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ABSTRACT

ZERO CURVATURE AND GEL’FAND-DIKII
FORMALISMS

Burcu Silindir
M.S. in Mathematics
Supervisor: Prof. Dr. Metin Giirses
September, 2004

In soliton theory, integrable nonlinear partial differential equations play an im-
portant role. In that respect such differential equations create great interest in
many research areas. There are several ways to obtain these differential equations;
among them zero curvature and Gel’fand-Dikii formalisms are more effective. In

this thesis, we studied these formalisms and applied them to explicit examples.

Keywords: Integrable systems, simple Lie algebra, soliton, zero curvature formal-

ism, Gel’fand-Dikii formalism.
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OZET

SIFIR ECRILIK VE GEL’FAND-DIKII
FORMULASYONLARI

Burcu Silindir
Matematik, Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Metin Giirses
Eylil, 2004

Integre edilebilir dogrusal olmayan kismi tiirevli denklemler soliton teorisinde
onemli bir rol oynamaktadir. Bu anlamda boyle denklemler ¢ok cesitli alanlarda
ilgi cekmektedir. Bu denklemleri elde etmede degisik yaklagimlar bulunmaktadir;
bunlardan sifir egrilik ve Gel’fand-Dikii formulasyonlar: en gegerli olanlaridir. Bu
tezde, bu formulasyonlar: ¢aligtik ve bu formulasyonlar1 bazi 6rneklere uyguladik.

Anahtar sézciikler: Integre edilebilir sistemler, basit Lie cebir, soliton, sifir egrilik

formulasyonu, Gel’fand-Dikii formulasyonu.
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Chapter 1

Introduction

The theory of solitons and the related theory of integrable nonlinear evolution
equations have being studied by a large number of mathematicians and physicists

ranging from algebraic geometry to applied hydrodynamics.

The study of solitary waves began with John Scott Russell’s observations (1838).
These observations inspired Russell to state all water waves in two classes, ‘the
great wave of translation’(eventually called as solitary wave) and ‘all other waves
belong to the second or oscillatory order of waves’[1]. His studies brought many
essential results to the soliton theory:

i. Solitary waves, which are long waves of permanent form, exist.

ii. The speed of a solitary wave is given by

N[

v = [g(h +n)]2. (L1)

where 7 is the height of the wave above the plane of the fluid, h is the depth
throughout the fluid and g is the measure of the gravity. It is important in

equation (1.1) that, the speed of a solitary wave is proportional to its amplitude.

In 1885, Korteweg and de Vries [2] derived the KdV equation describing the

propagation of waves on the surface of a shallow channel,

Uy + 6ulUy + Upgy = 0. (1.2)

1
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In 1965, while Zabusky and Kruskal [3] were studying the Fermi-Pasta-Ulam
[4] problem of recurrence on a nonlinear lattice, the KdV equation arised. They
found out that the periodic boundary conditions (initial data of a cosine function)
came across to a series of pulses, each of which developed the solitary wave
solution. Since the speed of the wave is directly proportional to the amplitude, the
larger pulses travel faster than the smaller ones. When the faster ones catch the
slower, they undergo nonlinear interaction but finally they reappear unchanged,
retaining their width, height and speed. Because of the particle like nature of
these interacting solitary waves, Zabusky and Kruskal gave the name * soliton ’

to describe the pulses.

Definition 1.1. A solution of any nonlinear partial differential equation or a
system 1s called a soliton if

1. it represents a wave of permanent form,

1. it is localized, so that it decays or approaches to a constant at infinity,

111, 1t can interact strongly with other solitons and retain its identity.

In 1967, Gardner, Greene, Kruskal and Miura [5] used the ideas of direct and
inverse scattering and hence derived a method of solution for the KdV equation.
In 1968, Lax [6], generalized the results of Gardner, Greene, Kruskal, Miura and
introduced the concept of a Lax pair. Lax approach, considers two operators L
and A, where L is the operator of the spectral problem and A is the operator of

an associated time evolution equation,

Lv = \v, (1.3)
vy = Av. (1.4)

If we take time derivative of (1.3), use (1.4) and choose \; = 0, we get
L, =1[A L] (1.5)

where [A, L] = AL — LA (the commutator of A and L). The equation (1.5)
is called the Lax equation and the operators L and A are called the Lax pair.
The Lax equation corresponds to a nonlinear evolution equation if L and A are

correctly chosen. Lax proposed a representation for the KdV equation:
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Example 1.1. A Lax pair for the KdV equation is

L=D?+u, (1.6)
A= (y+uy) — (X + 2u)D,, (1.7)

where 7 is a constant and A is the eigenvalue of the Sturm-Liouville problem

Lu = Au of KdV equation. The KdV equation therefore can be written as

L+ [L, A] = uy + 6utty + Ugsy- (1.8)

However there are difficulties with the method of Lax. First, one must guess a
suitable A for a given L to satisfy (1.3) and (1.4). Second, it is usually hard to

work with differential operators.

In 1971, Zakharov and Shabat [7], introduced the Lax pair for the nonlinear
Schrodinger equation. Being influenced by the ideas of the Princeton Group
(Gardner, Greene, Kruskal and Miura) and by the ideas of Zakharov and Shabat;
in 1974 Ablowitz, Kaup, Newell and Segur [8] developed a new method (called as
AKNS Scheme) as an alternative to Lax approach. The AKNS scheme includes
a wide range of solvable nonlinear evolution equations, such as the sine-Gordon
equation and mKdV equation. This technique can be formulated by considering

two linear equations;

¢ =Ug,

1.9
(bt = V¢7 ( )

where ¢ is a 2-dimensional vector and U, V' are 2x 2 matrices. Using compatibility
condition ¢,y = ¢y, for (1.9)  we find

U, -V, +[U,V]=0, [U,V]=UV -V, (1.10)
which is the zero curvature condition[19)].

The soliton theory has been applied to many areas of mathematics and physics
such as algebraic geometry (the solution of the Schottky problem), group theory

(the discovery of quantum groups), topology (the connection of Jones polynomials
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with integrable models), quantum gravity (the connection of the KdV equation

with integrable models).

In Chapter 2, we studied the zero curvature formalism which is the generalization
of the AKNS scheme [19]. The AKNS scheme includes the nonlinear Schrédinger
hierarchy, the KdV hierarchy and the sine-Gordon equation. We give the non-
linear Schrodinger and KdV hierarchies with the use of recursion operators. In
this scheme, the potentials are independent of the spectral parameter. However
there are systems where the potentials depend on the spectral parameter, such as
Ma-Zhou system [9] and Tam-Zhang system [10]. The zero curvature formalism
is based on the Lax equation for n x n matrix valued functions, which form the
basis of a matrix algebra. In AKNS formalism this algebra is si(2, R) algebra and
in Tam-Zhang System it is su(1, 1) algebra.

In Chapter 3, we use the matrix representation of Lie algebras. In order to obtain
nonlinear partial differential equations on homogeneous spaces, Fordy and Kulish
[13] have obtained the nonlinear Schrodinger equations on homogeneous spaces
and Fordy [14] has obtained the derivative nonlinear Schrodinger equations. Using
similar approach, we use a simple Lie algebra valued soliton connection, intro-
duced by Giirses, Oguz and Salihoglu in [12]. In Section 3.2, we first introduce
the usual Cartan-Weyl basis which is the standard form of the commutation re-
lations for a semisimple Lie algebra. Let g be the Lie algebra of a Lie group G.
Then g can be identified as the decomposition of Cartan subalgebra h of g and

the complement of the Cartan subalgebra in g;

g=hEHne. (1.11)

This decomposition leads to the usual Cartan-Weyl basis [11],

[H,, Hy) =0 forall a,b=1,2 .. p, (1.12a)
[HCU EE] == aaEa, (112b)
p
s B3 = C25H, if a+B=0, (1.12¢)
a=1
[Es, Eg) = OggﬂEmB if @+ f5#0, (1.12d)

where p is the rank of the algebra, H, ’ s are bases of the Cartan subalgebra,
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E5 7 s are the bases of the complement of the Cartan subalgebra, @, and C are

the structure constants of the commutation relations.

In Section 3.3, we give the Cartan-Weyl basis on homogeneous spaces, which is

constructed from a new decomposition due to the following definitions.

Definition 1.2. Let G be a Lie group. A homogeneous space of G, is any differ-
entiable manifold M, on which G acts transitively [15].

Definition 1.3. The subgroup of G which leaves a given point py € M fized, is
called the isotropy group at py and is defined by [13]

K=K,={9€G:g9-po=po} (1.13)

If K is an isotropy group of some py € M, then M can be identified as a coset
space G/K. Let g and k be the Lie algebras of G and K respectively. Let m be

the vector space, complement of k£ in g, then

g=kEHm. (1.14)

and m is identified as the tangent space of G/K at py € M [13]. When ¢ satisfies

the conditions
g= k@m, [k, k] C k, [k,m] C m, (1.15)

then M = G/K is called a ’reductive homogeneous space’ [12]. When ¢ satisfies

the conditions
g = k@m, [k, k] C E, [k,m] C m, [m,m] C k, (1.16)

then M = G/K is called a *symmetric space’ [12].

The comparison of the Cartan-Weyl basis on homogeneous spaces with the usual
Cartan-Weyl basis is discussed in Section 3.4 . In Section 3.5, to obtain nonlinear
partial differential equations, we deal with the simple Lie algebra valued soliton

connection which is defined as:
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Definition 1.4. The simple Lie algebra valued soliton connection I1-form €, as-

sociated to a reductive homogeneous space G /K with the generators H,, Ep is
defined as

Q = (ikAH, + Q*Ex)dzx + (A°H, + B*Ex + CPEp)dt, (1.17)
where K s the isotropy group of G, X\ is the spectral parameter, k is a constant

not depending on A\, s € {1,2,...p} is a fived constant, Q*(z,t) is potential, A,

B4 and CP are arbitrary functions of x, t and \.

The Lax equation in differential forms and R curvature 2-form are respectively;
do = Qop, R=dQ+QAQ. (1.18)

Here € is the flat connection, that is

A+ QAQ=0. (1.19)

which is the zero curvature condition. AKNS scheme and the corresponding zero

curvature condition in (1.10) are special cases of (1.18)). In this case g = sl(2,R)

1 1
HS = ; ) El = 0 ) E*l = 00 .
0 —1 00 -1 0

In Section 3.5.1, we determine the catalogue of the structure constants in the zero

and

curvature condition. In Section 3.5.2, we determine a system of integrable partial
differential equations, with the corresponding recursion operator by the use of the
catalogue. In Section 3.6, we obtain the integrable evolution equations without
using the catalogue. There is another way to obtain integrable systems, so called
the Gelf’and-Dikkii formalism. In Chapter 4, we deal with the Gel’fand-Dikii
formalism which gives the direct method to determine the function A in the Lax
equation (1.5). This formalism gives a construction of all Lax pairs, based on

the calculation of fractional powers of operator L. On an algebra G, let ™*’ be
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a non-commutative, associative binary product and F', G be G-valued functions,
then define a bracket {, }¢ as

(F,G}g = i(F*G—G*F), kER (1.20)

which satisfies skew-symmetry, Jacobi identity and Leibniz rule. Let L be G-
valued Lax operator which is a polynomial of some variable. The Lax equation
is defined as

oL

5 = (ALl (1.21)

for some G- valued function A. In order to obtain A, we find Ast
{L,A}g =0. (1.22)

Apart from the matrix algebra we can take A = Lw, then (1.22) holds, where

n#am; a, n € Z. We put A = (A)>y that is

A= (Lm)sy. (1.23)
So we obtain a consistent equation (1.21). Here the restriction of being larger or
equal to k is for A to be the polynomial part of Lm except first k — 1 terms. For
the matrix algebra we find A by solving {L, A}g = 0, then we set

A= (A)sp. (1.24)

The Gel’fand-Dikii formalism makes use of some algebras. In this work we use
the pseudo-differential algebra [15], polynomial algebra [16], [20], Moyal [17] and
matrix algebras [15]. If G is the pseudo-differential algebra, then the bracket
{F,G}g defined in (1.20)) corresponds to the usual commutator provided that *’
is the operational product, k = % and F', G are two pseudo-differential operators.
The Lax operator of the pseudo-differential algebra is a series of a differential

operator,
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L=D" 4+ tUp_oD" 2+ ...+ u D, + ug, (1.25)
where u;, 1 = 0,1,...,m — 2 are functions of x and ¢. The Lax equation is
Ly, = [An, L], (1.26)
where operators A, is defined to be
Ay = (Lm)y, (1.27)

and '+’ means the polynomial part of L.

If G is the polynomial algebra, then the bracket {F,G}¢ defined in (1.20) corre-
sponds to the standard Poisson bracket with x = % and F', G are two differentiable
functions. The Lax operator of the polynomial algebra is a series of an auxiliary

variable (momentum p),

N-2
L=p "+ p'Si(a,t). (1.28)
i=—1
The Lax equation is (see Section 4.3)
oL n_
5. = ULTT)>—k41s L, (1.29)

wheren=j+I(N—1)and j=1,2,.,(N—-1), leN

If G is the Moyal algebra, then the bracket {F, G}¢g defined in (1.20) corresponds
to the Moyal bracket provided that "*’ is the Moyal product and F, G are two dif-
ferentiable functions. Similar to the case of polynomial algebra, the Lax operator

is a series of momentum p,
Ly =p" +ui(x) #p" 4 o+ U () + Upr (2) xpt A+ (1.30)

and the Lax equation is (see Section 4.4)
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oL,
Oty

= {Ln, (L") zm}n: (1.31)

where k # an; k, a are integers and m = 0,1, 2...

If G is the matrix algebra, then the bracket {F, G}g defined in (1.20) corresponds

"7 is the matrix multiplication, F', G are

to the usual commutator provided that
n X n matrices and Kk = % The Lax operator is a series of a spectral constant.

For the matrix algebra, the function A in the Lax equation (1.21) takes the form

A= (A)sp. (1.32)

For each integrable equation, we have an infinite hierarchy of symmetries. In order
to determine the hierarchies of symmetries of a system of differential equations,
there are different approaches. In this work, we will deal with the use of recursion

operators’ defined [18] as:
Definition 1.5. Let

wp = F(t, 2, u, gy ooy Uy, (1.33)

be a system of differential equations. A recursion operator for (1.33) is a linear
operator, R : A1 — A9, in the space of q-tuples of differential function with the
property that whenever Q is an evolutionary symmetry of (1.33), so is Q with
Q =RQ. If (1.33) admits a nonconstant recursion operator, this system is called

integrable.

Therefore, if we know a recursion operator R for a system of differential equations,
we can generate an infinite family of symmetries at once, by applying the recursion

operator successively to an initial symmetry Qo;
Q;, =R'Q,, i=0,1,2... (1.34)

where each );, i = 0,1, 2... is the symmetries of the partial differential equations.

Generally, R is ¢ X ¢ matrix of differential operators.



Chapter 2

Zero Curvature Formalism

2.1 AKNS scheme

AKNS (Ablowitz, Kaup, Newell and Segur) scheme [8] is a generalization of

Sturm-Liouville problem to 2 x 2 eigenvalue problem. It is a linear eigenvalue

problem defined as

¢x = Ugb,
o =Vo,

where ¢ is a 2-dimensional vector and U,V are 2 x 2 matrices. Let

UZ(—Z')\ q>’
rooaA

A B
V= 7

and

(2.1)

(2.2)

(2.3)

where A is a spectral parameter; q(z,t), r(x,t) are potentials; A, B, C, D are

functions of ¢, r, A and the derivatives of ¢, r with respect to x and . Then

10
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o le,x _ —iA q ¢1
() -

¢1,x = _2)\(251 + Q¢27 (25)
¢27$ = 2)\¢1 + Tqbg, (26)
and
b1y A B ¢1
;= ’ = , 2.7
e (o)-(e o)) @
1y = A¢1 + B, (2.8)
$os = Cpy + Doo. (2.9)

Using compatibility condition ¢,y = ¢y, for (2.1)  we find

U -V, +[UV]=0, U,Vl=U0V -VU, (2.10)

which is the zero curvature condition. To express these equations in terms of A,

B, C and D; we have the following proposition.

Proposition 2.1. The zero curvature condition (2.10) reduces to the following

equations for the functions A, B and C, where D = —A

A, =qC —rB, (2.11a)
B, + 2I\B = ¢, — 2qA, (2.11b)
C, — 2i\C =1, + 2rA. (2.11c)

2.1.1 The nonlinear Schrodinger and KdV hierarchies

Since A is a free parameter, we can assume that A, B, C' have Taylor series

expansion on A.

A= iajxﬂ, B = i A", C = i A" (2.12)
=0 =0 =0

Then using Proposition (2.1) we have the following proposition
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Proposition 2.2. Let the functions A, B, C in the equations (2.11al), (2.11D),

(2.11c)) have expansions as in (2.12), then we obtain the system of equations below

ai, = qc; — by, [=0,..,n, (2.13a)
bl,x + 2ibl+1 - —2qal [ = O, = 1, (213b)
bn,m =gt — 2qan7 bO = 07 (213C)
Clp — 2ici41 = 2ray, [=0,..,n—1, (2.13d)
Cnz =Tt +2ra,, co=0. (2.13e)
It is possible to write (2.13b) and (2.13d) in terms of (2.13a) as follows:
by = %[bl,z + 2qa;] = %[bl,x + 2D (qc;) — 2D (rby)],
Cr1 = =% — 2ra] = £[2rD; (qa) — 2rD 7t (rby) — a).
Then in a matrix form we have
b [ D, —2qD! 2qD! b
) =2 et A . (2.14)
Cl1 2 —QTD;IT —-D, + 2rD;1q a
Denote
 ( D, —2¢qD! 2qD1 b
v—_ a't ad o= (2.15)
2 —2rD;'r =D, +2rD;%q al
Then 2,1 = ¥z or
2y = Uy = Uy, (2.16)

b 0
where zg = < 0 ) = ( 0 ) This leads to the following proposition.

Co

Proposition 2.3. The evolution equations for q and r can be found by writing
the equations (2.13¢) and (2.13e)  as:

¢ = bne+ 29D (qcn) — 2gD;  (rby,), (2.17)
Ty = Cne — 2rD; N (qen) + 2r D (rby), (2.18)
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or in 2 X 2 matrixz form:
D, —2qD;! 2qD ! by,
T 2rD Y (r) D, —2rD;'(q) Cn
2 br, 2 b
( o ) = ZoyU ( ) = SR gy ( 0 ) (2.20)
T t Cn l Co
10 b 0
where o3 = , 0 and
0 -1 Co 0

R = 0'3\110'3. (221)
Then

2 b
( % ) — Rt ( 0 > : (2.22)
T4 ? Co

which are the evolution equations. Here R is called the recursion operator. This

1s the nonlinear Schrodinger hierarchy.

Example 2.1. Case n = 2 : The nonlinear Schrodinger equations.

We have by (2.16), 23 = Wzy. Then
bi \ i [ Dy— 2qD;'r 2qD;q bo
a1 2 —2rD;'r =D, +2rD;q o )

bi = Lbo. + 2q(D; (geo) — Dy (rby))] = ierg
c1 = i[—cou+2r(D; (qco) — D7 (rby))] = ierr

So

where €; is a constant. Similarly 2o = Uz gives;

by = %[bl,m +2qD; Y (qc1) — 2qD; (rby)] = —%equ, (2.23)
tl=c1e +2rD; (gey) — 2rD; (rby)] = €17, (2.24)

Cy =
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Therefore the corresponding evolution equations directly come from (2.19)

G = bae —2q[D; " (rbs) — D' (gc2)]
- _%Elq;rx + equa?l(rquv)

_ 1 2
— _Eelq:rx + €aqr.

By the same procedure r; can be found. Hence

1
G = —=€1Gza + €14°T, (2.25a)

2
1 2
"= 6T — artg. (2.25b)

If we set r = +¢*,¢; = 2i, in (2.25a) then we have

iQt — Gax + 26]2(]* = 07
which is the nonlinear Schréodinger equation. Here * is the complex conjugation.

Example 2.2. Case n = 3 : KdV and mKdV equations. If we assume the

integration constant is not equal to zero in (2.14), then we have

by = —3€1q, + i€aq, (2.26)

1 .
Co = €17y + €T
where €, is a constant. By z3 = Uz,, we can find b3 and c3 as

by = 5(baw +2¢D; ' (qc2) — 2¢D; " (1))

i 1 i 2 :
—€10ze — 5€2qz T 5€14°T + 1€34.

where €3 is an integration constant. Similarly
C3 = —L€1Tgy + 5627y + Sie1T2q + i€sT. (2.28)

So the corresponding evolution equations directly come from (2.19)

1. 1 .
qt + Z_l%l[qgc:m: - 6quI] =+ 562[%:90 - 2(]27”] — €3¢y — 264(] = 07 (2293)

1 1
re + Ziﬁl[%m — 6grry + €2 [2r2q — rap] — d€gry — 2647 = 0. (2.29b)
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By choosing the constants €;’s, i = 1,2,3,4 properly in (2.29a)), we respectively
get the KAV, mKdV and nonlinear Schrodinger equations.

Gt + Quax +64q2 = 0, (e1=—4i, eg=e3=¢,=0, 7=-1,)
qt — 6q26h + Qrax = 0, (61 = —4’i, € = €3 = €4 = 07 r = q,)
iQt + Qoo — 2q2q* = 07 (61 = €3 =€ = Oa €2 = _2Z7 r= iq*)

2.1.2 The sine-Gordon equation

In this section, we will consider the case when the functions A, B, C have terms
containing inverse powers of \. In this case we will obtain different nonlinear

partial differential equations.
Proposition 2.4. Let A = a(gf\’t), B = @, C = C(gf\’t), where a, b, ¢ are
differentiable functions of x and t. Then using compatibility conditions (2.11al),
(2.11b) and (2.11c)  we get,

a, =qc — b, (2.31a)
b, = —2aq, 2ib=q, (2.31b)
cy =2ar, — 2ic =1y (2.31c)

Using the Proposition (2.4) we have the following Corollary.

Corollary 2.5. Let A =220 g =@ & <@l Aeoume that a = % cosu,

) X X 1
b=c= ¢sinu provided that ¢ = —r = —35u,. Then we obtain
SiNU = Uyy.
which s the sine-Gordon equation.
Proof: Consider
T 4t 1 d(qr)

4 =qe—rb=q(—25) — (%) = (5T
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then

Ay = ——TUgUgy. (2.32)

On the other hand

a(%i 1
a, = M = —Ziux sin u. (2.33)

oz

then combining (2.32) and (2.33), we get sinu = . O

2.2 Ma-Zhou system

In the AKNS scheme, the potentials were taken as independent of the spectral
parameter. In this section we will consider the case where the potentials depend

on the spectral parameter. Consider a spectral problem

¢$ - U¢7

2.34
¢t = nga ( )

where ¢ is a 2-dimensional vector and U, V are 2 x 2 matrices. Let

U= ( A v ) , (2.35)
(+BN)r =X

and

a b
V= : (2.36)
( (a+ BN —a )

where ) is a spectral parameter; a and 3 are arbitrary constants; ¢, r are functions
of x and t; a, b, ¢ are functions of ¢, r, a, 3, A and the derivatives of ¢, r with
respect to x and t [9]. Using compatibility condition ¢, = ¢y, for (2.34) we have

the zero curvature condition
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Proposition 2.6. The zero curvature condition (2.37) reduces to the following

equations for the functions a, b and c,

a, = (a+ BN)(ge —rd), (2.38a)
by = 2)\b — 2aq + q, (2.38b)
Ce = 2ar — 2\c + 1. (2.38¢)

Since A is a free parameter, assume a, b, ¢ are analytic in A,

a=> aX", b= b e=) A\ (2.39)
j=0 =0 =0
Then using Proposition (2.6) we have the following proposition.

Proposition 2.7. Let the functions a, b, ¢ in the equations (2.38al), (2.38D),

(2.38) have expansions as in (2.39) , then we obtain the system of equations

below,
al,x - a(qcl - rbl) + 6<qcl+1 - rbl+1)7 [ = 07 17 5= 17 (240&)
Blgeo — rby) = 0, (2.40Db)
Ap = (qcn — 1by), (2.40c)

b = 2bi11 — 204qD;1(qcl —rb) — QBqD;I(qclH —rby1), =0,1,.,n—1,
(2.41a)

bp = —2an;1(qcn —71by) + q, by =0, (2.41b)

Cla = 2&7‘D;1(qcl —rh) + QﬁrDajl(qul —rby1) — 2041, 1=0,1,.,n—1,
(2.42a)

Cna = 200D (qe, — 1b,) + 14, co = 0. (2.42b)
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Assume ag = 1, since by = ¢p = 0 ; the equations (2.41a) and (2.424) lead to
bp=q, c=m. (2.43)

For a;,b; and ¢;, i > 2 we will consider the recursion equation. The equations

(2.412) and (2.42a) can be written in matrix form as follows,

2aqD; 'q D, —2aqD;'r a\ [ —284D;'q 2+ 2BqD;'r Cli1
D, —2arD;'q 2arD;'r b —2+26rD;Yq —28rD;1r b )
(2.44)

This leads to the following proposition.

Proposition 2.8. The relation between 2,1 and z; is given by the operator W as,

2101 = Yz, [=0,.n—1. (2.45)
where
C
= )
by
. —iD, +arD;'q— 1prD;'¢D, —3iBrD;'rD, —arD'r ‘
aqD;'q — 389D, qD, 5D. — aqD;'r — 5BqD;'rD,

Proof: By the equation (2.44), denoting,

C
2 = ,
I by

200Dt D, —2aqD!
M-( aqD, " q aq zr)7

D, —2arD;'q 2arD;'r

I —26qD;q 2 +208qD; 1 r
—2 4+ 2[37“D51q —257“D;1T 7

then we have



CHAPTER 2. ZERO CURVATURE FORMALISM 19

Mz = Jzq; [=0,..,n—1, (2.484a)
2y =J "Mz = Uz, 1=0,.n—1. (2.48b)
Here
1{ —prD;! —1—prD;!
g L oD orb.ca ) (2.49)
2\ 1-p¢D;'r —BqD;"q
Hence

U — —%Dx + arD;lq _ %ﬁrD;qux _%ﬁTD;1TD$ N arD;lr .
T S Vo SR |
(2.50)

It should be noted that we always need to select zero constants for integration in

deriving a;, b, ¢; , 7 = 1,..n — 1; that is we require that
;=0 = bjlju;j=0 = ¢jljuj=0 = 0, where u = (g N u] = (v, u, ...

For instance

. o T —31e +arD N qr — rq) — 58rD; N (rq, + qra)
2 pr— pr— 1 p—
by aqD7 qr —rq) + 3¢5 — 364D (rqe + qra)

_ —%7’1 - %ﬁqu
T4, — 38¢°r
The evolution equations for ¢ and r can be found by writing the equations (2.41Db)
and (2.42bh) as,

gt = bp o + 2an;1qcn — 2an;1rbn,

Ty = Cpng — 2047"D;1qcn + 2047"D;1rbn.

So we have

@ \ [ 2aqD;'q D, — 2aqD;'r Cn
T D, — 20zrD;1q 2047’D;17’ b, '
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Hence

( & ) = Mz, = Jzpen. (2.52)

Tt

Proposition 2.9. The evolution equations can be determined as

2
<%)=J%H=Rn< q), (2.53)
T —2r

where R is the recursion operator;

R — MJ_l o \If_l . %Dx - an;IT - %6DIQD;1r _anajlq - %ﬁDl‘qD;lq
arDr — %ﬁDerglr —%Dx +arD;q — %ﬁDerlqu '

Proof: The equation (2.48D) gives Jz,11 = J(J 'M)"z;, where

-(2)

Then we seek for the validity of the equality in the claim as,

JUlMW(Z)=MN*V(_§>,

M(J M) ( " ) = M(J M)t ( 24 > ,

T _ g 2q '
q —2r
Consider

= 2q _ —30rD;(2rq — 2qr) + r ([ (2.55)
—2r %ﬁqD;l(qu —2rq) +q q ) .

Hence
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2
( G ) =Mz, = Jzp =R" ( 1 ) : (2.56)
T —2r

which are the evolution equations. O

Example 2.3. The first four systems of the hierarchy.

a \ 2q
(4)-( ) asm

For the case n = 0 we have,
For the case n = 1 we have,

For the case n = 2 we have,

G\ _pe 20\ _( 20— ad’r—Bagr— 500
Tt —2r _%rgm + 047“261 - ﬁmﬁxq - %ﬁr2qg“

For the case n = 3 we have,

) _ R3 2q R %(Jm — ag’r — Bqq.r — %ﬁq2Tx
Tt —2r —3Ten + ar?q — Brreq — 301%¢,

Hence
1 3 3 3 3
G = 4uee — Zﬁr(qx)z = 5004 = 007G — S0 gt
3 9 3
Zaﬁqw + §52T2q2qx + Zﬁ2q3m,
1 3 3 3 3
Tt :Zrmcx + Z/BQ(Tx)z + 16TTIQJ3 + Zﬂqrr:&r - 504617’7":5—

3 9 3
1004 + B + 07 4.
All systems in the hierarchy (2.56), except the first system (2.57), are exactly

the coupled AKNS-Kaup -Newell systems in the hierarchy. Therefore the system
(2.50) is another expression for the coupled AKNS-Kaup-Newell hierarchy.
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2.3 Tam-Zhang system

In this section, we again cover the case where the potentials depend on the spectral
parameter. Consider a spectral problem so that deg(U) = 2, where deg(U) is the
highest degree of A. Let

r = U )
¢ ¢ (2.60)
¢t - ng
where ¢ is a 2-dimensional vector and U, V are as follows.
U = \e3 + Age1 + Arey, (2.61a)
V = aez + bey + cea, (2.61b)

with the commutation relations among the base elements of the su(1,1) algebra

le1, ea] = —2es, le1, e3] = —2eq, lea, e3] = —2ey,

where ) is a spectral parameter; ¢, r are functions of x, t; a, b, ¢ are functions of
q, v, A and the derivatives of ¢, r with respect to x and ¢ [10]. The compatibility

condition of the system (2.60) gives us the zero curvature condition

U —Vy+[U, V] =0, (2.62)

Proposition 2.10. The zero curvature condition (2.62) reduces to the following

equations for the functions a, b and c,

a, = 2\br — 2\cq, (2.63a)
by, = 2X\%c — 2 ar + g, (2.63b)
cx = 20%b — 2Xaq + Ary. (2.63c)

Since A is a free parameter, we can assume that a, b and ¢ are analytic in A. Then
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a= i a; ", b= i b\, c= i A", (2.64)
=0 =0 =0

Using Proposition (2.10) we have

Proposition 2.11. Let the functions a, b, ¢ in the equations (2.63a), (2.63h),

(2.63c) have expansions as in (2.64), then we respectively have the system of

equations

ape = 2rb1 — 2qci41, [=0,..,n—1, (2.65a)

2rby — 2qco = 0, Apz =0, (2.65b)
bie = 2c142 — 4r DM (rbyo — qerys), [=0,1,.n—2, (2.66a)
co =0, 2c; — 4rD;* (rby — qcp) = 0, (2.66b)
bn,:p = 07 bnfl,m = (qt — 27“Cbn, (266C)
Clo = 2010 — 4gD; (1byo — qersa), 1=0,1,.n—2, (2.67a)
bo = 0, 201 — 4qD;*(rby — qc1) = 0, (2.67b)
Cnaz =0, Cn-1a =Tt — 2qGy,. (2.67¢c)

Solving the equations (2.66b) and (2.67b)) we have
by =€1q and ¢ = €er. (2.68)
where €; is constant. We write the equations (2.66a) and (2.67a) in matrix form

as follows to find the recursion equation in order to obtain other terms b; and ¢;,
A

0 D, a\ _ 2+4rD;'q —4rD;'r 2 ) (2.69)
D, 0 b 4qD;q 2 —4qD'r bi1o

This leads to the following proposition.
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Proposition 2.12. The relation between z;.o and z; is given by the operator W

as,

2140 = Yz, [=0,..n—2 (2.70)

5= ( Z ) , (2.71a)

rD'rD, %Dw —rD;YqD,
. . . . (2.71b)
5De +qD; 1D, —qD; qD,

where

Proof: By the equation (2.69), denoting

. 2+ 4rD;'q —4rD;'r
4qD;1q 2 — 4qD;1r 7

then we have

Mz = Jzp40, [=0,..n—2,

2o = J Mz = Uz, [=0,..n—2.
Here
J—1:<%_TD51Q rD;tr ) (2.74)
—qD;'q 5 +aD;'r

Hence
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. <7Jx§rpx %[%——rD;HﬂL,) .

1 — —
§Da: + qug 1TD$ _qug 1qD:c

Therefore z;, i > 2 are as follows:

€T
Z9 — \IJZ(_) = .

For n = 2,

For n = 3,

T BT e 3r° — 3r¢® + 3¢.) + €3
3=Vz = = :
€1q e1(—30> + 3qr° + 372) + €3¢

25

(2.75)

(2.76)

Since z; and 2, are the same up to the integration constants, similarly we have

for n = 4,
= Wz — ( e 3 —ird®+1q) +er ) |
e2(—350° + 3qr° + 374) + €aq
For n =5,
= U= T < e I3 —Llrg? +1g) +er > |
er(—30% + 3qr° + 372) + €3q.
then
cs 261(27’5 + gq“r - %7’3612 + Zrqu - ZQQ% + irm)ﬂt
es( %rs — %qu + %qw) + €57,
bs :el(gq‘:’ - §r4q - gq?’r2 - Zq%’x + 27”27”1 + iqm)—i—
63(—%q3 + %qu + %m) + €54.

Similarly for n = 6,

1,3 1,2, 1
€ 517 —51q° + 5qz) + €47
26:@24:‘11<2(2 e + 3a.) 4>'

(1 + 1gr? + i) + eaq

(2.77)

(2.784)

(2.78b)
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Then
3534 339 3, 3 5 1
Co —eg(gr + gq r= g + 1 e~ 74 + 4rm)+
1 1 1
sl §r3—§rq2+§qx)+€67", (2.79a)
3 3 3 3 3 1
be —es(2q° + 2rtg — 2P — Sqro 4 Sr¥r 4 Sq..
6 62(8q+87’q 14T = e e )+
1 1 1
E4(—§q3 + §qr2 + 57"1) + €64. (279b)

Note that ¢; are integration constants for ¢ > 1.

Remark 2.13. 29y = 29,1, | > 1, up to integration constants. Hence we can
ignore one of them and the recursion equation for the Tam-Zhang system results

as
21 = Wl 1=0,1,2,.. (2.80)

Proposition 2.14. The evolution equations for q and r can be determined from
exactly the equations (2.66c) and (2.67¢).

qt = bn—l,a: + 27’(17“ (281&)
Tt = Ch—12 + 2qan7 (281b)

where a,, is constant for all n.

Example 2.4. Substituting the equations (2.66b),(2.67b),(2.68),(2.75),(2.76),(2.77),
(2.784),(2.78h),(2.79a), (2.79b) in (2.81a) and (2.81h), we respectively we find the

hierarchies forn =1,2,..,7.

For n = 1 we have,
gt = bo s + 2ra; = 2ray, Ty = Cop + 2qa1 = 2qa;. (2.82)
For n = 2 we have,

¢t = b1y + 2ras = €1q, + 2ras, Ty = C14 + 2qas = €17, + 2qas. (2.83)
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For n = 3 we have,
¢t = bay + 2ras = €2q, + 2ras, Ty = Cap + 2qas = €1y + 2qas. (2.84)

For n = 4 we have,

1 1 3

qr = b3,x + 27”(1,4 - 61(57”3;;,; + §TQQx + qrry — §q2%c) + €3qz + 27‘&4, (285&)
1 3

Tt = C32 + 2qa4 = €1(=Quz — —¢*ry — 1qq, + —7“27"3;) + €37, + 2qgay. (2.85b)

2 2 2

If we assume €3 = a4 = 0, the above equations reduce to a generalized Burgers

equation. Similarly for n = 5 we have,

1 1 3
G = bag + 2ras = e(57 + §r2qz + qrry — §q2qm) + €4q; +2ras,  (2.86a)
1 1 3
Ty = Caq + 2qas = 62(§qm — iqzrz —rqq, + §r2rx) + €47, + 2qas. (2.86b)
For n = 6 we have,
1 3 3 3 3 9
qt :bS,x + 2Ta6 = 61(quczm + Z_lrzra:x - Zq2r:m: + §T<Tz)2 - §QQIT1 - ZQQTQ%U—’_
3 15 3 3 1 1 3
gr‘qu + §q4qx + §qr3rx — §q3r7’x) + 63(§rm + 57’2% +qrry — équx)#-
€5z + 2rag, (2.87a)
1 3 3 3 3 9
Tt =C5¢ + 26]@6 - EI(ZTx;U;B + ZT2sz - Zq2q:zz - 561(%)2 + §TTxQI - Zq27ﬂ27ﬂx+
3 15 3 3 1 1 3
§q4rx + gr% + 57’q3qx — §r3qqm) (G dor — §q2m — s + §r2rm)+
€57 + 2qag. (2.88a)

Similarly for n = 7 we have,
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1 3 3 3 3 9
4t :bﬁﬂv + 27@7 = GQ(quxm + Zr2rrm: - Zq2rzmc + 57’(7’95)2 - §QQZTz - Zq2r2Qm+
3 15 3 3 1 1 3
§r4qx + §q4qx + §qr3r$ — §q3r7"x) + 54(§rm + §r2qx + qrry, — Equx)jL
€6Qs + 2raz, (2.89&)
1 3 3 3 3 9
re=Coq + 2007 = E(JTa0e + 1700 = 70 e = 54(0)° + 5170l = 0T Tt
3 15 3 3 1 1 3
§q47’z + §T4T$ + §Tq3Qx - 57“3(]%5) + 64(§qx:v - §q2rz — rqq; + 57"27"1:)"’
€6Te + 2qary. (2.89b)

Using proposition (2.14) we have the following proposition.

Proposition 2.15. The evolution equations for q and r can be written in terms

of the recursion operator R as follows,
r €177
Pl =R VT (2.90)
4t €19z

DIT'D;IT %Dx - DJ:TD;IC]
R = .
%Dm + quD;IT —quDlqu

where | =0,1,2..., and

(2.91)

Proof: If we rewrite the equations (2.81a)and (2.81b) in matrix form we have,
n—1,r 2 n
A e N (2.92a)
qt bnfl,x 2(ln7”
T 2anq
= Doz + (2.92D)
qt 2a,7

Since the odd numbered and the even numbered hierarchies give the same equa-

tions, we can ignore the even numbered hierarchies. We can assume n — 1 is odd.

2a
Moreover in the equation (2.92b), ( ) 1 ) is a symmetry. The summation
anT
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of symmetries is again a symmetry, so we can ignore the righthandside of the

equation (2.92b). By the equation (2.80) we have

Tt l
=D 2141 = D, ¥z
< q )

Let R = D,¥D_! where ¥ is defined in (2.71D). Hence

") —RD =R M (2.94)
qt €19z

where [ =0,1,2,... ([l



Chapter 3

Classical Lie Algebras

3.1 Introduction

In order to obtain integrable nonlinear partial differential equations, the usual
procedure is to use the zero curvature formalism which is based on the Lax
equation for n x n matrix valued functions. These are traceless real matrices
which form a basis of a matrix algebra. For the AKNS scheme this algebra is

sl(2,R) algebra. To obtain more examples, we will work in simple Lie algebras.

In Section 3.2, we will introduce the usual Cartan-Weyl basis, in Section 3.3, we
will give the Cartan-Weyl basis on homogeneous spaces, introduced in [12]. In
Section 3.4, we will compare these two bases. In Section 3.5, we use a simple
Lie algebra valued soliton connection to obtain some integrable nonlinear partial
differential equations on homogeneous spaces, recently introduced in [12]. In
Section 3.5.2, we determine the corresponding recursion operator by the use of the
catalogue. In Section 3.6, we obtain the integrable evolution equations without

using the catalogue.

30
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3.2 Cartan-Weyl basis

The Cartan-Weyl basis most frequently used by physicists is the standard form

of the commutation relations for a semisimple Lie algebra.

Let g be the Lie algebra of a Lie group G and h be the Cartan subalgebra which

is the maximal abelian subalgebra in g. Then g can be identified as

g=hEHn° (3.1)
where h¢ is the complement of the Cartan subalgebra in g.

Definition 3.1. The above decomposition leads to the Cartan-Weyl basis as fol-

lows:
[H,, Hy) =0 forall a,b=1,2,...,p, (3.2a)
[Ho, Es] = @ Ea, (3.2b)
p
[Ea,EBg) = > C& 2H, if a+3=0, (3.2¢)
a=1
[Es, Bg) = ngﬁEmB if a+p#0, (3.2d)

where p is the rank of the algebra, H, ’ s are bases of the Cartan subalgebra,
Ez 7 s are the bases of the complement of the Cartan subalgebra, &, and C are

the structure constants of the commutation relations.[11]

3.3 Cartan-Weyl basis on homogeneous spaces

In this section we will improve the usual Cartan-Weyl basis to the Cartan-Weyl
basis on homogeneous spaces. For this purpose let us give the following defini-

tions.

Let G be a Lie group. A homogeneous space of G, is any differentiable manifold
M, on which G acts transitively. If K is an isotropy group of some point py € M,
then M can be identified as a coset space G/K. Let g and k be the Lie algebras

of G and K respectively. Let m be the vector space, complement of &k in g, then
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g=k @ m. (3.3)

and m is identified as the tangent space of G/K at py € M. When g satisfies the

conditions

g=k@m, [kkCk  [km]Cm, (3.4)

then M = G/K is called a ’reductive homogeneous space’. When g satisfies the

conditions
g= k:@m, [k, k] C k, [k,m] C m, [m,m] C k, (3.5)

then M = G/K is called a 'symmetric space’.

In a simple Lie algebra, we denote by H, the commuting generators where a =
1,2...,p. Here p is the rank of the algebra. We denote by E, and Ej; the step
operators where o’ s and d’ s are the roots. The k part of the algebra has
the generators H,, Ep (D = d,—d), the m part of the algebra consists of the
generators Ey (A = a, —«). In Cartan-Weyl basis we can write the commutation

relation of the generators as [12] :

[Hy, H)) =0 forall a,b=1,2...p, (3.6a)
[Ha, Eal = f21EB, (3.6b)
[Ha, Ep] = fipEr, (3.6¢)
[Ep, Er] = fppHa + [heEr, (3.6d)
[Ep, Eal = fpsEsB, (3.6e)
[Ea, Bp] = fipHo + fsEp + fipEc, (3.6£)

where A, B, C (+a,=£f,+7) are the indices for the generators in m; D, E,
F (£d,te, £f) are the indices for the generators in k. Here note that for the

generators F4 of m and for the generators Ep of k

|A|>| D . (3.7)
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The structure constants representing the roots can be written as
+ +
fa:l:ﬁa = aa(s:l:a? a:l:d = =+d 5:|:2 (38)

We shall now give an example, sl(3,R).
Example 3.1. Let g = Sl(S,R) with g = {Hl,HQ,El,E_hEQ,E_Q,Eg,E_g}

where the corresponding base elements of Cartan-Weyl basis are as follows,

1 0 0 10 00O
H, = 0 -1 0 , 0 1 , By = 1 00
0 0 0 0 0 0 0 0
0 0 1 0 0 0
E_, = , FBy= 0 0 0 , E_o= 0 0 0 ,
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0
Ey = 0011, E3=]1000
0 0 0 01 0

We seek for the commutation relations so that [X,Y] = XY —YX for all
X, Yeg:

[Hla HQ] = 07 (39)

[Hh El] = _2E17 [Hla E—l] = 2E—17
[HQ, El] = O7 [HQ, E*l] = O, (310&)

[Hla EQ] = E27 [Hla E—Q] = _E—2a [H17E3} = _E37
[Hi,E_3]| = E_3, [Hy, Ey) =3E,, [Hy E_5]=—-3E_,,
[HQ, Eg] - 3E3, [HQ, E,g] = —3E,3, (310b)

1
(Ev, B =—Hy, [Ey E 5= §(H1 + H,),

[Es, E_s] = %(HQ — Hy), (3.11a)
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[Eb EQ] = E3a [Ela E—Z] = 07 [Eb E3] = 07 [Ela E—B] = _E—27
[E—la EQ] = 07 [E—h E—Q] = _E—37
[E_17 Eg] = EQ, [E_l, E_3] = 0, (312&)

[Eq, B3] =0, [Es, E_s] = Ej,
(B9, Byl = —E_, [E_o,E_s]=0. (3.12D)

Casel: The Cartan-Weyl basis

According to the decomposition for the usual Cartan-Weyl basis, we have

g = h@ h® where

h  ={Hy, Hy},
U, o} (3.13)

hC - {E17E717E27E727E37E73}'
By (3.9), it is clear that the commutation relations among the elements of Car-
tan subalgebra are zero which corresponds to the equation(3.2a). The structure

constants and the roots of the algebra sl(3,R) are found as follows.

By (3.10a) and (3.10b) we have

[ ]

[Hy, E1] =0 = a5 =0; [Hy,E_1]=0 = a;=0,

[Hi,E)l=FE, = a=1; [H,E o)=—-F_ o = a3=—1,

[Hi,E3)|=—-F3; = a=-1;, [H,E3=F3; = a =1,

[Hy, E5] =3E, = @3;=3; [Hy, E o) = —-3FE o = a5=-3,

[Hy, B3] =3E3 = @3 =3; [Hy, E 3| = —-3FE_ 3 = a5= -3,
Hence
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which corresponds to (3.2b). By (3.11a),

[EluEfl] - _H17 = Cll—l = _17

1 1 1
[Ey, E_o) = =(H, + Hy), = 02172 =, 02272 =z,
2 2 2
1
(B3, E_3] = §(H2 —H) = C33=-=, Cig=r,

Hence

2
[Ex, Eg] =) Ct o H, if a+3=0; apf==l42
a=1

which corresponds to (3.2c). By (3.12a) and (3.12b)) we have,

[E,Ey))=E; = C%=1;, [E,E,)=0 = 07%=0,
EL,Es]=0 = C°=0; [ELE5l=-E, = C%=-1

13 3
(B, Es]=0 = Cif?=0; [EEo=-E3 = CJ,=-1
B, Bsl=E, = Cly=1; [E,E3=0 = Cillféfg) =0,
By Bl =0 = C3°=0; EnEs=E, = Cl=1,

23 3
[E_s, B3l =—E; = Cl,;=-1; B, Esl=0 = (Y=o

[Bx, B3] = O%*BEmB if @a+840; @ fB==+1,+2 +3,

which corresponds to (3.2d).

Case 2: The Cartan-Weyl basis on homogeneous spaces

35

According to the decomposition on homogeneous spaces we have g = k @ m such

that

k :{H17H27E17E—1}7
m = {E27E—27E37E—3}'

Similar to Case 1, the equation (3.9) corresponds to (3.6a). By (3.10a)
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[Hi, Ei] = —2E, = fl,=-2; [H,E]
[Hy, E\]=0 = fl, =0; [Hy,E_\]=0 = f;},=0.

Then we have,

[H,, Ep]l = fE By a=1,2; D,E=+I,

which corresponds to (3.6¢). By (3.10b),

[Hi,E))=FE,  f3 =1, = [H,E,|=-E_, = [f4=-1,
[Hi,E5)=—E; = fh=-1 [H,E3l=E; = [ %=1,

[ ] B, = [p=3; [Hy, E_)) = =3E_, = fy%=-3,
[ |=3E; = fi=3  [HyE=-3E,3 = fi=-3,

then we have

[Hy, Eal = f2\Ep a=1,2;, A B=42+3,

a

which corresponds to (3.6b). By (3.11a), [Ey, E_1] = —H; then f} | = —1. So
we have [Ep, Eg| = ffpH, where a = 1; D, E = +1. But in general,

[ED7 EE] = ngHa + ngEF

which is (3.6d). By (3.12a))

[E1,Eo)=E; = fh=1 [E,E,=0 = [f)=0,

[B1,Bs] =0 = fli3=0, [B,Esl=-E, = f3=-1,
[E_1, Ep] =0 = f112 = 0; (B, Es]=-E3 = f:13—2 = -1
[

E,B)=E, = [23=1 [E,E4=0 = fﬁ_ll_);(_i;) =0,

[Ep,Esl = fEEp D =41, A B=42 43,

which corresponds to (3.6€). By (3.11a) and (3.12b)),
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1 1 1
[Es, E_] = §(H1 +Hy) = fy,= 2 fio= o
1 —1 1
[Es, E_3] = §(H2 —H) = f3s= TR fis= 5
[Ey, E5] =0 = f33=0; (B, E5l=E, = fih=1,
(B0, Bs)=—-E = fly=-1 [ELE4=0 = 59—

So we have,

(B4, Epl = fSpHy+ fR3Ep+ f3Ee, a=1,2; D=1, A B,C=%42+3,

which is (3.6f).

3.4 Comparison of Cartan -Weyl bases

In this section we will compare the usual Cartan-Weyl basis with the one on homo-
geneous spaces. Obviously (3.2a) and (3.6a) requires the commuting generators.
By (3.1) the usual Cartan-Weyl basis consists of Cartan subalgebra and the com-
plement of the Cartan subalgebra. On the other hand; by (3.4) the Cartan-Weyl
basis on homogeneous spaces decomposed into k part and m part. The k part has
generators H,, Ep (D = d, —d) and m part has generators F4 (A = a,—a). To
emphasize the difference between these two bases, h¢ (in the usual Cartan-Weyl
basis) has been improved to have a decomposition of two vector spaces having
generators Fp and E4. Hence for the derivation of the basis from the usual one;
we have to take into account the general behaviour of @, which is now altered
to @, = (ag,d,). If we assume @ = +a , by (3.2b) we have [H,, F1.] = agE1q.
Using (3.8); if we let o = £ , we conclude that

[H,, Eso) = fE5 By,
[H,,EA] = {2, Ep,

a.

which is (3.6b). If we assume @ = +d, by (3.2b) we have [H,, Ei4] = +d,E1q.
Using (3.8)); if we let +d = +e , we conclude that
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[Hy, Evd) = [ Exe,
[Hm ED] = faEDEE7

which is (3.6¢). If we assume @ = d and 3 = e, by (3.2c) and (3.2d) we have,

[Ea, E Z Ci Hy, if d+e=0,
[Eq, E.) = ngeEd+e if d+e##0.

On the other hand; by (3.4) [E4, E.] C k where k has generators H, and Ep.
Then

[Ed7 ] fdeH + fd+€Ed+e (321)

Here

if d+e=0 then f5 =0C7.,,
if d+e#0 then fi°=Cdte

Similarly @ = —d, 3 = —e implies,
[E_g,B_] = f* Ho+ S B o o). (3.22)

Let Eiayt(+e) = E+p) C k. Hence (3.21), (3.22) gives straightforwardly,
[Ep, Eg] = [ppHa + [ppEr.
which is (3.6d). If we assume @ = d and 3 = «, by (3.2c) and (3.2d) we have,
[E4, E Zod+a if d+a=0,
(B4, B, = CMEM if d+a#0.

On the other hand; since E; and E, are elements of k and m respectively, we

always have d + a # 0. Also by (3.4) we have [Ey, E,] C m. Hence

[Ed, Bo] = [i2* Eara- (3.23)
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Here C§,, = 0; dta — 04t Similarly @ = —d , f = —a implies,
—d —a
B g, BE_o) = 2 Y o (3.24)
Let Eig)+(xa) = Exp) C m. Hence (3.23), (3.24) gives straightforwardly

[ED7 EA] - ngEBJ

which is (3.6€). If we assume @ = a and 3 = 3 by (3.2c) and (3.2d) we have,

[Eq, Eg] = Z “sH, if a+p=0,
[Ea,Eg]:oggﬁEa+6 if a+B#0.

On the other hand; since £, and Ej3 are elements of m, the condition of reductive
homogeneous space does not give enough information about the place of the

commutation relation of [E,, Es]. So we have either k or m part. Then

[Eou Eﬁ] = gﬁHa + ff:;ﬁEa+ﬂ + f;a;ﬁEa+ﬂ'
Here
if a+pB=0 then C7 5= fis

if a+08#0 and [E, Eg Ck, then CS;B: f:;ﬁ aﬁ where o+ (3 = d;

if a+0#0 and [E, Es Cm, then Cg‘;ﬁ fo‘+’6 fas where a+ 3 =17.
Then
(B B5) = [ o+ f3Bat [0,E, (3.25)
Similarly @ = —a , 3 = —( implies,
[E,a, Efﬂ] = ffanga + f:g—ﬁE*d + f:g—ﬁE*’Y' (3-26)
Hence (3.25)), (3.260) gives straightforwardly,
[Ea, Eg] = fipHa + fipEp + fSpEo,

which is (3.6f).
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3.5 A simple Lie algebra valued soliton connec-

tion

Definition 3.2. The simple Lie algebra valued soliton connection 1-form €1, as-
sociated to a reductive homogeneous space G /K with the generators H,, Ep is

defined as
Q = (ikAH, + Q*Ex)dx + (A°H, + B*E4 + CPEp)dt, (3.27)

where K s the isotropy group of G, X\ is the spectral parameter, k is a constant
not depending on X\, s € {1,2,...p} is a fized constant, Q*(x,t) is potential, A%,
B4 and CP are arbitrary functions of x, t and \ [12].

Assume H, as one of the commuting generators which satisfies the commutation

relation

[Hs, Ep] =0, (3.28)
Here we note that +d = +(a — ) and a, = [, for all a ’s, (5 ’s.
For Q) = Tdt + Xdz, we have

dp = Qo (3.29)

as the Lax equation in differential forms where ¢ € G. R curvature 2-form is
R =dQ+ Q AQ. Here € is the flat connection so

dQU+QANQ=0. (3.30)
which is the zero curvature condition. Therefore the equation (3.30) becomes,

—Qi'Ea+ A%H, + BAEs + CPEp + ikAA"[H,, H,] + ikABC[H,, Ec]+
ikACP[H,, Ep] + Q*A%[E 4, Hy) + Q*BC[E4, Ec] + Q*CP[E,, Ep] = 0. (3.31)
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The equation (3.6a) leads [Hy, H,] = 0. According to our assumption
[Hs, Ep] = 0. By (3.6h),(3.6€) and (3.6f), we have respectively

[H,, Ec] = ficBa,  [Ea,Ho) = ~fucEa,  [Ea, Ep] = fgpEa,  (3.32a)

S

[Ea, Ec) = f4cHo + fAeEp + fhcEa. (3.32b)
Note that summation on indices enables us to change indices.

Proposition 3.3. By using the conditions (3.32a) and (3.32b)) in the equation
(3.31)), we have

Q;' = By +ikAf;eBS — [1eQ°A® + [5.Q°BY + f5p,Q°CP, (3.33a)
AS + ficQ B =0, (3.33b)
CP + fh.0*B =0. (3.33c)

We expand A%, B4 and CP in terms of the positive powers of \ as,

N N N
A= "agAV o BA=Y eI el =Y e AN (3.34)
n=0 n=0 n=0

Proposition 3.4. Let A%, B4, CP in equations (3.33a), (3.33b) and (3.33c)

have expansions as in (3.34), then we get the following equations respectively,

bf}x + Zkf‘;%blc-;-l - fCQca? + féCQBbZC + fSDQBClD = 01 [ = 07 ) N — 17

(3.35a)
Qi = b, — fiQ%% + [HeQPVS + fHpQ5 k. (3.35D)
ikfibs =0, (3.35¢)
aj, + f40Q% =0;  1=0,1..,N, (3.35d)
o+ [y =0, 1=0,1.N. (3.35¢)

Using the Proposition (3.4) we have the following proposition

Proposition 3.5. If we expand the related indices of the equations (3.35a),
(3.35b)), (3.35d) and (3.35¢), we have
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DS ik fEO0) ik I — Q) fial — QT £ af + Q° fiam
QTPf55.b + Qb+ QTR b T + Qﬁfia !+ Qﬁfg ac
Q 5f:t dcl + Q ﬁf:ta dcl - 07 = Oa ) N - ]-7 (336&)

= b, - Qb -0 00l + QO PR + QN + Qb+

QP b + QU fiieh + QP [k + QU fiten + QP fE_yey?,  (3.37a)
a, + Qfa bl + Q7 f1 b + Q% fa b +Q L, b =0; [=0,1.,N,
(3.38)
Clx _|_Qafidb’}’+Q afid b’Y_i_Qafid b 7+Q « id b 'y_O l:0717N
(3.39)

3.5.1 The catalogue

To deduce the occurrance of the structure constants, it is better to determine a

catalogue of them. Consider the commutation relations:
[Ho, E,] = v,E, by (3.2h),
= foBa + fo"E_o by (3.6b).

Since v > 0 then = 0 and by (3.8), we have

a, = f2. (3.40)

ay

Similarly for [H,, E_] = —v. B, = f& FEo+ fo5FE_o we have,

0, —a = fO (3.41)

a—y
Using (3.2c),(3.2d),(3.6f), the commutation relation becomes,

— cgjwﬁ+7 if B4+~+#0,
= [ Ha + [5, Ba + fﬁ_vaE—O‘ + fg'yEd + fﬁ_vdE—d'
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Since (3,7 > 0, we have
a _ p—a _ pdd __ B+y _ ra
fiv =o' =fy =0 and Cp" = f5,. (3.43)
Similarly for [E_g, E_,], we have
a _ ra _ pkd —B+(=7) _ f-a
Ploy=f2y =175, =0 and OO0 =[5 (3.44)

For  [Ep, E_,], we have again

[Eﬂ, E_fy] - Og_,’_(_,y)Ha lf ﬁ - 'y - 0,
=By it B A0,
- fgvaa + fgfan + fEEWE*a + fgfvEd + fgfvE*d‘

The following cases determine the structure constants of  [Eg, E_,].

a. If f-—v=0 = [3°=02=0 Ch =1/l (3.46a)

b. it 3—v>0, Esg,Cm =
=154 =% =0, G =5, (3.46b)

c. if 3—v>0, Ez,Ck =

a _ pta _ p—d __ B+(=v) _ rd
fﬁ—v By T fﬁ*'v =0, Cﬂﬂ - fﬁ—w

d. if 3—y<0, Esz,Cm =

a _ prd _ pfa B+(—7) _ p—a
fo—y = B—y — fo— =0, Cﬂffy V= fgfya (3.46¢)

e. if 8—-v<0, Ez,Ck =
fo =t =fi =0, P =frd (3.46d)
Similarly [E_g, E,] can be discussed by substituting 7 instead of § and sub-

stituting [ instead of  which is exactly —[Es, E_,]. Using (3.2d),(3.6€), the

commutation relation becomes,
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[Eﬁv Ed] = Cg;dEﬁ+d7
= f5aba + f54 E-a-

Since 3,d > 0 we have,
far=0 and C5%=f5,

Similarly for [E_g, E_,4] we have,

fo =0 and CyTCD = fo

When it comes to discuss
—d
[Ep, E_4] = Cé’fé 'Epi(—a),
= fgdea + f,gde—a-
By (3.7), (8 —d > 0 then,

f7%=0.

Also (3.6€) leads us, f§ , exists if B3 4 C m; otherwise f§ ; = 0. Hence

CFiP=fg, it B-d>d,
CrfiP=0 it g-d<d

Similarly for [E_g, E,4] we have
fixﬁd = 07

and

CUPM = fa i —Bd>d,
ct)t =0 if -p+d<d

44

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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3.5.2 The evolution equations

By the use of catalogue, the equations (3.38) and (3.39) respectively become:

al, + f5_(Q% " — Q7)) =0,
i+ 5 (Q T — QY)) =0,
then we have
af = =D [ f5_ Q%7 — Q7)) (3.54a)
i = =D 5 Q% — Qb)) (3.54b)

where [ =0, ..., N. Again by catalogue the equation (3.36a) become:

by + ikably — 0a@Q%af + Q° f5.6] + f5_(Q°b Y — Q7))+ Q° foaci+
Q°f5 a7 =0, (3.55a)

bis = ikosbiy + 0uQ %] + Q5T + £ Q0T = Q)+
QP15 4"+ Q f 5yl =0, (3.55b)
where [ =0, ..., N — 1. Substituting (3.54a) and (3.54b)) in (3.55a) we obtain,
& =ERYW+ RS b7 (3.56)
+1 15 l 2_5 l )
where [ =0,.... N —1, ¢ = kt and
RS, = Dadfy — auQf5, Dy Q7 + Q7 f5,05 = J5-,Q77 + Q7 faf5, D Q77+
Q" f5 af5 . D'Q, (3.57a)

R, =0.Q"f5 D Q% ) + f5 Q%075 — Q ffufs D, Q70—
Q" f5 af5, D1 Q%5 ). (3.57b)

Similarly the substitution of (3.544),(3.54b)) in (3.55b) gives,
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where [ =0,..., N — 1 and

Ry = ,Q f§ D'Q7 = [32Q7 + Q75 13D Q 7+
Q" fZgufs- D' Q77, (3.59)

Ry® = D,675 — 0aQ ™" 5 Dy Q707 + Q7 f=5_ 673 + f7= Q%5 -
QP 5 o f5, D' Q% — QP f5uf5 D Q6] (3.59b)
Proposition 3.6. The equations (3.560), (3.58) give us the following recursion

equation and the corresponding recursion operator; R%3

B, =RaBP 1=0,1..,N -1, (3.60)
where
ba
B, = ( o ) |
bl+1
R4 =§< Ri}; R%f ) ,
bﬁ
B __ 1
B - ( " ) |
and & = k%“s .

When it comes to the evolution equations, by catalogue the equation (3.37al)

becomes,

QF = by, — @@ aly + Q7 5.0k + 5, (Q5by — Q%) + Q% fouch+
Q° fg_dc;,d, (3.61a)

Qr® = by + Q@ “ay + QP FT5 by + 5 Qb — QbR+
Q7 f 5 e’ + Q7P f 5k (3.61b)

Similar to the argument for recursion equations, after substituting (3.54a), (3.54b)
in (3.61a) and (3.61b) we have,
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Q4 \_ [ (% (3.62)
o Cyr Cr )\ by ) |

Here exactly

=0y, Ry, =Cg

].B 157 2,57 (363)
Ry® =G5 Ry =Cype.

Proposition 3.7. The evolution equations can be determined as

1, —a
QA = E(RB)NO';;B?. (3.64)
, 1 0 — RY RY
where £ = k%ﬂg, 03 = ( ) and Rg =03 ( l_ﬁa 2_‘;’ > o3.
Proof: The equation (3.62) becomes
a_ 1 ApB
By (3.60), we have
A LAy c
Qf = =(Rp)"osBy. O (3.65)

3.6 Unified equations

Our approach can be improved without expanding the indices. For this case, the

catalogue will not be needed. By equations (3.35d) and (3.35¢) we obtain,
al = =D f5.QME, P = D7 LQAY,  where [=0,1..,N. (3.66)
By (3.35a) we have,

— ikf:bblqd = bfx — [LQCal + f5QPb + frpQPcl. (3.67)
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Let fi4, = X4  be a non-degenerate matrix. Here summation on indices enables
us to change the indices. We change C' to B and B to C' in the above equations
(3.66) and (3.67). Then equation (3.67) becomes,

i — a
bl]il = E(X DA [bf}x — [15Q%a) + Q00 + fopQ ). (3.68)

Substitution af and ¢ for all I = 0,1..,N from (3.66) in equation (3.68)

gives,
by = E(Xfl)f [Do5 + fipQP D7 fipQ" + fE5Q° — fépQ D™ fipQ1 bF.

Hence

bo, = Rab] (3.69a)
by = (Rp) "7, (3.69b)

R = L(XNE (DA FAQPD 5@+ 500 — 4,0 D R0 (3.70)

is the recursion operator and (3.69b) is the recursion equation. On the other

hand by (3.35b) we have,
Q' = by, — fapQPaly + fEpQUbN + fépQCex. (3.71)

Proposition 3.8. The evolution equations can be written as

Qi = —ikXF (Rp)™ b7, (3.72)

(X™DA [Dog + fipQ° D7 fipQ" + fEpQ° — fEpQU D™ fApQ™.

Proof: Substituting the terms in (3.66) into the equation (3.71) we have,
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Qf = [Dog + fapQP D7 f4pQ" + fE5Q° — fEpQ D™ fXpQ] Y.

So we have

QN = —ikX? R4 B (3.73)

Hence by (3.69b) the equation (3.73) results as;
Qi = —ikXy (Rp)"™ b7 (3.74)

which is the evolution equation. [



Chapter 4

Gel’fand-Dikii Formalism

In the Lax formalism, the main problem is to determine the operator A in the
Lax equation (1.5). By the use of Gel'fand- Dikii formalism, we determine such
operators straightforwardly. This formalism gives a construction of all Lax pairs,
based on the calculation of fractional powers of the operator L. Further the
Gel'fand- Dikii formalism makes use of some algebras; among such algebras, we
can give the pseudo-differential, matrix, polynomial and Moyal algebras. In each
Lax representation, the Lax operator L, is a polyomial. For the pseudo-differential
algebra L is a polynomial of a differential operator D,, for the matrix algebra it
is a polynomial of a spectral constant and for the polynomial and Moyal algebras,

it is a polynoimal of the auxiliary variable (momentum p).

Let G be an algebra and '’ be a non-commutative, associative binary product.

Let F', G and H be G-valued functions, then define a bracket {, }¢ as
1
{F,G}g := Q—(F*G—G*F), keR (4.1)
K

which satisfies the properties;
i. Skew-symmetry: {F,G}g = —{G, F}g,

ii. Leibniz rule: {FG,H}g=F{G,H}g+ {F, H}q.G,

20
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iii. Jacobi identity: {{F,G}g,H}g+{{H, F}g,G}g+ {{G,H}g,F}¢=0.

Let L be G valued Lax operator. Then the Lax equation is defined as;

oL
E = {A7 L}g (42)

for some G valued function A. In order to obtain A, we find A s.t
{L, A} =0. (4.3)

Apart from the matrix algebra we take A = Lw, then (4.3) holds, where n # am;

a,n € Z. We put A = (A)sy, that is

A= (Lm)sp. (4.4)

=

So we obtain a consistent equation (4.2). Here the restriction of being bigger or
equal to k is for A to be the polynomial part of Lm except first k — 1 terms. For
the matrix algebra we find A by solving {L, A}g = 0, then we set

A= (A)sp. (4.5)

In the following sections, we shall present our method and give examples for each
Lax representation. In Section 4.1, we consider Lax operator taking values in a
pseudo-differential algebra. In Section 4.2, we consider the case of matrix algebra.
In Section 4.3, we deal with polynomial algebra. In Section 4.4, we work on the

case of Moyal algebra.

4.1 Pseudo-differential algebra

As a first example of an algebra G, we consider the pseudo-differential algebra.

Let F', G € G be two pseudo-differential operators;

F = fu(u)Dy + ...+ folu) + fo1 (WD + .oy
G = gn(u)D™ + ...+ go(u) + g_1 (u) D' + ...,
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where f;,9;, ¢ =..,-1,0,1,..,n; j = .., —1,0,1,..,m are differentiable functions.
The bracket {, }¢ defined in (4.1) corresponds to the usual commutator if *’ is
the operational product and kK = %
Definition 4.1. A differential operator of order n is a finite sum

D =) PiulD, (4.6)

i=0
where the coefficients P;lu] are differentiable functions.[18]
The multiplication of differential operators is described by the formula
D..D! = D, (4.7)

valid for ¢, j > 0. The derivational property of D, is given by the Leibniz rule

where Q) is a differentiable function.

Definition 4.2. A pseudo-differential operator of order n is an infinite series

D=3 P (4.9)

1=—00

where P[u] are differentiable functions. The operator D;' is the formal inverse
of D, (D,.D;'' = D;'.D, =1).[18]

The operator D! of any differentiable function @ is formulated as
D;'.Q =) (-1)'Q*D;* . (4.10)
k=0

The advantage of introduction of a pseudo-differential operator is that now we

can take roots of any pseudo-differential operator.
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Lemma 4.3. Every nonzero pseudo-differential operator of order n > 0 has an
n — th root.[18]

Proof: Suppose D is a pseudo-differential operator of the form (4.9), with
nonzero leading coefficient P,. The n-th root ¢ = D will be a first order pseudo-

differential operator of the form
e = (P)"Dy+ Qo+ QiD;' + QD +

Substituting into the equation €® = D, leads to a system of equations for the
coefficients @, , k = ...,—2,—1,0 of £ which can be solved for the Q, k =
vy —2,—1,0 in terms of P’s, 1= ...,—1,0,1..,n. U

Example 4.1. Consider the operator D = D? + u, which corresponds to the
KdV equation. Then the square root of D is

! 1 1 1
D2 =D, +-uD ' — —u,D 2+ =
Ut T gtelh g

(tUge — u?) D> + ... (4.11)
We consider equations with the Lax representations of the form

L =[A,I).

where L is differential operator of order m and A is a differential operator whose

coeflicients are functions of  and ¢. Let
L=D"+Up oD"?+ ...+ u D, + ug, (4.12)

where u;, i = 0,1,...,m — 2 are functions of x and t. Lw exists by the Lemma

(4.3), so we can consider any fractional power of L; L. Set
Lo = (Lm)y + (L), (4.13)

where (Lw), is the differential part of the series Lm; (Lm)_ is a series of order

less or equal to —1 and n € Z, n # am, a € Z. Since [L, L=] =0 we have
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[L, (Lm)+] = —[L, (Lm)-]. (4.14)

The left-hand side of (4.14)) is a differential operator of order< n + m — 1, but
the right hand side is a series of order< m — 1. Hence there are n number of
terms cancelling each other which give us a system of evolution equations for the
dependent variables u;, ¢ = 0,1,...,m — 2 by comparing the coefficients of
D:. Different choices of operator A for given L , leads to a hierarchy of nonlinear

systems of differential equations. To have a hierarchy consider
Ly, = [An, L], (4.15)

where A,, can be defined as

Ay = (Lm)y, (4.16)

where '+’ means the polynomial part of Lw. For such a hierarchy, we can con-

struct a recursion operator.

Proposition 4.4. For any n
Apim = LA, + Ry, (4.17)
where R, is a differential operator of order< m — 1.[15]
Proof: By (4.16) and (4.13)
Ao = (LLF), = (LILA), + (L%) ])..

Note that, since (L.(Lm ), ), has only positive powers, then

Hence
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by substituting R,, = (L.(Lw)_)4. Here since (Lm)_ is a series of order less or
equal to —1 then ord(R,) < m — 1. O

The result obtained from the last Proposition leads to
L, ..., = [Anim, Ll = [L.Ay, + R, L] = L.[A,, L] + [R,, L] = L.Ly, + [R,, L].

Hence
Ly, =L.L; + (R, L]. (4.18)

The equation (4.18) is called the recursion relation and R, is called the

remainder.[15]

Remark 4.5. It follows from the formula

Auim = (L#.L); = (L) oL+ (L#)_.L)4, (4.19)

that
Apym = AL + Ry, (4.20)

and
Ltn+m = LtnL + [R_m L]a (421)

where R, = ((L=)_L), is a differential operator and ord(R,) < m — 1.

To find the recursion operator we equate the coefficients of different powers of
D, in (4.18). The comparison of the coefficients of D%, i = 2m —2,...m — 1
enables us to determine R, in terms of the coefficients of operators L and L, .
It is essential that the resulting formulas become linear in the coefficients of L, .

The remaining coefficients of D, i =m —2,...,0 in (4.18) give us the relation

Uop Uo
Uq Uy

=R . , (4.22)
Uy —2 Um—2
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where R is the recursion operator. This is indeed the definition of the recursion
operator. Instead of the equation (4.18) we can use (4.21) as well, the corre-

sponding recursion operators coincide.

Example 4.2. The KdV equation, u; = iumx + %uuz has a Lax representation
with

3
2

L=D}+u, A=(L%),. (4.23)

By the equation (4.18) the recursion relation is of the form
Ly,.,=L.L,, +[R,, L].
Since L;, = uy,, the main relation takes the form
ug, , = (D2 +u).uy, + [Rn, D2 + 1], (4.24)

with R, = a,Dy+¢,. ( Note that R, = (L.(L?)_), and ord(R,) < 1) Comparing
the coefficients of DY, D, and D? in the equation (4.24) we obtain respectively

1 3
an = §Dx1(utn)7 Cn = Z_lut"’

and

1 1
Up, = (ZDQ% +u+ §UwD;1)~Utm

that gives the standard recursion operator for the KdV equation,

1 1
R=-D>+u+ -u,D,". (4.25)
4 2
If we use the recursion relation (4.21) we obtain @, = %D;l(utn),a = —Z—llutn

for R, = @,D, +¢,. The corresponding recursion operator is exactly the one in
(4.25).
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4.1.1 Symmetric and skew-symmetric reductions of a dif-

ferential Lax operator

The standard reductions of the Gel’fand-Dikii systems are given by the conditions
L* =L or L* = —L. Here * denotes the adjoint operation defined as follows.[15]

Definition 4.6. Let L be a differential operator, L =" a;. D, then its adjoint
L* is given by

m

L*=) (-D.)'q (4.26)

1=0

where the coefficients a; are differentiable functions.

If L* = L, then ord(L) = m must be an even integer. If L* = —L, then ord(L)
must be an odd integer. For both cases; if L* = L or L* = — L, the compatibility
condition of (4.15) implies that (A,)* = —A,. So all possible A, defined by

(4.16)), where n takes odd integer values.

If L* = L, the formula A, ,,, = (L.Lm), = L.A,+ R, gives a correct A, operator,
since n + m is an odd integer. Hence in this case Proposition (4.4) remains valid
and the recursion operator can be found form (4.18) or (4.21). On the other
hand, if L* = —L then both integers m and n are odd and hence their sum m +n
is an even integer. This means that (L™= ), cannot be taken as an A, operator.
In this skew-adjoint case we must take

n+2m

Antom = (L7 )4 = (LQ-L%)Jr

to find the recursion operator. Following the proof of Proposition (4.4), we state

Proposition (4.7).

Proposition 4.7. If L* = —L then
Apvom = L*A, + R, (4.27)

where ord(R,,) < 2.ord(L) — 1. Also the corresponding recursion relation is
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L., =1IL2L, +[R. L] (4.28)

n+2m

Here note that R, = (L*.(Lw)_), [15].

Remark 4.8. Instead of (4.27), we can use
Apyom = LA L+ R, (4.29)

or

Apiom = Ay L* + R, (4.30)

where B, and R,, are differential operators and ord(P:n) = 0rd(R~n) < 2o0rd(L)—1.

Then the recursion relations become respectively

Li,,», = L.Ly, L + Ry, L], (4.31a)
Liy .y = Li, L + [Ry, L]. (4.31b)

Note that the recursion operators obtained by (4.28)), (4.31a) and (4.31b)) are all
coincide. We now generalize our scheme to the case, where the Lax operator
is a pseudo-differential operator. For the skew-symmetric case A, is defined
as either (4.27),(4.29) or (4.30). In the pseudo-differential case, they are not
equivalent. Let us consider L = M.D_ ! where M is a differential operator and
define L' = D,.L*.D;!.

Lemma 4.9. Let LT = €L, where e = £1. Then

R, = am_lDZ‘_l + ...+ ag, for e=1, (4.32)

where R, is defined by A,y = L.A, + R,, and

A~

Ry = o1 D™+ . +a_ D! for e=—1, (4.33)

where R, is defined by Ayyom = L.A,. L+ RAn.[M/
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Example 4.3. The KdV equation has, besides the standard Lax pair, the fol-

lowing Lax pair:

L= (D?+u).D;", A= (L%,. (4.34)
Here
L'=D,.L*D;* = D,.(-D, — D;*u).D;' = —L.
So € = —1 and according to the formula (4.33) we have

}én =a,D, + b, + angl.

Therefore the corresponding recursion relation is

Li,,, = L.Li,.L + [R,, L. (4.35)

Since in this case L;, = w;, D,' and Ly, ., = w,,,D,;", the equation (4.35)
becomes

ug, Dyt = L.(uy, D;Y).L + [a, Dy + by, + ¢, D, ', L] (4.36)

Comparing the coefficients of D, 7= —3,..,2 in the equation (4.36) we obtain

an = Dil(utn)7 bn = utn? Cn = _utn,z - UD:;l(utn)?

and

up,, = (D2 + 4du+ 2u, DY)y, .

That gives the recursion operator

R = D? + 4u + 2u, D, . (4.37)

Example 4.4. The DSIII (Drinfeld-Sokolov IIT) system introduced in [21],[22],
is given as

U = —Ugz + Ouu, + 6v,,
' ° . (4.38)

vy = 203, — 6uv,.
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The nonlocal Lax representation for this system is

L= (D>—2uD?—2D3u—2D,w—2wD,)D;",
s (4.39)
A= (LZ)-H
where w = v — ug,. Here
L* = D;YD3 —2uD3 — 2D3u — 2D, w — 2wD,),
L' = (D3 —2uD3? — 2D3u — 2D,w — 2wD,)D;' = L.
So € = 1 and according to the formula (4.32) we have
R, = a,D? +b,D?+ c,D, + d,,.
Therefore the corresponding recursion relation is
Ly,., = L.L,, + [R,, L]. (4.40)
Since in this case
Ly, = —4uy, D2 — sy, — 6y, Dy — 2050, D" — 4y, (4.41)

By equating the coefficients of the powers of DY i = —1,..7 in (4.40), we obtain

an = _Dszl(utn% bn = _4utn7
1
Cn = 5(6UD;1(Utn) — 1wy, , — 2D, (uwy,) — 2D, (uy,)),
1
dne = 5(6u21D;1(utn) + 10wy, — Suy, 4, + duy, , — 6vtn’x),

and

utn+4 _ R utn
Uty ya Ut,,

That gives the recursion operator of the DSIII system
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0 0
il : (4.42)
Ry R

where

Ry = D1 — 8uD? — 8ug, + 16v — 12u, D, + 16u? + (12uu, — 2us, + 120,) D' + 4u, D, 'u
RY = —10D? + 8u + 4u, D} *
R} = 12v9, + 100, D, + (4vs, — 12uv,) Dt + 4v, D u
R} = —4Dj + 16uD? + 8u, Dy + 16v + 4v, D"
(4.43)

4.2 Matrix algebra

In this section, we consider G as the matrix algebra. Let F', G € G be n xn
matrices. The bracket {, }¢ defined in (4.1)) corresponds to the usual commutator
if 7*’ is the matrix multiplication and x = % Let L be a matrix operator of the

form

L=D,—(—Xa—q), (4.44)

where A is the spectral parameter; ¢ is a G valued function of x, ¢t and a belong
to the Lie algebra G.

Proposition 4.10. Let L be a matriz operator of the form (4.44) then the cor-

responding recursion relation is

Lt - >\Ltn + [Rn, L], (445)

n+1

where R,, is a matriz operator and ord(R,) = ord(L).(see the paper [15] for the
proof)

Example 4.5. The nonlinear Schrodinger equation is equivalent to the system

1
Up = —FUgg + UV

_ 1 2
Uy = ivxm — v,

(4.46)
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has a Lax operator

L:Dx+<1 O>A+(O“>. (4.47)
0 —1 v 0

n bn .
Here the Lie algebra G is sl(2) and R, = < ¢ ), since

Substitution of the related terms in the recursion relation (4.45) enables us to

compare the coefficients of the powers of X, i = 0, 1. Hence we obtain

an = D7 (ug, v + vy, u),

_1 _ 1
bn = JUt,, Cn = _§Utna

and the recursion operator of the system (4.46)) is given by

uD;t — %Dm uD
R = (4.48)
—vD; 1w —vDu+ %Dx.

4.3 Polynomial algebra

In this Section, we consider G as the polynomial algebra. Let I, G € G be two
arbitrary differentiable functions of x and ¢. The bracket {, }¢ defined in (4.1)
1

corresponds to the Poisson bracket and k = 3

OF 9G  OF G

_ BN Yadell _ -
{FGlg ={F.Gl =0 <8p Ox Oz Op

In previous sections, we introduced a direct method to determine a recursion
operator of a system of evolution equations when its Lax representation is known.
We have considered the cases where the Lax operator is a differential operator or

it is a pseudo-differential operator. Such representations are called as standard
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Lax representations. On the other hand there are some systems of evolution
equations obtained by the nonstandard Lax representations. For this purpose in

this section we deal with the nonstandard Lax representations.

Definition 4.11. Let M be an n-dimensional manifold. Let U be a function space
on M. M is called a Poisson manifold if there exists a bracket {f,g} (called as
standard Poisson bracket) satisfying the following properties, for all ¢, € R and
fig,helU

1. Bi-linearity:
{cf+dg,h} = c{f,h} + g, b},
{ficg+chy =c{f g} + {f, h},

5. Skew-symmetry: {f,g} = —{9g, [},
wii. Jacobu identity:  {{f, g}, h} +{{h. f} 9} + {{g.h}, [} =0,
tv. Leibniz rule: {fg,h} = f{g,h} +{f, h}.g.

Here .7 denotes the ordinary multiplication of real valued functions. [18]

Define a modified Poisson bracket as

of dg O0f 0g

{f>g}k = Pk(a—pa—x - 8_1;8_]))’ (4-49)

where k is an integer and f, g, h € U [16]. For k = 0, we have the standard

Poisson bracket,

{f.9} = 019 919 (4.50)

Lemma 4.12. For any k in Z, (4.49) is a Poisson bracket.

Proof: We should check only the Jacobi-Identity. Other properties can be veri-
fied easily by the definition of the Poisson bracket. Let us show that

{f: 9w hhe+ {{h, fIrsgbe + {{9, P }e, f12 = 0. (4.51)
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Note that

{{/, 9}e: h}e = D{{F. 9}n b} = D" {p"{f. 9}, h}}.

Now by Leibnitz’ rule

{p"{f g}, h}y = P"{{f, g}, b} + 0" W} {F. 9} = {1, 93, B} + kD", 9} hoa

Then

{({f, g}, B} = 0 (" {f. g}, B3} = " {{f. g} h} + k™ ' { f, g} o

Therefore we have

{{f, 9}, B} + {{h, fYe, 9be + {{g hYe, f e = 0 [{{f. g} b} + {{h. £}, g} + {{g, 1}, f}]
+ kp%il[{fa gt-he +1{h, f}.g. + {9, h}.-fal.

Since

{{fv g}v h} + {{h> f}?g} + {{97 h}>f} =0,

and applying the Poisson brackets we have

Hence the formula (4.51) defines a Poisson bracket. O

Remark 4.13. Although the modified Poisson bracket is equal to the standard

Poisson bracket under pkdip = d%, where q 1s a new variable, we will use the

modified one.

For any integer k we can consider hierarchies of equations of hydrodynamic type,

defined in terms of the Lax function [16],

N-2

L=p""1+ Z p'Si(z,1). (4.53)

i=—1
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By the Lax equation [16]

oL n
ot {(L¥T)> k15 L, (4.54)

wheren = j+I(N—1)and j =1,2,..,(N—1), [ € N. So we have a hierarchy for
each k and j = 1,2,..., (N —1). Also we require n > —k + 1 so that (LN U)s ksl
is not zero. With the choice of Poisson brackets {, }x, we must take (L¥-1)s_p 4
part of the series expansion of L~ to get the consistent equation (4.54). Since
the Lax function a polynomial of order N — 1,
N-2
PN+ Z p'Si(w,t) =pN T+ Sy opN TP+ L+ S pt

i=—1

it can also be written in terms of the roots of the polynomial, uy,....uy as;

||
=N =
',:]2

— u;). (4.55)

4.3.1 Recursion operators

For each hierarchy of the equations (4.54)), depending on the pair (N, k), we can

find a recursion operator.

Lemma 4.14. For any n,
Ly, = LLy,__, +{Rn; L}, (4.56)

where function R, has a form

N-1

. dS_ OSn_
= P FA(S 1. Sy, ! N2
=0

Proof: Consider
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n

(Li’l)z—kﬂ = (LLﬁA)Z—kH-

Since
L' = (L7 )5 o + (L7 ).
Then
(L) = [LLTT s + LILVTY) ] i
So
(L™ s = LT s+ LEFT D ciin)onnn (o
(BT <t

n n__q n

(L(L™ T s gi1) o1 = LILT Y5 jpr — (LILT T ) s pi1)cip

Substituting

n _n__q

Ry = (LIL™T ) 1) gt — (LT ) s 1) e (4.59)

into (4.58) we obtain

Therefore

n

L, ={(L™7)sprr; L} = {LL¥T o1 + Ru; L (4.60)

- L{<L7_1_1)2—k+17 L}k + {Rna L}k = LLtnf(Nfl) + {an L}k
The equation (4.56)) is satisfied. Evaluating the powers of (L(Lﬁ_lk_k“)?_kﬂ
and (L(L¥T )5 _p41)<_gp1 We get that R, has form (4.57). O
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4.3.2 An integrable system

Multi-component hierarchy containing the shallow water wave equations corre-
sponds to the case k = 0. Let us give the first equation of the hierarchy and a

recursion operator for N = 2.

Proposition 4.15. In the case N = 2 we have the Laz function,
L=p+S+Pp (4.61)

and the Lax equation for n = 2

1S, = 58, + P,

: (4.62)
and the corresponding recursion operator
S+ S.D;t 2
R = * ) (4.63)
2P+ P,D;' S
Proof: Since k =0 and N = 2 the recursion relation is
L, = LLy, , +{R,, L}o, (4.64)

and R, is of the form R, = a, + b,p. Then by comparing the coefficients of the

powers of p' ,i = —2...,1 we obtain

a’n:_Dg?l(F)tn); bn:D;1<Stn)7

St \ [ SH+S.D;Y 2 S,
P,.) \2P+PD;' S B )

that gives the recursion operator R. O

and

These equations known as the shallow water wave equations or as the equations

of polytropic gas dynamics for v = 2.
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4.4 Moyal algebra

In this section, we consider G as the Moyal algebra recently introduced in [17].
Let I, G € G be two differentiable functions. The bracket {, }¢ defined in (4.1)
corresponds to the Moyal bracket if ™*’ is the Moyal product

{Fv G}g = {Fv G}m

where k is a real parameter.

Definition 4.16. Let G be the Moyal algebra and **’ be the Moyal product defined
for all A, B € G as follows

A(x,p) * B(z,p) = "0~ A(x p)B(Z, )| 3=z jmp; (4.65)
where Kk is the parameter of non-commutativity. [17]

Proposition 4.17. The Moyal product, for arbitrary integers m, n and f, h € G

satisfies the following properties:
i ptkp™ =t

i. f(p)*h(p) = f(p).h(p),

iii. px f(z) = f(x) *p — 26f,,

w. P f(z) = f(x) * p? — Ak fo % D+ 4K fre,

v. For all n,

where




CHAPTER 4. GEL’FAND-DIKII FORMALISM 69

Definition 4.18. For all A, B € G the Moyal bracket is defined to be

Proposition 4.19.
lir%{A, B}. ={A, B}. (4.67)

where {A, B} is the standard Poisson bracket.

Proof: Since

1
lim{A, B}, =lim —(Ax B — Bx A),

k—0 k—0 2K

we need

AxB=AB+ k(55 — 55 +

BxA=BA+r(38% —9824)

ox Op Op Oz 22 Op? p2 02 )
then
0A0OB 0AOB
lim{A,B}, = —— — —— = {A, B}. OJ
nli%{ . B} dx Op  Op Ox { !
We define Lax operator on the Moyal algebra as
Ly =p" +ui() «p" ' 4 o+ un (@) F i (z) % pt 4 (4.68)

Proposition 4.20. The Moyal-Lax representation is

oL,
Oty

e

={Ln,(L")sm}s, (4.69)

where k # an; k, a are integers and m = 0,1, 2...

Remark 4.21. Rational powers of the Lax operator L, can be found by Moyal
product

k 11 1
Ly =L xLix..xLj}, (4.70)
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where there are k such factors and n-th root can also be determined by equating

the Moyal product of n-th roots to the Lax operator itself.

Remark 4.22. If m =0, we denote

and the corresponding Lax representation is called the standard Moyal-Laz repre-

sentation.

Definition 4.23. The coefficient of the p~! term with respect to the Moyal product

1s called the residue.

Proposition 4.24. Let A, B € G be two arbitrary operators, the residue of the

Moyal bracket is a total derivative

Res{A, B}, = %C’. (4.71)

We can uniquely define

TrA = /dmRes(A), (4.72)

and by proposition (4.24) we consequently have the following proposition.

Proposition 4.25. Tr(L,,) is a conserved quantity.

Proof: If we take the trace of both sides of the Moyal-Lax representation in
(4.69), we have

i(Tan) = /OO dxRes{L,, <L£)>m}fi = /_OO dm(%C) =0.

dty, oo o

Hence Tr(L,) is a conserved quantity for all k. O

Proposition 4.26. Let C', D be two functions on the Moyal algebra. Then

Im(C % D)sp = (CD) s (4.73)

k—0
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Following the proof of the proposition(4.19) and proposition (4.26) we have the

following corollary.

Corollary 4.27. If we take the limit of the Moyal-Lax representation (4.69), we
have

dL,

= Lo (L7)2m), (4.74)

where the bracket on the right hand side is the standard Poisson bracket.

Example 4.6. KdV hierarchy: Let us consider the Lax operator

L =p*+u(z,t). (4.75)
If we consider L%, we have
(L2), = (L2 % L? « L?)., (4.76)
where
. 1,1 .
L> SPhGUrD T SR DT (4.77)
and
3 3
(L%)+ =p* + QUK P~ SRUs. (4.78)

Hence the Moyal-Lax representation

oL 3
o (L)) (4.79)
gives
9 3
Up = K Upgy + §uum (4.80)

which is the KdV equation.



Chapter 5

Conclusion

In this thesis, we have studied the zero curvature and the Gelf’and-Dikii for-
malisms to obtain integrable nonlinear partial differential equations. The zero
curvature formalism is a generalization of the AKNS scheme. We have covered
the AKNS scheme including the sine-Gordon equation, nonlinear Schrodinger and
KdV hierarchies where the potentials are independent of the spectral parameter.
To cover the cases where the potentials depend on the spectral parameter, we
have studied Ma-Zhou system and Tam-Zhang system. We have used matrix
representation of Lie algebras to determine integrable evolution equations via a

simple Lie algebra.

We have studied the Gelf’and-Dikii formalism which gives a construction of all
Lax pairs based on the calculation of fractional powers of the Lax operator. We
have introduced a bracket on an algebra satisfying skew-symmetry, associativity
and Leibniz rule due to a non-commutative, associative binary product. We have
covered pseudo-differential, matrix, polynomial and Moyal algebras. We showed
that the Gelf’and-Dikii formalism is more effective than the other methods to
obtain integrable nonlinear partial differential equations. If a nonlinear partial
differential equation is obtained through the Gelf’and-Dikii formalism, then it is

straightforward to obtain infinite number of symmetries and conserved quantities.

72
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