la-hs-at sf-de-sl-dc-at

sf-ch sf-de-ch sf-sj-de-sl-cl-ch

sf-sl sf-de-sl sf-sj-da-sl

sf-da sf-sj-da sf-la-hs-da

sf-hs sf-sj-da-hs sf-la-hs

sf-de sf-sj-de sf-de

sf-sj sf-sj sf-la-sj

sf-la sf-la sf-sj-la

62

From-to Primary Path Secondary Path

de-ny de-ch-cl-ny de-sl-dc-ny

de-dc de-ch-cl-dc de-sl-dc

de-cl de-sl-cl de-ch-cl

de-at de-sl-dc-at de-ch-cl-sl-da-hs-at

de-ch de-ch de-sl-cl-ch

de-sl de-sl de-ch-cl-sl

de-da de-sl-da de-ch-cl-dc-at-hs-da

de-hs de-sl-da-hs de-ch-cl-dc-at-hs

de-sj de-sj de-sf-sj

de-la de-sf-la de-sj-la

de-sf de-sj-sf de-sf

From-to Primary Path Secondary Path

ch-ny ch-cl-ny ch-de-sl-dc-ny

ch-dc ch-cl-dc ch-de-sl-dc

ch-cl ch-cl ch-de-sl-cl

ch-at ch-cl-dc-at ch-de-sl-da-hs-at

ch-sl ch-cl-sl ch-de-sl

ch-da ch-cl-sl-da ch-de-sl-dc-at-hs-da

ch-hs ch-de-sl-da-hs ch-cl-dc-at-hs

ch-de ch-de ch-cl-sl-de

ch-sj ch-de-sj ch-cl-sl-de-sf-sj

ch-la ch-de-sj-la ch-cl-sl-de-sf-la

ch-sf ch-de-sf ch-cl-sl-de-sj-sf

63

From-to Primary Path Secondary Path

cl-ny cl-ny cl-dc-ny

cl-dc cl-dc cl-sl-dc

cl-at cl-dc-at cl-sl-da-hs-at

cl-ch cl-ch cl-sl-de-ch

cl-sl cl-sl cl-dc-sl

cl-da cl-sl-da cl-dc-at-hs-da

cl-hs cl-sl-da-hs cl-dc-at-hs

cl-de cl-ch-de cl-sl-de

cl-sj cl-sl-da-sj cl-ch-de-sj

cl-la cl-ch-de-sj-la cl-sl-da-hs-la

cl-sf cl-sl-de-sf cl-ch-de-sj-sf

From-to Primary Path Secondary Path

ny-dc ny-dc ny-cl-dc

ny-cl ny-cl ny-dc-cl

ny-at ny-dc-at ny-cl-sl-da-hs-at

ny-ch ny-cl-ch ny-dc-sl-de-ch

ny-sl ny-dc-sl ny-cl-sl

ny-da ny-dc-sl-da ny-cl-dc-at-hs-da

ny-hs ny-dc-at-hs ny-cl-sl-da-hs

ny-de ny-cl-ch-de ny-dc-sl-de

ny-sj ny-cl-sl-de-sj ny-dc-cl-ch-de-sf-sj

ny-la ny-dc-at-hs-la ny-cl-sl-de-sf-la

ny-sf ny-cl-ch-de-sf ny-dc-sl-de-sj-sf

64

From-to Primary Path Secondary Path

sj-ny sj-de-ch-cl-ny sj-sf-de-sl-dc-ny

sj-dc sj-da-sl-cl-dc sj-de-sl-dc

sj-cl sj-de-ch-cl sj-sf-de-sl-cl

sj-at sj-da-hs-at sj-de-sl-dc-at

sj-ch sj-de-ch sj-sf-de-sl-cl-ch

sj-sl sj-de-sl sj-sf-de-ch-cl-sl

sj-da sj-da sj-la-hs-da

sj-hs sj-da-hs sj-la-hs

sj-de sj-de sj-sf-de

sj-la sj-la sj-sf-la

sj-sf sj-sf sj-la-sf

From-to Primary Path Secondary Path

sl-ny sl-dc-ny sl-cl-ny

sl-dc sl-dc sl-cl-dc

sl-cl sl-cl sl-dc-cl

sl-at sl-dc-at sl-da-hs-at

sl-ch sl-cl-ch sl-de-ch

sl-da sl-da sl-dc-at-hs-da

sl-hs sl-da-hs sl-dc-at-hs

sl-de sl-de sl-cl-ch-de

sl-sj sl-da-sj sl-de-sj

sl-la sl-da-sj-sf-la sl-de-sj-la

sl-sf sl-da-sj-sf sl-de-sf

65

From-to Primary Path Secondary Path

dc-ny dc-ny dc-cl-ny

dc-cl dc-cl dc-sl-cl

dc-at dc-at dc-sl-da-hs-at

dc-ch dc-cl-ch dc-sl-de-ch

dc-sl dc-sl dc-cl-sl

dc-da dc-sl-da dc-at-hs-da

dc-hs dc-sl-da-hs dc-at-hs

dc-de dc-sl-de dc-cl-ch-de

dc-sj dc-cl-ch-de-sj dc-sl-de-sf-sj

dc-la dc-at-hs-la dc-cl-ch-de-sf-la

dc-sf dc-sl-de-sf dc-cl-ch-de-sj-sf

From-to Primary Path Secondary Path

la-ny la-hs-at-dc-ny la-sj-de-ch-cl-ny

la-dc la-hs-at-dc la-sj-da-sl-dc

la-cl la-sj-de-sl-cl la-sf-de-ch-cl

la-at la-hs-at la-sf-de-sl-dc-at

la-ch la-sj-de-ch la-sf-de-sl-cl-ch

la-sl la-sj-de-sl la-sf-de-ch-cl-sl

la-da la-sj-da la-hs-da

la-hs la-hs la-sj-da-hs

la-de la-sf-sj-de la-sj-sf-de

la-sj la-sj la-sf-sj

la-sf la-sf la-sj-sf

66

From-to Primary Path Secondary Path

da-ny da-sl-cl-dc-ny da-sj-de-ch-cl-ny

da-dc da-sl-dc da-sj-de-ch-cl-dc

da-cl da-sl-cl da-sj-de-ch-cl

da-at da-hs-at da-sl-dc-at

da-ch da-sl-cl-ch da-sj-de-ch

da-sl da-sl da-sj-de-sl

da-hs da-hs da-sj-la-hs

da-de da-sl-de da-sj-de

da-sj da-sj da-hs-la-sj

da-la da-sj-la da-hs-la

da-sf da-sj-sf da-hs-la-sf

From-to Primary Path Secondary Path

at-ny at-dc-ny at-hs-da-sl-cl-ny

at-dc at-dc at-hs-da-sl-dc

at-cl at-dc-cl at-hs-da-sl-cl

at-ch at-dc-cl-ch at-hs-da-sl-de-ch

at-sl at-dc-sl at-hs-da-sl

at-da at-hs-da at-dc-sl-da

at-hs at-hs at-dc-sl-da-hs

at-de at-dc-cl-ch-de at-hs-da-sl-de

at-sj at-hs-da-sj at-dc-cl-ch-de-sj

at-la at-hs-la at-dc-cl-ch-de-sf-la

at-sf at-hs-la-sf at-dc-cl-ch-de-sf

67

From-to Primary Path Secondary Path

hs-ny hs-at-dc-ny hs-da-sl-cl-ny

hs-dc hs-da-sl-dc hs-at-dc

hs-cl hs-da-sl-cl hs-la-sf-de-ch-cl

hs-at hs-at hs-da-sl-dc-at

hs-ch hs-da-sl-de-ch hs-la-sf-de-sl-cl-ch

hs-sl hs-da-sl hs-la-sf-de-sl

hs-da hs-da hs-la-sj-da

hs-de hs-da-sl-de hs-la-sf-de

hs-sj hs-da-sj hs-la-sj

hs-la hs-la hs-da-sj-la

hs-sf hs-la-sf hs-da-sj-sf

68

