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ABSTRACT

ZERO CURVATURE AND GEL’FAND-DIKII
FORMALISMS

Burcu Silindir

M.S. in Mathematics

Supervisor: Prof. Dr. Metin Gürses

September, 2004

In soliton theory, integrable nonlinear partial differential equations play an im-

portant role. In that respect such differential equations create great interest in

many research areas. There are several ways to obtain these differential equations;

among them zero curvature and Gel’fand-Dikii formalisms are more effective. In

this thesis, we studied these formalisms and applied them to explicit examples.

Keywords: Integrable systems, simple Lie algebra, soliton, zero curvature formal-

ism, Gel’fand-Dikii formalism.
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ÖZET

SIFIR EĞRİLİK VE GEL’FAND-DIKII
FORMULASYONLARI

Burcu Silindir

Matematik, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Metin Gürses

Eylül, 2004

İntegre edilebilir doğrusal olmayan kısmi türevli denklemler soliton teorisinde

önemli bir rol oynamaktadır. Bu anlamda böyle denklemler çok çeşitli alanlarda

ilgi çekmektedir. Bu denklemleri elde etmede değişik yaklaşımlar bulunmaktadır;

bunlardan sıfır eğrilik ve Gel’fand-Dikii formulasyonları en geçerli olanlarıdır. Bu

tezde, bu formulasyonları çalıştık ve bu formulasyonları bazı örneklere uyguladık.

Anahtar sözcükler : İntegre edilebilir sistemler, basit Lie cebir, soliton, sıfır eğrilik

formulasyonu, Gel’fand-Dikii formulasyonu.
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persuading me to be a mathematician. If I have not met him, I would be deprived

of a second father who always listens with infinite patience and supports me

during my personal and academic life.

I would like to thank Prof. Dr. Atalay Karasu and Asst. Prof. Dr. Konstan-

tyn Zheltukhin who read this thesis during the preparation and gave valuable

comments about this thesis.

I am so grateful to have the chance to thank my family for being with me in any

situation, their encouragement, support, endless love and trust.

I am also grateful to Dr. Yosum Kurtulmaz for being a deep part of all my life.
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Chapter 1

Introduction

The theory of solitons and the related theory of integrable nonlinear evolution

equations have being studied by a large number of mathematicians and physicists

ranging from algebraic geometry to applied hydrodynamics.

The study of solitary waves began with John Scott Russell’s observations (1838).

These observations inspired Russell to state all water waves in two classes, ‘the

great wave of translation’(eventually called as solitary wave) and ‘all other waves

belong to the second or oscillatory order of waves ’[1]. His studies brought many

essential results to the soliton theory:

i. Solitary waves, which are long waves of permanent form, exist.

ii. The speed of a solitary wave is given by

ν = [g(h + η)]
1
2 , (1.1)

where η is the height of the wave above the plane of the fluid, h is the depth

throughout the fluid and g is the measure of the gravity. It is important in

equation (1.1) that, the speed of a solitary wave is proportional to its amplitude.

In 1885, Korteweg and de Vries [2] derived the KdV equation describing the

propagation of waves on the surface of a shallow channel,

ut + 6uux + uxxx = 0. (1.2)

1



CHAPTER 1. INTRODUCTION 2

In 1965, while Zabusky and Kruskal [3] were studying the Fermi-Pasta-Ulam

[4] problem of recurrence on a nonlinear lattice, the KdV equation arised. They

found out that the periodic boundary conditions (initial data of a cosine function)

came across to a series of pulses, each of which developed the solitary wave

solution. Since the speed of the wave is directly proportional to the amplitude, the

larger pulses travel faster than the smaller ones. When the faster ones catch the

slower, they undergo nonlinear interaction but finally they reappear unchanged,

retaining their width, height and speed. Because of the particle like nature of

these interacting solitary waves, Zabusky and Kruskal gave the name ‘ soliton ’

to describe the pulses.

Definition 1.1. A solution of any nonlinear partial differential equation or a

system is called a soliton if

i. it represents a wave of permanent form,

ii. it is localized, so that it decays or approaches to a constant at infinity,

iii. it can interact strongly with other solitons and retain its identity.

In 1967, Gardner, Greene, Kruskal and Miura [5] used the ideas of direct and

inverse scattering and hence derived a method of solution for the KdV equation.

In 1968, Lax [6], generalized the results of Gardner, Greene, Kruskal, Miura and

introduced the concept of a Lax pair. Lax approach, considers two operators L

and A, where L is the operator of the spectral problem and A is the operator of

an associated time evolution equation,

Lv = λv, (1.3)

vt = Av. (1.4)

If we take time derivative of (1.3), use (1.4) and choose λt = 0, we get

Lt = [A, L] (1.5)

where [A,L] = AL − LA (the commutator of A and L). The equation (1.5)

is called the Lax equation and the operators L and A are called the Lax pair.

The Lax equation corresponds to a nonlinear evolution equation if L and A are

correctly chosen. Lax proposed a representation for the KdV equation:
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Example 1.1. A Lax pair for the KdV equation is

L = D2
x + u, (1.6)

A = (γ + ux)− (4λ + 2u)Dx, (1.7)

where γ is a constant and λ is the eigenvalue of the Sturm-Liouville problem

Lu = λu of KdV equation. The KdV equation therefore can be written as

Lt + [L,A] = ut + 6uux + uxxx. (1.8)

However there are difficulties with the method of Lax. First, one must guess a

suitable A for a given L to satisfy (1.3) and (1.4). Second, it is usually hard to

work with differential operators.

In 1971, Zakharov and Shabat [7], introduced the Lax pair for the nonlinear

Schrödinger equation. Being influenced by the ideas of the Princeton Group

(Gardner, Greene, Kruskal and Miura) and by the ideas of Zakharov and Shabat;

in 1974 Ablowitz, Kaup, Newell and Segur [8] developed a new method (called as

AKNS Scheme) as an alternative to Lax approach. The AKNS scheme includes

a wide range of solvable nonlinear evolution equations, such as the sine-Gordon

equation and mKdV equation. This technique can be formulated by considering

two linear equations;

φx = Uφ,

φt = V φ,
(1.9)

where φ is a 2-dimensional vector and U , V are 2×2 matrices. Using compatibility

condition φxt = φtx, for (1.9) we find

Ut − Vx + [U, V ] = 0, [U, V ] ≡ UV − V U, (1.10)

which is the zero curvature condition[19].

The soliton theory has been applied to many areas of mathematics and physics

such as algebraic geometry (the solution of the Schottky problem), group theory

(the discovery of quantum groups), topology (the connection of Jones polynomials
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with integrable models), quantum gravity (the connection of the KdV equation

with integrable models).

In Chapter 2, we studied the zero curvature formalism which is the generalization

of the AKNS scheme [19]. The AKNS scheme includes the nonlinear Schrödinger

hierarchy, the KdV hierarchy and the sine-Gordon equation. We give the non-

linear Schrödinger and KdV hierarchies with the use of recursion operators. In

this scheme, the potentials are independent of the spectral parameter. However

there are systems where the potentials depend on the spectral parameter, such as

Ma-Zhou system [9] and Tam-Zhang system [10]. The zero curvature formalism

is based on the Lax equation for n × n matrix valued functions, which form the

basis of a matrix algebra. In AKNS formalism this algebra is sl(2,R) algebra and

in Tam-Zhang System it is su(1, 1) algebra.

In Chapter 3, we use the matrix representation of Lie algebras. In order to obtain

nonlinear partial differential equations on homogeneous spaces, Fordy and Kulish

[13] have obtained the nonlinear Schrödinger equations on homogeneous spaces

and Fordy [14] has obtained the derivative nonlinear Schrödinger equations. Using

similar approach, we use a simple Lie algebra valued soliton connection, intro-

duced by Gürses, Oğuz and Salihoğlu in [12]. In Section 3.2, we first introduce

the usual Cartan-Weyl basis which is the standard form of the commutation re-

lations for a semisimple Lie algebra. Let g be the Lie algebra of a Lie group G.

Then g can be identified as the decomposition of Cartan subalgebra h of g and

the complement of the Cartan subalgebra in g;

g = h
⊕

hC . (1.11)

This decomposition leads to the usual Cartan-Weyl basis [11],

[Ha, Hb] = 0 for all a, b = 1, 2, ..., p, (1.12a)

[Ha, Eα] = αaEα, (1.12b)

[Eα, Eβ] =

p∑
a=1

Ca
α+β

Ha if α + β = 0, (1.12c)

[Eα, Eβ] = Cα+β

αβ
Eα+β if α + β 6= 0, (1.12d)

where p is the rank of the algebra, Ha ’ s are bases of the Cartan subalgebra,
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Eα ’ s are the bases of the complement of the Cartan subalgebra, αa and C are

the structure constants of the commutation relations.

In Section 3.3, we give the Cartan-Weyl basis on homogeneous spaces, which is

constructed from a new decomposition due to the following definitions.

Definition 1.2. Let G be a Lie group. A homogeneous space of G, is any differ-

entiable manifold M , on which G acts transitively [13].

Definition 1.3. The subgroup of G which leaves a given point p0 ∈ M fixed, is

called the isotropy group at p0 and is defined by [13]

K ≡ Kp0 = {g ∈ G : g · p0 = p0} (1.13)

If K is an isotropy group of some p0 ∈ M , then M can be identified as a coset

space G/K. Let g and k be the Lie algebras of G and K respectively. Let m be

the vector space, complement of k in g, then

g = k
⊕

m. (1.14)

and m is identified as the tangent space of G/K at p0 ∈ M [13]. When g satisfies

the conditions

g = k
⊕

m, [k, k] ⊂ k, [k, m] ⊂ m, (1.15)

then M = G/K is called a ’reductive homogeneous space’ [12]. When g satisfies

the conditions

g = k
⊕

m, [k, k] ⊂ k, [k, m] ⊂ m, [m,m] ⊂ k, (1.16)

then M = G/K is called a ’symmetric space’ [12].

The comparison of the Cartan-Weyl basis on homogeneous spaces with the usual

Cartan-Weyl basis is discussed in Section 3.4 . In Section 3.5, to obtain nonlinear

partial differential equations, we deal with the simple Lie algebra valued soliton

connection which is defined as:
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Definition 1.4. The simple Lie algebra valued soliton connection 1-form Ω, as-

sociated to a reductive homogeneous space G/K with the generators Ha, ED is

defined as

Ω = (ikλHs + QAEA)dx + (AaHa + BAEA + CDED)dt, (1.17)

where K is the isotropy group of G, λ is the spectral parameter, k is a constant

not depending on λ, s ∈ {1, 2, ...p} is a fixed constant, QA(x, t) is potential, Aa,

BA and CD are arbitrary functions of x, t and λ.

The Lax equation in differential forms and R curvature 2-form are respectively;

dφ = Ωφ, R = dΩ + Ω ∧ Ω. (1.18)

Here Ω is the flat connection, that is

dΩ + Ω ∧ Ω = 0. (1.19)

which is the zero curvature condition. AKNS scheme and the corresponding zero

curvature condition in (1.10) are special cases of (1.18). In this case g = sl(2,R)

and

Hs =

(
1 0

0 −1

)
, E1 =

(
0 1

0 0

)
, E−1 =

(
0 0

−1 0

)
.

In Section 3.5.1, we determine the catalogue of the structure constants in the zero

curvature condition. In Section 3.5.2, we determine a system of integrable partial

differential equations, with the corresponding recursion operator by the use of the

catalogue. In Section 3.6, we obtain the integrable evolution equations without

using the catalogue. There is another way to obtain integrable systems, so called

the Gelf’and-Dikkii formalism. In Chapter 4, we deal with the Gel’fand-Dikii

formalism which gives the direct method to determine the function A in the Lax

equation (1.5). This formalism gives a construction of all Lax pairs, based on

the calculation of fractional powers of operator L. On an algebra G, let ’*’ be
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a non-commutative, associative binary product and F , G be G-valued functions,

then define a bracket {, }G as

{F, G}G :=
1

2κ
(F ∗G−G ∗ F ), κ ∈ R (1.20)

which satisfies skew-symmetry, Jacobi identity and Leibniz rule. Let L be G-

valued Lax operator which is a polynomial of some variable. The Lax equation

is defined as

∂L

∂t
= {A,L}G, (1.21)

for some G- valued function A. In order to obtain A, we find A s.t

{L,A}G = 0. (1.22)

Apart from the matrix algebra we can take A = L
n
m , then (1.22) holds, where

n 6= am; a, n ∈ Z. We put A = (A)>k that is

A = (L
n
m )>k. (1.23)

So we obtain a consistent equation (1.21). Here the restriction of being larger or

equal to k is for A to be the polynomial part of L
n
m except first k− 1 terms. For

the matrix algebra we find A by solving {L, A}G = 0, then we set

A = (A)>k. (1.24)

The Gel’fand-Dikii formalism makes use of some algebras. In this work we use

the pseudo-differential algebra [15], polynomial algebra [16], [20], Moyal [17] and

matrix algebras [15]. If G is the pseudo-differential algebra, then the bracket

{F, G}G defined in (1.20) corresponds to the usual commutator provided that ’*’

is the operational product, κ = 1
2

and F , G are two pseudo-differential operators.

The Lax operator of the pseudo-differential algebra is a series of a differential

operator,
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L = Dm
x + um−2D

m−2
x + ... + u1Dx + u0, (1.25)

where ui, i = 0, 1, ..., m− 2 are functions of x and t. The Lax equation is

Ltn = [An, L], (1.26)

where operators An is defined to be

An := (L
n
m )+, (1.27)

and ′+′ means the polynomial part of L
n
m .

If G is the polynomial algebra, then the bracket {F, G}G defined in (1.20) corre-

sponds to the standard Poisson bracket with κ = 1
2

and F , G are two differentiable

functions. The Lax operator of the polynomial algebra is a series of an auxiliary

variable (momentum p),

L = pN−1 +
N−2∑
i=−1

piSi(x, t). (1.28)

The Lax equation is (see Section 4.3)

∂L

∂tn
= {(L n

N−1 )>−k+1; L}k, (1.29)

where n = j + l(N − 1) and j = 1, 2, .., (N − 1), l ∈ N.

If G is the Moyal algebra, then the bracket {F,G}G defined in (1.20) corresponds

to the Moyal bracket provided that ’*’ is the Moyal product and F , G are two dif-

ferentiable functions. Similar to the case of polynomial algebra, the Lax operator

is a series of momentum p,

Ln = pn + u1(x) ∗ pn−1 + .... + un(x) + un+1(x) ∗ p−1 + ... (1.30)

and the Lax equation is (see Section 4.4)
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∂Ln

∂tk
= {Ln, (L

k
n )>m}κ, (1.31)

where k 6= an; k, a are integers and m = 0, 1, 2...

If G is the matrix algebra, then the bracket {F, G}G defined in (1.20) corresponds

to the usual commutator provided that ’*’ is the matrix multiplication, F , G are

n × n matrices and κ = 1
2
. The Lax operator is a series of a spectral constant.

For the matrix algebra, the function A in the Lax equation (1.21) takes the form

A = (Ā)>k. (1.32)

For each integrable equation, we have an infinite hierarchy of symmetries. In order

to determine the hierarchies of symmetries of a system of differential equations,

there are different approaches. In this work, we will deal with the use of ’recursion

operators’ defined [18] as:

Definition 1.5. Let

ut = F (t, x, u, ux, ...., unx), (1.33)

be a system of differential equations. A recursion operator for (1.33) is a linear

operator, R : Aq −→ Aq, in the space of q-tuples of differential function with the

property that whenever Q is an evolutionary symmetry of (1.33), so is Q̄ with

Q̄ = RQ. If (1.33) admits a nonconstant recursion operator, this system is called

integrable.

Therefore, if we know a recursion operator R for a system of differential equations,

we can generate an infinite family of symmetries at once, by applying the recursion

operator successively to an initial symmetry Q0;

Qi = RiQ0, i = 0, 1, 2... (1.34)

where each Qi, i = 0, 1, 2... is the symmetries of the partial differential equations.

Generally, R is q × q matrix of differential operators.



Chapter 2

Zero Curvature Formalism

2.1 AKNS scheme

AKNS (Ablowitz, Kaup, Newell and Segur) scheme [8] is a generalization of

Sturm-Liouville problem to 2 × 2 eigenvalue problem. It is a linear eigenvalue

problem defined as

φx = Uφ,

φt = V φ,
(2.1)

where φ is a 2-dimensional vector and U, V are 2× 2 matrices. Let

U =

(
−iλ q

r iλ

)
, (2.2)

and

V =

(
A B

C D

)
, (2.3)

where λ is a spectral parameter; q(x, t), r(x, t) are potentials; A, B, C, D are

functions of q, r, λ and the derivatives of q, r with respect to x and t. Then

10
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φx =

(
φ1,x

φ2,x

)
=

(
−iλ q

r iλ

)(
φ1

φ2

)
, (2.4)

φ1,x = −iλφ1 + qφ2, (2.5)

φ2,x = iλφ1 + rφ2, (2.6)

and

φt =

(
φ1,t

φ2,t

)
=

(
A B

C D

)(
φ1

φ2

)
, (2.7)

φ1,t = Aφ1 + Bφ2, (2.8)

φ2,t = Cφ1 + Dφ2. (2.9)

Using compatibility condition φxt = φtx, for (2.1) we find

Ut − Vx + [U, V ] = 0, [U, V ] ≡ UV − V U, (2.10)

which is the zero curvature condition. To express these equations in terms of A,

B, C and D; we have the following proposition.

Proposition 2.1. The zero curvature condition (2.10) reduces to the following

equations for the functions A, B and C, where D = −A

Ax = qC − rB, (2.11a)

Bx + 2iλB = qt − 2qA, (2.11b)

Cx − 2iλC = rt + 2rA. (2.11c)

2.1.1 The nonlinear Schrödinger and KdV hierarchies

Since λ is a free parameter, we can assume that A, B, C have Taylor series

expansion on λ.

A =
n∑

j=0

ajλ
n−j, B =

n∑
j=0

bjλ
n−j, C =

n∑
j=0

cjλ
n−j. (2.12)

Then using Proposition (2.1) we have the following proposition
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Proposition 2.2. Let the functions A, B, C in the equations (2.11a), (2.11b),

(2.11c) have expansions as in (2.12), then we obtain the system of equations below

al,x = qcl − rbl, l = 0, ..., n, (2.13a)

bl,x + 2ibl+1 = −2qal l = 0, .., n− 1, (2.13b)

bn,x = qt − 2qan, b0 = 0, (2.13c)

cl,x − 2icl+1 = 2ral, l = 0, .., n− 1, (2.13d)

cn,x = rt + 2ran, c0 = 0. (2.13e)

It is possible to write (2.13b) and (2.13d) in terms of (2.13a) as follows:

bl+1 = i
2
[bl,x + 2qal] = i

2
[bl,x + 2qD−1

x (qcl)− 2qD−1
x (rbl)],

cl+1 = − i
2
[cl,x − 2ral] = i

2
[2rD−1

x (qcl)− 2rD−1
x (rbl)− cl,x].

Then in a matrix form we have

(
bl+1

cl+1

)
=

i

2

(
Dx − 2qD−1

x r 2qD−1
x q

−2rD−1
x r −Dx + 2rD−1

x q

)(
bl

cl

)
. (2.14)

Denote

Ψ =
i

2

(
Dx − 2qD−1

x r 2qD−1
x q

−2rD−1
x r −Dx + 2rD−1

x q

)
, zl =

(
bl

cl

)
. (2.15)

Then zl+1 = Ψzl or

zn = Ψn−1z1 = Ψnz0. (2.16)

where z0 =

(
b0

c0

)
=

(
0

0

)
. This leads to the following proposition.

Proposition 2.3. The evolution equations for q and r can be found by writing

the equations (2.13c) and (2.13e) as:

qt = bn,x + 2qD−1
x (qcn)− 2qD−1

x (rbn), (2.17)

rt = cn,x − 2rD−1
x (qcn) + 2rD−1

x (rbn), (2.18)
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or in 2× 2 matrix form:

(
qt

rt

)
=

(
Dx − 2qD−1

x (r) 2qD−1
x (q)

2rD−1
x (r) Dx − 2rD−1

x (q)

)(
bn

cn

)
, (2.19)

(
qt

rt

)
=

2

i
σ3Ψ

(
bn

cn

)
=

2

i
Rn+1σ3

(
b0

c0

)
(2.20)

where σ3 =

(
1 0

0 −1

)
,

(
b0

c0

)
=

(
0

0

)
and

R = σ3Ψσ3. (2.21)

Then
(

qt

rt

)
=

2

i
Rn+1

(
b0

c0

)
, (2.22)

which are the evolution equations. Here R is called the recursion operator. This

is the nonlinear Schrödinger hierarchy.

Example 2.1. Case n = 2 : The nonlinear Schrödinger equations.

We have by (2.16), z1 = Ψz0. Then

(
b1

c1

)
=

i

2

(
Dx − 2qD−1

x r 2qD−1
x q

−2rD−1
x r −Dx + 2rD−1

x q

)(
b0

c0

)
.

So

b1 = i
2
[b0,x + 2q(D−1

x (qc0)−D−1
x (rb0))] = iε1q

c1 = i
2
[−c0,x + 2r(D−1

x (qc0)−D−1
x (rb0))] = iε1r

where ε1 is a constant. Similarly z2 = Ψz1 gives;

b2 = i
2
[b1,x + 2qD−1

x (qc1)− 2qD−1
x (rb1)] = −1

2
ε1qx, (2.23)

c2 = i
2
[−c1,x + 2rD−1

x (qc1)− 2rD−1
x (rb1)] = 1

2
ε1rx. (2.24)
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Therefore the corresponding evolution equations directly come from (2.19)

qt = b2,x − 2q[D−1
x (rb2)−D−1

x (qc2)]

= −1
2
ε1qxx + ε1qD

−1
x (rxqx)

= −1
2
ε1qxx + ε1q

2r.

By the same procedure rt can be found. Hence

qt = −1

2
ε1qxx + ε1q

2r, (2.25a)

rt =
1

2
ε1rxx − ε1r

2q. (2.25b)

If we set r = ±q∗, ε1 = 2i, in (2.25a) then we have

iqt − qxx ± 2q2q∗ = 0,

which is the nonlinear Schrödinger equation. Here * is the complex conjugation.

Example 2.2. Case n = 3 : KdV and mKdV equations. If we assume the

integration constant is not equal to zero in (2.14), then we have

b2 = −1
2
ε1qx + iε2q,

c2 = 1
2
ε1rx + iε2r.

(2.26)

where ε2 is a constant. By z3 = Ψz2, we can find b3 and c3 as

b3 = i
2
(b2,x + 2qD−1

x (qc2)− 2qD−1
x (rb2))

= − i
4
ε1qxx − 1

2
ε2qx + iε1

2
q[D−1

x (rqx + qrx)]

= − i
4
ε1qxx − 1

2
ε2qx + i

2
ε1q

2r + iε3q.

(2.27)

where ε3 is an integration constant. Similarly

c3 = − i
4
ε1rxx + 1

2
ε2rx + 1

2
iε1r

2q + iε3r. (2.28)

So the corresponding evolution equations directly come from (2.19)

qt +
1

4
iε1[qxxx − 6rqqx] +

1

2
ε2[qxx − 2q2r]− iε3qx − 2ε4q = 0, (2.29a)

rt +
1

4
iε1[rxxx − 6qrrx] +

1

2
ε2[2r

2q − rxx]− iε3rx − 2ε4r = 0. (2.29b)
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By choosing the constants εi’s, i = 1, 2, 3, 4 properly in (2.29a), we respectively

get the KdV, mKdV and nonlinear Schrödinger equations.

qt + qxxx + 6qqx = 0, (ε1 = −4i, ε2 = ε3 = ε4 = 0, r = −1, )

qt − 6q2qx + qxxx = 0, (ε1 = −4i, ε2 = ε3 = ε4 = 0, r = q, )

iqt + qxx − 2q2q∗ = 0, (ε1 = ε3 = ε4 = 0, ε2 = −2i, r = ±q∗.)

2.1.2 The sine-Gordon equation

In this section, we will consider the case when the functions A, B, C have terms

containing inverse powers of λ. In this case we will obtain different nonlinear

partial differential equations.

Proposition 2.4. Let A = a(x,t)
λ

, B = b(x,t)
λ

, C = c(x,t)
λ

, where a, b, c are

differentiable functions of x and t. Then using compatibility conditions (2.11a),

(2.11b) and (2.11c) we get,

ax =qc− rb, (2.31a)

bx =− 2aq, 2ib = qt, (2.31b)

cx =2ar, − 2ic = rt. (2.31c)

Using the Proposition (2.4) we have the following Corollary.

Corollary 2.5. Let A = a(x,t)
λ

, B = b(x,t)
λ

, C = c(x,t)
λ

. Assume that a = i
4
cos u,

b = c = i
4
sin u provided that q = −r = −1

2
ux. Then we obtain

sin u = uxt.

which is the sine-Gordon equation.

Proof: Consider

ax = qc− rb = q(− rt

2i
)− r(

qt

2i
) = − 1

2i
(
∂(qr)

∂t
)
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then

ax = −1

4
iuxuxt. (2.32)

On the other hand

ax =
∂(1

4
i cos u)

∂x
= −1

4
iux sin u. (2.33)

then combining (2.32) and (2.33), we get sin u = uxt. ¤

2.2 Ma-Zhou system

In the AKNS scheme, the potentials were taken as independent of the spectral

parameter. In this section we will consider the case where the potentials depend

on the spectral parameter. Consider a spectral problem

φx = Uφ,

φt = V φ,
(2.34)

where φ is a 2-dimensional vector and U , V are 2× 2 matrices. Let

U =

(
λ q

(α + βλ)r −λ

)
, (2.35)

and

V =

(
a b

(α + βλ)c −a

)
, (2.36)

where λ is a spectral parameter; α and β are arbitrary constants; q, r are functions

of x and t; a, b, c are functions of q, r, α, β, λ and the derivatives of q, r with

respect to x and t [9]. Using compatibility condition φxt = φtx for (2.34) we have

the zero curvature condition

Ut − Vx + [U, V ] = 0. (2.37)
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Proposition 2.6. The zero curvature condition (2.37) reduces to the following

equations for the functions a, b and c,

ax = (α + βλ)(qc− rb), (2.38a)

bx = 2λb− 2aq + qt, (2.38b)

cx = 2ar − 2λc + rt. (2.38c)

Since λ is a free parameter, assume a, b, c are analytic in λ,

a =
n∑

j=0

ajλ
n−j, b =

n∑
j=0

bjλ
n−j, c =

n∑
j=0

cjλ
n−j. (2.39)

Then using Proposition (2.6) we have the following proposition.

Proposition 2.7. Let the functions a, b, c in the equations (2.38a), (2.38b),

(2.38) have expansions as in (2.39) , then we obtain the system of equations

below,

al,x = α(qcl − rbl) + β(qcl+1 − rbl+1), l = 0, 1, ., n− 1, (2.40a)

β(qc0 − rb0) = 0, (2.40b)

an,x = α(qcn − rbn), (2.40c)

bl,x = 2bl+1 − 2αqD−1
x (qcl − rbl)− 2βqD−1

x (qcl+1 − rbl+1), l = 0, 1, ., n− 1,

(2.41a)

bn,x = −2αqD−1
x (qcn − rbn) + qt, b0 = 0, (2.41b)

cl,x = 2αrD−1
x (qcl − rbl) + 2βrD−1

x (qcl+1 − rbl+1)− 2cl+1, l = 0, 1, ., n− 1,

(2.42a)

cn,x = 2αrD−1
x (qcn − rbn) + rt, c0 = 0. (2.42b)
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Assume a0 = 1, since b0 = c0 = 0 ; the equations (2.41a) and (2.42a) lead to

b1 = q, c1 = r. (2.43)

For ai, bi and ci, i > 2 we will consider the recursion equation. The equations

(2.41a) and (2.42a) can be written in matrix form as follows,

(
2αqD−1

x q Dx − 2αqD−1
x r

Dx − 2αrD−1
x q 2αrD−1

x r

)(
cl

bl

)
=

(
−2βqD−1

x q 2 + 2βqD−1
x r

−2 + 2βrD−1
x q −2βrD−1

x r

)(
cl+1

bl+1

)
.

(2.44)

This leads to the following proposition.

Proposition 2.8. The relation between zl+1 and zl is given by the operator Ψ as,

zl+1 = Ψzl, l = 0, ..n− 1. (2.45)

where

zl =

(
cl

bl

)
,

Ψ =

(
−1

2
Dx + αrD−1

x q − 1
2
βrD−1

x qDx −1
2
βrD−1

x rDx − αrD−1
x r

αqD−1
x q − 1

2
βqD−1

x qDx
1
2
Dx − αqD−1

x r − 1
2
βqD−1

x rDx

)
.

Proof: By the equation (2.44), denoting,

zl =

(
cl

bl

)
,

M =

(
2αqD−1

x q Dx − 2αqD−1
x r

Dx − 2αrD−1
x q 2αrD−1

x r

)
,

J =

(
−2βqD−1

x q 2 + 2βqD−1
x r

−2 + 2βrD−1
x q −2βrD−1

x r

)
,

then we have
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Mzl = Jzl+1; l = 0, .., n− 1, (2.48a)

zl+1 = J−1Mzl = Ψzl, l = 0, ..n− 1. (2.48b)

Here

J−1 =
1

2

(
−βrD−1

x r −1− βrD−1
x q

1− βqD−1
x r −βqD−1

x q

)
. (2.49)

Hence

Ψ =

(
−1

2
Dx + αrD−1

x q − 1
2
βrD−1

x qDx −1
2
βrD−1

x rDx − αrD−1
x r

αqD−1
x q − 1

2
βqD−1

x qDx
1
2
Dx − αqD−1

x r − 1
2
βqD−1

x rDx

)
.¤

(2.50)

It should be noted that we always need to select zero constants for integration in

deriving aj, bj, cj , j = 1, ..n− 1; that is we require that

aj|[uj ]=0 = bj|[uj ]=0 = cj|[uj ]=0 = 0, where u = (q r)T , [u] = (u, ux, ....).

For instance

z2 =

(
c2

b2

)
= Ψz1 =

(
−1

2
rx + αrD−1

x (qr − rq)− 1
2
βrD−1

x (rqx + qrx)

αqD−1
x (qr − rq) + 1

2
qx − 1

2
βqD−1

x (rqx + qrx)

)

=

(
−1

2
rx − 1

2
βr2q

1
2
qx − 1

2
βq2r

)
.

The evolution equations for q and r can be found by writing the equations (2.41b)

and (2.42b) as,

qt = bn,x + 2αqD−1
x qcn − 2αqD−1

x rbn,

rt = cn,x − 2αrD−1
x qcn + 2αrD−1

x rbn.

So we have

(
qt

rt

)
=

(
2αqD−1

x q Dx − 2αqD−1
x r

Dx − 2αrD−1
x q 2αrD−1

x r

) (
cn

bn

)
.
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Hence

(
qt

rt

)
= Mzn = Jzn+1. (2.52)

Proposition 2.9. The evolution equations can be determined as

(
qt

rt

)
= Jzn+1 = Rn

(
2q

−2r

)
, (2.53)

where R is the recursion operator;

R = MJ−1 = Ψ−1 =

(
1
2
Dx − αqD−1

x r − 1
2
βDxqD

−1
x r −αqD−1

x q − 1
2
βDxqD

−1
x q

αrD−1
x r − 1

2
βDxrD

−1
x r −1

2
Dx + αrD−1

x q − 1
2
βDxrD

−1
x q

)
.

Proof: The equation (2.48b) gives Jzn+1 = J(J−1M)nz1, where

z1 =

(
r

q

)
.

Then we seek for the validity of the equality in the claim as,

J(J−1M)n

(
r

q

)
= (MJ−1)n

(
2q

−2r

)
,

M(J−1M)n−1

(
r

q

)
= M(J−1M)n−1J−1

(
2q

−2r

)
,

(
r

q

)
= J−1

(
2q

−2r

)
.

Consider

J−1

(
2q

−2r

)
=

(
−1

2
βrD−1

x (2rq − 2qr) + r
1
2
βqD−1

x (2qr − 2rq) + q

)
=

(
r

q

)
. (2.55)

Hence
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(
qt

rt

)
= Mzn = Jzn+1 = Rn

(
2q

−2r

)
, (2.56)

which are the evolution equations. ¤

Example 2.3. The first four systems of the hierarchy.

For the case n = 0 we have,

(
qt

rt

)
=

(
2q

−2r

)
. (2.57)

For the case n = 1 we have,

(
qt

rt

)
=

(
qx

rx

)
.

For the case n = 2 we have,

(
qt

rt

)
= R2

(
2q

−2r

)
=

(
1
2
qxx − αq2r − βqqxr − 1

2
βq2rx

−1
2
rxx + αr2q − βrrxq − 1

2
βr2qx

)
.

For the case n = 3 we have,

(
qt

rt

)
= R3

(
2q

−2r

)
= R

(
1
2
qxx − αq2r − βqqxr − 1

2
βq2rx

−1
2
rxx + αr2q − βrrxq − 1

2
βr2qx

)
.

Hence

qt =
1

4
qxxx − 3

4
βr(qx)

2 − 3

4
βqqxrx − 3

4
βqrqxx − 3

2
αqrqx+

3

4
αβq3r2 +

9

8
β2r2q2qx +

3

4
β2q3rrx,

rt =
1

4
rxxx +

3

4
βq(rx)

2 +
3

4
βrrxqx +

3

4
βqrrxx − 3

2
αqrrx−

3

4
αβq2r3 +

9

8
β2r2q2rx +

3

4
β2r3qqx.

All systems in the hierarchy (2.56), except the first system (2.57), are exactly

the coupled AKNS-Kaup -Newell systems in the hierarchy. Therefore the system

(2.56) is another expression for the coupled AKNS-Kaup-Newell hierarchy.
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2.3 Tam-Zhang system

In this section, we again cover the case where the potentials depend on the spectral

parameter. Consider a spectral problem so that deg(U) = 2, where deg(U) is the

highest degree of λ. Let

φx = Uφ,

φt = V φ.
(2.60)

where φ is a 2-dimensional vector and U , V are as follows.

U = λ2e3 + λqe1 + λre2, (2.61a)

V = ae3 + be1 + ce2, (2.61b)

with the commutation relations among the base elements of the su(1, 1) algebra

[e1, e2] = −2e3, [e1, e3] = −2e2, [e2, e3] = −2e1,

where λ is a spectral parameter; q, r are functions of x, t; a, b, c are functions of

q, r, λ and the derivatives of q, r with respect to x and t [10]. The compatibility

condition of the system (2.60) gives us the zero curvature condition

Ut − Vx + [U, V ] = 0. (2.62)

Proposition 2.10. The zero curvature condition (2.62) reduces to the following

equations for the functions a, b and c,

ax = 2λbr − 2λcq, (2.63a)

bx = 2λ2c− 2λar + λqt, (2.63b)

cx = 2λ2b− 2λaq + λrt. (2.63c)

Since λ is a free parameter, we can assume that a, b and c are analytic in λ. Then



CHAPTER 2. ZERO CURVATURE FORMALISM 23

a =
n∑

j=0

ajλ
n−j, b =

n∑
j=0

bjλ
n−j, c =

n∑
j=0

cjλ
n−j. (2.64)

Using Proposition (2.10) we have

Proposition 2.11. Let the functions a, b, c in the equations (2.63a), (2.63b),

(2.63c) have expansions as in (2.64), then we respectively have the system of

equations

al,x = 2rbl+1 − 2qcl+1, l = 0, .., n− 1, (2.65a)

2rb0 − 2qc0 = 0, an,x = 0, (2.65b)

bl,x = 2cl+2 − 4rD−1
x (rbl+2 − qcl+2), l = 0, 1, ..n− 2, (2.66a)

c0 = 0, 2c1 − 4rD−1
x (rb1 − qc1) = 0, (2.66b)

bn,x = 0, bn−1,x = qt − 2ran, (2.66c)

cl,x = 2bl+2 − 4qD−1
x (rbl+2 − qcl+2), l = 0, 1, ..n− 2, (2.67a)

b0 = 0, 2b1 − 4qD−1
x (rb1 − qc1) = 0, (2.67b)

cn,x = 0, cn−1,x = rt − 2qan. (2.67c)

Solving the equations (2.66b) and (2.67b) we have

b1 = ε1q and c1 = ε1r. (2.68)

where ε1 is constant. We write the equations (2.66a) and (2.67a) in matrix form

as follows to find the recursion equation in order to obtain other terms bi and ci,

i > 2;

(
0 Dx

Dx 0

)(
cl

bl

)
=

(
2 + 4rD−1

x q −4rD−1
x r

4qD−1
x q 2− 4qD−1

x r

)(
cl+2

bl+2

)
. (2.69)

This leads to the following proposition.
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Proposition 2.12. The relation between zl+2 and zl is given by the operator Ψ

as,

zl+2 = Ψzl, l = 0, ...n− 2 (2.70)

where

zl =

(
cl

bl

)
, (2.71a)

Ψ =

(
rD−1

x rDx
1
2
Dx − rD−1

x qDx

1
2
Dx + qD−1

x rDx −qD−1
x qDx

)
. (2.71b)

Proof: By the equation (2.69), denoting

zl =

(
cl

bl

)
,

M =

(
0 Dx

Dx 0

)
,

J =

(
2 + 4rD−1

x q −4rD−1
x r

4qD−1
x q 2− 4qD−1

x r

)
,

then we have

Mzl = Jzl+2, l = 0, ...n− 2,

zl+2 = J−1Mzl = Ψzl, l = 0, ...n− 2.

Here

J−1 =

(
1
2
− rD−1

x q rD−1
x r

−qD−1
x q 1

2
+ qD−1

x r

)
. (2.74)

Hence
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Ψ =

(
rD−1

x rDx
1
2
Dx − rD−1

x qDx

1
2
Dx + qD−1

x rDx −qD−1
x qDx

)
.¤

Therefore zi, i > 2 are as follows:

For n = 2,

z2 = Ψz0 =

(
ε2r

ε2q

)
. (2.75)

For n = 3,

z3 = Ψz1 = Ψ

(
ε1r

ε1q

)
=

(
ε1(

1
2
r3 − 1

2
rq2 + 1

2
qx) + ε3r

ε1(−1
2
q3 + 1

2
qr2 + 1

2
rx) + ε3q

)
. (2.76)

Since z1 and z2 are the same up to the integration constants, similarly we have

for n = 4,

z4 = Ψz2 =

(
ε2(

1
2
r3 − 1

2
rq2 + 1

2
qx) + ε4r

ε2(−1
2
q3 + 1

2
qr2 + 1

2
rx) + ε4q

)
. (2.77)

For n = 5,

z5 = Ψz3 = Ψ

(
ε1(

1
2
r3 − 1

2
rq2 + 1

2
qx) + ε3r

ε1(−1
2
q3 + 1

2
qr2 + 1

2
rx) + ε3q.

)
,

then

c5 =ε1(
3

8
r5 +

3

8
q4r − 3

4
r3q2 +

3

4
r2qx − 3

4
q2qx +

1

4
rxx)+

ε3(
1

2
r3 − 1

2
rq2 +

1

2
qx) + ε5r, (2.78a)

b5 =ε1(
3

8
q5 +

3

8
r4q − 3

4
q3r2 − 3

4
q2rx +

3

4
r2rx +

1

4
qxx)+

ε3(−1

2
q3 +

1

2
qr2 +

1

2
rx) + ε5q. (2.78b)

Similarly for n = 6,

z6 = Ψz4 = Ψ

(
ε2(

1
2
r3 − 1

2
rq2 + 1

2
qx) + ε4r

ε2(−1
2
q3 + 1

2
qr2 + 1

2
rx) + ε4q

)
.
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Then

c6 =ε2(
3

8
r5 +

3

8
q4r − 3

4
r3q2 +

3

4
r2qx − 3

4
q2qx +

1

4
rxx)+

ε4(
1

2
r3 − 1

2
rq2 +

1

2
qx) + ε6r, (2.79a)

b6 =ε2(
3

8
q5 +

3

8
r4q − 3

4
q3r2 − 3

4
q2rx +

3

4
r2rx +

1

4
qxx)+

ε4(−1

2
q3 +

1

2
qr2 +

1

2
rx) + ε6q. (2.79b)

Note that εi are integration constants for i > 1.

Remark 2.13. z2l = z2l−1, l > 1, up to integration constants. Hence we can

ignore one of them and the recursion equation for the Tam-Zhang system results

as

z2l+1 = Ψlz1, l = 0, 1, 2, .. (2.80)

Proposition 2.14. The evolution equations for q and r can be determined from

exactly the equations (2.66c) and (2.67c).

qt = bn−1,x + 2ran, (2.81a)

rt = cn−1,x + 2qan, (2.81b)

where an is constant for all n.

Example 2.4. Substituting the equations (2.66b),(2.67b),(2.68),(2.75),(2.76),(2.77),

(2.78a),(2.78b),(2.79a), (2.79b) in (2.81a) and (2.81b), we respectively we find the

hierarchies for n = 1, 2, .., 7.

For n = 1 we have,

qt = b0,x + 2ra1 = 2ra1, rt = c0,x + 2qa1 = 2qa1. (2.82)

For n = 2 we have,

qt = b1,x + 2ra2 = ε1qx + 2ra2, rt = c1,x + 2qa2 = ε1rx + 2qa2. (2.83)
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For n = 3 we have,

qt = b2,x + 2ra3 = ε2qx + 2ra3, rt = c2,x + 2qa3 = ε2rx + 2qa3. (2.84)

For n = 4 we have,

qt = b3,x + 2ra4 = ε1(
1

2
rxx +

1

2
r2qx + qrrx − 3

2
q2qx) + ε3qx + 2ra4, (2.85a)

rt = c3,x + 2qa4 = ε1(
1

2
qxx − 1

2
q2rx − rqqx +

3

2
r2rx) + ε3rx + 2qa4. (2.85b)

If we assume ε3 = a4 = 0, the above equations reduce to a generalized Burgers

equation. Similarly for n = 5 we have,

qt = b4,x + 2ra5 = ε2(
1

2
rxx +

1

2
r2qx + qrrx − 3

2
q2qx) + ε4qx + 2ra5, (2.86a)

rt = c4,x + 2qa5 = ε2(
1

2
qxx − 1

2
q2rx − rqqx +

3

2
r2rx) + ε4rx + 2qa5. (2.86b)

For n = 6 we have,

qt =b5,x + 2ra6 = ε1(
1

4
qxxx +

3

4
r2rxx − 3

4
q2rxx +

3

2
r(rx)

2 − 3

2
qqxrx − 9

4
q2r2qx+

3

8
r4qx +

15

8
q4qx +

3

2
qr3rx − 3

2
q3rrx) + ε3(

1

2
rxx +

1

2
r2qx + qrrx − 3

2
q2qx)+

ε5qx + 2ra6, (2.87a)

rt =c5,x + 2qa6 = ε1(
1

4
rxxx +

3

4
r2qxx − 3

4
q2qxx − 3

2
q(qx)

2 +
3

2
rrxqx − 9

4
q2r2rx+

3

8
q4rx +

15

8
r4rx +

3

2
rq3qx − 3

2
r3qqx) + ε3(

1

2
qxx − 1

2
q2rx − rqqx +

3

2
r2rx)+

ε5rx + 2qa6. (2.88a)

Similarly for n = 7 we have,
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qt =b6,x + 2ra7 = ε2(
1

4
qxxx +

3

4
r2rxx − 3

4
q2rxx +

3

2
r(rx)

2 − 3

2
qqxrx − 9

4
q2r2qx+

3

8
r4qx +

15

8
q4qx +

3

2
qr3rx − 3

2
q3rrx) + ε4(

1

2
rxx +

1

2
r2qx + qrrx − 3

2
q2qx)+

ε6qx + 2ra7, (2.89a)

rt =c6,x + 2qa7 = ε2(
1

4
rxxx +

3

4
r2qxx − 3

4
q2qxx − 3

2
q(qx)

2 +
3

2
rrxqx − 9

4
q2r2rx+

3

8
q4rx +

15

8
r4rx +

3

2
rq3qx − 3

2
r3qqx) + ε4(

1

2
qxx − 1

2
q2rx − rqqx +

3

2
r2rx)+

ε6rx + 2qa7. (2.89b)

Using proposition (2.14) we have the following proposition.

Proposition 2.15. The evolution equations for q and r can be written in terms

of the recursion operator R as follows,

(
rt

qt

)
= Rl

(
ε1rx

ε1qx

)
, (2.90)

where l = 0, 1, 2..., and

R =

(
DxrD

−1
x r 1

2
Dx −DxrD

−1
x q

1
2
Dx + DxqD

−1
x r −DxqD

−1
x q

)
. (2.91)

Proof: If we rewrite the equations (2.81a)and (2.81b) in matrix form we have,

(
rt

qt

)
=

(
cn−1,x

bn−1,x

)
+

(
2anq

2anr

)
(2.92a)

(
rt

qt

)
= Dxzn−1 +

(
2anq

2anr

)
(2.92b)

Since the odd numbered and the even numbered hierarchies give the same equa-

tions, we can ignore the even numbered hierarchies. We can assume n− 1 is odd.

Moreover in the equation (2.92b),

(
2anq

2anr

)
is a symmetry. The summation
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of symmetries is again a symmetry, so we can ignore the righthandside of the

equation (2.92b). By the equation (2.80) we have

(
rt

qt

)
=Dxz2l+1 = DxΨ

lz1

Let R = DxΨD−1
x where Ψ is defined in (2.71b). Hence

(
rt

qt

)
= RlDxz1 = Rl

(
ε1rx

ε1qx

)
. (2.94)

where l = 0, 1, 2, ... ¤



Chapter 3

Classical Lie Algebras

3.1 Introduction

In order to obtain integrable nonlinear partial differential equations, the usual

procedure is to use the zero curvature formalism which is based on the Lax

equation for n × n matrix valued functions. These are traceless real matrices

which form a basis of a matrix algebra. For the AKNS scheme this algebra is

sl(2,R) algebra. To obtain more examples, we will work in simple Lie algebras.

In Section 3.2, we will introduce the usual Cartan-Weyl basis, in Section 3.3, we

will give the Cartan-Weyl basis on homogeneous spaces, introduced in [12]. In

Section 3.4, we will compare these two bases. In Section 3.5, we use a simple

Lie algebra valued soliton connection to obtain some integrable nonlinear partial

differential equations on homogeneous spaces, recently introduced in [12]. In

Section 3.5.2, we determine the corresponding recursion operator by the use of the

catalogue. In Section 3.6, we obtain the integrable evolution equations without

using the catalogue.

30
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3.2 Cartan-Weyl basis

The Cartan-Weyl basis most frequently used by physicists is the standard form

of the commutation relations for a semisimple Lie algebra.

Let g be the Lie algebra of a Lie group G and h be the Cartan subalgebra which

is the maximal abelian subalgebra in g. Then g can be identified as

g = h
⊕

hC (3.1)

where hC is the complement of the Cartan subalgebra in g.

Definition 3.1. The above decomposition leads to the Cartan-Weyl basis as fol-

lows:

[Ha, Hb] = 0 for all a, b = 1, 2, ..., p, (3.2a)

[Ha, Eα] = αaEα, (3.2b)

[Eα, Eβ] =

p∑
a=1

Ca
α+β

Ha if α + β = 0, (3.2c)

[Eα, Eβ] = Cα+β

αβ
Eα+β if α + β 6= 0, (3.2d)

where p is the rank of the algebra, Ha ’ s are bases of the Cartan subalgebra,

Eα ’ s are the bases of the complement of the Cartan subalgebra, αa and C are

the structure constants of the commutation relations.[11]

3.3 Cartan-Weyl basis on homogeneous spaces

In this section we will improve the usual Cartan-Weyl basis to the Cartan-Weyl

basis on homogeneous spaces. For this purpose let us give the following defini-

tions.

Let G be a Lie group. A homogeneous space of G, is any differentiable manifold

M , on which G acts transitively. If K is an isotropy group of some point p0 ∈ M ,

then M can be identified as a coset space G/K. Let g and k be the Lie algebras

of G and K respectively. Let m be the vector space, complement of k in g, then
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g = k
⊕

m. (3.3)

and m is identified as the tangent space of G/K at p0 ∈ M . When g satisfies the

conditions

g = k
⊕

m, [k, k] ⊂ k, [k, m] ⊂ m, (3.4)

then M = G/K is called a ’reductive homogeneous space’. When g satisfies the

conditions

g = k
⊕

m, [k, k] ⊂ k, [k,m] ⊂ m, [m, m] ⊂ k, (3.5)

then M = G/K is called a ’symmetric space’.

In a simple Lie algebra, we denote by Ha the commuting generators where a =

1, 2..., p. Here p is the rank of the algebra. We denote by Eα and Ed the step

operators where α’ s and d’ s are the roots. The k part of the algebra has

the generators Ha, ED (D = d,−d), the m part of the algebra consists of the

generators EA (A = α,−α). In Cartan-Weyl basis we can write the commutation

relation of the generators as [12] :

[Ha, Hb] = 0 for all a, b = 1, 2....p, (3.6a)

[Ha, EA] = fB
aAEB, (3.6b)

[Ha, ED] = fE
aDEE, (3.6c)

[ED, EE] = fa
DEHa + fF

DEEF , (3.6d)

[ED, EA] = fB
DAEB, (3.6e)

[EA, EB] = fa
ABHa + fD

ABED + fC
ABEC , (3.6f)

where A, B, C (±α,±β,±γ) are the indices for the generators in m; D, E,

F (±d,±e,±f) are the indices for the generators in k. Here note that for the

generators EA of m and for the generators ED of k

| A |>| D | . (3.7)
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The structure constants representing the roots can be written as

f±β
a±α = αaδ

±β
±α, f±e

a±d = ±daδ
±e
±d. (3.8)

We shall now give an example, sl(3,R).

Example 3.1. Let g = sl(3,R) with g = {H1, H2, E1, E−1, E2, E−2, E3, E−3}
where the corresponding base elements of Cartan-Weyl basis are as follows,

H1 =




1 0 0

0 −1 0

0 0 0


 , H2 =




1 0 0

0 1 0

0 0 −2


 , E1 =




0 0 0

1 0 0

0 0 0




E−1 =




0 1 0

0 0 0

0 0 0


 , E2 =




0 0 1

0 0 0

0 0 0


 , E−2 =




0 0 0

0 0 0

1 0 0


 ,

E3 =




0 0 0

0 0 1

0 0 0


 , E−3 =




0 0 0

0 0 0

0 1 0


 .

We seek for the commutation relations so that [X, Y ] = XY − Y X for all

X, Y ∈ g :

[H1, H2] = 0, (3.9)

[H1, E1] = −2E1, [H1, E−1] = 2E−1,

[H2, E1] = 0, [H2, E−1] = 0, (3.10a)

[H1, E2] = E2, [H1, E−2] = −E−2, [H1, E3] = −E3,

[H1, E−3] = E−3, [H2, E2] = 3E2, [H2, E−2] = −3E−2,

[H2, E3] = 3E3, [H2, E−3] = −3E−3, (3.10b)

[E1, E−1] = −H1, [E2, E−2] =
1

2
(H1 + H2),

[E3, E−3] =
1

2
(H2 −H1), (3.11a)
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[E1, E2] = E3, [E1, E−2] = 0, [E1, E3] = 0, [E1, E−3] = −E−2,

[E−1, E2] = 0, [E−1, E−2] = −E−3,

[E−1, E3] = E2, [E−1, E−3] = 0, (3.12a)

[E2, E3] = 0, [E2, E−3] = E1,

[E−2, E3] = −E−1, [E−2, E−3] = 0. (3.12b)

Case1: The Cartan-Weyl basis

According to the decomposition for the usual Cartan-Weyl basis, we have

g = h
⊕

hC where

h = {H1, H2},
hC = {E1, E−1, E2, E−2, E3, E−3}.

(3.13)

By (3.9), it is clear that the commutation relations among the elements of Car-

tan subalgebra are zero which corresponds to the equation(3.2a). The structure

constants and the roots of the algebra sl(3,R) are found as follows.

By (3.10a) and (3.10b) we have

[H1, E1] = −2E1 ⇒ α1 = −2; [H1, E−1] = 2E−1 ⇒ α1 = 2,

[H2, E1] = 0 ⇒ α2 = 0; [H2, E−1] = 0 ⇒ α2 = 0,

[H1, E2] = E2 ⇒ α1 = 1; [H1, E−2] = −E−2 ⇒ α1 = −1,

[H1, E3] = −E3 ⇒ α1 = −1; [H1, E−3] = E−3 ⇒ α1 = 1,

[H2, E2] = 3E2 ⇒ α2 = 3; [H2, E−2] = −3E−2 ⇒ α2 = −3,

[H2, E3] = 3E3 ⇒ α2 = 3; [H2, E−3] = −3E−3 ⇒ α2 = −3,

Hence

[Ha, Eα] = αaEα; a = 1, 2; α = ±1,±2,±3,
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which corresponds to (3.2b). By (3.11a),

[E1, E−1] = −H1, ⇒ C1
1−1 = −1,

[E2, E−2] =
1

2
(H1 + H2), ⇒ C1

2−2 =
1

2
, C2

2−2 =
1

2
,

[E3, E−3] =
1

2
(H2 −H1) ⇒ C1

3−3 = −1

2
, C2

3−3 =
1

2
,

Hence

[Eα, Eβ] =
2∑

a=1

Ca
α+β

Ha if α + β = 0; α, β = ±1,±2,

which corresponds to (3.2c). By (3.12a) and (3.12b) we have,

[E1, E2] = E3 ⇒ C3
12 = 1; [E1, E−2] = 0 ⇒ C−1

1−2 = 0,

[E1, E3] = 0 ⇒ C1+3
13 = 0; [E1, E−3] = −E−2 ⇒ C−2

1−3 = −1,

[E−1, E2] = 0 ⇒ C−1+2
−12 = 0; [E−1, E−2] = −E−3 ⇒ C−3

−1−2 = −1

[E−1, E3] = E2 ⇒ C2
−13 = 1; [E−1, E−3] = 0 ⇒ C

−1+(−3)
−1−3 = 0,

[E2, E3] = 0 ⇒ C2+3
23 = 0; [E2, E−3] = E−1 ⇒ C−1

2−3 = 1,

[E−2, E3] = −E1 ⇒ C1
−23 = −1; [E−2, E−3] = 0 ⇒ C

−2+(−3)
−2−3 = 0.

Hence

[Eα, Eβ] = Cα+β

αβ
Eα+β if α + β 6= 0; α, β = ±1,±2,±3,

which corresponds to (3.2d).

Case 2: The Cartan-Weyl basis on homogeneous spaces

According to the decomposition on homogeneous spaces we have g = k
⊕

m such

that

k = {H1, H2, E1, E−1},
m = {E2, E−2, E3, E−3}.

Similar to Case 1, the equation (3.9) corresponds to (3.6a). By (3.10a)



CHAPTER 3. CLASSICAL LIE ALGEBRAS 36

[H1, E1] = −2E1 ⇒ f 1
11 = −2; [H1, E−1] = 2E−1 ⇒ f−1

1−1 = 2,

[H2, E1] = 0 ⇒ f 1
21 = 0; [H2, E−1] = 0 ⇒ f−1

2−1 = 0.

Then we have,

[Ha, ED] = fE
aDEE a = 1, 2; D, E = ±1,

which corresponds to (3.6c). By (3.10b),

[H1, E2] = E2 f 2
12 = 1; ⇒ [H1, E−2] = −E−2 ⇒ f−2

1−2 = −1,

[H1, E3] = −E3 ⇒ f 3
13 = −1; [H1, E−3] = E−3 ⇒ f−3

1−3 = 1,

[H2, E2] = 3E2 ⇒ f 2
22 = 3; [H2, E−2] = −3E−2 ⇒ f−2

2−2 = −3,

[H2, E3] = 3E3 ⇒ f 3
23 = 3; [H2, E−3] = −3E−3 ⇒ f−3

2−3 = −3,

then we have

[Ha, EA] = fB
aAEB a = 1, 2; A,B = ±2± 3,

which corresponds to (3.6b). By (3.11a), [E1, E−1] = −H1 then f 1
1−1 = −1. So

we have [ED, EE] = fa
DEHa where a = 1; D, E = ±1. But in general,

[ED, EE] = fa
DEHa + fF

DEEF .

which is (3.6d). By (3.12a)

[E1, E2] = E3 ⇒ f 3
12 = 1; [E1, E−2] = 0 ⇒ f−1

1−2 = 0,

[E1, E3] = 0 ⇒ f 1+3
13 = 0; [E1, E−3] = −E−2 ⇒ f−2

1−3 = −1,

[E−1, E2] = 0 ⇒ f 1
−12 = 0; [E−1, E−2] = −E−3 ⇒ f−3

−1−2 = −1,

[E−1, E3] = E2 ⇒ f 2
−13 = 1; [E−1, E−3] = 0 ⇒ f

(−1)+(−3)
−1−3 = 0,

then

[ED, EA] = fB
DAEB D = ±1, A, B = ±2,±3,

which corresponds to (3.6e). By (3.11a) and (3.12b),
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[E2, E−2] =
1

2
(H1 + H2) ⇒ f 1

2−2 =
1

2
, f 2

2−2 =
1

2
,

[E3, E−3] =
1

2
(H2 −H1) ⇒ f 1

3−3 =
−1

2
, f 2

3−3 =
1

2
,

[E2, E3] = 0 ⇒ f 2+3
23 = 0; [E2, E−3] = E−1 ⇒ f−1

2−3 = 1,

[E−2, E3] = −E1 ⇒ f 1
−23 = −1; [E−2, E−3] = 0 ⇒ f

(−2)+(−3)
−2−3 = 0.

So we have,

[EA, EB] = fa
ABHa +fD

ABED +fC
ABEC , a = 1, 2; D = ±1, A, B, C = ±2,±3,

which is (3.6f).

3.4 Comparison of Cartan -Weyl bases

In this section we will compare the usual Cartan-Weyl basis with the one on homo-

geneous spaces. Obviously (3.2a) and (3.6a) requires the commuting generators.

By (3.1) the usual Cartan-Weyl basis consists of Cartan subalgebra and the com-

plement of the Cartan subalgebra. On the other hand; by (3.4) the Cartan-Weyl

basis on homogeneous spaces decomposed into k part and m part. The k part has

generators Ha, ED (D = d,−d) and m part has generators EA (A = α,−α). To

emphasize the difference between these two bases, hC (in the usual Cartan-Weyl

basis) has been improved to have a decomposition of two vector spaces having

generators ED and EA. Hence for the derivation of the basis from the usual one;

we have to take into account the general behaviour of αa which is now altered

to αa = (αa, da). If we assume α = ±α , by (3.2b) we have [Ha, E±α] = αaE±α.

Using (3.8); if we let ±α = ±β , we conclude that

[Ha, E±α] = f±β
a±αE±β,

[Ha, EA] = fB
aAEB,

which is (3.6b). If we assume α = ±d, by (3.2b) we have [Ha, E±d] = ±daE±d.

Using (3.8); if we let ±d = ±e , we conclude that
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[Ha, E±d] = f±e
a±dE±e,

[Ha, ED] = fE
aDEE,

which is (3.6c). If we assume α = d and β = e, by (3.2c) and (3.2d) we have,

[Ed, Ee] =

p∑
a=1

Ca
d+eHa if d + e = 0,

[Ed, Ee] = Cd+e
de Ed+e if d + e 6= 0.

On the other hand; by (3.4) [Ed, Ee] ⊂ k where k has generators Ha and ED.

Then

[Ed, Ee] = fa
deHa + fd+e

de Ed+e. (3.21)

Here

if d + e = 0 then fa
de = Ca

d+e,

if d + e 6= 0 then fd+e
de = Cd+e

de .

Similarly α = −d, β = −e implies,

[E−d, E−e] = fa
−d−eHa + f

(−d)+(−e)
−d−e E(−d)+(−e). (3.22)

Let E(±d)+(±e) = E(±f) ⊂ k. Hence (3.21), (3.22) gives straightforwardly,

[ED, EE] = fa
DEHa + fF

DEEF ,

which is (3.6d). If we assume α = d and β = α, by (3.2c) and (3.2d) we have,

[Ed, Eα] =

p∑
a=1

Ca
d+αHa if d + α = 0,

[Ed, Eα] = Cd+α
dα Ed+α if d + α 6= 0.

On the other hand; since Ed and Eα are elements of k and m respectively, we

always have d + α 6= 0. Also by (3.4) we have [Ed, Eα] ⊂ m. Hence

[Ed, Eα] = fd+α
dα Ed+α. (3.23)
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Here Ca
d+α = 0; fd+α

dα = Cd+α
dα . Similarly α = −d , β = −α implies,

[E−d, E−α] = f
(−d)+(−α)
−d−α E(−d)+(−α). (3.24)

Let E(±d)+(±α) = E(±β) ⊂ m. Hence (3.23), (3.24) gives straightforwardly

[ED, EA] = fB
DAEB,

which is (3.6e). If we assume α = α and β = β by (3.2c) and (3.2d) we have,

[Eα, Eβ] =

p∑
a=1

Ca
α+βHa if α + β = 0,

[Eα, Eβ] = Cα+β
αβ Eα+β if α + β 6= 0.

On the other hand; since Eα and Eβ are elements of m, the condition of reductive

homogeneous space does not give enough information about the place of the

commutation relation of [Eα, Eβ]. So we have either k or m part. Then

[Eα, Eβ] = fa
αβHa + fα+β

1αβ
Eα+β + fα+β

2αβ
Eα+β.

Here

if α + β = 0 then Ca
α+β = fa

αβ;

if α + β 6= 0 and [Eα, Eβ] ⊂ k, then Cα+β
αβ = fα+β

1αβ
= fd

αβ where α + β = d;

if α + β 6= 0 and [Eα, Eβ] ⊂ m, then Cα+β
αβ = fα+β

2αβ
= fγ

αβ where α + β = γ.

Then

[Eα, Eβ] = fa
αβHa + fd

αβEd + fγ
αβEγ. (3.25)

Similarly α = −α , β = −β implies,

[E−α, E−β] = fa
−α−βHa + f−d

−α−βE−d + f−γ
−α−βE−γ. (3.26)

Hence (3.25), (3.26) gives straightforwardly,

[EA, EB] = fa
ABHa + fD

ABED + fC
ABEC ,

which is (3.6f).
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3.5 A simple Lie algebra valued soliton connec-

tion

Definition 3.2. The simple Lie algebra valued soliton connection 1-form Ω, as-

sociated to a reductive homogeneous space G/K with the generators Ha, ED is

defined as

Ω = (ikλHs + QAEA)dx + (AaHa + BAEA + CDED)dt, (3.27)

where K is the isotropy group of G, λ is the spectral parameter, k is a constant

not depending on λ, s ∈ {1, 2, ...p} is a fixed constant, QA(x, t) is potential, Aa,

BA and CD are arbitrary functions of x, t and λ [12].

Assume Hs as one of the commuting generators which satisfies the commutation

relation

[Hs, ED] = 0, (3.28)

Here we note that ±d = ±(α− β) and αs = βs, for all α ’s, β ’s.

For Ω = Tdt + Xdx, we have

dφ = Ωφ (3.29)

as the Lax equation in differential forms where φ ∈ G. R curvature 2-form is

R = dΩ + Ω ∧ Ω. Here Ω is the flat connection so

dΩ + Ω ∧ Ω = 0. (3.30)

which is the zero curvature condition. Therefore the equation (3.30) becomes,

−QA
t EA + Aa

xHa + BA
x EA + CD

x ED + ikλAa[Hs, Ha] + ikλBC [Hs, EC ]+

ikλCD[Hs, ED] + QAAa[EA, Ha] + QABC [EA, EC ] + QACD[EA, ED] = 0. (3.31)
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The equation (3.6a) leads [Hs, Ha] = 0. According to our assumption

[Hs, ED] = 0. By (3.6b),(3.6e) and (3.6f), we have respectively

[Hs, EC ] = fA
sCEA, [EA, Ha] = −fA

aCEA, [EA, ED] = fA
BDEA, (3.32a)

[EA, EC ] = fa
ACHa + fD

ACED + fA
BCEA. (3.32b)

Note that summation on indices enables us to change indices.

Proposition 3.3. By using the conditions (3.32a) and (3.32b) in the equation

(3.31), we have

QA
t = BA

x + ikλfA
sCBC − fA

aCQCAa + fA
BCQBBC + fA

BDQBCD, (3.33a)

Aa
x + fa

ACQABC = 0, (3.33b)

CD
x + fD

ACQABC = 0. (3.33c)

We expand Aa, BA and CD in terms of the positive powers of λ as,

Aa =
N∑

n=0

aa
nλ

N−n, BA =
N∑

n=0

bA
n λN−n, CD =

N∑
n=0

cD
n λN−n. (3.34)

Proposition 3.4. Let Aa, BA, CD in equations (3.33a), (3.33b) and (3.33c)

have expansions as in (3.34), then we get the following equations respectively,

bA
l,x + ikfA

sCbC
l+1 − fA

aCQCaa
l + fA

BCQBbC
l + fA

BDQBcD
l = 0; l = 0, ., N − 1,

(3.35a)

QA
t = bA

N,x − fA
aCQCaa

N + fA
BCQBbC

N + fA
BDQBcD

N , (3.35b)

ikfA
sCbC

0 = 0, (3.35c)

aa
l,x + fa

ACQAbC
l = 0; l = 0, 1.., N, (3.35d)

cD
l,x + fD

ACQAbC
l = 0; l = 0, 1.., N. (3.35e)

Using the Proposition (3.4) we have the following proposition

Proposition 3.5. If we expand the related indices of the equations (3.35a),

(3.35b), (3.35d) and (3.35e), we have
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b±α
l,x + ikf±α

sγ bγ
l+1 + ikf±α

s−γb
−γ
l+1 −Qγf±α

aγ aa
l −Q−γf±α

a−γa
a
l + Qβf±α

βγ bγ
l +

Q−βf±α
−βγb

γ
l + Qβf±α

β−γb
−γ
l + Q−βf±α

−β−γb
−γ
l + Qβf±α

βd cd
l + Qβf±α

β−dc
−d
l +

Q−βf±α
−βdc

d
l + Q−βf±α

−β−dc
−d
l = 0; l = 0, .., N − 1, (3.36a)

Q±α
t = b±α

N,x −Qγfα
aγa

a
N −Q−γf±α

a−γa
a
N + Qβf±α

βγ bγ
N + Q−βf±α

−βγb
γ
N + Qβf±α

β−γb
−γ
N +

Q−βf±α
−β−γb

−γ
N + Qβf±α

βd cd
N + Q−βf±α

−βdc
d
N + Qβf±α

β−dc
−d
N + Q−βf±α

−β−dc
−d
N , (3.37a)

aa
l,x + Qαfa

αγb
γ
l + Q−αfa

−αγb
γ
l + Qαfa

α−γb
−γ
l + Q−αfa

−α−γb
−γ
l = 0; l = 0, 1.., N,

(3.38)

c±d
l,x + Qαf±d

αγ bγ
l + Q−αf±d

−αγb
γ
l + Qαf±d

α−γb
−γ
l + Q−αf±d

−α−γb
−γ
l = 0; l = 0, 1.., N.

(3.39)

3.5.1 The catalogue

To deduce the occurrance of the structure constants, it is better to determine a

catalogue of them. Consider the commutation relations:

[Ha, Eγ] = γaEγ by (3.2b),

= fα
aγEα + f−α

aγ E−α by (3.6b).

Since γ > 0 then f−α
aγ = 0 and by (3.8), we have

αa = fα
aγ. (3.40)

Similarly for [Ha, E−γ] = −γaE−γ = fα
a−γEα + f−α

a−γE−α we have,

fα
a−γ = 0, −αa = f−α

a−γ. (3.41)

Using (3.2c),(3.2d),(3.6f), the commutation relation becomes,

[Eβ, Eγ] = Ca
β+γHa if β + γ = 0,

= Cβ+γ
βγ Eβ+γ if β + γ 6= 0,

= fa
βγHa + fα

βγEα + f−α
βγ E−α + fd

βγEd + f−d
βγ E−d.
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Since β, γ > 0, we have

fa
βγ = f−α

βγ = f±d
βγ = 0 and Cβ+γ

βγ = fα
βγ. (3.43)

Similarly for [E−β, E−γ], we have

fa
−β−γ = fα

−β−γ = f±d
−β−γ = 0 and C

−β+(−γ)
−β−γ = f−α

−β−γ. (3.44)

For [Eβ, E−γ], we have again

[Eβ, E−γ] = Ca
β+(−γ)Ha if β − γ = 0,

= C
β+(−γ)
β−γ Eβ+(−γ) if β − γ 6= 0,

= fa
β−γHa + fα

β−γEα + f−α
β−γE−α + fd

β−γEd + f−d
β−γE−d.

The following cases determine the structure constants of [Eβ, E−γ].

a. If β − γ = 0 ⇒ f±α
β−γ = f±d

β−γ = 0, Ca
β+(−γ) = fa

β−γ, (3.46a)

b. if β − γ > 0, Eβ−γ ⊂ m ⇒
fa

β−γ = f±d
β−γ = f−α

β−γ = 0, C
β+(−γ)
β−γ = fα

β−γ, (3.46b)

c. if β − γ > 0, Eβ−γ ⊂ k ⇒
fa

β−γ = f±α
β−γ = f−d

β−γ = 0, C
β+(−γ)
β−γ = fd

β−γ,

d. if β − γ < 0, Eβ−γ ⊂ m ⇒
fa

β−γ = f±d
β−γ = fα

β−γ = 0, C
β+(−γ)
β−γ = f−α

β−γ, (3.46c)

e. if β − γ < 0, Eβ−γ ⊂ k ⇒
fa

β−γ = f±α
β−γ = fd

β−γ = 0, C
β+(−γ)
β−γ = f−d

β−γ. (3.46d)

Similarly [E−β, Eγ] can be discussed by substituting γ instead of β and sub-

stituting β instead of γ which is exactly −[Eβ, E−γ]. Using (3.2d),(3.6e), the

commutation relation becomes,
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[Eβ, Ed] = Cβ+d
βd Eβ+d,

= fα
βdEα + f−α

βd E−α.

Since β, d > 0 we have,

f−α
βd = 0 and Cβ+d

βd = fα
βd. (3.47)

Similarly for [E−β, E−d] we have,

fα
−β−d = 0 and C

(−β)+(−d)
β−d = f−α

−β−d. (3.48)

When it comes to discuss

[Eβ, E−d] = C
β+(−d)
β−d Eβ+(−d),

= fα
β−dEα + f−α

β−dE−α.

By (3.7), β − d > 0 then,

f−α
β−d = 0. (3.49)

Also (3.6e) leads us, fα
β−d exists if Eβ−d ⊂ m; otherwise fα

β−d = 0. Hence

C
β+(−d)
β−d = fα

β−d if β − d > d,

C
β+(−d)
β−d = 0 if β − d ≤ d.

(3.50)

Similarly for [E−β, Ed] we have

fα
−βd = 0, (3.51)

and

C
(−β)+d
−βd = f−α

−βd if − β + d > d,

C
(−β)+d
−βd = 0 if − β + d ≤ d.

(3.52)
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3.5.2 The evolution equations

By the use of catalogue, the equations (3.38) and (3.39) respectively become:

aa
l,x + fa

β−γ(Q
βb−γ

l −Q−γbβ
l ) = 0,

c±d
l,x + f±d

β−γ(Q
βb−γ

l −Q−γbβ
l ) = 0,

then we have

aa
l = −D−1

x [fa
β−γ(Q

βb−γ
l −Q−γbβ

l )], (3.54a)

c±d
l = −D−1

x [f±d
β−γ(Q

βb−γ
l −Q−γbβ

l )], (3.54b)

where l = 0, ..., N. Again by catalogue the equation (3.36a) become:

bα
l,x + ikαsb

α
l+1 − αaQ

αaa
l + Qβfα

βγb
γ
l + fα

β−γ(Q
βb−γ

l −Q−γbβ
l ) + Qβfα

βdc
d
l +

Qβfα
β−dc

−d
l = 0, (3.55a)

b−α
l,x − ikαsb

−α
l+1 + αaQ

−αaa
l + Q−βf−α

−β−γb
−γ
l + f−α

β−γ(Q
βb−γ

l −Q−γbβ
l )+

Q−βf−α
−β−dc

−d
l + Q−βf−α

−βdc
d
l = 0, (3.55b)

where l = 0, ..., N − 1. Substituting (3.54a) and (3.54b) in (3.55a) we obtain,

bα
l+1 = ξ(Rα

1β
bβ
l + Rα

2−β
b−β
l ), (3.56)

where l = 0, ..., N − 1, ξ = i
kαs

and

Rα
1β

= Dxδ
α
β − αaQ

αfa
β−γD

−1
x Q−γ + Qβfα

βγδ
γ
β − fα

β−γQ
−γ + Qβfα

βdf
d
β−γD

−1
x Q−γ+

Qβfα
β−df

−d
β−γD

−1
x Q−γ, (3.57a)

Rα
2−β

= αaQ
αfa

β−γD
−1
x Qβδ−γ

−β + fα
β−γQ

βδ−γ
−β −Qβfα

βdf
d
β−γD

−1
x Qβδ−γ

−β−
Qβfα

β−df
−d
β−γD

−1
x Qβδ−γ

−β . (3.57b)

Similarly the substitution of (3.54a),(3.54b) in (3.55b) gives,

b−α
l+1 = −ξ(R−α

3β
bβ
l + R−α

4−β
b−β
l ), (3.58)
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where l = 0, ..., N − 1 and

R−α
3β

= αaQ
−αfa

β−γD
−1
x Q−γ − f−α

β−γQ
−γ + Q−βf−α

−β−df
−d
β−γD

−1
x Q−γ+

Q−βf−α
−βdf

d
β−γD

−1
x Q−γ, (3.59a)

R−α
4−β

= Dxδ
−α
−β − αaQ

−αfa
β−γD

−1
x Qβδ−γ

−β + Q−βf−α
−β−γδ

−γ
−β + f−α

β−γQ
βδ−γ
−β−

Q−βf−α
−β−df

−d
β−γD

−1
x Qβδ−γ

−β −Q−βf−α
−βdf

d
β−γD

−1
x Qβδ−γ

−β . (3.59b)

Proposition 3.6. The equations (3.56), (3.58) give us the following recursion

equation and the corresponding recursion operator; RA
B

BA
l+1 = RA

BBB
l l = 0, 1.., N − 1, (3.60)

where

BA
l+1 =

(
bα
l+1

b−α
l+1

)
,

RA
B = ξ

(
Rα

1β
Rα

2−β

−R−α
3β

−R−α
4−β

)
,

BB
l =

(
bβ
l

b−β
l

)
.

and ξ = i
kαs

.

When it comes to the evolution equations, by catalogue the equation (3.37a)

becomes,

Qα
t = bα

N,x − αaQ
αaa

N + Qβfα
βγb

γ
N + fα

β−γ(Q
βb−γ

N −Q−γbβ
N) + Qβfα

βdc
d
N+

Qβfα
β−dc

−d
N , (3.61a)

Q−α
t = b−α

N,x + αaQ
−αaa

N + Q−βf−α
−β−γb

−γ
N + f−α

β−γ(Q
βb−γ

N −Q−γbβ
N)+

Q−βf−α
−β−dc

−d
N + Q−βf−α

−βdc
d
N . (3.61b)

Similar to the argument for recursion equations, after substituting (3.54a), (3.54b)

in (3.61a) and (3.61b) we have,
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(
Qα

t

Q−α
t

)
=

(
Cα

1β
Cα

2−β

C−α
3β

C−α
4−β

)(
bβ
N

b−β
N

)
. (3.62)

Here exactly

Rα
1β

= Cα
1β

, Rα
2−β

= Cα
2−β

,

R−α
3β

= C−α
3β

, R−α
4−β

= C−α
4−β

.
(3.63)

Proposition 3.7. The evolution equations can be determined as

QA
t =

1

ξ
(RA

B)Nσ3B
C
1 . (3.64)

where ξ = i
kαs

, σ3 =

(
1 0

0 −1

)
and RA

B = ξσ3

(
Rα

1β
Rα

2−β

−R−α
3β

−R−α
4−β

)
σ3.

Proof: The equation (3.62) becomes

QA
t =

1

ξ
σ3RA

BBB
N .

By (3.60), we have

QA
t =

1

ξ
(RA

B)Nσ3B
C
1 . ¤ (3.65)

3.6 Unified equations

Our approach can be improved without expanding the indices. For this case, the

catalogue will not be needed. By equations (3.35d) and (3.35e) we obtain,

aa
l = −D−1fa

ACQAbC
l , cD

l = −D−1fD
ACQAbC

l , where l = 0, 1..., N. (3.66)

By (3.35a) we have,

− ikfA
sCbC

l+1 = bA
l,x − fA

aCQCaa
l + fA

BCQBbC
l + fA

BDQBcD
l . (3.67)
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Let fA
sC = XA

C be a non-degenerate matrix. Here summation on indices enables

us to change the indices. We change C to B and B to C in the above equations

(3.66) and (3.67). Then equation (3.67) becomes,

bB
l+1 =

i

k
(X−1)B

A [bA
l,x − fA

aBQBaa
l + fA

CBQCbB
l + fA

CDQCcD
l ]. (3.68)

Substitution aa
l and cD

l for all l = 0, 1..., N from (3.66) in equation (3.68)

gives,

bB
l+1 =

i

k
(X−1)B

A [DδA
B + fA

aBQBD−1fa
ABQA + fA

CBQC − fA
CDQCD−1fD

ABQA] bB
l .

Hence

bB
l+1 = RA

BbB
l (3.69a)

bB
N = (RA

B)N−1bB
1 , (3.69b)

where

RA
B =

i

k
(X−1)B

A [DδA
B+fA

aBQBD−1fa
ABQA+fA

CBQC−fA
CDQCD−1fD

ABQA] (3.70)

is the recursion operator and (3.69b) is the recursion equation. On the other

hand by (3.35b) we have,

QA
t = bA

N,x − fA
aBQBaa

N + fA
CBQCbB

N + fA
CDQccD

N . (3.71)

Proposition 3.8. The evolution equations can be written as

QA
t = −ikXB

A (RA
B)N bB

1 , (3.72)

where

RA
B =

i

k
(X−1)B

A [DδA
B + fA

aBQBD−1fa
ABQA + fA

CBQC − fA
CDQCD−1fD

ABQA].

Proof: Substituting the terms in (3.66) into the equation (3.71) we have,
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QA
t = [DδA

B + fA
aBQBD−1fa

ABQA + fA
CBQC − fA

CDQCD−1fD
ABQA] bB

N .

So we have

QA
t = −ikXB

A RA
B bB

N . (3.73)

Hence by (3.69b) the equation (3.73) results as;

QA
t = −ikXB

A (RA
B)N bB

1 . (3.74)

which is the evolution equation. ¤



Chapter 4

Gel’fand-Dikii Formalism

In the Lax formalism, the main problem is to determine the operator A in the

Lax equation (1.5). By the use of Gel’fand- Dikii formalism, we determine such

operators straightforwardly. This formalism gives a construction of all Lax pairs,

based on the calculation of fractional powers of the operator L. Further the

Gel’fand- Dikii formalism makes use of some algebras; among such algebras, we

can give the pseudo-differential, matrix, polynomial and Moyal algebras. In each

Lax representation, the Lax operator L, is a polyomial. For the pseudo-differential

algebra L is a polynomial of a differential operator Dx, for the matrix algebra it

is a polynomial of a spectral constant and for the polynomial and Moyal algebras,

it is a polynoimal of the auxiliary variable (momentum p).

Let G be an algebra and ’*’ be a non-commutative, associative binary product.

Let F , G and H be G-valued functions, then define a bracket {, }G as

{F, G}G :=
1

2κ
(F ∗G−G ∗ F ), κ ∈ R (4.1)

which satisfies the properties;

i. Skew-symmetry: {F, G}G = −{G,F}G,

ii. Leibniz rule: {FG, H}G = F.{G,H}G + {F,H}G.G,

50
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iii. Jacobi identity: {{F,G}G, H}G + {{H,F}G, G}G + {{G,H}G, F}G = 0.

Let L be G valued Lax operator. Then the Lax equation is defined as;

∂L

∂t
= {A,L}G (4.2)

for some G valued function A. In order to obtain A, we find A s.t

{L,A}G = 0. (4.3)

Apart from the matrix algebra we take A = L
n
m , then (4.3) holds, where n 6= am;

a, n ∈ Z. We put A = (A)>k that is

A = (L
n
m )>k. (4.4)

So we obtain a consistent equation (4.2). Here the restriction of being bigger or

equal to k is for A to be the polynomial part of L
n
m except first k− 1 terms. For

the matrix algebra we find A by solving {L, A}G = 0, then we set

A = (A)>k. (4.5)

In the following sections, we shall present our method and give examples for each

Lax representation. In Section 4.1, we consider Lax operator taking values in a

pseudo-differential algebra. In Section 4.2, we consider the case of matrix algebra.

In Section 4.3, we deal with polynomial algebra. In Section 4.4, we work on the

case of Moyal algebra.

4.1 Pseudo-differential algebra

As a first example of an algebra G, we consider the pseudo-differential algebra.

Let F , G ∈ G be two pseudo-differential operators;

F = fn(u)Dn
x + ... + f0(u) + f−1(u)D−1

x + .....,

G = gm(u)Dm
x + ... + g0(u) + g−1(u)D−1

x + .....,
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where fi, gj, i = ..,−1, 0, 1, .., n; j = ..,−1, 0, 1, .., m are differentiable functions.

The bracket {, }G defined in (4.1) corresponds to the usual commutator if ’*’ is

the operational product and κ = 1
2
.

Definition 4.1. A differential operator of order n is a finite sum

D =
n∑

i=0

Pi[u]Di
x, (4.6)

where the coefficients Pi[u] are differentiable functions.[18]

The multiplication of differential operators is described by the formula

Di
x.D

j
x = Di+j

x , (4.7)

valid for i, j > 0. The derivational property of Dx is given by the Leibniz rule

Dx.Q = Qx + QDx, (4.8)

where Q is a differentiable function.

Definition 4.2. A pseudo-differential operator of order n is an infinite series

D =
n∑

i=−∞
Pi[u]Di

x, (4.9)

where Pi[u] are differentiable functions. The operator D−1
x is the formal inverse

of Dx (Dx.D
−1
x = D−1

x .Dx = 1).[18]

The operator D−1
x of any differentiable function Q is formulated as

D−1
x .Q =

∞∑

k=0

(−1)kQkD−k−1
x . (4.10)

The advantage of introduction of a pseudo-differential operator is that now we

can take roots of any pseudo-differential operator.
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Lemma 4.3. Every nonzero pseudo-differential operator of order n > 0 has an

n− th root.[18]

Proof: Suppose D is a pseudo-differential operator of the form (4.9), with

nonzero leading coefficient Pn. The n-th root ε = D 1
n will be a first order pseudo-

differential operator of the form

ε = (Pn)
1
n Dx + Q0 + Q−1D

−1
x + Q−2D

−2
x + ...

Substituting into the equation εn = D, leads to a system of equations for the

coefficients Qk , k = ...,−2,−1, 0 of ε which can be solved for the Qk, k =

...,−2,−1, 0 in terms of Pi’s, i = ...,−1, 0, 1.., n. ¤

Example 4.1. Consider the operator D = D2
x + u, which corresponds to the

KdV equation. Then the square root of D is

D 1
2 = Dx +

1

2
uD−1

x − 1

4
uxD

−2
x +

1

8
(uxx − u2)D−3

x + ... (4.11)

We consider equations with the Lax representations of the form

Lt = [A,L].

where L is differential operator of order m and A is a differential operator whose

coefficients are functions of x and t. Let

L = Dm
x + um−2D

m−2
x + ... + u1Dx + u0, (4.12)

where ui, i = 0, 1, ..., m − 2 are functions of x and t. L
1
m exists by the Lemma

(4.3), so we can consider any fractional power of L; L
n
m . Set

L
n
m = (L

n
m )+ + (L

n
m )−, (4.13)

where (L
n
m )+ is the differential part of the series L

n
m ; (L

n
m )− is a series of order

less or equal to −1 and n ∈ Z, n 6= am, a ∈ Z. Since [L, L
n
m ] = 0 we have
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[L, (L
n
m )+] = −[L, (L

n
m )−]. (4.14)

The left-hand side of(4.14) is a differential operator of order6 n + m − 1, but

the right hand side is a series of order6 m − 1. Hence there are n number of

terms cancelling each other which give us a system of evolution equations for the

dependent variables ui, i = 0, 1, ..., m − 2 by comparing the coefficients of

Di
x. Different choices of operator A for given L , leads to a hierarchy of nonlinear

systems of differential equations. To have a hierarchy consider

Ltn = [An, L], (4.15)

where An can be defined as

An := (L
n
m )+, (4.16)

where ′+′ means the polynomial part of L
n
m . For such a hierarchy, we can con-

struct a recursion operator.

Proposition 4.4. For any n

An+m = L.An + Rn, (4.17)

where Rn is a differential operator of order6 m− 1.[15]

Proof: By (4.16) and (4.13)

An+m = (L.L
n
m )+ = (L.[(L

n
m )+ + (L

n
m )−])+.

Note that, since (L.(L
n
m )+)+ has only positive powers, then

(L.(L
n
m )+)+ = L.(L

n
m )+.

Hence

An+m = L.(L
n
m )+ + (L.(L

n
m )−)+ = L.An + Rn,
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by substituting Rn = (L.(L
n
m )−)+. Here since (L

n
m )− is a series of order less or

equal to −1 then ord(Rn) 6 m− 1. ¤

The result obtained from the last Proposition leads to

Ltn+m = [An+m, L] = [L.An + Rn, L] = L.[An, L] + [Rn, L] = L.Ltn + [Rn, L].

Hence

Ltn+m = L.Ltn + [Rn, L]. (4.18)

The equation (4.18) is called the recursion relation and Rn is called the

remainder.[15]

Remark 4.5. It follows from the formula

An+m = (L
n
m .L)+ = (L

n
m )+.L + ((L

n
m )−.L)+, (4.19)

that

An+m = AnL + Rn, (4.20)

and

Ltn+m = Ltn .L + [Rn, L], (4.21)

where Rn = ((L
n
m )−L)+ is a differential operator and ord(Rn) 6 m− 1.

To find the recursion operator we equate the coefficients of different powers of

Dx in (4.18). The comparison of the coefficients of Di
x, i = 2m − 2, ...,m − 1

enables us to determine Rn in terms of the coefficients of operators L and Ltn .

It is essential that the resulting formulas become linear in the coefficients of Ltn .

The remaining coefficients of Di
x, i = m− 2, ..., 0 in (4.18) give us the relation




uo

u1

.

.

um−2




tn+m

= R




uo

u1

.

.

um−2




tn

, (4.22)
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where R is the recursion operator. This is indeed the definition of the recursion

operator. Instead of the equation (4.18) we can use (4.21) as well, the corre-

sponding recursion operators coincide.

Example 4.2. The KdV equation, ut = 1
4
uxxx + 3

2
uux has a Lax representation

with

L = D2
x + u, A = (L

3
2 )+. (4.23)

By the equation (4.18) the recursion relation is of the form

Ltn+2 = L.Ltn + [Rn, L].

Since Ltn = utn , the main relation takes the form

utn+2 = (D2
x + u).utn + [Rn, D2

x + u], (4.24)

with Rn = anDx+cn. ( Note that Rn = (L.(L
3
2 )−)+ and ord(Rn) 6 1) Comparing

the coefficients of D0
x, Dx and D2

x in the equation (4.24) we obtain respectively

an =
1

2
D−1

x (utn), cn =
3

4
utn ,

and

utn+2 = (
1

4
D2

x + u +
1

2
uxD

−1
x ).utn ,

that gives the standard recursion operator for the KdV equation,

R =
1

4
D2

x + u +
1

2
uxD

−1
x . (4.25)

If we use the recursion relation (4.21) we obtain an = 1
2
D−1

x (utn),cn = −1
4
utn

for Rn = anDx + cn. The corresponding recursion operator is exactly the one in

(4.25).
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4.1.1 Symmetric and skew-symmetric reductions of a dif-

ferential Lax operator

The standard reductions of the Gel’fand-Dikii systems are given by the conditions

L∗ = L or L∗ = −L. Here * denotes the adjoint operation defined as follows.[15]

Definition 4.6. Let L be a differential operator, L =
∑m

i=0 ai.D
i
x, then its adjoint

L∗ is given by

L∗ =
m∑

i=0

(−Dx)
i.ai (4.26)

where the coefficients ai are differentiable functions.

If L∗ = L, then ord(L) = m must be an even integer. If L∗ = −L, then ord(L)

must be an odd integer. For both cases; if L∗ = L or L∗ = −L, the compatibility

condition of (4.15) implies that (An)∗ = −An. So all possible An defined by

(4.16), where n takes odd integer values.

If L∗ = L, the formula An+m = (L.L
n
m )+ = L.An+Rn gives a correct An operator,

since n + m is an odd integer. Hence in this case Proposition (4.4) remains valid

and the recursion operator can be found form (4.18) or (4.21). On the other

hand, if L∗ = −L then both integers m and n are odd and hence their sum m+n

is an even integer. This means that (L
n+m

m )+ cannot be taken as an An operator.

In this skew-adjoint case we must take

An+2m = (L
n+2m

m )+ = (L2.L
n
m )+

to find the recursion operator. Following the proof of Proposition (4.4), we state

Proposition (4.7).

Proposition 4.7. If L∗ = −L then

An+2m = L2An + Rn (4.27)

where ord(Rn) < 2.ord(L)− 1. Also the corresponding recursion relation is
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Ltn+2m = L2.Ltn + [Rn, L]. (4.28)

Here note that Rn = (L2.(L
n
m )−)+ [15].

Remark 4.8. Instead of (4.27), we can use

An+2m = L.An.L + R̆n, (4.29)

or

An+2m = An.L2 + R̃n, (4.30)

where R̆n and R̃n are differential operators and ord(R̆n) = ord(R̃n) 6 2ord(L)−1.

Then the recursion relations become respectively

Ltn+2m = L.Ltn .L + [R̆n, L], (4.31a)

Ltn+2m = Ltn .L2 + [R̃n, L]. (4.31b)

Note that the recursion operators obtained by (4.28), (4.31a) and (4.31b) are all

coincide. We now generalize our scheme to the case, where the Lax operator

is a pseudo-differential operator. For the skew-symmetric case An is defined

as either (4.27),(4.29) or (4.30). In the pseudo-differential case, they are not

equivalent. Let us consider L = M.D−1
x , where M is a differential operator and

define L† = Dx.L
∗.D−1

x .

Lemma 4.9. Let L† = εL, where ε = ±1. Then

Rn = am−1D
m−1
x + ... + a0, for ε = 1, (4.32)

where Rn is defined by An+m = L.An + Rn and

R̂n = a2m−1D
2m−1
x + ... + a−1D

−1
x for ε = −1, (4.33)

where R̂n is defined by An+2m = L.An.L + R̂n.[15]
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Example 4.3. The KdV equation has, besides the standard Lax pair, the fol-

lowing Lax pair:

L = (D2
x + u).D−1

x , A = (L3)+. (4.34)

Here

L† = Dx.L
∗.D−1

x = Dx.(−Dx −D−1
x u).D−1

x = −L.

So ε = −1 and according to the formula (4.33) we have

R̂n = anDx + bn + cnD−1
x .

Therefore the corresponding recursion relation is

Ltn+2 = L.Ltn .L + [R̂n, L]. (4.35)

Since in this case Ltn = utnD−1
x and Ltn+2 = utn+2D

−1
x , the equation (4.35)

becomes

utn+2D
−1
x = L.(utnD−1

x ).L + [anDx + bn + cnD
−1
x , L]. (4.36)

Comparing the coefficients of Di
x, i = −3, .., 2 in the equation (4.36) we obtain

an = D−1
x (utn), bn = utn , cn = −utn,x − uD−1

x (utn),

and

utn+2 = (D2
x + 4u + 2uxD

−1
x ).utn .

That gives the recursion operator

R = D2
x + 4u + 2uxD

−1
x . (4.37)

Example 4.4. The DSIII (Drinfeld-Sokolov III) system introduced in [21],[22],

is given as

ut = −u3x + 6uux + 6vx,

vt = 2v3x − 6uvx.
. (4.38)
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The nonlocal Lax representation for this system is

L = (D5
x − 2uD3

x − 2D3
xu− 2Dxw − 2wDx)D

−1
x ,

A = (L
3
4 )+,

(4.39)

where w = v − u2x. Here

L∗ = D−1
x (D5

x − 2uD3
x − 2D3

xu− 2Dxw − 2wDx),

L† = (D5
x − 2uD3

x − 2D3
xu− 2Dxw − 2wDx)D

−1
x = L.

So ε = 1 and according to the formula (4.32) we have

Rn = anD3
x + bnD

2
x + cnDx + dn.

Therefore the corresponding recursion relation is

Ltn+4 = L.Ltn + [Rn, L]. (4.40)

Since in this case

Ltn = −4utnD2
x − 2u2xtn − 6uxtnDx − 2vxtnD−1

x − 4vtn . (4.41)

By equating the coefficients of the powers of Di
x i = −1, ..7 in (4.40), we obtain

an = −D−1
x (utn), bn = −4utn ,

cn =
1

2
(6uD−1

x (utn)− 11utn,x − 2D−1
x (uutn)− 2D−1

x (vtn)),

dn,x =
1

2
(6u2xD

−1
x (utn) + 10uxutn − 5utn,3x + 4uutn,x − 6vtn,x),

and
(

utn+4

vtn+4

)
= R

(
utn

vtn

)
.

That gives the recursion operator of the DSIII system
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R =

(
R0

0 R0
1

R1
0 R1

1

)
, (4.42)

where

R0
0 = D4

x − 8uD2
x − 8u2x + 16v − 12uxDx + 16u2 + (12uux − 2u3x + 12vx)D

−1
x + 4uxD

−1
x u

R0
1 = −10D2

x + 8u + 4uxD
−1
x

R1
0 = 12v2x + 10vxDx + (4v3x − 12uvx)D

−1
x + 4vxD

−1
x u

R1
1 = −4D4

x + 16uD2
x + 8uxDx + 16v + 4vxD

−1
x .

(4.43)

4.2 Matrix algebra

In this section, we consider G as the matrix algebra. Let F , G ∈ G be n × n

matrices. The bracket {, }G defined in (4.1) corresponds to the usual commutator

if ’*’ is the matrix multiplication and κ = 1
2
. Let L be a matrix operator of the

form

L = Dx − (−λa− q), (4.44)

where λ is the spectral parameter; q is a G valued function of x, t and a belong

to the Lie algebra G.

Proposition 4.10. Let L be a matrix operator of the form (4.44) then the cor-

responding recursion relation is

Ltn+1 = λLtn + [Rn, L], (4.45)

where Rn is a matrix operator and ord(Rn) = ord(L).(see the paper [15] for the

proof)

Example 4.5. The nonlinear Schrödinger equation is equivalent to the system

ut = −1
2
uxx + u2v

vt = 1
2
vxx − v2u,

(4.46)
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has a Lax operator

L = Dx +

(
1 0

0 −1

)
λ +

(
0 u

v 0

)
. (4.47)

Here the Lie algebra G is sl(2) and Rn =

(
an bn

cn −an

)
, since

Ltn =

(
0 utn

vtn 0

)
.

Substitution of the related terms in the recursion relation (4.45) enables us to

compare the coefficients of the powers of λi, i = 0, 1. Hence we obtain

an = 1
2
D−1

x (utnv + vtnu),

bn = 1
2
utn , cn = −1

2
vtn ,

and the recursion operator of the system (4.46) is given by

R =

(
uD−1

x − 1
2
Dx uD−1

x u

−vD−1
x v −vD−1

x u + 1
2
Dx.

)
(4.48)

4.3 Polynomial algebra

In this Section, we consider G as the polynomial algebra. Let F , G ∈ G be two

arbitrary differentiable functions of x and t. The bracket {, }G defined in (4.1)

corresponds to the Poisson bracket and κ = 1
2

{F, G}G = {F,G}k = pk(
∂F

∂p

∂G

∂x
− ∂F

∂x

∂G

∂p
).

In previous sections, we introduced a direct method to determine a recursion

operator of a system of evolution equations when its Lax representation is known.

We have considered the cases where the Lax operator is a differential operator or

it is a pseudo-differential operator. Such representations are called as standard
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Lax representations. On the other hand there are some systems of evolution

equations obtained by the nonstandard Lax representations. For this purpose in

this section we deal with the nonstandard Lax representations.

Definition 4.11. Let M be an n-dimensional manifold. Let U be a function space

on M . M is called a Poisson manifold if there exists a bracket {f, g} (called as

standard Poisson bracket) satisfying the following properties, for all c, c′ ∈ R and

f, g, h ∈ U

i. Bi-linearity:

{cf + c′g, h} = c{f, h}+ c′{g, h},
{f, cg + c′h} = c{f, g}+ c′{f, h},

ii. Skew-symmetry: {f, g} = −{g, f},

iii. Jacobi identity: {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0,

iv. Leibniz rule: {fg, h} = f.{g, h}+ {f, h}.g.

Here ’.’ denotes the ordinary multiplication of real valued functions. [18]

Define a modified Poisson bracket as

{f, g}k = pk(
∂f

∂p

∂g

∂x
− ∂f

∂x

∂g

∂p
), (4.49)

where k is an integer and f , g, h ∈ U [16]. For k = 0, we have the standard

Poisson bracket,

{f, g} =
∂f

∂p

∂g

∂x
− ∂f

∂x

∂g

∂p
. (4.50)

Lemma 4.12. For any k in Z, (4.49) is a Poisson bracket.

Proof: We should check only the Jacobi-Identity. Other properties can be veri-

fied easily by the definition of the Poisson bracket. Let us show that

{{f, g}k, h}k + {{h, f}k, g}k + {{g, h}k, f}k = 0. (4.51)
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Note that

{{f, g}k, h}k = pk{{f, g}k, h} = pk{pk{f, g}, h}}.

Now by Leibnitz’ rule

{pk{f, g}, h} = pk{{f, g}, h}+ {pk, h}.{f, g} = pk{{f, g}, h}+ kpk−1{f, g}.hx.

Then

{{f, g}k, h}k = pk{pk{f, g}, h}} = p2k{{f, g}, h}+ kp2k−1{f, g}hx.

Therefore we have

{{f, g}k, h}k + {{h, f}k, g}k + {{g, h}k, f}k = p2k[{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f}]
+ kp2k−1[{f, g}.hx + {h, f}.gx + {g, h}.fx].

Since

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0,

and applying the Poisson brackets we have

{f, g}.hx + {h, f}.gx + {g, h}.fx = 0.

Hence the formula (4.51) defines a Poisson bracket. ¤

Remark 4.13. Although the modified Poisson bracket is equal to the standard

Poisson bracket under pk d
dp

= d
dq

, where q is a new variable, we will use the

modified one.

For any integer k we can consider hierarchies of equations of hydrodynamic type,

defined in terms of the Lax function [16],

L = pN−1 +
N−2∑
i=−1

piSi(x, t). (4.53)
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By the Lax equation [16]

∂L

∂tn
= {(L n

N−1 )>−k+1; L}k, (4.54)

where n = j+l(N−1) and j = 1, 2, .., (N−1), l ∈ N. So we have a hierarchy for

each k and j = 1, 2, ..., (N − 1). Also we require n > −k +1 so that (L
n

N−1 )>−k+1

is not zero. With the choice of Poisson brackets {, }k, we must take (L
n

N−1 )>−k+1

part of the series expansion of L
n

N−1 to get the consistent equation (4.54). Since

the Lax function a polynomial of order N − 1,

pN−1 +
N−2∑
i=−1

piSi(x, t) = pN−1 + SN−2p
N−2 + .... + S−1p

−1,

it can also be written in terms of the roots of the polynomial, u1, ....uN as;

L =
1

p

N∏
j=1

(p− uj). (4.55)

4.3.1 Recursion operators

For each hierarchy of the equations (4.54), depending on the pair (N, k), we can

find a recursion operator.

Lemma 4.14. For any n,

Ltn = LLtn−(N−1)
+ {Rn; L}k, (4.56)

where function Rn has a form

Rn =
N−1∑
i=0

pi−kAi(S−1....SN−2,
∂S−1

∂tn−(N−1)

......
∂SN−2

∂tn−(N−1)

).[16] (4.57)

Proof: Consider
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(L
n

N−1 )>−k+1 = (LL
n

n−1
−1)>−k+1.

Since

L
n

N−1
−1 = (L

n
N−1

−1)>−k+1 + (L
n

N−1
−1)<−k+1.

Then

(L
n

N−1 )>−k+1 = [L(L
n

N−1
−1)>−k+1 + L(L

n
N−1

−1)<−k+1]>−k+1.

So

(L
n

N−1 )>−k+1 = L(L
n

N−1
−1)>−k+1 + (L(L

n
N−1

−1)<−k+1)>−k+1

−(L(L
n

N−1
−1)>−k+1)<−k+1

. (4.58)

Note that

(L(L
n

N−1
−1)>−k+1)>−k+1 = L(L

n
N−1

−1)>−k+1 − (L(L
n

N−1
−1)>−k+1)<−k+1

Substituting

Rn = (L(L
n

N−1
−1)<−k+1)>−k+1 − (L(L

n
N−1

−1)>−k+1)<−k+1, (4.59)

into (4.58) we obtain

(L
n

N−1 )>−k+1 = L(L
n

N−1
−1)>−k+1 + Rn.

Therefore

Ltn = {(L n
N−1 )>−k+1; L}k = {L(L

n
N−1

−1)>−k+1 + Rn; L}k

= L{(L n
N−1

−1)>−k+1, L}k + {Rn, L}k = LLtn−(N−1)
+ {Rn; L}k.

(4.60)

The equation (4.56) is satisfied. Evaluating the powers of (L(L
n

N−1
−1)<−k+1)>−k+1

and (L(L
n

N−1
−1)>−k+1)<−k+1 we get that Rn has form (4.57). ¤
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4.3.2 An integrable system

Multi-component hierarchy containing the shallow water wave equations corre-

sponds to the case k = 0. Let us give the first equation of the hierarchy and a

recursion operator for N = 2.

Proposition 4.15. In the case N = 2 we have the Lax function,

L = p + S + Pp−1, (4.61)

and the Lax equation for n = 2

1
2
St = SSx + Px

1
2
Pt = SPx + PSx

, (4.62)

and the corresponding recursion operator

R =

(
S + SxD

−1
x 2

2P + PxD
−1
x S

)
. (4.63)

Proof: Since k = 0 and N = 2 the recursion relation is

Ltn = LLtn−1 + {Rn, L}0, (4.64)

and Rn is of the form Rn = an + bnp. Then by comparing the coefficients of the

powers of pi ,i = −2, .., 1 we obtain

an = −D−1
x (Ptn), bn = D−1

x (Stn),

and
(

Stn+1

Ptn+1

)
=

(
S + SxD

−1
x 2

2P + PxD
−1
x S

)(
Stn

Ptn

)
,

that gives the recursion operator R. ¤

These equations known as the shallow water wave equations or as the equations

of polytropic gas dynamics for γ = 2.
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4.4 Moyal algebra

In this section, we consider G as the Moyal algebra recently introduced in [17].

Let F , G ∈ G be two differentiable functions. The bracket {, }G defined in (4.1)

corresponds to the Moyal bracket if ’*’ is the Moyal product

{F, G}G = {F,G}κ,

where κ is a real parameter.

Definition 4.16. Let G be the Moyal algebra and ’*’ be the Moyal product defined

for all A,B ∈ G as follows

A(x, p) ∗B(x, p) = eκ(∂x∂p̃−∂p∂x̃)A(x, p)B(x̃, p̃)|x̃=x,p̃=p, (4.65)

where κ is the parameter of non-commutativity.[17]

Proposition 4.17. The Moyal product, for arbitrary integers m, n and f , h ∈ G
satisfies the following properties:

i. pn ∗ pm = pn+m,

ii. f(p) ∗ h(p) = f(p).h(p),

iii. p ∗ f(x) = f(x) ∗ p− 2κfx,

iv. p2 ∗ f(x) = f(x) ∗ p2 − 4κfx ∗ p + 4κ2fxx,

v. For all n,

pn ∗ f(x) =
∑
m=0

(
n

m

)
(−2κ)m ∂mf

∂xm
∗ pn−m,

where
(

n

m

)
=

n(n− 1)...(n−m + 1)

m!
.
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Definition 4.18. For all A,B ∈ G the Moyal bracket is defined to be

{A(x, p), B(x, p)}κ =
1

2κ
(A ∗B −B ∗ A). (4.66)

Proposition 4.19.

lim
κ→0

{A,B}κ = {A,B}. (4.67)

where {A,B} is the standard Poisson bracket.

Proof: Since

lim
κ→0

{A,B}κ = lim
κ→0

1

2κ
(A ∗B −B ∗ A),

we need

A ∗B = AB + κ(∂A
∂x

∂B
∂p
− ∂A

∂p
∂B
∂x

) + κ2

2
(∂2A

∂x2
∂2B
∂p2 + ∂2A

∂p2
∂2B
∂x2 ) + ....,

B ∗ A = BA + κ(∂B
∂x

∂A
∂p
− ∂B

∂p
∂A
∂x

) + κ2

2
(∂2B

∂x2
∂2A
∂p2 + ∂2B

∂p2
∂2A
∂x2 ) + ....,

then

lim
κ→0

{A,B}κ =
∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x
= {A,B}. ¤

We define Lax operator on the Moyal algebra as

Ln = pn + u1(x) ∗ pn−1 + .... + un(x) + un+1(x) ∗ p−1 + ... (4.68)

Proposition 4.20. The Moyal-Lax representation is

∂Ln

∂tk
= {Ln, (L

k
n )>m}κ, (4.69)

where k 6= an; k, a are integers and m = 0, 1, 2...

Remark 4.21. Rational powers of the Lax operator Ln can be found by Moyal

product

L
k
n
n = L

1
n
n ∗ L

1
n
n ∗ ... ∗ L

1
n
n , (4.70)
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where there are k such factors and n-th root can also be determined by equating

the Moyal product of n-th roots to the Lax operator itself.

Remark 4.22. If m = 0, we denote

(L
k
n )+ := (L

k
n )>0,

and the corresponding Lax representation is called the standard Moyal-Lax repre-

sentation.

Definition 4.23. The coefficient of the p−1 term with respect to the Moyal product

is called the residue.

Proposition 4.24. Let A,B ∈ G be two arbitrary operators, the residue of the

Moyal bracket is a total derivative

Res{A,B}κ =
∂

∂x
C. (4.71)

We can uniquely define

TrA :=

∫
dxRes(A), (4.72)

and by proposition (4.24) we consequently have the following proposition.

Proposition 4.25. Tr(Ln) is a conserved quantity.

Proof: If we take the trace of both sides of the Moyal-Lax representation in

(4.69), we have

d

dtk
(TrLn) =

∫ ∞

−∞
dxRes{Ln, (L

k
n )>m}κ =

∫ ∞

−∞
dx(

∂

∂x
C) = 0.

Hence Tr(Ln) is a conserved quantity for all k. ¤

Proposition 4.26. Let C, D be two functions on the Moyal algebra. Then

lim
κ→0

(C ∗D)>m = (CD)>m. (4.73)
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Following the proof of the proposition(4.19) and proposition (4.26) we have the

following corollary.

Corollary 4.27. If we take the limit of the Moyal-Lax representation (4.69), we

have

dLn

dtk
= {Ln, (L

k
n )>m}, (4.74)

where the bracket on the right hand side is the standard Poisson bracket.

Example 4.6. KdV hierarchy: Let us consider the Lax operator

L = p2 + u(x, t). (4.75)

If we consider L
3
2 , we have

(L
3
2 )+ = (L

1
2 ∗ L

1
2 ∗ L

1
2 )+, (4.76)

where

L
1
2 = p +

1

2
u ∗ p−1 +

1

2
κux ∗ p−2 + .... . (4.77)

and

(L
3
2 )+ = p3 +

3

2
u ∗ p− 3

2
κux. (4.78)

Hence the Moyal-Lax representation

∂L

∂t
= {L, (L

3
2 )+}κ, (4.79)

gives

ut = κ2uxxx +
3

2
uux. (4.80)

which is the KdV equation.



Chapter 5

Conclusion

In this thesis, we have studied the zero curvature and the Gelf’and-Dikii for-

malisms to obtain integrable nonlinear partial differential equations. The zero

curvature formalism is a generalization of the AKNS scheme. We have covered

the AKNS scheme including the sine-Gordon equation, nonlinear Schrödinger and

KdV hierarchies where the potentials are independent of the spectral parameter.

To cover the cases where the potentials depend on the spectral parameter, we

have studied Ma-Zhou system and Tam-Zhang system. We have used matrix

representation of Lie algebras to determine integrable evolution equations via a

simple Lie algebra.

We have studied the Gelf’and-Dikii formalism which gives a construction of all

Lax pairs based on the calculation of fractional powers of the Lax operator. We

have introduced a bracket on an algebra satisfying skew-symmetry, associativity

and Leibniz rule due to a non-commutative, associative binary product. We have

covered pseudo-differential, matrix, polynomial and Moyal algebras. We showed

that the Gelf’and-Dikii formalism is more effective than the other methods to

obtain integrable nonlinear partial differential equations. If a nonlinear partial

differential equation is obtained through the Gelf’and-Dikii formalism, then it is

straightforward to obtain infinite number of symmetries and conserved quantities.
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