
ALGORITHMS FOR THE INTEGER
MULTICOMMODITY NETWORK DESIGN

PROBLEM

a thesis

submitted to the department of industrial engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Mustafa Rasim Kılınç

July 2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52939853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Oya Ekin Karaşan (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Ezhan Karaşan

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Bahar Yetiş Kara

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

ALGORITHMS FOR THE INTEGER
MULTICOMMODITY NETWORK DESIGN PROBLEM

Mustafa Rasim Kılınç

M.S. in Industrial Engineering

Supervisor: Assist. Prof. Dr. Oya Ekin Karaşan

July 2004

In this thesis, we study the problem of logical network design in telecommunica-

tion networks. Given a set of nodes and a set of commodities, we aim to locate

lightpaths(links) between nodes and route the commodities over these lightpaths.

The cost to be minimized is the number of lightpaths used. The problem has ca-

pacity, degree and delay constraints. An important characteristic of our problem

is that the commodities can not be split, therefore they must be routed on a

single path.

We present two integer programming formulations of the problem and con-

sider four sets of valid inequalities. Additionally, a relaxation of the problem is

presented to obtain a lower bound to the problem. Finally, we propose two algo-

rithms of generating good feasible solutions to the problem. Our results prove to

be close to the lower bounds.

Keywords: Network Topology Design, Integer Multicommodity Flow Problem,

Tabu Search, Capacitated Network Design, Branch-and-Price Algorithm.

iii

ÖZET

TAMSAYI C. OKLU AĞ TASARIMI PROBLEMLERİ
İC. İN ALGORİTMALAR

Mustafa Rasim Kılınç

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Oya Ekin Karaşan

Temmuz, 2004

Bu tezde İletişim Ağlarında Mantıksal Ağ Tasarımı Problemi üzerinde calışıldı.

Düğümler kümesi ve bu düğümler arasındaki trafik verildigi halde, yerleştirme

maliyetini en azlamayı amac.ladık. Problemimizin kapasite, derece ve gecikme

kısıtları vardır. Düğümler arasındaki trafiğin bölünerek dağıtılamaması da prob-

lemimizin bir başka önemli özelliğidir.

Problemin iki farklı tamsayı programlama modelini verdikten sonra dört farklı

gec.erli eşitsizlik sunduk. Ayrıca probleme alt sınır bulmak için bir gevşetme pro-

gramlama modeli sunduk. Problemimiz ic.in iki farklı sezgisel yöntem geliştirdik.

Sonuc.larımız ürettiğimiz alt sınırlara yakındır.

Anahtar sözcükler : Ağ Yerles.ke Tasarımı,Tamsayı C. ok Ürünlü Akım Problemi,

Kapasiteli Ağ Tasarımı, Dallandırma-Fiyatlandırma Algoritması.

iv

To my family. . .

v

Acknowledgement

I would like to express my most sincere gratitude to my advisor, Assist. Prof.

Dr. Oya Ekin Karaşan for her encouragement and trust in the supervision of the

thesis. She has been supervising me with patience and everlasting interest.

I would like to express my special thanks and gratitude to Assist. Prof. Ezhan

Karas.an for showing keen interest to the subject matter and for his invaluable

guidance, remarks and recommendations.

I am also indebted to Assist. Prof. Dr. Bahar Yetiş Kara for accepting to

read and review this thesis and for her suggestions.

I would like to express my deepest thanks to Mehmet Oğuz Atan, Salih Öztop,

Aysegul Altın, Zümbül Bulut, Güneş Erdoğan, Selin Damla Erdoğan, Kamer

Kaya, Yunus Emre Karamanoğlu, Kürşad Derinkuyu, Emrah Zarifoğlu, Esra

Büyüktahtakın and Gökhan Metan, for their keen friendship, morale support

and helps.

Finally, I would like to express my gratitude to my father Resul Kılınç, my

mother Rukkiye Kılınç, my brothers Mehmet Rauf Kılınç and Ahmet Kılınç and

my sister Rabia Kılınç for their patience, love and understanding not only for the

time of the study but for my lifetime.

vi

Contents

1 Introduction 1

2 Literature Review 5

2.1 Network Design Problems . 6

2.2 Integer Multicommodity Flow Problems 9

3 Problem Formulation 11

3.1 Notation . 11

3.2 Integer Programming Formulation 13

3.3 Path Formulation . 14

3.4 Conclusion . 16

4 Lower Bound 17

4.1 Valid Inequalities . 17

4.1.1 Cutset Inequalities . 18

4.1.2 Link Inequalities . 19

vii

CONTENTS viii

4.1.3 Flux Inequalities . 19

4.1.4 Partition Inequalities . 19

4.2 Aggregated Relaxation . 20

4.3 Test Problems . 22

4.4 Computational Experiments for Lower Bound 25

5 Upper Bound 29

5.1 Tabu Search Algorithm . 29

5.1.1 Initial Topology . 30

5.1.2 Integer Multicommodity Flow Problem 31

5.1.3 Neighborhood Search . 33

5.1.4 Tabu Search . 36

5.1.5 Main Algorithm . 40

5.2 Branch-and-Price Algorithm . 42

5.2.1 Pricing . 42

5.2.2 Branching on link variables 43

5.2.3 Branching on path variables 44

5.2.4 Main Algorithm . 45

5.3 Computational Experiments for Our Upper Bound 47

6 Conclusion 51

List of Figures

5.1 Link Interchange . 35

5.2 Triangle Interchange . 36

5.3 Tabu Search Procedure . 38

5.4 Branch-and-Price Algorithm . 46

ix

List of Tables

4.1 Characterization of Test Problems of U.S. cities 23

4.2 Characterization of Test Problems of T.R. cities 23

4.3 Characterization of Test Problems of E.U. cities 24

4.4 Computational Results for U.S. cities 27

4.5 Computational Results for T.R. cities 27

4.6 Computational Results for E.U. cities 28

5.1 Algorithm Results of U.S. cities 49

5.2 Algorithm Results of T.R. cities 49

5.3 Algorithm Results of E.U. cities 50

x

Chapter 1

Introduction

With fast and easy access to information, Internet has become one of our lives’

indispensable tools. In a short time, it has become widely and abundantly used.

With this tremendous usage of Internet, speed and capacity requirements have

increased considerably. Existing computer networks did not satisfy this enormous

requirement. Now ”Service Providers” are building optic trunk lines in which

multiple fiber optic cables are combined. Fiber optic cables provide higher speed,

better reliability and more capacity. Building optic trunk lines is quite expensive

so it should be done wisely to satisfy the requirements with minimal cost.

In this thesis, the problem of logical network design with minimum installation

cost is explored. We are given a set of nodes and an associated traffic(commodity)

matrix for all pairs of these nodes. Our job is to determine how many optical

connections called lightpaths, between which node pairs are to be installed so as to

route the traffic. We assume that the cost of each lightpath(link) is identical re-

gardless of which node pairs are connected. Besides flow conservation constraints,

the structure of the communication network we analyze requires some additional

constraints that have to be satisfied.

Before going further, the structure of the communication network will be

presented. We are given a set of nodes, and it is possible to install lightpaths

between any pair of nodes. Every lightpath has a traffic carrying capacity. We

1

CHAPTER 1. INTRODUCTION 2

assume that all lightpaths in the logical topology have the same capacity. If one

lightpath is not sufficient for carrying all the traffic routed between two nodes,

multiple lightpaths can be established between this pair of nodes. Fiber optic

cables are unidirectional, and installing a fiber between a node pair provides the

same capacity separately in both directions. In other words, routing a commodity

in one direction does not use capacity in the other direction.

Transmission of signals over a fiber optic cable goes through a propagation

delay which is determined by the length of the cable. Because of the time re-

quirements, every commodity must be routed within the time no longer than a

maximum delay value. Given a delay matrix representing delay values between

node pairs, the end-to-end delay for traffic routed between two nodes corresponds

to the sum of delay values of every lightpath on the path of the commodity. We

ensure that this delay value is less than or equal to some given maximum delay

value.

Due to hardware and software constraints, it may not be possible to set up

lightpaths between each pair of nodes, because only a limited number of lightpaths

can be located on a node. Therefore, the number of lightpaths originating at a

node can not exceed a predetermined number.

Another important characteristic of the communication network is that every

commodity must be routed on a single path. It is not possible to split the flow

of a commodity and route it on several paths. This is merely because splitting a

commodity complicates routing and results in out-of-order packet delivery at the

destination.

Under these constraints, our aim is to find a feasible logical network design

and route the commodities on this network while minimizing the cost value. Since

we assume that the costs of the links are identical, our objective is to minimize the

number of lightpaths used. A feasible solution should satisfy all of the following

conditions:

• Every commodity must be routed through a single path which is a sequence

of lightpaths.

CHAPTER 1. INTRODUCTION 3

• Every commodity must be routed within a delay no longer than the maxi-

mum delay value.

• Summation of the flow amounts routed over a lightpath must be less than

or equal to the bandwidth capacity of the installed lightpath.

• Number of lightpaths installed on a node must be less than or equal to the

maximum nodal degree which is the maximum number of interfaces that

can be built at a node.

Our preliminary attempts showed that finding an optimum solution to this

problem within reasonable time is outside the capabilities of the off-the-shelf

software for even small problem instances. Even, finding a feasible solution has

not been possible for moderate instances with 20 nodes. Therefore, our approach

to the problem will be first finding a “good” feasible solution heuristically. Then,

we will find a lower bound to our problem to be able to judge the quality of our

heuristic solution, i.e., how close is the gap between our upper and lower bounds.

The remainder of the thesis is organized as follows:

In Chapter 2, we will provide a review of the literature in network design and

multicommodity flow problems.

In Chapter 3, two Integer Programming(IP) formulations of the problem at

hand are presented. In the first formulation, routing of the commodities is repre-

sented by binary variables and location of lightpaths are represented by integer

variables. Second formulation is a path-based formulation where our model con-

tains one binary variable for each path, for every commodity. This formulation

has fewer constraints but an exponential number of variables. It is also suitable

for column generation.

In Chapter 4, some valid cuts are introduced for the models presented. Since

our problem is a minimization problem, LP relaxation value of the problem is a

lower bound to the optimal value. By adding valid cuts to the problem, the lower

bound can be improved. We also present an aggregated model of our problem

where commodities are consolidated according to their source nodes. Aggregated

CHAPTER 1. INTRODUCTION 4

formulation is a relaxation of our original problem and greatly reduces the number

of variables. At the end of the chapter, the effects of these cuts and results of

aggregated formulation are presented on test problems.

In Chapter 5, two algorithms are proposed. The first one is the Tabu Search

algorithm, which is an improved version of [12]. The heuristic is based on a local

search and approaches to the problem as a two step problem: Location Problem

and Routing Problem. It starts with a feasible solution. In each iteration, it finds

neighborhood solutions to the Location Problem. Then for every neighborhood

solution, it routes the commodities in descending order of their flow amounts via

shortest paths. After each routing, link capacities of the edges on the routing path

are lowered by the flow amount of the commodity. When finding the shortest

path of the next commodity, only the links that have enough capacity for the

commodity are used. Before going to the next iteration, it selects the feasible

neighborhood with the smallest cost as a move. For more on Tabu Search and

its application areas we refer the reader to Glover and Laguna [11].

In the second algorithm, we present a column-generation model and a branch-

and-price algorithm. At the root node, our model contains only one variable(one

path) for each commodity. At the nodes of the branch-and-bound tree, the lin-

ear programming relaxation of the problem is solved and by implicit pricing of

nonbasic variables, new variables are generated or LP optimality is proved. A

branching rule is used to preserve the structure of the subproblem and it allows

columns to be generated efficiently at each node of the branch-and-bound tree.

At the end of Chapter 5, computational experiments with test problems are given.

The last chapter is the summary of thesis. The results of the thesis are

discussed and possible areas of future research are highlighted.

Chapter 2

Literature Review

Network design models have been known as useful planning tools in areas of

transportation, telecommunications and logistics. Network design problems con-

cern the selection of arcs in a graph in order to satisfy flow requirements. In

other words, it contains location and routing problems simultaneously. Compre-

hensive survey on the models and algorithms for network design problems can be

found in Magnanti and Wong [15] and Minoux [16]. In the literature, network de-

sign problems can be characterized in two main classes as uncapacitated(UNDP)

and capacitated(CNDP) problems. The problems can also be characterized ac-

cording to the charges of the arcs. There are three main classes known as fixed

charge(single-facility), two level fixed charge(two-facility) and step increasing cost

function. In fixed charge networks, there is only one type of technology, which

can be installed multiple times on a link. In two level fixed charge, the technology

for each link should be chosen from given two technologies. In the third class, the

cost of purchasing capacity for a link is given by a step-increasing cost-capacity

function.

In the literature, network flow(routing) problems also drew the attention of

many researchers. In network flow problems, arc capacities are given apriori and

flow requirements are the main concern while optimizing some objective function

value. Network flow problems can also be characterized in two main classes:

Linear(splittable) and Integer(unsplittable) flow problems. The problems can

5

CHAPTER 2. LITERATURE REVIEW 6

further be characterized according to the origin and destination of the flows.

There are three main classes known as single(one-to-one) flow, single-source(one-

to-all) flow and multicommodity(all-to-all) flow. Unlike linear multicommodity

flow problems, there are not many studies that focus on integer multicommodity

flow problems. A comprehensive survey of linear multicommodity flow (LMF)

models and solution procedures was presented in Ahuja et al [1] .

Capacitated fixed charge network design problem with integer multicommod-

ity is not thoroughly investigated. The main target of this thesis is to fill this

gap. Our problem of focus is Integer Multicommodity Capacitated Fixed Charge

Network Design Problem with additional degree and delay constraints.

In this chapter, we present studies from the literature to form a basis on the

theoretical background of the related topics such as network design problems and

integer multicommodity flow problems.

2.1 Network Design Problems

Gendron and Crainic [10] study the Linear Multicommodity Fixed Charge Capac-

itated Network Design Problem. Three formulations of the problem are presented.

Various relaxations are defined and analyzed theoretically. Relaxations are com-

pared empirically by performing heuristic based computational experiments on a

large set of test problems. The linking constraints they define can also be applied

to Integer Multicommodity Network Design Problems. We used similar inequal-

ities on our problem called as Link Inequalities to improve optimum value of LP

relaxation of Integer Programming Formulation.

Magnanti et al. [14] study the Linear Multicommodity Two-Facility Capac-

itated Network Design Problem. They introduce three facet defining valid in-

equalities: Cutset Inequality, Arc Residual Capacity Inequality and 3-Partition

Inequality. They propose a Lagrangian relaxation strategy and a cutting plane

approach that uses these inequalities and showed that these inequalities provide

a bound at least as efficient as the Lagrangian relaxation lower bound. Cutset

CHAPTER 2. LITERATURE REVIEW 7

inequalities are also valid for our problem and they are used to improve optimum

value of LP relaxation.

Bienstock and Günlük [8] study the Linear Multicommodity Network Design

Problem. They have a degree constraint stating that the number of links assigned

to any node in the network must be equal to a constant number. The goal is to

minimize the maximum aggregate flow on any edge. To obtain a lower bound,

they deal with the aggregated formulation of the problem where commodities

are consolidated and identify according to their source nodes. They introduce

flux inequalities and use basic network equalities that are first introduced by Van

Roy and Wolsey [18] for the aggregate formulation and present a cutting plane

algorithm. Note that flux inequalities will be explained further in Chapter 4. To

make our problem easier, we also used aggregated formulation that reduces the

number of variables in the original formulation.

Ramaswami and Sivarajan [17] study the Linear Multicommodity Network

Design Problem. Their aim is to design a logical topology over a wavelength-

routed all-optical network physical topology. All-optical networks are networks

where information is converted to light, transmitted as light, and reaches its final

destination directly without being converted to electronic form in between. Their

aim is to minimize the maximum load on a link, i.e., the congestion, subject to the

restriction that the delay of a commodity can not be more than a predetermined

value. They also have degree constraints and wavelength number constraints,

stating that multiple data streams to be transferred concurrently along the same

fiber-optic cable must be assigned to separate wavelengths. They approach the

problem in two stages: logical topology design stage and routing stage. We used

a similar approach for our problem in the Tabu Search algorithm. They propose

five different heuristics for logical topology design and compare the performances

of these heuristics.

An important study on the Integer Multicommodity Fixed Charge Capaci-

tated Network Design Problem is that of Barahona [3]. The paper first classifies

the nodes into local and backbone. Local nodes must send their traffic through

backbone nodes, thus this reduces the number of nodes that have to be dealt

CHAPTER 2. LITERATURE REVIEW 8

with. Then, a relaxation of the problem involving only the link variables and

backbone nodes is presented and a cutting plane algorithm based on cut and

partition(multicut) inequalities is introduced. To find a feasible solution to the

original problem, they incorporate a branch-and-bound procedure along with the

cutting plane algorithm. Partition Inequalities will be explained further in Chap-

ter 4, and will be incorporated to improve the LP relaxation value of our original

formulation.

Dahl et al. [9] study a different version of the Integer Multicommodity Fixed

Charge Capacitated Network Design Problem. Given a physical network, a de-

mand matrix and a pipe network(virtual network), the problem is to select the

pipes(ligthpaths) that are to be used and to determine on which path of the se-

lected pipe set each of the demands should be routed. In addition to the capacity

constraints, the number of the pipes on a link must not exceed a predetermined

number. They introduce several facet defining valid inequalities of the problem.

Then, they propose a cutting plane algorithm that uses separation and primal

heuristics. This problem is very similar to our problem. Different from this study,

we have a degree constraint on nodes and not on links and furthermore we have

delay constraints.

Another important study on Network Design Problem is of Karaşan et al. [13].

They study Mesh Topology Design in Overlay Virtual Private Networks. The

problem can be characterized as Integer Multicommodity Uncapacitated Network

Design Problem. They also have a degree constraint stating that the number of

links assigned to any node must be equal to a predetermined number. The goal of

the problem is to determine where to locate the links and route the commodities

while minimizing the routing cost value. Two types of valid inequalities are

generated: flux inequalities and distance inequalities. They apply a Tabu Search

based heuristic. The gap between upper and lower bound is found to be around

%2 for reasonable networks of 20 nodes. Link Interchange method that we used

in our Tabu Search algorithm is borrowed from them.

CHAPTER 2. LITERATURE REVIEW 9

2.2 Integer Multicommodity Flow Problems

For small to moderate size LMF problems, there exist both heuristics and exact

solution procedures in the literature [1]. However, as the problem size increases,

these procedures require large amounts of memory and are therefore computa-

tionally impractical. Barnhart and Sheffi [7] develop a network-based primal-dual

heuristic for large-scale LMF problems. They relax the problem and use a pure

network-based solution strategy. This network-based strategy is embedded within

an iterative primal-dual framework.

Barnhart et al. [4] present a column generation and partitioning solution

procedure for these huge problems. They consider two different formulations for

LMF: arc-chain formulation and cycle formulation. Using a cycle-based formu-

lation, a solution procedure is proposed adopting column generation techniques

and constraint relaxation. They are able to solve LMF problems with 500 nodes,

1300 arcs and 5850 commodities in a reasonable time.

Barnhart et al. [6] introduce a branch-and-price algorithm for solving huge

integer programs using column generation techniques. Barnhart et al. [5] suc-

cessfully implement this algorithm to the Integer Multicommodity Flow Problem.

They state path(column generation) formulation of the problem which has fewer

constraints and exponential number of variables in comparison to the conven-

tional formulation. In column generation, sets of columns are left out of the

linear programming(LP) because most of them will have their associated variable

equal to zero in an optimal solution. Then to check optimality of an LP solu-

tion, a subproblem called the pricing problem, which is a separation problem for

the dual LP, is solved to try to identify columns to enter the basis. They also

propose a new branching strategy at the branch-and-bound procedure which is

compatible with the structure of the pricing problem. They describe lifted cover

inequalities that can be generated at each node of the branch-and-bound tree.

Alvelos and Carvalho [2] study the same problem and present knapsack decompo-

sition. They propose a new branching rule at the branch-and-bound procedure.

They also compare path and knapsack decomposition and branching rules with

computational results. We modified this branch-and-price algorithm and applied

CHAPTER 2. LITERATURE REVIEW 10

to our problem. We use same branching strategy as they state for path variables

[6]. In their formulation they do not have link variables. We propose a branching

procedure for link variables that preserves the structure of the pricing problem.

To sum up, our problem is a network design problem for the given node set and

associated traffic between these nodes. Unlike most of the studies in the literature,

the traffic flow of any commodity can not be split. This makes our problem harder

than the linear multicommodity network design problems. Even for linear cases

there are no proposed exact solution methods, therefore, one can not hope to

find an exact method for integer cases. We have also additional degree and delay

constraints which appear only in some of Linear Multicommodity Network Design

Problems. There are only a few studies on the Integer Multicommodity Network

Design Problems but none of these studies considers these two constraints jointly.

We aim to fill this gap in this thesis.

Chapter 3

Problem Formulation

In this chapter, two IP formulations of the problem along with an analysis of their

strong and weak points are presented. Although they do not prove to be useful in

solving the problem itself, they will aid in better understanding of the structure

of the problem and may offer many insights about ways of solving the problem.

Before moving on to the formulations, it will be useful to state the notations that

will be used through the thesis.

3.1 Notation

Let G = (N, E) be the graph corresponding to the network topology where

N = {1, ..., |N |} is the set of nodes, |N | is the cardinality of node set. Let

E = {1, ..., |E|} be the set of edges whose elements are all possible unordered

pairs of distinct nodes (complete network), i.e. {i, j} ∈ E for i, j ∈ N, i 6= j and

|E| be the cardinality of edge set. Let A = {1, ..., |A|} be the arc set associated

with edge set E, whose elements are oriented versions of edges, i.e. (i, j), (j, i) ∈ A

for every edge {i, j} ∈ E and |A| be the cardinality of arc set.

Let K be the set of commodities, with cardinality |K|. Each element in

the set K has a triplet (sk, dk, fk) associated, where sk denotes the source of

11

CHAPTER 3. PROBLEM FORMULATION 12

commodity k, dk denotes the destination of commodity k and fk denotes the flow

amount(traffic) of commodity k. We can also represent the commodities by a

traffic matrix F , where fij represents the traffic between node i and j.

We have two types of variables: location variables and routing variables.

Let Yij be the location variable denoting the number of links between nodes

i and j. Since we can put an integer number of links between nodes, Yij takes

integer values. It is clear that Yij is equal to Yji, because they represent the same

parameter, the number of links between nodes i and j. In the model, we shall

force them equal to each other by a constraint.

Let Xk
ij be the binary variable representing the flow of commodity k from

node i to node j. In other words,

Xk
ij =

{
1 if commodity k is routed over arc (i, j) from i to j

0 otherwise

We are also given a symmetric delay matrix D that denotes the delay values

between ever pair of nodes. An entry in D, say dij, represents the delay value

between nodes i and j, clearly we have dij = dji.

Let rk
i be the parameter which differentiates between supply, demand and

transshipment nodes of each commodity. In other words,

rk
i =


1 if node i is the source node of commodity k

−1 if node i is the destination node of commodity k

0 otherwise

Let p be the maximum number of links that can be located on a node.

Let D be the maximum delay value.

Let c represent the bandwidth capacity of a link.

CHAPTER 3. PROBLEM FORMULATION 13

3.2 Integer Programming Formulation

The IP formulation of the problem based on the above definitions is as follows:

Minimize
∑

{(i,j) : i<j} Yij

subject to∑
j∈N, j 6=i

Xk
ij −

∑
j∈N, j 6=i

Xk
ji = rk

i ∀i ∈ N, ∀k ∈ K (3.1)∑
k∈K

fkX
k
ij ≤ c ∗ Yij ∀(i, j) ∈ A (3.2)∑

j

Yij ≤ p ∀i ∈ N (3.3)∑
(i,j)∈A

dijX
k
ij ≤ D ∀k ∈ K (3.4)

Yij = Yji ∀ {i, j} ∈ E (3.5)

Xk
ij ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K (3.6)

Yij ∈ Z+ ∪ {0} ∀(i, j) ∈ A (3.7)

In this thesis, we assumed that the cost of a link is identical regardless of

which node pairs are connected. So in the objective function, we only add up Yij

values. Since both Yij and Yji represent the same parameter, the total number of

links is the summation of Yij values over all (i, j) where i is less than j.

Constraints 3.1 are the usual flow conservation constraints. They state that,

for each commodity, the difference between the flow that enters a node and

the flow that leaves that node is equal to the supply/demand of that node.

Nodes other than source and destination of the commodity(i.e., the transship-

ment nodes) must a have balance on entering and leaving flows.

Constraints 3.2 are the capacity constraints. They express that the total flow

on each arc must be less than or equal to the bandwidth capacity installed on that

arc. The bandwidth capacity is the number of links times the capacity of a single

link. We use variables Yij and Yji simultaneously, since installing a link between

CHAPTER 3. PROBLEM FORMULATION 14

a node pair provides same capacity in both directions and routing a commodity

in one direction does not use capacity in the other direction. However, we set

Yij equal to Yji for every i,j pair in Constraints 3.5. We need such a constraint

because whenever a link is located between node i and node j, both Yij and Yji

values increase by 1.

Constraints 3.3 are degree constraints. They express that there can be at most

p links that can be located on a node. During our computational experiments,

it is assumed that the maximum degree number for all nodes is the same and is

equal to 8.

Constraints 3.4 are delay constraints and state that the delay value of a com-

modity must be less than or equal to the maximum delay value. The delay value

of a commodity is found by summing the delay values of edges that are used in

the routing of the commodity.

Constraints 3.6 express that routing variables are binary, and Constraints 3.7

express that location variables are integer.

We have |A| location variables and |A||K| routing variables, and the number

of constraints is |N ||K|+ 3|E|+ |K|+ |N |.

The IP formulation of the problem has a very weak LP relaxation though it

maybe be strengthened with valid cuts. Unfortunately, for a small sized problem

of 10 nodes, 45 edges(90 arcs) and 90 commodities, the number of variables

required is 8190 where 8100 of them are binary and 90 of them are integer. The

number of constraints is 1145. For larger problems, the number of variables

becomes too large for commercially available optimization softwares to solve to

optimality.

3.3 Path Formulation

We can also formulate the problem using path flows instead of arc flows. For each

commodity k, let Pk denote the collection of all directed paths from the source

CHAPTER 3. PROBLEM FORMULATION 15

node sk to the destination node dk in the underlying network G = (N, A). Let

Xk
p be binary flow variables indicating if commodity k is assigned to path p ∈ Pk.

In other words,

Xk
p =

{
1 if commodity k is routed through path p ∈ Pk

0 otherwise

Let δp
ij be an arc-path indicator variable, that is,

δp
ij =

{
1 arc (i, j) is contained in the path p ∈ Pk

0 otherwise

The path formulation is then:

Minimize
∑

{(i,j) : i<j} Yij

subject to∑
p∈P k

Xk
p = 1 ∀k ∈ K (3.8)

∑
k∈K

∑
p∈Pk

fkδp
ijX

k
p ≤ c ∗ Yij ∀(i, j) ∈ A (3.9)

∑
j

Yij ≤ p ∀i ∈ N (3.10)∑
(i,j)∈A

dijδ
p
ijX

k
p ≤ D ∀p ∈ Pk ∀k ∈ K (3.11)

Yij = Yji ∀ {i, j} ∈ E (3.12)

Xk
p ∈ {0, 1} ∀p ∈ Pk ∀k ∈ K (3.13)

Yij ∈ Z+ ∪ {0} ∀(i, j) ∈ A (3.14)

Constraints 3.8 state that each commodity k is assigned to one path p ∈ Pk.

Constraints 3.9 are the capacity constraints with the new definition of the

variables. Given a solution to Path Formulation(PF) we can recover a solution

to the IP formulation by using:

CHAPTER 3. PROBLEM FORMULATION 16

Xk
ij =

∑
p∈P k

δp
ijX

k
p ∀(i, j) ∈ A ∀k ∈ K (3.15)

Since δp
ij indicator parameters are given apriori, we can weed out the path

variables that are not feasible because of delay constraints. Thus constraints 3.11

become redundant.

The number of variables is enormous, growing exponentially in the size of

the network, since PF has a variable for every path connecting a source and

destination node for each of the commodities. However, the number of constraints

reduces considerably if we remove delay constraints. They become |K|+3|E|+|N |
in our formulation. The number of constraints required for the 10 node example

above becomes 235.

Though PF has an exponential number of variables, only one of the paths for

each commodity will carry flow in the optimal solution to the problem. Thus

column generation method is appropriate for solving PF.

3.4 Conclusion

In this chapter, we presented two formulations of the problem. The first one is

the IP formulation of the problem which contains a large number of constraints

and variables. One can not hope to solve this IP with off-the-shelf softwares.

The second one is the PF of the problem. It contains a moderate number of

constraints, but a huge number of variables. It shows that we can not find an

optimal solution to the problem in a reasonable time. Since LP relaxation of the

problem is too weak, valid inequalities to tighten the lower bound will be the

next focus of this thesis.

Chapter 4

Lower Bound

In this chapter, we attempt to obtain a ’good’ lower bound to our problem. Since

we can not solve our problem to optimality, we need a good lower bound to be

able to evaluate our heuristic solution.

First, we will adapt valid inequalities from the literature to our problem and

try to strengthen the LP relaxation with these valid inequalities. Then we will give

a relaxation of the problem which is easier to handle according to the original

formulation. Finally, at the end of this chapter, computational results about

effects of valid inequalities and the relaxation for test problems will be presented.

4.1 Valid Inequalities

In this section, four sets of valid inequalities are considered that will be applied

to LP relaxation of our original formulation. These are cutset inequalities, link

inequalities, flux inequalities and partition inequalities.

17

CHAPTER 4. LOWER BOUND 18

4.1.1 Cutset Inequalities

The first set of valid inequalities is known as the cutset inequalities in the litera-

ture [14]. Whenever we partition the node set into two, the commodities whose

sources belong to a set and destinations belong to the other set must use the

links between these two node sets. Therefore, the bandwidth capacity installed

on these links must be greater than or equal to the total flow amounts of those

commodities.

Let S be a subset of N . Furthermore, let T = N \ S and KST ,(KTS) be

the sets of commodities whose sources are in S(T) and destinations are in T (S)

respectively. Then we have:

∑
i∈S,j∈T

c ∗ Yij ≥
∑

k∈KST

fk ∀S ⊂ N∑
i∈S,j∈T

c ∗ Yji ≥
∑

k∈KTS

fk ∀S ⊂ N

Since Yij’s are integer variables and Yij = Yji, we can strengthen these in-

equalities as follows:

∑
i∈S,j∈T

Yij ≥ max

{
d
∑

k∈KST
fk

c
e, d

∑
k∈KTS

fk

c
e
}

∀S ⊂ N (4.1)

The cutset inequalities are exponential in number. Every subset S of N gives

a probable cut. Adding this many constraints expands the problem much beyond

tractability. Thus, we select subsets with one element for cutset inequalities. In

other words, we select S ⊂ N such that |S| = 1. We also tried for sets with

cardinality higher than one, but observed that adding such inequalities does not

improve the lower bound.

CHAPTER 4. LOWER BOUND 19

4.1.2 Link Inequalities

The second set of inequalities is the link inequalities [10]. They state that when-

ever a commodity is routed over a link, there must be at least one cable located

on that link.

Since Xk
ij are binary variables, they each can take value at most 1. Therefore

the number of cables on arc (i, j) should be greater or equal to Xk
ij. Then we

have,

Yij ≥ Xk
ij , ∀(i, j) ∈ A , ∀k ∈ K (4.2)

4.1.3 Flux Inequalities

The third set of inequalities is the flux inequalities [8]. Flux inequalities express

that if there is not a direct link between source and destination nodes of a com-

modity than the commodity must use at least 2 arcs to be routed. Although Yij’s

are integer variables, the flux inequalities can be stated as follows:

∑
(i,j)∈A

Xk
ij + Yskdk

≥ 2 ,∀k ∈ K (4.3)

This inequality is always valid. Because, if Yskdk
= 0 than it means that there

is no link between sk and dk, thus commodity k must use at least two arcs. If

Yskdk
= 1 than it becomes Xk

ij ≥ 1 which means that commodity must be routed.

If Yskdk
≥ 2, than there is not any restriction upon flow variables.

4.1.4 Partition Inequalities

Another set of inequalities are the partition(multicut) inequalities [3]. Partition

inequalities is a generalization of the cutset inequalities. Let N1, . . . , Np be a

CHAPTER 4. LOWER BOUND 20

partition of N with nonempty sets . Denoted by δ(N1, . . . , Np) is the set of

edges having their endnodes in different sets of the partition. Then, the partition

inequality induced by N1, . . . , Np is defined as:

∑
ij∈δ(N1,...,Np)

Yij ≥ p− 1 (4.4)

This inequality is valid for every partition of N since our network must be

connected. Otherwise, our problem can be reduced to small sized problems and

can be solved by solving these subproblems.

4.2 Aggregated Relaxation

Since IP formulation of the problem has a large number of variables, to overcome

this problem, we used aggregation. We assumed all demands with the same source

as constituting a single commodity. So the number of commodities becomes at

most |N |.

Once aggregation is done, we can not use our original binary variables for

routing of commodities anymore. We define new continuous flow variables for

routing of commodities. Xk
ij is now described as amount of flow routed over arc

(i, j) originating from node k.

Let F k equal to
∑

i∈N fki. We replace the value of parameter rk
i as follows:

rk
i =

{
F k if i = k

−fki otherwise

According to these modifications, the aggregated formulation is as follows:

Minimize
∑

{(i,j) : i<j} Yij

subject to

CHAPTER 4. LOWER BOUND 21

∑
j∈N, j 6=i

Xk
ij −

∑
j∈N, j 6=i

Xk
ji = rk

i ∀i, k ∈ N (4.5)∑
k∈K

Xk
ij ≤ c ∗ Yij ∀(i, j) ∈ A (4.6)∑

j

Yij ≤ p ∀i ∈ N (4.7)∑
ij∈A

dijX
k
ij ≤ D ∗ F k ∀k ∈ N (4.8)

Yij = Yji ∀ {i, j} ∈ E (4.9)

Xk
ij ≥ 0 ∀k ∈ N ∀(i, j) ∈ A (4.10)

Yij ∈ Z+ ∪ {0} ∀(i, j) ∈ A (4.11)

We have |A| location variables and |A||N | routing variables, and the number

of constraints is |N |2 + 3|E|+ 2|N |.

Since our flow variables are not binary anymore, the flow of a commodity

in the original problem may split and be routed via several paths. Thus aggre-

gated formulation of the problem is a relaxation of our original problem. Another

relaxation is done at the constraints 4.8. In the original problem, every commod-

ity must be routed such that the delay amount is less than the maximum delay

value. But here we only require that average weighted delay value of an aggre-

gated commodity originating from a node must be less than the maximum delay

value.

Aggregation is quite useful for reducing the number of variables, for example,

number of variables required for the 10 node example above becomes 990 where

900 of them are continuous variables and 90 of them are integer variables. The

number of constraints is 255. For small size problems, aggregated formulation

is tractable with commercially available optimization softwares. However the

number of variables increases drastically with the number of nodes since the

number of flow variables is of O(|N |3).

By aggregated formulation, we reduce the number of variables reasonably.

Still the problems with moderate sizes are not tractable for commercially available

optimization softwares. To make the problem easier, we drop constraints 4.8 since

CHAPTER 4. LOWER BOUND 22

a relaxation is already done at these constraints.

4.3 Test Problems

In this thesis, we tackled with different sets of problems. In all problems, traffic

values come from a uniform distribution between 0 and 200. For each set of

problems, we consider high capacity(c = 2488) or low capacity(c = 622) cases.

Another parameter that we varied is the number of commodities. We consider

three cases: when there is traffic between all node pairs, when there is traffic

between 30% of the node pairs and when there is traffic between 60% of the node

pairs. For each set, we consider 6 different problems as a result of the combination

of these two parameters.

The first set of our problems consists of the U.S. cities. We choose three

city sets with sizes of 10, 15, 20 and take dij values as the air distances between

the cities in miles. The distance between any two cities is less than 2596 miles.

So we take 4000 as the maximum delay value for these sets of problems. Input

characteristics of these 18 problems are given in Table 4.1.

The second set of the problems consists of Turkish cities. We choose one city

set with size of 15 and take dij values as the driving distances between the cities

in kilometers. The distance between any two cities is less than 1457 kilometers.

So we take 2000 as the maximum delay value for this set of problems. Input

characteristics of these 6 problems are given in Table 4.2.

Our third sets uses European cities. We choose three city sets with sizes of 10,

15, 24 and take dij values as the driving distances between the cities in kilometers.

The distance between any two cities is less than 4452 kilometers. So we take 6000

as the maximum delay value for these sets of problems. Input characteristics of

these 18 test problems are given in Table 4.3.

Totally, we have 42 test problems with different characteristics.

CHAPTER 4. LOWER BOUND 23

Problem Name |N | |K| c Maxdelay fk

US1 10 90 622 4000 U[0,200]
US2 10 90 2488 4000 U[0,200]
US3 10 52 622 4000 U[0,200]
US4 10 52 2488 4000 U[0,200]
US5 10 29 622 4000 U[0,200]
US6 10 29 2488 4000 U[0,200]
US7 15 210 622 4000 U[0,200]
US8 15 210 2488 4000 U[0,200]
US9 15 113 622 4000 U[0,200]
US10 15 113 2488 4000 U[0,200]
US11 15 60 622 4000 U[0,200]
US12 15 60 2488 4000 U[0,200]
US13 20 380 622 4000 U[0,200]
US14 20 380 2488 4000 U[0,200]
US15 20 245 622 4000 U[0,200]
US16 20 245 2488 4000 U[0,200]
US17 20 115 622 4000 U[0,200]
US18 20 115 2488 4000 U[0,200]

Table 4.1: Characterization of Test Problems of U.S. cities

Problem Name |N | |K| c Maxdelay fk

TR1 15 210 622 2000 U[0,200]
TR2 15 210 2488 2000 U[0,200]
TR3 15 124 622 2000 U[0,200]
TR4 15 124 2488 2000 U[0,200]
TR5 15 65 622 2000 U[0,200]
TR6 15 65 2488 2000 U[0,200]

Table 4.2: Characterization of Test Problems of T.R. cities

CHAPTER 4. LOWER BOUND 24

Problem Name |N | |K| c Maxdelay fk

EU1 10 90 622 6000 U[0,200]
EU2 10 90 2488 6000 U[0,200]
EU3 10 59 622 6000 U[0,200]
EU4 10 59 2488 6000 U[0,200]
EU5 10 26 622 6000 U[0,200]
EU6 10 26 2488 6000 U[0,200]
EU7 15 210 622 6000 U[0,200]
EU8 15 210 2488 6000 U[0,200]
EU9 15 124 622 6000 U[0,200]
EU10 15 124 2488 6000 U[0,200]
EU11 15 69 622 6000 U[0,200]
EU12 15 69 2488 6000 U[0,200]
EU13 24 552 622 6000 U[0,200]
EU14 24 552 2488 6000 U[0,200]
EU15 24 332 622 6000 U[0,200]
EU16 24 332 2488 6000 U[0,200]
EU17 24 168 622 6000 U[0,200]
EU18 24 168 2488 6000 U[0,200]

Table 4.3: Characterization of Test Problems of E.U. cities

CHAPTER 4. LOWER BOUND 25

4.4 Computational Experiments for Lower Bound

In this section, we present the computational experiments for lower bound. We

first analyzed the effect of the each valid inequality to the LP relaxation of the

original IP formulation independently, then applied them together. For the Cutset

inequalities, we select the subsets with one elements, i.e. S ⊂ N such that |S| = 1.

It is observed that Cutset Inequalities do not improve the LP relaxation value so

much. Secondly, we add Link inequalities to the LP relaxation. Link Inequalities

increase the lower bound very much when compared to the Cutset Inequalities.

Thirdly, we add Flux Inequalities to the LP relaxation. For most instances, Flux

Inequalities increase the lower bound slightly worse than Link Inequalities do.

However, it performed badly when high capacity ligthpaths are used and number

of commodities is low. For the Partition Inequalities, we select only one partition

where size of each set in partition is 1. Formally;

∑
ij∈δ(N1,...,N|N|)

Yij ≥ |N | − 1 (4.12)

By Partition Inequalities, we ensure that our final network is connected and

has at least |N | − 1 nodes. Finally, we add all of four inequalities to the LP

relaxation. The results can be categorized into two groups, one for which Link

Inequalities dominate and the other where Partition Inequalities dominate. In

the first case, the results are the same as only adding Link Inequalities for nearly

all of the cases. For only a few cases, the results are slightly better than only

adding Link Inequalities. In the latter case, the lower bounds we obtained are

equal to |N | − 1.

Aggregated Relaxation of the problem is also very hard. Finding an optimum

solution to this problem within reasonable time is also outside the capabilities of

off-the-shelf software even for small instances. So we set a time limit of 6 hours

and take the lower bound found to the this problem in 6 hours as a lower bound to

CHAPTER 4. LOWER BOUND 26

our original problem. Since Aggregated Relaxation is a relaxation of our original

problem, any lower bound to Aggregated Relaxation is also a lower bound to our

original problem. In some small instances, relaxation of Aggregated Formulation

improved the lower bound found by adding all of four inequalities.

In Tables 4.4-6, we present the computational results for each set of test

problems. In the second column, LP relaxation values of the test problems are

represented. From the third column to the sixth column, we give lower bounds

attained after adding Cutset(C), Link(L), Flux(F) and Partition Inequalities(P)

separately. Finally, all of the four inequalities are added(All) and results are pre-

sented. In |AR| column, we give last lower bound value of Aggregated Relaxation

attained within the allowed time of 6 hours. In the last column, we rounded up

to the smallest integer greater than the best lower bound found for each test

problem since our objective function is sum of links used and all link variables

are integer.

The lower bounds presented here will be the ones that we will use to evaluate

the upper bounds found by heuristics in the next chapter.

CHAPTER 4. LOWER BOUND 27

|LP | |LP + C| |LP + L| |LP + F | |LP + P | |LP | +All |AR| LB
US1 8.58 10 12.22 12.04 9 12.24 14 14
US2 2.15 5 5 3.48 9 9 6.99 9
US3 6.91 8.5 9.33 8.98 9 9.35 11 11
US4 1.73 5 5 2.58 9 9 6.61 9
US5 3.59 5 5.44 4.64 9 9 9 9
US6 0.9 5 5 1.3 9 9 6.29 9
US7 19.84 22.5 28.46 28.22 19.84 28.46 28.51 29
US8 4.96 7.5 8.35 8.16 14 14 8.44 14
US9 13.45 15 18.1 17.5 14 18.13 18.36 19
US10 3.36 7.5 7.5 4.98 14 14 6.31 14
US11 7.97 10 10.66 9.75 14 14 11.19 14
US12 2 7.5 7.5 2.71 14 14 4.87 14
US13 37.22 39 52.71 52.53 37.22 52.72 52.7 53
US14 9.3 10 15.55 15.32 19 19 15.22 19
US15 27.92 28 37.36 36.73 27.92 37.36 37.33 38
US16 6.98 10 10.98 10.53 19 19 10.64 19
US17 14.1 16 18.58 17.51 19 19 18.6 19
US18 3.53 10 10 4.85 19 19 5.86 19

Table 4.4: Computational Results for U.S. cities

|LP | |LP + C| |LP + L| |LP + F | |LP + P | |LP | +All |AR| LB
TR1 21.12 22.5 29.47 29.29 21.12 29.48 29.55 30
TR2 5.28 7.5 8.68 8.52 14 14 8.73 14
TR3 14.91 15.5 20.11 19.51 14.91 20.11 20.33 21
TR4 3.73 7.5 7.5 5.55 14 14 6.71 14
TR5 8.13 9.5 10.85 10.02 14 14 11.36 14
TR6 2.03 7.5 7.5 2.78 14 14 4.15 14

Table 4.5: Computational Results for T.R. cities

CHAPTER 4. LOWER BOUND 28

|LP | |LP + C| |LP + L| |LP + F | |LP + P | |LP | +All |AR| LB
EU1 8.31 10 11.9 11.72 9 11.91 13 13
EU2 2.08 5 5 3.37 9 9 6.79 9
EU3 6.92 9 9.25 8.88 9 9.27 10.3 11
EU4 1.73 5 5 2.54 9 9 6.36 9
EU5 3.46 6 5.47 4.37 9 9 9 9
EU6 0.87 5 5 1.22 9 9 5.75 9
EU7 20.34 22.5 28.33 28.04 20.34 28.33 28.38 29
EU8 5.09 7.5 8.39 8.16 14 14 8.54 14
EU9 14.41 16 19.37 18.8 14.41 19.38 19.47 20
EU10 3.6 7.5 7.5 5.35 14 14 6.23 14
EU11 7.1 9 9.83 8.93 14 14 10.27 14
EU12 1.77 7.5 7.5 2.46 14 14 4.44 14
EU13 51.91 53.5 74.53 74.34 51.91 74.53 74.38 75
EU14 12.98 17.5 21.97 21.69 23 23 21.5 23
EU15 33.68 35 45.96 45 33.68 45.96 45.72 46
EU16 8.42 12 13.39 12.86 23 23 12.81 23
EU17 20.9 23.5 27.29 25.89 23 27.3 27.03 28
EU18 5.23 12 12 7.15 23 23 7.59 23

Table 4.6: Computational Results for E.U. cities

Chapter 5

Upper Bound

In this chapter, we present two heuristics to find an upper bound to the optimal

value. The first one is a Tabu Search based heuristic which starts with an initial

solution and finds neighborhood solutions by a local search. The second one is

branch-and-price algorithm. In the beginning of the heuristic, we start with the

path formulation which contains only one variable for each commodity. At the

nodes of the branch-and-bound tree, by pricing of nonbasic variables, new path

variables are generated. At the end of this chapter, computational experiments

are presented.

5.1 Tabu Search Algorithm

The idea behind the Tabu Search Algorithm is to solve the problem in two steps.

First we generate a network topology, and then solve the routing problem for the

fixed network topology. The heuristic starts with an initial network topology,

and finds neighborhood topologies by a local search. At each iteration, we try to

find a feasible routing of commodities for each neighborhood topology and move

to the topology with the smallest number of links. In order to prohibit cycling,

we put a move in a Tabu list whenever it is applied and we prevent that move

to be withdrawn for a specified number of iterations. The algorithm works for

29

CHAPTER 5. UPPER BOUND 30

a minimum prespecified number of T iterations. After T iterations it only stops

if the best objective value has not improved for U(again a prespeficied number)

iterations, else it keeps going until no improvement occurs in the last U iterations.

5.1.1 Initial Topology

First, we have to find some initial topologies to start the algorithm. We have

two different procedures to generate initial topologies. The first one is the greedy

procedure, and the second one is the random procedure.

In the greedy procedure, first we list the commodities in descending order of

their traffic flow. Then, starting from the first element of this list, we try to put

a link between the source and destination nodes of the commodity. If the degree

of both nodes is less than maximum degree number then we put a link between

them. If not, we do not put a link. Clearly, with this procedure, we get a network

in which commodities with higher traffic values can be routed using small number

of links. Therefore, we may decrease the number of links that have to be used.

Following is the formal description of the procedure:

Procedure Initial Greedy Topology

Step 1. Order commodities in descending order of traffic value in

DescendingList

Step 2. Set Linkij ← 0 ∀ (i, j) ∈ A

Step 3. Set degree[i]← 0 ∀ i ∈ N

Step 4. Set counter ← 1

Step 4.1. Set a← DescendingList[counter]

Step 4.2. Set i← sa and j ← da

Step 4.3. If degree[i] < MaxDegree and degree[j] < MaxDegree then set

Linkij ← Linkij + 1; Linkji ← Linkji + 1; degree[i]← degree[i] + 1;degree[j]←
degree[j] + 1

Step 4.4. Set counter ← counter + 1. If counter ≤ |K|, go to Step 4.1. Other-

wise terminate the procedure.

CHAPTER 5. UPPER BOUND 31

Secondly, we generate random initial solutions. We randomly select two nodes

each with degree less than the maximum degree number and connect these two

nodes by a link. Here, the number of links that will be used is predetermined.

If all of the predetermined number of links are used, we stop the procedure. If

there is not any pair left whose degrees are less than the maximum degree number,

then we also stop the procedure without reaching the predetermined link limit.

During the tabu search, we try different predetermined number of links. Thus we

can generate random initial topologies with different edge densities. Here is the

random procedure:

Procedure Initial Random Topology (Input, NumberOfLinks)

Step 1. Set Linkij ← 0 ∀ (i, j) ∈ A

Step 2. Set degree[i]← 0 ∀ i ∈ N

Step 3. Set counter ← 0

Step 4. Set S ← N

Step 4.1. If S ← ∅, go to Step 8. Else, randomly pick an element i from S

Step 4.2. If degree[i] = MaxDegree, set S ← S \ {i}
and go to Step 4.1. Else, go to Step 5.

Step 5. Set S ← N \ {i}
Step 5.1. If S ← ∅, go to Step 8. Else, randomly pick an element j from S

Step 5.2. If degree[j] = MaxDegree, set S ← S \ {j}
and go to Step 4.1. Else, go to Step 6.

Step 6. Set Linkij ← Linkij +1; Linkji ← Linkji +1; degree[i]← degree[i]+1;

degree[j]← degree[j] + 1

Step 7. Set counter ← counter + 1. If counter < NumberOfLinks, go to Step

4. Otherwise go to Step 8.

Step 8. Terminate the procedure

5.1.2 Integer Multicommodity Flow Problem

When we fix the network topology, our problem becomes Capacitated Integer

Multicommodity Flow Problem(CIMFP). CIMFP is also a very hard problem.

CHAPTER 5. UPPER BOUND 32

Since we have to solve routing problem for every neighborhood topology, our

approximation algorithm for CIMFP must be very fast.

The main idea of the routing algorithm is to route the commodities one by

one over the network. After routing of a commodity, capacities of edges that

are in the path of commodity are lowered by the specific flow amount of that

commodity. Then, the next commodity is routed with these new edge capacities.

In each routing, a shortest path is found only using the edges which have capacity

as much as flow of the commodity. While finding shortest paths, we use delay

values of edges as distance values. By this way, we ensure that the commodity is

routed within the maximum delay value.

In the algorithm, it is easy to see that the order we route the commodities

is very crucial. We adopt a greedy approach and route the commodities in the

descending order of their flow amounts. It is expected that the commodities with

higher flow values will use less number of links in comparison to the commodities

with lower flow values in this algorithm. Thus, this will help route all of the

commodities with given capacities.

Before giving the description of the algorithm, we state a definition that will

be used in the algorithm.

Definiton 1 Given the network G=(N, A), G(f) represents the network

G′=(N, A′) where A′ is a subset of A such that ∀(i, j) ∈ A if capacity(i,j) ≥ f

then (i, j) ∈ A′, if capacity(i,j) < f then (i, j) /∈ A′, the length of arc (i, j) in A′,

is again equal to dij.

The algorithm for routing is as follows:

Procedure Greedy CIMFP

Step 1. Order commodities in descending order of traffic value in

DescendingList

Step 2. Set counter ← 1

Step 2.1. Set a← DescendingList[counter]

Step 2.2. Set i← sa; j ← da and f ← fa

CHAPTER 5. UPPER BOUND 33

Step 3. Find the shortest path from i to j in G(f), say dist(i, j)

Step 4. If no path exists, go to Step 9.

Step 5. If dist(i, j) ≥MaxDelay, go to Step 9.

Step 6. Decrease the capacities of edges on the shortest path by f.

Step 7. Set counter ← counter + 1. If counter > |K| then go to Step 8. Else

go to Step 2.1.

Step 8. Set Feasible← 1 and terminate

Step 9. Set Feasible← 0 and terminate

After generating initial topologies, we check whether there exists a feasible

routing of commodities in this topology or not by our Greedy CIMFP procedure.

If there is a feasible routing, that means we have an initial solution to our problem.

Now, we can start Tabu Search with this feasible solution.

5.1.3 Neighborhood Search

Whenever we generate an initial solution, the main procedure of Tabu Search

is started. In the main procedure, we simply do a local search. We find neigh-

borhood topologies to the current topology and check whether there is a feasible

routing of commodities. Among the feasible neighborhood topologies, we move to

one with minimum number of links. We used four different methods to find neigh-

borhood topologies. These are Link Addition, Link Deletion, Link Interchange

and Triangle Interchange.

5.1.3.1 Link Addition

First method of generating neighborhood topology is the Link Addition Method.

In this method, we find the nodes whose degrees are less than the maximum

degree number. Every pair of nodes in this list is a candidate to join with a link.

If adding a link between these pairs is not in the Tabu List of Link Addition,

we add the link and find a neighborhood topology. Since we select the nodes

whose degrees are not at maximum degree number, in the network generated

CHAPTER 5. UPPER BOUND 34

after addition of the link, the degree constraint is satisfied for all nodes. For

every new network generated by Link Addition is added to Candidate Move List.

We do not have to solve routing problem from scratch. Routing solution of the

original topology is also feasible for these generated topologies.

5.1.3.2 Link Deletion

The second method that is proposed to find neighborhood topology is the Link

Deletion Method. Every link in the current network topology is a candidate to

delete. For every link in the network, first we control that whether this move

is in the Tabu List of Link Deletion or not. If not, we delete the link and find

a neighborhood topology. Since we delete the links, the degree constraint is

satisfied. For every new network generated by Link Deletion, we call Greedy

CIMFP procedure to find a feasible routing. If such routing is found, then this

move is added to Candidate Move List.

5.1.3.3 Link Interchange

The third method is the Link Interchange Method. In this method, we first find

a pair of disjoint links. Two links are called disjoint if their endpoints do not

intersect. Let L1 and L2 be a pair of disjoint links, L1 connects node h1 and

node t1 and L2 connects node h2 and node t2. Then h1 6= h2, h1 6= t2, t1 6= h2

and t1 6= t2. Link interchange method is applied in two ways. In the first one,

we delete the given pair of the links and add two links that connects the heads

and tails of L1 and L2. In other word, we put links on edges (h1, h2) and (t1, t2).

In the second one, we delete the given pair of the links and add two links that

connects the head(tail) of L1 and the tail(head) of L2. In other words, we put

links on edges (h1, t2) and (t1, h2). Both of these interchanges are candidates of

Link Interchange for L1 and L2 pair. If this pair of disjoint links is not in the Tabu

List of Link Interchange, we apply these two interchange methods and generate

two neighborhood topologies. After deleting L1 and L2, we put two new edges.

Note that degrees of nodes h1, t1, h2 and t2 do not change. So degree constraint

CHAPTER 5. UPPER BOUND 35

is automatically satisfied. For every new network generated by Link Interchange,

we call Greedy CIMFP procedure to find a feasible routing. If such a routing is

found, then this move is added to Candidate Move List.

h 1 h 1 h 1

h 2 h 2
h 2

t1 t1 t1

t2 t2 t2

L 2

L 1

Link Interchange 1 Link Interchange 2Original pair

Figure 5.1: Link Interchange

5.1.3.4 Triangle Interchange

The final method of generating neighborhood topologies is the Triangle Inter-

change Method. In this method, we first find two links which share a common

node. Let L1 and L2 be a pair of links, such that L1 connects node h and node

t1 and L2 connects node h and node t2. Every (L1,L2) pair is a candidate for

Triangle Interchange. In Triangle Interchange method, we delete these two links

and we add a link that connects the tails of these links. In other words, we delete

links L1 and L2 and add a link that connects t1 and t2. By the Triangle Inter-

change Method, the degrees of tail nodes do not change and the degree of the

common head node decreases by 2. For every new network generated by Triangle

Interchange, we call Greedy CIMFP procedure to find a feasible routing. If such

a routing is found, then this move is added to Candidate Move List.

CHAPTER 5. UPPER BOUND 36

t1 t1

t2 t2

L 2

L 1

h h

Triangle InterchangeOriginal pair

Figure 5.2: Triangle Interchange

5.1.4 Tabu Search

Whenever we have an initial feasible solution, BestFound is set to the objective

value of this solution and then Tabu Search procedure is started. For each itera-

tion, neighborhood search is made. After all possible moves found are added to

the Candidate Move List, we select the move from this list with the minimum

number of links, CostOfMove, (ties are breaked randomly) and apply this move

to the current topology permanently. If the CostOfMove of the applied move is

less than the BestFound, than BestFound is updated and counter of improve-

ment is reset. After applying this move, we put it into the Tabu List. We have

3 tabu lists. These are Tabu List of Link Addition, Tabu List of Link Deletion

and Tabu List of Link Interchange.

Tabu Lists work as follows: Whenever a new link is added to network, this

link is put into Tabu List of Link Deletion. So deletion of this link is prohibited.

Whenever a new link is deleted from network, this link is put into Tabu List of

Link Addition. So addition of this link is prohibited. Whenever a link interchange

is made, these two links are put into Tabu List of Link Interchange. And, a

link interchange including all the 4 corresponding nodes of these two links is

prohibited. Whenever a triangle interchange is made, both of the deleted links

are put into Tabu List of Link Addition and added link is put into Tabu List of

Link Deletion. Otherwise, algorithm may add the deleted links, delete the added

link and apply this Triangle Interchange again which causes cycling.

CHAPTER 5. UPPER BOUND 37

For how many iterations a move will be held in the Tabu Lists, i.e. Tabu

Tenure, is important for efficiency of the algorithm. A move is keep in a Tabu

List, to prevent cycling, otherwise same moves will take place repeatedly, and

this blocks us from finding other potentially good solutions. If we take a large

Tabu Tenure, then we block some moves and decrease the chance of finding a

better solution. A small Tabu Tenure will increase the risk of cycling. During

our computations, we observed that taking Tabu Tenure equal to 10 is a good

choice.

Another parameter is the number of iterations that is made before stopping

Tabu Search. Number of iterations increases the chance of finding a better so-

lution at the expense of increasing the running time of the algorithm. In our

algorithm, Tabu Search makes T iterations and after T iterations it still contin-

ues if BestFound value has improved in the past U iterations.

In Figure 5.3, the flowchart of the Tabu Search procedure can be seen and the

formal description of the procedure is as follows:

Procedure Tabu Search

Step 1. Set counter ← 1

Step 2. Disjoint Pair List

Step 2.1. Look at every link pair. If this pair is a candidate for Link Intercange

and not in the TabuListOfLinkInterchange than put this pair into Disjoint

Pairs List. If List is empty go to Step 3.

Step 2.2. Take a pair from Disjoint Pairs List and remove this pair from the

list.

Step 2.3. Apply Link Interchange 1.

Step 2.4. Call Greedy CIMFP

Step 2.5. If Feasible = 1, set CostOfMove to the number of links and add this

move to CandidateMoveList.

Step 2.6. Reverse the changes done in Step 2.3.

Step 2.7. Apply Link Interchange 2.

Step 2.8. Call Greedy CIMFP

CHAPTER 5. UPPER BOUND 38

Figure 5.3: Tabu Search Procedure

CHAPTER 5. UPPER BOUND 39

Step 2.9. If Feasible = 1, set CostOfMove to the number of links and add this

move to CandidateMoveList.

Step 2.10. Reverse the changes done in Step 2.7.

Step 2.11. If Disjoint Pairs List is empty then go to Step 3. Else go to 2.2.

Step 3. Addition List

Step 3.1. Look at every node pair. If this pair is a candidate for Link Addition

and not in the TabuListofLinkAdditon than put this node pair into Addition

List. If List is empty go to Step 4.

Step 3.2. Add all of the moves in Addition List to the CandidateMoveList, set

CostOfMove of each move to the number of links used.

Step 3.7. Empty the Addition List and go to Step 4.

Step 4. Deletion List

Step 4.1. Look at every edge. If this edge is a candidate for Link Deletion and

not in the TabuListofLinkDeletion than put this node pair into Deletion List.

If List is empty go to Step 5.

Step 4.2. Take a link from Deletion List and remove this link from the list.

Step 4.3. Delete the link.

Step 4.4. Call Greedy CIMFP

Step 4.4. If Feasible = 1, set CostOfMove to the number of links and add this

move to CandidateMoveList.

Step 4.5. Reverse the changes done in Step 4.3.

Step 4.6. If Deletion List is empty then go to 5. Else go to 4.2.

Step 5. Triangular Pairs List

Step 5.1. Look at every link pair. If this pair is a candidate for Link Interchange,

than put this pair into Triangular Pairs List. If List is empty go to Step 6.

Step 5.2. Take a pair from Triangular Pairs List and remove this pair from the

list.

Step 5.3. Apply Triangle Interchange

Step 5.4. Call Greedy CIMFP

Step 5.5. If Feasible = 1, set CostOfMove to the number of links and add this

move to CandidateMoveList.

Step 5.6. Reverse the changes done in Step 5.3.

Step 5.7. If Triangular Pairs List is empty then go to 6. Else go to 5.2.

CHAPTER 5. UPPER BOUND 40

Step 6. Select the move with smallest CostOfMove from CandidateMoveList

(ties are breaked randomly), apply this move to the current topology permanently.

Step 7. Add this to the corresponding TabuList and update the TabuLists.

Step 8. If CostOfMove < BestFound then set BestFound ← CostOfMove

and ImproveCounter ← 0

Step 9. Set counter ← counter+1 and ImproveCounter ← ImproveCounter+

1

Step 10. Empty the CandidateMoveList.

Step 11. If counter < T , then go to Step 2. Else go to Step 12.

Step 12. If ImproveCounter < U , then go to Step 2. Else go to Step 13.

Step 13. Terminate the procedure.

5.1.5 Main Algorithm

At the begining of the algorithm, TotalBestFound is set to a big number, BigM .

For each initial solution, Tabu Search procedure is applied and a BestFound value

is obtained. If BestFound value found is less than the TotalBestFound, than

TotalBestFound is updated. At the end of the algorithm, TotalBestFound gives

the result of the Tabu Search heuristic.

The number of initial random solutions to be generated is also a parameter

of our algorithm. The more the number of initial random solutions, the more

the chance of finding a better solution, but again at the expense of increas-

ing the running time of the algorithm. In our algorithm, we generate random

initial topologies with different edge densities. NumberOfLinks, that is used

during generating random initial topologies, is calculated by multiplying num-

ber of nodes, |N |, by the edge density, number of links per node(AverageLink).

AverageLink takes values between MinAverageLink and MaxAverageLink.

For each AverageLink value, we generate TotalRepNumber random initial solu-

tions.

CHAPTER 5. UPPER BOUND 41

The main algorithm is as follows:

Procedure Main Algorithm

Step 1. Read the Traffic Values and Delay Values from files

Step 2. Make initializations and set TotalBestFound← BigM

Step 3. Initial Greedy Topology

Step 3.1 Call Initial Greedy Topology and obtain Linkij values

Step 3.2. Set capacityij ← c ∗ Linkij ∀ (i, j) ∈ A

Step 3.3. Call Greedy CIMFP

Step 3.4. If Feasible = 1, set BestFound to the number of links and call Tabu

Search.

Step 3.5. If BestFound < TotalBestFound then set TotalBestFound ←
BestFound

Step 4. Initial Random Topology

Step 4.1. Set AverageLink ←MinAverageLink

Step 4.2. Set NumberOfLinks← AverageLink ∗ |N |
Step 4.3. Set RepNumber ← 1

Step 4.4. Call Initial Random Topology and obtain Linkij values

Step 4.5. Set capacityij ← c ∗ Linkij ∀ (i, j) ∈ A

Step 4.6. Call Greedy CIMFP

Step 4.7. If Feasible = 1, set BestFound to the number of links and call Tabu

Search. Else go to Step 4.4.

Step 4.8. If BestFound < TotalBestFound then set TotalBestFound ←
BestFound

Step 4.9. Set RepNumber ← RepNumber + 1

Step 4.10. If RepNumber < TotalRepNumber go to Step 4.4.

Step 4.11. Set AverageLink ← AverageLink + 1

Step 4.12. If AverageLink < MaxAverageLink go to Step 4.3.

Step 5. Terminate Algorithm

CHAPTER 5. UPPER BOUND 42

5.2 Branch-and-Price Algorithm

In the Branch-and-Price Algorithm, we present a column generation model using

path formulation. Branch-and-price, a generalization of branch-and-bound with

LP relaxations, allows column generation to be applied throughout the branch-

and-bound tree. Since only one path will be chosen for each commodity, most

of the path variables will be equal to the zero in the optimal solution. Sets of

columns are left out of the LP relaxation because there are too many columns to

handle efficiently and they can be easily generated by the pricing problem.

5.2.1 Pricing

In the pricing problem, LP relaxation of the problem is solved to try to identify

columns to enter the basis. In other words, we try to find whether there are any

columns not included in the current LP with negative costs. If such columns exist,

they are added to the formulation. The pricing problem is actually a separation

problem for the dual of LP. Sets of columns, that are left out of the LP, correspond

to the constraints of the dual of LP.

For the path formulation, let −πij represent the nonnegative dual variables

associated with constraints 3.9 and σk represent the unrestricted dual variables

associated with constraints 3.8. Then, the reduced cost of column p for commod-

ity k, denoted c̄k
p is:

c̄k
p =

∑
(i,j)∈A

fkδp
ijπij − σk ∀p ∈ P k ∀k ∈ K (5.1)

Columns that price out can be identified by solving one shortest path problem

for each commodity k ∈ K over a network with arc costs equal to the πij for each

(i, j) ∈ A. Denote the cost of shortest path p∗ for any commodity k as ck
p∗. Then,

if for all k ∈ K,

CHAPTER 5. UPPER BOUND 43

fkck
p∗ − σk ≥ 0

the LP relaxation is optimal. Otherwise, the LP relaxation is not optimal and

for each k ∈ K with

fkck
p∗ − σk < 0

path p∗ ∈ P k has a negative reduced cost and path p∗ is added to the for-

mulation. At the end of the pricing procedure new variables are generated by

implicit pricing of nonbasic variables or LP optimality is proved.

5.2.2 Branching on link variables

At the nodes of the branch-and-bound tree, first the pricing problem is solved

to identify new columns to enter the basis. Whenever we can not find any path

variable that prices out and enters the basis, branching occurs if the LP solution

does not satisfy the integrality conditions. First, we check the integrality of link

variables. If there are some link variables that are not integral, we start branching

on the one having the biggest value in the optimum solution of the LP relaxation.

We use conventional integer branching on link variables. Let Yij∗ be the value of

link variable that has the biggest nonintegral optimum value in the LP relaxation.

One branch forces Yij ≥ dYij∗e, and the other branch forces Yij ≤ bYij∗c. The

first branch is easy to enforce because we increase the capacity installed on the

edge {i, j}. But the latter branch can not be enforced if some commodities that

use this link have no other path variables in the current formulation. This may

cause infeasibility due to not having enough path variables in the formulation.

We solve this problem by adding new path variables for such commodities. To

do this, we find the shortest path using the current dual variables πij without

requiring the cost of this path to be less than σk.

CHAPTER 5. UPPER BOUND 44

In the branching procedure, whenever we set a link variable equal to the 0,

we delete all of the path variables that use this corresponding edge. Since those

path variables will not be in the basis anymore. By this way, we ensure that

the number of path variables does not increase exponentially and maintain the

rapidness of the algorithm.

5.2.3 Branching on path variables

If all of the link variables are integral then we start branching on the path vari-

ables. Conventional integer branching on the path variables may not be effective

because fixing variables can destroy the structure of the pricing problem. To

illustrate, consider branching based on variable dichotomy in which one branch

forces Xk
p = 1 and the other branch forces Xk

p = 0. The first branch is easy to

enforce because commodity k is assigned to a path p and no additional paths need

to be generated anymore. The latter branch cannot be enforced if shortest path

problem is used for pricing. There is no guarantee that shortest path problem

will find a path other than p. Otherwise we have to solve a next shortest path

procedure for pricing new path variable. In general, pricing problem involving a

set of branching decisions must be solved using a kth shortest path procedure.

Our branching rule works as follows: we look for all split commodities, in

other words all commodities that are assigned to more than one path. We choose

the one having the highest traffic value, say commodity k. Let p1 and p2 be the

paths that have greatest fractions of the flow of commodity k. Then these two

paths differ on at least two arcs. Assume path p1 contains arc a1 and p2 does

not and in the same way, path p2 contains arc a2 and p1 does not. We branch

creating two subproblems in which on the first branch we do not allow commodity

k to use the arc a1 and on the second branch we do not allow commodity k to use

the arc a2. By setting the commodity’s cost on the forbidden arc to a very high

value, the pricing problem can still be solved using the shortest path algorithm.

CHAPTER 5. UPPER BOUND 45

5.2.4 Main Algorithm

The algorithm works as follows: We start with an initial feasible solution to our

problem and write the path formulation with only corresponding path variables of

the initial feasible solution. Thus, our model contains only one variable for each

commodity at the root node. In the formulation, constraints (3.11) are left out of

the LP since we start with a feasible solution in which each of the path variables

satisfies the delay constraint. During the pricing, when a path is found which

does not satisfy the delay constraints it will not be added to the formulation.

Therefore all the path variables used during the algorithm automatically satisfies

the delay constraint. So constraints (3.11) become redundant.

After writing the initial formulation of the problem, we will start the pricing

procedure. If such columns are found, the LP is reoptimized. Pricing process

is repeated until such columns do not exist. Then we check whether the LP

relaxation solution is integral. If not, we start the branching procedure. First

we branch on link variables. If all of the link variables are integral then we start

branching on the path variables.

In Figure 5.4, the flowchart of the Branch-and-Price algorithm can be seen and

the formal description of the algorithm is as follows:

Procedure Branch-and-Price Algorithm

Step 1. Formulate initial path formulation using a given feasible solution

Step 2. Call pricing procedure

Step 3. Check Integrality of link variables. If all of the link variables are integral

go to Step 4. If not branch on the variable with has the maximum nonintegral

value. Then go to Step 2.

Step 4. Check Integrality of path variables. If all of the path variables are

integral go to Step 5. If not, call the branching procedure for path variables.

Then go to Step 2.

Step 5. State this solution as a feasible solution. If objective value is less than

the BestV alueFound, update the BestV alueFound. If no nodes are left for

branching, i.e., all variables are integral, terminate the algorithm, else go to Step

2.

CHAPTER 5. UPPER BOUND 46

Figure 5.4: Branch-and-Price Algorithm

CHAPTER 5. UPPER BOUND 47

5.3 Computational Experiments for Our Upper

Bound

In our computational experiments, we first apply Tabu Search algorithm for each

test problem. Then, the solution of Tabu Search algorithm is used as an initial

solution to the Branch-and-Price algorithm. The objective function of this solu-

tion is also used as an upper bound for the Branch-and-Price algorithm to prune

the nodes. The Branch-and-Price algorithm is very time consuming, we expect to

lower this running time by pruning some nodes with this upper bound value. If

the solution of Tabu Search algorithm happens to be optimal(has the same objec-

tive with the corresponding lower bound), then we do not run Branch-and-Price

algorithm for this test problem.

In Tabu Search algoritm, we take MinAverageLink value equal to 2,

MaxAverageLink value equal to 4 and TotalRepNumber value equal to 10.

Thus, we generate 10 initial solutions for AverageLink = 2, 10 initial solutions

for AverageLink = 3 and 10 initial solutions for AverageLink = 4. With 1

greedy initial solution, we start Tabu Search procedure 31 times for each test

problem. But in some instances, we can not find a feasible routing for greedy

initial topologies. In the random initial topologies, we continue to generate new

random topologies until finding a feasible routing for that topology. But for some

instances, it is infeasible to find a feasible routing when we set AverageLink

equal to 2 or 3. For example, lower bound we found is 53 for the test problem

US13 which has 20 nodes. The initial topology we want to generate can have at

most 40 nodes if we set AverageLink equal to 2, which is less than lower bound

we found. So for these instances we set MinAverageLink equal to 3 or 4. But

we ensure that we have at least 10 initial solutions for each test problem.

We set T equal to 100 and U equal to 30. Thus the algorithm works for a

minimum number of 100 iterations. After 100 iterations it only stops if the best

objective value has not improved for the last 30 iterations, else it keeps going

until no improvement occurs in the last 30 iterations.

CHAPTER 5. UPPER BOUND 48

Our solution attempts showed that the running time of Branch-and-Price

algorithm is not reasonable. So we set a time limit for the running time of the

algorithm and this value is 12 hours. If the algorithm does not end in 12 hours, we

stop the algorithm and take the feasible solution with minimum objective value.

In most of cases, Branch-and-Price algorithm can not improve the value found by

the Tabu Search algorithm. But for a few instances, best found objective value

is improved and this further reduced the gap between lower and upper bound.

For only one test problem(EU13), both of the algorithms could not find a feasible

solution. So we doubt that this problem may be infeasible.

The computational results are presented in Tables 5.1-3 below. The first

column expresses the lower bound attained in Chapter 4. Tabu column represents

the results of the Tabu Search algorithm, and B&P column represents the results

of the Branch-and-Price algorithm. And the last column shows the percentage

difference between the best value found and the lower bound.

Our algorithms were implemented in C and executed on a computer equipped

with Intel Celeron 2.80 GHz processor and Red Hat Linux 3.2.2.5. CPU times

of algorithms in seconds are given at the columns following the result columns of

algorithms, respectively. In the Branch-and-Price algorithm, LP relaxations are

solved by Cplex 8.1. Also the lower bounds are obtained by Cplex 8.1.

It is observed that, the gap between lower and upper bound generally increases

as the number of nodes increases. Because as the node size increases, the problem

gets harder and Aggregated Relaxation does not improve the lower bound found

by adding inequalities to the LP relaxation of the original formulation. Nearly in

all cases the gap between lower and upper bounds when low capacity lightpaths

are used is greater than the gap when high capacity lightpaths are used. This is

expected since low capacity lightpaths result in more number of lightpaths when

compared with high capacity ones.

CHAPTER 5. UPPER BOUND 49

LB Tabu CPU B&P CPU Gap(%)
US1 14 15 25 X1 710 7.14
US2 9 9 4 OPT2 - 0.00
US3 11 12 10 X 71 9.09
US4 9 9 2 OPT - 0.00
US5 9 9 2 OPT - 0.00
US6 9 9 2 OPT - 0.00
US7 29 35 673 X 43200 20.69
US8 14 16 81 X 910 14.29
US9 19 24 2184 23 43200 21.05
US10 14 14 29 OPT - 0.00
US11 14 17 38 16 43200 14.29
US12 14 14 15 OPT - 0.00
US13 53 64 19494 X 43200 20.75
US14 19 25 815 X 43200 31.58
US15 38 49 1120 X 43200 28.95
US16 19 22 295 X 43200 15.79
US17 19 28 466 X 43200 47.37
US18 19 19 89 OPT - 0.00

1No improved solution found
2Tabu Search is optimal. B&P algorihtm is not executed.

Table 5.1: Algorithm Results of U.S. cities

LB Tabu CPU B&P CPU Gap(%)
TR1 30 36 1174 X 43200 20.00
TR2 14 16 64 X 2318 14.29
TR3 21 26 141 25 43200 19.05
TR4 14 14 31 OPT - 0.00
TR5 14 17 38 16 43200 14.29
TR6 14 14 16 OPT - 0.00

Table 5.2: Algorithm Results of T.R. cities

CHAPTER 5. UPPER BOUND 50

LB Tabu CPU B&P CPU Gap(%)
EU1 13 15 26 X 5779 15.38
EU2 9 9 4 OPT - 0.00
EU3 11 12 12 X 95 9.09
EU4 9 9 3 OPT - 0.00
EU5 9 9 2 OPT - 0.00
EU6 9 9 2 OPT - 0.00
EU7 29 35 605 X 43200 20.69
EU8 14 15 79 X 886 7.14
EU9 20 26 174 25 43200 25.00
EU10 14 14 38 OPT - 0.00
EU11 14 16 37 X 9002 14.29
EU12 14 14 19 OPT - 0.00
EU13 75 X - X - -
EU14 23 35 2780 X 43200 52.17
EU15 46 61 3293 X 43200 32.61
EU16 23 27 921 X 43200 17.39
EU17 28 41 1263 39 43200 39.29
EU18 23 24 260 X 43200 4.35

Table 5.3: Algorithm Results of E.U. cities

Chapter 6

Conclusion

In this thesis, we studied the problem of logical network design in telecommu-

nications networks. The problem contains location of lightpaths and routing of

commodities over these lightpaths. Our aim is to find a feasible network topology

and routing of commodities over that topology while minimizing the number of

lightpaths used. Besides the usual flow conservation constraints, we have band-

width capacity constraints, degree constraints and delay constraints.

First we introduced three different formulations of the problem, namely Inte-

ger Programming Formulation, Aggregated Formulation and Path Formulation.

After that, we considered four sets of valid inequalities: Cutset Inequalities, Link

Inequalities, Flux Inequalities and Partition Inequalities. To obtain a lower bound

to our problem, we give a relaxation of Aggregated Formulation. Then, some

computational experiments are done in order to observe the effects of these in-

equalities and relaxation of Aggregated Formulation to lower bound of original

formulation. Link Inequalities are found to be more powerful than other inequal-

ities. Partition Inequalities dominate when capacities are high and number of

commodities is less. In small instances, relaxation of Aggregated Formulation

improved the lower bound found by adding all of four inequalities.

The problem is very difficult to solve to optimality. Therefore we developed

51

CHAPTER 6. CONCLUSION 52

two heuristic approaches to the problem. The first one is the Tabu Search al-

gorithm. Tabu Search tries to solve the problem in two steps. First a network

topology is generated, and then the commodities are routed over this fixed topol-

ogy. The algorithm starts with initial feasible solutions and at each iteration it

makes a local search to find neighborhood topologies and moves to a neighboring

topology with minimum number of links. For a given network topology, finding

the optimum routing of commodities is also a very hard problem. This problem

is named as Integer Multicommodity Network Flow Problem. A fast heuristic

solution procedure is applied to find a feasible routing for a fixed topology. This

procedure is used as a subroutine for our Tabu Search Algorithm.

The second algorithm we proposed is a Branch-and-Price algorithm. As a

column generation model, path formulation of the problem is used and sets of

columns are left out of the formulation. A pricing procedure is applied throughout

the Branch-and-Bound tree to generate new columns. In the pricing procedure,

LP relaxation of the problem is solved and the columns that are not included

in current LP with negative costs are found and added to the LP relaxation.

After adding new variables, LP is reoptimized and pricing procedure is repeated.

Whenever pricing procedure stops finding any new columns, branching is applied.

First we branch on link variables. If link variables are integral, we apply a special

branching procedure for path variables that preserves the structure of the pricing

procedure.

The proposed algorithms are tested on several test problems with different

characteristics. First we apply Tabu Search algorithm for test problems. The

solution of the Tabu Search algorithm is used an initial solution for the Branch-

and-Price algorithm, and the objective value of this solution is used in the pruning

of nodes. The results are compared with the lower bounds found.

A further research avenue can be to use cutting plane techniques or Lagrangian

heuristics. Rounding techniques and heuristics that use the optimal solution of

the LP may be investigated. For example, locating only a few lightpaths by

rounding optimal solution of LP relaxation and reoptimizing the LP may be an

alternative way of generating feasible solutions. In the Tabu Search algorithm, a

CHAPTER 6. CONCLUSION 53

better method of routing commodities may be used for IMNFP. In the Branch-

and-Price algorithm, new branching rules that provide faster convergence may be

found. In this thesis, we assumed only one type of technology can be installed

on the edges. A further research topic can be studying network design problems

with two types of technologies. In this thesis, we take the location cost of every

lightpath as the same regardless of which node pair is connected. But, in some

cases cost of locating a ligthpath may depend on the distance between node pair,

therefore we may have different location costs for possible links.

Bibliography

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, Englewood Cliffs, N.J., 1993.

[2] F. Alvelos and J. V. de Carvalho. Comparing branch-and-price algorithms

for the unsplittable multicommodity flow problem. In International Network

Optimization Conference, 2003.

[3] F. Barahona. Network design using cut inequalities. SIAM Journal on

Optimization, 6:823–837, 1996.

[4] C. Barnhart, C. Hane, E. Johnson, and G. Sigismondi. A column generation

and partitioning approach for multicommodity flow problems. Telecommu-

nications Systems, 3:239–258, 1995.

[5] C. Barnhart, C. Hane, and P. H. Vance. Using branch-and-price-and-cut to

solve origin-destination integer multicommodity flow problems. Operations

Research, 48:318–326, 2000.

[6] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and

P. H. Vance. Branch-and-price: Column generation for solving huge integer

programs. Operations Research, 46(3):316–329, 1998.

[7] C. Barnhart and Y. Sheffi. A network-based primal-dual heuristic for the

solution of multicommodity network flow problem. Transportation Science,

27(2):102–117, 1993.

54

BIBLIOGRAPHY 55

[8] D. Bienstock and O. Günlük. Computational experience with a difficult

mixed integer multicommodity flow problem. Mathematical Programming,

68:213–237, 1995.

[9] G. Dahl, A. Martin, and M. Stoer. Routing through virtual paths in layered

telecommunications networks. Operations Research, 47:693–702, 1999.

[10] B. Gendron and T. G. Crainic. Relaxations for multicommodity capacitated

network design problems. In Publication CRT-965, 1994.

[11] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[12] İ.C. . Kepek. Topology design in communication networks. Master’s thesis,

Bilkent University, 2003.

[13] E. Karasan, O. Ekin-Karasan, N. Akar, and M. Pinar. mesh topology design

in overlay virtual private networks. Electronics Letters, 38(16):939–941, 2002.

[14] T. L. Magnanti, P. Mirchandani, and R. Vachani. Modeling and solving

the two facility capacitated network loading problem. Operations Research,

43(1):142–157, 1995.

[15] T. L. Magnanti and R. T. Wong. Network design and transportation plan-

ning: Models and algorithms. Transportation Science, 18(1):1–55, Feb. 1984.

[16] M. Minoux. Network synthesis and optimum network design problems: Mod-

els, solution methods and applications. Network, 19:313–360, 1989.

[17] R. Ramaswami and K. Sivarajan. Design of logical topologies for wavelength-

routed optical networks. IEEE Journal on Selected Areas in Communica-

tions, 14:840–851, 1996.

[18] T. J. V. Roy and L. A. Wolsey. Valid inequalities and seperation for un-

capacitated fixed charge networks. Operations Research Letters, 4:105–112,

1985.

