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ABSTRACT

THE ROBUST SHORTEST PATH PROBLEM WITH

INTERVAL DATA UNCERTAINTIES

Abdullah S�dd�k Karaman

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Mustafa C�. P�nar

July, 2001

In this study, we investigate the well-known shortest path problem on

directed acyclic graphs under arc length uncertainties. We structure data

uncertainty by taking the arc lengths as interval ranges. In order to handle

uncertainty in the decision making process, we believe that a robustness

approach is appropriate to use. The robustness criteria we used are the

minimax (absolute robustness) criterion and the minimax regret (relative

robustness) criterion. Under these criteria, we de�ne and identify paths

which perform satisfactorily under any likely input data and give mixed

integer programming formulation to �nd them. In order to simplify decision

making, we classify arcs based on the realization of the input data. We show

that knowing which arcs are always on shortest paths and which arcs are

never on shortest paths we can preprocess a graph for robust path problems.

Computational results support our claim that the preprocessing of graphs helps

us signi�cantly in solving the robust path problems.

Key words: Shortest Path Problem, Directed Acyclic Graphs, Layered

Graphs, Interval Data, Robust Optimization
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�OZET

ARALIK SAYILAR BEL_IRS_IZL_I �G_INDE EN KISA YOL

PROBLEM_I

Abdullah S�dd�k Karaman

End�ustri M�uhendisli�gi B�ol�um�u Y�uksek Lisans

Tez Y�oneticisi: Do�c. Mustafa C� . P�nar

Temmuz, 2001

Bu �cal��smada, verileri aral�k say�larla ifade edilen y�onl�u �cevrimsiz �cizgelerde

en k�sa yol problemi incelenmi�stir. Veriler belirsiz oldu�gu i�cin ama�c dayan�kl�

�c�oz�umler �uretmektir. Dayan�kl�l�k �ol�c�ut�u olarak enfazlay� enazlama ve enfazla

kayb� enazlama kullan�lm��st�r. Bu kriterler kullan�larak her veriye g�ore iyi

sonu�c veren yollar tan�mlanm��s ve bunlar� bulan kar��s�k tamsay� programlama

form�ulasyonlar� verilmi�stir. Arklar, verilere ba�gl� olarak, hangilerinin en k�sa

yol �uzerinde olup olamayaca�g�na g�ore s�n�
and�r�lm��st�r ve bu s�n�
and�rman�n

dayan�kl� yol problemleri i�cin bir �on i�slem oldu�gu g�osterilmi�stir. Hesaplama

sonu�clar� bu �on i�slemin dayan�kl� yol problemlerinin �c�oz�um�u kolayla�st�rd��g�

tezimizi destekler.

Anahtar s�ozc�ukler : En K�sa Yol Problemi, Y�onl�u D�ong�us�uz C� izgeler,

Katmanl� C� izgeler, Aral�k Say�lar, Dayan�kl� Eniyileme
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Chapter 1

Introduction

In this thesis, we investigate the well-known shortest path problem on directed

acyclic graphs where the input data of the problem are uncertain. What is

meant by uncertainty is that there is a range of possible realizations for each

data, but the actual realizations are not known. We express this range of

realizations as an interval range. The deterministic version of the problem can

be solved in polynomial time. However, if there is signi�cant data uncertainty,

the deterministic approach can be far from su�cient. New and appropriate

criteria and models are needed in order to handle uncertainty.

The traditional motivation for studying the shortest path problem on

directed acyclic graphs with interval data comes from helping a motorist who

sets out to drive from some location in a city to another. The aim is to

determine a path that minimizes the travel time (distance, cost) where the

tra�c conditions at various roads are uncertain because of the presence of

accidents, tra�c jams at peak hours and construction projects etc. Since the

driver does not have full information of the roads, she/he considers only a

subset of roads in deciding her/his route choice in a robust manner [8].

Mathematical programming models usually have the problem of imprecise

data in building a real-world system. Cost of resources, demand for the

products, returns of �nancial instruments are examples of data that are

1
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uncertain. We encounter di�erent ways of dealing with uncertainty in the

literature. One of the ways is the \sensitivity analysis" which is a post-

optimality tool. The goal of this study is to discover the impact of data

perturbations on a model. It just measures the sensitivity of a solution to

changes in the input data. Another way of dealing with uncertainty is based

on the pro-active approaches. This approach can be classi�ed according to

the environment it is used in. There are two di�erent kinds of environments:

\Risk" and \Uncertainty". In risk situations, the link between the decisions

and outcomes are probabilistic. Stochastic optimization is used to optimize the

expected value of a single objective. However, in uncertainty situations it is

impossible to attribute probabilities to the possible outcomes of any decision.

A thorough study of literature with uncertain data can be found in [12].

There are many di�erent ways of dealing with uncertainty in data. One way

is converting the problem into risk and using probability tools. In this case,

knowledge of probability distribution functions are required and probabilities

are di�cult to estimate. Also, if probabilities are assigned successfully, unless

independence and no correlation assumed, it becomes computationally very

di�cult to solve the problem. It is also possible to transform the problem into

a certainty problem by the use of subjective estimation of most likely numbers.

However, a solution which is optimal with respect to these values yields a

quite poor performance when evaluated relative to the actual realized data.

Yu said: \Ample evidence exist in research literature that for decision making

environments in the presence of signi�cant data uncertainty in the input data

of the decision model, either the deterministic optimization or the stochastic

optimization approach may not accurately represent the aim of decision maker

(see Gupta and Rosenhead [6], Rosenhead et al. [9], Sengupta [10], Kouvelis et

al. [7]and Daniels and Kouvelis [3]) [14]".

Kouvelis and Yu [8] motivate the use of robustness approach to decision

making in environments of signi�cant data uncertainty. The aim of this

approach is to �nd decisions that will have a reasonable objective value under

any likely input data. They have demonstrated the applicability of this

framework on several combinatorial optimization problems and dealt with the
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characterization of algorithmic complexity of these problems. A comprehensive

treatment of the state of art in robust discrete optimization and extensive

references can be found in this book.

In the present thesis, in order to handle uncertainty in the arc lengths,

we applied the robust optimization framework to our problem. We structure

data uncertainty by taking the arc lengths as intervals de�ned by known lower

and upper bounds and do not assume any probability distribution. This way

of de�ning arc lengths is easy to model when compared to stochastic methods

which requires knowledge of probability distribution functions. The robustness

criteria we used is the minimax (absolute robustness) criterion and minimax

regret (relative robustness) criterion. We refer to the problems as \absolute

robust shortest path problem" and \relative robust shortest path problem".

The absolute robust shortest path problem is de�ned as �nding among all paths

the one that minimizes the maximum path length from origin to destination

over all realizable input data. The relative robust shortest path problem is

de�ned as �nding among all paths the one that, over all realizable input data,

minimizes the maximum deviation of the path length from the optimal path

length of the corresponding realization. In the �rst one, the problem yields

very conservative solutions based on the anticipation that the worst-case will

happen. In the latter one, the decision is less conservative, since it allows

benchmarking of the performance of the decision against the the best possible

outcome under any realization of arc lengths.

Kouvelis and Yu [8] have studied the robust shortest path problems

under arc length uncertainties. Di�erent from our problem, they structure

the uncertainty by a discrete scenario set, where each scenario represents a

potential realization of the arc lengths. They prove that the robust shortest

path problems are NP-complete for a bounded number of scenarios and

becomes strongly NP-hard for an unbounded number of scenarios. Moreover,

they conjecture that the robust path problems with interval data are also

NP-complete. In solving these problems, they suggest a branch-and-bound

procedure with both upper and lower bounds generated by a surrogate

relaxation. They have shown that this is an e�ective method in practice.
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A similar work to ours was done by Yaman [13]. She has studied the

longest path problem on directed acyclic graphs with interval data. She de�ned

new optimality concepts in �nding a longest path in a graph based on the

realizations of arc lengths. A characterization of these optimal solutions and

polynomial time algorithms to �nd them in special cases can be found in this

study. Further, she derived the mixed integer programming formulation of the

relative robust longest path problem with interval data. However, Yaman did

not conduct computational experiments on these problems.

Averbakh [2] presented the �rst example of a combinatorial optimization

problem that is NP-hard in the scenario-represented uncertainty but is

polynomially solvable in the case of interval representation of uncertainty.

He studied robust version of the problem of selecting p elements of minimum

total weight out of a set of m elements where the weights of the elements are

represented as interval ranges. He has proved that the problem is NP-hard in

the case of arbitrary �nite set of possible scenarios, even with only two scenarios

but polynomially solvable in the case of interval representation of uncertainty.

In this study, we continue the investigation initiated in Yaman [13].

We de�ne the robust path problems with interval data and give mixed

integer programming formulations of these problems. Then, we would like

to distinguish paths that are shortest for all realizations and paths that are

shortest for some realizations. Based on this analysis of paths, we derive some

basic results for robust path problems. Since the number of paths in the graph

grows exponentially with the number of nodes in the graph, this does not have a

practical use when the number of nodes in a graph is very large. Therefore, we

make a similar analysis of arcs which can be done in polynomial time. We show

that, knowing which arcs are on shortest paths for all realization of data and

which arcs are on shortest paths for some realization of data, we can preprocess

a given graph for robust path problems. In other words, we can eliminate arcs

from the problem that can not be on robust paths. By doing so, we solve the

robust path problems on a restricted feasible set of the problem. Then, we

show in practice that, this reduction of the feasible set helps us signi�cantly in

solving the robust path problem.
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The rest of the thesis is organized as follows: In chapter 2, we give the

formal de�nitions of absolute and relative shortest path problems in directed

acyclic graphs with interval data. We derive the mixed integer programming

formulation to �nd the relative robust path in a graph. Then, we make

an analysis of paths and derive some basic results of robust path problems.

Further, we extend our investigation to arcs based on the realization of data.

In chapter 3, we present our computational results. Finally, we give conclusions

in chapter 4.



Chapter 2

Shortest Path Problem with

Interval Data

In this chapter, we consider the robust version of shortest path problem on

directed acyclic graphs under arc length uncertainties. There are n nodes in

the graph where 1 is the origin node and n is the destination node. The

deterministic version of the problem can be stated as follows: Given a graph

G = (V;A) with node set V , and arc set A, a nonnegative length ca associated

with each arc a 2 A, the origin node 1 and the destination node n, the shortest

path problem is to �nd a path of minimum total length from 1 to n. The

problem can be formulated as follows:

min
X

(i;j)2A

lijyij

subject to

�
X

i2��(j)

yij +
X

k2�+(j)

yjk = bj j = 1; 2; ::; n

yij 2 f0; 1g 8(i; j) 2 A

where lij represents the length of arc (i; j) and yij, bj, �
�(j), �+(j) are de�ned

as

yij =

8<
:

1 if arc (i; j) is on the path

0 otherwise

6



CHAPTER 2. SHORTEST PATH PROBLEM WITH INTERVAL DATA 7

bj =

8>>><
>>>:

1 for j = 1

0 for j 6= 1; n

�1 for j = n

��(j) = fi 2 V : (i; j) 2 Ag, and �+(j) = fk 2 V : (j; k) 2 Ag: In this

formulation, the �rst constraint set represents the network 
ow constraints

and the second constraint set forces the variables to take on binary values. A

vector y satisfying the above set of constraints de�nes a path in the graph.

The problem is to �nd a path of minimum total length between the origin and

destination nodes. In this problem, the integer requirements can be relaxed

due to the unimodularity property of the constraint matrix. All the arc lengths

are assumed to be known in advance. This problem is one of the simplest and

well-studied combinatorial optimization problems, and it is a special case of

the class of network 
ow problems with a single source and a single sink.

An e�cient O(jV j2) time labeling algorithm in general networks was given by

Dijkstra [5]. Other polynomial time algorithms with complexity O(m) time

where m is the number of arcs can be found in [1].

Here, what is meant by arc length uncertainty is that there is a range of

possible realizations of arc lengths. This range may be based on pessimistic and

optimistic estimates of arc lengths or on likely deviations from average values.

In order to characterize it, we take the arc length values as interval ranges. To

be more precise, arc (i; j) has length lij within a given lower bound l
ij and an

upper bound lij i.e., lij � lij � lij. Each value in the interval can be realized

by some positive probability but no probability distribution is assumed for the

arc lengths. lij takes an arbitrary value in the interval [l
ij
; lij]. A realization

of all arc lengths is called a scenario s. l
s

ij
denotes the length of arc (i; j) in

scenario s.

Let P be the set of all paths from 1 to n. We denote by l
s

p
the length of

path p in scenario s, and lp, lp denote the length of path p when the lengths

of all arcs on path p are at upper bounds and the lengths of all arcs on path p

are at lower bounds, respectively.

In decision making environments where there is a signi�cant data
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uncertainty neither the deterministic approach nor the stochastic optimization

can accurately represent the aim of the decision maker. In this type of

environment, we believe that a \robustness approach" is more appropriate

to use. This approach assumes inadequate knowledge of the decision maker

about the random state of nature and develops a decision that hedges against

the worst case that may arise. It does not ignore uncertainty, even it takes a

pro-active step in response to the fact that predicted values of the uncertain

parameters will not occur. A robust solution is de�ned to be the one which

performs rather well whatever data is realized. Under any likely input data,

the aim is to �nd a solution that will have a reasonable objective value. Among

the many possible robustness criteria, we choose the \minimax" and \minimax

regret" criteria to apply to our problem. Minimax (absolute robustness)

criterion �nds a decision for which the maximum objective value of the solution

taken across all possible input data is as low as possible. This criterion

gives a solution based on the prediction that the worst case will happen.

Another criterion we used is the minimax regret (relative robustness) criterion.

Regret can be de�ned as the di�erence between the cost of a speci�c decision

and the corresponding cost of the optimal decision for a speci�c realization.

Then, minimax regret can be explained as to choose the decision with the

least maximum regret. These robustness criteria are introduced in [8]. In

this book, the authors have motivated the robustness approach to decision

making of signi�cant data uncertainty in contrast with deterministic and

stochastic optimization. They have listed several drawbacks of deterministic

and stochastic approach in the face of data uncertainty.

The rest of the chapter is organized as follows: In section 2.1, we give

the formal de�nition of absolute robust path problem. In section 2.2, we

de�ne what we mean by a relative robust path and derive the mixed integer

programming formulation of the problem. Then, in section 2.3 we make a

short analysis of paths and distinguish which are shortest for all realizations

and which are shortest for some realization. Then, we derive some basic results

about robust path problems. Finally, in section 2.4, we distinguish arcs which

are always on shortest paths, and those which are never on shortest paths.
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Then, we show that knowing which arcs are never on shortest paths, we can

preprocess a given graph for robust path problems.

2.1 Absolute Robustness

Next, we would like to de�ne what we mean by a robust path. A robust path is

de�ned to be the one which performs satisfactorily whatever data is realized. In

this section, we select the minimax (absolute robust) criterion to �nd a robust

path. This criterion will select a path for which the maximum path length

taken across all possible realizations is as low as possible. In other words, we

would like to �nd a path that minimizes the maximumpath length between the

origin and destination nodes. The mathematical formulation of the problem

is:

min
y

max
s2S

X
(i;j)2A

l

s

ij
yij

subject to

�
X

i2��(j)

yij +
X

k2�+(j)

yjk = bj j = 1; 2; ::; n

yij 2 f0; 1g 8(i; j) 2 A

where S denotes the set of all possible scenarios.

Kouvelis and Yu have studied the absolute robust path problem. In their

study, they used a scenario planning approach to characterize uncertainty. A

speci�c input data represents a possible realization. They have proved that

the absolute robust path problem is NP-complete even in layered networks of

width 2 and with only 2 scenarios. Further, they have showed that the problem

can be solved in pseudo-polynomial time for layered networks with bounded

scenario set and the problem is strongly NP-hard for an unbounded number of

scenarios.

In our case, in order to �nd a solution to the absolute robust path problem,

it is enough to consider the unique scenario where the lengths of all arcs

on the graph are set to their upper bounds since the maximum path length
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corresponds to this unique scenario. Then we can �nd the absolute robust path

by �nding the shortest path in the graph under this scenario. So, the problem

reduces to:

min
X

(i;j)2A

lijyij

subject to

�
X

i2��(j)

yij +
X

k2�+(j)

yjk = bj j = 1; 2; ::; n

yij 2 f0; 1g 8(i; j) 2 A

This is identical to the conventional shortest path problem. Then, the absolute

robust path problem can be solved in polynomial time by algorithms given in

aforementioned studies.

Under the absolute robustness criterion, the solutions are not sensible to

the realization of data. Use of this approach yields very conservative solutions

based on the anticipation that the worst case might well happen. Under

this criterion, the main concern is how to hedge against the worst possible

contingency.

2.2 Relative Robustness

In the previous section, the absolute robust path problem yields a very

conservative solution based on the prediction that the worst case will happen.

However, in reality a solution with a reasonable objective value under any likely

input data will be satisfactory for a decision maker. In this section, we would

like to �nd a path that the maximumdi�erence between the length of this path

and length of the shortest path for the corresponding realization of input data

is smallest. Saying di�erently, a solution that exhibits the smallest worst case

deviation from optimality over all potential realizations. This solution allows

the benchmarking of the performance of the decisions against the best possible

outcome under any data set. Next, we give a formal de�nition of what we mean

by robust deviation and then derive a mixed integer programming formulation
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of relative robust path problem.

De�nition 2.1 The robust deviation for a path p is de�ned as the di�erence

between the length of path p and the length of the shortest path in the graph

for a speci�c realization of arc lengths, i.e., dp = lp � lp� where dp denotes the

robust deviation and p
� denotes the shortest path in the graph.

De�nition 2.2 A path p is said to be a relative robust path if it has the

least maximum robust deviation among all paths. i.e., relative robust path pr =

arg minp2P maxs2S l
s

p
� l

s

p�(s) where p
�(s) denotes the shortest path in scenario

s.

Kouvelis and Yu [8] have also studied the relative robust path problem

under arc length uncertainties. They adopt a scenario planning approach

to characterize uncertainty. They have shown that the relative robust path

problem is NP-complete even in layered networks of width 2 and with only 2

scenarios. Also, they have proved that the problem is strongly NP-hard for an

unbounded number of scenarios.

De�ne yij's as follows:

yij =

8<
:

1 if arc (i; j) is on the path

0 otherwise

The mathematical formulation of the problem is:

min
y

max
s2S

(
X

(i;j)2A

l

s

ij
yij � x

s )

subject to

�
X

i2��(j)

yij +
X

k2�+(j)

yjk = bj j = 1; 2; ::; n

yij 2 f0; 1g 8(i; j) 2 A

where S denotes the set of all possible scenarios and x
s is the length of shortest

path in the graph under scenario s.
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In our case, in order to �nd the relative robust path in a graph, we need to

only consider the scenario which makes the robust deviation maximum. Since

robust deviation is de�ned as the di�erence between the length of path p and

the length of the shortest path in the graph, this scenario corresponds to a path

p in which the lengths of all arcs on p are at upper bounds and the lengths

of all other arcs at their lower bounds. This implies that we need to consider

only a �nite number of scenarios which is equal to the number of paths in the

graph. However, the number of paths in a graph grows exponentially with the

number of nodes in the graph.

Kouvelis and Yu [8] have conjectured that the relative robust path problem

with interval data is also NP-complete.

Next, we present a mixed integer programming formulation to �nd the

relative robust path in a graph. In the formulation, the length of arc (i; j) is

de�ned as lij = l
ij
+ (lij � l

ij
)yij for a given vector y. This is because when

yij = 1 the length of arc (i; j) is at its upper bound on path p de�ned by y.

All the lengths of other arcs with yij = 0 are at their lower bounds.

Let xj be the shortest distance from node 1 to node j. We have the following

set of constraints which speci�es shortest distances from node i to node j based

on whether arc (i; j) is on the path or not:

xj � xi + l
ij
+ (lij � l

ij
)yij 8(i; j) 2 A

So, xn is the length of the shortest path in the graph under the scenario de�ned

by y. The objective is to �nd a path p for which the di�erence between the

length of path p and the length of shortest path in the graph is the smallest

when the lengths of all arcs on path p are at their upper bound and the lengths

of all other arcs are at their lower bounds.

The mixed integer programming formulation of the relative robust path is

as follows:
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(RRP)

min
X

(i;j)2A

lijyij � xn

subject to

xj � xi + lij
+ (lij � lij

)yij 8(i; j) 2 A

�
X

i2��(j)

yij +
X

k2�+(j)

yjk = bj j = 1; 2; ::; n

x1 = 0

yij 2 f0; 1g 8(i; j) 2 A

xj � 0 j = 1; 2; ::; n

The second constraint in the formulation ensures that the resulting y vector

de�nes a path in the graph and the third constraint prevents an unbounded

solution.

Solutions under this criterion will be less conservative when compared with

absolute robustness. The deviation from optimality is a measure that allows the

benchmarking of the decision against the best possible outcome. The robust

decision is the one which keeps its performance close to best under any scenario.

It is relatively insensitive to the potential realizations of parameters.

2.3 Paths

In the previous section, we have seen that the relative robust path problem

is much harder than the conventional shortest path problem. In solving

the relative robust path problem, reducing the solution space becomes an

important issue. In this section, we would like to make an analysis of paths

according to the realizations of arc lengths. We classify paths as if they are

shortest for all realizations of arc lengths (permanent paths), if they are shortest

for some realizations of arc lengths (weak paths) and if they are never shortest

paths. These concepts are de�ned by Demir et al. [4]. Then knowing which

paths are never shortest, we can preprocess a given graph for relative robust

path problem. In other words, we can look for a relative robust path only



CHAPTER 2. SHORTEST PATH PROBLEM WITH INTERVAL DATA 14

among candidate paths. Therefore, our search space will be now smaller than

the original search space of the relative robust path problem.

2.3.1 Permanent Paths

In this section, we would like to �nd a path which is shortest for all realizations

of arc lengths. We call such a path a permanent path and give a characterization

of it.

De�nition 2.3 A path is said to be a permanent path if it is a shortest path

for all realizations of arc lengths.

A necessary and su�cient condition for a path to be permanent is:

Theorem 2.1 A path is a permanent path if and only if it is one of the shortest

paths when the lengths of all arcs on this path are at their upper bounds and

the lengths of all remaining arcs are at their lower bounds.

Proof

By de�nition, if a path is a permanent path then it is a shortest path for all

realizations of arc lengths.

If a path p is a shortest path when the lengths of all arcs on p are at their

upper bounds and the lengths of all the remaining arcs are at their lower

bounds, we have the following inequality for a path p

0

2 P :

X
(i;j)2pnp0

lij +
X

(i;j)2p\p0

lij �
X

(i;j)2p0np

lij +
X

(i;j)2p\p0

lij :

Since
P

(i;j)2pnp0 lij �
P

(i;j)2pnp0 lij and
P

(i;j)2p0np lij �
P

(i;j)2p0np lij we have the

following inequality:

X
(i;j)2pnp0

lij +
X

(i;j)2p\p0

lij �
X

(i;j)2p0np

lij +
X

(i;j)2p\p0

lij :
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If we take arbitrary values of arcs (i; j) in p \ p

0, we have

X
(i;j)2pnp0

lij +
X

(i;j)2p\p0

lij �
X

(i;j)2p0np

lij +
X

(i;j)2p\p0

lij:

So, lp � lp0 for all realization of arc lengths. Hence, p is a permanent path. 2

We can check whether a given path p is permanent or not by simply setting

the lengths of all arcs on p to their upper bounds and setting the lengths of

all the remaining arcs to their lower bounds, then �nd a shortest path in the

graph. If the shortest path in the graph has the same length as p, then p is a

permanent path. Otherwise, p can not be a permanent path.

Permanent solutions remove uncertainty from the decision making process.

If such a solution is found, then we can decide on this solution without any

thought of suboptimality. Moreover, in our case, the permanent path is both

the absolute robust path and the relative robust path. It is the absolute robust

path, because it is one of the shortest paths under any realization of arc lengths.

It is also the relative robust path because it is one of the shortest paths when

the lengths of all arcs on this path are at their upper bounds and lengths of all

other arcs are at their lower bounds. This scenario corresponds to the scenario

which makes the robust deviation maximum and the deviation here is zero. So,

this path is also the relative robust path.

In order for a permanent path to exist in a graph, the interval estimates

should be as small as possible. It is more likely for a permanent path to exist

if the upper bounds and the lower bounds are closer to each other. On the

other hand, the larger the intervals of arc lengths, the more arc realizations are

possible and this avoids the existence of permanent paths [11].

2.3.2 Weak Paths

We now look for a path that is shortest for some realizations of arc lengths.

We call such a path a weak path and give a characterization of it. Then, we

prove the basic result that a relative robust path is a weak path.
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De�nition 2.4 A path is said to be a weak path if it is a shortest path for

at least one realization of arc lengths.

Next, we give a necessary and su�cient condition for a path to be weak.

Theorem 2.2 A path p is a weak path if and only if it is a shortest path when

the lengths of all arcs on path p are at their lower bounds and the lengths of all

the remaining arcs are at their upper bounds.

Proof

If a path p is a shortest path when the lengths of all arcs on p are their lower

bounds and the lengths of all the remaining arcs are at their upper bounds,

then it is a weak path by de�nition.

Assume a path p is a weak path. Then, it is a shortest path for at least

one realization of arc lengths. Denote this realization by scenario s. Then for

any p
0 2 P we have,

X
(i;j)2pnp0

l

s

ij
+

X
(i;j)2p\p0

l

s

ij
�

X
(i;j)2p0np

l

s

ij
+

X
(i;j)2p\p0

l

s

ij
:

Since,
P

(i;j)2pnp0 lij �
P

(i;j)2pnp0 l
s

ij
and

P
(i;j)2p0np l

s

ij
�
P

(i;j)2p0np lij we have

X
(i;j)2pnp0

lij �
X

(i;j)2pnp0

l

s

ij
�

X
(i;j)2p0np

l

s

ij
�

X
(i;j)2p0np

lij:

If we add
P

(i;j)2p\p0 lij to both sides of the �rst and the last term, we get,

X
(i;j)2pnp0

l
ij
+

X
(i;j)2p\p0

l
ij
�

X
(i;j)2p0np

lij +
X

(i;j)2p\p0

l
ij
:

So, p is a shortest path when the lengths of all arcs on p are at their lower

bounds and the lengths of all the remaining arcs are at their upper bounds. 2

Based on the above analysis of paths, we now derive the basic result for

robust path problems. Clearly, an absolute robust path is a weak path. We

now show that, a relative robust path is also a weak path.
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Proposition 2.1 A relative robust path is a weak path.

Proof

Let p be a path, which is not weak. Let p0 be another path which is a shortest

path when the lengths of all arcs on p are at their lower bounds and the

lengths of the remaining arcs are at their upper bounds. Then, lp > lp0 for

all realizations of arc lengths. Consider the scenario s
� for path p

0 when the

lengths of all arcs on p
0 are at their upper bounds and the lengths of all the

remaining arcs are at their lower bounds. Then, we have:

l

s
�

p
0 � l

s
�

p
�(s�) < l

s
�

p
� l

s
�

p
�(s�) � max

s2S
l

s

p
� l

s

p
�(s):

So p can not have the least maximum regret. Hence, p cannot be a relative

robust path. 2

The size of the weak solution set depends on the gap between the lower and

upper bounds. The wider the gap between bounds, the more arc realizations

are possible. Therefore, we have a larger weak solution set.

Since the number of paths in the graph grows exponentially with the number

of nodes in the graph, the analysis of paths does not have a practical use when

the number of nodes is large. Instead, we can make a similar analysis of arcs

which can be done in polynomial time.

2.4 Arcs

In this section, we make an analysis of arcs which is similar to what we make

for paths. We classify arcs as if they are on shortest paths for some realizations

and if they are never on shortest paths. We call an arc a weak arc if it is on a

shortest path for some realization of arc lengths and non-weak arc if it is never

on a shortest path. We show that we can make this analysis in polynomial time.

Further, we can use this information of arcs in solving the relative robust path.

If we can determine which arcs are never on shortest paths, we can eliminate

the paths using these arcs from the graph, since a relative robust path is a
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weak path. We investigate the arc problems on two di�erent types of graphs:

complete graphs and layered graphs.

2.4.1 Arc Problems on Complete Graphs

In this section, we investigate the arc problems on complete graphs. A

complete graph is an acyclic graph in which each pair of distinct nodes i

and j for i < j is joined by arc (i; j). First, we give a formal de�nition of what

we mean by a weak arc. Then we present two polynomial time procedures for

which the eliminated arcs from these procedures are non-weak arcs. We also

give a mixed integer programming formulation to check whether a given arc is

weak or not.

De�nition 2.5 An arc (i; j) is said to be a weak arc if it is on one of the

weak paths.

We now present two procedures which eliminate arcs that cannot be on

weak paths. The procedures are based on the following necessary condition of

an arc in order to be weak.

Proposition 2.2 If arc (i; j) is weak, then it is weak in the subgraph generated

by node 1 up to node j and it is weak in the subgraph generated by node i up

to node n.

Proof

Assume arc (i; j) is not weak in the subgraph generated by node 1 up to node

j. Then, the path p uses arc (i; j) is not a weak path in the subgraph when

the lengths of all arcs on p are at their lower bounds and the length of the

remaining arcs are at their upper bounds. Then, there exists another path

p
0 2 P such that X

(k;l)2p

l
kl >

X
(k;l)2p0

lkl:
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Let p0 be an arbitrary path which has the same arcs as p in the partial path

from node j to node n, i.e., the partial path pj�n. Then, we have:

X
(k;l)2pnpj�n

l
kl
+ l

pj�n
>

X
(k;l)2p0npj�n

lkl + l
pj�n

:

So, p cannot be weak in the whole graph. Since p
0 is picked arbitrarily, arc

(i; j) can not be weak. 2

So, based on Proposition 2.2, we can decide if arc (i; j) is non-weak by

checking whether it is weak in the subgraph generated by node 1 up to node

j and it is weak in the subgraph generated by node i up to node n. We can

accomplish this task as follows. In order to check an arc (i; j) is weak or not

in the subgraph generated by node i up to node n, we start with node i and

consider each node one by one to node n. We set all the arc lengths in the

subgraph to their upper bounds except the arc (i; j) and the arcs that are

emanating from node j, i.e., arcs (j; k) in the set �+(j) = fk 2 V : (j; k) 2 Ag.

We set the lengths of these arcs to their lower bounds. By doing so, our

procedure will construct a weak path using arc (i; j), if one exist. In this

realization of arc lengths, we �nd a shortest path from node i to node j + 1.

We favor the path that uses arc (i; j), if there exist two equal length shortest

paths. We have two possibilities: If the shortest path between nodes i and j+1

uses arc (i; j), we set the lengths of arcs that are emanating from node j + 1

to their lower bounds, i.e., arcs in the set �+(j +1) = fk 2 V : (j +1; k) 2 Ag

and continue our investigation with node j + 2. On the other hand, if the

shortest path does not use arc (i; j), we do not change any of the arc lengths

and continue our investigation with node j + 2. By going through the same

steps, we continue our investigation till node n. After we reach node n, if the

shortest path does not use (i; j), by proposition 2.2, we can de�nitely say that

arc (i; j) can not be weak, since if there is not a weak path in the subgraph

that uses arc (i; j), then there is not a weak path in the whole graph that uses

arc (i; j). On the other hand, if the shortest path uses arc (i; j), we cannot

conclude anything since this proposition is only a necessary condition.

Determining whether an arc (i; j) is weak in the subgraph generated by node

1 up to node j is equivalent to the above procedure applied to the subgraph
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generated by node 1 up to node j.

Next, we present the �rst procedure in order to check whether an arc (i; j)

is weak or not.

Procedure Forward

1. Generate the subgraph starting from node i to node n.

2. Set lij = l
ij
, ljk = l

jk
8k 2 V and lkl = lkl 8 other (k; l) 2 A.

3. For node j + 1 to node n

(a) Find a shortest path between nodes i and j + 1.

i. If the shortest path uses arc (i; j), then set lj+1;k = l
j+1;k 8k 2

V .

4. If the shortest path between nodes i and n does not use (i; j), then arc

(i; j) is not a weak arc.

We have a proposition which states that the procedure Forward distinguishes

non-weak arcs.

Proposition 2.3 The arcs eliminated by the procedure Forward are non-weak

arcs.

Proof

Simply follows from proposition 2.2. 2

Now, we present the second procedure which is similar to the �rst one.

Procedure Backward

1. Generate the subgraph starting from node 1 to node j.

2. Set lij = lij, lri = lri 8r 2 V and lkl = lkl 8 other (k; l) 2 A.
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3. For node i� 1 to node 1

(a) Find a shortest path between nodes i� 1 and j.

i. If the shortest path uses arc (i; j), then set lr;i�1 = l
r;i�1 8r 2 V .

4. If the shortest path between nodes j and 1 does not use (i; j), then arc

(i; j) is not a weak arc.

We have a similar proposition which states that the procedure Backward

distinguishes non-weak arcs.

Proposition 2.4 The arcs eliminated by the procedure Backward are non-weak

arcs.

The following proposition states the complexity of both procedures.

Proposition 2.5 The running times of the procedures Forward and Backward

are O(m2).

Proof

In the worst case, we solve a shortest path problem for a given arc and it takes

O(m) time to �nd the shortest path in the graph. There are totally m arcs in

the graph. 2

We may not determine all the non-weak arcs even if we try both of the

procedures. Also, the procedures do not determine the same non-weak arcs.

However, in practice, we can �gure out almost all of the non-weak arcs by

these procedures. Still, we have a mixed integer programming formulation to

determine whether a given arc is weak or not. The formulation depends on the

following characterization of weak arcs. A characterization of weak arcs is as

follows.

Lemma 2.1 An arc (i; j) is weak if and only if minp2P(i;j)flp � l

sp

p�(sp)
g = 0,

where P(i;j) is the set of paths using arc (i; j), sp is the scenario in which the
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lengths of all arcs on path p are at their lower bounds and the lengths of the

remaining arcs at their upper bounds.

We now present a mixed integer programming formulation which determines

whether a given arc (i; j) is weak or not.

(WA)

min
X

(k;l)2A

l
kl
ykl � xn

subject to

xl � xk + lkl � (lkl � l
kl
)ykl 8(k; l) 2 A

�
X

k2��(l)

ykl +
X

h2�+(l)

ylh = bl l = 1; 2; ::; n

yij = 1

x1 = 0

ykl 2 f0; 1g 8(k; l) 2 A

xk � 0 k = 1; 2; ::; n

In the formulation, a vector y satisfying the network 
ow constraints and

yij = 1 de�nes a path in the graph using arc (i; j). The length of arc (i; j) is

de�ned as lij = lij � (lij � lij)yij for a given vector y. This is because when

yij = 1 the length of arc (i; j) is at its lower bound on path p de�ned by y. All

the lengths of other arcs with yij = 0 are at their upper bounds.

Let xj be the shortest distance from node 1 to node j. We have the following

set of constraints which speci�es shortest distances from node i to node j based

on whether arc(i; j) is on the path or not:

xj � xi + lij � (lij � lij)yij 8(i; j) 2 A

So, xn is the length of the shortest path in the graph under the scenario de�ned

by y. The objective is to �nd a path p using arc (i; j) for which the di�erence

between the length of path p and the length of shortest path in the graph is

the smallest when the lengths of all arcs on path p are at their lower bound

and the lengths of all other arcs are at their upper bounds.
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Next, we give a theoremwhich characterizes weak arcs using the formulation

WA.

Theorem 2.3 Arc (i; j) is weak if and only if WA has an optimal objective

value of 0.

In this formulation, we are trying to �nd a path p using arc (i; j) where

the lengths of all arcs on this path are at their lower bounds, and the lengths

of all remaining arcs are at their bounds. Under this scenario, arc (i; j) is a

weak arc if and only if the di�erence between the length of path p using arc

(i; j) and length of the shortest path in the graph is zero. Otherwise, arc (i; j)

cannot be weak.

In practice, solving a mixed integer problem to distinguish all non-weak arcs

will take huge amount of time. It is more appropriate to run two polynomial

time procedures to distinguish almost all the non-weak arcs.

2.4.2 Arc Problems on Layered Graphs

Here, we would like to investigate the arc problems on layered graphs. A

layered graph is de�ned as one that holds the following properties. The node

set can be partitioned into disjoint subsets V = fsg [ V1 [ V2 [ : : : [ Vm [ ftg

with Vi \ Vj = ;, i 6= j. The arcs exist only from s to V1, from Vm to t, and

from Vk to Vk+1 for k = 1; 2; : : : ;m�1. Let w = maxfjVkj : k = 1; 2; : : : ;mg, w

is called the width of the layered graph. This class of graphs are special cases

of general graphs. However, this is not a restricted class of graphs since every

acyclic graph can be turned into a layered graph by adding dummy nodes and

arcs. Figure 2.1 shows an example of an m layered graph with width 2.

In this section, we classify the arcs on layered graphs into two groups: Arcs

incident at nodes s and t and intermediate arcs. First, we present a procedure

to check whether an arc incident at nodes s or t is weak or not. Then, we modify

that procedure to determine if an intermediate arc is weak or not. Both of the
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11 21 31

12 22 32 m2

ts

m1

Figure 2.1: An m layered graph with width 2

procedures have polynomial running times.

Arcs incident at nodes s and t

In this section, we give a procedure which can distinguish whether a given arc

which is incident at nodes s and t is weak or not. We present the procedure

for arcs incident at node s. The procedure for arcs incident at node t is same

as the given procedure but for the mirror version of the graph.

The procedure is based on the logic that it constructs a weak path using

arcs incident at node s if one exist. The lengths of the all arcs on this path

will be at their lower bounds and the lengths of all other remaining arcs are at

their upper bounds. For simplicity, we present the algorithm for arc (s; 11).

First, we generate the subgraph with node s, nodes in V1, and nodes in V2.

The procedure starts with setting the lengths of all arcs that can possibly be

on a path with (s; 11) to their lower bounds and lengths of all other arcs to

their upper bounds. Then, we �nd the shortest paths from node s to to all

nodes in layer 2. If there are equal length paths, we favor the path that uses

arc (s; 11). There are three possibilities to consider.

If all the shortest paths from node s to all nodes in layer 2 uses arc (s; 11),

then we can say that arc (s; 11) is weak. This is because, all the weak paths on

the graph will use arc (s; 11). Another possibility is that none of the shortest
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paths uses arc (s; 11). Then, arc (s; 11) can not be a weak arc since we can

not construct a weak path path that uses arc (s; 11). Finally, if some of the

shortest paths from node s to nodes in layer 2 use arc (s; 11), then arc (s; 11)

can be weak or not. In order to decide whether it is weak or not, we should

continue our investigation further. We accomplish this task as follows. We

shrink the graph between nodes s and nodes in layer 2. We set the lengths of

arcs (s; 2j) to the shortest path lengths from node s to node 2j. Here, we label

shortest paths that are at their lower bounds. At this point, we add the layer

3 to the subgraph. We decide the lengths of arcs between layer 2 and layer 3

as follows: If the shortest path between node s and nodes 2j in layer 2 uses

arc (s; 11), i.e., labeled, then we set the lengths of arcs (2j; 3l) to their lower

bounds since these arcs can possibly be on a weak path with arc (s; 11). If the

shortest paths from node s to other nodes in layer 2 do not use arc (s; 11), we

set the lengths of other arcs to their upper bounds since these arcs can not be

on a weak path with arc (s; 11). Then, we consider the new shrunk graph and

�nd shortest paths from node s to all nodes in layer 3.

If all the shortest paths in the shrunk graph use arc (s; 11), i.e., labeled,

then arc (s; 11) is a weak arc. If none of the shortest paths use arc (s; 11), then

arc (s; 11) is not a weak arc. If some of the shortest paths uses arc (s; 11), we

shrink the graph between node s and nodes in layer 3, and add another layer

to the subgraph. Then, we continue the investigation further as de�ned above.

In the worst case, we can shrink the graph till layer t and decide whether arc

(s; 11) is weak or not.

Determining whether arcs incident at node t are weak or not is similar to

the above procedure. Actually, it is same as this procedure applied in the

mirror version of the graph.

Next, we present the procedure for arc (s; 11).



CHAPTER 2. SHORTEST PATH PROBLEM WITH INTERVAL DATA 26

Procedure

1. Generate the subgraph starting from node s, nodes in V1 and nodes in

V2.

2. Set lij = lij 8(i; j) 2 A.

3. Set l(s;11) = l(s;11) and l(11;2j) = l(11;2j) for all 2j in V2.

4. For nodes in B = V2; V3; : : : ; Vm; t

(a) Find shortest paths between node s to nodes in B

i. If all the shortest paths use arc (s; 11), then arc (s; 11) is a weak

arc. Stop.

ii. If none of the shortest paths uses arc (s; 11), then arc (s; 11) is

not a weak arc. Stop.

iii. For all shortest paths from s to 2j in V2 that use arc (s; 11), set

l(2j;3k) = l(2j;3k) for all k 2 V3.

iv. Shrink the graph from node s to 2j in V2, set the lengths of arcs

(s; 2j) to the shortest path lengths from node s to node 2j.

5. If the shortest path between nodes s and t uses arc (s; 11), then arc (s; 11)

is weak. Otherwise, not.

We have a proposition which states the complexity of the above procedure.

Proposition 2.6 The running time of the above procedure in an m layered

graph with width w is O(mw
2).

Proof

For each node in layer k, we can �nd a shortest path in O(w) time since there

exist w paths to consider, and we have w nodes in layer k. In the worst case,

we go through all the m layers in the graph. 2
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Example 1

To clarify the above procedure, we want to apply it on the graph given in �gure

2.2 which is a 3 layered graph with width 3. We want to apply the procedure

for arc (s; 12).

s

11 21

12

13

22

23 33

31

32 t

[7,8]

[10,11]

[4,8]

[12,13]

[5,7]

[11,12]

[2,4]

[9,11]

[5,6]

[6,9]

[13,14]

[10,11]

[9,11]

[7,9]

[2,3]

[1,5]

[11,12]

[8,9]

[6,10]

[8,9]

[4,11]

[4,9]

[13,14]

[7,8]

Figure 2.2: A 3 layered graph with width 3

We �rst generate the subgraph with nodes s, nodes in V1 and nodes in

V2. We set the lengths of arcs (s; 12), (12; 21), (12; 22), and (12; 23) to their

lower bounds and the lengths of the remaining arcs to their upper bounds. We

represent the arcs at their upper bounds with dashed lines. The subgraph is

given in �gure 2.3. Then, we �nd the shortest paths from node s to all nodes

in layer 2.

The shortest path from node s to node 21 uses arc (s; 12), but the other

shortest paths do not use this arc. So, we shrink the graph between nodes s

and nodes in layer 2 and add layer 3 to the graph. We set the lengths of arcs

(21; 31), (21; 32), and (21; 33) to their lower bounds and remaining arcs to their

upper bounds. The resulting graph is in �gure 2.4.

We �nd the shortest paths from node s to all nodes in layer 3. Only, the

shortest path from node s to node 33 uses arc (s; 12). Then, we shrink the

graph again and add node t to the subgraph. We set the length of arc (33; t)

to its lower bound and other arcs to their upper bounds. The resulting graph
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Figure 2.3: Subgraph generated by node s, nodes in layer 1 and layer 2
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Figure 2.4: Subgraph shrunk between node s and nodes in layer 2
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can be seen in �gure 2.5.

s

31

33

32 t9

18

20

19

11

4

Figure 2.5: Subgraph shrunk between node s and nodes in layer 3

Finally, the shortest path in the resulting graph uses arc (s; 12). By

applying above procedure, we construct a weak path that uses arc (s; 12).

So, we can conclude that arc (s; 12) is a weak arc.

Intermediate Arcs

We now consider the arcs in a layered graph other than arcs incident at nodes

s and t. We call such arcs intermediate arcs and give a necessary condition for

an intermediate arc to be weak. We can only decide non-weak arcs that does

not satisfy this necessary condition. Then, we present the slightly modi�ed

version of the above procedure which decides non-weak arcs.

Proposition 2.7 If an intermediate arc (i1; j1) is weak, then it is weak in the

subgraph generated by node s, nodes in layer 1 up to layer i and node j1, and

it is weak in the subgraph generated by node i1, nodes in layer j up to layer m

and node t.

If an intermediate arc is not weak in the subgraph, then it cannot be weak

in the whole graph. So, based on Proposition 2.7, we can check whether an arc
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(i1; j1) is weak or not by checking whether it is weak in the subgraph generated

by node s, nodes in layer 1 up to layer i and node j1, and it is weak in the

subgraph generated by node i1, nodes in layer j up to layerm and node t. The

procedure is same as the above procedure except that we need to consider the

whole graph.

In order to check whether arc (i1; j1) is weak or not in the subgraph

generated by node i1, nodes in layer j up to layer m and node t, we assume

the origin node is i1 and apply the above procedure. The di�erence is that

after the procedure, we can only decide non-weak arcs. To be more precise, we

apply the procedure on the previous �gure 2.2 for arc (11; 21).

Example 2

To check whether arc (11; 21) is weak or not, we generate the subgraph by

node 11, nodes in layer 2 and layer 3, and node t. First, we need to only

consider node 11, nodes in layer 2 and layer 3. We set the lengths of arcs

(11; 21), (21; 31), (21; 32), and (21; 33) to their lower bounds and the lengths

of the other arcs to their upper bounds. The resulting graph can be seen in

�gure 2.6
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Figure 2.6: Subgraph generated by node 11, nodes in layer 2 and layer 3

The shortest path from node 11 to node 33 uses arc (11; 21). In fact, we
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have two equal length paths but we favor the path that uses arc (11; 21). Then,

we shrink the graph between node 11 and nodes in layer 3 and add the node t

to our subgraph. We set the length of arc (33; t) to its lower bound and lengths

of the other two arcs to their upper bounds. The �nal graph can be seen in

�gure 2.7.
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33
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19

12
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4

Figure 2.7: Subgraph shrunk between node 11 and nodes in layer 3

Finally, the shortest path in the resulting subgraph does not use arc (11; 21).

So, the necessary condition is not satis�ed and we decide that arc (11; 21) is

not a weak arc.



Chapter 3

Computational Results

In the previous chapter, we have seen that the relative robust version of the

shortest path problem is much harder than the conventional shortest path

problem. It is di�cult to �nd a polynomial time algorithm for solving it.

However, for practical purposes, especially when the number of variables is

large, reducing the solution space becomes an important issue. If we can

identify variables that can not be candidates for a robust solution, we can

eliminate these variables from the problem. So, the resulting problem will

have less number of variables, and can be solved faster than the original one.

In order to solve the relative robust path problem, our approach is as

follows: We have identi�ed paths that are shortest for all realizations of arc

lengths and that are shortest for some realizations of arc lengths. We called

these paths permanent paths and weak paths, respectively. Then, we have

shown the basic result that a relative robust path is a weak path. Therefore,

in solving the problem, we need to consider only the weak path set that can

possibly be robust paths. We can eliminate arcs from the problem that are

proved not to be on weak paths. The resulting problem will be easier to solve.

We have conducted extensive computational studies to test the e�ciency

of our approach in solving the relative robust path problem. We �rst solved

the problem with all the arcs in the graph. Then, we used procedures that are

32
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presented in chapter 2 (procedures for layered graphs) to eliminate non-weak

arcs from the problem and then resolve it. The performance measure we used

in comparing the e�ciency of our approach is the cpu time.

The graphs we used in our computational experiments are layered graphs.

This is to avoid shortest paths that passes through a small number of nodes,

e.g. a shortest path directly from the origin node to the destination node.

The input data to relative robust shortest path problem are arc lengths,

i.e., upper and lower bounds. We generate the input data as follows. We

�rst generate a base case scenario for a given arc. We consider two di�erent

base cases randomly generated from a uniform distribution between numbers:

U(1; 20) and U(1; 100). Let c
0
a
denote the value of the base case scenario.

Then, the lower bounds la are randomly generated from a uniform distribution

U((1 � d)c0
a
); (1 + d)c0

a
) where d is a prespeci�ed number (0 < d < 1). Then,

the upper bounds are generated from U(la + 1; (1 + d)c0
a
).

We did our computational results on layered graphs with width 2, 3, and

5. For each set of data (number of nodes in the graph, percentage deviation

from base case d), 10 problems are solved and average performance for various

measures are reported. For the problem set at the �fth row of each table, we run

only 5 problems. We �rst generate the base case from a uniform distribution

U(1; 20) and then from a uniform distribution U(1; 100).

Computational studies were conducted with the use of a C code and run

on a Sun workstation by using Cplex linear optimizer 5.0. The number of arcs

and the number of non-weak arcs in the graph are reported to compare the

numbers with di�erent percentage deviation from base case. They are denoted

as arcs and non-weak, respectively. We report three di�erent CPU seconds

for obtaining the optimal relative robust solution. By preprocessing, we

present the time spent by preprocessing procedures. The second one, cpu1,

corresponds the solution time of the problem with all the arcs in the graph

and the third one, cpu2, corresponds the solution time of the problem after

preprocessing. In addition, we report the percent reduction obtained from our

approach, i.e., preprocessing of the graph. We �rst compute the di�erence
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between the cpu time of the solution with the all arcs and cpu time of the

preprocessing plus cpu time of the solution after preprocessing. Then, the

percent reduction is computed by taking the ratio of this di�erence to the cpu

time of the solution before preprocessing.

We present the computational studies in two di�erent classes of graphs:

Complete layered graphs and sparse layered graphs.

3.1 Computational Results in Complete Lay-

ered Graphs

A complete layered graph is the one where each pair of distinct nodes between

s and V1, Vm and t, and Vk and Vk+1 for k = 1; 2; : : : ;m � 1 is joined by an

arc. Tables 3.1 through 3.14 show the computational results for the relative

robust path problem with 30 through 420 nodes and the deviation parameter

0.3, 0.6 and 0.9, respectively. Since the solution time of the problem depends

strongly on the deviation parameter from base case, we consider di�erent sizes

of graphs in presenting the computational results.

To be more precise, in Table 3.1, we conduct the experiments in a

layered graph of width 2. We generate the base case scenario c
0
a
from a

uniform distribution U(1; 20). Then, we generate lower bounds from the

uniform distribution U((1 � d)c0
a
); (1 + d)c0

a
) and generate upper bounds from

U(la + 1; (1 + d)c0
a
). For example, in �rst row we take a graph of 180 nodes

and generate the lower bounds la from U((0:7)c0
a
; (1:3)c0

a
), then generate the

upper bounds from U(la+1; (1:3)c0
a
). There exist totally 360 arcs in the graph

for which 176 of them were decided to be non-weak by procedures presented

in Chapter 2. The time spent by preprocessing procedures is 1.12 cpu seconds.

The average solution time without preprocessing of the graph takes 7.62 cpu

seconds whereas it takes 2.75 cpu seconds after preprocessing. Finally, we have

a %49 reduction in solution time of the problem if we preprocess the graph.
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node d arcs non-weak preprocessing cpu1 cpu2 % reduction

180 0.3 360 176 1.12 7.62 2.75 % 49

210 0.3 420 203 1.70 27.33 13.61 % 44

240 0.3 480 233 2.60 281.3 74.96 % 72

270 0.3 540 264 3.41 199.2 75.85 % 60

300 0.3 600 290 4.55 1948 352.1 % 82

Table 3.1: Computational results for base case (1; 20) in a layered graph of

width 2 for d = 0:3

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

120 0.6 240 88 0.39 5.76 2.78 % 45

150 0.6 300 111 0.73 24.09 10.27 % 54

180 0.6 360 132 1.21 233.8 78.97 % 66

210 0.6 420 154 1.85 481.7 323.4 % 32

240 0.6 480 174 2.86 506.0 256.7 % 49

Table 3.2: Computational results for base case (1; 20) in a layered graph of

width 2 for d = 0:6

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

30 0.9 60 12 0.01 0.08 0.07 % 0

60 0.9 120 21 0.07 1.27 1.04 % 13

90 0.9 180 31 0.21 19.11 15.75 % 16

120 0.9 240 44 0.43 106.6 70.19 % 34

150 0.9 300 52 0.81 1906 1062 % 44

Table 3.3: Computational results for base case (1; 20) in a layered graph of

width 2 for d = 0:9

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

240 0.3 480 273 2.60 6.56 1.91 % 31

270 0.3 540 310 3.23 10.82 5.97 % 15

300 0.3 600 339 4.55 32.89 11.02 % 53

330 0.3 660 379 5.79 111.0 20.0 % 77

360 0.3 720 413 7.68 149.1 38.9 % 69

Table 3.4: Computational results for base case (1; 100) in a layered graph of

width 2 for d = 0:3
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node d arcs non-weak preprocessing cpu1 cpu2 % reduction

180 0.6 360 168 1.24 7.42 2.48 % 50

210 0.6 420 196 1.68 29.72 9.35 % 63

240 0.6 480 223 2.86 122.8 31.16 % 72

270 0.6 540 253 3.46 370.4 86.1 % 76

300 0.6 600 280 5.07 1060 335.1 % 68

Table 3.5: Computational results for base case (1; 100) in a layered graph of

width 2 for d = 0:6

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

120 0.9 240 82 0.43 5.23 2.87 % 37

150 0.9 300 104 0.74 39.63 20.64 % 46

180 0.9 360 124 1.40 344.5 135.1 % 60

210 0.9 420 149 1.83 1600 722.1 % 55

240 0.9 480 159 3.24 6683 3242 % 51

Table 3.6: Computational results for base case (1; 100) in a layered graph of

width 2 for d = 0:9

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

180 0.3 537 323 1.95 6.28 1.23 % 49

210 0.3 627 382 2.97 4.46 1.12 % 8

240 0.3 717 433 4.37 18.42 3.74 % 56

270 0.3 807 496 6.02 31.53 5.03 % 65

300 0.3 897 558 7.76 79.64 13.95 % 73

Table 3.7: Computational results for base case (1; 20) in a layered graph of

width 3 for d = 0:3

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

180 0.6 537 222 2.06 45.25 22.48 % 46

210 0.6 627 274 3.45 291.9 102.8 % 64

240 0.6 717 299 4.49 309.3 163.4 % 46

270 0.6 807 358 7.12 354.2 180.3 % 47

300 0.6 897 393 9.32 2275 928.9 % 59

Table 3.8: Computational results for base case (1; 20) in a layered graph of

width 3 for d = 0:6
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node d arcs non-weak preprocessing cpu1 cpu2 % reduction

60 0.9 177 33 0.13 1.91 1.42 % 19

90 0.9 267 59 0.41 9.99 8.36 % 12

120 0.9 357 70 0.79 117.8 102.8 % 12

150 0.9 447 87 1.63 1946 1654 % 15

180 0.9 537 106 2.17 6785 4743 % 30

Table 3.9: Computational results for base case (1; 20) in a layered graph of

width 3 for d = 0:9

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

180 0.9 537 211 2.17 61.53 33.11 % 43

210 0.9 627 255 3.57 378.6 225.6 % 39

240 0.9 717 291 5.03 1073 386.2 % 64

240 0.9 807 338 7.26 1583 580.1 % 63

300 0.9 897 372 11.23 3977 1979 % 50

Table 3.10: Computational results for base case (1; 100) in a layered graph of

width 3 for d = 0:9

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

300 0.3 1485 1016 12.85 39.83 4.29 % 57

330 0.3 1635 1137 18.02 24.03 3.81 % 9

360 0.3 1785 1235 22.79 62.21 10.36 % 47

390 0.3 1935 1331 28.50 78.36 12.11 % 48

420 0.3 2085 1436 35.36 326.6 52.58 % 73

Table 3.11: Computational results for base case (1; 20) in a layered graph of

width 5 for d = 0:3

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

210 0.6 1035 504 6.40 12.75 6.60 -

240 0.6 1185 577 9.19 21.54 12.69 -

270 0.6 1335 639 12.82 124.8 38.95 % 59

300 0.6 1485 700 16.37 241.4 110.43 % 47

330 0.6 1635 784 22.63 374.2 159.9 % 51

Table 3.12: Computational results for base case (1; 20) in a layered graph of

width 5 for d = 0:6
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node d arcs non-weak preprocessing cpu1 cpu2 % reduction

120 0.9 585 135 1.74 15.47 12.82 % 6

150 0.9 735 161 2.97 35.97 25.40 % 21

180 0.9 885 182 5.09 167.4 120.1 % 25

210 0.9 1035 213 7.80 799.1 649.6 % 18

240 0.9 1185 288 12.11 930 611.5 % 33

Table 3.13: Computational results for base case (1; 20) in a layered graph of

width 5 for d = 0:9

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

210 0.9 1035 470 6.47 21.56 12.77 % 11

240 0.9 1185 521 9.57 76.52 37.16 % 39

270 0.9 1335 601 12.96 98.29 55.06 % 31

300 0.9 1485 658 21.31 148.5 66.79 % 41

330 0.9 1635 729 23.01 753.9 361.1 % 49

Table 3.14: Computational results for base case (1; 100) in a layered graph of

width 5 for d = 0:9

The computational results support our claim for computational e�ciency

of the preprocessing of graphs. In the average, the percent reduction obtained

from preprocessing is %42:91. We now give a detailed analysis of percent

reduction based on the factors percent deviation d from base case, width of the

graph and base case distribution.

d % reduction

0.3 % 51.9

0.6 % 49.5

0.9 % 32.6

Table 3.15: Deviation parameter vs. % Reduction

It can be seen from Table 3.15 that the percent reduction is higher when

the deviation parameter is lower. This can be explained as follows. While the

deviation parameter increases, the gap between upper and lower bounds also

increases. This results into larger intervals for arc lengths. As the intervals

become larger, more arc realizations are possible. Therefore we have a larger

weak set, hence a smaller number of eliminated arcs from preprocessing. This

in turn yields a low percent reduction from preprocessing.
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In addition, it can be seen from the tables that the decision making process

itself becomes harder when the deviation parameter increases. Hence, for an

easier decision making process, the lower and the upper bounds should be closer

to each other.

width % reduction

2 % 49.3

3 % 43.0

5 % 33.3

Table 3.16: Width vs. % Reduction

When we compare the percent reduction among di�erent width sizes of the

graphs, in Table 3.16, we can see that there is a decrease in percent reduction

as the width of the graph increases. This can be explained as follows. For a

layered graph of width two, for any node, we have two incoming arcs and two

outgoing arcs. If one of the arcs decided to be non-weak by the procedures

and eliminated from the problem, in a branch-and-bound procedure, we have

%50 gain in the branching tree. However, for larger widths of graphs, this gain

will decrease since there are more entering and exiting arcs. Hence, the overall

reduction in this case will be lower.

base case % reduction

U(1; 20) % 39.0

U(1; 100) % 49.9

Table 3.17: Base case vs. % Reduction

Finally, from the comparison between two di�erent base case distributions,

in Table 3.17, we have a higher percent reduction in the base case U(1; 100)

then in the base case U(1; 20), since the number of eliminated arcs in the base

case U(1; 100) is greater then the number of eliminated arcs in the base arcs

U(1; 20).

In addition, it can be inferred from the experimental results that as the

number of nodes increases in a graph, the percent reduction we obtained from

preprocessing also increases. So, the preprocessing procedures becomes a must

for the graphs with larger number of nodes.
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3.2 Computational Results in Sparse Layered

Graphs

We now present our computational results in sparse layered graphs. A sparse

layered graph is the one where each pair of distinct nodes between s and V1,

Vm and t, and Vk and Vk+1 for k = 1; 2; : : : ;m�1 is joined by an arc with some

probability. We consider two di�erent probabilities: 0.75 and 0.50. Tables

3.18 through 3.26 show the computational results for the relative robust path

problem for probability 0.75 with 60 through 450 nodes and the deviation

parameter 0.3, 0.6 and 0.9, respectively.

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

330 0.3 533 192 10.69 27.50 9.04 % 28

360 0.3 582 213 13.69 62.24 24.97 % 38

390 0.3 629 217 17.41 652.8 235.9 % 61

420 0.3 676 250 21.93 724.1 272.1 % 59

450 0.3 731 292 27.81 2433 310 % 86

Table 3.18: Computational results for base case (1; 20) in a layered graph of

width 2 for d = 0:3, for p = 0:75

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

180 0.6 290 76 1.83 11.09 10.03 -

210 0.6 341 95 2.81 62.03 31.11 % 45

240 0.6 390 107 4.37 108.7 70.75 % 31

270 0.6 430 131 5.85 143.8 73.27 % 45

300 0.6 471 154 7.16 3126 1556 % 50

Table 3.19: Computational results for base case (1; 20) in a layered graph of

width 2 for d = 0:6, for p = 0:75

Tables 3.27 through 3.29 show the computational results for the relative

robust path problem for probability 0.5 with 120 through 300 nodes and the

deviation parameter 0.9.

In the average, the percent reduction obtained from preprocessing is %28:5

in sparse layered graphs. The following tables will show an analysis of percent

reduction based on the factors percentage deviation and width of the graph.



CHAPTER 3. COMPUTATIONAL RESULTS 41

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

60 0.9 97 12 0.08 0.30 0.22 % 0

90 0.9 144 20 0.27 3.03 2.41 % 11

120 0.9 192 28 0.57 5.74 4.48 % 12

150 0.9 243 37 1.14 132.8 108.5 % 17

180 0.9 290 40 1.95 154.5 116.7 % 23

Table 3.20: Computational results for base case (1; 20) in a layered graph of

width 2 for d = 0:9, for p = 0:75

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

300 0.3 690 316 11.79 36.25 6.73 % 49

330 0.3 756 346 16.43 44.40 13.32 % 33

360 0.3 830 381 21.74 80.66 23.76 % 44

390 0.3 897 418 28.35 190.0 28.36 % 71

420 0.3 967 464 34.13 362.0 93.92 % 65

Table 3.21: Computational results for base case (1; 20) in a layered graph of

width 3 for d = 0:3, for p = 0:75

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

150 0.6 341 113 1.66 3.36 2.44 -

180 0.6 411 133 3.15 16.39 9.58 % 22

210 0.6 481 167 4.57 38.26 19.46 % 37

240 0.6 550 182 6.98 289.9 174.8 % 37

270 0.6 616 186 9.98 693.1 292.9 % 56

Table 3.22: Computational results for base case (1; 20) in a layered graph of

width 3 for d = 0:6, for p = 0:75

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

60 0.9 139 22 0.15 0.99 0.75 % 8

90 0.9 206 32 0.48 3.34 3.00 -

120 0.9 272 42 0.99 9.38 7.75 % 7

150 0.9 343 55 1.86 206.8 159.0 % 22

180 0.9 411 66 3.23 1498 1105 % 26

Table 3.23: Computational results for base case (1; 20) in a layered graph of

width 3 for d = 0:9, for p = 0:75
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node d arcs non-weak preprocessing cpu1 cpu2 % reduction

300 0.3 1129 641 19.32 10.60 3.19 -

330 0.3 1230 669 27.66 87.59 8.89 % 58

360 0.3 1365 744 35.76 52.37 16.83 -

390 0.3 1454 783 44.10 73.88 16.82 % 18

420 0.3 1586 850 58.67 1229 323.9 % 69

Table 3.24: Computational results for base case (1; 20) in a layered graph of

width 5 for d = 0:3, for p = 0:75

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

210 0.6 785 295 8.06 16.89 9.06 -

240 0.6 898 310 12.31 29.86 12.30 % 17

270 0.6 1014 353 17.36 155.3 85.35 % 34

300 0.6 1128 404 22.78 460.6 251.9 % 40

330 0.6 1238 468 30.33 452.7 190.1 % 51

Table 3.25: Computational results for base case (1; 20) in a layered graph of

width 5 for d = 0:6, for p = 0:75

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

120 0.9 442 76 1.92 8.53 5.97 % 7

150 0.9 556 86 3.42 9.08 10.77 -

180 0.9 671 110 6.04 58.47 50.91 % 3

210 0.9 784 113 9.49 352.9 290.2 % 15

240 0.9 897 129 13.31 640.9 595.1 % 5

Table 3.26: Computational results for base case (1; 20) in a layered graph of

width 5 for d = 0:9, for p = 0:75

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

180 0.9 249 27 1.55 36.59 20.25 % 40

210 0.9 289 31 2.57 131.5 71.01 % 44

240 0.9 335 36 3.78 185.5 106.4 % 41

270 0.9 368 37 5.60 356.1 325.8 % 7

300 0.9 411 41 6.86 1270 802 % 36

Table 3.27: Computational results for base case (1; 20) in a layered graph of

width 2 for d = 0:9, for p = 0:5
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node d arcs non-weak preprocessing cpu1 cpu2 % reduction

180 0.9 315 41 2.42 30.51 22.83 % 17

210 0.9 364 49 3.81 118.9 83.10 % 27

240 0.9 417 71 5.51 269.1 211.7 % 19

270 0.9 466 78 8.29 3380 2211 % 34

300 0.9 530 84 10.68 5601 3546 % 36

Table 3.28: Computational results for base case (1; 20) in a layered graph of

width 3 for d = 0:9, for p = 0:5

node d arcs non-weak preprocessing cpu1 cpu2 % reduction

180 0.9 465 74 3.91 38.95 33.97 % 3

210 0.9 542 77 6.04 120.2 98.35 % 13

240 0.9 616 85 8.84 849.6 574.3 % 31

270 0.9 704 98 13.13 1062 732.0 % 30

300 0.9 781 109 16.21 2075 1824 % 11

Table 3.29: Computational results for base case (1; 20) in a layered graph of

width 5 for d = 0:9, for p = 0:5

d % reduction

0.3 % 45.27

0.6 % 31.0

0.9 % 18.9

Table 3.30: Deviation parameter vs. % Reduction
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It can be seen from Table 3.30 that the percent reduction is higher when

the deviation parameter is lower. This is because we have a larger weak set

when the deviation parameter is higher. Hence a smaller number of eliminated

arcs from preprocessing. This in turn yields a low percent reduction from

preprocessing. When we compare the result with complete layered graphs, we

see that the percent reduction is higher in complete layered graphs, since the

percentage of non-weak arcs is higher in complete layered graphs.

width % reduction

2 % 33.7

3 % 30.5

5 % 21.35

Table 3.31: Width vs. % Reduction

It can be seen from Table 3.31 that as the width of the graph increases,

the percent reduction decreases. This can be explained by the same reasoning

for complete layered graphs. The results corresponding to complete layered

graphs are better than these results, since the percentage of non-weak arcs is

higher in complete graphs.

In summary, the following observations can be made from the computa-

tional results:

� The preprocessing of graphs helps us signi�cantly in solving the relative

robust path problem, especially when the number of nodes is large.

� The percentage of the weak arcs in the graph depends on the interval

lengths. The larger the intervals, the larger the number of weak arcs is

and the lower the eliminated arcs from preprocessing. This in turn makes

the percent reduction obtained from preprocessing lower.

� The decision making process itself becomes signi�cantly harder when the

gap between lower and upper bounds increases. So, for an easier decision

making process, the lower and the upper bounds should be close to each

other.

� As the width of the graph increases, the percent reduction decreases.



Chapter 4

Conclusion

In this thesis, we investigated the well-known shortest path problem with

interval data. In order to handle uncertainty in the decision making process, we

adopted a robustness approach to the problem. The robustness criteria we used

was minimax and minimax regret. We saw that the problem is easily solvable

under the minimax criterion. However, it is di�cult to �nd a polynomial time

algorithm in order to solve it under minimax regret criterion.

Since arc lengths are intervals, being a shortest path depends on the

realizations of arc lengths. Based on these realizations, we de�ned permanent

and weak paths. A permanent path is a shortest path for all realizations of

arc lengths while a weak path is a shortest path for at least one realization. In

order to �nd these solutions, we only considered the extreme point scenarios,

i.e., the scenarios where the input data are at their lower and upper bounds.

Use of the interval data to represent uncertainty in the decision model

yielded more analysis and stronger results in characterizing the structural

properties of robust solutions. We saw that it is enough to consider extreme

point scenarios to �nd the worst case scenarios of robust solutions.

Another important result was that robust solutions are weak solutions.

Therefore, knowing which arcs are non-weak, we can preprocess a given graph
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for robust path problems. Computational results showed that the preprocessing

of graphs is an e�cient method in solving robust path problems, especially

when the number of nodes is large.

It can be seen from computational results that the size of the weak solution

set depends on the width of the intervals. As the intervals become larger, more

arc realizations are possible. Therefore, we have a larger weak set. This in turn

makes the percent reduction obtained from preprocessing lower. In addition,

as the gap between lower and upper bounds increases, the computational e�ort

in obtaining the solution also increases. Hence, for an easier decision making

process, the lower and the upper bounds should be close to each other.
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