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ABSTRACT

MOVING OBJECT DETECTION, TRACKING AND
CLASSIFICATION FOR SMART VIDEO

SURVEILLANCE

Yiğithan Dedeoğlu

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. Uğur Güdükbay

August, 2004

Video surveillance has long been in use to monitor security sensitive areas such

as banks, department stores, highways, crowded public places and borders. The

advance in computing power, availability of large-capacity storage devices and

high speed network infrastructure paved the way for cheaper, multi sensor video

surveillance systems. Traditionally, the video outputs are processed online by

human operators and are usually saved to tapes for later use only after a forensic

event. The increase in the number of cameras in ordinary surveillance systems

overloaded both the human operators and the storage devices with high volumes

of data and made it infeasible to ensure proper monitoring of sensitive areas for

long times. In order to filter out redundant information generated by an array of

cameras, and increase the response time to forensic events, assisting the human

operators with identification of important events in video by the use of “smart”

video surveillance systems has become a critical requirement. The making of

video surveillance systems “smart” requires fast, reliable and robust algorithms

for moving object detection, classification, tracking and activity analysis.

In this thesis, a smart visual surveillance system with real-time moving ob-

ject detection, classification and tracking capabilities is presented. The system

operates on both color and gray scale video imagery from a stationary camera.

It can handle object detection in indoor and outdoor environments and under

changing illumination conditions. The classification algorithm makes use of the

shape of the detected objects and temporal tracking results to successfully cat-

egorize objects into pre-defined classes like human, human group and vehicle.

The system is also able to detect the natural phenomenon fire in various scenes

reliably. The proposed tracking algorithm successfully tracks video objects even

in full occlusion cases. In addition to these, some important needs of a robust
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smart video surveillance system such as removing shadows, detecting sudden il-

lumination changes and distinguishing left/removed objects are met.

Keywords: Video-Based Smart Surveillance, Moving Object Detection, Back-

ground Subtraction, Object Tracking, Silhouette-Based Object Classification,

Fire Detection.



ÖZET

AKILLI VİDEO GÖZETİMİ İÇİN HAREKETLİ NESNE
BULMA, TAKİP ETME VE SINIFLANDIRMA

Yiğithan Dedeoğlu

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Uğur Güdükbay

Ağustos, 2004

Video gözetimi hassas güvenlik gerektiren banka, alışveriş merkezi, otoyol gibi

kamuya açık kalabalık alanları izlemek için uzun süredir kullanılmaktadır. Bilgi

işlem gücündeki artış, yüksek kapasiteli kayıt cihazlarının üretilmesi ve hızlı ağ

altyapısı ucuz ve çok algılayıcılı sistemlerin üretilmesine ön ayak olmuştur. Elde

edilen video görüntüsü canlı olarak operatörlerce izlenir ve daha sonra adli bir

olayda kullanılmak üzere kaydedilir. Sıradan bir gözetim sisteminde bulunan

kamera sayısındaki teknolojinin gelişmesine bağlı artış, hem operatörleri hem

de kayıt cihazlarını aşırı hacimdeki bilgiye maruz bırakmış ve hasas güvenlik

bölgelerinin uzun süreli video ile gözetimini verimsiz kılmıştır. Bir dizi kamera

tarafından üretilen ve çoğunlukla gereksiz olan görüntü bilgisini elemek ve adli

olaylara müdahale zamanını kısaltmak için operatörlere videodaki önemli olayları

belirleyerek yardımcı olacak “akıllı” video gözetim sistemlerini geliştirmek kri-

tik bir ihtiyaç haline gelmiştir. Video gözetim sistemlerini “akıllı” hale getirmek

hızlı, güvenilir ve hatasız nesne bulma, sınıflandırma ve takip etme algoritmalarını

gerektirmektedir.

Bu tezde, nesne bulma, sınıflandırma ve takip etme yeteneklerine sahip

bir “akıllı” video gözetim sistemi sunulmuştur. Sistem sabit bir kameradan

elde edilen renkli ve renksiz görüntüler üzerinde çalışabilmektedir. İç ve

dış mekanlarda, değişen ışık koşulları altında çekilen video görüntülerinde yer

alan nesneler bulunabilmektedir. Nesne sınıflandırma algoritması bulunan nes-

neleri şekillerinden ve nesne takip etme algoritmasından yararlanarak önceden

tanımlanmış olan insan, insan grubu ve araç gibi sınıflara ayırabilmektedir.

Önerilen sistem bina ve açık alan güvenliğinde çok önem arzeden yangını da

güvenilir bir şekilde bulabilmektedir. Nesne takip algoritması başka nesneler

tarafından perdelenen nesneleri de takip edebilmektedir. Tüm bu özelliklere ek
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olarak video gözetim sistemlerinin önemli ihtiyacı olan gölge bölgelerinin silin-

mesi, ani ışık değişimlerinin algılanması ve bırakılan ya da alınan nesnelerinin

bulunması da gerçekleştirebilmektedir.

Anahtar sözcükler : Akıllı Video Gözetimi, Hareketli Nesne Bulma, Arka Plan

Kestirimi, Nesne Takip Etme, Siluete Dayalı Nesne Sınıflandırma, Ateş Bulma.
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and helpful comments.

I am also thankful to Dr. M. Bilgay Akhan (CEO, visiOprime, UK) for

supporting some parts of our research financially.

Without the support of my colleagues this research would not be that much

enjoyable for me. I am especially grateful to Behçet Uğur Töreyin for his
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Chapter 1

Introduction

Video surveillance systems have long been in use to monitor security sensitive

areas. The history of video surveillance consists of three generations of systems

which are called 1GSS, 2GSS and 3GSS [36].

The first generation surveillance systems (1GSS, 1960-1980) were based on

analog sub systems for image acquisition, transmission and processing. They ex-

tended human eye in spatial sense by transmitting the outputs of several cameras

monitoring a set of sites to the displays in a central control room. They had the

major drawbacks like requiring high bandwidth, difficult archiving and retrieval

of events due to large number of video tape requirements and difficult online event

detection which only depended on human operators with limited attention span.

The next generation surveillance systems (2GSS, 1980-2000) were hybrids in

the sense that they used both analog and digital sub systems to resolve some

drawbacks of its predecessors. They made use of the early advances in digital

video processing methods that provide assistance to the human operators by

filtering out spurious events. Most of the work during 2GSS is focused on real-

time event detection.

Third generation surveillance systems (3GSS, 2000- ) provide end-to-end digi-

tal systems. Image acquisition and processing at the sensor level, communication

1



CHAPTER 1. INTRODUCTION 2

through mobile and fixed heterogeneous broadband networks and image storage

at the central servers benefit from low cost digital infrastructure.

Unlike previous generations, in 3GSS some part of the image processing is

distributed towards the sensor level by the use of intelligent cameras that are

able to digitize and compress acquired analog image signals and perform image

analysis algorithms like motion and face detection with the help of their attached

digital computing components.

The ultimate goal of 3GSS is to allow video data to be used for online alarm

generation to assist human operators and for offline inspection effectively. In order

to achieve this goal, 3GSS will provide smart systems that are able to generate

real-time alarms defined on complex events and handle distributed storage and

content-based retrieval of video data.

The making of video surveillance systems “smart” requires fast, reliable and

robust algorithms for moving object detection, classification, tracking and activity

analysis. Starting from the 2GSS, a considerable amount of research has been

devoted for the development of these intelligent algorithms.

Moving object detection is the basic step for further analysis of video. It han-

dles segmentation of moving objects from stationary background objects. This

not only creates a focus of attention for higher level processing but also decreases

computation time considerably. Commonly used techniques for object detection

are background subtraction, statistical models, temporal differencing and optical

flow. Due to dynamic environmental conditions such as illumination changes,

shadows and waving tree branches in the wind object segmentation is a diffi-

cult and significant problem that needs to be handled well for a robust visual

surveillance system.

Object classification step categorizes detected objects into predefined classes

such as human, vehicle, animal, clutter, etc. It is necessary to distinguish objects

from each other in order to track and analyze their actions reliably. Currently,

there are two major approaches towards moving object classification, which are

shape-based and motion-based methods [49]. Shape-based methods make use of
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the objects’ 2D spatial information whereas motion-based methods use temporal

tracked features of objects for the classification solution. Detecting natural phe-

nomenon such as fire and smoke may be incorporated into object classification

components of the visual surveillance systems. Detecting fire and raising alarms

make the human operators take precautions in a shorter time which would save

properties, forests and animals from catastrophic consequences.

The next step in the video analysis is tracking, which can be simply defined as

the creation of temporal correspondence among detected objects from frame to

frame. This procedure provides temporal identification of the segmented regions

and generates cohesive information about the objects in the monitored area such

as trajectory, speed and direction. The output produced by tracking step is

generally used to support and enhance motion segmentation, object classification

and higher level activity analysis.

The final step of the smart video surveillance systems is to recognize the be-

haviors of objects and create high-level semantic descriptions of their actions. It

may simply be considered as a classification problem of the temporal activity sig-

nals of the objects according to pre-labeled reference signals representing typical

human actions [49].

The outputs of these algorithms can be used both for providing the human

operator with high level data to help him to make the decisions more accurately

and in a shorter time and for offline indexing and searching stored video data

effectively. The advances in the development of these algorithms would lead

to breakthroughs in applications that use visual surveillance. Below are some

scenarios that smart surveillance systems and algorithms might handle [10, 2, 16,

33, 15, 13, 45, 27, 41, 39, 49, 21]:

Public and commercial security:

• Monitoring of banks, department stores, airports, museums, stations, pri-

vate properties and parking lots for crime prevention and detection

• Patrolling of highways and railways for accident detection



CHAPTER 1. INTRODUCTION 4

• Surveillance of properties and forests for fire detection

• Observation of the activities of elderly and infirm people for early alarms

and measuring effectiveness of medical treatments

• Access control

Smart video data mining:

• Measuring traffic flow, pedestrian congestion and athletic performance

• Compiling consumer demographics in shopping centers and amusement

parks

• Extracting statistics from sport activities

• Counting endangered species

• Logging routine maintenance tasks at nuclear and industrial facilities

• Artistic performance evaluation and self learning

Law enforcement:

• Measuring speed of vehicles

• Detecting red light crossings and unnecessary lane occupation

Military security:

• Patrolling national borders

• Measuring flow of refugees

• Monitoring peace treaties

• Providing secure regions around bases
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• Assisting battlefield command and control

The use of smart object detection, tracking and classification algorithms are

not limited to video surveillance only. Other application domains also benefit

from the advances in the research on these algorithms. Some examples are virtual

reality, video compression, human machine interface, augmented reality, video

editing and multimedia databases.

1.1 Overview

In this thesis, we present a smart visual surveillance system with real-time moving

object detection, classification and tracking capabilities. The system operates on

both color and gray scale video imagery from a stationary camera.

In the proposed system moving object detection is handled by the use of

an adaptive background subtraction scheme [10] which reliably works in indoor

and outdoor environments. We also present two other object detection schemes,

temporal differencing [10] and adaptive background mixture models [44], for per-

formance and detection quality comparison.

In adaptive background subtraction method, a reference background is ini-

tialized at the start of the system with the first few frames of video and updated

to adapt to short and long term dynamic scene changes during the operational

period. At each new frame, foreground pixels are detected by subtracting the

intensity values from the background and filtering the absolute value of the dif-

ferences with a dynamic threshold per pixel. The reference background and the

threshold values are updated by using the foreground pixel information. The

detected foreground pixels usually contain noise due to image acquisition errors,

small movements like tree leaves, reflections and foreground objects with textures

colored similar to the background. These isolated pixels are filtered by the use

of a sequence of morphological operations dilation and erosion. After this step,

the individual pixels are grouped and labeled by using a two pass component

labeling algorithm to create connected moving regions. These regions are further
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processed to group disconnected blobs and to eliminate relatively small sized re-

gions. After grouping, each detected foreground object is represented with its

bounding box, area, center of mass and color histogram which will be used in

later steps.

After segmenting moving pixels from the static background of the scene, con-

nected regions are classified into predetermined object categories human, human

group and vehicle. The classification algorithm depends on the comparison of

the silhouettes of the detected objects with pre-labeled (classified) templates in

an object silhouette database. The template database is created by collecting

sample object silhouettes from sample videos and labeling them manually with

appropriate categories. The silhouettes of the objects are extracted from the con-

nected foreground regions by using a contour tracing algorithm [19]. Next, the

distance between each boundary pixel and the center of mass point is calculated

to create a distance signal starting from the top pixel and continuing clock-wise

until reaching the same pixel. The distance signals are first normalized to be of

the same length, then smoothed and finally normalized again to cover the same

area. The comparison metric used in matching the templates with the detected

objects are the L1 distance [42] of normalized silhouette distance signals. The

class of the template silhouette with minimum distance from the detected object’s

silhouette is assigned to the object’s class. Temporal tracking information is used

to support classification decision.

Detecting the natural phenomenon fire besides normal object motion would be

an advantage of a visual surveillance system, thus, the presented system is able

to detect fire in indoor and outdoor environments. Conventional point smoke

and fire detectors typically detect the presence of certain particles generated by

smoke and fire by ionization or photometry. An important weakness of point

detectors is that they are distance limited and fail in open or large spaces. The

strength of using video in fire detection is the ability to serve large and open

spaces. Current fire and flame detection algorithms are based on the use of color

and simple motion information in video [27]. In addition to detecting fire and

flame colored moving regions, the method presented in this thesis analyzes the

motion patterns, the temporal periodicity and spatial variance of high-frequency
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behavior extensively.

As the final step in the presented system, the tracking algorithm tracks the

detected objects in successive frames by using a correspondence-based match-

ing scheme. It also handles multi-occlusion cases where some objects might be

fully occluded by others. It uses 2D object features such as position and size

to match corresponding objects from frame to frame. It keeps color histograms

of detected objects in order resolve object identities after a split of an occlusion

group. The output of the tracking step supports both motion segmentation and

object classification steps.

1.2 Motivation

Understanding activities of objects moving in a scene by the use of video is both

a challenging scientific problem and a very fertile domain with many promising

applications. Thus, it draws attentions of several researchers, institutions and

commercial companies [49]. Our motivation in studying this problem is to create

a visual surveillance system with real-time moving object detection, classification,

tracking and activity analysis capabilities. The presented system handles all of

the above methods except activity recognition which will likely be the future step

of our research.

1.3 Organization of the Thesis

The remaining part of this thesis is organized as follows. Chapter 2 presents

a brief survey in moving object detection, tracking and classification for video

surveillance applications. Our methods for moving object detection and tracking

are explained in Chapter 3. Our novel object classification method is presented

in Chapter 4. In the next chapter we explain the fire detection approach. Ex-

perimental results of the proposed system are presented in Chapter 6. Finally,

Chapter 7 concludes the thesis with the suggestions for future research.



Chapter 2

A Survey in Smart Video

Surveillance

There have been a number of surveys about object detection, classification, track-

ing and activity analysis in the literature [13, 1, 49]. The survey we present here

covers only those work that are in the same context as our study. However, for

comprehensive completeness, we also give brief information on some techniques

which are used for similar tasks that are not covered in our study.

A generic video processing framework for smart algorithms is shown in Fig-

ure 2.1. Although, some steps require interchange of information with other

levels, this framework provides a good structure for the discussion throughout

this survey.

2.1 Moving Object Detection

Each application that benefit from smart video processing has different needs,

thus requires different treatment. However, they have something in common:

moving objects. Thus, detecting regions that correspond to moving objects such

as people and vehicles in video is the first basic step of almost every vision system

8
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Figure 2.1: A generic framework for smart video processing algorithms.

since it provides a focus of attention and simplifies the processing on subsequent

analysis steps. Due to dynamic changes in natural scenes such as sudden illu-

mination and weather changes, repetitive motions that cause clutter (tree leaves

moving in blowing wind), motion detection is a difficult problem to process re-

liably. Frequently used techniques for moving object detection are background

subtraction, statistical methods, temporal differencing and optical flow whose

descriptions are given below.

2.1.1 Background Subtraction

Background subtraction is particularly a commonly used technique for motion

segmentation in static scenes [34]. It attempts to detect moving regions by

subtracting the current image pixel-by-pixel from a reference background image

that is created by averaging images over time in an initialization period. The

pixels where the difference is above a threshold are classified as foreground. After

creating a foreground pixel map, some morphological post processing operations

such as erosion, dilation and closing are performed to reduce the effects of noise

and enhance the detected regions. The reference background is updated with new

images over time to adapt to dynamic scene changes.
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There are different approaches to this basic scheme of background subtrac-

tion in terms of foreground region detection, background maintenance and post

processing.

In [20] Heikkila and Silven uses the simple version of this scheme where a pixel

at location (x, y) in the current image It is marked as foreground if

|It(x, y)−Bt(x, y)| > τ (2.1)

is satisfied where τ is a predefined threshold. The background image BT is up-

dated by the use of an Infinite Impulse Response (IIR) filter as follows:

Bt+1 = αIt + (1− α)Bt (2.2)

The foreground pixel map creation is followed by morphological closing and the

elimination of small-sized regions.

Although background subtraction techniques perform well at extracting most

of the relevant pixels of moving regions even they stop, they are usually sensitive

to dynamic changes when, for instance, stationary objects uncover the back-

ground (e.g. a parked car moves out of the parking lot) or sudden illumination

changes occur.

2.1.2 Statistical Methods

More advanced methods that make use of the statistical characteristics of individ-

ual pixels have been developed to overcome the shortcomings of basic background

subtraction methods. These statistical methods are mainly inspired by the back-

ground subtraction methods in terms of keeping and dynamically updating statis-

tics of the pixels that belong to the background image process. Foreground pixels

are identified by comparing each pixel’s statistics with that of the background

model. This approach is becoming more popular due to its reliability in scenes

that contain noise, illumination changes and shadow [49].

The W4 [17] system uses a statistical background model where each pixel is
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represented with its minimum (M) and maximum (N) intensity values and max-

imum intensity difference (D) between any consecutive frames observed during

initial training period where the scene contains no moving objects. A pixel in the

current image It is classified as foreground if it satisfies:

|M(x, y)− It(x, y)| > D(x, y) or |N(x, y)− It(x, y)| > D(x, y) (2.3)

After thresholding, a single iteration of morphological erosion is applied to the

detected foreground pixels to remove one-pixel thick noise. In order to grow

the eroded regions to their original sizes, a sequence of erosion and dilation is

performed on the foreground pixel map. Also, small-sized regions are eliminated

after applying connected component labeling to find the regions. The statistics

of the background pixels that belong to the non-moving regions of current image

are updated with new image data.

As another example of statistical methods, Stauffer and Grimson [44] de-

scribed an adaptive background mixture model for real-time tracking. In their

work, every pixel is separately modeled by a mixture of Gaussians which are up-

dated online by incoming image data. In order to detect whether a pixel belongs

to a foreground or background process, the Gaussian distributions of the mixture

model for that pixel are evaluated. An implementation of this model is used in

our system and its details are explained in Section 3.1.1.2.

2.1.3 Temporal Differencing

Temporal differencing attempts to detect moving regions by making use of the

pixel-by-pixel difference of consecutive frames (two or three) in a video sequence.

This method is highly adaptive to dynamic scene changes, however, it generally

fails in detecting whole relevant pixels of some types of moving objects. A sample

object for inaccurate motion detection is shown in Figure 2.2. The mono colored

region of the human on the left hand side makes the temporal differencing al-

gorithm to fail in extracting all pixels of the human’s moving region. Also, this

method fails to detect stopped objects in the scene. Additional methods need

to be adopted in order to detect stopped objects for the success of higher level
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(a) (b)

Figure 2.2: Temporal differencing sample. (a) A sample scene with two moving
objects. (b) Temporal differencing fails to detect all moving pixels of the object
on the left hand side since it is uniform colored. The detected moving regions are
marked with red pixels.

processing.

Lipton et al. presented a two-frame differencing scheme where the pixels that

satisfy the following equation are marked as foreground [29].

|It(x, y)− It−1(x, y)| > τ (2.4)

In order to overcome shortcomings of two frame differencing in some cases, three

frame differencing can be used [49]. For instance, Collins et al. developed a

hybrid method that combines three-frame differencing with an adaptive back-

ground subtraction model for their VSAM project [10]. The hybrid algorithm

successfully segments moving regions in video without the defects of temporal

differencing and background subtraction.

2.1.4 Optical Flow

Optical flow methods make use of the flow vectors of moving objects over time

to detect moving regions in an image. They can detect motion in video se-

quences even from a moving camera, however, most of the optical flow methods
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are computationally complex and cannot be used real-time without specialized

hardware [49].

2.1.5 Shadow and Light Change Detection

The algorithms described above for motion detection perform well on indoor and

outdoor environments and have been used for real-time surveillance for years.

However, without special care, most of these algorithms are susceptible to both

local (e.g. shadows and highlights) and global illumination changes (e.g. sun be-

ing covered/uncovered by clouds). Shadows cause the motion detection methods

fail in segmenting only the moving objects and make the upper levels such as

object classification to perform inaccurate. The proposed methods in the litera-

ture mostly use either chromaticity [21, 35, 6, 53, 26] or stereo [15] information

to cope with shadows and sudden light changes.

Horprasert et al. present a novel background subtraction and shadow detec-

tion method [21]. In their method, each pixel is represented by a color model that

separates brightness from the chromaticity component. A given pixel is classified

into four different categories (background, shaded background or shadow, high-

lighted background and moving foreground object) by calculating the distortion

of brightness and chromaticity between the background and the current image

pixels. Like [21], the approach described by McKenna et al. in [35] uses chro-

maticity and gradient information to cope with shadows. They make use of the

observation that an area cast into shadow results in significant change in intensity

without much change in chromaticity. They also use the gradient information in

moving regions to ensure reliability of their method in ambiguous cases.

The method presented in [6] adopts a shadow detection scheme which depends

on two heuristics: a) pixel intensity values within shadow regions tend to decrease

in most cases when compared to the background image, b) the intensity reduction

rate changes smoothly between neighboring pixels and most shadow edges do not

have strong edges.
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An efficient method to deal with shadows is using stereo as presented in

W4S [15] system. In W4S, stereo image is generated by an inexpensive real-time

device called SVM which uses two or more images to calculate a range image by

using simple stereo image geometry. With the help of the range information pro-

vided by SVM, W4S is able to cope with shadows, sudden illumination changes

and complex occlusion cases.

In some systems, a global light change is detected by counting the number

of foreground pixels and if the total number exceeds some threshold (e.g. 50%

of the total image size), the system is reset to adapt to the sudden illumination

change [37, 55].

2.2 Object Classification

Moving regions detected in video may correspond to different objects in real-world

such as pedestrians, vehicles, clutter, etc. It is very important to recognize the

type of a detected object in order to track it reliably and analyze its activities

correctly. Currently, there are two major approaches towards moving object

classification which are shape-based and motion-based methods [49]. Shape-based

methods make use of the objects’ 2D spatial information whereas motion-based

methods use temporally tracked features of objects for the classification solution.

2.2.1 Shape-based Classification

Common features used in shape-based classification schemes are the bounding

rectangle, area, silhouette and gradient of detected object regions.

The approach presented in [29] makes use of the objects’ silhouette contour

length and area information to classify detected objects into three groups: human,

vehicle and other. The method depends on the assumption that humans are, in

general, smaller than vehicles and have complex shapes. Dispersedness is used

as the classification metric and it is defined in terms of object’s area and contour
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length (perimeter) as follows:

Dispersedness =
Perimeter2

Area
(2.5)

Classification is performed at each frame and tracking results are used to improve

temporal classification consistency.

The classification method developed by Collins et al. [10] uses view dependent

visual features of detected objects to train a neural network classifier to recognize

four classes: human, human group, vehicle and clutter. The inputs to the neural

network are the dispersedness, area and aspect ratio of the object region and the

camera zoom magnification. Like the previous method, classification is performed

at each frame and results are kept in a histogram to improve temporal consistency

of classification.

Saptharishi et al. propose a classification scheme which uses a logistic linear

neural network trained with Differential Learning to recognize two classes: vehi-

cle and people [41]. Papageorgiou et al. presents a method that makes use of

the Support Vector Machine classification trained by wavelet transformed object

features (edges) in video images from a sample pedestrian database [38]. This

method is used to recognize moving regions that correspond to humans.

Another classification method proposed by Brodsky et al. [11] uses a Radial

Basis Function (RBF) classifier which has a similar architecture like a three-layer

back-propagation network. The input to the classifier is the normalized gradient

image of the detected object regions.

2.2.2 Motion-based Classification

Some of the methods in the literature use only temporal motion features of ob-

jects in order to recognize their classes [8, 51, 28]. In general, they are used

to distinguish non-rigid objects (e.g. human) from rigid objects (e.g. vehicles).

The method proposed in [8] is based on the temporal self-similarity of a moving

object. As an object that exhibits periodic motion evolves, its self-similarity mea-

sure also shows a periodic motion. The method exploits this clue to categorize
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moving objects using periodicity.

Optical flow analysis is also useful to distinguish rigid and non-rigid objects.

A. J. Lipton proposed a method that makes use of the local optical flow analysis

of the detected object regions [28]. It is expected that non-rigid objects such

as humans will present high average residual flow whereas rigid objects such as

vehicles will present little residual flow. Also, the residual flow generated by

human motion will have a periodicity. By using this cue, human motion, thus

humans, can be distinguished from other objects such as vehicles.

2.3 Fire Detection

The number of papers that discuss fire detection using video is very few in com-

puter vision literature. Most of the proposed methods exploit the color and

motion features of fire.

Healey et al. [18] use a model which is based only on color characteristics of

fire. Obviously this method generates false alarms due to fire colored regions. An

improved approach which makes use of motion information as well as the color

property is presented by Philips et al. [23].

Recently, Liu and Ahuja [30] presented a method that defines spectral, spatial

and temporal models of fire to detect its presence in video. The spectral model

is represented in terms of fire pixel color probability density. The spatial model

describes the spatial structure of a fire region and the temporal model captures

the changes in the spatial structure over time.

2.4 Object Tracking

Tracking is a significant and difficult problem that arouses interest among com-

puter vision researchers. The objective of tracking is to establish correspondence

of objects and object parts between consecutive frames of video. It is a significant
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task in most of the surveillance applications since it provides cohesive temporal

data about moving objects which are used both to enhance lower level processing

such as motion segmentation and to enable higher level data extraction such as

activity analysis and behavior recognition. Tracking has been a difficult task to

apply in congested situations due to inaccurate segmentation of objects. Common

problems of erroneous segmentation are long shadows, partial and full occlusion

of objects with each other and with stationary items in the scene. Thus, deal-

ing with shadows at motion detection level and coping with occlusions both at

segmentation level and at tracking level is important for robust tracking.

Tracking in video can be categorized according to the needs of the applications

it is used in or according to the methods used for its solution. Whole body

tracking is generally adequate for outdoor video surveillance whereas objects’

part tracking is necessary for some indoor surveillance and higher level behavior

understanding applications.

There are two common approaches in tracking objects as a whole [2]: one

is based on correspondence matching and other one carries out explicit tracking

by making use of position prediction or motion estimation. On the other hand,

the methods that track parts of objects (generally humans) employ model-based

schemes to locate and track body parts. Some example models are stick figure,

Cardboard Model [25], 2D contour and 3D volumetric models.

W4 [17] combines motion estimation methods with correspondence matching

to track objects. It is also able to track parts of people such as heads, hands, torso

and feet by using the Cardboard Model [25] which represents relative positions

and sizes of body parts. It keeps appearance templates of individual objects to

handle matching even in merge and split cases.

Amer [2] presents a non-linear voting based scheme for tracking objects as a

whole. It integrates object features like size, shape, center of mass and motion

by voting and decides final matching with object correspondence. This method

can also detect object split and fusion and handle occlusions.

Stauffer et al. [45] employs a linearly predictive multiple hypotheses tracking
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algorithm. The algorithm incorporates size and positions of objects for seeding

and maintaining a set of Kalman filters for motion estimation. Also, Extended

Kalman filters are used for trajectory prediction and occlusion handling in the

work of Rosales and Sclaroff [40].

As an example of model based body part tracking system, Pfinder [52] makes

use of a multi-class statistical model of color and shape to track head and hands

of people in real-time.



Chapter 3

Object Detection and Tracking

The overview of our real time video object detection, classification and tracking

system is shown in Figure 3.1. The proposed system is able to distinguish transi-

tory and stopped foreground objects from static background objects in dynamic

scenes; detect and distinguish left and removed objects; classify detected objects

into different groups such as human, human group and vehicle; track objects

and generate trajectory information even in multi-occlusion cases and detect fire

in video imagery. In this and following chapters we describe the computational

models employed in our approach to reach the goals specified above.

Our system is assumed to work real time as a part of a video-based surveillance

system. The computational complexity and even the constant factors of the

algorithms we use are important for real time performance. Hence, our decisions

on selecting the computer vision algorithms for various problems are affected

by their computational run time performance as well as quality. Furthermore,

our system’s use is limited only to stationary cameras and video inputs from

Pan/Tilt/Zoom cameras where the view frustum may change arbitrarily are not

supported.

The system is initialized by feeding video imagery from a static camera moni-

toring a site. Most of the methods are able to work on both color and monochrome

video imagery. The first step of our approach is distinguishing foreground objects

19
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Figure 3.1: The system block diagram.



CHAPTER 3. OBJECT DETECTION AND TRACKING 21

from stationary background. To achieve this, we use a combination of adaptive

background subtraction and low-level image post-processing methods to create a

foreground pixel map at every frame. We then group the connected regions in

the foreground map to extract individual object features such as bounding box,

area, center of mass and color histogram.

Our novel object classification algorithm makes use of the foreground pixel

map belonging to each individual connected region to create a silhouette for the

object. The silhouette and center of mass of an object are used to generate a

distance signal. This signal is scaled, normalized and compared with pre-labeled

signals in a template database to decide on the type of the object. The output of

the tracking step is used to attain temporal consistency in the classification step.

The object tracking algorithm utilizes extracted object features together with

a correspondence matching scheme to track objects from frame to frame. The

color histogram of an object produced in previous step is used to match the

correspondences of objects after an occlusion event. The output of the tracking

step is object trajectory information which is used to calculate direction and

speed of the objects in the scene.

After gathering information on objects’ features such as type, trajectory, size

and speed various high level processing can be applied on these data. A possible

use is real-time alarm generation by pre-defining event predicates such as “A

human moving in direction d at speed more than s causes alarm a1.” or “A

vehicle staying at location l more than t seconds causes alarm a2.”. Another

opportunity we may make use of the produced video object data is to create an

index on stored video data for offline smart search. Both alarm generation and

video indexing are critical requirements of a visual surveillance system to increase

response time to forensic events.

The remainder of this chapter presents the computational models and methods

we adopted for object detection and tracking. Our object classification approach

is explained in the next chapter.
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3.1 Object Detection

Distinguishing foreground objects from the stationary background is both a signif-

icant and difficult research problem. Almost all of the visual surveillance systems’

first step is detecting foreground objects. This both creates a focus of attention

for higher processing levels such as tracking, classification and behavior under-

standing and reduces computation time considerably since only pixels belonging

to foreground objects need to be dealt with. Short and long term dynamic scene

changes such as repetitive motions (e. g. waiving tree leaves), light reflectance,

shadows, camera noise and sudden illumination variations make reliable and fast

object detection difficult. Hence, it is important to pay necessary attention to

object detection step to have reliable, robust and fast visual surveillance system.

The system diagram of our object detection method is shown in Figure 3.2.

Our method depends on a six stage process to extract objects with their features

in video imagery. The first step is the background scene initialization. There

are various techniques used to model the background scene in the literature (see

Section 2.1). In order to evaluate the quality of different background scene mod-

els for object detection and to compare run-time performance, we implemented

three of these models which are adaptive background subtraction, temporal frame

differencing and adaptive online Gaussian mixture model. The background scene

related parts of the system is isolated and its coupling with other modules is kept

minimum to let the whole detection system to work flexibly with any one of the

background models.

Next step in the detection method is detecting the foreground pixels by us-

ing the background model and the current image from video. This pixel-level

detection process is dependent on the background model in use and it is used to

update the background model to adapt to dynamic scene changes. Also, due to

camera noise or environmental effects the detected foreground pixel map contains

noise. Pixel-level post-processing operations are performed to remove noise in the

foreground pixels.



CHAPTER 3. OBJECT DETECTION AND TRACKING 23

Figure 3.2: The object detection system diagram.
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Once we get the filtered foreground pixels, in the next step, connected re-

gions are found by using a connected component labeling algorithm and objects’

bounding rectangles are calculated. The labeled regions may contain near but

disjoint regions due to defects in foreground segmentation process. Hence, it is

experimentally found to be effective to merge those overlapping isolated regions.

Also, some relatively small regions caused by environmental noise are eliminated

in the region-level post-processing step.

In the final step of the detection process, a number of object features are

extracted from current image by using the foreground pixel map. These features

are the area, center of mass and color histogram of the regions corresponding to

objects.

3.1.1 Foreground Detection

We use a combination of a background model and low-level image post-processing

methods to create a foreground pixel map and extract object features at every

video frame. Background models generally have two distinct stages in their pro-

cess: initialization and update. Following sections describe the initialization and

update mechanisms together with foreground region detection methods used in

the three background models we tested in our system. The experimental com-

parison of the computational run-time and detection qualities of these models are

given in Section 6.2.

3.1.1.1 Adaptive Background Subtraction Model

Our implementation of background subtraction algorithm is partially inspired by

the study presented in [10] and works on grayscale video imagery from a static

camera. Our background subtraction method initializes a reference background

with the first few frames of video input. Then it subtracts the intensity value

of each pixel in the current image from the corresponding value in the reference

background image. The difference is filtered with an adaptive threshold per pixel
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to account for frequently changing noisy pixels. The reference background image

and the threshold values are updated with an IIR filter to adapt to dynamic scene

changes.

Let In(x) represent the gray-level intensity value at pixel position (x) and at

time instance n of video image sequence I which is in the range [0, 255]. Let

Bn(x) be the corresponding background intensity value for pixel position (x) es-

timated over time from video images I0 through In−1. As the generic background

subtraction scheme suggests, a pixel at position (x) in the current video image

belongs to foreground if it satisfies:

|In(x)−Bn(x)| > Tn(x) (3.1)

where Tn(x) is an adaptive threshold value estimated using the image sequence

I0 through In−1. The Equation 3.1 is used to generate the foreground pixel map

which represents the foreground regions as a binary array where a 1 corresponds

to a foreground pixel and a 0 stands for a background pixel.

The reference background Bn(x) is initialized with the first video image I0,

B0 = I0, and the threshold image is initialized with some pre-determined value

(e.g. 15).

Since our system will be used in outdoor environments as well as indoor en-

vironments, the background model needs to adapt itself to the dynamic changes

such as global illumination change (day night transition) and long term back-

ground update (parking a car in front of a building). Therefore the reference

background and threshold images are dynamically updated with incoming im-

ages. The update scheme is different for pixel positions which are detected as

belonging to foreground (x ∈ FG) and which are detected as part of the back-

ground (x ∈ BG):

Bn+1(x) =

 αBn(x) + (1− α)In(x), x ∈ BG

βBn(x) + (1− β)In(x), x ∈ FG
(3.2)

Tn+1(x) =

 αTn(x) + (1− α)(γ × |In(x)−Bn(x)|), x ∈ BG

Tn(x), x ∈ FG
(3.3)
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where α, β (∈ [0.0, 1.0]) are learning constants which specify how much infor-

mation from the incoming image is put to the background and threshold images.

In other words, if each background pixel is considered as a time series, the back-

ground image is a weighted local temporal average of the incoming image sequence

and the threshold image is a weighted local temporal average of γ times the dif-

ference of incoming images and the background. The values for α, β and γ are

experimentally determined by examining several indoor and outdoor video clips.

Our update mechanism for background is different than traditional back-

ground update and the one presented in [10] since we update the background

for all types of pixels (x ∈ FG or x ∈ BG). In typical background subtraction

methods the reference background image is updated only for pixels belonging to

background (x ∈ BG). This would allow them to adapt to repetitive noise and

avoid merging moving objects into the scene to the background. However, in

order to diffuse long term scene changes to the background, the regions in the

background corresponding to the foreground object regions need also be updated.

The subtle point in this update is choosing the correct value for β. If it is too

small, foreground objects will be merged to the reference background soon and

it will lead to inaccurate segmentation in later frames. Also, detecting stopped

objects will not be possible. If it is too big, objects may never be diffused into the

background image, thus background model would not adapt to long-term scene

changes. In the extreme case where β = 1.0, the Equation 3.2 is equivalent to

the background update scheme presented in [10].

A sample foreground region detection is shown in Figure 3.3. The first image

is the estimated reference background of the monitored site. The second image is

captured at a later step and contains two foreground objects (two people). The

third image shows the detected foreground pixel map using background subtrac-

tion.
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(a) (b) (c)

Figure 3.3: Adaptive Background Subtraction sample. (a) Estimated background
(b) Current image (c) Detected region

3.1.1.2 Adaptive Gaussian Mixture Model

Stauffer and Grimson [44] presented a novel adaptive online background mixture

model that can robustly deal with lighting changes, repetitive motions, clutter,

introducing or removing objects from the scene and slowly moving objects. Their

motivation was that a unimodal background model could not handle image ac-

quisition noise, light change and multiple surfaces for a particular pixel at the

same time. Thus, they used a mixture of Gaussian distributions to represent each

pixel in the model. Due to its promising features, we implemented and integrated

this model in our visual surveillance system.

In this model, the values of an individual pixel (e. g. scalars for gray values

or vectors for color images) over time is considered as a “pixel process” and the

recent history of each pixel, {X1, . . . , Xt}, is modeled by a mixture of K Gaussian

distributions. The probability of observing current pixel value then becomes:

P (Xt) =
K∑

i=1

wi,t ∗ η(Xt, µi,t, Σi,t) (3.4)

where wi,t is an estimate of the weight (what portion of the data is accounted

for this Gaussian) of the ith Gaussian (Gi,t) in the mixture at time t, µi,t is the

mean value of Gi,t and Σi,t is the covariance matrix of Gi,t and η is a Gaussian

probability density function:

η(Xt, µ, Σ) =
1

(2π)
n
2 |Σ|

1
2

e−
1
2
(Xt−µt)T Σ−1(Xt−µt) (3.5)
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Decision on K depends on the available memory and computational power.

Also, the covariance matrix is assumed to be of the following form for computa-

tional efficiency:

Σk,t = α2
kI (3.6)

which assumes that red, green, blue color components are independent and have

the same variance.

The procedure for detecting foreground pixels is as follows. At the beginning

of the system, the K Gaussian distributions for a pixel are initialized with pre-

defined mean, high variance and low prior weight. When a new pixel is observed

in the image sequence, to determine its type, its RGB vector is checked against

the K Gaussians, until a match is found. A match is defined as a pixel value

within γ (=2.5) standard deviation of a distribution. Next, the prior weights of

the K distributions at time t, wk,t, are updated as follows:

wk,t = (1− α)wk,t−1 + α(Mk,t) (3.7)

where α is the learning rate and Mk,t is 1 for the matching Gaussian distribution

and 0 for the remaining distributions. After this step the prior weights of the

distributions are normalized and the parameters of the matching Gaussian are

updated with the new observation as follows:

µt = (1− ρ)µt−1 + ρ(Xt) (3.8)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt)
T (Xt − µt) (3.9)

where

ρ = αη(Xt|µk, σk) (3.10)

If no match is found for the new observed pixel, the Gaussian distribution with

the least probability is replace with a new distribution with the current pixel

value as its mean value, an initially high variance and low prior weight.

In order to detect the type (foreground or background) of the new pixel, the

K Gaussian distributions are sorted by the value of w/σ. This ordered list of

distributions reflect the most probable backgrounds from top to bottom since by
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(a) (b)

Figure 3.4: Two different views of a sample pixel processes (in blue) and corre-
sponding Gaussian Distributions shown as alpha blended red spheres.

Equation 3.7 background pixel processes make the corresponding Gaussian distri-

bution have larger prior weight and less variance. Then the first B distributions

are chosen as the background model, where

B = argminb

(
b∑

k=1

wk > T

)
(3.11)

and T is the minimum portion of the pixel data that should be accounted for by

the background. If a small value is chosen for T , the background is generally uni-

modal. Figure 3.4 shows sample pixel processes and the Gaussian distributions as

spheres covering these processes. The accumulated pixels define the background

Gaussian distribution whereas scattered pixels are classified as foreground.

3.1.1.3 Temporal Differencing

Temporal differencing makes use of the pixel-wise difference between two or three

consecutive frames in video imagery to extract moving regions. It is a highly

adaptive approach to dynamic scene changes; however, it fails in extracting all

relevant pixels of a foreground object especially when the object has uniform

texture or moves slowly. When a foreground object stops moving, temporal dif-

ferencing method fails in detecting a change between consecutive frames and loses
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the object. Special supportive algorithms are required to detect stopped objects.

We implemented a two-frame temporal differencing method in our system.

Let In(x) represent the gray-level intensity value at pixel position (x) and at time

instance n of video image sequence I which is in the range [0, 255]. The two-

frame temporal differencing scheme suggests that a pixel is moving if it satisfies

the following:

|In(x)− In−1(x)| > Tn(x) (3.12)

Hence, if an object has uniform colored regions, the Equation 3.12 fails to detect

some of the pixels inside these regions even if the object moves. The per-pixel

threshold, T , is initially set to a pre-determined value and later updated as follows:

Tn+1(x) =

 αTn(x) + (1− α)(γ × |In(x)− In−1(x)|), x ∈ BG

Tn(x), x ∈ FG
(3.13)

The implementation of two-frame differencing can be accomplished by ex-

ploiting the background subtraction method’s model update parameters shown

in Equation 3.2. If α and β are set to zero, the background holds the image In−1

and background subtraction scheme becomes identical to two-frame differencing.

3.1.2 Pixel Level Post-Processing

The outputs of foreground region detection algorithms we explained in previous

three sections generally contain noise and therefore are not appropriate for further

processing without special post-processing. There are various factors that cause

the noise in foreground detection such as:

• Camera noise: This is the noise caused by the camera’s image acquisition

components. The intensity of a pixel that corresponds to an edge between

two different colored objects in the scene may be set to one of the object’s

color in one frame and to the other’s color in the next frame.

• Reflectance noise: When a source of light, for instance sun, moves it

makes some parts in the background scene to reflect light. This phenomenon
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makes the foreground detection algorithms fail and detect reflectance as

foreground regions.

• Background colored object noise: Some parts of the objects may have

the same color as the reference background behind them. This resemblance

causes some of the algorithms to detect the corresponding pixels as non-

foreground and objects to be segmented inaccurately.

• Shadows and sudden illumination change: Shadows cast on objects

are detected as foreground by most of the detection algorithms. Also, sud-

den illumination changes (e.g. turning on lights in a monitored room) makes

the algorithms fail to detect actual foreground objects accurately.

Morphological operations, erosion and dilation[19], are applied to the fore-

ground pixel map in order to remove noise that is caused by the first three of the

items listed above. Our aim in applying these operations is removing noisy fore-

ground pixels that do not correspond to actual foreground regions (let us name

them non-foreground noise, shortly NFN ) and to remove the noisy background

pixels (non-background noise, shortly NBN ) near and inside object regions that

are actually foreground pixels. Erosion, as its name implies, erodes one-unit

thick boundary pixels of foreground regions. Dilation is the reverse of erosion

and expands the foreground region boundaries with one-unit thick pixels. The

subtle point in applying these morphological filters is deciding on the order and

amounts of these operations. The order of these operations affects the quality

and the amount affects both the quality and the computational complexity of

noise removal.

For instance, if we apply dilation followed by erosion we cannot get rid of

one-pixel thick isolated noise regions (NFN) since the dilation operation would

expand their boundaries with one pixel and the erosion will remove these extra

pixels leaving the original noisy pixels. On the other hand, this order would

successfully eliminate some of the non-background noise inside object regions.

In case we apply these operations in reverse order, which is erosion followed by

dilation, we would eliminate (NFN) regions but this time we would not be able

to close holes inside objects (NBN).
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(a) (b)

(c) (d)

Figure 3.5: Pixel level noise removal sample. (a) Estimated background image
(b) Current image (c) Detected foreground regions before noise removal (d) Fore-
ground regions after noise removal

After experimenting with different combinations of these operations, we have

come up with the following sequence: two-levels of dilation followed by three-

levels of erosion and finally one-level of dilation. The first dilation operation

removes the holes (NBN) in foreground objects that are detected as background

and expands the regions’ boundaries. In the next step, three-levels of erosion

removes the extra pixels on the region boundaries generated by the previous step

and removes isolated noisy regions (NFN). The last step, one level of dilation, is

used to compensate the one-level extra effect of erosion. Figure 3.5 shows sample

foreground regions before and after noise removal together with original image.

Note that the resolution of actual image (320 x 240) is different than the one used

for foreground detection (160 x 120).
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Removal of shadow regions and detecting and adapting to sudden illumination

changes require more advanced methods which are explained in the next section.

3.1.2.1 Shadow and Sudden Illumination Change Detection

Most of the foreground detection algorithms are susceptible to both shadows and

sudden illumination changes which cause inaccurate foreground object segmenta-

tion. Since later processing steps like object classification and tracking depend on

the correctness of object segmentation, it is very important to cope with shadow

and sudden illumination changes in smart surveillance systems.

In our system we used a shadow detection scheme which is inspired from the

work presented in [21]. We make use of the fact that for pixels in shadow regions

the RGB color vectors are in the same direction with the RGB color vectors

of the corresponding background pixels with a little amount of deviation and

the shadow pixel’s brightness value is less than the corresponding background

pixel’s brightness. In order to define this formally, let Ix represent the RGB color

of a current image pixel at position x, and Bx represent the RGB color of the

corresponding background pixel. Furthermore, let Îx represent the vector that

start at the origin O (0, 0, 0) in RGB color space and end at point Ix, let B̂x

be the vector for corresponding background pixel Bx and let dx represent the dot

product (·) between Îx and B̂x. Figure 3.6 show these points and vectors in RGB

space. Our shadow detection scheme classifies a pixel that is part of the detected

foreground as shadow if it satisfies:dx =
Îx∥∥∥Îx

∥∥∥ · B̂x∥∥∥B̂x

∥∥∥
 < τ (3.14)

and ∥∥∥Îx

∥∥∥ <
∥∥∥B̂x

∥∥∥ (3.15)

where τ is a pre-defined threshold which close to one. Dot product is used to

test whether Îx and B̂x have the same direction or not. If the dot product (dx)

of normalized Îx and B̂x is close to one, this implies that they are almost in the
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Figure 3.6: RGB vectors of current image pixel Îx and corresponding background
pixel B̂x.

same direction with a little amount of deviation. The second check is performed

to ensure that the brightness value of Ix is less than Bx. Figure 3.7 shows sample

foreground regions with shadows before and after shadow removal.

Besides shadow removal, sudden illumination change detection is also a re-

quirement that needs to be met by a smart surveillance system to continue de-

tecting and analyzing object behavior correctly. A global change may for instance

occur due to sun being covered/uncovered by clouds in outdoor environments or

due to turning lights on in an indoor environment. Both of these changes make

a sudden brightness change in the scene which even adaptive background models

cannot handle. Figure 3.8 shows sample frames before and after a sudden light

change. Our method of sudden light change detection makes use of the same

observation used in [37, 55], which is the fact that the sudden global light change

causes the background models to classify a big proportion (≥ 50%) of the pixels

in the scene as foreground. However, in some situations, where ordinary objects

move very close to the camera, this assumption is too simplistic and fails. Thus,

for the aim of distinguishing a global light change from large object motion, we

make another check by exploiting the fact that in case of a global light change,

the topology of the object edges in the scene does not change too much and the
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(a) (b)

(c) (d)

Figure 3.7: Shadow removal sample. (a) Estimated background (b) Current
image (c) Detected foreground pixels (shown as red) and shadow pixels (shown
as green) (d) Foreground pixels after shadow pixels are removed
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(a) (b)

Figure 3.8: Sudden light change sample. (a) The scene before sudden light change
(b) The same scene after sudden light change

boundaries of the detected foreground regions do not correspond to actual edges

in the scene whereas in case of large object motion the boundaries of the detected

foreground regions correspond to the actual edges in the image.

In order to check whether the boundaries of the detected regions correspond

to actual edges in the current image, we utilize the gradients of current image

and the background image. The gradients are found by taking the brightness

difference between consecutive pixels in the images in both horizontal and ver-

tical directions. After the gradients are found both for background and current

image, a threshold is applied and the output is converted to binary (where a

one represents an edge). Then, the difference image of background and current

image gradients is calculated to find only the edges that correspond to moving

regions. Figure 3.9 shows sample gradient images for background and current

images. Finally, the detected foreground region is eroded from outside towards

inside till hitting an edge pixel in the gradient difference image. If the resulting

foreground region is very small compared to the original, then this is an indication

of a global light change, hence the background model is re-initiated with current

and following few images. Wavelet images can also be used instead of gradients

to distinguish a sudden global light change.
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(a) (b)

(c) (d)

(e)

Figure 3.9: Detecting true light change. (a) Estimated reference background (b)
Background’s gradient (c) Current image (d) Current image’s gradient (e) The
gradient difference
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(a) (b)

(c)

Figure 3.10: Connected component labeling sample. (a) Estimated background
(b) Current image (c) Filtered foreground pixels and connected and labeled re-
gions with bounding boxes

3.1.3 Detecting Connected Regions

After detecting foreground regions and applying post-processing operations to

remove noise and shadow regions, the filtered foreground pixels are grouped into

connected regions (blobs) and labeled by using a two-level connected component

labeling algorithm presented in [19]. After finding individual blobs that corre-

spond to objects, the bounding boxes of these regions are calculated. Figure 3.10

shows sample foreground regions before and after region connecting, labeling and

boxing.
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3.1.4 Region Level Post-Processing

Even after removing pixel-level noise, some artificial small regions remain due

to inaccurate object segmentation. In order to eliminate this type of regions,

the average region size (γ) in terms of pixels is calculated for each frame and

regions that have smaller sizes than a fraction (α) of the average region size

(Size(region) < α ∗ γ) are deleted from the foreground pixel map.

Also, due to segmentation errors, some parts of the objects are found as

disconnected from the main body. In order to correct this defect, the bounding

boxes of regions that are close to each other are merged together and the region

labels are adjusted.

3.1.5 Extracting Object Features

Once we have segmented regions we extract features of the corresponding objects

from the current image. These features are size (S), center of mass (Cm), color

histogram (Hc) and silhouette contour of the object’s blob. Calculating the size

of the object is trivial and we just count the number of foreground pixels that

are contained in the bounding box of the object.

In order to calculate the center of mass point, Cm = (xCm , yCm), of an object

O, we use the following equation[42]:

xCm =

∑n
i xi

n
, yCm =

∑n
i yi

n
(3.16)

where n is the number of pixels in O.

The color histogram, Hc is calculated over monochrome intensity values of

object pixels in current image. In order to reduce computational complexity of

operations that use Hc, the color values are quantized. Let N be the number of

bins in the histogram, then every bin covers 255
N

color values.
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The color histogram is calculated by iterating over pixels of O and increment-

ing the stored value of the corresponding color bin in the histogram, Hc. So for

an object O the color histogram is updated as follows:

Hc[
ci

N
] = Hc[

ci

N
] + 1, ∀ ci ∈ O (3.17)

where ci represents the color value of ith pixel. In the next step the color histogram

is normalized to enable appropriate comparison with other histograms in later

steps. The normalized histogram Ĥc is calculated as follows:

Ĥc[i] =
Hc[i]∑N
i Hc[i]

(3.18)

After experimenting with histogram based object tracking in later steps, we

realized that calculating the color histogram by all of the pixels of an object may

fail the algorithm to resolve identities correctly. The reason is that, for instance,

if two people have the same colored clothes, e.g. one has a white shirt and black

trousers and the other one has a black shirt and white trousers, the histogram

calculated over whole bodies will include almost the same amount of white and

black for both objects. Hence, we decided to calculate two histograms for an

object, one for the upper body (Hu
c ) and one for the lower body (H l

c). Silhoutte

contour extraction will be discussed later in object classification in Section 4.1.1.
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3.2 Object Tracking

The aim of object tracking is to establish a correspondence between objects or

object parts in consecutive frames and to extract temporal information about ob-

jects such as trajectory, posture, speed and direction. Tracking detected objects

frame by frame in video is a significant and difficult task. It is a crucial part of

smart surveillance systems since without object tracking, the system could not

extract cohesive temporal information about objects and higher level behavior

analysis steps would not be possible. On the other hand, inaccurate foreground

object segmentation due to shadows, reflectance and occlusions makes tracking a

difficult research problem.

We used an object level tracking algorithm in our system. That is, we do not

track object parts, such as limbs of a human, but we track objects as a whole from

frame to frame. The information extracted by this level of tracking is adequate

for most of the smart surveillance applications.

The tracking method we have developed is inspired by the study presented

in [2]. Our approach makes use of the object features such as size, center of

mass, bounding box and color histogram which are extracted in previous steps

to establish a matching between objects in consecutive frames. Furthermore, our

tracking algorithm detects object occlusion and distinguishes object identities

after the split of occluded objects. By analyzing the object trajectory information,

our tracking system is able to detect left and removed objects as well. The system

diagram for our tracking method is shown in Figure 3.11.

3.2.1 Correspondence-based Object Matching

The activity diagram of our correspondence-based object matching algorithm is

shown in Figure 3.12. The first step in our object tracking algorithm is matching

the objects (Op’s) in previous image (In−1) to the new objects (Oi’s) detected in

current image (In).
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Figure 3.11: The object tracking system diagram.
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Figure 3.12: The correspondence-based object matching method.
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Figure 3.13: Sample object matching graph.

We store the matching of objects in a bi-partite graph G(m,n). In this graph,

vertices represent the objects (one vertex partition represents previous objects,

Op’s and the other partition represents new objects, Oi’s) and edges represent a

match between two objects. In G(m, n), m is the size of the partition for previous

objects, and n is the size of the partition for the new objects. A simple matching

graph is shown in Figure 3.13. In order to perform object matching, we iterate

over the list of previous objects and new objects to evaluate their correspondences.

For each previous object, Op we iterate over new objects and first check whether

a new object Oi in the new objects list is close to Op or not. The criterion for

closeness is defined as the distance between the center of mass points of these

two objects (Op and Oi) being smaller than a pre-defined constant. This check

is inspired by the fact that the displacement of an object between consecutive

images should be small. In other words, two objects with center of mass points

cp and ci are close to each other if the following is satisfied:

Dist(cp, ci) < τ (3.19)

where Dist() function is defined as the Euclidean distance between two points,

which is:

Dist(cp, ci) =
√

(xcp − xci
)2 + (ycp − yci

)2 (3.20)
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Since every two objects that are close to each other within a threshold are not

necessarily a successful match, in the next step we check the similarity of these

two objects to improve correct matching. The criterion for similarity comparison

is the size ratio of the objects. Again, this check is motivated by the fact that

objects do not grow or shrink too much between consecutive frames. Thus, two

objects are classified as similar if they satisfy the following:

sp

si

< µ or
si

sp

< µ (3.21)

where si is the size of object Oi and µ is a pre-defined threshold. Checking

the objects for size is especially useful if an object in the previous frame splits

into a large and a very small region due to inaccurate segmentation. This check

eliminates the chance of matching a big region to a small region.

If we only performed the above two steps, we would come up with cases where

a previous object is matched to more than one new object. Hence, after the second

step we check further whether the object Op has already a match/correspondence

or not. If the object Op does not have prior-correspondence, we connect the

corresponding vertices in the bi-partite graph G(m, n) and continue with next

new object Oi, but if Op has a prior-correspondence Ok, we perform additional

steps to resolve the correspondence conflict.

In resolving a matching conflict we compare the correspondences of objects

Oi and Ok to Op. In other words, by comparing the correspondence of Oi and Op

with the correspondence of Ok and Op, we try to decide which one of Oi or Ok

is the correct match to object Op. The correspondences are compared by using

the distance between the center of mass point of Op and Oi or Ok. Let dpi be the

distance between center of mass points of Op and Oi, and let dpk be the distance

between center of mass points of Op and Ok. The correspondence is resolved

in favor of Ok if dpk < dpi, otherwise resolution is in favor of Oi. We might

have used stronger criteria in correspondence matching, such as color histogram

comparison; however in our experiments using distance for resolution performed

well.
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Another conflict arises for the case if Oi has a prior-correspondence established

in previous iteration over the previous objects list. For instance, Op−1 might have

been matched with Oi, and in the next iteration for Op, it is possible that the

first two checks will be satisfied between Op and Oi and Oi would be assigned

to Op. However, we know that Oi has already a correspondence. Hence, this

causes similar correspondence conflict and we resolve this again by using the

distance-based scheme explained in previous paragraph.

In establishing a matching between previous objects and new objects five

different match cases can occur. The details of these cases and their handling by

our tracking method are explained below.

1. One-to-one: This is the case where previous object Op is matched with a

single new object Oi. The features of Op is updated with incoming infor-

mation from Oi.

2. One-to-many : This is the case where previous object Op is matched with

more than one new object. This conflicting case is resolved by distance-

based correspondence comparison and it reduces to case 1.

3. One-to-none: This is the case where previous object Op is not matched to

any new object. This case occurs if an object disappears from the scene

or if the object is occluded by other objects. In case of an occlusion, the

object is preserved until the detection of the corresponding occlusion split.

Otherwise, this object is deleted from the previous objects list.

4. None-to-one: This is the case where new object Oi is not matched to any of

the existing objects. This case occurs if a new object enters into the scene

or occluded objects split. In case of an occlusion split, the corresponding

object is found by the occlusion handling procedure which will be explained

in the next sections. If this is due to a new object, the object Oi is added

to the tracked objects list.

5. Many-to-one: This is the case where new object Oi is matched with more

than one previous object. This conflicting case is resolved by distance-based

correspondence comparison and it reduces to case 1.
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Figure 3.14: Occlusion detection sample case.

3.2.2 Occlusion Handling

Most of the object detection methods are not able to detect occlusions among ob-

jects. Therefore, special techniques are required to continue tracking objects even

in occlusion cases. Our tracking system uses simple heuristics to detect object

occlusions and occlusion group splits and to distinguish object identities (which

object is which?) after occlusions. Details of these three steps are described in

the following sections.

3.2.2.1 Detecting Object Merge

We make use of a simple assumption in detecting occlusions. When an object

Op is found to disappear by the initial object matching algorithm (case 2 in

Section 3.2.1), we check whether there is a new object Oi whose bounding box

is overlapping with that of Op and which is matched to a previous object Ot. In

such a case, it is highly possible that Op and Ot are occluded with each other

and formed a new object Oi. Figure 3.14 shows a sample case. After detecting

such a case, we do not delete object Op from the previous objects list but mark

it as occluded. We create an occlusion group from the objects that are occluded
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with each other and assign a new occlusion group ID to these objects. For the

case if one of the occluding objects has already an occlusion group ID, we merge

these different occlusion groups into one. We also, store the pre-occlusion color

histograms of objects in order to use in identification process after a split.

3.2.2.2 Detecting Object Split

Detecting an occluded object split utilizes a similar heuristic as occlusion de-

tection. When an object Oi is found to enter to the scene by the initial object

matching algorithm (case 4 in Section 3.2.1), we check whether there was a previ-

ous object Ot whose bounding box is overlapping with that of Oi and who has a

valid occlusion group ID and who is matched to another new object Ok. In such

a case, this might be considered as an object split. We check the previous object

list for objects that have the same occlusion group ID as Ot. Assume that we

found Op to have the same occlusion group ID with Op which means that Op and

Ot were occluded by each other previously. We then have two tracking objects

TO = {Op, Ot} and two new objects NO = {Oi, Ok}. Now we need to identify

which object in TO corresponds to which object in NO.

3.2.2.3 Histogram-based Correspondence Matching

In order to match objects in TO to the ones in NO, we make use of the stored

pre-occlusion color histograms of tracking objects and color histograms of new

objects. We perform a matching scheme similar to the initial object matching

method explained before. However, since we cannot match objects based on

their position, using distance is not feasible in this case. Hence, to compare

correspondences of objects, we use color histogram distance.

The distance dab between two normalized color histograms Ha and Hb with N

bins are calculated by using the L1 metric as follows:

dab =
N∑
i

|Ha[i]−Hb[i]| (3.22)
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Since we keep two histograms per object, one for upper body and one for lower

body, we calculate the total distance by summing up the distances between cor-

responding color histograms of objects. That is:

dtotal = dupper histogram + dlower histogram (3.23)

Figure 3.15 shows sample objects and histograms before and after an occlusion

and their distance table. The objects with minimum color histogram distance

are matched together. Conflicts are again resolved by using the color histogram

distance.

3.2.3 Detecting Left and Removed Objects

The ability of detecting left and removed objects in a scene is unconditionally

vital in some visual surveillance applications. Detecting left objects such as

unattended luggage in airports or a car parked in front of a security sensitive

building is important since these activities might be performed by terrorists to

harm people. On the other hand, protecting objects against removal without

permission has important applications such as in surveillance of museums, art

galleries or even department stores to prevent theft. Due to these critical appli-

cations, left/removed object is important part of a surveillance system.

Our system is able to detect and distinguish left and removed objects in video

imagery. To accomplish this, we use our adaptive background subtraction scheme,

object tracking method and a heuristic to distinguish left objects from removed

ones. The three steps in detecting left or removed objects is as follows:

1. Detecting a change between the current image and the reference background

image by using the adaptive background subtraction scheme.

2. Deciding that the detected region corresponds to a left or removed object

by using object tracking method.

3. Distinguishing the left objects from removed objects by using the statistical

color property of the detected and its surrounding regions.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.15: Object identification after occlusion. (a) Image before occlusion
(b) Image after occlusion (c) Color histogram of object A before occlusion (d)
Color histogram of object B before occlusion (e) Color histogram of object A
after occlusion (f) Color histogram of object B after occlusion (g) Normalized
color histogram distance table of objects A and B
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Unlike some other algorithms, for instance temporal differencing, our adaptive

background subtraction algorithm is able to detect objects being left or removed

to/from the background scene for a long period of time. With the help our

tracking method, we detect that the object is stationary by using its trajectory

information. If the recent part of the trajectory information states that the

object has not moved for a long time (e.g. alarm period), we decide that the

corresponding region is stationary and is possibly a candidate of being a left or

removed object.

In order to distinguish the type of the object (left or removed) we use the

statistical properties of the color values in and around the detected region. Let

R represent the region corresponding to a long term change in the background;

S represent the surrounding region around R and let AX represent the average

color intensity value in a region X. Our heuristic we developed by experimenting

several left/removed object video states that if the values of AR and AS are

close to each other, then this indicates that the detected object region and its

surrounding region has almost the same color and therefore the region corresponds

to a removed object. If on the other hand AR and AS are not close to each other

this indicates that the region corresponds to a left object. We decide whether AR

is close to AS or not as follows:

τ ≤ AR

AS
≤ 1, ifAR ≤ AS

τ ≤ AS

AR
≤ 1, ifAS ≤ AR

(3.24)

where τ is a pre-defined constant (≈ 0.85). Figure 3.16 depicts a drawing to show

the regions AR and AS and two sample video images which show left and removed

object cases.
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(a) (b)

(c) (d)

Figure 3.16: Distinguishing left and removed objects. (a) Scene background (b)
Regions R and S (c) Left object sample (d) Removed object sample



Chapter 4

Object Classification

The ultimate aim of different smart visual surveillance applications is to extract

semantics from video to be used in higher level activity analysis tasks. Catego-

rizing the type of a detected video object is a crucial step in achieving this goal.

With the help of object type information, more specific and accurate methods can

be developed to recognize higher level actions of video objects. Hence, we devel-

oped a novel video object classification method based on object shape similarity

as part of our visual surveillance system.

Typical video scenes may contain a variety of objects such as people, vehicles,

animals, natural phenomenon (e.g. rain, snow), plants and clutter. However,

main target of interest in surveillance applications are generally humans and

vehicles. Also, real time nature and operating environments of visual surveillance

applications require a classification scheme which is computationally inexpensive,

reasonably effective on small targets and invariant to lighting conditions [12].

We have satisfied most of these requirements by implementing a classification

scheme which is able to categorize detected video objects into pre-defined groups

of human, human group and vehicle by using image-based object features.

53
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4.1 Silhouette Template Based Classification

The classification metric used in our method measures object similarity based

on the comparison of silhouettes of the detected object regions extracted from

the foreground pixel map with pre-labeled (manually classified) template object

silhouettes stored in a database. The whole process of object classification method

consists of two steps:

• Offline step: Creating a template database of sample object silhouettes by

manually labeling object types.

• Online step: Extracting the silhouette of each detected object in each frame

and recognizing its type by comparing its silhouette based feature with

the ones in the template database in real time during surveillance. After

the comparison of the object with the ones in the database, a template

shape with minimum distance is found. The type of this object is assigned

to the type of the object which we wanted to classify. In this step the

result of object tracking step is utilized to attain temporal consistency of

classification results.

4.1.1 Object Silhouette Extraction

Both in offline and online steps of the classification algorithm, the silhouettes of

the detected object regions are extracted from the foreground pixel map by using

a contour tracing algorithm presented in [19]. Figure 4.1 shows sample detected

foreground object regions and the extracted silhouettes.

4.2 Silhouette Template Database

The template silhouette database is created offline by extracting several object

contours from different scenes. Since the classification scheme makes use of object
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(a) (b)

Figure 4.1: Sample detected foreground object regions and extracted silhouettes.

similarity, the shapes of the objects in the database should be representative

poses of different object types. Considering human type, we add human shapes

in different poses to the template database in order to increase the chance of a

query object of type human to be categorized correctly. For instance, if we all

have human shapes in erect positions; we may miss categorizing a human which

is sitting on a chair. Or if we have silhouettes of cars all are viewed horizontally

from the camera, we may miss to classify vehicles moving vertically with respect

to the camera view. Figure 4.2 shows a small template database of size 24 having

different poses for human, human group and vehicles.

In classification step, our method does not use silhouettes in raw format, but

rather compares converted silhouette distance signals. Hence, in the template

database we store only the distance signal of the silhouette and the corresponding

type information for both computational and storage efficiency.

Let S = {p1, p2, . . . , pn} be the silhouette of an object O consisting of n points

ordered from top center point of the detected region in clockwise direction and

cm be the center of mass point of O. The distance signal DS = {d1, d2, . . . , dn}
is generated by calculating the distance between cm and each pi starting from 1

through n as follows:

di = Dist(cm, pi), ∀ i ∈ [1 . . . n] (4.1)
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Figure 4.2: Sample silhouette template database with labels.
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where the Dist function is the Euclidian distance between two points a and b:

Dist(a, b) =
√

(xa − xb)2 + (ya − yb)2 (4.2)

Different objects have different shapes in video and therefore have silhouettes

of varying sizes. Even the same object has altering contour size from frame

to frame. In order to compare signals corresponding to different sized objects

accurately and to make the comparison metric scale-invariant we fix the size of

the distance signal. Let N be the size of a distance signal DS and let C be

the constant for fixed signal length. The fix-sized distance signal D̂S is then

calculated by sub-sampling or super-sampling the original signal DS as follows:

D̂S[i] = DS[i ∗ N

C
], ∀ i ∈ [1 . . . C] (4.3)

In the next step, the scaled distance signal D̂S is normalized to have integral

unit area. The normalized distance signal DS is calculated with the following

equation:

DS[i] =
D̂S[i]∑n
1 D̂S[i]

(4.4)

Figure 4.3 shows a sample silhouette and its original and scaled distance

signals.

4.3 The Classification Metric

Our object classification metric is based on the similarity of object shapes. There

are numerous methods in the literature for comparing shapes [43, 7, 42, 3, 22].

The reader is especially referred to the surveys presented in [47, 31] for good

discussions on different techniques.

The important requirements of a shape comparison metric are scale, transla-

tion and rotation invariance. Our method satisfies all three of these properties.
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(a)

(b)

(c)

Figure 4.3: Sample object silhouette and its corresponding original and scaled
distance signals. (a) Object silhouette (b) Distance signal (c) Scaled distance
signal
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1. Scale invariance: Since we use a fixed length for the distance signals of

object shapes, the normalized-and-scaled distance signal will almost be the

same for two different representations (in different scales) of the same pose

of an object.

2. Translation invariance: The distance signal is independent of the geometric

position of the object shape since the distance signal is calculated with

respect to the center of mass of the object shape. Due to the fact that the

translation of the object shape will not change the relative position of the

center of mass point’s position with respect to the object, the comparison

metric will not be affected by translation.

3. Rotation invariance: We do not use the rotation invariance property of our

classification metric since we want to distinguish even the different poses

of a single object for later steps in the surveillance system. However, by

choosing a different starting point ps on the silhouette of the object in

contour tracing step, we could calculate distance signals of the object for

different rotational transformations for each starting point ps.

Our classification metric compares the similarity between the shapes of two

objects, A and B, by finding the distance between their corresponding distance

signals, DSA and DSB. The distance between two scaled and normalized distance

signals, DSA and DSB is calculated as follows:

DistAB =
n∑

i=1

∣∣∣DSA[i]−DSB[i]
∣∣∣ (4.5)

In order to find the type TO of an object O, we compare its distance signal

DSO with all of the objects’ distance signals in the template database. The

type TP of the template object P is assigned as the type of the query object O,

TO = TP where P satisfies the following:

DistOP ≤ DistOI , ∀ object I in the template database (4.6)



CHAPTER 4. OBJECT CLASSIFICATION 60

Figure 4.4 shows the silhouettes, silhouette signals and signal distances of a

sample query object and template database objects for type classification.

4.4 Temporal Consistency

The performance of the object classification method is dependent on the quality

of the output of the object segmentation step. Due to environmental factors, such

as objects being occluded by stationary foreground objects (e.g. a fence or a pole

in front of the camera) or due to the fact that only a part of the object is entered

into the scene, the shape of the detected region does not reflect an object’s true

silhouette. In such cases, the classification algorithm fails to label the type of the

object correctly. For instance, the part of a vehicle entering into the scene may

look like a human, or a partially occluded human may look like a human group.

Therefore, we use a multi-hypothesis scheme [29] to increase the accuracy of our

classification method.

In this process, a type histogram HT is initialized and maintained for an object

O detected in the scene. The size of this histogram is equal to the number of

different object types (e.g. three in our system representing human (H), human

group (HG) and vehicle (V ) ) and each bin i of this histogram keeps the number

of times the object O is found of type Ti (one of H, HG, V ). Figure 4.5 shows a

sample object and its type histogram for three different frames.

With the help of this multiple hypothesis scheme, possible types of an object

can be accumulated over a pre-defined period of time and the true decision of its

type can be made more accurately by selecting the type of the bin with biggest

value as the type of the object.
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(a)

(b)

Figure 4.4: Object classification sample. (a) Sample query object (b) Template
database objects with distance signals. The type of each object (H: Human,
HG: Human Group, V: Vehicle) and the distance (D) between the query object
and each database object are shown below the objects.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Object type histogram for a sample detected object. ((a), (c), (e))
Detected object ((b), (d), (f)) Corresponding object type histogram



Chapter 5

Fire Detection

Surveillance systems are used not only to detect vandal actions performed by

humans but also to detect destructive events such as fire to protect security sen-

sitive areas. Traditionally point smoke and fire sensors which sense the presence

of certain particles generated by smoke and fire by ionisation or photometry, were

used to detect fire. Conventional sensors only aim to sense particles, thus, an im-

portant weakness of point detectors is that they are distance limited and fail in

open or large spaces.

The strength of using video in fire detection is the ability to serve large and

open spaces as well as indoor environments. Current fire and flame detection

algorithms are based on the use of color and motion information in video [23, 30].

One weakness encountered in [23] is that fire-like colored moving objects or objects

moving in front-of fire-like colored backgrounds are detected as fire regions for

short periods of time which lead to false alarms. In our study, which is inspired

from the work presented in [23], we not only detect fire and flame colored regions

but also analyze the motion in detail to reduce false alarm rates. It is well-known

that turbulent flames flicker. Therefore, fire detection scheme can be made more

robust by detecting periodic and spatial high-frequency behavior in flame colored

pixels compared to existing fire detection systems.

Our fire detection scheme consists of six steps which are depicted in Figure 5.1
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Figure 5.1: The fire detection system diagram.

and briefly listed below:

1. Detecting fire colored pixels : Fire colored pixels in an image is detected by

using a pre-computed fire color probability distribution.

2. Temporal variance analysis : Fire regions exhibit fluctuating intensity

changes thus generate high temporal variance. Fire colored rigid objects

generally do not cause high temporal variance.

3. Temporal periodicity analysis : In some cases, fire colored regions may ex-

hibit high temporal variance. By checking the oscillatory fire color fluctu-

ation, we better distinguish fire regions from ordinary object regions.

4. Spatial variance analysis : Fire regions not only generate temporal variance

but they also exhibit high spatial variance. In this step spatial variance of

possible fire regions are checked to eliminate false alarms.
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5. Fire region growing : The above checks may filter out true fire pixels. In

order to find the exact fire region, we grow the output of the previous steps

by using the fire color distribution.

6. Temporal persistency and growth checks : Despite all of the checks per-

formed in previous steps, false detection may occur. We eliminate these

false alarms by checking the persistency of fire regions and their growth

since uncontrolled fire regions grow in time.

The steps 1, 2 and 5 are similar to the approach presented in [23] where as the

steps 3, 4 and 6 are novel extensions to reduce false alarm rates.

5.1 Color Detection

Generally fire regions in video images have similar colors. This suggests the idea

of detecting fire region pixels based on their color values. In order to achieve this,

we create a fire color lookup function (FireColorLookup) which given an RGB

color triple returns whether it is a fire color or not.

The FireColorLookup function uses a fire color predicate formed by several

hundreds of fire color values collected from sample images that contain fire regions.

These color values form a three dimensional point cloud in RGB color space as

shown in Figure 5.2. The problem now reduces to represent this fire color cloud

in RGB color space effectively and deciding on the type of a given pixel color by

checking whether it is inside this fire color cloud or not.

We decided to represent the fire color cloud by using a mixture of Gaussians

in RGB color space. We used the idea presented in [44]. In this approach, the

sample set of fire colors FC = {c1, c2, . . . , cn} is considered as a pixel process and

a Gaussian mixture model with N(= 10) Gaussian distributions is initialized by

using these samples. In other words, we represent the point cloud of fire colored

pixels in RGB space by using N spheres whose union almost covers the point

cloud. Figure 5.2 shows the sample fire color cloud and the Gaussian distributions
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(a) (b)

Figure 5.2: Sample fire color cloud in RGB space and Gaussian distribution
spheres which cover the cloud shown from two different views.

as spheres which cover the cloud. For a query color c, FireColorLookup function

then checks whether any of the Gaussian spheres include the point corresponding

to c or not and classifies c as fire or non-fire.

Fire is gaseous and therefore it may become transparent and undetected by

our color predicate. Therefore, it is necessary to average the fire color estimate

over small windows of time as suggested in [23] as follows:

FireColorProb(x) =

∑n
i=1 FireColorLookup(Ii(x))

n
(5.1)

FireColored(x) = FireColorProb(x) > k1 (5.2)

where n is the total number of images in the subset and Ii is the ith image in the

subset, Ii(x) is the RGB color value of the pixel at position x and k1(≈ 0.2) is

an experimentally determined constant. FireColorProb returns a value between

zero and one which specifies the probability of pixel at position x being fire.

FireColored is a boolean predicate which uses the probability information to

mark a pixel as either fire colored or not.

The output of the first step of the algorithm is a binary pixel map Fire(x)

that is generated by using FireColored for each pixel position x in the image I.
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(a) (b)

Figure 5.3: Temporal variance of the intensity of fire colored pixels. (a) A pixel
in true fire region (b) A pixel of a fire colored object

5.2 Temporal Variance Analysis

Color alone is not sufficient to categorize a pixel as part of fire. Ordinary objects,

such as a human with fire-colored clothes might be detected as fire if we use color

alone. Another distinct property of fire regions is that the flicker of fire causes

the pixel intensity values in fire region to fluctuate in time. Figure 5.3 shows the

change of intensity values of two different fire colored pixels. The intensity change

of true fire colored pixels shows a big variance whereas non-fire objects’ pixels

show less intensity variation. In order to make use of this feature, we calculate

the temporal variance of the intensity values of each fire colored pixel over a small

window. The pixels that do not show high frequency behavior are eliminated in

this step.

Thinking of global temporal variance in image sequences due to for instance

camera noise, we calculate a normalized temporal variance for fire pixels by taking

the global non-fire pixels’ temporal variance into account as follows [23]:

FireDiff (x) = Diff (x)− AverageNonFireDiff (5.3)

where Diff and AverageNonFireDiff are calculated as follows:

Diff (x) =

∑n
i=2 |G(Ii(x))−G(Ii−1(x))|

n− 1
(5.4)



CHAPTER 5. FIRE DETECTION 68

AverageNonFireDiff =

∑
x,F ireColored(x)=0 Diff (x)∑

x,F ireColored(x)=0 1
(5.5)

where G is a function given an RGB color returns its gray-level intensity value,

AverageNonFireDiff is the average variance of the non-fire pixels intensity values,

Diff is the intensity variance of a pixel, and FireDiff is the normalized intensity

variance of a fire pixel. Pixels for which FireDiff (x) < k2(≈ 15) are eliminated

from the binary fire pixel map, Fire(x), that is generated by using color predicate

in previous step.

5.3 Temporal Periodicity Analysis

The previous step may fail in some cases, for instance, if the background scene is

fire colored, and an object moves in front of it, some of the pixels will be classified

as fire for short periods of time since a) the fire color probability would hold b)

the object’s motion would generate a big temporal intensity variance. In order to

eliminate such cases, we look at the oscillatory behavior of the FireColorLookup

of a pixel over a small window of time. It is well-known that turbulent flames

flicker which significantly increase the frequency content. In other words, a pixel

especially at the edge of a flame could appear and disappear several times in

one second of a video. The appearance of an object where the FireColorLookup

oscillate at a high frequency is a sign of the possible presence of flames.

We calculate the frequency of oscillation of FireColorLookup as follows:

TemporalFreq =

∑n
i=2 |FireColorLookupi(x)− FireColorLookupi−1(x)|

2
(5.6)

For true fire pixels TemporalFreq is greater than k3 Hz, where k3 is an experi-

mentally determined constant (≈ 3 Hz for a video recorded in 10 Hz). The pixels

that have smaller frequency are eliminated from the fire pixel map Fire(x).
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(a) (b)

Figure 5.4: Spatial variance of the intensity of pixels. (a) A true fire region
V ariance = 1598 (b) A fire colored object region V ariance = 397

5.4 Spatial Variance Analysis

Another characteristic of fire regions is that they exhibit larger spatial variance

compared to fire colored ordinary objects. Figure 5.4 shows a fire region and a

fire colored object and their corresponding spatial color intensity variances.

In order to calculate the spatial variance of fire regions, we first find the

isolated fire regions. This is accomplished by applying connected component

analysis to the fire pixel map. Let R = {p1, p2, . . . , pn} be a fire region consisting

of n pixels. The spatial intensity variance for fire region R is calculated as follows:

SpatialMean =

∑n
i=1 G(I(pi))

n
(5.7)

SpatialV ariance =

∑n
i=1(G(I(pi))− SpatialMean)2

n
(5.8)

For true fire pixels SpatialV ariance is greater than k4, where k4 is an experi-

mentally determined constant (≈ 500). The pixels belonging to regions that have

smaller spatial variance are eliminated from the fire pixel map Fire(x).
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5.5 Fire Region Growing

The pixel-level checks applied in previous steps may filter out true fire pixels

that do not meet all of the criteria. In order to extract the exact fire region,

we grow the output of the previous steps, fire pixel map Fire(x), by using the

FireColorProb alone as it is presented in [23]. For a pixel detected as fire, we

check its neighboring pixels’ FireColorProb values with a smaller threshold and

for pixels that pass this check, we set the corresponding entry in the pixel map

as fire. The threshold increases as we go far from a fire pixel. The complete fire

region growing algorithm is shown in Algorithm 1.

Algorithm 1 Grow fire region

1: Firé← Fire
2: dist← 0
3: changed← TRUE
4: while (changed = TRUE) do
5: changed← FALSE
6: for all pixels x́ that are eight-neighbors of pixels x such that Fire(x) = 1

do
7: if FireColorProb(x́) > (k5 + dist) then
8: Firé(x́)← 1
9: changed← TRUE

10: end if
11: end for
12: Fire← Firé
13: dist← dist + k6

14: end while

5.6 Temporal Persistency and Growth Checks

Due to the pixel level checks applied to the image sequence, some false fire regions

can be detected for short periods of time. In order to filter out these false alarms,

we check the temporal persistency and growth of these fire regions.

In order to check the temporal persistency, we require a fire region to show

itself at least in t1 consecutive frames. We perform this check by using a grid G
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of size (m×n) overlayed on the image. Each cell in this grid has ImageWidth/m

width and ImageHeight/n height and has a counter to count number of frames a

fire region is seen in this grid cell. For each fire region detected in each frame, we

increase the counters of the overlapping cells with 2 and we decrease the counters

of non-overlapping cells with 1. In this way, the counters of the cells containing

fire will increase rapidly and if the counter exceeds a threshold we flag the first

fire possible event, FPE1.

We also associate the size information of each fire region and check the over-

lapping areas of a fire region between consecutive frames. If the overlapping area

increases we set the second flag to indicate that fire event is possible FPE2.

If these two conditions (FPE1 and FPE2) are met, we are sure that there is

fire in the scene and alert the operator.



Chapter 6

Experimental Results

In this chapter we present the test environment and the experimental results of

our algorithms.

6.1 Test Application and System

We implemented a video player application (vPlayer) to test our algorithms. The

video player can play video clips stored in compressed and uncompressed AVI

format. The player application both displays the video data on the screen and at

the same time it feeds the image to our video analyzer algorithms such as object

tracker or fire detector. The architecture of the player application is made flexible

in order to load different types of video clips and use different video analyzers.

Thus, we created two APIs: VideoDecompressorAPI to load video images and

VideoAnalyzerAPI to analyze video images by using several algorithms. The

application is implemented using Microsoft Visual C++ and the decompressors

and analyzers are implemented as Dynamic Link Libraries that can be plugged

into the player application.

All of the tests in the next sections are performed by using the player ap-

plication, vPlayer on Microsoft Windows XP Professional operating system on a
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Detection Algorithm Average time
to process a frame

Adaptive Background Subtraction 3 msec.
Temporal Differencing 3 msec.
Adaptive Background Mixture Models 15 msec.

Table 6.1: Performance of object detection algorithms

computer with an Intel PIV-2600 MHz CPU and 512 MB of RAM.

6.2 Object Detection and Tracking

We tested the computational performance and detection quality of three different

object detection algorithms adaptive background subtraction, temporal differenc-

ing and adaptive background mixture models. The time performance analysis,

which is the per-frame processing time of these algorithms for an image size of

(160 × 120) is shown in Table 6.1.

In order to test the performance of the object tracking we used sample indoor

and outdoor video clips. We especially tested the performance of the occlusion

handling approach presented in Subsection 3.2.2. Table 6.2 shows the number

of true occlusions and the number of cases our occlusion handling algorithm

identifies the objects correctly after the split and the error rates. Figure 6.1

shows sample tracking scenes where the occlusions are handled successfully.

6.3 Object Classification

In order to test the object classification algorithm we first created a sample object

template database by using an application to extract and label object silhouettes.

The GUI of this application is shown in Figure 6.2. We used four sample video

clips that contain human, human group and vehicle. The number of objects of
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Video Clip # Occlusions # Successful Success Rate
Occlusion Handling (%)

Movie 1 2 2 100
Movie 2 1 1 100
Movie 3 4 2 50
Movie 4 3 2 67
Movie 5 3 3 100
Movie 6 5 3 60

Total 18 11 75

Table 6.2: Occlusion handling results for sample clips

(a) (b)

(c) (d)

Figure 6.1: Sample video frames before and after occlusions.
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Video Clip # Humans # Human Groups # Vehicles

Movie 1 0 0 4
Movie 2 1 1 2
Movie 3 3 2 0
Movie 4 5 3 0
Total 9 7 6

Table 6.3: Number of object types in the sample object template database

Human Human Group Vehicle Correct
(%)

Human 175 13 20 84
Human Group 12 52 14 66
Vehicle 38 22 238 79

Table 6.4: Confusion matrix for object classification

different types extracted from each movie clip is shown in Table 6.3.

We used the sample object database to classify object in several movie clips

containing human, human group and vehicle. We prepared a confusion matrix

to measure the performance of our object classification algorithm. The confusion

matrix is shown in Table 6.4.

6.4 Fire Detection

We compared the performance of our fire detection algorithm (Method1) with the

method presented in [23] (Method2). The experimental results show that our al-

gorithm has significantly reduced the false alarms. The results of the comparison

are shown in Table 6.5.
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Figure 6.2: The GUI of object template database creation application.



CHAPTER 6. EXPERIMENTAL RESULTS 77

Table 6.5: Fire detection performance comparison



Chapter 7

Conclusion and Future Work

In this thesis we presented a set of methods and tools for a “smart” visual surveil-

lance system.

We implemented three different object detection algorithms and compared

their detection quality and time-performance. The adaptive background sub-

traction scheme gives the most promising results in terms of detection quality

and computational complexity to be used in a real-time surveillance system with

more than a dozen cameras. However, no object detection algorithm is perfect,

so is our method since it needs improvements in handling darker shadows, sud-

den illumination changes and object occlusions. Higher level semantic extraction

steps would be used to support object detection step to enhance its results and

eliminate inaccurate segmentation.

The proposed whole-body object tracking algorithm successfully tracks ob-

jects in consecutive frames. Our tests in sample applications show that using

nearest neighbor matching scheme gives promising results and no complicated

methods are necessary for whole-body tracking of objects. Also, in handling sim-

ple object occlusions, our histogram-based correspondence matching approach

recognizes the identities of objects entered into an occlusion successfully after a

split. However, due to the nature of the heuristic we use, our occlusion handling

algorithm would fail in distinguishing occluding objects if they are of the same

78



CHAPTER 7. CONCLUSION AND FUTURE WORK 79

size and color. Also, in crowded scenes handling occlusions becomes infeasible

with such an approach, thus a pixel-based method, like optical flow is required

to identify object segments accurately.

We proposed a novel object classification algorithm based on the object shape

similarity. The method is generic and can be applied to different classification

problems as well. Although this algorithm gives promising results in categorizing

object types, it has two drawbacks: (a) the method requires effort to create a

labeled template object database (b) the method is view dependent. If we could

have eliminated (b), the first problem would automatically disappear since one

global template database would suffice to classify objects. One way to achieve

this may be generating a template database for all possible silhouettes of different

classes. This would increase the computational time, but may help to overcome

the need for creating a template database for each camera position separately.

The fire detection algorithm we presented is based on an existing method[23]

but contains novel extensions which reduces the false alarm rates considerably

compared to the method discussed in [23]. Especially, checking the fire colored

regions for temporal periodicity and spatial variance and using persistency of

fire regions to raise alarms are the novel parts of our method which increases

the overall reliability of the fire detection system. The system can be made

more robust by incorporating different fire color spectrums and fusion of thermal

images.

In short, the methods we presented for “smart” visual surveillance show

promising results and can be both used as part of a real-time surveillance sys-

tem or utilized as a base for more advanced research such as activity analysis in

video.
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