
ANALYSIS OF SCHEDULING PROBLEMS IN
DYNAMIC AND STOCHASTIC FMS
ENVIRONMENT: COMPARISON OF

RESCHEDULING POLICIES

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Ö. Batuhan Kızılışık

September, 2001

ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Ihsan Sabuncuoglu (Principle advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Bahar Kara

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Assoc. Prof. Erdal Erel

Approved for the Institute of Engineering and Sciences:

Prof. Mehmet Baray

Director of Institute of Engineering and Sciences

iii

 ABSTRACT

AN ANALYSIS OF SCHEDULING PROBLEMS IN DYNAMIC AND

STOCHASTIC FMS ENVIRONMENT: COMPARISON OF

RESCHEDULING POLICIES

Omer Batuhan Kizilisik

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Ihsan Sabuncuoglu

September, 2001

 In this thesis, we study the reactive scheduling problems in a dynamic and

stochastic flexible manufacturing environment. Specifically, we test different

scheduling policies (how-to-schedule and when-to-schedule policies) under process

time variations and machine breakdowns in a flexible manufacturing system. These

policies are then compared with on-line scheduling schemes. The performance of the

system is measured for the mean flowtime criterion. In this study, a beam search

based algorithm is used. The algorithm allows us to generate partial or full schedules.

The results indicate that on-line scheduling schemes are more robust than the off-line

algorithm in dynamic and stochastic environments.

Keywords: Flexible Manufacturing Systems, Reactive Scheduling, Simulation.

iv

 ÖZET

ESNEK ÜRETİM SİSTEMLERİNDE ÇİZELGELEME PROBLEMİNİN

DİNAMİK ORTAMDA ANALİZİ: TEPKİSEL ÇİZELGELEME

METODLARININ KARŞILAŞTIRILMASI

Ömer Batuhan Kızılışık

Endüstri Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. İhsan Sabuncuoğlu

Eylül, 2001

 Bu çalışmada rassal ve dinamik esnek üretim sistemlerinde ki tepkisel

çizelgeleme problemi incelenmiştir. Farklı tepkisel çizelgeleme (ne zaman ve nasıl

çizelgeleme) metotları rassal esnek üretim sistemlerinde sunulmuş ve test edilmiştir.

Bu tepkisel çizelgeleme metotları daha sonra anında yönlendirme yaklaşımı ile

karşılaştırılmıştır. Bu çalışmada süzülmüş ışın taramasına dayalı bir algoritma

kullanılmıştır. Bu algoritmayı kullanarak kısmi çizelgeleme yöntemide araştırılmıştır.

Yapılan bu çalışma sonucunda anında yönlendirme yaklaşımının önceden

çizelgeleme yaklaşımına göre dinamik ve rassal ortamdan daha az etkilendiği

bulunmuştur.

Anahtar Sözcükler: Esnek Üretim Sistemleri, Tepkisel Çizelgeleme, Benzetim.

v

 Annem, Babam ve Kardeşime

vi

ACKNOWLEDGMENTS

 I would like to thank my advisor Assoc. Prof. Ihsan Sabuncuoglu for his

supervision, encouragement and understanding throughout my long graduate

education in Bilkent University.

 I am also indepted to Bahar Kara and Erdal Erel for their valuable comments on

this thesis.

 I greatly appreciate Bilkent University administration for providing advanced

computing facilities.

vii

Table of Contents

1 INTRODUCTION 1

 1.1) Problem Definition .. 3

2 LITERATURE SURVEY 5

 2.1) Reactive Scheduling in Single Machine Environment 4

 2.2) Reactive Scheduling in Job Shop Environment 10

 2.3) Reactive Scheduling in FMS Environment ... 12

 2.4) Observations and Open Research Points .. 13

3. SCHEDULING SYSTEM 16

 3.1) Background Information About Simulation and Scheduling 16

 3.2) The Elements of Proposed Scheduling System .. 18

 3.3) Schedule Generation Module .. 21

 3.4) System Considerations and Experimental Conditions 22

 3.5) Rescheduling Policies Considered in This Study 24

4. COMPARISON OF RESCHEDULING POLICIES 27

 4.1) Pilot Experiments .. 27

 4.2) Comparison of Rescheduling Policies in a Dynamic Environment 32

viii

 4.2.1) How to Schedule policies ... 32

 4.2.2) When to Schedule policies .. 37

 4.3) Process Time Variation ... 41

 4.4) Machine Breakdowns .. 46

 CONCLUSION 51

BIBLIOGRAPHY 53

APPENDIX 56

ix

LIST of FIGURES

3.1 Simulation based scheduling system . 19

4.1 Comparison of Meanflow times for two different initial job populations for

 high SF and RF . 28

4.2 Comparison of limited and unlimited queue capacities for different

 scheduling policies . 29

4.3 Comparison of flexibilities for different scheduling policies 30

4.4 Comparison of different scheduling frequencies for F-LOW 31

4.5 Comparison of how to schedule policies . 33

4.6 Differences between full and partial schedules for different scheduling

 frequencies . 35

4.7 Comparison of flexibilities for full and partial schedules 37

4.8 Comparison of when to schedule policies for partial and full schedules . . 39

4.9 Comparison of PERIODIC and ARRIVAL policies for different Partial

 Scedules . 41

4.10 Mean flowtimes for the ARRIVAL, PERIODIC, RATIO policies for

 PV=0 and PV=0.4 . 44

4.11 Change of preformance with PV and change of performance with partial

 schedule . 45

4.12 Mean flowtimes of scheduling policies for no breakdown and breakdown

 case . 47

4.13 Change of performances with machine breakdown and with partial schedule 48

x

LIST of TABLES

2.1 Classification of the papers in reactive scheduling . 15

3.1 Internal factors and their levels . 23

3.2 When to reschedule policy . 26

4.1 Outputs for limited and unlimited buffer capacities 57

4.2 Comparison of H_100 and H_50 for F-LOW and F-HIGH 60

4.3 Comparison of different scheduling policies for F-LOW 63

4.4 Comparison of when to schedule policies for H_50 65

4.5 Comparison of when to schedule policies for H_100 68

4.6 Performances of scheduling policies for different scheduling frequencies . 70

4.7 Comparison of ARRIVAL and PERIODIC policies for different Partial

 schedules . 71

4.8 Comparison of How to Schedule policies for Partial schedule and PV . . . 72

4.9 Performance measures for machine breakdown for F-LOW and F-HIGH . 73

4.10 The results of Dispatch Policy . 74

4.11 The performances of scheduling policies with and without PV 75

4.12 t-test for the Ratio Policy and the Dispatch Rule . 76

4.13 t-test for the Ratio and the Periodic Policies . 76

1

CHAPTER 1

INTRODUCTION

 A flexible manufacturing system (FMS) is highly automated and capable of

producing a variety of parts simultaneously. The flexibility of an FMS is mainly due

to the capability of processing stations, which can perform several different types of

operations, and its material handling system, which provides fast and flexible part

transfer within the system. However, the benefits of FMS are not easy to realize and

its several design and operational problems need to be solved in order to get a full

benefit from these systems. One of the critical decision is scheduling. The scheduling

decision in an FMS environment is considered to be a detailed minute-by-minute

scheduling of machines, material handling system, and other support equipment

(Sabuncuoglu and Hommertzheim, 1992). In this thesis, we will study the scheduling

problem in a dynamic FMS environment.

 In general, scheduling is a decision-making process, which concerns the allocation

of limited resources to tasks over time. Since, scheduling serves as an overall plan on

which many other shop activities are based, it plays an important role in

manufacturing systems in order to have timely and costly effective production. In

practice, a feasible schedule alone is rarely the only goal of scheduling, as there may

2

be other objectives and preferences such as minimising mean flowtime, or tardiness.

By properly planning and timing of shop floor activities, various system performance

measures (due dates, utilisation. flowtime, etc.) can be optimised.

 There are two key elements in any scheduling system: schedule generation and

control. Schedule generation is viewed as the predictive mechanism that determines

planned start and completion times of operations of the jobs. On the other hand, the

control element has to do with updating schedules or reacting to unexpected random

events. In other words, this system monitors the execution of the schedule and revises

it to cope with unexpected events such as, machine breakdowns, arrival of hot jobs,

etc. In practice, the performance of predetermined schedules degrades so quickly that

an appropriate reaction should be made in order to return the systems back to the

planned or desired performance.

 As discussed in Sabuncuoglu and Toptal (2000), scheduling can be classified in

many different ways (static vs dynamic, deterministic vs stochastic, on-line vs off-

line, centralised vs hierarchical, etc.). One of the classifications can be made with

respect to schedule generation mechanism (i.e., on-line and off-line schedule

generation). In off-line scheduling, all available jobs are scheduled all at once for the

entire planning horizon whereas in the on-line scheduling, schedule is made one at a

time when it is needed according to the change in the system conditions. Thus, in on-

line scheduling, the schedule is constructed over time (not all at once). Priority

dispatching is a good example of on-line scheduling because decisions are made one

at a time as the system state changes. Generally speaking, schedules are easily

generated by using on-line dispatching rules. But the solution quality is sacrificed due

to the myopic nature of these rules (Sabuncuoglu and Bayiz, 2000).

 The majority of the published literature on the scheduling problem deals with the

task of schedule generation. Although schedule control (or reactive) part is very

important, especially in today’s highly competitive manufacturing environments, it

has not been adequately studied in the literature (Sabuncuoğlu and Bayız, 2000).

3

1.1. Problem Definition

 In this thesis, we analyse the reactive scheduling problem in a flexible

manufacturing (FMS) environment. Specifically, we investigate two important issues

that have not been addressed thoroughly in the literature. These are as follows:

 1. In most of the studies that are concerned with comparison of on-line and off

line scheduling schemes, a deterministic and static manufacturing environment is

used.

 2. Different rescheduling policies are not compared with each other under

dynamic and stochastic environment.

 In this study, a simulation model is used to execute the schedules generated by

different scheduling schemes in stochastic and dynamic manufacturing environments.

The simulation model is linked with various scheduling algorithms to form a

simulation based scheduling system. This system is composed of a simulation model,

a controller and a scheduling module. The scheduling module contains on-line

scheduling algorithm as well as the scheduling algorithm developed in this research.

 We use a beam search based scheduling algorithm. This algorithm considers

scheduling factors such as dynamic job arrivals, machine breakdowns, flexibility, and

material handling capacity. The algorithm can develop schedules for varying

scheduling periods. It can also generate partial schedules. This feature of the

algorithm makes it possible to test various scheduling policies.

 In the thesis, we study reactive scheduling problem in an FMS, which has several

machines and material handling components and dynamic job arrivals. We develop

different when to schedule and how to schedule reactive policies, which are defined in

the next chapters. We test their performances under process time variation and

machine breakdowns. We then compare their performances with on-line scheduling

policy.

4

 The rest of the thesis is organized as follows: In the next chapter, we provide a

review of the related research on reactive scheduling. At the end of the chapter, the

papers are classified according to their problem environments, schedule generation

methods and reactive control implementations. In Chapter 3 the scheduling algorithm

and the experimental conditions are described in detail and implementation issues are

discussed. In Chapter 4, different rescheduling policies are tested under various

conditions. Finally, concluding remarks are given in Chapter 5.

5

CHAPTER 2

LITERATURE REVIEW

 In this chapter, we will examine the relevant studies in the literature in a detailed

manner. To provide an organized presentation, we will begin from the single machine

environment. Then we will look at job shop studies. Finally, we will consider the

studies in FMS environments.

2.1 Reactive Scheduling in Single Machine Environment

 Rescheduling refers to the process of generating a new feasible schedule upon the

occurance of a disruption (Svestka, Abumaziar, 1997). Many researches who address

the rescheduling problem either reschedule resources every time an event that alters

the system condition (continuous rescheduling) or reschedule the facility periodically

(periodic rescheduling). Church and Uzsoy (1992) analyse the performance of such a

hybrid rescheduling, which is referred as event-driven rescheduling policy in a single

machine environment. Here, events that change the state of the facility are classified

into those requiring immediate action (or exceptions) and those that can be ignored.

6

Thus, the scheduling is triggered in periods and when an exception occurs. At each

rescheduling point, static schedules are generated for available jobs by using EDD

rule. In this procedure, in addition to periodic rescheduling, arrival of a job with tight

due date also causes a need for rescheduling of the system. Computational

experiments with the maximum lateness (Lmax) criterion show that the benefits of

extra scheduling diminish rapidly. This means that a well designed event-driven

policy can result in a good performance with less computational effort. The algorithm

they used can be summarised as follows: for every job i arriving between period (i-

1)T and iT, si = di –ri is computed. Here, T is the length of the period, di denotes the

due date of job i, ri is the ready time of job i, and si is called the slack between the due

date and ready time of job i. If si is smaller than a constant value, called window

length (w), then a new schedule is generated for all unprocessed jobs and

implemented this until next rescheduling point. Also, at all points iT a new schedule is

generated for unprocessed jobs using EDD rule.

 Wu and Storer (1992) study the single machine rescheduling problem with a

single unforeseen disruption. They propose several heuristics for rescheduling. The

authors define the impact of schedule change in two ways: deviations of start time of

operations between the new schedule and the original schedule, and deviations of

sequence of the jobs between the new schedule and the original schedule. They

minimise an objective function with two elements: makespan and impact of the

schedule change. Namely, Z(S) = r.M(S) + (1-r).D(S), where M(S) is the measure of

performance (makespan) given the schedule S, D(S) is the measure of predictability

(robustness) of the schedule S, and r is a number between (0,1). The schedule

predicted before execution may be modified as time passes due to unpredictable

changes in the shop floor. Thus D(S) measures the difference between the predicted

schedule and the released one. They use the makespan criteria for M(S) and the

deviation between the predicted schedule and the released schedule is used for D(S).

The authors employ local search heuristics to optimise this bicriterion problem. The

first set of heuristics are pairwise swapping methods, and the second set are based on

7

local search using genetic algorithms. During local search, all heuristics start with a

minimal makespan and a minimal deviation schedule. The minimal makespan

schedule is generated using Carlier's Algorithm (Carlier, 1982). Two local search

heuristics based on pairwise interchange of jobs in the sequence were developed,

called straightforward approach and bicriterion steepest descent. Within each type of

heuristics, both adjacent and all-pair interchanges were implemented resulting in a

total of four methods. Also, the genetic algorithm is implemented using two different

procedures, called α-ε grid search and r grid search procedures. Thus, totally six

different methods are used to solve the problem. A set of experiments is conducted to

test the efficency of these heuristics. They also compare the schedules of this

heuristics with the optimal solution of the problem. The results indicate that: all-pair

search methodology is the best, and this is followed by GA (Generic Algorithm). The

adjacent pair search yield the worst performance.

 In another study, Daniels and Kouvelis (1995) study "Robust Scheduling", which

is the determination of a schedule whose performance is insensitive to the potential

realisations of task parameters in a single machine environment using flowtime

criterion. Specifically, they focused on identifying and applying schedule robustness

in a single machine environment with a performance criterian of total flow. In their

study, the authors assumed variable processing time parameters and no machine

breakdown. What distinguishes robust scheduling from the predictable scheduling is

that robust scheduling focuses on minimising the effects of disruptions on the

performance measure, whereas predictable scheduling tries to ensure that the

predictive and realised schedule do not differ drastically in terms of the completion

times of jobs. They define two measures of schedule robustness which are called

absolute robust schedule and relative robust schedule. Their model can be summarised

as follows: Let λ represents a unique set of processing times of the job. Here,

processing time uncertainty is described through a set of processing time scenarios Λ,

where λ is an element of Λ. Also, let σ denotes a permutation of n jobs and σλ'

denotes the optimal sequence given the processing times λ. Then, define d(σ,λ) =

8

P(σ,λ) - P(σλ',λ) and r(σ,λ) = P(σ,λ)/P(σλ',λ), where P(σλ',λ) is the optimal schedule

of problem instance λ. The objective here is, to obtain a schedule which satisfies d' =

min d, where d= max d(σ,λ) or r’ = min r, where r= max r(σ,λ). The first schedule is

called absolute robust schedule and the second one is relative robust schedule.

Shortly, they try to determine the schedule that minimises the worst-case absolute (or

relative) deviation from optimality both of which are NP-hard. They also propose an

algorithm for the robust scheduling problem. The result indicated that the robust

schedules provide effective hedges and excellent flow time performance.

 In another study, O’Donovan, Uzsoy, and McKay (1997) consider predictable

scheduling in the single machine environment with the total tardiness criterion under

stochastic machine failures. They present a predictive scheduling approach which

inserts additional idle times into the schedule to absorb the impacts of breakdowns.

They measure the predictability as the completion time deviations between the

realised schedule and the predicted schedule. In the experiments they use two

different procedures to generate predictive schedules, called ATC(1), and

ATC(1)+OSMH. ATC heuristic is developed by Rachamadugu and Morton (1982). It

is based on the idea that whenever a machine becomes free, the job with the highest

priority index is scheduled first. In ATC(1)+OSMH heuristic a predictable schedule

(Sp) is generated using ATC(1) assuming no breakdowns. Then expected breakdown

duration is added to completion time of each job i using the equation (pi/λ)R, where R

is the expected breakdown duration, λ is the rate of breakdown occurance and pi is

the processing time of job i. Their rescheduling methods are ATC(1), ATC(2) and

RHS. The only difference between ATC(1) and ATC(2) comes from the calculation of

jobs priority indices. The results indicate that, in terms of tardiness

scheduling/rescheduling policy ATC(1)/ATC(1) is the best. This schema generates the

initial schedule using ATC(1) and then use the same schedule procedure for

rescheduling also. In terms of predictability, ATC(1)+OSMH/ RHS is the best

policy. In this policy, the initial schedule is generated using ATC(1)+OSMH, and the

remaining jobs are simply right shifted at rescheduling points.

9

 Later, Uzsoy and Mehta (1999) study single machine problem subject to machine

breakdowns with the objective of minimising deviations between the realised

schedule and the predicted schedule while trying to keep the maximum lateness below

a certain level. Their objective is to develop predictive schedules, which can absorb

disruptions without affecting planned activities while maintaining high shop floor

performance. Deviations between the realised schedule and the schedule predicted can

be reduced by inserting additional idle times into the schedule predicted. While the

predicted schedule is determined using Carlier Algorithm, Uzsoy and Mehta

developed three reactive heuristics (called OSMH, LPT and LPTH). These heuristics

minimise the deviations between the predictive schedule and the realised one, while

maintaining the performance of the schedule in an acceptable level. Their approach

can be formulated mathematically as follows”

Min z = ∑ DVi,

 given that

f(Sr) < d, where Sr = g(Sp, E), DVi = |Cir - Cip|. Here,

E = environmental factors (ie machine breakdowns).

Cir = completion time of job i in realised schedule,

Cip = completion time of job i in predictive schedule.

f(S) = performance measure value of S.

d = a constant number.

 The results indicate that the insertion of idle times in a controlled manner provides

significant improvement in predictability at the expense of some degradation in

realised schedule. Thus, predictable schedules are more robust to errors where

machine breakdown occurs.

2.2 Reactive Scheduling in Job Shops

 Wu and Storer (1994) study the job shop problem subject to machine breakdown.

They defined robustness as follows:

10

 Z(S) = r.E[M(Sr)] + (1-r).E[R(S)]

where R(S) = M(Sr)-M(Sp). Here, M(Sr) is the measure of performance in the realised

schedule(Sr), and M(Sp) is the measure of performance in predicted schedule(Sr).

Thus, R(S) becomes the difference between these two schedules. Then they develop

robust schedules using surrogate measures for expected delay and expected makespan

after disruptions. The authors use the “Genetic Algorithm (GA)” whose objective

function minimises the robustness measure. Then, they compare the results of the

schedules released for different r values including machine breakdowns, with the

schedule generated simply by setting objective function equal to deterministic

makespan before disruptions. This study can be summarised as follows:

 Min R(S) = r.E[f(Sr)] + (1-r).E[δ(S)]

f(S) = performance measure value of S.

δ(S) = f(Sr) - f(Sp), using surrogate measures , the objective function becomes,

 Min R(S) = r.SM + (1-r).DM,

 where,

SM = surrogate measure of E[f(Sr)]

DM = surrogate measure of E[δ(S)] = (∑Si)/Nf

Si = | (latest start time of job i) - (earliest start time of job i corresponding to schedule

S)|

SM = f(Sp) - DM.

Nf = the set of operations to be processed on fallible machines.

 Their claim is that, there exist a trade off between the makespan and delay as the

value for r changes. Moreover, considering both criteria is an attractive alternative for

evaluating the suitability of schedules (Wu and Storer, 1994).

 Apart from the study on predictable scheduling on the single machine, Mehta and

Uzsoy (1998) also analyse the job shop scheduling problem subject to machine

breakdowns with the objective of minimising deviations between the realised

schedule and the predicted schedule, while trying to keep the maximum lateness

below a certain level. They presented a predictable scheduling approach for a job shop

11

with random machine breakdowns. The results indicated that predictable scheduling

provides significant improvement in predictability at the expense of little degradation

in realised schedule Lmax. In both studies, they conclude that, the heuristics OSMH

and LPH(π=0,75) are the best one in terms of predictability without a little

degregation in realised schedule. LPH(π) heuristics is a Linear Programming based

heuristic which inserts additional idle times to predictive schedule. However, the

amount of inserted additional time is constrained by controlling the realised schedule

Lmax degradation using the value π. The authors used the surrogate measures of

predictability and then optimise the objective function using these surrogate measures

without yielding an unacceptable level of performance measure. Here, the objective

is, to permit some decrease in the performance in order to increase the predictability

of the schedule. They observe that similar results for both single machine and job

shop are obtained. This means that studying single machine model provides insights

that can be used to extend the approach to more complex, multi machine

environments. Their results indicate that OSMH and LPH(0,75) are the best in terms

of predictability.

 Sabuncuoglu and Bayiz (2000) study the reactive scheduling problems and

measure the effect of shop floor configurations (system size and load allocation) on

the performance of scheduling methods (off-line and on-line scheduling methods)

under the performance criteria makespan and mean tardiness. In the first part of their

study, they compare the beam search based algorithm for the job shop problem with

other well known algorithms including problems generated by Lawrance (1984),

Adams (1988), and Applegate and Cook (1990). In their second part of the study, they

study on the different reactive policies such as partial scheduling versus generating

the full schedule, etc. Their computational experiments indicated that beam search is

very promising heuristic for the job shop problems. Also, they conclude that partial

scheduling with optimisation based scheduling algorithms can be a very practical tool

in a highly dynamic and stochastic environment.

12

2.3 Reactive Scheduling in the FMS Environment

 Akturk and Gorgulu (1997) consider the rescheduling of the modified flow shop

in case of a machine breakdown. A modified flow shop falls between a job shop and a

flow shop where parts can enter the system at one of the several machines, can

progress through by a limited number of paths and can exit the system at one of the

several machines. The scheduling strategy assumes that a preschedule has been

constructed and followed until a single machine breakdown, which is not known

priori, occurs. Then, they reschedule to match up with the preschedule at some point

in the future. The rescheduling attempt begins with the determination of a match-up

point on each machine so that time interval to be scheduled is determined. The authors

approach to this problem heuristically by decomposing the rescheduling problem into

three parts that are the scheduling of down machine, scheduling of the machines in the

upward direction of the down machine, scheduling of the ones in the downward

direction of down machine. If the resulting schedule is not feasible, then the match-up

point is changed to enlarge the set of jobs that are rescheduled.

 In another study, Sabuncuoglu and Karabuk (1999) investigate the scheduling

rescheduling problem in an FMS environment. They begin by proposing a filtered

beam search algorithm for the FMS environment. Then, the authors propose several

reactive scheduling policies in response to machine breakdowns and processing time

variations. Both off-line and on-line scheduling algorithms are compared under

various experimental conditions. The performance of the system is measured for mean

tardiness and makespan criteria. Their computational experiments indicate that the

beam search based off-line algorithm performs better than on-line machine and AGV

scheduling rules under all experimental conditions for the makespan, mean flow and

mean tardiness criteria. Their experimental results also indicate that it is not always

beneficial to reschedule the operations in response to every unexpected event. They

conclude that the periodic response with an appropriate period length can be effective

to cope with the interruptions.

13

2.4 Observations

 As discussed in the previous section, scheduling systems consist of two key

elements: schedule generation and reaction to events. We know from the previous

experiences that the reactive part is very important for the successful implementation

of scheduling systems. However, the published literature deals mostly with the

schedule generation part. In the previous section we analysed the reactive scheduling

literature. In order to provide an organised presentation of those studies on reactive

studies, we use a classification scheme similar to Sabuncuoglu and Bayiz (2000).

According to this classification schema, there are three main factors: environment,

schedule generation and implementation, which define the characteristics of the

problems. According to the environment factor, there are shop flor type, job arrival

information and source of stochasticity attributes. Under schedule generation, we

specify the method to generate schedules and the objective function of the problem.

Finally, by the implementation factor, we define when and how the reactive

scheduling policies are employed (see Table 2.1). From the literature review, we can

make the following observations:

- As the number of reaction increases the system nervousness also increases

(Sabuncuoglu and Bayiz, 2000).

- After a certain number of rescheduling, the improvement in the system performance

is insignificant (Church and Uzsoy, 1992).

- The insertion of idle times in a controlled manner provides significant improvement

in predictability at the expense of some degradation in realised schedule. Thus,

predictable schedules are more robust to errors where machine breakdowns occur

(Uzsoy and Mehta, 1999).

 In the scheduling literature, most of the studies deal with the scheduling

generation techniques. We do not know how the reactive scheduling performances are

affected by the system stochasticity level, (machine breakdown, process time

variation) in a dynamic environment. Also, we do not know whether all conclusions

14

drawn from the static case are valid for the dynamic case. In this thesis, we consider

scheduling problems in a dynamic flexible manufacturing environment. Specifically,

we develop reactive scheduling policies and test their performances in dynamic and

stochastic environment. We also compare their performance with on-line and off-line

scheduling schemes.

15

Table 2.1. Classification of the papers in reactive scheduling
ENVIRONMENT SCHEDULE GENERATION IMPLEMENTATION

Author Shop Floor Job Arrival Stochacticity Method Objective Function When How

Church&Uzsoy Single Dynamic No EDD& Lmax Periodic&Event Full New
(1992) Machine EDS Driven(urgent jobs) Schedule

Daniels&Kouvelis Single Static Proc. Time var. Branch and Robust
(1995) Machine (no m/c breakdown Bound Schedule - -

O’Donovan, Uzsoy Single Dynamic Machine Heuristics Mean Event Driven Full New
& McKay(1997) Machine Breakdown Tardiness (MB) Schedule
Sabuncuoglu Job Static Machine Filtered Beam Makespan Event Driven Full, Partial

& Bayiz (2000) Shop Breakdown Search Mean Tardiness Periodic Schedule
Sabuncuoglu& FMS Static Machine Breakdown Filtered Beam Makespan& Mean Event Driven Full, Partial
Karabuk (1999) Proc. Time Var. Search Tardiness Schedule

Uzsoy & Job Dynamic Machine Shifting Bottleneck Lmax Event Driven Full New
Mehta (1998) Shop Breakdown & Heuristics (MB) Schedule

Uzsoy & Single Dynamic Machine Carlier’s Lmax Event Driven Full New
Mehta (1999) Machine Breakdown Heuristics (MB) Schedule
Wu &Storer Single Static Machine Carlier’s Makespan& Event Driven Full New

(1992) Machine Breakdown Heuristic Expected Delay (MB) Schedule
Wu & Storer Job Static Machine Genetic Makespan& Event Driven Full New

(1994) Shop Breakdown Algorithm Expected Delay (MB) Schedule

16

CHAPTER 3

SCHEDULING SYSTEM

 In this chapter, we discuss the scheduling system developed for FMS. The

proposed system has two major components: 1) Schedule generation module and 2)

simulation environment. The schedule generation module consists of both off-line and

on-line schedule generation mechanisms. The off-line algorithm is based on the beam

search methodology, which generates partial schedules as well as full schedules. The

simulation module is developed to create a manufacturing environment so that,

schedules can be evaluated in a simulated environment. In the following paragraphs,

we will give the background information on simulation based scheduling systems. We

will then describe the detailed structure of the proposed scheduling system.

3.1 BACKGROUND INFORMATION ABOUT SIMULATION AND

SCHEDULING

 From current FMS practice, simulation is seen as one of the most frequently used

OR tool. The increased use of simulation is due to the growing need for solving

complex problems in manufacturing. Especially, the ability of simulation models to

capture necessary details of dynamic and complex systems makes simulation the most

used OR tool.

17

 Simulation applications can be classified into stand-alone applications and hybrid

applications. In the stand-alone application case, which accounts for the majority of

simulation applications, a simulation model is used as a test-bed for evaluating

different design alternatives or operational policies without disturbing the actual

system. In a typical situation, long and multiple runs are taken from the simulation

model and its results are analysed by statistical methods. This can be called as an off-

line use of simulation because there is no real time communication between the

simulation model and the system elements. In general, the off-line use of simulation

gives an overall picture about the system being simulated. In the second case, there

are hybrid applications of simulation with other scientific tools such as expert systems

(ES)/artificial intelligence (AI) and analytical techniques. These hybrid systems are

usually developed for real time operation and control of the manufacturing systems.

The simulation model discussed in this chapter has also several on-line capabilities.

Hybrid model combines the powers of its constituting elements to solve much larger

and complex problems with reduced computational efforts.

 Scheduling problems become complicated by the dynamic and stochastic nature of

manufacturing environment in which schedules must also be updated frequently over

time. Traditional approaches (scheduling algorithms and math programming) may not

be sufficient in dealing with these problems. In this chapter, such a hybrid approach in

which both simulation and analytical model utilised, is described.

 It can be observed that the majority of simulation applications to scheduling

problems are in the form of testing on-line scheduling policies. Simulation of off-line

scheduling methods has not received considerable attention from the literature. This is

partly due to difficulty in applying simulation to the off-line generated schedules in a

dynamic and stochastic manufacturing environment. Here, we describe a simulation

model that implements both on-line and off-line scheduling methods. The proposed

model also enables to compare a wide range of reactive scheduling policies under

different environmental conditions.

18

3.2 THE ELEMENTS OF PROPOSED SCHEDULING SYSTEM

 The simulation-based scheduling system consists of three major components:

scheduler (scheduling module), simulation model, and controller (Figure 3.1).

Scheduler is responsible for making all scheduling decisions. Given the system status

and other relevant data (i.e. on-line, off-line) it generates a partial or complete

schedule. The scheduling module is based on filtered beam-search technique that

generates schedules by considering machines, AGVs, finite buffer capacities,

sequence and routing flexibilites, etc. A deadlock resolution mechanism is also

embedded in the algorithm.

 Simulation model uses two sets of input data: system related data and values of

environmental parameters. System related data consist of physical description of the

manufacturing system (i.e. number of machines, number and speed of AGVs). Arrival

rate of jobs, parameters of stochastic events (i.e. machine breakdown rate), part types,

machine and part flexibilities constitute the environmental parameters. In the

simulation model, machining subsystem, movement of AGVs and in-process storage

capacity are represented in detail. The main task of the simulation model is to

implement the scheduling decisions which are made by the scheduler. When an on-

line scheduling policy is implemented, a resource triggers the controller upon

completing a task which invokes the scheduler. The scheduler makes a decision by

applying some scheduling rules and passes the final decision to the controller. Then

the controller sends this schedule to the simulation model for execution.

 The control module examines the state of the system at every discrete event that

occurs in the simulation model and provides appropriate course of action to be

executed by the simulation model. The control module has the following tasks: Keep

up with the machine and AGV sequence in off-line mode, avoid and resolve deadlock

19

Simulation model

• Operational Model of the Algortihm
• Implement Machine and AGV Schedule Decisions

(M/C Sequence, AGV Sequence)

System
Status

Report

Controller
• Deadlock Resolution
• Machine Idleness Check
• Invoke Scheduler

Scheduler
• When to schedule (PERIOD, ARRIVAL, RATIO)
• How to schedule (Full, Partial)
• Off-line (Beam Search) vs. On-line Schedule (Dispatch)

Figure 3.1. A simulation based scheduling system.

System
Status

Report
Schedules

Send schedule after running Scheduler

Modify Schedule

no

yes

New schedule?

20

situations, implement scheduling policies.

 The objective in simulating an off-line schedule is to observe its results in a

stochastic and dynamic environment. However, it is not easy to follow the exact start

and completion times imposed by the off-line schedule in a dynamic and stochastic

environment. When this is not possible, machine processing sequences and AGV

move sequences are tried to be followed as close as possible to the original schedule.

In most of the manufacturing systems, in-storage capacity is limited. Hence, there is

always a possibility for blocking (and locking) in the system due to finite capacities.

This necessitates the use of effective control policies to avoid blocking of material

movement in the system.

 As the third task, the controller is responsible for implementation of scheduling

policies by considering the environmental conditions over time. In order to

accomplish this, the controller must either be supplied with the appropriate control

policy or must simulate alternative policies and choose one according to the

simulation results. The first case is encountered in off-line use of simulation, whereas

the second stands for on-line use. In the second case, simulation is also used to

evaluate different policies at decision points. This method has the advantage of being

more adaptive to the dynamically changing manufacturing environment.

 The proposed simulation based system is coded using a general purpose

programming language (i.e., C language) and implemented in unix environment.

From modeling point of view, simulation languages provide a higher level of

abstraction to build a model. Although this helps in constructing the model easily and

quickly, it also brings restriction. In most cases the control logic of the simulation

model can not be implemented with the routines supplied by the simulation package.

This is the most crucial part of a simulation model because simulation is mostly used

to evaluate different control policies. From implementation point of view, general

purpose languages produce faster and compact executable codes than simulation

languages. To give a specific example, the simulation language SIMAN produces at

least 1300Kbytes of executable code. On the other hand, our proposed system

21

contains approximately 7000 lines of computer code (including all scheduling

algorithms) and the size of the executable, when compiled using the C complier with

the optimization flag of the compiler set, is 200 Kbytes.

3.3 SCHEDULE GENERATION MODULE

 In the literature the solution approaches for the scheduling problems can be

classified in two headings: exact solution methods and heuristic procedures. The exact

solution approaches formulate the problem as an optimisation problem and then solve

it using an exact algorithm. Unfortunately, inherent intractability of scheduling

problems make heuristic procedures attractive alternatives. The scheduling algorithm

proposed in this paper, is a heuristic based on the filtered beam search technique. This

search method is an approximate branch and bound method in which the solution

space is explored for the best solution by heuristics that examine a certain number of

promising paths, permanently pruning the rest. Since a large part of the tree is pruned

off to obtain a solution, its running time is polynomial in the size of the problems.

(Sabuncuoglu and Karabuk, 1998; Sabuncuoglu and Bayiz, 1999).

 The solution space is represented as a decision tree where each node corresponds

to a scheduling decision to be made and each unique path from the root node to any

particular node defines a partial solution associated with that node. Leaf node at the

end of the tree specifies complete solutions. In the proposed method, the search tree is

constructed in such a way that various system resources, their capacities and

flexibilities are taken in to account at each layer.

 In the filtered beam search, only a certain number of nodes (filterwidth) are

sprouted, others are filtered out using a local evaluation function (can also be called

one-step priority evaluation function). These remaining nodes are then evaluated by a

global evaluation function (can also be called total cost evaluation function) and the

ones found most promising are added to the partial solution. This procedure is

repeated on a certain number of parallel paths (beamwidth). Hence, the number of

22

solutions saved at any level of the tree is equal to the size of beamwidth. In contrast to

global evaluation function, the local evaluation function typically has a more local

view (Ow, Morton, 1988). Thus, the local evaluation function is quick but may

discard good solutions. On the other hand, global evaluation function is more accurate

but computationally more expensive. The values of filterwidth and beamwidth are

usually determined empirically. In our study, we used the filterwidth of 5 and the

beamwidth of 3. Other algorithmic details can be found in Sabuncuoglu and Karabuk

(1998 and 1999).

3.4 SYSTEM CONSIDERATIONS AND EXPERIMENTAL

CONDITIONS

 A classical FMS is used in this study. The FMS environment we study consist of

six machines each with buffer capacity, and one load/unload (L/U) station. Parts are

transferred by three AGV’s in the system. Parts enter and leave the system through the

L/U station. This station is also used as a central buffer area when blocking occurs in

the system. Five jobs are assumed to be ready at the L/U station at time zero. Also,

jobs are arrived to the L/U station exponentially with mean 55. Each job has either 5

or 6 operations with equal probability and each operation is assigned to a different

machine. Hence machine loads are kept nearly equal. Operation times are drawn from

a 2-Erlang distribution with mean 55.

 The performance of the proposed algorithm is measured under various operating

conditions with the following experimental factors: 1) buffer capacity (Q), 2)

sequence flexibility (SF), 3) routing flexibility (RF), 4) tardiness factor (TF), 5)

process time variation (PV), 6) machine breakdown level (e). Among these factors

buffer level, sequence flexibility, routing flexibility, and tardiness factor are called

internal factors. The other factors (process time variation and machine breakdown

level) are called external factors. For each of the above factors two levels (low and

high) are considered in the experiments. The low and high levels for internal factors

23

are given in Table 3.1. The queue capacity of the machines is set to 10 and 100,

corresponding to finite and infinite values.

 Table 3.1. Internal factors and their levels

 Factor Low High

 Queue Capacity (Q)

 Routing Flexibility (RF)

 Sequence Flexibility (SF)

 Tardiness Factor (TF)

 10

 1

 0

 0.75-0.85

 100

 2

 1

 0.75-0.85

Routing flexibility (RF) is defined as the average number of machines on which a

particular operation can be processed. The value is set to 1 and 2 for low and high

levels of this factor, respectively. We assume that the first assigned machine is the

ideal machine with the least processing time. The processing time on the alternative

machine is computed by adding a random number to the processing time of the

operation on the ideal machine. This random number comes from a uniform

distribution with a mean of half the processing time of the operation on the ideal

machine.

 Sequence flexibility (SF) is an indicator of precedence relationships between

operations of the job. Specifically, operations of a job are viewed as nodes on an

acyclic graph. The density of precedence arcs on this graph determines the degree of

sequence flexibility. Its equation is as follows:

 SFM = 1.0 – (2*all precedence arcs)/(n*(n-1)),

 where n is the number of operations. The SFM value ranges between 0.0 and 1.0.

The closer the SFM to 1.0, the higher the sequence flexibility a job posseses. In our

experiments, SFM is set to 0.0 and 1.0 for low and high sequence flexibilites.

24

 Due dates are based on total work content (TWK) rule. According to this rule, due

date of a job is determined by multiplying total work content of a job by a constant

multiplier so that the desired TF value is achieved. In our study, they are assigned

such that the tardiness factor (TF) is approximately fixed at 80%.

 Performance of the algorithm is tested for mean flowtime criteria. The local

evaluation function for the mean flowtime case is LWRK (least work remaining).

Also, we use LWRK rule for the on-line scheduling. The proposed scheduling system

(scheduling mechanism and simulation model) was initially developed by

Sabuncuoglu and Karabuk (1998, 1999). Later it is modified to obtain a working

version by this study.

3.5 RESCHEDULING POLICIES CONSIDERED IN THIS
STUDY

 We classify rescheduling policies in terms of two decisions: when to schedule and

how to schedule. In the former case, we decide on scheduling points in time while in

the later case we decide how to schedule the system at these time points. In other

words, when to schedule determines the time between two consecutive scheduling

points, while how to schedule determines a way of generating a feasible schedule. In

this context, we call full scheduling when all of the jobs available are to be scheduled.

We call partial scheduling if a subset of available jobs is to be scheduled.

 In terms of when to schedule, we can identify three policies: fixed sequencing,

periodic review, continuous review. In the fixed sequencing approach, a schedule is

generated only once at the beginning of the scheduling period, and it is not later

updated other than simple time-shifting operations in the Gannt chart. It is assumed

that the system recovers from the negative effects of interruptions (breakdowns, new

job arrivals, due date changes, etc.) in the system by itself (i.e., we assume that there

is enough slack in the system that it can cope with the negative impacts of unexpected

events).

25

 According to the periodic review policy, the system is monitored periodically and

rescheduling is invoked at the beginning of time points. As discussed in Sabuncuoglu

and Karabuk (1999), the periodic policy can be implemented in two alternative ways:

1) Fixed time interval and 2) Variable time interval. According to the fixed time

interval method, the review periods are equally spaced points in time (i.e., at the

beginning of every shift, day, week, etc.). According to the variable time interval

method, time between two scheduling points is not constant, but rather depends on the

percentages of jobs processed or total processing time realised on all machines in the

system (i.e., rescheduling is triggered when the cumulative processing time realised

on machines exceeds a certain limit). Thus, variable time interval method is more

responsive to the state of the system (and the current production rate) than the fixed

time interval method.

 In continuous review, the system is monitored continuously and rescheduling is

triggered in response to changes in the system (new job arrivals and/or machine

breakdowns). In the literature, this policy is also called event-driven scheduling policy

(Ovacik and Uzsoy, 1992). This policy can be implemented to react to certain number

of arrivals or machine breakdowns rather than responding to every arrival or

breakdown.

 These three policies are listed in Table 3.1. PERIOD corresponds to the periodic

review policy. Very large values of PERIOD correspond to the fixed sequencing

policy. RATIO implements the variable time increment method in such way that

rescheduling is triggered when determined percentage of the scheduled jobs are

processed in the system. ARRIVAL implements the continuous review policy.

26

Table 3.2. When to reschedule policy.

Name of the Method Policy

PERIOD -Periodic review with fixed time interval.

- Fixed sequencing.

RATIO -Periodic review with variable time interval.

ARRIVAL - Continuous review.

27

CHAPTER 4

COMPARISON OF RESCHEDULING POLICIES

 In this chapter, we present the results of simulation experiments conducted to

compare three scheduling schemes: PERIOD, RATIO, and ARRIVAL. In Section 4.1,

we give a brief summary of the pilot experiments to set values of some parameters. In

Section 4.2, we compare three scheduling policies with dynamic job arrivals (i.e., in a

dynamic environment). The other factors, machine breakdowns and processing time

variations (i.e, stochastic environment) are considered in Section 4.3.

4.1 PILOT EXPERIMENTS

 In our study, we are mainly interested to see the effects of external factors such as

dynamic job arrivals, process time variation, and machine breakdowns on scheduling

policies and schedule generation schemes (off-line and on-line). In order to keep the

computational efforts at a reasonable level, we conduct some pilot experiments to set

the values of some internal factors (i.e, queue capacity, sequence flexibility, and

routing flexibility).

 First, we simulate the system with two different initial job populations: 5 and 25.

As can be seen in Figure 4.1, size of initial job population does not seem to affect the

long term performance of the system because the difference between initial job

populations is insignificant and the system reaches steady state at nearly the same

times, even in the dispatch rule case (i.e., using LWRK rule -least work remaining).

Thus we, begin the simulation with 5 jobs.

28

a) Reschedule with the period length 200 of Beam Search b) Dispatch rule

Figure 4.1. Comparison of mean flowtimes for two different initial job populations for high SF and RF.

 Second, we test different buffer capacities. In our pilot runs, we have observed

that the system sometimes experiences a deadlock situation and spends a considerable

amount of time to solve this problem when the buffer capacity is less than 10. Hence,

we set the finite buffer capacity to 10 to avoid excessive amount of computation

times. We set the buffer capacity to 100 to represent very large buffer capacity (i.e.,

the unlimited or infinite buffer capacity level). We test these two buffer sizes using

scheduling policies ARRIVAL_1 (A_1), PERIOD_200 (P_200), RATIO_100

(R_100), and the LWRK dispatch rule (See the details of the results in Table 4.1, and

Table 4.10 in Appendix). Here A_1 refers to the ARRIVAL policy with its parameter

1, schedule at every arrival. P_200 refers to the PERIODIC policy with period length

of 200, and finally R_100 refers to the RATIO policy with its parameter 100, schedule

the jobs when all the jobs scheduled previously are processed. As seen in Figure 4.2,

the mean flowtime performance of the system is only slightly improved when we

make the buffer capacity too large (i.e, unlimited buffer capacity). This is seen both in

the off-line (beam search) algorithm and on-line dispatching rule cases. Hence, we

decided to continue with the buffer size 10 in the rest of experiments.

29

 a) A_1 for low SF and RF b) A_1 for high SF and RF

 c) P_200 for low SF and RF d) P_200 for high SF and RF

 e.) R_100 for low SF and RF f.) R_100 for high SF and RF.

 g) Dispatch for low SF and RF h) Dispatch for high SF and RF

Figure 4.2. Comparison of limited and unlimited queue capacities for different scheduling policies.

30

 We also examine the effects of sequence flexibility and routing flexibility.

Initially, we considered four cases: 1) high sequence flexibility and high routing

flexibility, 2) high sequence flexibility and low routing flexibility, 3) low sequence

flexibility and high routing flexibility, and 4) low sequence flexibility and low routing

flexibility. To save computational time, we take the pilot runs at only the two levels:

F-HIGH (routing flexibility is high and sequence flexibility is high) and F-LOW

(routing flexibility is low and sequence flexibility is low). As can be seen in Figure

4.3, the performance of the system is substantially affected by the level of flexibilities

(this can also be seen in Table 4.2 in Appendix). For that reason, we continue with

using both the low and high levels of flexibilities (i.e., F-LOW, and F-HIGH) in the

rest of experiments.

 a) A_1 b) P_200

 c) R_100 d) Dispatch

Figure 4.3. Comparison of flexibilites for different scheduling policies.

31

 During the pilot runs, we have also noted that the performance of the system is

improved as the scheduling frequency increases (See Table 4.3 in Appendix). For

example, RATIO_25, which has a higher scheduling frequency (more frequent

update) than RATIO_100 yields better performance. Also, ARRIVAL_1 has a better

performance than ARRIVAL_5. Similarly, PERIOD_200 yields a better performance

than PERIOD_800 (Figure 4.4). This finding, in a dynamic environment, is consistent

with the results of the previous studies obtained in a static environment (Sabuncuoglu

and Karabuk, 1999; Sabuncuoglu and Bayiz, 2000).

 a) R ATIO policy b) PERIODIC policy

 c) ARRIVAL policy

 Figure 4.4. Comparison of different scheduling frequencies for F-LOW.

 As a result, in the rest of our study, we set queue capacity to 10, tardiness

factor between (0.75 - 0.85). Also, we combine the two flexibility levels and define

only F-HIGH and F-LOW.

32

4.2 COMPARISON OF SCHEDULING POLICIES IN A
DYNAMIC ENVIRONMENT

 In this section, we analyse the scheduling system in a dynamic environment (i.e.,

dynamic job arrivals). As mentioned earlier, we consider two types of scheduling

decisions: how to schedule and when to schedule. We use three policies (ARRIVAL,

PERIODIC, and RATIO) for when to schedule, and the two policies (full scheduling

and partial scheduling) for how to schedule. We will start with the how to schedule

policies.

4.2.1. HOW TO SCHEDULE POLICIES

 The feature of our beam search algorithm allows us to obtain partial schedules

since it generates the schedules in the forward direction. In general, the length of a

partial schedule can be defined either by in terms of clock time or percentage of the

total jobs or operations to be scheduled. In this study, we use the latter approach (i.e.,

a certain percentage of the jobs is scheduled at each scheduling point). Thus, we

identify two cases: 1) full scheduling (corresponds to 100%), and 2) partial scheduling

(corresponds to 50%).

 The results of the simulation experiments are given in Table 4.2 in Appendix. In

Figure 4.5, the effect of partial scheduling is displayed for the mean flowtime

criterion. As expected, full scheduling (100% job scheduled) yields better

performance than partial scheduling (50% job rescheduled). This is observed for each

when to schedule policy. But notice that, it requires considerably higher

computational time compared to partial scheduling.

33

 a) P_200, F-LOW. b) P_200, F-LOW

 c) P_200, F-HIGH d) P_200, F-HIGH.

 e) A_1, F-LOW f) A_1, F-HIGH.

 Figure 4.5. Comparison of how to schedule policies.

34

 g) A_1, F-HIGH. h) A_1, F-HIGH.

 i) R_100, F-LOW. j) R_100, F-LOW.

 k) R_100, F-HIGH. l) R_100, F-HIGH.

Figure 4.5. Comparison of how to schedule policies (Cont’d.).

35

 We further investigate the difference between partial scheduling and full

scheduling at various scheduling frequencies (See Table 4.6 in Appendix). Scheduling

frequencies are adjusted accordingly for the ARRIVAL policy. In other words, the

parameters of the PERIODIC and RATIO policies are adjusted according to the

ARRIVAL policy. For that reason, A_x is displayed in the horizontal axis in Figure

4.6.

 In general, we observe that the ARRIVAL policy is more affected from

scheduling frequency than the RATIO and PERIODIC policies, since it displays the

higher envelope in the curves. In our experiments, we could not compare the RATIO

policy for the scheduling frequency more than A_3. Because even if we process %100

of the jobs scheduled at the previous scheduling point (i.e., R_100), the scheduling

interval can not be greater 180. This means that we can not apply the RATIO policy,

which is equivalent to the PERIOD policy 200 or above. For that reason, under the

current experimental settings, RATIO is implemented up to the scheduling frequency

corresponds to A_3.

 a) F-HIGH b) F-LOW

Figure 4.6. Differences between full and partial schedules for different scheduling frequencies.

36

 In our experiments, we also study the affect of scheduling frequencies on the

system performance at two different flexibility levels for the ARRIVAL and

PERIODIC policies (Figure 4.7). The RATIO policy is not included in the figures due

to the reason started before. The results of the simulation experiments indicate that, as

the scheduling frequency decreases, the differences between F-HIGH and F-LOW

decrease for partial scheduling (Figure 4.7.c, 4.7.d), whereas it is nearly constant for

the full scheduling scheme (Figure 4.7.a, 4.7.b). We also observe that for scheduling

frequencies lower than A_12, both F-HIGH and F-LOW show nearly the same

performances (Figure 4.7.b, 4.7.d). In our opinion, this is due to the fact that, the

search space is much smaller in partial scheduling (as compared to full scheduling)

and hence, the algorithm can not get enough opportunities to utilise the flexibility.

 We also compare simple dispatch rules with the beam search algorithm for

different frequency levels for both full and partial scheduling (Figure 4.7). As can be

seen in the Figures 4.7.a and b, the beam search algorithm (with full schedule) yields

better performance than the dispatch rule, when the scheduling frequency is more than

A_9 (i.e., A_1, and A_6) and the flexibility is low. However, when the partial

scheduling is implemented, the algorithm performs better than the simple dispatch

rule for the scheduling frequency more than A_3 and the flexibility is low. For the

high flexibility case, dispatch rule always performs better than the beam search

algorithm when the algorithm is implemented with partial schedule. For the full

schedule case, the ARRIVAL policy performs better than the dispatch rule for only

A_1 and A_3 scheduling frequencies (Figure 4.7.a). But the PERIODIC scheduling

policy always yields worse performance than the dispatch rule.

37

 a) ARRIVAL b) ARRIVAL

 c) PERIODIC d) PERIODIC.

 Figure 4.7. Comparison of flexibilities for full and partial schedules.

4.2.2. WHEN TO SCHEDULE POLICIES

 As mentioned earlier the , when to schedule decision determines on rescheduling

points in time. (i.e., the time between two reschedule points). According to this policy

the jobs are scheduled either at fixed time intervals or variable time intervals. Recall

that PERIOD is the fixed time interval method whereas ARRIVAL and RATIO are

variable time interval methods.

38

 These three methods are compared at various scheduling frequencies. Again the

scheduling system is simulated for 1600 jobs. In order to compare the policies on

equal basis, we adjust their parameters in such a way that each when to schedule

policy has approximately the same scheduling frequencies (i.e., number of scheduling

points are approximately equal). Specifically, the parameter of ARRIVAL is first set

and then the parameters of the RATIO and PERIOD policies are adjusted accordingly.

The same type of adjustment is also made for partial scheduling (H_50). The details

of the results are given in Tables 4.3 and 4.4 in Appendix.

 As seen in Figures 4.8, the RATIO policy is generally better than ARRIVAL and

PERIOD. We also observe that the differences between scheduling policies are

minimum when the flexibility is low (i.e., F-LOW) and the frequency of scheduling is

very high (i.e., A_1 case). This is due to the fact that scheduling policies can not find

enough opportunities to improve the system performance when flexibility is LOW.

Also, when the scheduling decisions are made so frequently (i.e., A_1 case), the

scheduling policies can not show themselves. Because, in the absence of breakdowns

and process time variation, the policy respond to nearly every arrival or departure.

Hence, they do not display different performances. Note that this observation is valid

both in full and partial scheduling.

 The better performance of the RATIO policy can be attributed to the fact that it is

somehow related to the production rate (output process of the system). Note that this

policy relies on the production capability as well as demand (or arrival) information.

 The performance of the PERIODIC and ARRIVAL policies are quite mixed. In

general, ARRIVAL policy is better when used with full scheduling whereas

PERIODIC is better when the partial scheduling is implemented.

 In order to understand this mixed behaviour, we further run the simulation

experiments for these two policies at various values of partial scheduling levels. The

results are summarised in Figure 4.9 and Table 4.7. As can also be seen in Figure 4.9,

39

a) Partial Schedule at low flexibility b) Partial Schedule at low flexibility

c) Partial Schedule at high flexibility d) Partial Schedule at high flexibility

e) Full Schedule at low flexibility f) Full Schedule at low flexibility

g) Full Schedule at high flexibility h) Full Schedule at high flexibility

Figure 4.8. Comparison of when to schedule policies for partial and full schedules.

40

the PERIODIC policy is in fact better than the ARRIVAL policy as the partial

scheduling level is low whereas, the ARRIVAL policy becomes better when the

partial scheduling level increases and gets closer to full scheduling. We also observe

that ARRIVAL policy is more sensitive to partial scheduling as compared to the

PERIODIC policy. Notice that crossover point moves (shifts) to the left when the

scheduling frequency is high. Because the difference between PERIODIC and

ARRIVAL decrease when scheduling frequency increases. Moreover, rescheduling

interval is variable in the ARRIVAL policy (a long rescheduling interval can be

followed by a shorter interval or a longer interval) as compared to fixed scheduling

interval in PERIODIC policy.

 When the scheduling interval is too long the system can process all the jobs

scheduled by the low partial schedule, and waits idle. As compared to fixed

scheduling interval of the PERIODIC policy, when the scheduling interval is too long

in the ARRIVAL policy, we insert some unnecessary idleness in the system since the

machines can process all the jobs scheduled according to partial scheduling for the

ARRIVAL policy. For that reason the ARRIVAL policy display inferior performance

when the partial scheduling level is low.

 In short, we can conclude that the RATIO policy, which relies on the output

process, is better than the ARRIVAL policy (which relies on the input process) and

the PERIODIC policy (which does rely neither on input nor output process). Our

results also indicate that the ARRIVAL policy performs better than the PERIODIC

policy with full scheduling.

 We also test whether the difference of the performances between the scheduling

policies is significant or not, for the A_3 case (Figure 4.8.f and h). We first compare

the on-line scheduling scheme with the off-line scheduling scheme (specifically with

the RATIO policy with the dispatch rule). The results of the paired t-test reveal that it

significant for the high flexibility case in favour of the off-line scheduling algorithm

(Table 4.12). In low flexibility case we could not identify a significant difference

between the policies due to the result of one replication, which can extremely

41

different then other replications. This in turn creates a high variance in the confidence

interval estimation. We also tested the RATIO policy with the PERIODIC policy. The

same observations are made for the comparison of PERIOD and RATIO policies

(Table 4.13).

 a) F-HIGH b) F-LOW

 c) F-HIGH d) F-LOW

 Figure 4.9. Comparison of PERIODIC and ARRIVAL schedules for different Partial Schedules.

4.3) PROCESSING TIME VARIATION

 In a typical real manufacturing environment actual processing times of operations

may be different than the estimated processing times used in the scheduling process

due to changing machining conditions and other factors. This uncertainty of course

can degrade the performance of scheduling decisions as well as the performance of

42

the entire system. In this section, we will investigate the impact of processing time

variations (PV) on the scheduling decisions and the system performance.

 The estimated processing times used in the scheduling algorithm are still drawn

from a 2-Erlang distribution. Actual processing times differ from the estimates by a

certain amount when schedule is implemented via the simulation model. Specifically,

actual times are generated from a truncated normal distribution with mean equal to the

estimated processing time. During simulation experiments, the coefficient of variation

(CV) is 0.4.

 We run the simulation model for the three when to schedule (ARRIVAL,

PERIODIC and RATIO) policies and two how to schedule policies (partial scheduling

and full scheduling). Figure 4.10 (and Table 4.8 in the Appendix) presents the results

for the scheduling frequencies corresponding to A_3. The performances of policies

for without process time variation are quite mixed, so we display the results in Table

4.11. The following observations are made from the results:

 First, in the without process time variation case the performances of off-line

policies with full scheduling are better than simple dispatch rule for the scheduling

frequency A_3 (Figure 4.10.a and c). However, dispatching rule performs better than

the PERIODIC, ARRIVAL, and RATIO policies for partial scheduling. Note also

that, the simple dispatching rule performs better than the off-line algorithm for A_9

case. This means that the rules which are commonly used in practice are quite

effective in dynamic and stochastic environments.

 Second, as can be seen in Figure 4.10, the performance of scheduling methods and

the dispatch rule detoriates as PV increases. However, off-line algorithm is more

sensitive to process time variation than the simple dispatch rule. As seen in Figure

4.10.b, d, f, and h, the performance of the beam search algorithm detoriates more than

on-line algorithm as PV increases. For both partial and full scheduling the LWRK rule

performs better than the three policies at the scheduling frequencies A_3 and A_9.

Note also that, difference becomes larger when we decrease the scheduling frequency

from A_3 to A_9.

43

 Third, we observe that the performance of the system is better with the full

scheduling scheme compared to the partial scheduling scheme.

 Fourth, the PERIODIC policy performs better than the ARRIVAL policy in

process time variation case with partial scheduling. However, ARRIVAL policy

performs better than the PERIODIC policy in full schedule case. The RATIO policy

seems to be the best among the three policies. The same behavior was also observed

in the without processing time case.

 Fifth, the difference between partial and full scheduling decreases as PV increases

(Figure 4.11.e, f, g and, h). This is because of the fact that, full scheduling is more

affected by PV compared to partial scheduling (Figure 4.11.a, b, c and, d). Note that

this observation is more apparent for low flexibility.

44

 a. PV=0 b. PV=0.4

 c. PV=0 d. PV=0.4

 e. PV=0 f. PV=0.4

 g. PV=0 h. PV=0.4

Figure 4.10. Mean flowtimes for the ARRIVAL, PERIODIC, RATIO policies for PV=0 and PV=0.4.

45

 a) (PV=0.4) - (PV=0) b) (PV=0.4) - (PV=0)

 c) (PV=0.4) - (PV=0) d) (PV=0.4) - (PV=0)

e) (H_50) - (H_100) f) (H_50) - (H_100)

g) (H_50) - (H_100) h) (H_50) - (H_100)

Figure 4.11. Change of performance with PV and change of performance with partial schedule.

46

4.4. MACHINE BREAKDOWNS

 In this section, we examine the impact of machine breakdowns on the scheduling

policies. Machine breakdowns are modelled by the busy time approach (Law and

Kelton, 1991). With this approach a random uptime is generated from a busy time

distribution. The machine is considered as up, until its total accumulated busy

(processing) time reaches the end of this uptime. Then it fails for a random down

time, after which an uptime will again be generated. In our experiments the mean for

busy time is 180, while the mean for the down time is 20. The busy and down times

are drawn from a gamma distribution with shape parameter of 0.7. Thus, the systems

overall availability level is 90%, which gives the long run ratio of a machine busy

time to busy plus down time.

 The results are displayed in Figures 4.12 and Figure 4.13. As expected, machine

breakdown negatively affects the performances of scheduling policies (Figure 4.12).

Mean flowtime performance of the system deteoriates regardless of the level of

scheduling frequency, full vs. partial scheduling, and flexibility levels. We also

observe that the negative impact of machine breakdown is larger with full scheduling

than the partial scheduling. This may be due to the fact that more number of

operations in the schedule are affected by these breakdown events (Figure 4.13. a, b,

c, and d).

 Second, CPU time during the experiments increases approximately 10 times. This

is due to the fact that, when a machine breakdown occurs the algorithm spends more

time to find new machines for the affected jobs waiting in the queue in front of that

machine.

 Third, as compared to PV (with parameter 0.4), machine breakdown (with 90%

efficiency) has more negative effect on the system performance (Figure 4.10 and

4.12). This finding is consistent with the result found in static environment

(Sabuncuoglu and Bayiz, 2000).

47

 a) No breakdown b) Breakdown

 c) No breakdown d) Breakdown

 e) No breakdown f) Breakdown

 g) No breakdown h) Breakdown

Figure 4.12. Mean flowtimes of scheduling policies for no breakdown and breakdown cases.

48

a) Breakdown - No breakdown b) Breakdown - No breakdown

 c) Breakdown - No breakdown d) Breakdown - No breakdown

e) (H_50) - (H_100) f) (H_50) - (H_100)

g) (H_50) - (H_100) h) (H_50) - (H_100)

Figure 4.13. Change of performances with machine breakdown and with partial schedule.

49

 Fourth, difference between scheduling policies increases with machine

breakdowns (compared to no machine breakdown case) when partial schedule is

implemented.

 Fifth, the performances of the scheduling policies are significantly better with full

scheduling than partial scheduling in the no breakdown case. However, as we have

breakdowns, we observe an opposite behaviour of the scheduling policies.

Specifically, performance of the system gets better with partial scheduling (Figure

4.12). Only exception is observed with the scheduling policy ARRIVAL when the

flexibility is high (i.e., F-HIGH). Note that this observation is made for both the A_3,

and A_9 frequency levels. This counter intuitive result (deterioration in the

performance of the system with machine breakdowns) can be attributed to the fact that

the benefit of using full scheduling totally diminishes when there are machine

breakdowns (entire scheduling may be totally useless with machine breakdowns).

 Sixth, the PERIODIC policy performs better than the ARRIVAL policy in

breakdown case with partial scheduling. However, ARRIVAL policy performs better

than the PERIODIC policy in full schedule case. The only exception is A_3 and F-

LOW. The RATIO policy seems to be the best among the three policies. The same

behavior was also observed in no breakdown case.

 Seventh, the off-line algorithm is more sensitive to machine breakdowns than the

on-line dispatching rule. Specifically, the performance of the off-line schedule

detoriates more than the on-line schedules with breakdowns. For the full scheduling

case (in high flexibility) the algorithm with scheduling frequency A_3 performs better

than the dispatch when there is no machine breakdown (Figure 4.12.a). However, in

the breakdown case the dispatch rule performs better than all three scheduling

methods (Figure 4.12.b). For the scheduling frequency A_9, although the dispatching

performs better than the off-line scheduling for no machine breakdown case, the

difference becomes larger in machine breakdown case (Figure 4.12.e and f). Notice

that the results for the dispatching rule is not given for the low flexibility cases. We

could not be able to run the simulation model for the low flexibility case. In this case,

50

the system is saturated due to exponentially growing job populations. This means that,

when there is no flexibility in the system, the dispatch policy can not cope with the

adverse effect of machine breakdowns.

 Eventually, the differences between full and partial scheduling are nearly same for

all three policies when there is no machine breakdown. However, this difference is

getting significantly larger when there is breakdown (Figure 4.13.e, f, g and h).

51

CHAPTER 5

CONCLUSION

 In this paper three issues are addressed. In the first part, we briefly reviewed the

reactive scheduling literature and classified the existing studies. In the second part, we

modified the scheduling system proposed earlier (Sabuncuoglu and Karabuk, 1998) to

have it working in a dynamic and stochastic environment. In the final part we

compared different rescheduling policies.

 In the existing studies, the long run performances of the reactive policies are not

measured. Most of the studies analyzed the performance of the scheduling methods in

static and deterministic environments. In this paper, we studied long run performances

of scheduling methods in dynamic environment. The following conclusions are drawn

from our study:

 First, as the frequency of rescheduling increases the performance of the system

becomes better. Thus, system performance is directly proportional with reschedule

frequency.

 Second, although scheduling frequency has significant affect on system

performance, type of response is also important. Our results indicate that variable time

reschedule policy is better than fixed time rescheduling policy.

 Third, we tested partial rescheduling with full rescheduling. Our experiments

indicate that performance of the FMS system is affected with the level of partial

52

rescheduling. Full rescheduling performs better than partial rescheduling. On the other

hand, CPU times decreases. This conclusion is also consistent with the result drawn

by Sabuncuoglu and Bayiz (2000).

 Fourth, on-line scheduling (dispatch) rules are more robust to process time

variation and machine breakdowns then the off-line scheduling algorithm. The

dispatching rule not only performs better in stochastic environment but also spends

less CPU time compared to the off-line algorithm. As a result, it is much more

beneficial to use on-line scheduling schemes in dynamic and stochastic environments.

 For the future research, different efficiency level for the machine breakdowns can

be tested in the simulation experiments. Moreover, the effects of different duration of

mean machine up and down times for the same efficiency level can also be analyzed.

Also, different rescheduling methods can be investigated (i.e., adaptive rescheduling

policy) in stochastic and dynamic environment. The beam search algorithm can be

tested using different local and global evaluation functions. Finally, the simulation

experiments can be extended to cover other combinations of experimental factors (i.e.,

different machine load levels, AGV speeds, tardiness factor).

53

BIBLIOGRAPHY

[1] Akturk, S. and Gorgulu, E., “Match-Up Scheduling Under a Machine

Breakdown”, European Journal of Operational Research, (Vol. 12, 1997), pp 81-97.

[2] Carlier Jacques, "The One-Machine Sequencing Problem", European Journal of

Operational Research, (Vol.11,1982), pp 42-47.

[3] Church, L. and Uzsoy, R., “Analysis of Periodic and Event Driven Rescheduling

Policies in Dynamic Shops”, International Journal of Computer Integrated

Manufacturing, (Vol. 5, 1992), pp153-163.

[4] Daniels, R. and Kouvelis, P., “Robust Scheduling to Hedge Against Processing

Time Uncertainty in Single Stage Production”, Management Science, (Vol. 41, 1995),

pp.363-376.

[5] Kutanoglu, E. and Sabuncuoglu, I., “Job Shop Scheduling Under Dynamic and

Stochastic Manufacturing Environment”, Master Thesis, 1995, Bilkent University,

Department of Industrial Engineering.

[6] Law, A.M. and Kelton, W.D., Simulation Modelling and Analysis, 1991, McGraw-

Hill.

[7] Mehta, S. and Uzsoy, R., “Predictable Scheduling of a Single Machine Subject to

Breakdowns”, International Journal Computer Integrated Manufacturing, (Vol. 12,

1999), pp15-38.

54

[8] Mehta, S. and Uzsoy, R., “Predictable Scheduling of a Job Shop Subject to

Breakdowns”, IEEE Transactions on Robotics and Automation, Vol. 14, (1998), pp

365-378.

[9] O’Donovan, R. ,Uzsoy, R. and McKay, K., “Predictable Rescheduling of a Single

Machine with Machine Breakdowns and Sensitive Jobs”, Research Memorandum,

(97-8, 1997), Purdue University.

[10] Ovacik, I.M. and Uzsoy, R., “Analysis of Periodic and Event-Driven

Rescheduling Policies in Dynamic Shops“, International Journal of Computer

Integrated Manufacturing, (Vol 5, 1992), pp. 153-163.

[11] Ow, P.S. and Morton T., “Filtered Beam Search In Scheduling”, International

Journal of Production Research, (Vol 26, 1988), pp.35-62.

[12] Sabuncuoglu, I. and Bayiz, M., “Analysis of Reactive Scheduling Problems in a

Job Shop Environment”, European Journal of Operational Research, (126, 2000),

pp.567-586.

[13] Sabuncuoglu, I. and Bayiz, M., “Job Shop Scheduling with Beam Search”,

European Journal of Operational Research, (Vol. 118, 1999), pp.390-412.

[14] Sabuncuoglu, I., and Hommertzheim, L., “Dynamic Dispatching Algorithm for

Machines and Automated Guided Vehicles in a Flexible Manufacturing System”,

International Journal of Production Research, (Vol. 30, 1992), pp.1059-1079.

55

[15] Sabuncuoglu, I. and Karabuk, S., “A Beam Search Algorithm and Evaluation of

Scheduling Approach for Flexible Manufacturing Systems”, IIE Transactions, (Vol.

30, 1998), pp.179-191.

[16] Sabuncuoglu, I. and Karabuk, S., “Rescheduling Frequency in an FMS with

Uncertain Processing Times and Unreliable Machines”, Journal of Manufacturing

Systems, Volume 18, No. 4, (1999).

[17] Sabuncuoglu, I. and Toptal, A. , “Distributed Scheduling: A Review of Concepts

and Recent Applications”, Master Thesis, 1999, Bilkent University, Department of

Industrial Engineering.

[18] Svestka, A.J. and Abumaziar, R.J., “Rescheduling Job Shops Under Random

Disruptions”, International Journal of Production Research, (Vol. 35, 1997), pp.

2065-2082.

[19] Wu, L. and Storer, R., “Robustness Scheduling for Job Shop”, IIE Transactions,

(Vol. 26, 1994), pp32-41.

[20] Wu, R. and Storer, R., “One Machine Rescheduling Heuristics with Efficiency

and Stability as Criteria”, Computers Operations Research, (Vol. 20, 1992), pp.1-14.

56

 APPENDIX

57

Table 4.1. Outputs for limited and unlimited buffer capacities.

For Q=10
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 A_1 Low 200 11543 848 160 328.7 79 85
H_100 A_1 Low 400 23648 1043 311 1163.42 79 82
H_100 A_1 Low 600 35122 977 260 1414.43 78 82
H_100 A_1 Low 800 45482 1056 325 3015.05 80 85
H_100 A_1 Low 1000 55865 1175 426 4993.65 82 86
H_100 A_1 Low 1200 66621 1208 455 6301.68 82 85
H_100 A_1 Low 1400 77812 1180 428 7309.37 82 86
H_100 A_1 Low 1600 89156 1152 402 6876.58 82 86
H_100 A_1 Low 1800 101409 1157 404 7521.87 81 85

For Q=100
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 A_1 Low 100 6494 753 96 74.97 75 81
H_100 A_1 Low 200 11904 946 241 414.4 79 84
H_100 A_1 Low 400 23840 1201 457 15646.65 79 83
H_100 A_1 Low 600 35235 1152 422 2146.7 78 83
H_100 A_1 Low 800 45555 1220 481 3890.07 80 85
H_100 A_1 Low 1000 56202 1350 595 7544.27 82 86
H_100 A_1 Low 1200 66746 1382 620 8139.87 82 86
H_100 A_1 Low 1400 78110 1384 618 9834.17 82 86
H_100 A_1 Low 1600 89455 1368 601 10122 82 86
H_100 A_1 Low 1800 101466 1387 616 11498.8 81 85

For Q=10
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 A_1 High 100 6101 447 1 25.47 79 67
H_100 A_1 High 200 11330 568 51 232.93 85 73
H_100 A_1 High 400 22802 619 67 542.4 82 73
H_100 A_1 High 600 34981 627 73 912.88 82 72
H_100 A_1 High 800 45537 780 174 4044.53 85 77
H_100 A_1 High 1000 55367 899 258 6840.98 87 80
H_100 A_1 High 1200 66296 905 259 17318.12 87 79
H_100 A_1 High 1400 77400 879 238 8123.2 88 79
H_100 A_1 High 1600 88743 851 215 8241.27 87 79
H_100 A_1 High 1800 100933 825 199 8364.12 86 79

 Q = 100
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 A_1 High 100 6101 447 1 27.97 79 67
H_100 A_1 High 200 11330 568 51 227.38 85 73
H_100 A_1 High 400 22788 620 67 591.87 82 73
H_100 A_1 High 600 34974 629 72 984.67 82 71
H_100 A_1 High 800 45353 771 164 4030.13 85 76
H_100 A_1 High 1000 55266 848 210 5749.55 87 79
H_100 A_1 High 1200 66276 848 208 6484.93 87 79
H_100 A_1 High 1400 77265 832 194 6776.08 87 79
H_100 A_1 High 1600 88692 809 175 7001.75 87 79
H_100 A_1 High 1800 100924 786 163 7280.52 86 77

58

Table 4.1. Outputs for limited and unlimited buffer capacities (Cont'd).
Q=10

How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization
H_100 P_200 Low 200 11824 966 226 139.38 78 84
H_100 P_200 Low 400 23763 1156 385 440.37 79 81
H_100 P_200 Low 600 35076 1066 318 559.38 78 81
H_100 P_200 Low 800 45417 1146 389 955.13 80 83
H_100 P_200 Low 1000 55781 1230 459 1447.85 82 84
H_100 P_200 Low 1200 66704 1246 470 1792.3 82 84
H_100 P_200 Low 1400 77975 1231 451 2017.72 82 84
H_100 P_200 Low 1600 89548 1251 435 2163.67 82 84
Q=100
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 P_200 Low 200 11956 984 244 155.2 78 84
H_100 P_200 Low 400 23752 1187 418 482.48 79 82
H_100 P_200 Low 600 35192 1091 341 577.77 77 82
H_100 P_200 Low 800 45420 1173 414 1081.58 80 84
H_100 P_200 Low 1000 55700 1282 510 1761.07 82 85
H_100 P_200 Low 1200 66781 1300 523 2105.7 82 82
H_100 P_200 Low 1400 77824 1286 505 2388.7 82 85
H_100 P_200 Low 1600 89350 1260 479 2561.28 82 84

Q=10
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 P_200 High 200 11353 613 44 147.58 85 65
H_100 P_200 High 400 22982 637 45 271.13 82 64
H_100 P_200 High 600 34981 650 49 430.88 82 63
H_100 P_200 High 800 45142 769 125 1547.42 86 67
H_100 P_200 High 1000 54893 804 139 2008.55 88 70
H_100 P_200 High 1200 66362 786 125 2164.88 87 68
H_100 P_200 High 1400 77289 778 117 2369.65 88 68
H_100 P_200 High 1600 88679 762 105 2486.33 88 68

Q=100
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 P_200 High 200 11353 613 43 148.25 85 65
H_100 P_200 High 400 22980 636 45 321.42 82 63
H_100 P_200 High 600 35038 644 47 511.27 82 63
H_100 P_200 High 800 45132 762 122 1675.77 86 67
H_100 P_200 High 1000 54791 796 136 2127.55 88 69
H_100 P_200 High 1200 66415 772 119 2218.78 87 67
H_100 P_200 High 1400 77272 761 109 2399 87 68
H_100 P_200 High 1600 88698 745 98 2508.83 87 67

59

Table 4.1. Outputs for limited and unlimited buffer capacities (Cont'd).
Q=10

How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC.
Utilization

AGV Utilization

H_100 R_100 Low 200 13406 1814 1031 570.77 68 70
H_100 R_100 Low 400 25863 2476 1671 1904.98 71 71
H_100 R_100 Low 600 37843 2776 1964 3713.88 72 72
H_100 R_100 Low 800 48451 3014 2212 5990.17 75 74
H_100 R_100 Low 1000 59074 3377 2566 9328.05 77 75
H_100 R_100 Low 1200 70107 3630 2819 13538.93 77 76
H_100 R_100 Low 1400 81110 3735 2922 16132.22 78 77
H_100 R_100 Low 1600 92200 3813 2997 18856.43 79 77
Q=100

How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC.
Utilization

AGV Utilization

H_100 R_100 Low 200 13365 1830 1049 541.1 68 70
H_100 R_100 Low 400 25961 2487 1675 1801.62 71 70
H_100 R_100 Low 600 37610 2673 1867 3359.93 72 71
H_100 R_100 Low 800 48618 3006 2197 7597.8 74 73
H_100 R_100 Low 1000 59343 3349 2539 11730.62 76 75
H_100 R_100 Low 1200 70464 3639 2829 14548.67 77 75
H_100 R_100 Low 1400 81496 3801 2987 17887.85 78 76
H_100 R_100 Low 1600 93403 3944 3123 22614.93 78 76
Q=10

How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC.
Utilization

AGV Utilization

H_100 R_100 High 200 12079 1050 327 714.17 78 55
H_100 R_100 High 400 23819 1219 462 1694.1 79 57
H_100 R_100 High 600 36142 1278 502 2586.82 79 56
H_100 R_100 High 800 46882 1565 778 7376.13 82 58
H_100 R_100 High 1000 57513 1848 1057 13136.7 84 59
H_100 R_100 High 1200 67883 2047 1245 16894 85 60
H_100 R_100 High 1400 78688 2065 1260 19838.73 85 60
H_100 R_100 High 1600 89974 2067 1260 22475.12 86 61
Q=100

How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC.
Utilization

AGV Utilization

H_100 R_100 High 200 12079 1050 327 648.4 78 55
H_100 R_100 High 400 23873 1223 464 1532.3 78 56
H_100 R_100 High 600 36138 1287 512 2546.92 79 56
H_100 R_100 High 800 46836 1565 779 6320.38 82 59
H_100 R_100 High 1000 57244 1861 1065 11101.83 83 60
H_100 R_100 High 1200 67988 2057 1254 15739.18 85 61
H_100 R_100 High 1400 78695 2047 1245 18695.37 85 61
H_100 R_100 High 1600 90057 2049 1239 20555.52 86 61

60

Table 4.2. Comparison of H_100 and H_50 for F-LOW and F-HIGH
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization
H_50 P_200 Low 200 11911 1024 276 73.33 77 82
H_50 P_200 Low 400 23783 1257 474 213.62 79 81
H_50 P_200 Low 600 35241 1187 418 265.97 78 82
H_50 P_200 Low 800 45504 1243 471 454.58 80 84
H_50 P_200 Low 1000 56259 1362 578 816.85 82 85
H_50 P_200 Low 1200 66830 1402 611 966.43 82 84
H_50 P_200 Low 1400 78000 1387 592 1026.37 82 85
H_50 P_200 Low 1600 89498 1369 574 1137.95 82 85
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 P_200 Low 200 11758 949 203 134.4 78 84
H_100 P_200 Low 400 23752 1139 367 404.82 79 82
H_100 P_200 Low 600 35133 1061 305 479.07 78 82
H_100 P_200 Low 800 45576 1150 385 1086.58 80 84
H_100 P_200 Low 1000 55873 1260 484 1702.75 82 85
H_100 P_200 Low 1200 66702 1281 500 1928.62 82 84
H_100 P_200 Low 1400 77986 1267 483 2013.6 82 84
H_100 P_200 Low 1600 89422 1247 462 2357.92 82 84
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization
H_50 P_200 High 200 11420 766 75 136.62 83 57
H_50 P_200 High 400 23228 797 92 287.02 81 55
H_50 P_200 High 600 35100 806 94 412.65 82 55
H_50 P_200 High 800 45147 898 165 1136.35 85 60
H_50 P_200 High 1000 54992 919 179 1353.9 87 63
H_50 P_200 High 1200 66640 899 160 1452.08 87 61
H_50 P_200 High 1400 77400 892 152 1635.13 87 62
H_50 P_200 High 1600 88762 876 139 1740.67 87 62
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 P_200 High 200 11353 613 44 147.58 85 65
H_100 P_200 High 400 22982 637 45 271.13 82 64
H_100 P_200 High 600 34981 650 49 430.88 82 63
H_100 P_200 High 800 45142 769 125 1547.42 86 67
H_100 P_200 High 1000 54893 804 139 2008.55 88 70
H_100 P_200 High 1200 66362 786 125 2164.88 87 68
H_100 P_200 High 1400 77289 778 117 2369.65 88 68
H_100 P_200 High 1600 88679 762 105 2486.33 88 68
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization
H_50 A_1 Low 200 11784 936 219 193.63 79 84
H_50 A_1 Low 400 23809 1160 401 701.32 79 83
H_50 A_1 Low 600 35101 1084 346 844.38 78 82
H_50 A_1 Low 800 45475 1156 406 1608.27 80 84
H_50 A_1 Low 1000 55863 1277 513 2901.48 82 85
H_50 A_1 Low 1200 66741 1313 543 3495.1 82 86
H_50 A_1 Low 1400 78206 1301 530 4009.63 82 86
H_50 A_1 Low 1600 89635 1299 525 4328.33 82 85

61

Table 4.2. Comparison of H_100 and H_50 for F-LOW and F-HIGH (Cont'd)
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 A_1 Low 200 11543 848 160 328.7 79 85
H_100 A_1 Low 400 23648 1043 311 1163.42 79 82
H_100 A_1 Low 600 35122 977 260 1414.43 78 82
H_100 A_1 Low 800 45482 1056 325 3015.05 80 85
H_100 A_1 Low 1000 55865 1175 426 4993.65 82 86
H_100 A_1 Low 1200 66621 1208 455 6301.68 82 85
H_100 A_1 Low 1400 77812 1180 428 7309.37 82 86
H_100 A_1 Low 1600 89156 1152 402 6876.58 82 86
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization
H_50 A_1 High 200 11330 583 36 174.04 84 67
H_50 A_1 High 400 22878 621 46 362.75 82 67
H_50 A_1 High 600 34923 631 49 558.43 82 67
H_50 A_1 High 800 45379 758 134 2589.38 85 72
H_50 A_1 High 1000 55208 840 182 3846.82 87 76
H_50 A_1 High 1200 66322 836 177 4238.5 87 75
H_50 A_1 High 1400 77179 820 162 4478.58 87 76
H_50 A_1 High 1600 88763 797 146 4626.22 87 75
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 A_1 High 200 11330 568 51 232.93 85 73
H_100 A_1 High 400 22802 619 67 542.4 82 73
H_100 A_1 High 600 34981 627 73 912.88 82 72
H_100 A_1 High 800 45537 780 174 4044.53 85 77
H_100 A_1 High 1000 55367 899 258 6840.98 87 80
H_100 A_1 High 1200 66296 905 259 7318.12 87 79
H_100 A_1 High 1400 77400 879 238 8123.2 88 79
H_100 A_1 High 1600 88743 851 215 8241.27 87 79
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization
H_50 R_100 Low 200 12882 1564 772 431.37 73 67
H_50 R_100 Low 400 24718 1892 1080 1245.57 76 68
H_50 R_100 Low 600 36167 1854 1043 1682.87 76 68
H_50 R_100 Low 800 46735 1939 1134 3033.88 78 70
H_50 R_100 Low 1000 57644 2214 1404 5412.45 79 70
H_50 R_100 Low 1200 68877 2427 1610 7139.48 80 70
H_50 R_100 Low 1400 79374 2476 1661 8600.37 80 71
H_50 R_100 Low 1600 90612 2519 1699 9762.95 81 71
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 R_100 Low 200 13406 1814 1031 570.77 68 70
H_100 R_100 Low 400 25863 2476 1671 1904.98 71 71
H_100 R_100 Low 600 37843 2776 1964 3713.88 72 72
H_100 R_100 Low 800 48451 3014 2212 5990.17 75 74
H_100 R_100 Low 1000 59074 3377 2566 9328.05 77 75
H_100 R_100 Low 1200 70107 3630 2819 13538.93 77 76
H_100 R_100 Low 1400 81110 3735 2922 16132.22 78 77
H_100 R_100 Low 1600 92200 3813 2997 18856.43 79 77

62

Table 4.2. Comparison of H_100 and H_50 for F-LOW and F-HIGH (Cont'd)
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization
H_50 R_100 High 200 11340 630 43 88.55 84 51
H_50 R_100 High 400 22854 693 69 212.23 82 50
H_50 R_100 High 600 35081 701 69 321.53 82 50
H_50 R_100 High 800 45313 828 157 858.48 85 51
H_50 R_100 High 1000 55158 908 210 1252.78 87 52
H_50 R_100 High 1200 66341 905 204 1422.85 87 51
H_50 R_100 High 1400 77414 895 191 1600.68 87 51
H_50 R_100 High 1600 88677 874 173 1724.23 87 52
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time MC. Utilization AGV Utilization

H_100 R_100 High 200 12079 1050 327 714.17 78 55
H_100 R_100 High 400 23819 1219 462 1694.1 79 57
H_100 R_100 High 600 36142 1278 502 2586.82 79 56
H_100 R_100 High 800 46882 1565 778 7376.13 82 58
H_100 R_100 High 1000 57513 1848 1057 13136.7 84 59
H_100 R_100 High 1200 67883 2047 1245 16894 85 60
H_100 R_100 High 1400 78688 2065 1260 19838.73 85 60
H_100 R_100 High 1600 89974 2067 1260 22475.12 86 61

63

Table 4.3. Comparison of different scheduling policies for F-LOW
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Resch. No. MC. Utilization

H_100 R_100 Low 200 12302 1222 445 81.65 15 74
H_100 R_100 Low 400 24806 1636 819 555.55 23 75
H_100 R_100 Low 600 35802 1666 859 959.59 32 76
H_100 R_100 Low 800 46484 1752 950 1453.6 37 78
H_100 R_100 Low 1000 57401 1961 1151 2166.8 42 79
H_100 R_100 Low 1200 68496 2166 1352 2394.2 46 80
H_100 R_100 Low 1400 79319 2217 1403 3032.05 50 80
H_100 R_100 Low 1600 90576 2274 1458 3754.48 55 81
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Resch. No. MC. Utilization

H_100 R_25 Low 200 11798 976 231 122.95 74 78
H_100 R_25 Low 400 23792 1128 359 350.93 144 79
H_100 R_25 Low 600 35182 1054 301 444.28 227 78
H_100 R_25 Low 800 45445 1133 372 741.7 273 80
H_100 R_25 Low 1000 55821 1234 461 1139.98 308 82
H_100 R_25 Low 1200 66635 1256 480 1416.22 371 82
H_100 R_25 Low 1400 78142 1248 471 1726.92 427 82
H_100 R_25 Low 1600 89412 1236 457 1764.57 488 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Resch. No. MC. Utilization

H_100 P_50 Low 200 11671 891 184 344.75 233 79
H_100 P_50 Low 400 23675 1105 359 1437.63 475 79
H_100 P_50 Low 600 35185 1026 305 1715.23 706 78
H_100 P_50 Low 800 45379 1105 370 3264.92 910 80
H_100 P_50 Low 1000 55942 1214 462 5493.25 1121 82
H_100 P_50 Low 1200 66736 1237 480 7837.1 1337 82
H_100 P_50 Low 1400 78007 1216 456 7836.37 1563 82
H_100 P_50 Low 1600 89421 1200 440 8074.78 1791 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Resch. No. MC. Utilization

H_100 P_200 Low 200 11758 949 203 134.4 59 78
H_100 P_200 Low 400 23752 1139 367 404.82 120 79
H_100 P_200 Low 600 35133 1061 305 479.07 178 78
H_100 P_200 Low 800 45576 1150 385 1086.58 230 80
H_100 P_200 Low 1000 55873 1260 484 1702.75 282 82
H_100 P_200 Low 1200 66702 1281 500 1928.62 336 82
H_100 P_200 Low 1400 77986 1267 483 2013.6 392 82
H_100 P_200 Low 1600 89422 1247 462 2357.92 449 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Resch. No. MC. Utilization

H_100 P_800 Low 200 12150 1206 423 124.02 17 76
H_100 P_800 Low 400 23953 1439 633 292.15 32 78
H_100 P_800 Low 600 35456 1358 563 347.4 49 77
H_100 P_800 Low 800 45832 1424 629 583.77 62 79
H_100 P_800 Low 1000 55823 1538 736 858.32 74 81
H_100 P_800 Low 1200 67093 1543 737 1020.02 89 81
H_100 P_800 Low 1400 78340 1533 725 1152.52 103 82
H_100 P_800 Low 1600 89814 1513 704 1355.12 118 82

64

Table 4.3. Comparison of different scheduling policies for F-LOW (Cont'd)
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Resch. No. MC. Utilization

H_100 A_1 Low 200 11543 848 160 328.7 208 79
H_100 A_1 Low 400 23648 1043 311 1163.42 417 79
H_100 A_1 Low 600 35122 977 260 1414.43 618 78
H_100 A_1 Low 800 45482 1056 325 3015.05 829 80
H_100 A_1 Low 1000 55865 1175 426 4993.65 1037 82
H_100 A_1 Low 1200 66621 1208 455 6301.68 1209 82
H_100 A_1 Low 1400 77812 1180 428 7309.37 1427 82
H_100 A_1 Low 1600 89156 1152 402 6876.58 1622 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Resch. No. MC. Utilization

H_100 A_5 Low 200 11830 972 230 90.1 43 78
H_100 A_5 Low 400 23757 1159 387 358.92 83 79
H_100 A_5 Low 600 35295 1090 331 426.55 125 78
H_100 A_5 Low 800 45432 1155 388 823.22 166 80
H_100 A_5 Low 1000 55718 1250 473 1478.85 208 82
H_100 A_5 Low 1200 66817 1278 496 1659.92 243 82
H_100 A_5 Low 1400 77902 1257 473 1815.08 287 82
H_100 A_5 Low 1600 89299 1248 462 1993.8 326 82

65

Table 4.4. Comparison of when to schedule policies for H_50
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 A_1 Low 200 11784 936 219 193.63 214 54 79
H_50 A_1 Low 400 23809 1160 401 701.32 415 57 79
H_50 A_1 Low 600 35101 1084 346 844.38 611 57 78
H_50 A_1 Low 800 45475 1156 406 1608.27 821 55 80
H_50 A_1 Low 1000 55863 1277 513 2901.48 1030 54 82
H_50 A_1 Low 1200 66741 1313 543 3495.1 1202 55 82
H_50 A_1 Low 1400 78206 1301 530 4009.63 1429 54 82
H_50 A_1 Low 1600 89635 1299 525 4328.33 1641 55 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 P_55 Low 200 11736 965 242 178.48 213 55 79
H_50 P_55 Low 400 23736 1165 408 626.1 431 54 79
H_50 P_55 Low 600 35153 1096 358 807.27 639 54 78
H_50 P_55 Low 800 45440 1158 411 1401.8 826 54 80
H_50 P_55 Low 1000 55948 1286 525 2491.63 1017 54 82
H_50 P_55 Low 1200 66670 1327 559 3080.27 1212 54 82
H_50 P_55 Low 1400 78049 1316 546 3462.68 1419 54 82
H_50 P_55 Low 1600 89357 1297 526 3696.68 1625 54 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 R_14 Low 200 11778 977 243 192.22 264 44 78
H_50 R_14 Low 400 23711 1173 410 521.17 470 50 79
H_50 R_14 Low 600 35270 1112 363 659.25 732 48 78
H_50 R_14 Low 800 45593 1179 422 1047.1 885 51 80
H_50 R_14 Low 1000 55933 1307 538 1657.02 997 56 82
H_50 R_14 Low 1200 66683 1334 561 1938.3 1196 55 82
H_50 R_14 Low 1400 78124 1313 537 2175.07 1389 56 82
H_50 R_14 Low 1600 89811 1302 524 2397.72 1588 56 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 A_3 Low 200 11869 1060 305 102.53 71 163 78
H_50 A_3 Low 400 24081 1346 550 396.85 139 172 78
H_50 A_3 Low 600 35343 1264 481 505.03 205 171 78
H_50 A_3 Low 800 45339 1289 504 792.43 273 165 80
H_50 A_3 Low 1000 55714 1369 576 1183.62 343 162 82
H_50 A_3 Low 1200 66975 1400 601 1428.83 402 166 82
H_50 A_3 Low 1400 78235 1376 576 1621.87 476 164 82
H_50 A_3 Low 1600 89699 1360 560 1733.73 541 165 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 P_165 Low 200 11839 1014 259 62 71 165 78
H_50 P_165 Low 400 23789 1240 452 275.92 144 165 79
H_50 P_165 Low 600 35139 1145 377 319.95 212 165 78
H_50 P_165 Low 800 45541 1213 442 527.73 276 165 80
H_50 P_165 Low 1000 55789 1318 536 843.43 338 165 82
H_50 P_165 Low 1200 66676 1351 565 1017.6 404 165 82
H_50 P_165 Low 1400 78175 1337 549 1154.25 473 165 82
H_50 P_165 Low 1600 89585 1328 539 1280.23 542 165 82

66

Table 4.4. Comparison of when to schedule policies for H_50 (Cont'd)
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 R_43 Low 200 11966 989 249 67.23 88 134 77
H_50 R_43 Low 400 23813 1263 481 180.98 147 161 78
H_50 R_43 Low 600 35209 1161 399 238.27 240 146 78
H_50 R_43 Low 800 45513 1210 444 407.37 292 155 80
H_50 R_43 Low 1000 55770 1301 521 574.05 332 167 82
H_50 R_43 Low 1200 66994 1344 557 669 392 170 82
H_50 R_43 Low 1400 78032 1325 536 763.8 452 172 82
H_50 R_43 Low 1600 89617 1315 525 844.27 518 172 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 A_1 High 200 11330 583 36 167.43 204 55 84
H_50 A_1 High 400 22873 621 46 352.43 401 57 82
H_50 A_1 High 600 34923 631 49 544.8 606 57 82
H_50 A_1 High 800 45379 758 134 2502.88 822 55 85
H_50 A_1 High 1000 55208 840 182 3601.35 1020 54 87
H_50 A_1 High 1200 66322 836 177 3937.85 1207 54 87
H_50 A_1 High 1400 77179 820 162 4143.38 1417 54 87
H_50 A_1 High 1600 88763 797 146 4270.68 1623 54 87
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 P_57 High 200 11285 568 34 128.88 202 55 84
H_50 P_57 High 400 22878 613 51 271.87 416 54 82
H_50 P_57 High 600 34946 621 53 417.82 634 55 82
H_50 P_57 High 800 45410 749 134 1909.72 818 55 85
H_50 P_57 High 1000 55281 845 194 2965.38 991 55 87
H_50 P_57 High 1200 66354 853 197 3409.48 1195 55 87
H_50 P_57 High 1400 77250 830 177 3566.95 1387 55 87
H_50 P_57 High 1600 88729 811 160 3717.37 1591 55 87
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 R_35 High 200 11274 562 25 90.03 240 46 85
H_50 R_35 High 400 22797 591 33 180.43 490 46 82
H_50 R_35 High 600 35008 599 36 274.77 739 47 82
H_50 R_35 High 800 45068 703 94 729.3 839 53 85
H_50 R_35 High 1000 54794 739 106 925.48 950 57 87
H_50 R_35 High 1200 66300 726 96 1014.75 1181 56 87
H_50 R_35 High 1400 77249 718 88 1115.22 1367 56 87
H_50 R_35 High 1600 88643 706 80 1205.18 1584 55 87
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 A_3 High 200 11580 734 71 103.23 70 165 83
H_50 A_3 High 400 23113 818 120 255 134 171 81
H_50 A_3 High 600 35170 810 107 416.5 204 171 82
H_50 A_3 High 800 45375 905 180 1274.42 273 165 85
H_50 A_3 High 1000 54973 926 192 1572.53 338 162 87
H_50 A_3 High 1200 66898 915 176 1667.08 402 166 86
H_50 A_3 High 1400 77372 898 163 1806.7 469 164 87
H_50 A_3 High 1600 88927 891 154 1952.48 538 165 87

67

Table 4.4. Comparison of when to schedule policies for H_50 (Cont'd)
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 P_165 High 200 11403 691 56 133.03 69 165 84
H_50 P_165 High 400 22998 721 62 240.12 139 165 81
H_50 P_165 High 600 35112 731 63 381.53 212 165 82
H_50 P_165 High 800 45299 830 132 930.98 274 165 85
H_50 P_165 High 1000 54948 860 150 1158.43 333 165 88
H_50 P_165 High 1200 66520 842 135 1251.93 403 165 87
H_50 P_165 High 1400 77393 829 124 1372.03 469 165 87
H_50 P_165 High 1600 88793 813 112 1468.82 538 165 87
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization
H_50 R_93 High 200 11303 608 35 65.35 82 137 84
H_50 R_93 High 400 22861 637 39 145.55 166 137 82
H_50 R_93 High 600 35062 662 48 246.18 246 141 82
H_50 R_93 High 800 45260 764 113 557.15 282 160 86
H_50 R_93 High 1000 54868 799 127 733.88 321 170 88
H_50 R_93 High 1200 66339 779 112 804.62 397 167 87
H_50 R_93 High 1400 77208 770 104 894.2 459 167 87
H_50 R_93 High 1600 88703 756 93 966.38 530 167 87

68

Table 4.5. Comparison of when to schedule policies for H_100
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 A_1 Low 200 11543 848 160 389.53 208 55 79
H_100 A_1 Low 400 23628 1039 309 1422.28 412 56 79
H_100 A_1 Low 600 35020 973 261 1772.07 608 57 78
H_100 A_1 Low 800 45441 1047 322 3592.85 820 55 80
H_100 A_1 Low 1000 55842 1175 432 6057.43 1030 54 82
H_100 A_1 Low 1200 66780 1206 457 7010.72 1202 55 82
H_100 A_1 Low 1400 77945 1193 440 7686.63 1424 54 82
H_100 A_1 Low 1600 89419 1179 424 8150.1 1618 55 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 P_55 Low 200 11658 874 175 397.37 211 55 79
H_100 P_55 Low 400 23621 1098 359 1578.05 429 55 79
H_100 P_55 Low 600 35099 1024 301 1858.22 638 54 78
H_100 P_55 Low 800 45445 1090 357 3263.07 826 54 80
H_100 P_55 Low 1000 55665 1184 434 5176.7 1012 54 82
H_100 P_55 Low 1200 66642 1218 461 6344.88 1212 54 82
H_100 P_55 Low 1400 77884 1196 440 6979.2 1416 54 82
H_100 P_55 Low 1600 89439 1175 419 7532.17 1626 54 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 R_7 Low 200 11800 883 180 369.73 274 42 79
H_100 R_7 Low 400 23646 1104 362 1017.48 493 48 79
H_100 R_7 Low 600 36166 1018 296 1287.5 802 43 78
H_100 R_7 Low 800 45530 1109 374 2258.77 958 47 80
H_100 R_7 Low 1000 55721 1212 460 3484.63 1080 51 82
H_100 R_7 Low 1200 66759 1244 485 4198.3 1281 52 82
H_100 R_7 Low 1400 77943 1223 461 4704.18 1480 52 82
H_100 R_7 Low 1600 89257 1201 439 5107.83 1713 52 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 A_3 Low 200 11600 911 177 133.33 70 165 79
H_100 A_3 Low 400 23669 1124 359 540.28 137 171 79
H_100 A_3 Low 600 35134 1050 302 650.32 203 172 78
H_100 A_3 Low 800 45270 1133 377 1158.9 273 165 80
H_100 A_3 Low 1000 55698 1232 462 1808.22 343 162 82
H_100 A_3 Low 1200 66723 1242 468 2130.22 400 165 82
H_100 A_3 Low 1400 77929 1222 448 2404.08 474 164 82
H_100 A_3 Low 1600 89425 1207 433 2601.07 539 165 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 P_165 Low 200 11659 939 218 198.33 70 165 79
H_100 P_165 Low 400 23547 1173 414 684.87 142 165 79
H_100 P_165 Low 600 35152 1088 342 822.78 212 165 78
H_100 P_165 Low 800 45400 1175 419 1509.03 275 165 80
H_100 P_165 Low 1000 55715 1271 502 2262.03 337 165 82
H_100 P_165 Low 1200 66835 1267 494 2611.15 405 165 82
H_100 P_165 Low 1400 77965 1255 479 2972.77 472 165 82
H_100 P_165 Low 1600 89585 1240 464 3214.55 542 165 82

69

Table 4.5. Comparison of when to schedule policies for H_100 (Cont'd)
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 R_23 Low 200 11630 924 202 120.28 86 134 79
H_100 R_23 Low 400 23675 1120 359 332.68 156 150 79
H_100 R_23 Low 600 35163 1042 301 419.57 139 139 78
H_100 R_23 Low 800 45336 1115 363 721.07 150 150 80
H_100 R_23 Low 1000 55947 1222 454 1172.6 164 164 82
H_100 R_23 Low 1200 66817 1242 471 1426.48 163 163 82
H_100 R_23 Low 1400 78111 1225 451 1643.18 166 166 82
H_100 R_23 Low 1600 89623 1210 437 1802.6 165 165 82
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 A_1 High 200 11241 528 32 216.83 204 54 85
H_100 A_1 High 400 22828 568 41 531.28 403 56 82
H_100 A_1 High 600 34912 578 45 863.55 614 56 82
H_100 A_1 High 800 45271 700 116 4006.07 829 54 85
H_100 A_1 High 1000 55065 780 161 5647.68 1026 53 87
H_100 A_1 High 1200 66273 776 156 6237.38 1207 54 87
H_100 A_1 High 1400 77188 758 141 6621.62 1424 54 87
H_100 A_1 High 1600 88657 736 125 6846.9 1632 54 87
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 P_55 High 200 11337 550 38 245.42 208 54 85
H_100 P_55 High 400 22838 584 44 521.87 425 53 82
H_100 P_55 High 600 34970 597 48 801.93 651 53 82
H_100 P_55 High 800 45240 730 132 3723.57 837 53 85
H_100 P_55 High 1000 55210 835 199 6058.4 1019 54 87
H_100 P_55 High 1200 66274 845 204 7051.28 1221 54 87
H_100 P_55 High 1400 77145 822 185 7385.63 1420 54 87
H_100 P_55 High 1600 88765 797 164 7618.42 1636 54 87
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 R_17 High 200 11232 544 32 159.53 247 45 85
H_100 R_17 High 400 22820 563 30 306.22 509 44 82
H_100 R_17 High 600 34928 583 38 580.92 760 45 82
H_100 R_17 High 800 45147 702 106 1828.87 853 52 85
H_100 R_17 High 1000 54797 742 121 2439.95 963 56 88
H_100 R_17 High 1200 66304 724 108 2656.12 1195 55 87
H_100 R_17 High 1400 77222 715 101 2951.33 1382 55 87
H_100 R_17 High 1600 88676 701 91 3153.83 1604 55 87
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 A_3 High 200 11313 567 29 137.92 68 165 85
H_100 A_3 High 400 22784 595 33 296.38 132 170 82
H_100 A_3 High 600 34954 603 36 495.35 201 173 82
H_100 A_3 High 800 45219 717 105 1781.38 272 165 86
H_100 A_3 High 1000 54913 756 120 2230.7 338 162 88
H_100 A_3 High 1200 66463 741 108 2371.67 400 165 87
H_100 A_3 High 1400 77197 732 100 2565.73 469 164 88
H_100 A_3 High 1600 88700 718 89 2714.4 537 164 88

70

Table 4.5. Comparison of when to schedule policies for H_100 (Cont'd)
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 P_168 High 200 11331 602 42 186.47 67 168 85
H_100 P_168 High 400 22812 616 40 317.13 139 163 82
H_100 P_168 High 600 35012 628 43 561.98 215 162 82
H_100 P_168 High 800 45142 743 113 2064.98 276 163 86
H_100 P_168 High 1000 54894 777 128 2492.33 334 164 88
H_100 P_168 High 1200 66414 757 112 2626.37 406 163 87
H_100 P_168 High 1400 77263 746 103 2856.95 472 163 88
H_100 P_168 High 1600 88751 732 93 2991.98 540 164 87
How When Flex. Jobs Makespan Av. Flowtime Av. Tardiness CPU Time Sch. No. Av. Sch. L. MC. Utilization

H_100 R_48 High 200 11292 567 24 99.45 81 139 85
H_100 R_48 High 400 22923 600 32 207.28 162 140 82
H_100 R_48 High 600 34979 608 36 334.08 248 140 82
H_100 R_48 High 800 45052 717 99 772.73 282 159 86
H_100 R_48 High 1000 54947 746 107 946.88 323 169 88
H_100 R_48 High 1200 66335 726 93 1012.83 404 164 87
H_100 R_48 High 1400 77213 715 84 1097.85 466 165 87
H_100 R_48 High 1600 88673 704 76 1193.8 536 164 87

Table 4.6. Performances of Scheduling Policies for Different Scheduling Frequencies.
F-HIGH Full F-HIGH Partial F-LOW Full F-LOW Partial

R A P R A P R A P R A P
A_1 701 736 797 A_1 706 797 811 A_1 1201 1179 1175 A_1 1302 1299 1297
A_3 704 718 782 A_3 756 891 813 A_3 1210 1207 1240 A_3 1315 1360 1328
A_6 779 795 811 A_6 1304 1204 A_6 1268 1270 1290 A_6 1537 1469
A_9 893 917 928 A_9 1756 1620 A_9 1377 1375 1389 A_9 1824 1673

A_12 1034 1057 1075 A_12 2178 1991 A_12 1470 1495 1510 A_12 2173 1965
A_15 1199 1181 1221 A_15 2567 2427 A_15 1535 1555 1586 A_15 2505 2313

71

Table 4.7. Comparison of ARRIVAL and PERIODIC Policies for Different Partial Schedules

F-HIGH P_495 A_9
H_50 1620 1759
H_60 1360 1456
H_70 1173 1250

H_90 975 962
H_100 928 917

F-LOW P_495 A_9
H_50 1673 1824
H_60 1579 1648
H_70 1548 1539
H_80 1473 1471
H_90 1408 1423

H_100 1389 1375

F-HIGH P_165 A_3
H_50 813 891
H_60 759 830
H_70 741 762
H_80 747 732
H_90 731 733

H_100 782 718

F-LOW P_165 A_3
H_50 1328 1360
H_60 1296 1308
H_70 1337 1298
H_80 1298 1240
H_90 1275 1286

H_100 1240 1207

72

Table 4.8. Comparison of How to Schedule Policies for Partial Schedule and PV.

PV=0 PV=0,4 PV0,4-PV0 PV=0 PV=0,4 PV0,4-PV0
F-LOW P_165 P_165 P_165 F-HIGH P_165 P_165 P_165
H_50 1424 1771 347 H_50 800 862 62

H_100 1330 1685 355 H_100 733 814 81
PV=0 PV=0,4 PV0,4-PV0 PV=0 PV=0,4 PV0,4-PV0

H_50 1442 1752 310 H_50 897 944 47
H_100 1314 1663 349 H_100 717 796 79

PV=0 PV=0,4 PV0,4-PV0 PV=0 PV=0,4 PV0,4-PV0
F-LOW R R R F-HIGH R R R
H_50 1444 1726 282 H_50 773 870 97

H_100 1316 1649 333 H_100 706 829 123
F-LOW H_100 - H_50 F-HIGH H_100 - H_50

PV A 94 R PV A P R
0 128 81 128 0 180 67 67

0.4 89 86 77 0.4 148 48 41

PV=0 PV=0,4 PV0,4-PV0 PV=0 PV=0,4 PV0,4-PV0
F-LOW P_495 P_495 P_495 F-HIGH P_495 P_495 P_495
H_50 1749 2118 369 H_50 1594 1630 36

H_100 1491 2077 586 H_100 939 1151 212
PV=0 PV=0,4 PV0,4-PV0 PV=0 PV=0,4 PV0,4-PV0

F-LOW A_9 A_9 A_9 F-HIGH A_9 A_9 A_9
H_50 1868 2178 310 H_50 1710 1746 36

H_100 1430 2023 593 H_100 908 1109 201
F-LOW H_100 - H_50 F-HIGH H_100 - H_50

PV A P_495 R PV A P R
0 438 258 - 0 802 655 -

0.4 155 41 - 0.4 637 479 -

73

Table 4.9. Performance measures for Machine breakdown for F-LOW and F-HIGH.

No Br. Br. No Br. Br.
F-LOW P_495 P_495 F-HIGH P_495 P_495
H_50 1749 3628 H_50 1594 2279

H_100 1491 4237 H_100 939 2381
No Br. Br. No Br. Br.

F-LOW A_9 A_9 F-HIGH A_9 A_9
H_50 1868 3969 H_50 1710 2861

H_100 1430 4162 H_100 908 2366

No Br. Br. No Br. Br.
F-LOW P_165 P_165 F-HIGH P_165 P_165
H_50 1424 3262 H_50 800 2022

H_100 1330 3452 H_100 733 2048
No Br. Br. No Br. Br.

F-LOW A_3 A_3 F-HIGH A_3 A_3
H_50 1442 3097 H_50 897 2075

H_100 1314 3345 H_100 717 1978
No Br. Br. No Br. Br.

F-LOW R R F-HIGH R R
H_50 1444 3182 H_50 773 1889

H_100 1316 3208 H_100 706 1962

74

Table 4.10. The Results of Dispatch Policy
Flex Jobs Queue PV BD Makespan Av. Flowtime Av. Tardiness CPU Time

F-HIGH 200 10 0 0 11120 706 53 0.42
F-HIGH 400 10 0 0 21486 753 67 0.82
F-HIGH 600 10 0 0 32950 748 81 1.23
F-HIGH 800 10 0 0 43820 754 88 1.63
F-HIGH 1000 10 0 0 54220 758 88 2.03
F-HIGH 1200 10 0 0 65847 744 80 2.43
F-HIGH 1400 10 0 0 76829 738 76 2.81
F-HIGH 1600 10 0 0 87672 743 73 3.22

Flex Jobs Queue PV BD Makespan Av. Flowtime Av. Tardiness CPU Time
F-HIGH 200 100 0 0 11332 628 31 0.44
F-HIGH 400 100 0 0 22913 647 40 0.8
F-HIGH 600 100 0 0 35104 664 46 1.25
F-HIGH 800 100 0 0 45118 754 100 1.63
F-HIGH 1000 100 0 0 54840 780 118 2.08
F-HIGH 1200 100 0 0 66453 766 107 2.4
F-HIGH 1400 100 0 0 77316 761 102 2.83
F-HIGH 1600 100 0 0 88684 748 94 3.25

Flex Jobs Queue PV BD Makespan Av. Flowtime Av. Tardiness CPU Time
F-HIGH 200 10 0.4 0 11044 716 67 0.43
F-HIGH 400 10 0.4 0 21422 759 96 0.83
F-HIGH 600 10 0.4 0 32926 753 91 1.26
F-HIGH 800 10 0.4 0 43738 749 91 1.64
F-HIGH 1000 10 0.4 0 54251 750 89 2.03
F-HIGH 1200 10 0.4 0 65842 741 82 2.46
F-HIGH 1400 10 0.4 0 76888 737 79 2.84
F-HIGH 1600 10 0.4 0 87594 732 75 3.26

Flex Jobs Queue PV BD Makespan Av. Flowtime Av. Tardiness CPU Time
F-HIGH 200 10 0 4 11524 1012 262 0.65
F-HIGH 400 10 0 4 22205 1152 402 1.07
F-HIGH 600 10 0 4 33987 1281 523 1.63
F-HIGH 800 10 0 4 44540 1375 608 2.09
F-HIGH 1000 10 0 4 55290 1408 638 2.44
F-HIGH 1200 10 0 4 66556 1424 650 3.02
F-HIGH 1400 10 0 4 77523 1434 656 3.54
F-HIGH 1600 10 0 4 88474 1430 651 3.88

Flex Jobs Queue PV BD Makespan Av. Flowtime Av. Tardiness CPU Time
F-LOW 200 10 0 0 11593 1104 327 0.47
F-LOW 400 10 0 0 22533 1241 464 0.85
F-LOW 600 10 0 0 34235 1169 402 1.25
F-LOW 800 10 0 0 44960 1219 444 1.66
F-LOW 1000 10 0 0 55560 1268 486 2.12
F-LOW 1200 10 0 0 76977 1294 507 2.56
F-LOW 1400 10 0 0 78035 1338 547 2.96
F-LOW 1600 10 0 0 88560 1358 565 3.46

75

Table 4.10. The Results of Dispatch Policy (Cont'd)
Flex Jobs Queue PV BD Makespan Av. Flowtime Av. Tardiness CPU Time

F-LOW 200 100 0 0 11800 929 199 0.43
F-LOW 400 100 0 0 23669 1043 281 0.8
F-LOW 600 100 0 0 35346 1033 275 1.22
F-LOW 800 100 0 0 45427 1086 327 1.65
F-LOW 1000 100 0 0 55727 1189 417 2.08
F-LOW 1200 100 0 0 67031 1237 458 2.45
F-LOW 1400 100 0 0 78182 1245 465 2.88
F-LOW 1600 100 0 0 89363 1269 483 3.35

Flex Jobs Queue PV BD Makespan Av. Flowtime Av. Tardiness CPU Time
F-LOW 200 10 0.4 0 11911 1269 503 0.46
F-LOW 400 10 0.4 0 22671 1429 647 0.88
F-LOW 600 10 0.4 0 34287 1360 580 1.28
F-LOW 800 10 0.4 0 44895 1374 589 1.73
F-LOW 1000 10 0.4 0 55752 1399 608 2.13
F-LOW 1200 10 0.4 0 67548 1435 639 2.59
F-LOW 1400 10 0.4 0 78333 1453 654 3.09
F-LOW 1600 10 0.4 0 88375 1477 677 3.55

Table 4.11. The Performances of scheduling policies with and without PV.
POLICY HOW PV F-LOW F-HIGH

P_165 FULL 0 1330 733
A_3 FULL 0 1314 717

RATIO FULL 0 1316 706
DISPATCH FULL 0 1358 743

P_165 FULL 0.4 1685 814
A_3 FULL 0.4 1663 796

RATIO FULL 0.4 1649 829
DISPATCH FULL 0.4 1477 732

P_165 PARTIAL 0 1424 800
A_3 PARTIAL 0 1442 897

RATIO PARTIAL 0 1444 773
DISPATCH PARTIAL 0 1358 743

P_165 PARTIAL 0.4 1771 862
A_3 PARTIAL 0.4 1752 944

RATIO PARTIAL 0.4 1726 870
DISPATCH PARTIAL 0.4 1477 732

76

Table 4.12. T-test for the RATIO Policy and Dispatch Rule.
FLEX. RATIO DISPATCH Difference
F-LOW 1210 1310 -100
F-LOW 1316 1296 20
F-LOW 1239 1369 -130

MEAN = 1255 MEAN = 1358 MEAN = -70
STD. DEV. = 56.1

INTERVAL = (-23,133)
FLEX. RATIO DISPATCH Difference
F-HIGH 704 760 -56
F-HIGH 676 735 -59
F-HIGH 646 706 -60

MEAN = 675 MEAN = 734 MEAN = -58
STD. DEV. = 1.5

INTERVAL = (-62.34, -53.66)

Table 4.13. T-test for the RATIO and PERIODIC Policies.
FLEX. RATIO PERIOD Difference
F-LOW 1210 1240 -30
F-LOW 1316 1341 -25
F-LOW 1239 1238 1

MEAN = 1255 MEAN = 1273 MEAN = -18
STD. DEV. = 10.97

INTERVAL = (-50,14)
FLEX. RATIO PERIOD Difference
F-HIGH 704 732 -28
F-HIGH 676 702 -26
F-HIGH 646 675 -29

MEAN = 675 MEAN = 703 MEAN = -28
STD. DEV. = 1.12

INTERVAL = (-31.26, -24.74)

