PARAMETER SELECTION FOR GENETIC ALGORITHM (GA)-BASED
SIMULATION OPTIMIZATION

A THESIS
SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL
ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCES
OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

By
Onur Boyabath

August, 2001



I certify that I have read this thesis and in my opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Thsan Sabuncuoglu (Principal Advisor)

I certify that I have read this thesis and in my opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Master of Science.

Assoc. Prof. M. Selim Aktiirk

I certify that I have read this thesis and in my opinion it is fully adequate, in scope and in

quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dogan Serel

Approved for the Institute of Engineering and Sciences:

Prof. Mehmet Baray

Director of Institute of Engineering and Sciences



ABSTRACT

PARAMETER SELECTION FOR GENETIC ALGORITHM (GA)-BASED SIMULATION
OPTIMIZATION

Onur Boyabatlh
M.S. in Industrial Engineering
Supervisor: Assoc. Prof. Thsan Sabuncuoglu
August, 2001

Improvements on heuristic techniques with the availability of faster PC’s increase the
importance of simulation-optimization (sim/opt) applications. Sim/opt methodologies use
computer simulation integrated with an optimization sub-routine to optimize the problems of
interest. The main contribution of these methods is to make simulation as a prescriptive tool
rather than a descriptive tool, which has been widely used as the descriptive tool for
estimating the performance of complex stochastic systems. Sim/opt methodologies have been
applied on various combinatorial optimization problems, and the current trend in sim/opt area
is the use of meta-heuristic techniques. Genetic Algorithm (GA) is the well known meta-
heuristic, which is a global search algorithm taking its inspiration from natural genetics. GA
has several parameters affecting its performance. Even for the GA with same structural
parameters (coding scheme, operator types, stopping criterion), the different combinations of
numerical parameters (initial population type, population size, maximum generation number
and the crossover and mutation probabilities) may lead to drastic changes in the performance
of the algorithm. This study examines the effects of numerical parameters of GA on its
performance in terms of both fitness and CPU time; and proposes guidelines for appropriate
parameter selection. A test problem of a serial assembly line taken from the literature is used
for the GA-based simulation-optimization application. A genetic algorithm coded in C is
integrated with a simulation model developed using SIMAN simulation language.
Modifications on the test problem are made to analyze the behavior of GA parameters under
different experimental conditions. The computational results reveal that in the case of a
dominant set of decision variables, for rapid convergent GA applications high mutation rates
are more useful, whereas the crossover operator does not have any significant impact on GA
performance.

Keywords: Simulation, Optimization, Genetic Algorithm, parameter selection



OZET

GENETIK ALGORITMALARA BAGLI BENZETIM-ENIYILEME
UYGULAMALARINDA PARAMETRE SECIMi

Onur Boyabatlh
Endiistri Miihendisligi Boliimii Yiiksek Lisans
Tez Yéneticisi: Dog. Dr. Thsan Sabuncuoglu
Agustos, 2001

Daha hizli kisisel bilgisayarlarin varligi, bulgusal tekniklerdeki ilerlemelerle birlikte
benzetim-eniyileme uygulamalarinin dnemini arttirmistir. Benzetim-eniyileme metodlar ilgili
problemleri eniyilemek icin, bilgisayar benzetimini bir eniyileme alt-rutini ile tiimleyerek
kullanirlar. Bu metodlarin ana katkisi, kompleks rassal sistemlerin performanslarini
kestirirken tasfir edici bir arag¢ olarak yayginca kullanilan benzetimi, hiitkmedici bir arag¢ haline
getirmektir. Benzetim-eniyileme metodlar1 birgok birlesi eniyileme problemleri iizerinde
uygulanmistir, ve benzetim-eniyileme igindeki su anki trend meta-bulgusal tekniklerin
kullanilmasidir. Genetik algoritma en yaygin meta-bulgusal teknik olup, ilhamini dogal
genetikten alan tiimel arama algoritmasidir. Genetik algoritmalarin performansini etkileyen
bir¢ok parametresi vardir. Ayni yapisal parametredeki (kodlama yapisi, igslemci cesitleri,
sonlanma kriteri)genetik algoritmalarda bile, sayisal parametrelerin ( populasyon biiytikliigii,
en yiiksek cenerasyon sayisi, degisim ve eseyleme olasiliklari, baslangi¢ popiilasyonu ¢esidi)
degisik birlesimi, algoritmanin performansinda siddetli degisikliklere meydan verebilir. Bu
calisma sayisal parametrelerin genetik algoritmanin kabiliyet ve ana islemci zamanina
dayanan performansi lizerindeki etkilerini inceler. Uygun parametre se¢imleri i¢in rehberlik
Onerir. Literatiirden alinan bir seri montaj hatti, test problemi olarak genetik algoritmalara
dayanan benzetim-eniyileme uygulamasinda kullaniliyor. C dilinde kodlanan genetik
algoritma, SIMAN kullanilarak gelistirilen benzetim modeline timlenmistir. Test problemi
tizerinde degisiklikler yapilarak genetic algoritmanin parametrelerinin degisik deneysel
kosullrdaki davraniglar1 incelenmistir. Hesaplanan sonuglar ortaya c¢ikarmustir ki; karar
degiskenlerinin iistiin bir seti oldugu durumda, hizli yakinsak genetik algoritmalar icin yiliksek
degisim olasilig1 daha kullanisliyken, eseyleme islemcisinin genetik algoritmanin performansi
tizerinde belirleyici bir etkisi olmamaktadir.

Anahtar Kelimeler: Benzetim, Eniyileme, Genetik Algoritma, parametre se¢imi
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CHAPTER 1

INTRODUCTION

When the systems under consideration are complex and contain stochastic features, in
case of almost all real-life situations, analytical models to represent the system behavior
become impossible. In these situations, simulation is usually recommended as the tool for the
analysis of the system. The goal of the simulation is to measure the performance of the system
under some set of input parameters (alternatives or decision variables). Input parameters are
plugged in the simulation model, and outputs (performance measures) are measured at the end
of the simulation.

Optimization is finding the parameter (decision variables) combination, which gives the
best performance (best objective function value) among all feasible combinations of
parameters. There are many optimization algorithms developed in the literature, and most of
them require mathematical expression of model and objective function, which becomes an
arduous task for complex systems. The main advantage of simulation appears here, that is, it
does not require mathematical expression of model and even objective function.

Unfortunately simulation itself is not an optimization technique. The best thing that can
be done with only simulation is, analyst can simulate the system under different combinations
of decision variables and select the one with the best performance. When the solution space is
large, it is impossible to process all the points, thus the conclusions may be misleading. This
leads the use of simulation incorporated with the optimization algorithms, which corresponds
the main frame of all simulation-optimization techniques. The optimization algorithm
proceeds by going new solutions from current solutions, and the performance of solutions are
measured by simulation. The procedure iteratively continues until some stopping criterion is
met, and best result obtained is set to be the optimal solution. The flowchart in Figure 1 gives

the general overview of the simulation-optimization techniques.



Measure of

Initial Solution Performance of Is termination
Set Solutions by condition met?

Simulation

Creation of New
Solutions by NO YES
Optimization  [€
Technique v
Report the best
result

Figure 1: Flowchart of Simulation-Optimization Techniques

After the power of simulation-optimization techniques first observed, there have been
various optimization methods that were integrated with the simulation. Earlier developments
were generally local search algorithms, which benefits from the derivative or gradient
information of the solution space. As the PC’s become faster, and new heuristic techniques
are developed, importance of simulation-optimization (sim/opt) is increased, and new
methodologies are included in sim/opt literature. There became a shift from local search to
global search algorithms, which generally do not require explicit mathematical
representations.

The sim/opt literature has used the inferences gathered from other classes of science in
the development of global search algorithms. Different processes in nature and other scientific
branches have incorporated to the optimization literature by the excellent work of several
authors. Meta-heuristics like simulated annealing and genetic algorithms are developed by
this manner. There will be a detailed discussion in Chapter 2 about the simulation-
optimization techniques.

Genetic Algorithm (GA) is a search algorithm based on the mechanics of natural
selection and natural genetics. In natural genetics, genes in the chromosomes represent the
physical features of individuals, and the presence/absence of these genes and their order

determine the characteristics of individuals. Traits of individuals are passed through



generations by genetic operators, and the famous “survival of the fittest” principle is valid
through generations, which means that the highly fit individuals, who can be accustomed to
the environmental factors have more chance to deliver their genetic structure to future
generations.

In GA, individuals represent the solutions to the problem under consideration. Starting
from an initial population, GA proceeds population by population, each time creating new
individuals from the current individuals by some genetic operators. Highly fit individuals
have more chance to transfer their traits to future generations, like in the case of natural
genetics. In theory every generation contains more fit individuals than the previous generation
on the average, thus GA goes to better solutions as the algorithm proceeds. GA maintains
iteratively and stops when the termination condition is met. The best solution found so far, is
the solution to the optimization problem. A detailed explanation of GA is given in Chapter 3.

After Holland’s work (Holland, 1975) and Goldberg’s book (Goldberg, 1989), there
have been a lot of implementations of GA in the optimization literature. General problems
like traveling salesman problem, quadratic assignment problem and graph coloring, and more
specific problems like assembly line balancing, layout optimization and job shop scheduling
have been approached by GA. As the power of GA is observed, and applications to different
problems increase, an extended literature about the theory and mathematical background of
GA is also developed. These are given Chapter 2.

GA has several parameters that affect its performance. These parameters can be
classified into two groups, structural and numerical parameters. Structural parameters are
concerned with the structure of GA; that is, any alteration of these parameters requires re-
coding of the algorithm, which also affects the performance of GA drastically. The coding
scheme, operator types and stopping criterion are the main parameters of this group. For
example, changing the stopping criterion needs further re-coding of GA. Consider the two
different stopping criteria, maximum generation number and convergence of the generations.
For maximum generation termination, GA proceeds until the maximum number of generation
is achieved, thus it will be enough to count the number of generations processed in the
algorithm. But for the convergence criteria, in which GA stops when there is no significant
difference between the population’s maximum and average, GA should control the average

and maximum of each generation iteratively, which requires further coding in GA.



The second group, numerical parameters, is composed of population size, maximum
generation number, initial population type and operator probabilities. Alterations of these
parameters do not require, a significant re-coding of GA, only the numerical variables defined
in the algorithm are altered. For instance in the proposed GA of this study, where the detailed
explanation is given in Chapter 4, to change the population size parameter, it is enough to
change the global variable’s value defining the population size, from the current level to the
desired level. Although change in levels of these parameters do not have a significant
alteration on the coding of GA, even for the same structural parameter set, GA may show
different performance under distinct set of numerical parameters. Detailed explanation about
all these parameters is given in Chapter 4.

Different parameter settings usually lead to different results in GA applications, for that
reason, a number of studies are conducted about determining the appropriate levels of
parameters. These studies are discussed in Chapter 2 by reviewing the GA literature. There
are several studies about the theoretical development of GA applications for different problem
types, but these studies generally consider one parameter at a time. The drastic changes in GA
performance according to structural parameters help in the construction of literature about
selection of appropriate levels of them. For instance, the analyst can determine the adequate
coding scheme for his GA depending on the problem under consideration.

Numerical parameters are analyzed thoroughly, but as mentioned above these studies
generally include one or two parameters at a time. To the best of our knowledge, there is no
study in the literature that examines the behavior of al/l numerical parameters and proposes
guidelines for parameter selections.

This study investigates the effects of numerical parameters on GA performance, by
using a test problem taken from the literature. The other set of parameters, the structural
parameters of GA are set to convenient levels, and the analysis will be held only for the
numerical parameters. As mentioned above, different settings of structural parameters also
alter GA performance drastically, thus it is another difficult task to determine the appropriate
settings of these parameters. In the selection process, we review the literature, and try to select
the most common and the simplest and the most easy-to code structural parameters for
proposed GA. The details will be covered in Chapter 4.

The main aspect of this study is to make general conclusions about numerical

parameters of GA, in addition to finding the best combination of the parameters for obtaining



best performance for the test problem considered. In our opinion, this will be a valuable
contribution to GA literature for setting criteria to determine the appropriate levels of these
parameters and to present their interactions regardless of the problem of interest. The best
numerical parameter settings will be presented for the test problem, and general conclusions
will be drawn from the analysis, by also examining the extensions of the test problem. The
results of this analysis may provide background to GA-based simulation-optimization
applications in selecting the appropriate levels of GA parameters leading to best performance
and understanding the interactions between the parameters. Also the terminology used in the
discussion of computational results of the test problem will be useful for other researchers in
stating rational explanations for performance of GA in their own applications under different
parameter settings.

The rest of the thesis is organized as follows. Chapter 2 presents the related literature
about simulation-optimization techniques and genetic algorithms. Chapter 3 gives a brief
overview about genetic algorithms, thus the knowledgeable readers can skip this chapter.
Chapter 4 illustrates the proposed study, and the GA-based sim/opt model used during the
analysis with the necessary statistical tools. Chapter 5 interprets the experimental results on
the original test problem. Chapter 6 presents the further analyses made on the problem
domain, whereas finally Chapter 7 gives the concluding remarks; and suggestions for future

research. Appendices provide the computer codes.



CHAPTER 2

LITERATURE REVIEW

This chapter is organized in two main sections. The first section presents the simulation-
optimization (sim/opt) literature developed up to now, with the theoretical studies and
applications to various combinatorial optimization problems. The second section is devoted to
the genetic algorithm (GA) literature, where sim/opt applications of GA are presented here

with the relevant theoretical studies together.

2.1. Simulation-Optimization Literature

After the realization of integrating the simulation with an optimization sub-routine,
there are various methodologies developed in the literature for sim/opt purposes. The first
applications start with the convolution of the present optimization algorithms with simulation,
where simulation is used for the measurement of the performance of a solution. Many
theoretical developments are achieved in sim/opt methodologies, some of which will be
presented below.

Simulation-optimization techniques can be categorized into two branches, /ocal
optimization and global optimization techniques. The local optimization techniques mainly
require some mathematical expression of the system or the solution space, like the derivative
estimation, gradient information or construction of regression models. The well-known
sim/opt procedure is the random search. The points are selected randomly from the whole
solution space and the one with the best simulation result is set to be the optimal solution.
Although it is easy to implement, since it slowly converges to optimum because of the lack of
processing of previous information in each iteration, it may result with misleading
conclusions; random search is not a reliable sim/opt procedure.

Nelder-Mead Simplex/Complex Search (Nelder and Mead, 1965) and Hooke-Jeeves
Pattern Search (Hooke and Jeeves, 1961) are other local optimization methods. The former
one requires construction of a simplex with number of vertices, and response of each vertex is

calculated by simulation. A new point is added to the simplex by discarding the worst point of



current simplex and projection of that point to the centroid of the remaining points. The latter
one, checks if any alteration in a variable results with improved performance while the other
variables are held constant. The procedure is applied for each variable, and terminated when
the incremental values do not improve the response.

Response Surface Methodology (RSM) is a popular sim/opt procedure requiring some
statistical background of the implementer. As a local optimization motive, RSM merely
depends on fitting regression equations in the solution space. Starting from an initial solution,
once a regression model is fitted by experimental designs, a movement takes place on the
regression line in the way of improved response. When there is no improvement occurring
along the regression line, new regression model is fitted on the current point. When the first
order design does not fit the sub-region or analyst is doubtful about the closeness of optimal
point, high order regression models are fitted instead of simple linear models.

Perturbation Analysis (Ho et al., 1979), Frequency Domain Analysis (Schruben and
Cogliano, 1981), Stochastic Approximation (Robbins and Monro, 1951) are the other local
optimization techniques used in sim/opt applications, whose main characteristic is the
requirement of gradient information of the solution space. These methods depend on the
derivative estimation of the solutions. The extended literature about the local optimum
seeking sim/opt algorithms can be found in excellent review papers of Meketon (1987),
Jacobsen and Schruben (1989), Safizadeh (1990), Fu (1994), Azadivar (1992) and Tekin and
Sabuncuoglu (2000).

The methodologies discussed so far are classified in local optimization techniques,
because they cannot guarantee to find the global optima of the optimization problem, which
constitutes the major drawback of all the methods. Criticism is the fact that most of them
requires mathematical expression of solution space or objective function, or some additional
information about the problem like the gradient or derivative information. Also some of them
require high level of statistical knowledge to be applied.

These pitfalls of the local optimization sim/opt procedures force people to develop new
heuristics or methodologies. The optimization people get benefit from the other branches of
science and nature itself in the development of new global search techniques. Genetic
algorithms (GA) and simulated annealing (SA) are the main examples for algorithms

developed in this manner.



GA is first developed by Holland (1975), and takes its inspiration from the natural
selection and natural genetics. The second part of this chapter examines the GA literature, and
Chapter 3 gives the major framework of GA, so the interpretation is left to these parts of this
study.

SA is included in optimization literature by Kirkpatrick (1983). SA is a search
technique drawing its inspiration form the chemistry, the process of physical annealing of
solids. The process is the heating operation of a metal to a very high temperature and then
cooling at a slow rate to a low temperature. Algorithm starts with an initial solution, and
neighbor of solution is generated by a suitable mechanism. A solution is selected in the
neighbor, if it is better in terms of objective value, then that solution is accepted as the current
solution. If vice versa, again there is a probability of accepting that solution as the current
solution. This probability depends on a parameter T, which is analogous to temperature in
physical annealing. SA begins with high values of T and stays at the same temperature for
some number of iterations, then the temperature is gradually decreased until final temperature
is reached, thus at each T, the probability of accepting poor solutions changes.

SA has found a lot of implementation areas in combinatorial optimization, because the
acceptance of poor solutions obscures the algorithm to stick on local optima. The sim/opt
applications of SA to manufacturing systems and assembly line balancing problems are
presented in below paragraphs.

Tabu search (TS) of Glover and Laguna (1997) is another search technique used in
sim/opt literature. It can be defined as a constrained search procedure, because the algorithm
is not allowed to search some subset of the solution space in each iteration, where this subset
constitutes the tabu list of TS. Although TS is younger than the other algorithms, it has found
a lot of implementation areas in combinatorial optimization and simulation-optimization
literature.

GA, SA and TS can be defined as meta-heuristics. The power of these meta-heuristics
in simulation-optimization studies takes the attention of commercial simulation software
vendors. Historically, there are several simulation packages, used in real industrial
applications, but none of them has the ability to optimize the system under consideration. The
development of these algorithms, with the improvements in computer technology made the

companies add “optimization” sub-routines to their simulation packages. Tabu search, genetic



algorithms and simulated annealing construct the main principles of the optimization sub-
routines of the commercial simulation software (Law, 2000)

The theoretical development of simulation-optimization methodologies is presented,
with brief discussions about the procedures and their major properties. The following
paragraphs illustrate some simulation-optimization studies carried on different problems,
which are summarized in Table 1.

Table 1: Summary of Simulation-Optimization Applications

Publication System Techniques

Exhaustive Search, Fibonacci

Bengu and Haddock (1986) Inventory System Search, Pattern Search,
Nelder-Mead Search

Azadivar and Lee (1988) Robot Manufacturing Cell Simplex/Complex Search

Haddock and Mittenthal (1992)| Automated Manufacturing System Simulated Annealing

Shang and Tadikamalla (1993)| Automated Manufacturing System |Response Surface Methodology

Teleb and Azadivar (1994) Flexible Manufacturing System Complex Search
Suresh and Sahu (1994) Assembly Line Balancing Simulated Annealing
Weintraub et al. (1999) Scheduling of Manufacturing System Tabu Search

Bengu and Haddock (1986) apply simulation-optimization techniques to an inventory
system to determine the optimal levels of reorder quantity and reorder level for a continuous
review inventory model. Exhaustive search, Fibonacci search, Pattern search and Nelder-
Meads search are used separately as optimization subroutines integrated with computer
simulation.

Azadivar and Lee (1988) develop a heuristic simplex method as a sim/opt methodology.
The heuristic is applied to a robot manufacturing cell with three serial workstations and
several robot manipulators in charge of loading, unloading and transporting the products. A

simplex consisting of number of vertices is constructed, and the response at each vertex is



simulated. The vertices are compared statistically, and the point whose lower confidence limit
is lower than the upper confidence limits of the rest is deleted.

Haddock and Mittenthal (1992) use simulated annealing (SA) with integrated computer
simulation to find the optimal levels of three distinct sets of decision variables for an
automated manufacturing system. There are only 120 different combinations of decision
variables, and SA is able to find the optimal solution.

Shang and Tadikamalla (1993) use response surface methodology (RSM) in the
optimization of a computer integrated manufacturing system of an automated printed circuit
board manufacturing plant via simulation. The fractional factorial designs are used to reduce
both the number of experiments, and CPU time. RSM is successful in finding near-optimal
solutions to the problem.

Teleb and Azadivar (1994) present a new approach for multi-criteria optimization of
systems using computer simulation. The methodology suggests a new way of defining a
compromise solution in terms of the maximum likelihood, which a solution will contain the
optimal solution for all objectives. The methodology is applicable to the objective functions
and constraints that are normally distributed. The complex search proposed in the study is
applied to a flexible manufacturing system, to support the methodology with empirical work.

Suresh and Sahu (1994) propose a simulated annealing (SA) algorithm to solve an
assembly line balancing problem. The study draws some conclusions about the parameters of
SA depending on the computational results gathered. The main finding is that the lower the
rate of cooling, better will be the quality of solution, but slower cooling schemes lead to
exponential increase in the computational time.

Weintraub et al. (1999) apply tabu search incorporated with computer simulation on a
scheduling problem of a large-scale manufacturing system. There are over 1000 jobs and 100
machines in the system, and the objective is the minimization of maximum lateness. The
computational results reveal that the proposed algorithm manages to find optimal or near-

optimal schedules for different industrial settings.

2.2. GA Literature
GA is first developed by Holland (1975) and his associates in University of Michigan.
Holland’s work is mainly about the theoretical development of GA, and his work presents the

mathematical expressions lying behind the logic of the algorithm. Although GA seemed to be
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a powerful global search algorithm, the complexity of the coding scheme and the CPU time it
requires were the obstacles in front of GA applications. With the availability of faster PC’s,
Goldberg’s book (1989) about GA opened a new period for GA literature.

Goldberg gives comprehensive information about GA in his book. Beside the
mathematical underpinnings, the applicative features of GA with modified operators are
presented in the book. The main important point of his study is the computer code of GA.
Goldberg edited all the code required for an excellent GA algorithm, which is very beneficial
in the implementation of GA for other optimization people. The modifications required in
original GA, developed by Holland, for various combinatorial problems are also contained in
the book.

Goldberg’s study is not the only book published about GA in the literature. Various
authors analyzes GA, and presents their findings with comprehensive discussion about GA
and its parameters. The followings are some examples.

Michalewicz’s (1992) book about GA presents the structural development of the
algorithm. The working principles of GA, besides the effectiveness are presented in this
study. There are also various extensions of GA operators to guide the analyst in different
applications. There is a section about the comparison of binary and floating-point
representations. Also coding structures of GA applied to different combinatorial problems like
traveling salesman problem (TSP) and transportation problem are presented in the book.

Reeves (1993) collects meta-heuristic techniques like tabu search, simulated annealing
and artificial neural networks in his book, where there is a chapter devoted to GA. Author
presents detailed explanation about GA, and the working principles of GA by constructing
theoretical work behind the algorithm. The operators and extensions of them from GA
literature have found great attention in this book. Various modifications of GA operators and
parameters are included, whereas author presents GA applications to combinatorial problems
like, TSP, scheduling, graph coloring, bin packing, set covering and Knapsack problems
finally.

Man et al. (1999) publish another book about GA, which mainly covers the signal
processing features. The book includes introductory material about GA, with mathematical
background and modified operators. Authors present GA applications in filtering, H-infinity
control, computational intelligence, speech recognition systems, production planning and

scheduling systems and communication systems, respectively.
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After the power of GA is understood, and the comprehensive books ease the application
of GA, people apply the algorithm on various optimization problems. Unfortunately GA has
several parameters affecting its performance in finding near-optimal solutions, and inadequate
settings of these parameters may lead to very poor performance of GA. Thus, theoretical
studies are conducted for determining appropriate parameter levels for different applications.
In fact, most theoretical studies aim to make general conclusions that are valid for all GA
applications, but the problem-dependent characteristics of GA hinder these conclusions.

Another class of theoretical studies is conducted on the development of new GA
operators. Holland’s GA has had a lot of modifications since it was developed. The main
reason behind these studies is the inapplicability of GA to some problems. Since the known
operators are invalid for the structure of the problem under consideration, or give poor
performance of GA, new kind of operators and different types of coding schemes are
developed to harmonize the problem with GA and increase the performance. Table 2
summarizes the theoretical studies carried about GA, which are presented below paragraphs.

Syswerda (1989) proposes a new type of crossover “uniform crossover” to GA
literature. The mathematical and theoretical underpinnings of this operator are presented
whereas empirical comparisons of the operator with one-point and two-point crossovers are
handled on some function optimization test problems. Uniform crossover leads to better
performance in most of the empirical studies of the author.

Goldberg (1989) analyzes the selection of appropriate population sizes for serial and
parallel GA implementations. The approximate rate of schema processing is the main
response of the analysis, which is maximized. Exact and asymptotic formulas are also
presented for the expected number of schemata in a population of strings. The computational
results suggest that relatively small population size is adequate for serial implementations,
whereas large populations are required for parallel implementations.

Schaffer et al. (1989) study the effects of some control parameters of GA on its
performance. This is the closest study to ours. The control parameters selected are the
population size, crossover and mutation probabilities and number of crossover points used in
each mating. Experimental design is used for statistical analysis of the factors, with empirical
studies on some function optimizations. The computational results reveal that the selection
and mutation operators together is very significant in the behavior of GA. Mutation appears to

be more effective than crossover on GA performance in this study.

12



Table 2: Summary of Theoretical Studies on Genetic Algorithms

Publication

Description

Additional Features

Syswerda (1989)

Development of new type of
crossover

"Uniform Crossover"

Comparison with one-point, two-point

crossovers

Goldberg (1989)

Selection of appropriate population

sizes

Distinct analyses for parallel and

serial implementations

Schaffer et al. (1989)

Analysis of effects of some control

parameters of GA on its performance

Population size, operator probabilities
and number of cross sites are

included

Richardson et al. (1989)

Guidelines for assigning penalty
functions to infeasible solutions

Fogarty (1989)

Analysis of effect of varying

mutation probability on GA

Different levels of initial population

types are considered

Back (1993)

Determination of optimal
mutation rates

Separate analysis for uni-modal
and multi-modal functions

Janikow and Michalewicz (1993)

Comparison of binary coding with

floating point representation

Effect of dynamic mutation

is measured for both cases

Starkweather et al. (1993)

Comparison of genetic

sequencing operators

Empirical results are obtained on TSP
and warehouse/shipping

scheduler problem

Richardson et al. (1989) discuss some guidelines for GA with penalty functions. The

concept of penalty functions is to penalize infeasible observations instead of discarding them,

in order not to loose genetic information present in infeasible solutions. Generally for

maximization problems, infeasible solutions are assigned to be low fitness values not to be

selected frequently. Current thought is to penalize harshly, but the study presents some

guidelines for the use of these penalty functions.

Fogarty (1989) discusses the effect of varying the mutation probability over time and its

effect on GA performance. A minimization type test problem is used in the analysis. Two

initial population types are used, one is a seeded population containing good solutions,

whereas the other is randomly created. It is observed that varying the mutation rate

significantly improves the performance of seeded population case, but not when the initial

population is randomly generated.
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Back (1993) studies optimal mutation rates in GA. The interaction of mutation rate with
coding scheme of GA is also investigated. The results indicate that the simple binary coding
scheme is appropriate for the test problems covered during the study. Optimal mutation rate is
1/1, where 1 is the length of string, for uni-modal function, and decreasing it towards the
search process slightly accelerates the search. For multi-modal functions, 1/1 is not
appropriate for the analysis, but there is no mutation rate proposed, since different results are
gathered from distinct test problems.

Janikow and Michalewicz (1993) compare the binary and floating point (FP) coding
representations in GA, experimentally. The experimentations are conducted on a dynamic
control problem, which is highly complex and quite difficult. For FP representation, new type
of mutation operator is generated, also effect of dynamic mutation is measured for both cases.
The CPU time performance beside the fitness (objective function value) performance is
observed. The computational results suggest that; although there are advantages of low
cardinality alphabets (binary), these advantages can be compensated for other type of coding
scheme by designing new and appropriate operators, and this may lead to better performance
of GA.

Starkweather et al. (1993) conduct a study on the comparison of several genetic
sequencing operators, which are used in scheduling type of problems. The enhanced edge
recombination operator, two types of order crossover, cycle crossover, partially matched
crossover, and position-based crossover are the operators included in the analysis. To test the
performance, a traveling salesman problem (TSP) and a warehouse/shipping scheduler
problem are used. The experimental results reveal that the effectiveness of different operators
depend on the problem domain; because operators, which perform poorly in TSP, work well
in the second problem.

The theoretical studies generally enlighten the sim/opt people in the construction of
appropriate GA for different problem types; and availability of faster PC’s encourage them to
apply this powerful global search algorithm integrated with computer simulation to various
combinatorial optimization problems like facility layout optimization, assembly line
balancing, quadratic assignment problem, job shop, manufacturing, queuing and inventory
problems. There are also studies comparing GA with other optimization methodologies by
empirical studies. The articles mentioned in the following paragraphs are summarized in

Table 3.
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Table 3: Summary of GA-based Simulation-Optimization Case Studies

Publication

System

Additional Features

Nakano (1993)

Job Shop System

3 famous job shop problems

from literature are solved

Cruz and Haddock (1993)

Inventory and Queuing Models

Comparison with IPA

(Infinitesimal Perturbation Analysis)

Yunker and Tew (1994)

University Computer System

Comparison with RSM and

Hooke-Jeeves pattern search

Suresh et al. (1995)

Facility Layout Problem

Comparison with different GA

application

Wellman and Gemmill (1995)

Asynchronous Automatic

Assembly Line

Comparison with stochastic quasi-
gradient methods

Pierreval and Tautou (1997)

Plastic Yogurt Manufacturer

Comparison with near-exhaustive
search

Azadivar and Tompkins (1999)

Production System

Comparison with random sampling
with same number of evaluations

Hamamoto et al. (1999)

Facility Layout of Pharmaceutical
Plant

Comparison with human designers
and

layout optimization packages

Fontanili et al. (2000)

Free Modular Transfer Assembly

Line

Comparison with analytical

solutions

Lee et al. (2000)

Assembly Line

Relative fithess values are
used

Nakano (1993) proposes a conventional GA for job shop problems. Job shop problem

(JSP) is one of the most well known problems of combinatorial optimization, where there are

N jobs to be processed on M machines. An operation sequence of a job is machine sequence,

and operation sequence on a machine is job sequence. The full set of job sequences is called a

representation, where a feasible representation is called a schedule. The objective is finding a

schedule that minimizes the total elapsed time. A GA model for JSP is proposed, and 3 well-

known JSP problems form optimization literature are solved with GA, and the experimental

results show that solutions generated by GA is as good as those obtained by branch and bound

methods.
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Cruz and Haddock (1993) present GA-based simulation-optimization application on
five different systems; three of which are queuing and the rest are inventory systems. The
analysis of exponential propagation of certain schema over the generation of GA run is made.
The results obtained are compared with the results gathered form IPA (infinitesimal
perturbation analysis).

Yunker and Tew (1994) compare GA with pattern search of Hooke-Jeeves (1961) and
response surface methodology via accuracy and stability by application on a test problem of
university computer system. Accuracy is the measure of how close to the optimum, where
stability is evaluated using the variance of the response function determined from 50 searches;
lower the variance more stable the process. Maximum generation number of 7 is used in GA,
where population size is 30. GA outperformed both methods for accuracy and stability, but
the significantly large computation time of GA is noted to be a trade off.

Suresh et al. (1995) apply GA on a facility layout problem. The objective is the
minimization of total workflow between departments, where 11 different extensions of the
problem are analyzed, 2 of which have Euclidean distance, whereas the rest have rectilinear
distance between stations. GA-based simulation model includes user-defined crossover and
real value representation of solutions. Random selection is used as the reproduction operator
ignoring the objective values of the solutions. 2000 generations are used as stopping criterion
with population size of 100. The results obtained are compared with the results of Tate and
Smith (1995), and except one case the proposed GA did better or same.

Wellman and Gemmill (1995) optimize an asynchronous automatic assembly line with
GA. The system is a closed loop model with 10 stations in a single loop with unreliable
stations. The buffer sizes between stations are the decision variables; the maximum
throughput is used as the objective function. Infeasible strings are allowed in generations by
assigning low throughput (penalty) to them. The results are compared with the results of
stochastic quasi-gradient method (SQM), and GA cannot outperform SQM statistically.

Pierreval and Tautou (1997) use GA for the optimization of manufacturing system,
which produces printed plastic yogurt containers. Decision variables are the silo capacity,
which holds the initial inventory, warehouse capacity, which carries the finished goods
inventory, and the process type applied during production. Total cost is minimized as the
objective of the problem. Real chromosome representation is used, and a user-defined

mutation is applied. When a mutation has to be performed on a numerical gene, either a
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uniform selection is done in the interval (Min, Max) with probability 0.5, or one of the two
interval bounds are selected randomly. Results are compared with near-exhaustive search, and
same minimum is obtained in both applications.

Azadivar and Tompkins (1999) use GA with qualitative variables in the optimization of
a production system. The system is a complex one, with several stages; a machine processed
in each stage with different processing characteristic, and different routings for parts. The
objective is the minimization of WIP (work-in-process) for a given production requirement,
whereas the decision variables are the types of machines for each stage, routing of each part
type, and layout plan for machines. During the GA implementation, simulation models are
automatically generated through an object-oriented process and are evaluated for various
candidate configurations of the system. Real chromosome representation is used with a
population size of 70, and no mutation is allowed. Results of GA are compared with random
sampling with same number of evaluations.

Hamamoto et al. (1999) apply GA-based simulation optimization to facility layout
problem, presenting a case study on medium-size and small-size pharmaceutical plants
separately. The multiple-objective analysis of maximizing the throughput rate and minimizing
the traveling time per trip is conducted in the study. The results of GA are compared with the
current real performance and the outputs of several layout optimization packages like Corelap,
Craft and Blocplan. The comparison indicates that proposed GA outperforms human
designers and other layout optimization algorithms in minimizing the traveling time per trip
under the same throughput rate.

Fontanili et al. (2000) use GA in optimization of free modular transfer assembly line,
where products move on the line according to the generalized flow shop, each product be
realized in only one round without necessarily going on all the workstations. The routing of a
product is constituted of “non-premature” and “non-redundant” phases. Simulation software
incorporated with a Pascal code is used for the implementation. The inter-release times
between 25 identical batches are determined to minimize the makespan. Real representation is
used. Reproduction in each generation takes place from the best two members of the current
population, 6 children are created. The results are compared with the analytical solutions and
GA achieves near optimal solutions.

Lee et al. (2000) apply GA based simulation-optimization to an assembly line problem.

The assembly line in the problem is a semi-automated serial compressor assembly line
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comprising five workstations connected by accumulating belt conveyors, which also act as
buffers. Decision variables are processing times of conveyors and stations, whereas there are
three separate analysis done according to three distinct objective functions; maximizing
throughput, minimizing tardiness and maximizing the utilization. Relative fitness values are
used instead of the direct objective function values, with 25% of elitism. Different levels of
crossover, mutation probabilities, and population size and elitism percent are investigated.
Considering the literature review here, it can be stated that GA has found applications
on various combinatorial optimization problems. The power of search mechanism of GA
makes the algorithm appropriate for optimization problems. As the applications have
proceeded, theoretical studies are conducted in GA literature. These studies are mainly about
the understanding of mathematical underpinnings of GA, development of new operators and
structures for GA applications, and the determination of appropriate levels of the parameter
settings of GA. The latter one is concerned with our study. This kind of studies generally
contains analysis of only one parameter at a time, and ignores the interactions among the
other parameters. To the best of our knowledge, there is no a study in the literature analyzing
all the GA parameters, initial population type, population size, maximum generation number,
and mutation and crossover probabilities. Our work will be a contribution to GA-based
sim/opt literature by presenting the interactions between the numerical parameters, with the
conclusions made for the best parameter settings of GA for the problem domain under

consideration.

18



CHAPTER 3

GENETIC ALGORITHMS

3.1. Introduction

Genetic algorithms (GA) are search algorithms based on the mechanics of natural
selection and natural genetics. In natural genetics, genes in the chromosomes act as a code for
the physical features of each individual organism, and each organism is completely described
by its gene values (its alleles). The presence/absence of genes and their order in the
chromosome decide the characteristic features of individual species of a population. The
different traits are passed on from one generation to the next through different biological
processes, which operate on the genetic structure. By this process of genetic change and
survival of the fittest, a population well adapted to the environment results.

Similarly, in a GA, a finite-length string coding is used to describe the necessary
problem parameters of each solution for the search problem under consideration. Each string
corresponds to an individual, and every individual presents its power in the survival process
by terms of its fitness value. Higher the fitness values, better the individuals performance in
the evolution process. There is a population of individuals with their strings and fitness
values, which corresponds to a generation. GA is an iterative algorithm applied generation by
generation. In every generation, first, parents are selected depending on their fitness values,
and then by some genetic operators the strings of children are produced which contribute to
the members of the new population. With their calculated fitness values, the new generation is
obtained. And this procedure is repeated until some stopping criterion is met (generally
depending on the number of generations). Like the natural genetics as the generations
proceed, the fitness of the whole population (average fitness) increases, corresponding to
better populations. The meaning is that, good properties of the individuals are carried to the
further generations by GA, as in the evolution process. Figure 2 summarizes the logic of GA

basically.
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Figure 2: Flowchart of Simple Genetic Algorithm

3.2. Conceptual Framework

The GA starts with the coding of the parameters of the optimization problem to the
strings. Although the real values of the parameters can be used in strings, generally the
parameters are coded in strings over some user-defined alphabet (or alleles). Thus, GA
generally works with the coding of the parameters instead of the parameters themselves. In
most of the GA applications, binary coding of 1’s and 0’s are used, but also the other coding
structures like Gray coding, sequence representation and real value coding is applicable. Since
it is the most convenient and common one, binary coding is illustrated and used here.

The coding scheme must map the variable to a value between its maximum and
minimum range. In a single parameter-coding structure, the string with all 0’s should map to
the minimum value of the variable, while the string with all 1’s should correspond to the
maximum value of the variable. The other values are mapped linearly in between them. To
illustrate a typical coding, consider an optimization problem with one decision variable x,
which ranges between 1 and 4. Let the parameter (designed length value) be coded in a two-
bit integer. In this coding, the string “00” represents the real value 1, while “11” corresponds
to 4. Similarly “01” represents 2, and “10” corresponds to 3.

A multi-parameter coding can be constructed by concatenating several parameters
coding in a single string. Consider a case with two variables having the following binary

representation:
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Variable 1: 1111 String
Variable 2: 0000 11110000

Then the string is developed by the concatenation of each variable strings, resulting a
eight-length string (11110000), where first four entries represent the first variable, while the
last four belong to the second.

In GA’s terminology, each string along with its decoded value is an individual, and the
entity 1 or 0 in the string is an allele. A collection of such individuals in a user-defined
solution space is called a population. A generation is the discrete time step required to
complete creation of a new population, including the string processing and fitness calculation.

In nature, populations evolve by selective pressures, mating among the individuals, and
some occasional events that alter the genetic structure, such as mutation. In GA’s, similar
effects are simulated by specific operators, and new population is created from the old
population by recombination, duplication and the changing of strings of the individuals. In

many GA applications there are three basic operators used:

. Reproduction
° Crossover
° Mutation

Reproduction (or selection) is normally the first operation employed on a population. It
is the selection procedure by which highly productive individuals live and reproduce, and less
productive ones die, where the productivity of an individual is defined as the individual’s
fitness. The selected individuals are the volunteers for the parents of the next generation, or
they may be copied to the next generation directly. In each case, they have the ability to carry
their good properties to the next generation.

Reproduction selects individuals based on their fitness values relative to that of the
population. Although various selection schemes have been proposed and implemented, the
most common selection procedure known is the Roulette Wheel selection.

In Roulette Wheel selection, the individual i can be selected with a probability f; / Z f;

where f; denotes the fitness value of i individual, and summation is taken over all the
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individuals in the population. In this way, more highly fit strings have a higher probability of
selection. Obviously, to apply this type of reproduction, the fitness values should be non-
negative.

Fitness value is usually the objective function value of the optimization problems.
However, there are some situations that the naive choice of objective value becomes unusable
or inadequate. A phenomenon that is often observed is, as the algorithm proceeds the
population converges to set of similar solutions in terms of objective values, where it is very
hard to discriminate the better solutions among the population. Another trivial situation is the
presence of negative fitness values. To apply roulette wheel selection, negative fitness values
should be avoided. In both cases fitness scaling is used. There are several types of scaling
mechanisms in the literature like linear scaling, sigma truncation and power law scaling
(Goldberg, 1989) to handle these problems. The main aspect of these scaling algorithms is to
convert the naive fitness value to a desired manner, which gathers the availability of
discrimination and application of selection procedures.

Since selection is a stochastic process, there is no guarantee that the best individual
(one with the maximum fitness value) will survive into the next generation. One way of
dealing such a situation is elitism, in which the best one or more members of the population is
directly copied to the next generation.

The second operation, crossover proceeds in two steps. First, two individuals are picked
at random from the mating pool generated by the reproduction operator as the potential
parents. Then the exchange of genetic material (alleles) occurs between the individuals with
probability p.. The uncrossed parents are directly copied to the next generation.

The exchange operation has various types depending on the type of the crossover used.
In the literature, there are one-point, multiple-point, uniform, linear-order, partially-matched
and cycle crossover types, which are applicable to various type of problems (Reeves, 1993).
The simple one-point crossover is the most common operator used, so it will be presented
here.

Next, a cross site is selected at random over the string length, and the alleles on one
side of the site are exchanged between the individuals. For example, consider the following

binary parents with the cross site as shown:
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Parent 1: 000000
Parent 2: 1111111

Exchanging the bits to the left of the cross site, two new individuals are created following

CrosSsover:

Child1: 001111
Child2: 110000

These become members of the new population. This process continues until the
population is filled with new individuals. Thus, the crossover operator creates new individuals
by mixing the genetic information of the exiting individuals. Crossover plays a primary role
with the reproduction operator in GA. After reproduction emphasizes the highly fit strings,
crossover recombines these selected strings, to produce better individuals. They are the main
operators, which avoid the inheritance of the good properties of individuals to the further
generations.

Mutation is another operator used in GA. It is the occasional alteration of an allele’s
value with some specified probability p,. Even tough there are other kinds of mutation
seemed in the GA literature, the most common used is the bit mutation. In bit mutation, every
bit of the string is mutated with probability p. For binary coded strings, mutation is defined
as the conversion of 1’s to 0, and vice versa. For example, consider the following string and

mutation scheme:
String: 111111

Then after mutation of 2" and 4™ bits, the string becomes:
New String: 101011

Mutation is a very important operator of the GA, since it gathers the diversity to the
population. Also it is a guard for premature convergence, that is, mutation helps GA not to
stick to local optima by the diversification it provides. Without mutation GA may converge to
a local optima, since every generation similar strings are processed. But mutation has the
ability to directly change the parameter’s value, contributing to a change in the searched
space.

There are other operators like inversion and dominance developed in GA literature

(Reeves, 1993), but the basic algorithm establishes from these three main operators. After all
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the operators are applied to the current population, we have a set of individuals of the new
population. With the calculated fitness values, these new individuals correspond to the next
generation. GA proceeds iteratively until some termination condition is met. The most
common used stopping criterion is the maximum generation number. After some predefined
generation is reached, algorithm is terminated. Another application is that, the algorithm is
terminated if there is no significant increase in the average fitness or the maximum fitness of
the populations among last few generations. Also the convergence of the average fitness to
the maximum fitness of the population with a precision level is another stopping condition
used in the literature.

At the end of the algorithm, best result found so far is the solution of the optimization

problem under consideration.

3.3. Mathematical Background

GA is a powerful search algorithm, which takes its basic principles from the natural
evolution and genetics. Beside the algorithm itself, substantial amount of effort is spent on
understanding the mathematical underpinnings behind GA’s. A more rigorous understanding
of the operators may be obtained by considering the processing of similarities among the
strings. To describe the mathematical interpretation of GA, some terminologies should be
defined. A schema (schemata, plural), as defined by Holland (1975), is a similarity template
describing a subset of strings with similarities at certain string positions. Consider the

following two strings:

String 1: 10111
String 2: 00110

These two strings have several similarity templates in common. If we define a * as a
“wild card” to represent either a 1 or a 0, then the following are four schemata:
Hi: dkck 1 *
H,: ¥0*1*
Hj: 1*%%]

H: 00**0
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H, and H, contain both strings, whereas only first string is contained in H; and the second
string in Hy. In general, for alphabets of cardinality k and length 1, there are (k+1)1 schemata.
Two terms used to describe a schema H are its order o(H) and its defining length &H).
The order is defined as the number of defined positions (with 1°s and 0’s) in H, and the
defining length is defined as the distance between the outermost defined positions in H. In the

above example,

o(H)) =1 o(H,) =2 o(Hs) =2 o(Hy) = 3
JH)=1-1=0&Hy)=4-2=2
AH3)=5-1=4&Hy)=5-1=4

With these terminologies, Holland managed to derive a lower bound on the expected
number of a schema H at generation t+1, which is computed from the expected number of

schema of H in generation t (m(H,t)):
m(H,t+1) = m(H,t) fH)/fyg [ 1- pe SH)I-1 — pyy o(H)]

where 1 is the string length, f,,, is the average fitness of the population, p. is the crossover
probability, py, is the mutation probability and f(H) is the fitness of the schema H, defined as

the ratio of total fitness of all strings contained in schema H to expected number of schema H:
f(H) = ZSiSH f(Si) / m(H,t)

According to this bound short, low-order, above-average schemata receive exponentially
increasing trials in subsequent generations. This is known as the fundamental theorem of GA
or schema theorem. Highly fit schemata of small defining length and order have a crucial role
in the mechanism of GA. Since as the length of the schemata decreases the possibility that
crossover can disturb the schemata decreases. Also as the order decreases, the possibility of
disturbance of mutation decreases. For that reason, these short, low order schemata are called

for building blocks.
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Another important feature of GA is so called intrinsic parallelism. Holland postulated
that, although there are n structures in each generation processed in GA, at each generation n’
number of schemata is processed, in other words the effective schemata processed is of the
order O(n*). This is the basic principle where the power of GA comes from. Although the
computational time to process the population is proportional to sample size n, there are
actually n’ schemata processed in parallel.

To sum up, GA seeks near optimal performance operating on building blocks, and the
allocation of exponentially increasing number of trials to these building blocks in parallel is
the essence of genetic search, where the power of GA comes from. As the generations
progress, the trials become less random as the number of desirable sub-strings increases in the
population. Because of the multiplicity of solutions, the search proceeds in parallel in the
neighborhoods of the good solutions, which enhances the ability of GA to reach optimal or

near-optimal solutions.
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CHAPTER 4

PROPOSED STUDY

The study is about the analysis of numerical parameters affecting GA performance. The
scope of the study is to determine best combination of parameters for GA based
simulation/optimization application and draw some general conclusions about the parameters.

The objective of this thesis is given in Section 4.1. Section 4.2 defines the test problem
and; Sections 4.3 and 4.4 summarize the simulation and genetic algorithm models proposed,
respectively. The validation of the proposed models is presented in Section 4.6, and finally

the statistical tools used during the analysis are explained in Section 4.7.

4.1 Study Objective

Genetic Algorithms (GA) are very powerful search mechanisms, working on the basic
principles of natural selection and natural genetics. The power and simplicity of GA make it
popular for even large-scale optimization problems. The main advantage of GA is that it does
not require neither mathematical expression of response surfaces nor any derivative or
gradient information. After Holland (1975) has proposed GA as a search mechanism, and
especially following the Goldberg's (1989) book on GA, many applications of GA on various
problem types are conducted. Beside the case studies, a lot of effort has spent on the
theoretical development of GA up to now.

Although GA seems to be a robust algorithm, which contains same operators and has
the same algorithmic logic for different applications, in fact the algorithm itself is
significantly different for distinct problems. The main reason is that, GA has several
parameters, and any combination of these parameters has unpredictable impacts on the
performance on GA. To visualize the situation, we can classify the parameters into two
groups, structural parameters and numerical parameters. These are explained in the following

sections.
4.1.1. Structural Parameters

Structural parameters are the main factors affecting the GA performance, and the

hardest set of parameters to be dealt with in a GA application. As understood from its
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categorical name, they are concerned with the structure of GA. The change in any parameter
value requires significant alterations in the coding pattern of GA’s. The coding scheme,
operator types and stopping criterion are the main parameters included in this group.

As stated before, GA starts with the coding of the problem to the strings, and decision
maker should decide which coding pattern is appropriate for the problem under consideration.

The same aspect is relevant for the operator selections. Although there are main
operators included in every GA application, since all of them have various types, it is a hard
task to select the appropriate combination. The operators are the main tools presenting the
power of GA on the optimization problem. To carry the good properties of the individuals to
the further generations, reproduction and crossover operators should be selected conveniently.
Also the choice of mutation type is effective on GA for not sticking on local optimums (or
preventing the premature convergence). The other operators can be used in GA for the
problem depending on the decision-maker’s choice.

Another important structural parameter is stopping criterion. Different termination
conditions generally result different performance of GA. As the evolution process requires a
long period of time, GA has to be processed for a relevant duration, in order to present and
apply its logic coming from the natural genetics. Terminating GA earlier disturbs the power
of the algorithm, but the longer runs may have the inefficient use of CPU time. Thus, it is an
arduous task to select the best termination condition.

However, since the publication of Goldberg (1989) and Davis’s (1991) books on GA, a
number of applications of GA have observed on various optimization problems. As a result, a
huge literature has been developed on GA applications, presenting which combination of
structural parameters is adequate for different types of problems. Thus, the performers can
find the necessary insight required for the selection of structural parameters from the early
experiences of others. To give an example, it is known that the sequence representation of
coding schemes is better for scheduling and sequencing problems.

Moreover, the applicability of the structural parameters sets a constraint in front of
decision-maker, and forces to eliminate some parameter values. For instance, the simple one-
point crossover cannot be applied to the problems having sequence representation, because
one-point crossover is exchange of the tails of strings after the cross point. This is irrelevant

for sequence representations, since the tail of the second individual and head of the first
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individual both may contain same variables in sequence. As one variable cannot be present in
a single sequence, basic one-point crossover is inapplicable for this type of representations.

To sum up, although the structural parameters are critical for the effective use of GA,
the theoretical studies conducted upon the structural parameters, guide the analyst in selecting

the appropriate levels of structural parameters.

4.1.2. Numerical Parameters

The other parameters of GA can be classified as the numerical parameters. Even though
they are in the second place in terms of the effectiveness on GA performance, even under
same structural parameter values, different combination of numerical parameters alters GA
performance drastically. One good thing about these parameters is that, it is easy to cope with
them; they can be changed in the algorithm without any significant effort spent on coding.
The initial population type, population size, maximum generation number, crossover and
mutation probabilities are the main factors considered in this category.

The population size (n) of a genetic algorithm influences the rate of convergence and
number of schemata that will be processed. Small populations run the risk of under-covering
the solution space, while large population size is not cost-effective in terms of its large
computation time. At each generation GA searches for n individual points, but closely n’
schemata. If n is not large enough, GA cannot search the solution space adequately. On the
contrary, large n will require a higher CPU time, which inversely influences the performance
of GA in terms of cost. Another danger of small n is the high risk of premature convergence.
If small populations are used, there may be some dominating individuals, which are always
selected by the reproduction operator; thus, convergence to a local optima can occur, because
search mechanism goes around the patterns of these individuals. If you have more individuals,
the probability of having good individuals from different parts of solution space increases, so
possibility of premature convergence will decline.

As stated above, stopping criteria is a very important structural parameter of GA.
Generally some number of iterations is specified previously, and algorithm proceeds until this
number is reached. This is the most common termination condition used in GA applications.
Once the stopping criterion is set in this manner, the selection of the maximum generation
number (m) becomes a competitive task. Like the population size (n), large value of m

increases the CPU time drastically, while small values have the risk of improper GA
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performance. As the evolution process requires a long period of time in nature, GA also needs
some time (generations) to present his power coming from the natural genetics. When m is
not large enough, GA may not be able to have the required time to show its ability. But in the
opposite, large m gathers the availability of searching more individuals, which generally
conducts to better performance in best fitness value found; unfortunately, CPU time elapsed
increases severely. Generally after some generations CPU time shows an exponential
behavior as the generation number increases.

The probabilities of the genetic operators are other influential numeric parameter on GA
performance. As the crossover (mutation) probability, p. (pm), increases; obviously possibility
to cross (mutate) increases. Low mutation and high crossover rates bring the risk of premature
convergence, while high mutation and low crossover rates decrease the GA performance in
terms of carrying the better solutions to future generations.

After selecting two good individuals as the potential parents, p. determines whether to
exchange the genetic material between the individuals or directly copy them to the next
generation. Low values of p. acts like DeJong’s elitist strategy (1975), which guarantees the
presence of good individuals in the next generation, but this time individuals do not have the
opportunity to recombine their good patterns, which may lead to loss of a good combination.
High values of p. conduct to more exchange of genetic material (solution pattern in
optimization literature), but may lead the absence of a good pattern in following generations,
since crossover directly crashes the schemata.

Low values of py,, brings the risk of premature convergence. Mutation operator is the
guard for local optimums, since it gathers the diversity to the search space. If mutation occurs
rarely, after some transient generations, similar individuals could dominate the populations,
and same patterns are carried to the generations. In other words, search may occur around a
local optima. High values of p,, damage the algorithm’s pattern, since once a good schema is
obtained, mutation can alter the bits of this schema, meaning the destruction of that schema.
Thus, the probability of carrying the good patterns of good individuals will decrease as pp
increases.

Initial population type can be considered as the numerical parameter of GA, since it
does not have any influence on structure of the algorithm. GA starts with an initial population
and proceeds until a termination condition is met. Generally random populations are used as

the starting points. But there are some empirical studies in the GA literature, presenting the
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effectiveness of starting with a good population compared with a random one (Reeves, 1992).
The initial population can be constructed from the results of some preliminary search heuristic
like random search, pattern search etc. Seeding GA with good individuals speeds up the
convergence to better solutions, but seeded initial population raises the risk of premature
convergence. By seeding the algorithm, GA is forced to start the search around some good
points (may be local optimums). If high domination of these points among the population
occur, GA may converge to a local optima, that is premature convergence may occur.

From these explanations, it is clear that even under same structural parameter settings,
the different combinations of numerical parameters may lead to drastic changes in GA’s
performance. Thus, finding the best numerical parameter setting for GA is a valuable result
for GA literature. Throughout this study, the numerical parameters of GA are investigated,
and the best combination of them is found for the test problems, and the effects of them under
different problem settings is analyzed by the use of experimental designs.

The parameters under consideration are:

1. Initial Population Type
Population Size
Maximum Number Of Iterations

Crossover Probability

w»ok »w N

Mutation Probability

A test problem is taken for GA application, and significance of different values of these
parameters on GA performance is analysed by the help of factorial designs and ANOVA
(Analysis of Variance). The main aspect of this study is not to state the best combination of
parameter values on this specific problem, but rather to make general conclusions about the
effects of these parameters.

Two types of performance measure are considered throughout the analysis:

e Best fitness value obtained
e CPU Time elapsed

Generally GA performance is measured in terms of the best point it finds. But for us,
this is a very naive choice, because a good GA implementation should have the ability to find
the maximum efficient point in a minimum time. So not only the objective value of the best

point found, but also the CPU time elapsed should be considered while measuring the
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performance of GA. Because it is trivial that large populations and more iterations increase
the search space, so raise the possibility of finding better solutions, but CPU time generally
shows exponential behavior with respect to generation number after some initial iterations,
which is very cost-ineffective. The analysis has the objective of maximizing the fitness value
and minimizing the CPU time together.

In the first part of the study, the effects of these parameters on an optimization problem
are analyzed, then in the second phase the behavior they present under different objective
function parameters is investigated. Finally the performance of the parameter settings is tested
under different solution space of the same problem, by adding linear constraints to the

optimization problem.

4.2. Test Problem

The problem is taken from the 2000 WSC Proceedings of Law and McComas (Law and
McComas, 2000). The reasons for selecting this problem can be summarized as the following
four points:

First of all, the study, where the problem is taken, is about the simulation/optimization
applications. This study is conducted to compare optimization packages of different
simulation software companies. Since GA is directly used in one of the sim/opt packages, we
are certain about the applicability of GA to the problem.

Another reason is that, numerical results of the simulation model are available, hence we
have the opportunity to validate our GA based simulation/optimization model against their
results.

Also the problem represents a realistic manufacturing problem. The system is a basic
assembly line with very realistic cost parameters, which can have a direct application in real-
life.

Finally, the system is a basic one, and easy to handle in both simulation modeling and
GA application. To some extent, we have the control over the system, and can discriminate
the good solutions, which is very beneficial in testing the GA performance. Also by intuition
we can predict the results when we make some modifications to the problem or the algorithm

itself.
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The system under consideration is a manufacturing system consisting of four
workstations and three buffers, which are located between the stations starting from the first

station (Figure 3).

Machine ,Buffer position
/ Buffer 2 Buffer 3 Buffer 4

Work station Work station Work station Work siation
1 2 3 4

Figure 3: The serial assembly line modeled in test problem (Law et al., 2000)

There is an infinite supply of parts before the first workstation, i.e. whenever it is idle; it
pulls a new part immediately. A machine cannot discharge a part if the succeeding buffer is
full. At the end of the fourth workstation, there is no buffer located, so that each part
discharging from the workstation immediately leaves the system. The processing times have

an exponential distribution with a mean given in Table 4:

Table 4: Processing Times of Machines in Workstations

Work Station [Mean Processing Time for a machine (hours)
1 0.33333
2 0.50000
3 0.20000
4 0.25000

Let,

M; = Number of machines in work stationi (1= 1,..,4) and

B; = Number of buffer positions in buffer that is located at the end of station1 (1= 1,2,3)
Every machine has a total operating cost of 25000 units, and every buffer position has a

total operating cost of 1000 units. Besides, every throughput has a profit of 200 units. The

objective of the problem is finding the optimal combination of number of machines and buffer

positions that maximizes the profit of the system.
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If we define the objective function random variable f, then the system in Figure 3
corresponds to f(3,2,2,3,3,1,2);

M;=3,M,=2, M3=2, Ms=3, B;=3, B,=1, B; =2 with an objective function value
of:

£(3,2,2,3,3,1,2) = 200 x throughput - 25000 x (3+2+2+3) — 1000 x (3+1+2)
where throughput is computed from simulating the model for a 30 day period. Also additional
warm- up period of 10 days is used for eliminating the effect of the initial transient state.

Increasing the machine numbers and buffer locations increase the production rate, but
also the operating cost, thus extra units of each variable are added to the system if the profit
gathered from the increase in throughput can compensate the cost of extra units.

In the original problem, the number of machines in work station i ranges from 1 to 3,
while buffer positions range from 1 to 10, so that there are 3* x 10° = 81,000 different
combinations of decision variables. But we change the range of the decision variables as;
machines’ range from 1 to 4, and buffer positions’ range from 1 to 16; thus there are 4* x 16°
= 1,048,576 combinations of decision variables.

There are two reasons behind the modifications of the original problem’s parameters.
First of all, we want to measure the performance of GA on a more complex problem. The
original problem has only 81,000 combinations, which can be stated as a small-scale
optimization problem. But now we have over one million combinations that the modified
problem can be classified as the large-scale problem.

Another reason is discarding the infeasible solutions generated during GA
implementation. In the original decision variable settings, our GA model produces infeasible
solutions, and these infeasible solutions have nearly half percentage in all solutions generated,
which makes the GA inefficient. Moreover, the number of infeasible solutions generated by
the algorithm differs among distinct parameter settings, thus comparing CPU time of the
algorithm under these circumstances may lead us to false conclusions, since the algorithms
spend different duration for dealing with the infeasible solutions. By the modification of the
ranges of the variables, the feasibility of strings (points) generated during implementation is

guaranteed.
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4.3. Simulation Model

The simulation model is developed using SIMAN V simulation language in Unix
environment. Model is a generic one, and there is no need for modification for the simulation
of the system with different values of decision variables of the problem. This is provided by
the use of data files. Simulation model starts with the reading of data files, and the values in
these data files are set to the values of machine numbers in workstations and buffer locations
between stations (decision variables) of that model. At the end of the simulation run, the total
profit of the system is written to an output file, for GA to process from that file. 5 replications
of each system are taken, and the output file contains the total profits (objective function
value) for each of the 5 replications. Each simulation run lasts for 57600 seconds (40 days), in
14400 (10 days) of which no statistics are collected, because of the warm-up period. On the
average for a loaded system, where high throughput rate is achieved, simulation takes 0.3
minutes, while a less loaded one with less production rate lasts for 0.18 minutes including all

5 replications. The sample code of the simulation model can be seen in Appendix A.

4.4. GA Model:

The main concern of this study is to analyze the effects of numerical parameters of GA
on its performance in terms of best fitness value, and CPU time. To apply such an analysis
requires selection of structural parameters of GA. GA is coded with respect to a specific set of
structural variables, and experimentation is conducted at each combination of numerical
values.

The basic GA model is selected for the analysis. The binary coding scheme, roulette
wheel selection, raw objective value as fitness with offsetting scaling if necessary, one-point
crossover, bit mutation and maximum iteration numbers as stopping criterion are used in
developing the algorithm. Neither other operators nor combined strategies like elitism are
applied. It is one of the first developed GA models in the literature (very similar to
Holland’s), and the most common kind of GA used in applications. Since it is basic, it is
simple and easy to handle the coding of GA. Thus, GA with this set of structural parameters is

selected for the analysis. Table 5 summarizes the structural parameters.
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Table 5: Structural Parameters of GA Covered in the Analysis

Type Definition
Coding Scheme Binary Coding
Reproduction Operator| Roulette Wheel Selection
Fitness Calculation Objective Function Value
Crossover Operator One Point Crossover
Mutation Operator Bit Mutation

Stopping Criterion  |Maximum Number of Iterations

There are seven decision variables in the test problem, four belong to number of
machines to each workstation and three are for the number of buffer positions between the
stations. Machines range from 1 to 4, and buffers 1 to 16. In the binary coding representation,
machine numbers have 2-bit scheme, where buffers have 4-bit scheme. For number of

machines the binary coding and the corresponding real values are as follows:

0 5 1 0l —» 2

10— 3 11 —>» 4

For the buffer positions the coding scheme and the real representations are stated as below:

0000 — 1 0001 — 2 0010 ——» 3 00ll —» 4
0100 — 5 0101 —» 6 0110 — 7 Olll —» 8§
1000 — 9 1001 —— 10 1010 — 11 1011 —>» 12
1100 —* 13 1101 —* 14 1110 —— 15 1111 —>» 16

The strings representing the individuals are produced by the concatenation of individual
strings, starting from the number of machines in first workstation, and continuing with the
buffer positions in the same order. 4 two bit strings, and 3 four bit strings lead to a binary
representation of individuals with string length 20. For instance a string corresponding to the
decision variables’ combination,;

M1=1 M2=2 M3=3 M4=4 B1=10 B2=11 B3=12
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is:
0001 10 11 1001 1010 1011
1 2 3 4 10 11 12

The fitness values of strings are the objective function values of that variable setting.
The average of five replication results gathered from the simulation of the system with the
real values of the variables in the string corresponds to the fitness value of the string. The
simulation of the system with the above variable settings results with the total profit of
147,800, 148,800, 144,200, 156,200, and 135,400 for each replication, respectively. Then the
fitness value of the string is calculated as the average of these numbers; 146,480.

The roulette wheel selection procedure is used for the reproduction process. The
individuals are selected with a probability, which is equal to the ratio of individual’s fitness to
the total fitness of all individuals in the population. If the individual in the example is in a
population with total fitness of 1000000 then the probability of selection of that individual is
0.14684. (146,480 / 1000000)

Since roulette wheel selection requires non-negative fitness values, scaling of the fitness
is applied when necessary. The simulation duration is 30 days, which is reasonably long for
producing the throughput that compensates the cost of machines and buffers; but for some
rare combinations of machine and buffer variables the cost may be larger than the profit, thus
negative objective values can be achieved. When there is a negative fitness value in the
population, offsetting technique is used for fitness scaling. The minimum fitness value of the
population is determined, and this minimum is carried to 0 by adding the absolute value of its
own. Similarly the same amount is added to the other individuals in the population. For
example, when there is a minimum fitness of —30,000 in the population, 30,000 is added to
the fitness value of every individual in the population.

The one-point crossover is applied with a probability of p.. After the reproduction
mechanism drags two potential parents among the population, the crossover is applied with
this probability. During crossover, a crossover site is selected randomly between 1 and (string
length-1). Then the exchange of the tails occurs between the parents. Consider the following

example, with parents and their real variable settings:

10111001010001010111  3-4-3-2-5-6-7
010011011100010011010  2-1-4-2-9-10-11

37



If the line represents the cross site, then the following two children are produced with the

corresponding real values:

10111001000010011010  3-4-3-2-1-10-11
01001101110001010111  2-1-4-2-11-6-8

The mutation is applied by random changes in the bit values of strings. After the
crossover operator, if no crossover has applied then the selected parents, if crossover has
applied then the children, go under mutation. For every bit of the string mutation occurs with

probability py,. The following string is a solution to the test problem;

ITTTT1T1T1111111111111  4-4-4-4-16-16-16

If the string is mutated form the underlined positions, the following string is obtained:

OITT1111101111111101  2-4-4-4-12-16-14

After the crossover and mutation are completed, the strings of the following
generation’s individuals have obtained. If there are infeasible solutions reached after the
operations, then these strings are discarded, and new ones are generated from the beginning
instead. The strings are generated twice at a time; if only one of them is infeasible, both are
discarded and new ones are generated instead. The form the next generation, the fitness values
of new constructed strings are required. These values are supplied from the simulation results
of the strings. The real parameter values of each string is computed in the algorithm and
written to output files. Then the simulation model is called in GA, and simulation model takes
these files as input files, and calculate the objective function value of the parameter setting via
simulation. The result is written to another file by the simulation model, and GA retrieves the
fitness value of each string from that file. This algorithm proceeds for every individual in the
population.

This procedure is started with an initial population and repeated until the maximum
number of generations is reached. At the end of each GA run, the best fitness obtained up to
now, and the CPU time elapsed are collected as the performance measures. Figure 4
resembles the flowchart of GA constructed in this analysis. A sample GA code can be found

in Appendix B.
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Start with an initial population, set generation = 0

Is generation = YES

maximum number of
generations?

> Select two individuals from the population

v

Apply crossover with probability p

v

Apply mutation to every bit with probability pp,

NO Are both created

individuals feasible?

Calculate the fitness via simulation and scale fitness if necessary

v

Replace the selected individuals with the created ones

NO Is population size

achieved?

Set generation = generation + 1

STOP! Report best fitness obtained and CPU time elapsed

Figure 4: Flowchart of GA Model
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4.5. Validation of Models

To validate the simulation model, Law’s findings in the original problem are used
(Law and McComas, 2000). In the original model the combination 3-3-2-2-7-8-4 has an
estimated profit of 591,588 and 3-3-2-2-7-7-4 has an estimated profit of 591,512 monetary
units, which are the average of 50 replications’ results. To validate our proposed simulation
model, we run the proposed model under same conditions and estimate the total profit of the
system. Then 95% confidence interval is constructed for the expected profit to see whether
the intervals contain the mean performance of original problem. Table 6 summarizes the

results:

Table 6: Comparison of Simulation Results of Original Model and Proposed Model

Proposed Confidence Interval

Solution Combination|Law's Model] Model (%95)
3-3-2-2-7-8-4 591588 589872 (586562, 592582)
3-3-2-2-7-7-4 591512 588880 (585349, 592411)

For each point (solution combination), the Law’s model’s expected profit is included in our
confidence intervals, thus we validate our proposed simulation model statistically. Unless the
mean performance of the Law’s model is included in the confidence limit, we cannot argue
that our model is similar to the model developed in the original problem statistically.

It is known that for an appropriate genetic algorithm application, although there may be
some erratic behavior of fitness values depending on the solution space, the average fitness of
the populations should increase as the generations proceed. To validate our GA model, pilot
run of proposed GA is taken with some settings of numerical parameters. Figure 5 presents
the best fitness and average fitness behavior versus the generation number.

Even though there are sometimes some sharp declines in the average fitness of
populations, generally as the generations proceed the average fitness presents an increasing
behavior, and at large generations the average fitness becomes very close to best fitness value.
Since the pilot run shows a predictable behavior, there is no reason for being doubtful about

the incorrectness of our GA model.
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Fitness Behavior of GA
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Figure 5: Behavior of Fitness According to Generation Number in Proposed GA

In addition to that, the proposed GA model is validated by investigating its behavior
under some limiting conditions. One example is setting the mutation and crossover
probabilities to 0. In that case all populations should contain the same individuals, so it is in
our model. Other predictable parameter settings are also used, and the proposed GA model is
validated.

The final and the most important validation procedure is measuring the performance of
GA in terms of the best point it finds. From Law’s original problem, the best solution to the
problem is 3-3-2-2-7-8-4. Our algorithm proposes 3-3-2-2-5-8-3 combination as the best
combination found, which is very close to the Law’s solution of the test problem. Machine
numbers are same for each solution; only slight differences are present in two separate buffer
levels. The objective function values are also very close to each other.

In conclusion, we are convinced that our GA-based model is a valid model of the

system and hence, we continue with the model for further investigation of the problem.

4.6. Design of Experiments

To illustrate the effects of different numerical parameters on GA performance in terms
of best fitness values and CPU time, the main aspects of experimental design are used, since
the principal goal of the experimental designs is to estimate how changes in input factors

affect the responses of the experiment under consideration like in our case.

41



One of the main tools of experimental design studies is the factorial design. Factorial
designs are widely used in experiments including several factors, where not only the main
effects but also the joint effects of the factors are significantly effective on experiments’
response. In factorial designs, different levels of each factor are specified and the analysis is
conducted in every combination of these factors. At each factor combination, the response of
the system is measured. At the end, by statistical techniques, the significant factors affecting
the response, and the way they affect are determined.

The effect of a factor is defined to be the change in response produced by a change in
the level of the factor. This is called the main effect, because it refers to the primary factors of
interest in the experiment. It is also usual that, the difference in response between the levels of
one factor is not the same at all levels of the other factors. This is explained by the interaction
between the factors, and the interaction effects are very important for experimental designs.

The most common type of factorial designs is 2" factorial designs. There are k factors
each having only two levels, so that there are 2% different combinations of the factors.
Although there is no general rule about the selection of two levels of each factor, it is more
convenient to set each level in opposite with each other. By definition we can define one level
as the low level, and the other as the high level. The reason is that in the analysis of the
effects, strong and significant conclusions can be made about the opposite values. But while
selecting the two opposite levels (low, high), more concern should be given in order not to set
unrealistic values for these levels.

Even though it is better to select opposite values in nature, another important point to be
taken care of is the range of the two levels. Because in 2" factorial designs, it is assumed that
the response of the experiment shows linear behavior between high and low levels. If these
levels are very far from each other, this linearity assumption will loose its strength. Under the

light of these findings, 2" factorial design is applied in this study.

4.6.1. 2* Factorial Design:

The effect of numerical parameters of GA on performance measures is analyzed in this
study. The objective is maximizing the performance of GA, i.e. maximizing the best fitness
value found and minimizing the CPU time covered together. The numerical parameters are:

e Initial Population Type

e Population Size
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e Maximum Generation Number
e Crossover Probability
e Mutation Probability

Since there are 5 parameters 2° factorial design is used in this study. Obviously there are
32 distinct combinations of parameters leading to 32 design points. For each point five
independent GA runs are taken. This is provided by assigning different random number
streams to the simulation model by changing the seeds of SIMAN V.

To apply the 2X factorial design to our model, two levels of each parameter should be
determined by considering the pinpoints given throughout the above paragraphs. The main
source that we can trust in the correct parameter selection is GA literature, because there are a
lot of theoretical studies carried out about the optimal settings of these parameters
individually. Also some of these work present ranges for parameters for a good GA

application. The following paragraphs state the levels of the parameters and the reasons

behind them.

Initial Population:

Some reports have found that better initial populations may result in better GA
performance. Generally the initial population is generated randomly, but some studies have
reported that seeding a population with high-quality solutions, which can be obtained from
another heuristic technique like random search, may help GA find better solutions more
quickly than a random start. But seeding the initial population increases the risk of premature
convergence.

For this purpose, we applied a random search of 250 points. The best 20 or 40 points
depending on the population size are selected for the seeded population. Random population
is generated by random selection among these 250 points. We take the random population as
the low level of the initial population parameter, while the population gathered after random

search heuristic (seeded population) as the high level.

Population Size:
Population size is one of the most influential factors on the performance of GA. Small
populations run the risk of under-covering the solution space, while large population size is

not cost-effective in terms of its large computation time. Goldberg (1989) indicated that the
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optimal size for binary-coded strings grows exponentially with the length of the string n.
There are also empirical studies suggesting that population sizes larger than 30 could be
adequate in many cases. Alander (1992) reports that a value between n and 2n is optimal for
the problem type considered. Considering these results, the levels of population size are taken

as 20 (n) and 40 (2n), where 20 equals to the string length of our GA model.

Crossover and Mutation Probabilities:

The selection of the crossover and mutation probabilities may change the performance
of GA drastically. Low mutation and high crossover rates bring the risk of premature
convergence, while high mutation and low crossover rates decrease the GA performance in
terms of carrying the better solutions to future generations. Although it is very problem-
dependent, generally mutation is applied with a low probability (typically less than 0.01),
while crossover is applied with high probability (often 1). De Jong (1975) suggests that the
bit-mutation rate should be n”' where n is the string length. Michalewicz (1992) reports that
crossover rates between 0.65 and 1, and mutation rates between 0.001 and 0,01 are useful in
GA applications. In our study the crossover probability levels are set as 0.5 and 1,and the

mutation levels are 0.01 and 0.05, where 0.05 is equal to 1/n, n is 20 in our model.

Maximum Generation Number:

The maximum generation number is usually a very influential factor in GA
performance. Its high value increases the computation time, while low level has the risk of
poor performance of GA, since it narrows the searched space of the real solution space of the
system considered. Although it is a very important factor, there is not a literature developed
on it that can guide us in the selection of its’ levels. The most important reason is that, the
parameter itself is very problem-specific, and also it depends on the implementer’s choice. To
determine the high and low levels of the parameter, we make experimentation, thus we take
some pilot runs by fixing the other parameters and change the maximum generation number.

We fix the other parameters at their low levels and high levels, and take the runs under
these two separate conditions. The parameters at their high levels contribute to design 1, while
the low level one contributes to design 2. Figure 6.a shows the best fitness value obtained

under different values of maximum generation number of GA.
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Since the points are not visible to scale, the fitness increments to maximum generation

number are re-graphed (Figure 6.b). From Figure 6.b, it is visible that no increment in fitness

is obtained after 75™ generation at design 1, while little improvement occurs after 15

generation. For the second design point, little increment occurs after 15™ generation and 190"

generation. Beside the fitness value, we have to consider the CPU time as the performance

measure. Figure 6.c represents the CPU time versus different levels of maximum generation

number parameter.
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Figure 6: Analysis of Maximum Generation Number
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and at both designs CPU time increases drastically after 100" generation. Under these

circumstances, as both the maximum fitness and CPU time considered, the levels of 50 and

The CPU time versus maximum generation number shows nearly exponential behavior,

¢) CPU Time versus Maximum Generation Number Graph

Figure 6: Analysis of Maximum Generation Number (cont’d)

100 seemed to be logical as the levels of the parameter.

points. Then ANOVA (analysis of variance) is used for determining the significance of each

effect, and the appropriate levels of each parameter for better GA performance in terms of

In conclusion, as a result of the literature review and pilot experimentations, the two

The analysis is continued by taking 5 independent GA replications for each 32 design

levels of each factor are determined as given in Table 7.

Table 7: Factors and Levels for Factorial Design

Parameter Low Level |High Level
Initial Population Random Seeded
Population Size 20 40

Maximum Generation 50 100
Crossover Probability 0,5 1
Mutation Probability 0,01 0,05
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fitness and CPU time. We benefit from the SPSS statistical software package during the
ANOVA.

4.6.2. Diagnostic Checking

The 2° factorial design is applied under some assumptions. The effects are assumed to
be fixed, designs are completely randomized so that replications are independent of each
other, and usual normality assumptions are considered to be satisfied. Before implementing
the factorial design, these assumptions have to be checked.

The parameter levels are not selected randomly from a set of possible values, thus it is
not a random-effect model. The levels are specified by the literature search and further
experimentation, so first assumption is satisfied automatically.

The independence of replications, and the design points is provided by the use of
independent distinct seeds of SIMAN V in simulation model. Since independent seeds are
used, the designs are completely randomized.

Normality assumption requires more effort for adequacy checking. Although moderate
departures from the normality assumption are of little concern in the fixed effects ANOVA,
that is robust to normality assumption, since F test is only slightly affected (Montgomery,
1991); this assumption still has to be checked. The residual examination is beneficial in the
diagnosis of normality violations. Residual plot of the model is constructed by the use of
regression model, which is plotted regarding to the effect sizes estimated during factorial
analysis. If residual plots of both CPU time and fitness responses show a linear behavior
especially in the middle portion of the points, then there is no reason to suspect about the non-
normality of the data.

After significant factors are obtained by using ANOVA, the normal probability of
effects is used for the diagnostic checking of the adequacy of significant parameters. The plot
of effect sizes versus corresponding normal probabilities has to show linear behavior for all
insignificant effects, and significant effects should present an outlier, disturbing the linearity.

Finally, ANOVA assumes the homogeneity of variances between independent
replications, thus homogeneity assumption has to be satisfied. There are a lot of ways to
search the relevance of this assumption. In this study, Bartlett test (Montgomery, 1991) is

used.
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CHAPTER 5
EXPERIMENTAL RESULTS

The aim of this study is to examine the numerical factors, which affect GA performance.
The factors investigated are the initial population type, population size, maximum generation
number, and mutation and crossover probabilities. A test problem is used for the analysis, and
2° factorial design is implemented to determine the significance of each factors, and factor
interactions. Also modifications of the problem are used for examining the behavior of the
factors under different conditions. Table 7 summarizes the factors and factor levels of the
analysis.

Table 7: Factors and Levels for Factorial Design

Parameter Low Level |High Level
Initial Population Random Seeded
Population Size 20 40

Maximum Generation 50 100
Crossover Probability 0,5 1
Mutation Probability 0,01 0,05

All the computer applications are carried on Sun HPC Server 4500 with 12 400mhz
CPU, 3 GB memory, 45 GB disk and 20/40 GB 8mm tape unit.

This chapter presents the experimental results for the original test problem. Model
adequacy checking, the analysis results with respect to fitness response, and CPU time
response are illustrated respectively. Finally the consequences of each separate analysis are
combined.

Throughout this chapter during the factorial design of experiments, abbreviations are
used instead of the factors’ main titles. The following terminology is printed when necessary:

A: Initial Population Type
B: Population Size

C: Maximum Generation No
D: Crossover Probability

E: Mutation Probability
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Also in factorial design tables “-1” denotes the low level of the factor, while “1”
represents the high level. For example a design point of (1, -1, 1, -1, 1) corresponds to the GA
parameters of seeded initial population, population size 20, 100 maximum generations, 0.5

probability of crossover, and 0.05 probability of mutation.

5.1. Original Test Problem

The test problem is taken from WSC 2000 Proceedings (Law and McComas, 2000). The
system is a serial assembly line with four workstations, and three buffers located between the
stations, starting from the first station. There are seven decision variables, four of which are
the machine numbers in each workstation, whereas the rest are number of buffer locations.
Objective function is maximizing the total profit, which depends on the throughput level, and

machine and buffer operating costs.

5.1.1. Model Adequacy Checking

The GA model is processed 5 times at each of 32 design points. The results of 5
independent replications of the GA model are given in Table 8.a and Table 8.b for the fitness
value and CPU time, respectively.

After having the GA results for the analysis, the assumptions of ANOVA are checked.
The independence of the replications is provided by the use of independent seeds. The
normality assumption is controlled by the residual plots of both responses separately. The
residuals are calculated from the difference between the observed values and predicted values,
where predicted values are estimated from the regression model developed from the data.

Figure 7.a and 7.b presents the residual plot of fitness and CPU time, respectively.
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Table 8.a) GA Results for Fitness Response

A[B[CID[E] Rep1 | Rep2 | Rep3 | Rep4 | Rep5
11 1 1 1] 805160 | 800840 | 810080 | 807080 | 802520
111 1 1] 810160 | 805080 | 812760 | 798640 | 808080
1 -1 1 1 1] 804960 | 801800 | 805040 | 796240 | 800400
1-11 1 1] 805880 | 801320 | 802760 | 792600 | 784840
11 -1 1 1] 799680 | 801800 | 803720 | 800960 | 799120
11 -1 1 1] 803440 | 799920 | 803360 | 797440 | 797040
1-1-11 1] 788760 | 795680 | 809840 | 800480 | 787160
1 -1-11 1] 781240 | 787720 | 796680 | 791400 | 791280
11 1 -1 1] 802160 | 801320 | 805240 | 802880 | 798320
11 1 -1 1] 805000 | 800760 | 806320 | 804880 | 802520
1 -1 1 -1 1] 805040 | 801880 | 799960 | 792880 | 786720
-1-11 -1 1] 801840 | 800680 | 804480 | 802320 | 793000
1 1 -1 -1 1] 810240 | 803120 | 809320 | 806600 | 794680
11 -1-1 1] 804960 | 799840 | 798000 | 805160 | 790800
1 -1 -1 -1 1] 802000 | 793840 | 802640 | 792920 | 787040
-1 -1 -1 -1 1] 800040 | 792920 | 795040 | 786120 | 782200
11 1 1 -1]| 796880 | 802080 | 797320 | 808400 | 803880
11 1 1 -1]| 797240 | 809400 | 804400 | 791560 | 797200
1 -1 1 1 -1| 794480 | 805000 | 790120 | 800760 | 793880
-1-11 1 -1]| 780160 | 793240 | 778120 | 783120 | 790560
1 1 -1 1 -1| 808760 | 792880 | 802280 | 797960 | 799600
11 -1 1 -1] 793680 | 792520 | 808160 | 794040 | 785320
1 -1 -1 1 -1 792520 | 794880 | 802000 | 786520 | 786720
1 -1-11 -1]| 769160 | 773920 | 778840 | 794120 | 785840
1 1 1 -1 -1]| 806480 | 799760 | 803480 | 802680 | 798320
11 1 -1 -1]| 798480 | 784520 | 806440 | 802040 | 793920
1 -1 1 -1 -1] 799680 | 801640 | 793080 | 799480 | 792200
1 -1 1 -1-1| 785560 | 794920 | 780920 | 793200 | 779560
1 1 -1 -1-1| 805880 | 793080 | 800560 | 806600 | 795200
-1 1 -1 -1-1| 778280 | 785320 | 777280 | 791960 | 794960
1 -1 -1 -1 -1| 802040 | 795480 | 806600 | 798640 | 785760
-1 -1 -1-1-1| 789880 | 787880 | 789040 | 783080 | 782200
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Table 8.b) GA Results for CPU Time Response

D

E

Rep1

Rep2

Rep3

Rep4

Rep5
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23571,85
23746,6
12132,16
11210,63
11795,13
11662,21
5943,06
5776,7
23993,68
23326,59
12219,79
11231,22
11663,92
11771,46
5971,68
5472,82
26756,9
25897,58
13712,24
13387,95
13319,93
13020,46
6966,53
5570,98
26279,09
26773,8
134257
13194,73
13334,17
13281,85
6762,8
6422,12

23930,33
23367,13
11839,36
11962,43
12001,66
11828,58
5957,47
5900,05
24100,61
23944,99
11495,9
11550,88
12139,83
11465,31
6091,54
5417,85
26121,11
26752,44
13577,94
12696,09
13662,64
12142,05
6653,03
5942,28
26403,68
27384,94
12795,56
12591,47
13690,92
12969,23
6439,06
6307,06

23609,02
23613,39
11958,2
11711,09
11813,39
11884,52
6019,61
5784,55
24185,34
23442,24
12110,21
11955,79
12176,73
11595,13
6081,27
5886,28
26938,52
26862,2
14189,74
13221,52
13887,64
12552,56
7093,68
6238,06
27164,6
25011,61
13845,61
12765,38
13506,55
12176,99
6858,3
6322,59

24471,98
23734,84
11866,09
11638,96
11487,05
11640,66
6186,27
6034,81
24298.,4
23639,27
11954,38
11951,51
11842,86
11528,75
5593,62
5970,7
27263,42
26429,21
13696,03
13112,78
13632,37
12176,01
6694,74
6271,27
27528,76
27416,63
13334,28
12756,62
13711,33
13093,08
6645,11
6021,14

29239,03
29224,82
14365,33
14723,69
14424,27
13939,17
7447.,59
6403,7
29568,31
28751,36
14510,3
14455,35
14454.5
14680,65
7316,23
6584,37
31178,36
31991
16538,9
16879,29
16675,64
15465,34
7955,79
7835,56
32842,94
32254,6
15948,22
15860,45
16614,54
16596,13
8423,61
7784,33
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Figure 7: Residual Plot versus Responses
Both graphs show linear behaviors, and there are not any significant deviations from a
straight line, so both data sets satisfy the normality assumption.
To investigate the homogeneity of variance, Bartlett’s test (Montgomery, 1991) is
applied on both data sets. Two data sets pass from the test, and since each set satisfies the
normality and independence assumptions, and variances among the replicates are

homogeneous, ANOVA can be applied comfortably.

5.1.2. Fitness Response
ANOVA table is obtained by using the statistical software package SPSS. The last
column indicates the significance of effects, and the previous column includes the F statistics

used for the significance test. Table 9 is the ANOVA table for fitness response.
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Table 9: ANOVA Results for Fitness Response

Type lll Sum Significance

Source of Squares | df | Mean Square F Level

Corrected Model 6476247704 31 208911216 5,40 0,000

Intercept 101576446552361| 1 | 101576446552361 | 2627600,02 0,000

POPTYPE 1227220840 1 1227220840 31,75 0,000

POPSIZE 1927654560 1 1927654560 49,86 0,000

MAXPOP 627897760 1 627897760 16,24 0,000

CROSSP 3240 1 3240 0,00 0,993

MUTP 1193774760 1 1193774760 30,88 0,000

POPTYPE * POPSIZE 113973760 1 113973760 2,95 0,088
POPTYPE * MAXPOP 167772160 1 167772160 4,34 0,039
POPSIZE * MAXPOP 817960 1 817960 0,02 0,885
POPTYPE * POPSIZE * MAXPOP 15825640 1 15825640 0,41 0,523
POPTYPE * CROSSP 1428840 1 1428840 0,04 0,848
POPSIZE * CROSSP 104716960 1 104716960 2,71 0,102
POPTYPE * POPSIZE * CROSSP 113434240 1 113434240 2,93 0,089
MAXPOP * CROSSP 24211360 1 24211360 0,63 0,430
POPTYPE * MAXPOP * CROSSP 47349760 1 47349760 1,22 0,270
POPSIZE * MAXPOP * CROSSP 16537960 1 16537960 0,43 0,514
POPTYPE * POPSIZE * MAXPOP * CROSSP 5867560 1 5867560 0,15 0,697
POPTYPE * MUTP 503816040 1 503816040 13,03 0,000

POPSIZE * MUTP 6658560 1 6658560 0,17 0,679

POPTYPE * POPSIZE * MUTP 15976960 1 15976960 0,41 0,521
MAXPOP * MUTP 4733440 1 4733440 0,12 0,727

POPTYPE * MAXPOP * MUTP 1797760 1 1797760 0,05 0,830
POPSIZE * MAXPOP * MUTP 94003560 1 94003560 2,43 0,121
POPTYPE * POPSIZE * MAXPOP * MUTP 32041000 1 32041000 0,83 0,364
CROSSP * MUTP 1989160 1 1989160 0,05 0,821

POPTYPE * CROSSP * MUTP 46915560 1 46915560 1,21 0,273
POPSIZE * CROSSP * MUTP 91445760 1 91445760 2,37 0,127
POPTYPE * POPSIZE * CROSSP * MUTP 1024000 1 1024000 0,03 0,871
MAXPOP * CROSSP * MUTP 9682560 1 9682560 0,25 0,618
POPTYPE * MAXPOP * CROSSP * MUTP 3317760 1 3317760 0,09 0,770
POPSIZE * MAXPOP * CROSSP * MUTP 71289000 1 71289000 1,84 0,177
POPTYPE * POPSIZE * MAXPOP * CROSSP * MUTP 3069160 1 3069160 0,08 0,779

Error 4948159936 | 128 38657500
Total 101587870960000 | 160
Corrected Total 11424407640 159

The 95% precision level is applied during the analysis. The corresponding F statistic is
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interaction effect of population type and mutation probability.

3.915147 for 0.05 significance level. The factors, which are found significant are; initial

population type, population size, maximum generation number, mutation probability and the




The normal probability plot of effects is graphed in order to make the diagnostic
checking of the ANOVA results gathered. Figure 8 resembles the normal probability plot of
effects, estimated from the data set. The graph shows linear behavior except five outlier
points, four of which are in the positive side, and the remaining in the negative side. These
points correspond to the significant effects found from the analysis of variance, thus the

correctness of the analysis is validated.
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Figure 8: Normal Probability Plot of Effects for Fitness Response

Before giving a detailed explanation on the factors, it is beneficial to present some
preliminary information about the solution space of the test problem under consideration. In
the test problem we used, there are two main types of decision variables; M;, number of
machines in workstation i and B;, number of buffer positions between station i and i +1. Our
computational experiments with the model indicate that the number of machines in each
workstation (M;) is the dominating decision variable set, meaning that, the total profit
obtained merely depends on the level of this variable. There are two reasons; one is the
machine operating cost is significantly larger than the buffer cost (25 times larger), so any
alteration of M; has more significant impact on total cost of the system than the buffer. Also
the unit cost of machine is high enough to affect the profit of the system. Another reason is
even a unit increment or decrement on one of M; ‘s affect the throughput of the system
drastically compared to B;. For these reasons M;’s constitute the dominating set of variables in

the system considered.
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Moreover, only some specific combinations of M;’s lead to good solutions (high profit).
160 independent GA applications with various parameter settings are carried out in the
analysis, and the following scheme of the machine combinations is obtained in the best
solutions found by GA:

Solution # Times Encountered

81 times
49 times
12 times

8 times

3 times

—4—
—4—
—4—
—4—
—4—
—4—
-4 - 1 time
—4—

2-3
2-3
3-3
2-2
3-3 5 times
3-2
4-3
2-4

w-lkw-hb)b)-bw

1 time

As seen from the combinations, good solutions have some specific pattern in terms of
machine numbers. More than 80% of trials, GA leads to a best solution with machine
combination of 3 -4 -2 -3 or4 -4 -2 —-3. (Itis a predictable result, since the first and the
second workstations have the largest processing times, so they require more resources
(machines) compared to the other workstations). Although low levels of buffer position lead
to significant decrease in throughput so the profit of the system; for these good combinations
of machines, buffer levels do not have very significant impact on the system performance.
The following solutions and the corresponding objective values present an example to the
situation:

Solution Fitness Value (monetary units)

-2-3-12-16-6 —» 800680
-3-16-15-9 —» 794920
-3-15-16-2 —» 809400
-3-16-12-8 —» 800760

~3-13-16-10 ———p 795480
~3-16-14-4 —— 800840

2
2
2
-2-3-16-13-5 —» 801320
2
2
2-3-12-13-2 —» 803120
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3-4-2-3-14-11-4 —» 799760

The same combination of machine numbers, but different buffer levels does not present
significant alterations in total profit. Because the cost of buffer position added is almost
nearly compensated by the increase in the throughput level. But somehow there is also some
discrimination in buffer levels among the good solution patterns. For example, for 3 —4 — 2 —
3, third buffer level is smaller that the other two, which is an expected result. Because, third
buffer is located between third and fourth station, and third station has only 2 machines, there
is no need for a lot of buffer positions, which carry the WIP coming from the third station. As
the first two stations are bottlenecks and have biggest number of machines, first two buffer
levels are greater in some extent.

Thus, it can be concluded that good solutions have specific patterns in terms of machine
combinations, and different buffer levels at these combinations create the diversity among the
solutions with little improvements on objective value.

Another interpretation is that, good solutions are highly dominant in the solution space.
In other words the solutions with the pre-specified combination of machines generally have
significantly more fitness value than the other solutions. On the average the total profit of the
system with good patterns can be estimated as nearly 780000, while no other combination of
machines can reach such a profit value. The importance of this property reveals in GA
application. Since some solutions, some good solutions, are very dominating in terms of
fitness values, the selection procedure usually selects strings with these patterns for the
potential parents of the following generation. Thus by the crossover operator, genetic material
of these solutions is carried to the next generations, where a rapid convergence to these good
solutions occur in GA. Since every time children are produced from the parents with same
machine number patterns. After some initial generations, almost all individuals have these
specific patterns in terms of machine numbers. Hence, this leads to the rapid convergence of
GA to good solutions in few generations.

After these preliminary analyses about the solution space, the results of ANOVA can be
presented. Figure 9.a-d resembles the significant main effects of the analysis, showing the
change in fitness value going form the low level of a factor the high level. Figure 9.e presents
all the main effects together, while Figure 9.f is the graph of only significant interaction

effect, initial population type-mutation probability interaction.
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Figure 9. Graphs of Significant Effects with respect to Fitness Response
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Mutation Probability Main Effect
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Figure 9. Graphs of Significant Effects with respect to Fitness Response (cont’d)
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The initial population type is the first significant main effect. Starting with a seeded
population increases the best fitness value found significantly compared with a random start,
thus the initial population type has a positive effect on fitness response. (Figure 9.a) Although
it is not a usual case for GA applications, there are empirical studies in the literature
supporting such a conclusion (Reeves, 1992). In fact, since the good solutions have some
specific pattern in terms of machine numbers, the goodness of the solution merely depends on
the levels of the buffer positions after some generations. High dominance of good solutions
leads to convergence to these good solution patterns, and GA starts to browse better solutions
by changing the buffer levels. It is certain that, the machine numbers are also altered during
genetic operations, but any alteration results with a poor fitness, thus selection mechanism
ignores such individuals, and they do not have chance to survive for the following
generations.

The difference between seeded population, and random population is, seeded one
contains individuals with good machine combinations. Thus, because these solutions are
highly dominant, the convergence of individuals to solutions with these patterns occurs very
rapidly. For the random population case, GA spends some generations in reaching these good
patterns, that is converge occurs more slowly. For seeded initial populations case, because of
the more rapid convergence, GA has more time to try different combination of buffer levels,
this increases the probability of hitting a better solution. GA uses its time more efficiently
compared with the random case. For that reason initial population type has a significant
impact on fitness value.

Population size and maximum generation number have also significant effects on best
fitness value found. (Figure 9.b and 9.c) As you increase the levels of these factors, GA
manages to find better solutions, thus they both have positive effects. This is a predictable,
and also obvious result, since increasing the population size (n), or generation number (m)
enlarges the search space. More individuals are processed, so probability of reaching better
solutions increases. Hence, increase in levels of n and m, increases the performance of GA.

Crossover probability is the only factor, which has an insignificant main effect. From
Figure 9.e, it seems that all the lines except crossover line show increasing or decreasing
behavior, but crossover line is very straight between low and high values. The reason behind

this depends on the nature of solution space. Good solutions have specific patterns in terms of
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machine numbers, and they are highly dominant, so selection mechanism always selects these
individuals, and convergence occurs after some starting generations. Low level of crossover
probability means low chance to cross, in other words selected potential parents are copied to
next generation directly. High level of crossover forces these potential parents to change
genetic material with each other. If the effect of crossover is insignificant, then to cross or not
to cross should not make any difference in fitness values. This is true for the nature of the
solution and search space together.

After some initial generations, the individuals generally have 3 -4 -2 -3 o0or4 -4 -3 —

3 as machine combinations, corresponding to strings starting with:

10110110............
11111010............

Although there are more patterns present in the solution space, and each pattern are in
different amounts, since these two are the most common ones having largest fitness values,
for a rough estimate, both strings have 50% occurrences in a population. Then for 2/3 of
trails, reproduction operator selects two parents with same starting strings.

If selected two potential parents both have on of these patterns, then the crossover
before the 8™ bit produce same individuals. Any cross-site after that point, generates
individuals with different buffer levels with same machine numbers. If somehow an
inappropriate level (very low) of buffer is generated, then the fitness decreases drastically, so
dominance of good solutions make this individual disappear in the next generation, thus on
the average, crossover cannot produce poor individuals. In the other case crossover generates
individuals with some pattern of buffer levels, which are not poor. From the preliminary
analysis, we know that different buffer levels with good machine patterns do not have very
significantly different fitness values. Thus crossover cannot make significant discrepancy on
fitness.

If selection mechanism selects both strings as potential parents (1/3 of trials), then
crossover after 1%, 6th, 7th, and 8" bit does not produce distinct children. The crossover form

the 2™, 3™ and 4" site generates the following pattern:
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10110110 10111010 —» 3—-4-3-3
11 §1%1010 11110110 4-4-2-3

The cross-site of 5™ bit produces the following strings:

10110110 10110010 —» 3—-4-1-3
 ——
11111010 11111110 > 4—-4-4-3

From the generated strings all except 3 —4 — 1 — 3 combination are present in good solutions’
patterns, so they have close fitness values. The 3 — 4 — 1 — 3 combination results with a poor
fitness value because of the high decline in throughput reasoning from the third workstation’s
bottleneck situation, and will disappear in the following generations because of high
dominance of good solutions.

To sum up, there is no significant difference between the low level and high level of the
crossover probability in terms of fitness, since it generates similar individuals having close
fitness values. Even for most cases to cross or not do not make any difference, because the
generated children are same with their parents. This is the main reason of insignificance of
crossover operator on fitness value.

As Figure 9.e resembles, the mutation probability has a significant positive effect on
fitness value. The power of mutation comes from its ability to search for various
combinations of buffer levels. After the convergence to good solutions with specific machine
number patterns, the improvements on fitness value is gathered by searching for different
levels of buffer positions. Since mutation alters the value of a bit form 1 to 0, or vice versa, it
easily provides diversity in solutions. It is obvious that, mutation can also take place in the
first eight digits of the strings, but such a situation results with a poor performance of the
system, because of deviation from the good machining pattern, and the dominance of the
solutions distinguish the mutated individual in the next generation, so on the average mutation
cannot produce poor individuals. Any mutation after 8™ bit, leads to a different combination
of buffers, which might have a better profit. While more combinations are searched, the
probability of hitting a better solution increases automatically.

A question appears in our minds; although mutation is powerful in producing diverse

solutions in terms of buffer levels, why does the crossover operator have insignificant impact?
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The main reason is that, the crossover operator generally produces same children with their
parents as stated in the above paragraphs. We use the following example to explain this
behavior:

Consider the first buffer position, and the high level of it (16) corresponding to “1111”
binary representation. By mutation, all levels of this variable can be reached by bit mutations
occurring at the same time, but since py, is too small, it is rational to assume that only one
mutation occurs at a time. Thus 1111 can be changed to the following strings and real values

with probability py, separately;

0111 — 8 1011 — 12 1101 — 4 14 1110 — 15

Hence, the probability to obtain a different buffer combination is 4 x py,. (In fact the original
probability of obtaining different buffer combination is 1 — (1 + pw)*, which is larger than 4 x
pm. Thus using the original probability will lead a stronger conclusion).

To obtain different values of this variable, several conditions must hold for crossover
operation. First the other individual should have a different representation than “1111”. In fact
the other parent should have binary representation of this buffer level other than “1111, 0111,
1011, 1101, 1110, since these representations cannot create buffer level different from the
parents. The second condition is the cross-site should be selected in between this string; other
cross-sites do not change the value of this variable, since it is copied to the child. To clarify
the situation the following scheme presents the possible strings with possible crossover sites,
where crossover can generate different value. The dashed lines are the possible crossover

sites, and the numbers indicate the possible amount of crossover sites.

1001 —» 1 0100 3

1010 _, 2 0011 1

1100 _, 1 0010 _, 3

1000 —» 2 0001 _, 2

0110 —» 3 0000 __, 3
——» 2 |

0101
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Although every string is found in different proportions in the individuals of GA, for a
rough estimate we can assume that each string has 1/16 probability of occurrence, since there
are 16 different string representations. Then for a single string, the probability of crossing
with “1111” and producing different children can be calculated as the probability of selection
of that string (1/16) x crossover probability x number of possible cross-sites /20, where 20 is
the string length. For string “0000” this probability equals 1/16 x p. x 3/20, where same
probability is 1/16 x p. x 1/20 for string “0011”.

Since first buffer is located between first and the second stations, and first station is one
of the bottlenecks, good solutions include large amount of buffer positions, at least the
number of buffer positions is greater than 5, the strings on the right side can rarely be selected
by the reproduction operator, so we can discard them in calculation. Hence, the probability to
cross with “1111” and produce different children equals to the sum of distinct probabilities,
which is equal to 1/16 x p. x 11/ 20.

For the best case (high crossover probability) this number contributes to 11 /320. For
the worst case (low level of mutation), the probability of same operation with mutation is
equal to 4 x py, = 4 /100. Even for the worst case mutation has a higher chance to generate
diverse individuals in buffer levels, since 4 /100 > 11 /320. Thus mutation is significantly
effective on fitness, although crossover is not.

To sum up, once the good solutions are achieved, the population members are similar to
each other in terms of machine numbers. The increase in mutation probability, allows GA
search more combination of buffer levels, which automatically increases the GA performance.

The only significant interaction effect is the interaction between mutation probability
and initial population type. For the low level of mutation probability, the improvement in the
fitness value going from random initial population to seeded population is more significant
than the high level of py, (Figure 9.f). The initial population type has a significant main effect
on fitness, which is stated above. The mutation operator is the relevant tool for improving the
solutions, by searching different levels of buffer levels. When py, is low, less mutation occurs,
so alterations of strings decrease, and only the strings generated by crossover mechanism
becomes effective on the fitness response, thus the power of seeded population becomes
visible. Starting with good solutions lead to very rapid convergence, and GA has more time to
search for different levels of buffers compared to random population. But for the high

mutation rates, more mutation occurs, so the difference between initial population types is
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compensated. As more mutation proceeds, the diversification of solutions occur, so random
solutions can also hit better solutions in terms of buffer combinations.

As a conclusion, according to the factorial analysis considering the fitness response, the
initial population type, population size, maximum generation number and mutation
probability presents significant behavior, and all of them have positive effect. Thus, it is better
to set these variables to their high levels to maximize the fitness value. Since no conclusion is
gathered for crossover probability any level can be used. The only interaction effect claims in
parallel with the main effects, so it is convenient to set all parameters except crossover

probability to high level.

5.1.3. CPU Time Response

The ANOVA table for the CPU time response is presented as Table 10. According to
%95 precision level, the following factors become significant as a result of F test: population
size, maximum generation number, mutation probability, and interaction effect of population

size and maximum generation number.

Table 10: ANOVA Results for CPU Time Response
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Type Il Sum Significance

Source of Squares | df | Mean Square F Level
Corrected Model 8500190197,60 | 31 | 274199683,79 | 109,67 0,000
Intercept 34684395129,85| 1 | 34684395129,85 |13872,25 0,000
POPTYPE 6423020,66 1 6423020,66 2,57 0,111
POPSIZE 3929259559,70 | 1 | 3929259559,70 | 1571,53 0,000
IMaxPoP 3990321062,21 | 1 | 3990321062,21 | 1595,96 0,000
CROSSP 28197,16 1 28197,16 0,01 0,916
IMuTP 107683013,17 | 1 | 107683013,17 43,07 0,000
POPTYPE * POPSIZE 1175,81 1 1175,81 0,00 0,983
POPTYPE * MAXPOP 304493,78 1 304493,78 0,12 0,728
POPSIZE * MAXPOP 43685622440 | 1 | 436856224,40 | 174,72 0,000
POPTYPE * POPSIZE * MAXPOP 24715,32 1 24715,32 0,01 0,921
POPTYPE * CROSSP 2435,00 1 2435,00 0,00 0,975
POPSIZE * CROSSP 850404,75 1 850404,75 0,34 0,561
POPTYPE * POPSIZE * CROSSP 18437,15 1 18437,15 0,01 0,932
[MaXPOP * CROSSP 91908,65 1 91908,65 0,04 0,848
POPTYPE * MAXPOP * CROSSP 266530,11 1 266530,11 0,11 0,745
POPSIZE * MAXPOP * CROSSP 126162,32 1 126162,32 0,05 0,823
POPTYPE * POPSIZE * MAXPOP * CROSSP 110703,01 1 110703,01 0,04 0,834
POPTYPE * MUTP 531729,01 1 531729,01 0,21 0,645
POPSIZE * MUTP 11637101,93 | 1 11637101,93 4,65 0,033
POPTYPE * POPSIZE * MUTP 2667,83 1 2667,83 0,00 0,974




Table 10: ANOVA Results for CPU Time Response (cont’d)

MAXPOP * MUTP 12711051,69 1 12711051,69 5,08 0,026
POPTYPE * MAXPOP * MUTP 517114,42 1 517114,42 0,21 0,650
POPSIZE * MAXPOP * MUTP 683639,46 1 683639,46 0,27 0,602
POPTYPE * POPSIZE * MAXPOP * MUTP 548742,34 1 548742,34 0,22 0,640
CROSSP * MUTP 6702,40 1 6702,40 0,00 0,959
POPTYPE * CROSSP * MUTP 254139,39 1 254139,39 0,10 0,750
POPSIZE * CROSSP * MUTP 257278,39 1 257278,39 0,10 0,749
POPTYPE * POPSIZE * CROSSP * MUTP 50285,83 1 50285,83 0,02 0,887
MAXPOP * CROSSP * MUTP 211923,72 1 211923,72 0,08 0,771
POPTYPE * MAXPOP * CROSSP * MUTP 87003,19 1 87003,19 0,03 0,852
POPSIZE * MAXPOP * CROSSP * MUTP 296180,66 1 296180,66 0,12 0,731
POPTYPE * POPSIZE * MAXPOP * CROSSP * MUTP 26594,13 1 26594,13 0,01 0,918
Error 320034691,42 | 128 2500271,03

Total 43504620018,87 | 160

Corrected Total 8820224889,02 | 159

The normal probability plot of effects is taken for the diagnostic checking purposes.
Figure 10 illustrates the graph. The graph shows linear behavior except four outlier points,
three of which are in the positive side, and the remaining in the negative side. These points
correspond to the significant effects found from the analysis of variance, thus the correctness

of the analysis is validated.
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Figure 10: Normal Probability of Effects for CPU Time Response
Again, before any interpretation of the results, it is beneficial to make some preliminary
analysis about the solution space, with respect to CPU time. First of all, the CPU time
depends on the simulation time of individual points. Although the processing of GA requires

some time, the simulation time of the solutions generated by GA constitute to almost all CPU

65



time (more than 95% of CPU time). Thus, the factors effecting the CPU time, in fact, alter the
simulation time.

The simulation time is dependent on the load of the system. As the machine numbers
and buffer levels increase, the simulation time increases in parallel, since more production
occurs in the model. Like the fitness case, machine numbers are also dominating set of
decision variables according to the CPU time. The main reason is, the production rate merely
depends on the machine combinations, and since the simulation time is proportional with the
production rate, it is also associated with the machine combinations. Buffer levels do not have
significant effect on simulation time, except some extreme conditions (very low levels of
buffer affecting the production process).

As stated in the fitness analysis, GA converges to some good solutions having specific
patterns of machine combinations rapidly. These good solutions correspond to loaded
systems, having more number of machines from the average, hence their simulation runs
generally requires more time compared to other solutions, because more production occurs
compared with the system having average values of variables. Going from these good patterns
to a higher level of machine combination increases the simulation time, but however any
negative deviation from the good patterns leads to significant decrease in simulation time,
because the throughput of the system decreases significantly. The following example
illustrates the situation:

Solution CPU Time
3-4-2-3-15-13-2 ——— > 0.23 minutes
2-4-2-3-15-13-2 —— (.16 minutes
4-4-2-3-15-13-2 —» (.24 minutes

First combination is a good solution, and has a simulation time of 0.23 minutes, which is the
average of five replications. Decreasing the number of machines in first workstation by one
unit, results with a significantly less-loaded system having 0.16 minutes of simulation time;
while a positive alteration of same variable increases the simulation time to only 0.24
minutes.

After these preliminary explanations, the results of ANOVA are presented below.
Figure 11.a represents the change in CPU time with respect to change in population size.
Figure 11.b shows the effect of maximum generation number, and Figure 11.c represents the

mutation probability effect. Figure 11.d is the graph of all main factors, and finally Figure
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11.e resembles the only significant interaction effect, population size-maximum population

interaction.
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Figure 11: Graphs of Significant Effects with respect to CPU Time Response
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Figure 11: Graphs of Significant Effects with respect to CPU Time Response (cont’d)

The initial population type is insignificant with respect to CPU time, which can be
observed from the Figure 11.d. It has a straight-line representation, meaning that no alteration
in CPU time occurs according to the change of level from low to high value. The reason
behind this situation is the rapid convergence of the solutions to good patterns. Good
solutions are loaded systems, and regardless of the buffer combinations good patterns have
nearly equal simulation times. Although seeded populations converge to good solutions more
rapidly, a random start looses only a few generations time to converge to the same good set of

solutions, and on the average these few generations’ individuals’ simulation time does not
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make significant impact on CPU time. At some initial generations, average CPU time covered
is more at seeded populations compared with the random ones, since random populations
have more poor solutions corresponding to less-loaded systems, with less simulation time. But
when all the generations are compared, this discrepancy cannot show significant changes on
CPU time.

The first significant effect is the population size. It has a positive effect on CPU time,
which is an obvious result, because an increment in population size, directly increases the
number of individuals processed, so the number of simulation runs taken. Thus increase in
level of population size increases the CPU time (Figure 11.a).

The maximum generation number factor has same impact with the population size
parameter. Like the population size, high level of maximum generation number doubles the
number of points processed in GA application, obviously the CPU time increases
substantially, going from low level to high level (Figure 11.b).

The crossover probability is insignificant according to CPU time (Figure 11.d), as in the
case of fitness response. The reasons for the insignificance of the fitness response are also
valid for the CPU time case. Generally to cross or not does not make any sense, because in
each case the produced children are same, or carry same structural properties. Crossover
always produces individuals with good specific pattern of machine numbers, because any
individual objected with this is eliminated by the selection procedure in the following
generations, as explained in fitness part. The only difference between the solutions is their
buffer levels. However, except for some extreme cases (very low levels of buffers), which are
rarely or never experienced, all the buffer combinations lead to a semi-loaded simulation
model, thus the simulation time, so the CPU time are very close to each other. The
combination examples used in the fitness analysis can clarify the situation:

Solution CPU Time

3-4-2-3-12-16-6 ——>»  0.22 minutes
3-4-2-3-16-15-9 ——>»  0.23 minutes
3-4-2-3-15-16-2 ——— >  0.23 minutes
3-4-2-3-16-12-8 — »  0.23 minutes
3-4-2-3-16-13-5 ———>»  0.23 minutes
3-4-2-3-13-16-10 ——>» (.23 minutes
3-4-2-3-16-14-4 ——>» (.23 minutes
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3-4-2-3-12-13-2 — » 0.23 minutes
3-4-2-3-14-11-4 ——  » 0.23 minutes

All combinations except one has a simulation time of 0.23 minutes, which shows the
similarity between the solutions having same machine number pattern in CPU time.

The mutation probability is the last significant factor on CPU time. Different from the
other factors, mutation probability has a negative effect on CPU time (Figure 11.c). Increasing
the mutation probability p, decreases the CPU time, which is a desired result. Mutation
gathers the diversity to the search space by the alterations it makes on the bits of individual
strings. Because of dominant good solutions, rapid convergence occurs to some specific
patterns of machine numbers. The preliminary analysis on the solution space reveals that
negative deviations from the good machine combinations lead to more significant decrease in
simulation time, when compared with the increase in simulation time in the case of a positive
alteration of machine numbers, which carry the model to a more loaded one. Another
interpretation about the algorithm is that after some starting generations all the populations
are composed of individuals having combinations of 3 -4 —2 —3 or 4 —4 — 2 — 3 as machine

numbers leading to strings starting with:

String 1: 10110110
String2: 11110110

Mutation operator alters the value of bit from 1 to 0, or vice versa. A change from 1 to 0
leads a decrease in real value of corresponding variable, which corresponds a less-loaded
system and the opposite results with an increased real value, which is a more loaded system.
For string 1, the probability to go a more loaded system is 3/8 in terms of machine numbers,
because there are 3 “0”’s present in the string. On the other hand a less-loaded system is

661”’

achieved in 5 of 8 trials because of 5 s in the string. These probabilities are even more
discriminating in string 2, because of six 1’s and two 0’s, corresponding to 6/8 and 2/8,
respectively.

Since generally different levels of buffers do not have a significant impact on CPU time
with good pattern of machine numbers, assuming that they have the same amount of

simulation time, the CPU time decreases when the mutation probability increases, because in
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most of the trials, mutation carries the solution to a less-loaded system. This result is proved
by comparing the probabilities, for first type of strings in 5 of each 8 trials system becomes a
less-loaded one, and for second string in 6 of 8 trials same result is obtained. Also the
significant difference between the alterations from a good solution to a more loaded system,
and from a good solution to a less loaded system has a positive effect on the decrement of
CPU time, which is stated in the preliminary analysis.

The only significant interaction effect is the interaction between population size and
maximum generation number. For high level of maximum generation number, the difference
between the high and low level of population size in terms of effect on CPU time is larger
than the low level (Figure 11.e). The reason is that higher the iteration number, larger the
number of loaded systems (good solutions) present in the population; since more individuals
converge to the same set of good solutions contributing to loaded systems and the simulation
time of loaded systems are longer than the other solutions. Thus, for high level of maximum
generation number the increase in CPU time by the alteration of population size is more
significant. From Figure 11.e, it is observed that high level of both factors lead to the
maximum CPU time.

From all these analysis, the final conclusion is; the population size and maximum
generation number has positive effects on CPU time. Since we are trying to minimize the
CPU time, low levels of these parameters are appropriate. Because the mutation has negative
effect on CPU, it is better to set it at its high level. As the crossover probability and initial

population type do not have significant impact on CPU time, they can be used in any level.

5.1.4. Conclusion

ANOVA is applied to both fitness and CPU time measures independently, and the
significant factors on responses are determined. According to the results gathered, appropriate
levels of each numerical parameter are selected. Table 11 summarizes the results.

There are two conclusions, which take our attention. One of them is the insignificance
of crossover probability for each response types; and best performance of the high mutation
probability in both cases. What is interesting here is that, the power of mutation is greater than
the crossover on both performance measures. But it is obvious that the conclusions are

relevant for a factor analysis with some pre-specified levels. Thus, we decide to make further
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analysis of mutation probability, and crossover probability to observe the behavior at their

Table 11: Results of Factorial Design Analysis

Pop Type| Pop Size| Max Gen| Cross P| MutP
Fitness
Level High High High - High
Value | Seeded 40 100 - 0,05
CPU Time
Level - Low Low - High
Value - 20 50 - 0,05

different levels. Since it is a very time consuming task to repeat all the analysis with different
levels of these parameters, single factor analysis is chosen for the experimentation. In other
words all the other parameters are set to some value, and change in performance measures is
examined according to the change in the level of the parameter under consideration. Two
distinct experimental conditions are chosen, all the parameters are set to their high levels and
low levels separately. Statistical inference about the results is obtained by comparing the
performances using paired-t test.

First, we investigate the significance of crossover probability. Our initial values were
0.5 and 1; we also examine the behavior of the performance measures under levels of p. = 0,
0.25 and 0.75. Figure 12.a represents the change in fitness value due to the alteration of pe,

and Figure 12.b presents the same results for CPU time response.
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a) Best Fitness with Different Levels of Crossover Probability
Figure 12: Analysis of Different Crossover Probabilities
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CPU Time vs Crossover Probability

30000
25000 —— =
20000
15000
10000

5000

CPU Time

L4
*
<
4
L 2

0 0,25 0,5 0,75 1
Crossover Probability

| —e—Low —=—High |

b) CPU Time with Different Levels of Crossover Probability
Figure 12: Analysis of Different Crossover Probabilities (cont’d)

Each point in the graphs corresponds to the average of independent GA applications.
For fitness value, as observed from Figure 12.a, there is no significant difference in
performance measure for different levels of crossover probability. The paired-t test
statistically validates this conclusion, because the difference of means of two successive
points present an insignificant behavior.

The CPU time graph also shows the insignificance of the crossover probability, which is
also validated by paired-t test results of every consecutive pairs. For design point 2 (all
parameters at their high level), alteration of crossover probability do not change the CPU time
significantly, it goes around 25000 seconds. For design point 1 (parameters at their low
levels), since the population size and maximum generation number are at their low levels, the
CPU time is significantly lower, but again the change in crossover probability does not have
any significant effect on the performance.

This further analysis backs up the previous results of our factorial design, and also goes
in parallel with the preliminary observations made about the solution space. Since there is a
dominating set of variables, and the good solutions are defined to be good because they have
some specific pattern of this set; and also because the good solutions are very dominating in
terms of fitness value; after some initial generations individuals in populations converge to
these specific pattern of solutions. Thus, to cross or not does not have any impact on the
performance. If crossover is prohibited, this means the copying of selected potential parents to

next generation occurs. If crossover takes place they exchange genetic information, but as
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both parents have the same string characteristics, and even sometimes they correspond to
same individual, exchange of genetic information does not make any sense, so in any level of
crossover probability the GA shows the same behavior, reaching to close solutions at the end.
The same type of analysis is applied for different levels of mutation probability. Again
two design points, other parameters at high and low levels, are considered, and 5 independent
replications of GA are processed for each examination point. Figure 13.a presents fitness

value according to different levels of mutation probability, while Figure 13.b shows the CPU

time behavior.
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Figure 13: Analysis of Different Mutation Probabilities

Although it is not visible from the Figure 13.a, increase in mutation probability has a

significant impact on fitness value. According to the results of paired-t test, design point 2
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(high level) presents insignificant behavior until p,, = 0.4, excluding the p,, = 0 case. But there
is a significant improvement on fitness going from 0.3 to 0.4 level of mutation probability.
The other respective points present insignificant behavior except py, = 1.

The pm = 0 and 1 are the extreme cases with no mutation and always mutation. The
results obtained agree with the consequences we gathered from the factorial design. The
mutation operator is very effective in terms of finding better solutions. This idea can be
observed best by looking at the design point 1 (low level) with p, = 0. There is no mutation
and GA cannot find even good solutions. The GA starts with random population and with
fewer crossovers and no mutation, convergence to good solutions cannot occur. But this is not
valid for the design point 2 (high level). The main reason is that, GA starts with seeded
population containing good solutions, and although mutation is not applied, crossover
operator provides the maintenance of good solutions. However, no mutation case also has
significantly less fitness value than the other points, but the difference is not as obvious as the
design point 1.

Increasing the mutation probability increases the fitness value until p,, = 0.4. The other
probabilities are insignificant after this level when compared respectively until p,, = 0.95.
There is a significant decrease in fitness at p,, = 1. This is because of the inadequate pattern of
GA. GA finds good solutions and carry their good properties to future generations by
crossover and reproduction, but if mutation occurs nearly all the time, the building blocks that
belong to good solutions are always disturbed and changed, so GA cannot converge to good
solutions. In other words as the generations proceed the average fitness of populations cannot
increase as our case. The negative impact of “always mutation” is more visible in design point
I (low level). The main reason is the initial population type difference. The random start
cannot even reach good solutions like the other extreme case p, = 0. But for seeded
populations, since the initial population contains good solutions, at worst case these good
starting solutions are the best solutions obtained during GA, which are better than the random
start in terms of fitness values

Investigation of Figure 13.b shows that increments in mutation probability make
significant reductions in CPU time covered. This result also agrees with our conclusions about
solution space. As more mutation occurs more less-loaded systems are processed, so
simulation time decreases. But after 0.9 level, there is an increase in CPU time, which is in

correspondence with the fitness case. As the pattern of GA is disturbed, no convergence to
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good solutions occur, and unpredictable points from anywhere of solution space are
processed. The search mechanism looses its logic, so increase in CPU time is observed.

From the two graphs, it is concluded that even more increments in mutation probability
lead better solutions in terms of maximum fitness and minimum CPU time. Mutation
probability of 0.4 is the most convenient choice, since it has the maximum fitness and
significantly less CPU time.

During the analysis, we have two objectives, maximizing the best fitness value found,
and minimizing the CPU time elapsed. Table 11 shows the results of analysis made for each
objective one by one. But to conclude on the appropriate levels of the factors, we have to
combine the results. Obviously we can conclude on the mutation probability level as the high
level, since the results of analyses in both cases are consistent with each other. Population
type is insignificant for CPU time, and seeded population is better for fitness, so the initial
population is set to be seeded population. Crossover probability is insignificant for both
response types, so any level of the crossover probability can be used.

Unfortunately, population size and maximum generation number behave in an opposite
way when the results of the analyses are considered. If you have the high level, you get better
fitness value but in a long run time for both factors. Hence user should give the priority to one
objective, and select the appropriate one. If an increment in fitness value is very important for
the user, then s/he should set the factors to their high levels, regardless of the CPU time.
Otherwise, if the time is the most important constraint, and it is expensive to run the
algorithm, then user should set the factors to their low value. In our case, we give equal
weight to both objectives; fitness and CPU time, and make the analysis based on this. Table
12 summarizes the analysis made.

Table 12: Percentage Change in Responses According to Change in Factor Levels

CPU CPU

Pop Size
20
40

Fitness
793305,5
800347,5

Time
9767,775
19678,95

Max Gen
50
100

Fitness
794795,5
798857,5

Time
9729,418
19717,31

% Change

0,887678

101,4681

% Change

0,511075

102,6566

Percent changes reflect the percentage change in the response variable, when the
relevant factor is increased form its low level, to high level. For population size, this increase

leads to a 0.89% better fitness solution, while a 101.5% increase in CPU time. Similarly,
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change in the maximum generation number leads to a 0.5% better fitness solution, but in
102.7% more CPU time. The increments in fitness values cannot compensate the extra CPU
time covered, so it is better to set population size and maximum generation number to their
low values.

Table 13 gives the final conclusion about the parameters of GA that maximizes the best
fitness found and minimizes the CPU time.

Table 13: Final Result of Analysis

Pop Type| Pop Size | Max Gen| Cross P| MutP
Level High Low Low |High/Low| High
Value | Seeded 20 50 1/0,5 0,05

The best parameter configuration of GA is starting with a seeded initial population with
low level of population size, and maximum generation number; also the mutation probability
should be as large as possible (0.05 in factorial design, 0.4 in further analysis), any crossover
probability can be selected. But we have to remind that the selection of population size and
maximum generation number depends on the choice between CPU time, and best fitness
obtained. If best fitness obtained is much more important than the CPU time then it is better to
set them to high levels.

Another interpretation is that, if crossover operator is insignificant on fitness response,
and the good solutions dominate the others, and also some set of decision variables has some
specific values in all good solutions, then the importance of mutation increases. Especially for
simulation-optimization purpose, mutating the solutions in such a search space may have a
significant effect on CPU time, and fitness value. If the system under consideration represents
a loaded system for good solution set, then it is convenient to increase the mutation rate,
which generally leads to reduction in CPU time. Also dominance of a decision variable may
support the use of high mutation rates. If good solutions have some specific pattern in terms
of dominant decision variables, then these solutions are discriminated by the levels of other
decision variables. As in our case, mutation operator may be more successful in searching the
different levels of other parameters than the other operators. In such a condition extra analysis

should be done to set the mutation probability to the most convenient level.
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CHAPTER 6

FURTHER ANALYSES

This chapter presents further analyses made by modifications of the test problem and
proposed GA model. We will measure the sensitivity of the results to different experimental
conditions. Section 6.1 presents the results for the analysis carried with the modified objective
function cost parameters of the test problem. Section 6.2 explains the experimental results for
GA-based sim-opt application to the constrained version of the same test problem; thus a
linear constraint is added to the optimization problem. Section 6.3 presents the comparison of

GA performance under different structural parameter settings.

6.1. Modification of Objective Function Parameters
The objective function parameters guide GA in the search mechanism. For instance if
the unit cost of machines is too high, then GA proceeds in the solutions with low level of
machine numbers, since these solutions correspond to good solutions. By alteration of the
objective function parameters, we expect to force GA search different parts of the whole
solution space, and observe if the performance of GA is changing with the searched space.
Currently, the objective function of the original problem is;

F =200 x Throughput — 25000 x Total number of machines — 1000 x Total number of buffers

Throughout the analysis, we do not modify the unit profit for goods manufactured,
because this may lead to an unrealistic situation. In order to make a reasonable analysis, the
parameters should be altered in significant amounts, like the multiples of current values. But
increasing or decreasing the unit profit in multiples will be completely unrealistic, since it is
hard to achieve such significant increments in unit profit in real-life applications. Thus we
decide to alter the values of the cost parameters, which will be a more rational approach.

Since the machine numbers are dominant set of variables, to change the objective
function significantly, the dominance of machines should be somehow eliminated or at least
mitigated. Two separate alterations are done separately.

First we decrease the unit cost of a machine from 25000 to 1000 monetary units, to

distinguish the dominance of machines in terms of cost effectiveness. Thus the unit costs are
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equalized for the first analysis. Although it seems to be unrealistic for real-life situations, the
unit cost of the buffer locations is altered to 25000 units while, machining cost is left in 1000
monetary units, which constitutes the second separate analysis. This is an irrational case, since
the buffer cost is significantly larger than the machining cost, inappropriate for real-life; but
for academic purposes in order to make a complete analysis of the factors, these specified cost
parameters are used. We expect that even equalizing the unit costs, cannot eliminate the
dominance of machine numbers, because of the effects on throughput level; thus a huge
increment in buffer cost may force GA to search different levels of buffer locations
distinctively. In the original test problem case, GA first sets the machine numbers to
appropriate levels, contributing the good solutions; and then search for different levels of
buffers for better solutions. In this modified version, we expect GA to give at least more
importance to buffer levels in proceeding to good solutions.

To sum up, the objective function parameters of the original test problem are modified

and following two schemes are obtained.

1. £=200 x throughput — 1000 x Total number of machines — 1000 x Total buffer locations
2. £=200 x throughput — 1000 x Total number of machines — 25000 x Total buffer locations

From now on, the first one is called as “1000” case, while the second is represented as
“buffer” case. Similar to the first section, separate analyses with respect to fitness response
and CPU time response are handled for each modified version. The factorial designs are used
during the experimentation; but 2° factorial designs are used instead. Our preliminary analysis
concludes that setting the population size and maximum generation number to their high
values do not improve the fitness value significantly when the extensive CPU time
requirement is considered, thus we decide to fix the population size and maximum generation
number parameters to their low levels, and carry out the analysis with three factors; initial
population type, crossover probability and mutation probability. Obviously 8 design points
are constructed for each analysis, and 5 independent replications of GA are taken.

To observe the differences occurring according to cost parameter modifications, the
same analysis should be handled for the original problem to compare the results. Thus
considering the 3 numerical parameters a 2° factorial design is also made for the original
problem; and the results of this case will be presented in the name of “original” in this section,

and computational results of these three analyses (original plus the two modified version) will
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be presented with making comparisons and stating rational explanations in the following

sections.

6.1.1. Model Adequacy Checking

The independence of replications is provided by use of independent seeds of SIMAN as
previously mentioned. To apply ANOVA confidently, normality and homogenous variance
assumptions should be checked, but this time we have only 8 points, and fitting residuals for 8
points may result with misleading conclusions. Moreover Bartlett test is very sensitive to
normality assumption, so testing homogeneity of variances under this situation is irrelevant.
But it is known that, moderate departures from normality assumption are of little concern in
fixed effects ANOVA; since the F test is only slightly affected (Montgomery, 1991 pp.96-
102). Thus we continue with ANOVA and determination of parameter effects. Table 14 and
15 represents the GA results for original case, 1000 case and buffer case for fitness and CPU
time response respectively.

Table 14.a) GA Results for Fitness Response of Original Case

A|D| E| Rept Rep2 Rep3 Rep4 Rep5
799400] 800280] 806560 789800 791080
785000] 800760] 796920 789920 780800
801480] 794760 792760 801800| 791720
800080] 799440 794720 792360| 789040
1 1 -1| 792960 792640| 792800| 793600| 788720,
-1 1 1| 7743201 768160 797040 802280 743400
1 -1 -1| 806360 800080 799440| 785440| 785840,
-1 -1 -1| 778240 787720] 798520| 810160| 767560,

Table 14.b) GA Results for Fitness Response of 1000 Case

A|D| E| Rept Rep2 Rep3 Rep4 Rep5

1128080 1124920 1124280]1126360] 1121800
1126240[1128360] 1127200} 1123120} 1122360,
1125920]1123360] 1128520} 1127800] 1116840,
1120200 1122360] 1127280} 1130920 1118840,
1 1 -1]11313201121440]1125480]1126160] 1117000
-1 1 -1]1133040] 1125240 1122560] 1121480]1120160]
1 -1 -1]1130400] 1118520} 1120520| 1120640] 1119960,
-1 -1 -1]1114640] 1120520 1118680| 1115320] 1112240,
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Table 14.c) GA Results for Fitness Response of Buffer Case

A[D[E[ Rep1 | Rep2 | Rep3 | Repd | Rep5
1005840 994440[ 1011760 9715201003200
975080| 980600] 988760]1016240| 982120
980280| 1012320] 9674801016240 971280
980280 993800] 9677601009520 977040
1 1 -1| 977320 906040 989680|1009120] 932960
-1 1 -1[1005840[1012320]1005400] 926840 986920
1 -1 -1| 981360 946240] 927800| 996200| 1000480
-1 -1 -1| 9972801012320 938080|1016340| 1004160

Table 15.a) GA Results for CPU Time Response of Original Case

A[D[E[ Rep1 | Rep2 | Rep3 | Repd | Rep5

5929,93] 5822,16| 5824,43] 5926,42| 5864,48
5746,66| 5297,97| 5825,66| 5630,84| 5499,36
5760,22| 5840,01| 5912,98| 5812,63| 5783,68
5656,01| 5889,85| 5296,02] 5364,08| 5534,52
1 1 -1| 7141,63] 6621,57] 6801,78|  6628| 6736,08
-1 1 -1| 5961,12] 5982,93] 6453,72| 6153,29| 4792,35
1 -1 -1| 6417,06| 6291,32 6581,89 6659,2| 6600,68
-1 -1 -1 6276,26| 6156,25| 6063,63] 6408,02| 6072,87

Table 15.b) GA Results for CPU Time Response of 1000 Case

A[D[E[ Rep1 | Rep2 | Rep3 | Repd | Rep5
5661,8] 5422,61| 5587,75| 5435,03] 5638,8
5722,59| 5480,87] 4903,36|  5222| 543426
5445 29| 5639,51| 5775,05| 5547,47| 5477.7
5592,07| 5373,23| 5264,04] 5122,34| 5380,11
1 1 -1| 6163,43] 5742,61| 6482,34| 6625,6 6610,48
-1 1 -1| 6262,81| 6077,83] 5818,22| 5489,13| 5965,93
1 -1 -1| 6942,51| 6612,96 6526,81| 6792,33| 6302,58
-1 -1 -1| 5877,65] 6003,7| 5825,08| 5593,01| 5383,97
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Table 15.c) GA Results for CPU Time Response of Buffer Case
A|D| E| Rep1 Rep2 Rep3 Rep4 Rep5

1 1 1] 5880,75| 5792,62| 5558,55| 5614,74] 5823,85
-1 1 1] 5492,19] 5461,88] 5934,56| 5655,22| 5766,87|
1 -1 1] 842,05 5460,34| 5981,52| 5795,77| 5715,67|
-1 -1 1] 5621,41]| 5674,35| 5714,41| 5870,11| 5770,21

1 1 -1] 6394,53| 6072,88 6239,46| 6502,45| 6372,38
-1 1 -1] 5943,15] 5928,61] 6231,3| 5528,61| 6310,79
1 -1 -1] 6423,39] 6522,6| 6271,64| 6729,64] 6361,42
-1 -1 -1] 5726,68] 6189,2] 5296,59| 6228,24| 6560,55

5.2.2. Fitness Response
In this section the significant effects in terms of fitness value is analyzed separately for

three distinct cases of objective function parameters.

6.1.2.1. Original Case
Table 16 is the ANOVA table of the original case.
Table 16: ANOVA Results for Fitness Response for Original Case

Significance

Source Type lll Sum of Squares | df| Mean Square F Level
Corrected Model 1541103640 7| 220157662,9 1,61 0,169
Intercept 25065159072040 1| 250652E+13 | 183181,38 0,000
POPTYPE 570629160 1 570629160 4,17 0,049
CROSSP 207389160 1 207389160 1,52 0,227
IMuTP 444889000 1 444889000 3,25 0,081
POPTYPE * CROSSP 113569000 1 113569000 0,83 0,369
POPTYPE * MUTP 122080360 1 122080360 0,89 0,352
CROSSP * MUTP 77841000 1 77841000 0,57 0,456
POPTYPE * CROSSP * MUTP| 4705960 1 4705960 0,03 0,854
Error 4378638720 32 136832460
Total 25071078814400 40
Corrected Total 5919742360 39

According to 95% precision level the only significant factor is the initial population
type. Figure 14.a represents the population type effect, and Figure 14.b shows all the main
effects.
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Figure 14: Graphs of Significant Effects with respect to Fitness for Original Case

The only significant effect is the initial population type (Figure 14.b). As discussed in
page 59, starting with a seeded initial population accelerates GA in finding the good solutions
with appropriate machine number patterns. A random start looses time in converging to good
solutions; thus GA has more time in seeded case to search for different levels of buffers for
good patterns of machine numbers. The significance of population type is consistent with the
original test problem analysis.

The main difference from the previous 2° factorial design results is the insignificance of
the mutation probability. The main reason is that, the mutation operator cannot find enough
time to show its property or power in finding better solutions; since the population size and

maximum generation number parameters are set to their low levels. The minimum number of
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solutions is processed by GA under these factor levels; thus increment in mutation rate cannot
achieve a significant improvement in fitness response. But as seen from Table 16, it is
statistically significant for 90% precision level, which can be considered as mutation just
starts to present its ability.

The crossover probability is insignificant as in the original test problem’s case, whose

reasons are explained in detail in pp 59-61.

6.1.2.2. 1000 Case
Table 17 is the ANOVA table of 1000 case, where the unit machine operating cost is set
to 1000 as in the case of buffer operating cost.

Table 17: ANOVA Results for Fitness Response for 1000 Case

Significance

Source Type Il Sum of Squares | df| Mean Square F Level
Corrected Model 314815360 7 | 44973622,86 2,41 0,042
Intercept 50467802220160 1| 5,04678E+13 |2709936,74 0,000
POPTYPE 20391840 1 20391840 1,09 0,303
CROSSP 99603360 1 99603360 5,35 0,027
MUTP 88327840 1 88327840 4,74 0,037
POPTYPE * CROSSP 29584000 1 29584000 1,59 0,217
POPTYPE * MUTP 17635840 1 17635840 0,95 0,338
CROSSP * MUTP 43597440 1 43597440 2,34 0,136
POPTYPE * CROSSP * MUTP 15675040 1 15675040 0,84 0,366
Error 595943680 32 18623240
Total 50468712979200 40
Corrected Total 910759040 39

According to 95% precision level, crossover and mutation probabilities are significant
factors. In order to explain such behavior, it is necessary to examine the nature of solution
space under such cost parameters. Since the machine cost is equalized with buffer cost and
decreased to 1000 monetary units, good solutions are supposed to have 4 — 4 — 4 — 4 as
machine combination. All decision variables have the same unit cost, thus for optimization
purposes it is better to increase the one having the largest positive effect on profit, in other
words throughput rate.

As expected, good solutions are the ones with machine number patterns of (4 — 4 — 4 —
4),4-4-3-3),4-4—-4-3),and (4 —4 — 3 — 4). Different from the original case, good

solutions have only 4 distinct patterns. Number of machines in first two stations is at
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maximum level, because these stations correspond to the bottlenecks of the system. For 40

independent GA applications, the best fitness value achieved shows the following behavior;

Solution # Times Encountered
4-4-4-4 24 times
4-4-4-3 6 times
4-4-3-4 6 times
4-4-3-3 4 times

The solutions with these machine number patterns are dominating in terms of fitness
value, thus GA converges to these solutions and proceeds among different buffer levels as in
the case of original problem; but this time dominance of good solutions is more definite.

Another interpretation is that, the solution space in 1000 case has different properties
compared with the original case. For the original problem solutions with same machine
patterns but different buffer levels have close fitness values (pp. 55-56). For 1000 case, any
alteration of a buffer variable has more significant impact on fitness value, due to the larger
increment on throughput level. The main reason is that, the workstations now have more
machines and can process more parts, thus any small alteration on buffer leads to distinctive

changes on the profit. The following scheme will clarify the situation.

Solution Fitness Value (monetary units)
4-4-4-4-10-5-1 —» 1126240
4-4-4-4-8-4-2 — 1133040
4-4-4-4-11-3-11 —» 1114640
4-_4-_4-_4-5-2_-3 ——p 1122960
4-4-4-4-8-8-7 > 1121280
4-4-4-4-7-9-2 —» 1111680
4-4-4-4-6-7-1 —» 1114600

There is a nearly 22,000 units difference between solutions, whereas the same
difference is only 5,000 for the original case.

After this preliminary information, the significance of effects can be analyzed
thoroughly. Figure 15.a represents the crossover probability effect on fitness, while Figure

15.b belongs to mutation probability factor. Figure 15.c presents all the main effects at a time.
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Figure 15: Graphs of Significant Effects with respect to Fitness for 1000 Case
From Figure 15.c it can be observed that the initial population type is insignificant

considering the best fitness found. There are only four patterns of machine numbers
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corresponding to good solutions, and they are excessively dominating over other solutions,
thus regardless of the starting population, GA converges to these good solutions rapidly. Thus
a random or seeded start does not make any sense for GA performance.

Different from the previous analysis crossover probability has a positive effect on
fitness, as in Figure 15.a. As discussed in pages 60-61, crossover fails to create diverse
solutions for the original problem case. The same reasoning is still valid in this situation,
where crossover within the machine number variables results with same individuals. The
difference is the significant alteration of fitness for same number of machines and different
buffer levels. In original problem, crossover produces individuals with same machining
pattern with different buffer levels, but as the fitness values of these solutions are very close
to each other, crossover cannot have a significant impact on performance. But this time these
types of solutions have enough fitness differences to result with significance of crossover
probability.

Mutation probability is effective on fitness, where high values of mutation increase the
performance of GA, which can be observed from Figure 15.b. The explanations held for the

original problem are also valid for 1000 case.

6.1.2.3. Buffer Case
Table 18 shows the ANOVA results of buffer case, which has 1000 as unit machine
operating cost, and 25000 as buffer operating cost.

Table 18: ANOVA Results for Fitness Response for Buffer Case

Significance

Source Type lll Sum of Squares | df| Mean Square F Level
Corrected Model 4800322950 7 | 6857604214 0,86 0,549
Intercept 38766184015690 1| 3,87662E+13 | 48558,51 0,000
POPTYPE 766850490 1 766850490 0,96 0,334
CROSSP 5083690 1 5083690 0,01 0,937
IMuTP 1355594490 1 1355594490 1,70 0,202
POPTYPE * CROSSP 8704890 1 8704890 0,01 0,917
POPTYPE * MUTP 2271953290 1 2271953290 2,85 0,101
CROSSP * MUTP 368327610 1 368327610 0,46 0,502
POPTYPE * CROSSP * MUTP 23808490 1 23808490 0,03 0,864
Error 25546868160 32 798339630
Total 38796531206800 40
Corrected Total 30347191110 39
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According to 95% precision level, none of the factors become significant. The nature of
solution space is even more drastic for the buffer case when compared to 1000. The cost of
machine is excessively smaller than the buffer cost, and machines have larger positive effects
on throughput, thus it is predictable that the number of machines in each workstation will be
in its high level, or closer. The good solutions have the same patterns in terms of machine
numbers with the 1000 case. There are only 4 different patterns observed, where 4 —4 —4 — 4
is the most frequently seen (20 of 40 independent GA runs). Different from 1000 case, the
buffer locations have also specific patterns in good solutions. As the buffer cost is extremely
high, for optimization purposes they are set at low levels. Although each buffer position can
range from 1 to 16, in good solutions buffer values do not exceed 3, since in the case of any
increment over this value, the increase in cost cannot be compensated by extra throughput
processed. Generally good solutions have buffer patterns of (1 -1-1), (1 -1-2),(2-1 -
1), 3—-2-1)and (2 — 1 — 2). Thus for buffer case, number of good solutions is less than the
other cases, since there is no buffer diversification for the same machine numbers. And it is
obvious that, the good solutions are extremely dominating among the solution space, thus
rapid convergence proceeds in GA.

According to ANOVA analysis, as observed from Figure 16, all factors are insignificant

in terms of fitness response.
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Figure 16: All Factors’ Main Effects on Fitness of Original Case
The reason is that, the over dominance of good solutions force GA to a rapid

convergence. And less number of good solutions obscures the diversification among different

combination of GA parameters, thus regardless of the parameter combination GA finds these
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solutions rapidly. As there are only few good solutions, and their fitness values are close to
each other, while extremely higher than the other solutions, GA parameter selection cannot
make a significant impact on performance. Wherever or however GA starts, it proceeds to the

same points at the end.

6.1.3. CPU Time Response
The original case is analyzed separately, while 1000 and buffer cases are examined

under one title, because of the similarities they show throughout the analysis.

6.1.3.1. Original Case
Table 19 presents the ANOVA results for original case in terms of CPU time response.
Table 19: ANOVA Results for CPU Time Response for Original Case

Significance

Source Type lll Sum of Squares |df| Mean Square F Level
Corrected Model 6698726 7 956961 12,82 0,000
Intercept 1452236606 1 1452236606 | 19458,93 0,000
POPTYPE 1977910 1 1977910 26,50 0,000
CROSSP 1732 1 1732 0,02 0,880
IMuTP 3957505 1 3957505 53,03 0,000
POPTYPE * CROSSP 226566 1 226566 3,04 0,091
POPTYPE * MUTP 292889 1 292889 3,92 0,056
CROSSP * MUTP 14924 1 14924 0,20 0,658
POPTYPE * CROSSP * MUTP 227201 1 227201 3,04 0,091
Error 2388187 32 74631
Total 1461323519 40
Corrected Total 9086913 39

According to ANOVA table, the significant factors for 95% precision level are the
initial population type and mutation probability. As discussed in Section 5.1.3, CPU time
merely depends on the simulation time, and simulation time is associated with the load of the
system under consideration. Figure 17.a represents the initial population type effect, whereas
Figure 17.b is the mutation probability effect, and Figure 17.c shows the main effects

altogether.
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Figure 17: Graphs of Significant Effects with respect to CPU Time for Original Case
Initial population type is insignificant for 2° factorial design analysis, but significant for
this case. A seeded start converges more rapidly to good solutions compared with a random
start. Good solutions are loaded systems, thus CPU time is more in the seeded population

case. But this is valid only for first few generations (at most 10). After some initial
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generations, GA with different starting conditions contains same good solutions with similar
simulation time. For the first analysis (Chapter 5), the maximum generation number is twice
the current value; hence the simulation time difference between the first few generations
cannot make significant effect on CPU time. But this time as the generation number is low,
and GA proceeds only 50 generations, the excess of loaded systems in first generations of a
seeded start creates a significant impact on CPU time. Seeded initial population increases the
CPU time covered as observed from Figure 17.a.

The significance of mutation probability and insignificance of crossover probability are
explained in detail in Section 5.1.3 in pages 69-71. Increasing the mutation probability,
decreases the CPU time as seen from Figure 17.c, since less-loaded system simulation occurs
more frequently as discussed before, while crossover probability does not effect the GA

performance in terms of CPU time significantly.

6.1.3.2. 1000 and Buffer Cases
Table 20.a and 20.b represents the ANOVA results for 1000 case and buffer case
respectively.

Table 20.a: ANOVA Results for CPU Time Response for 1000 Case

Significance

Source Type lll Sum of Squares |df| Mean Square F Level
Corrected Model 7554365 7 1079195 17,19 0,000
Intercept 1348209640 1 1348209640 |21474,79 0,000
POPTYPE 1866439 1 1866439 29,73 0,000
CROSSP 13321 1 13321 0,21 0,648
IMuTP 4881188 1 4881188 77,75 0,000
POPTYPE * CROSSP 176035 1 176035 2,80 0,104
POPTYPE * MUTP 477025 1 477025 7,60 0,010
CROSSP * MUTP 6617 1 6617 0,11 0,748
POPTYPE * CROSSP * MUTP 133740 1 133740 2,13 0,154
Error 2008993 32 62781
Total 1357772998 40
Corrected Total 9563358 39
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Table 20.b: ANOVA Results for CPU Time Response for Buffer Case

Significance

Source Type lll Sum of Squares |df| Mean Square F Level
Corrected Model 3070154 7 438593 7,01 0,000
Intercept 1419209747 1 1419209747 |22692,97 0,000
POPTYPE 495356 1 495356 7,92 0,008
CROSSP 39088 1 39088 0,63 0,435
IMuTP 2212310 1 2212310 35,37 0,000
POPTYPE * CROSSP 5136 1 5136 0,08 0,776
POPTYPE * MUTP 296188 1 296188 4,74 0,037
CROSSP * MUTP 2579 1 2579 0,04 0,840
POPTYPE * CROSSP * MUTP 19498 1 19498 0,31 0,580
Error 2001268 32 62540
Total 1424281169 40
Corrected Total 5071422 39

For 95 % precision level the significant factors are appeared to be; initial population
type, mutation probability and the interaction between them. The good solutions for both
cases have the same four patterns in terms of machine numbers, that corresponds to more
loaded systems compared with the original case. Good solutions have (4 —4 -4 —4), (4 -4 —

3-3),(4—4-4-3),and (4 — 4 — 3 — 4) as machine number patterns corresponding to loaded

solutions, since they have high level of machining pattern.

Figure 18.a presents the initial population type effect on CPU time of 1000 case,
whereas 19.a is the same graph for buffer case. Figure 18.b and 19.b; Figure 18.c and 19.c,
and Figure 18.d and 19.d represents the graphs of mutation probability effect, all main factor

effects, and the interaction effect of population type and mutation probability for 1000 case

and buffer case respectively.
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Figure 18: Graphs of Significant Effects with respect to CPU Time for 1000 Case
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d) Population Type-Mutation Probability Interaction Effect on CPU of 1000 Case
Figure 18: Graphs of Significant Effects with respect to CPU Time for 1000 Case (cont’d)
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Figure 19: Graphs of Significant Effects with respect to CPU Time for Buffer Case
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d) Population Type-Mutation Probability Interaction Effect on CPU of 1000 Case
Figure 19: Graphs of Significant Effects with respect to CPU Time for Buffer Case (cont’d)

For both cases the initial population type is effective on CPU time, seeded start
increases the duration of GA run. The reasoning stated for the original case previously is valid
for these two situations. Seeded initial solution contains more loaded systems than random
start at least in first few generations, and only 50 generations proceed thus the difference
affects the CPU time significantly. Seeded started GA’s requires more CPU time.

Crossover probability is insignificant for both 1000 case (Figure 18.c) and buffer case
(Figure 19.c). Since good solutions have only some specific patterns in machine numbers, and
over-dominant among other solutions, selection procedure always selects these solutions as
potential parents. And crossover exchanges genetic material among them, creating individuals
having same machining patterns but different levels of buffers (same buffer levels are also
frequently obtained as discussed previously). These individuals correspond to solutions with
same amount of CPU time, as solutions with different buffer levels and same machine
combinations correspond to same loaded systems having close simulation time. Thus
crossover cannot achieve diverse solutions with different simulation times, and ineffective on
CPU time. The following examples will clarify the situation:

Solution CPU Time
—-4-4-10-5-1 ——p 0.27 minutes
—-4-8-4-2 —— » 0.27 minutes
4-11-3-11 —» 0.27 minutes
-4-5-2-3 —— > 0.27 minutes
4-8-8-7 —» (.28 minutes
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4-4-4-4-7-9-2 —— > 0.28 minutes
4-4-4-4-6-7-1 ——p 0.27 minutes

These solutions are good solutions for 1000 case, and although they have diverse fitness
values as stated previously, they correspond to systems with same workload, thus simulation
time of these systems are close to each other. Only two of the listed solutions have 0.01
minutes more simulation time than the others having equal simulation duration. Good
solutions have some specific set of machine numbers, and specific set of buffer locations, and
simulation time of these systems are close to each other for the buffer case.

Mutation probability is significant in terms of CPU time response for both 1000 and
buffer case. It is a predicted result, since the good solutions have 4 —4 -4 —4), (4 -4 -3 —
3),(4—-4—-4-3),and (4 — 4 — 3 — 4) as machine combinations corresponding to;

Solution Binary Representation
4-4-4-4 5 11111111
4-4-3-4 » 11111011

4-4-4-3 ) 11111110

4-4-3-3 5 11111010

Supposing the buffer levels do not have any significant impact on simulation time,
mutation operator affects the CPU time by altering the machine numbers. In all of the strings
presented above, number of 1’s are excessively dominant over 0’s, thus mutation usually
generates solutions with fewer number of machines corresponding to less-loaded systems,
having less simulation time. For instance, for the first string in all trials, mutation generates a
less-loaded system, because of absence of any 0’s in the string. For the fourth case, on 6 of 8
trials mutation results with a decrement in machine numbers. Hence, mutation probability has
a negative effect on CPU time, an increment in mutation rate decreases the CPU time.

Initial population type-mutation probability interaction effect is significant for both
1000 case and buffer case (Figure 18.d and 19.d). For low level of mutation probabilities, the
difference in CPU time between a seeded start and a random start is more observable. When
the mutation probability is increased, the discrepancy between the GA with different starting
conditions will disappear in some extent. GA with a seeded start requires more CPU time,
because in few starting generations, the populations have more loaded systems (good

solutions) compared with a random start. But increase in mutation rate, increases the
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deviations from good solutions, thus for both random and seeded cases, good solutions are
mutated and less-loaded solutions are achieved more frequently. This compensates the
starting effect of seeded population on CPU time. Assuming that on the average same number
of mutations are carried for both GA’s, similar number of alterations is made in some extent.
The good solutions creating the CPU time discrepancy in few starting generations are more
frequently mutated, thus their negative effect on CPU time lessens. Hence, it is better to set
the mutation probability to high level, while population type to random population for

minimization of CPU time, which is consistent with main factor analyses.

6.1.4. Conclusion

The cost parameters of the objective function are altered in order to make GA search
different parts of the solution space. Two modifications are made; 1000 case, where the unit
machine operating cost is decreased to 1000 monetary units, and buffer case, where buffer
operating cost is set to 25000 monetary units, while machine cost remains at 1000 level. As
increments on the population size, and maximum generation number factors do not have
significant effect on fitness value, but increases the CPU time substantially, these factors are
set to their low levels, 20 and 50 respectively.

For 1000 case, the crossover and mutation probabilities appear to have significant effect
on fitness value, where their high levels maximize the fitness. All factors are insignificant for
buffer case on fitness response. When the same analysis is repeated for the original problem
with 3 factors, only initial population type found significant, whose high level (seeded
population) is useful for fitness maximization.

Considering the fitness response, GA parameters present different behaviors under
different cost parameters. The searched portion of solution space even affects the impact of
the numerical parameters; thus GA performance and selection of parameters depend on the
nature of solution space.

Hopefully, the situation is more fortunate for CPU time response. In all three analyses,
mutation probability has a negative effect on CPU time; high levels of mutation probability
reduce the CPU time. The initial population type presents a significant behavior on CPU time,
because of the less number of generations used. Setting the initial population type to random
population decreases the CPU time for all three cases. Table 21 summarizes the results for all

3 cases for both response types.
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Table 21: Results of Factorial Design Analysis for Modified Objective Function Parameters

Pop Type| Cross P| MutP
Fitness

Original High - -
1000 - High High

Buffer - - -
General High High High

CPU Time

Original Low - High
1000 Low - High
Buffer Low - High
General Low - High

According to Table 21, although different behaviors of parameters are experienced for
fitness response, in general setting all the factors to high levels will increase the fitness value
as in the case of the first analysis of Section 5.1. For CPU time reduction, it is better to select
random initial population with high level of mutation probability.

The mutation probability levels are consistent for each response, thus it is obvious that
high level of mutation rate is better for both objectives. Since crossover probability is
ineffective for CPU time, but has a positive effect on fitness, setting it to high level is
appropriate for both objectives. The only contradiction occurs in initial population type, thus
further analysis is required for the selection of its adequate level. Table 22 presents the results
of the analysis.

Table 22: Percentage Change in Responses According to Change in Population Type

Original 1000 Buffer
Pop Type | Fitness | CPU Time | Fitness | CPU Time | Fitness | CPU Time

Random | 787822 | 5803,071 |1122538]| 5589,61 |988835| 5845,247
Seeded | 795376 | 6274,808 |1123966| 6021,633 | 980078 | 6067,813

% Change| 0,9 7,7 0,1 7,7 -0,8 3,8

Seeded initial population increases the best fitness found except in buffer case, but also
CPU time positively affected, GA requires more computation time. Although the percentages

are not significantly different as in the case of the original problem (Section 5,1), considering
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the both objectives with equal weights, it is better to start with a random population. But if
only slight importance is given to fitness response over CPU time, seeded population will be
the adequate choice.

Thus, to sum up, although the results are not so much in parallel in some extent, our
further analysis with different cost parameters reveal that high levels of crossover probability
and mutation probability; and low level of initial population type (random population) is
appropriate for better performance of GA in terms of fitness and CPU time responses. These
results are consistent with the original problem’s analysis except the initial population type;
but as stated above seeded populations can also be selected since the random population does

not have significant superiority over seeded initial population.

6.2. Constrained Version Of Test Problem

Another modification we made on the test problem is adding a linear constraint to the
problem. The constraint will make some combinations of decision variables infeasible, thus
shrink the solution space. If the feasible space is too small, then any combination of GA
parameters can manage to find optimal or near-optimal solutions, hence the analysis of effects
become meaningless.

To create a different experimental condition; the linear constraint is added to the test
problem in such a way that it forces GA to search different parts of the solution space
compared with the other two cases (original case and the cost parameter modified version).
By this way, we think that we can analyze the dependence of GA parameters’ effectiveness on
the searched space.

The machine numbers are the dominating set of variables, thus we decide to add
constraint on the total number of machines. In fact, in the original problem (Law and
McComas, 2000) authors impose a linear constraint on total number of machines. We use the
same constraint in our analysis, which is;

M; +M,; +M; +M; <10
which means the total number of machines at the workstations cannot exceed 10.

During the GA implementation, the strings created corresponding to infeasible solutions

are discarded, and new strings are generated instead. To compare the results with the original

problem and the other modified versions, same analysis of 2° factorial design is used.
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Throughout the section, the constrained version of the test problem will be defined as

“constrained” case

6.2.1. Model Adequacy Checking

Again the independence is ensured by the use of independent random number seeds.
According to the reasons stated for other modified versions (pp.80), we continue with
ANOVA without any other diagnostic checking. Table 23.a shows the GA results for fitness
response, whereas Table 23.b presents the results for CPU time.

Table 23.a: GA Results for Fitness Response of Constrained Case

A|D| E| Rep1 Rep2 Rep3 Rep4 Rep5
592080] 597240] 599680 591160 593120
581440] 595360] 597520 595440 594440
593280] 589280] 595240 590360 596320
594080] 596560] 601400 595520 594640
1 1 -1| 594640 598040| 603680] 589120 598520,
-1 1 -1] 596160 596640| 604800] 595560| 596840,
1 -1 -1| 594960 589800| 603680] 590600 570760,
-1 -1 -1] 594680 593280] 599600| 585320] 585800

Table 23.b: GA Results for Fitness Response of Constrained Case

A|D| E| Rep1 Rep2 Rep3 Rep4 Rep5

4298,31| 4454,53| 4433,92| 4244,26| 3884,19
4142,9] 4379,8] 4239,86] 4169,13] 4248,79
4316,62| 4194,25] 4247,8] 4404,33| 4643,58
4185,78| 4237,64] 4608,26] 4309,32| 4252,18
1 1 -1]4890,49| 4898,7| 4763,45| 5215,53| 5092,04
-1 1 -1 4797,52| 4603,59| 4757,63| 4296,32| 4801,63
1 -1 -1 5119,26] 4678,59| 4898,01| 4787,65| 4574,72
-1 -1 -1] 4668,31| 4506,72| 4608,26| 4521,48] 4567,84

The results of the analysis with the rational explanations and comparisons with the

original test problem results will be presented in the following sections..

6.2.2. Fithess Response

Table 24 represents the results of ANOVA for fitness response.
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Table 24:ANOV A Results for Fitness Response for Constrained Case

Source Type lll Sum of Squares |df| Mean Square F Sig.
Corrected Model 172117017 7 24588145 1,05 0,416
Intercept 14154132152900 1 | 14154132152900 | 605802,73 0,000
POPTYPE 486644 1 486644 0,02 0,886
CROSSP 20146964 1 20146964 0,86 0,360
MuTP 17229188 1 17229188 0,74 0,397
POPTYPE * CROSSP 109412 1 109412 0,00 0,946
POPTYPE * MUTP 11393428 1 11393428 0,49 0,490
CROSSP * MUTP 55535636 1 55535636 2,38 0,133
POPTYPE * CROSSP * MUTP 67215748 1 67215748 2,88 0,100
Error 747656307 32 23364260
Total 14155051926224 40
Corrected Total 919773324 39

According to 95% precision level none of the factors are significant considering the
effects on fitness value. Before investigating the reasons for such a behavior, it is better to
make some preliminary analysis about the results of GA applications.

Throughout the constrained case study, 40 independent replications of GA are taken,
and all of these result with a best solution having machine combinations of 2 —4 —2 — 2 and
3 —3 —2 - 2. The former one appears 34 times, and the latter result is achieved at 6 trials. We
impose a limit of 10 on the total number of machines; since the first two stations are
bottleneck stations, we expect to have more machines in these two stations. Thus a machine
combination of 3 —3 — 2 — 2 is an expected pattern for good solutions. Also the second station
has more processing time than the first, according to this number of machines in station 2
should be larger than the others. Depending on this, machine pattern of 2 — 4 — 2 — 2 is
another predictable machine combination of good solutions.

Under the dominance of machine numbers on the objective value of the system, good
solutions have two different patterns of machine combinations as stated above. Like all other
cases, the discrimination among the solutions with these machine patterns is achieved by the
different levels of buffer combinations. But this time the fitness value of such solutions is
closer to each other as presented with the following examples.

Solution Fitness Value (monetary units)
2-4-2-2-12-5-2 —» 596160
2-4-2-2-8-4-4 ——» 594080
2-4-2-2-15-5-2 —» 594680
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2-4-2-2-15-3-7 —» 592080
2-4-2-2-11-1-4 —p 594640
2-4-2-2-12-8-3 5 593280
Since there are only two good patterns of machine numbers, number of good solutions
is less in some extent when compared with the other cases of the problem. In fact, the feasible
solution space is smaller compared with the other cases.
Like the other cases, the good solutions are dominant among all the feasible solutions in
terms of fitness value. Thus we expect the rapid convergence of GA to these solutions.
After these preliminary discussions, we can analyze the results of ANOVA. Figure 20

represents the effects of all factors on the fitness value.

Main Effects

599000
2 597000

S 595000 — =
> 593000
§ 591000
iZ 589000
587000
585000

Low High

Factor Levels
‘—O—PopType —ll— Crossp Mutp ‘

Figure 20: All Factors Main Effects on Fitness of Constrained Case

As observed from the figure, all the factors are insignificant. Because the good solutions
are highly dominant over other feasible solutions and they have close fitness values among
each other, regardless of the type of GA processed, algorithm converges to one of these good
solutions.

The initial population type is insignificant, although seeded populations may accelerate
GA in converging to good solutions. Since the population size, and maximum generation
number are at their low levels, even the effect of a seeded start is supposed to be more
significant. But, because the good solutions are dominant and there is only few good
solutions, GA converges to these solutions rapidly regardless of the starting conditions.

Crossover and mutation operators are also insignificant considering the fitness response.
The main contribution of these two operators is generating different solutions while

maintaining the good pattern of fit individuals. Mutation is responsible for adding diversity to
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populations, while crossover is in charge of maintenance of good properties through the
generations. The insignificance of these factors can be explained in two manners.

From the previous analysis we know that GA converges to solutions with machine
patterns of 2 — 4 — 2 — 2 and 3 — 3 — 2 — 2 rapidly, because of dominance of the good
solutions. There are only few good solutions present in the feasible solution space, which are
dominant over the others; thus regardless of the levels of the factors GA can proceed to one of
these good solutions.

Another interpretation is that, since the fitness values of solutions with these machine
patterns and different buffer combinations are very close to each other, as discussed in the
preliminary analysis; although mutation and crossover achieves searching different solutions,

distinct levels of their probabilities cannot create significant difference on fitness value.

6.2.3. CPU Time Response
Table 25 present the ANOVA results for CPU time response.
Table 25:ANOVA Results for CPU Time Response for Constrained Case

Source Type lll Sum of Squares |df| Mean Square F Sig.
Corrected Model 2609381 7 372768,663 12,07 0,000
Intercept 818510950 1| 818510950,2 | 26494,66 0,000
POPTYPE 246062 1] 246061,5763 7,96 0,008
CROSSP 1988 1| 1987,959003 0,06 0,801
MUTP 2094110 1 2094110,306 67,78 0,000
POPTYPE * CROSSP 2877 1| 2876,924823 0,09 0,762
POPTYPE * MUTP 148963 1] 148963,2455 4,82 0,035
CROSSP * MUTP 109216 1| 109216,0854 3,54 0,069
POPTYPE * CROSSP * MUTP 6165 1| 6164,544122 0,20 0,658
Error 988590 32| 30893,43279
Total 822108921 40
Corrected Total 3597970 39

For 95% precision level, the significant factors are population type, mutation probability
and the interaction between them. Good solutions of constrained case, which have machine
number patterns of 2 — 4 — 2 — 2 and 3 — 3 — 2 — 2 contribute to loaded systems of their
feasible solution space, since no other values of feasible machine pattern can have more
throughput level, because the maximum efficient use of machines in these systems. Moreover
the simulation time of good solutions, with these machine patterns but different buffer levels

are close. The following examples will clarify the situation.
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2
2
2
2

Solution

—4-2-2-12-5-2
—4-2-2-8-4-4
—4-2-2-15-5-2

—4-2-2-15-3-7
2-4-2-2-11-1-4
2-4-2-2-12-8-3

CPU Time
— » (.18 minutes

—  » (.18 minutes
—» (.18 minutes

—» (.18 minutes
—» (.18 minutes

—» 0.18 minutes

All of the above solutions have same simulation time. Figure 21.a represents the initial

population type effect on CPU time, whereas Figure 21.b shows the mutation probability

effect. In Figure 21.c the alteration of CPU time with respect to all factors can be observed,

finally Figure 21.d resembles the significant interaction between the population type and

mutation probability.
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Figure 21: Graphs of Significant Effects with respect to Fitness for Constrained Case
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Figure 21: Graphs of Significant Effects with respect to Fitness for Constrained Case (cont’d)

From Figure 21.a, it is observed that the initial population type has a positive effect on
CPU time, thus seeded starts increase the CPU time. This result is consistent throughout all
the cases we have analyzed, and the reasoning is the same. (To hinder the repetitions, reader
can look at pp 90-91 for discussion).

Crossover is insignificant for CPU time response, because crossover can generate
solutions with similar patters having same simulation time, thus to cross more frequently does
not have any impact on the elapsed time, as discussed in Section 5.3 previously (Figure 21.c).

Mutation probability has a negative effect on CPU time; high mutation rates decrease
the CPU time, as observed from Figure 21.b. The good solutions have machine number

patterns of 2 -4 —2 — 2 and 3 — 3 — 2 — 2 corresponding to strings of
01110101
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10100101

,Jrespectively. High mutation rates decrease the simulation time, meaning that mutation
generally generates less-loaded systems, which is true for previous analyses. At first sight
number of 0’s and 1’s are close to each other, and one can suspect that the mutation can
increase and decrease the machine numbers at the same rate, meaning that same frequency is
valid for positive and negative increments on machine numbers. But there comes the effect of
the linear constraint; any positive deviation from these machine settings will lead to infeasible
solutions, thus mutation cannot generate more loaded systems. In fact good solutions are the
most loaded systems of their feasible solution space. Depending on this, mutation always
generates solutions with low levels of machine numbers, thus less-loaded systems. That’s
why, high mutation rates decreases CPU time.

The only significant interaction effect, population type-mutation probability interaction
presents a consistent behavior with the other cases. From Figure 21.d, the difference between
the required CPU time for seeded and random starts is more significant for low mutation

rates. (For further discussion check pp 96-97)

6.2.4. Conclusion

We impose a linear constraint on the optimization problem. The constraint hinders the
solutions with total number of machines exceeding 10, thus shrinks the feasible space. The
infeasible solutions generated during GA applications are discarded and new individuals are
created instead. By this constraint, we force GA to search different parts of the solution space
compared with the other cases.

Separate analyses are carried considering both the fitness response and CPU time. Table
26 summarizes the results of the analysis by stating the appropriate levels of the factors.

Table 26: Results of Factorial Design Analysis for Constrained Case

Pop Type| Cross P Mut P
Fitness
Constrained - - -
CPU Time
Constrained| Low - High
General Low - High
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In summary, initial population type, crossover and mutation probabilities present
insignificant behavior on fitness value. In fact it is a predictable result, since the nature of the
good solutions shows similarities with the buffer case, and the results of buffer analysis is
similar with these findings. In buffer case, there are only 4 good settings of machine numbers,
besides the buffer combinations in good solutions cannot exceed 3. This results with only a
very few number of good solutions in the problem domain. The same situation is relevant for
the constrained case. There are only 2 good combinations of machine numbers, but this time
buffer variables can have more combinations. However, the number of good solutions are also
few for the constrained case as in the buffer case, and regardless of the parameter levels; GA
can manage to find good solutions as in the buffer case.

The results for CPU time analysis are more fortunate, since the factors present the same
behavior throughout all the cases. Starting with random populations and using high mutation
rates increase the performance of GA in terms of CPU time. The consistency of the results
depends on the nature of the solution space. In all cases good solutions are loaded systems of
their feasible space, and mutation deviates to solutions to less-loaded systems more frequently
than a more-loaded alteration. Since the population size and maximum generation number
factors are at their low levels contributing a shorter GA application, the initial effect of seeded
population becomes significant for the constrained case as the other cases. The
comprehensive discussion about the results and resulting general pinpoints will be presented

in Chapter 7 in details.

6.3. Modification of Crossover Operator

The analysis up to now has been conducted using the same settings of structural
parameters. One of the main findings of this study, which is surprising to some extend, is the
insignificance of crossover probability on the GA performance. Thus, in this section we
further examine the crossover operator by changing its type. The results of this analysis may
provide background for the further research in this area.

Recall that the well-known simple one-point crossover has been used throughout in this
thesis. In our problem domain we have found that this type of crossover is ineffective in
creating diverse solutions that can alter the GA performance. We now consider a new type of

crossover, uniform crossover in our further analysis.
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Uniform crossover is invented by Syswerda (1989). In this crossover mechanism, the
genetic exchange occurs bit by bit. A child takes the value of its bit from first parent or
second parent with equal probability of 0.5. A uniform random number stream is generated
for the crossover, first to determine the crossover schedule. If the generated random number is
over 0.5, the bit of the schedule corresponds to 1, and 0 in the opposite case. After
determination of the crossover schedule, for every 0 in the schedule, first child takes the value
of the first parent of corresponding bit. For every 1 in the schedule, first child takes the value
of the bit of the second parent, while second child takes the first parent’s value. The following
example will clarify the situation. Suppose we have the following two strings as potential

parents, and the generated crossover schedule below.

Parent1: 11111111
Parent2: 00000000
Schedule: 10011011

The schedule is generated by flipping coins, or generating uniform random variates as

discussed previously. According to the schedule, the following children are generated.

Child1: 01100100
Child2: 10011011

For the first bit of child 1, since the schedule is “1”, the first child takes the value of
second parent, whereas second child takes the first parent’s value of the same bit. The
schedule is “0” for the second bit, thus first child takes the value of the first parent’s second
bit.

This type of crossover is applicable on various problems; since the mechanism is
somewhat different from the simple one-point crossover, uniform crossover may produce
more diverse solutions in our case.

Another 2° factorial design analysis is conducted using the original problem case. The
population size and maximum generation number parameters are set to their low values as
usual, and the initial population type, mutation probability factors are investigated. Instead of
crossover probability, the low level of crossover corresponds to one-point crossover with 0.5
probability, and the high level corresponds to uniform crossover. 5 independent runs of GA
are processed. From now on “crossover” terminology is used for the analysis of the case.

Table 27.a shows the results for fitness response, and Table 27.b presents the CPU time.
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Table 27.a: GA Results for Fitness Response for Crossover Case

A|D|E| Rept | Rep2 | Rep3 | Repa | Reps
1 1 1] 803400F 796840] 795040 809880 799680
-1 1 1] 787200 793400] 810080] 792720 798840,
1 -1 1] 801480 794760] 792760 801800 791720
-1 -1 1] 800080] 799440 7947201 792360 789040
1 1 -1 796480 792840] 805240 802480 790240
-1 1 -1] 803200] 802280 7780401 767880| 775520
1 -1 -1 806360] 800080] 799440 785440 785840
-1 -1 -1] 778240 7877201 798520] 810160 767560,
Table 27.a: GA Results for CPU Time Response for Crossover Case
A|D|E]| Rept1 | Rep2 | Rep3 | Repa | Reps
1 1 1) 5702,75 5752,61| 5827,71| 5741,9] 5738,7
-1 1 1] 5574,79| 5762,64] 5559,94] 5816,22 5371,13
1 -1 1] 5760,22] 5840,01] 5912,98| 5812,63] 5783,68
-1 -1 1] 5656,01] 5889,85] 5296,02] 5364,08] 5534,52
1 1 1| 6474,15] 6867,91] 6560,38| 6675,34] 6146,45
-1 1 -1] 6411,24] 6277,04] 5431,14] 5816,02] 5738,7|
1 -1 -1] 6417,06| 6291,32] 6581,89] 6659,2| 6600,68
-1 -1 -1] 6276,26| 6156,25] 6063,63] 6408,02| 6072,87|

6.3.1. Fitness Response

Table 28 represents the ANOVA results according to fitness response.
Table 28: ANOVA Results for Fitness Response for Crossover Case

Source Type lll Sum of Squares |df| Mean Square F Sig.
Corrected Model 897322720 7 128188960 1,24 0,310
Intercept 25247303236000 1 | 25247303236000 | 244547,40 0,000
POPTYPE 389376000 1 389376000 3,77 0,061
CROSSP 14113440 1 14113440 0,14 0,714
MUTP 311810560 1 311810560 3,02 0,092
POPTYPE * CROSSP 42271360 1 42271360 0,41 0,527
POPTYPE * MUTP 108372640 1 108372640 1,05 0,313
CROSSP * MUTP 29036160 1 29036160 0,28 0,600
POPTYPE * CROSSP * MUTP 2342560 1 2342560 0,02 0,881
Error 3303710080 32| 103240940
Total 25251504268800 40
Corrected Total 4201032800 39

According to 95% precision level, all the factors are insignificant, but for 90% precision
level initial population type and the mutation probability have significant effect on GA
performance. Even the type of the crossover is insignificant. The results are same with the
results of Section 6.1.2 for 90% precision level, seeded initial population have just started to

show its strength in finding better fitness, thus initial population type is insignificant for 95%
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precision level, but significant for 90%. All the factors have shown the same behavior

previously for the original case of Section 6.1.2. Figure 22.a presents the significance of

initial population type, whereas Figure 22.b shows the mutation probability effect on fitness.

All the main effects can be observed from Figure 22.c
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790000
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Mutation Probability Main Effect

e

0,01
Mutation Probability

0,05

b) Mutation Probability Main Effect on Fitness of the Crossover Case
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= |
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c) All Factors Main Effects on Fitness of the Crossover Case

Figure 22: Graphs of Significant Effects with respect to Fitness for Crossover Case
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Both the initial population type, and the mutation probability has positive effects on
fitness, and the reasoning behind them has already discussed in previous sections. They are
valid for the crossover case, too. The main conclusion is that the crossover type does not have
any effect on GA performance, and it does not have any interaction with the other parameters
of the GA. In fact, this is a predictable result. The insignificance of crossover probability
causes from the lack of diversity among solutions generated by the crossover operator as
discussed in previous analyses. The same argument is relevant for uniform crossover operator.
For the original case the good solutions (3 — 4 — 2 — 3,4 — 4 — 3 — 3) generally have the

following representations of machine numbers

10110110
11111010

The 2™, 5™ and 6™ bits of the strings are different, thus any schedule of the other bits
concludes with the same strings. Different from the patterns discussed in page 61, only the

following extra patterns could be generated by uniform crossover

11110010 —»4-4-1-3
10111110 —>»3-4-4-3

Both strings correspond to poor solutions, since the third station has only one machine in the
first case, which decreases the throughput drastically. The second string is representative of a
poor solution, because the 4 machines in third workstation are unnecessary. 3 —4 -3 -3 is a
good solution, but cost of the extra machine in third workstation cannot be compensated by
the extra production achieved, thus the second one is not a good solution at all. Since these
are poor solutions, the dominance of good solutions will make them disappear in the
following generations.

Uniform crossover is successful in generating more diverse solutions in terms of buffer
positions, but both crossover types can create same set of solutions with same machine pattern
on the average. Since the fitness depends merely on the machine number, then both operators
generate solutions with close fitness values, hence no significance effect occurs on GA
performance depending on the type of the crossover.

According to these results, uniform crossover generates solutions with same machining
patterns with the one-point crossover. Since one-point crossover is ineffective on fitness,

similarly the uniform crossover does not have significant effect on fitness.
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6.3.2. CPU Time Response
Table 29 presents the ANOVA results of 2° factorial design analysis with respect to
CPU time response.

Table 29: ANOVA Results for CPU Time Response for Crossover Case

Source Type lll Sum of Squares |df| Mean Square F Sig.
Corrected Model 5212597 7| 744656,6698 16,01 0,000
Intercept 1435490816 1 1435490816 30864,31 0,000
POPTYPE 1112623 1 1112622,736 23,92 0,000
CROSSP 31946 1| 31946,23441 0,69 0,413
MUTP 3737586 1| 3737586,042 80,36 0,000
POPTYPE * CROSSP 15480 1 15479,50336 0,33 0,568
POPTYPE * MUTP 165794 1 165793,9512 3,56 0,068
CROSSP * MUTP 31764 1 31764,496 0,68 0,415
POPTYPE * CROSSP * MUTP| 117404 1 117403,7261 2,52 0,122
Error 1488312 32| 46509,73936
Total 1442191724 40
Corrected Total 6700908 39

According to 95 % precision level, population type, and mutation probability have
significant effect on CPU time of GA. Figure 23.a presents the effect of initial population
type; whereas Figure 23.b shows the mutation probability effect on CPU time. Figure 23.d
represents the only significant interaction effect, and Figure 23.d is the graph of main effects

of all three factors.

Population Type Main Effect
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6100 _*
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5800 /
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a) Population Type Main Effect on CPU Time of Crossover Case
Figure 23: Graphs of Significant Effects with respect to CPU Time for Crossover Case
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c¢) All Factors Main Effects on CPU Time of Crossover Case
Figure 23: Graphs of Significant Effects with respect to CPU for Crossover Case (cont’d)

The results and the effects of the factors are similar with the analysis conducted in
Section 6.1 for the original case. The random initial population and high mutation rate is
appropriate for minimizing the CPU time. The reasons and implications are discussed in
pp.69-71 and pp.90. The main result is again the insignificance of the crossover operator. This
time different type of crossover is used, but even uniform crossover cannot have significant
impact on CPU time. The reason is that the uniform crossover generates the same solutions
with the one-point crossover on the average as discussed in the previous fitness analysis.
Although uniform crossover is more successful in creating diverse solutions in terms of buffer
levels, the same set of machine numbers are created by both crossover types. Since the load of

the system depends on the machine number pattern, and both operators generate solutions of
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same workload, there is no significant difference between CPU times of GA with different

crossover types.

6.3.3. Conclusion

Our previous analyses have indicated the insignificant effect of crossover probability on
both fitness and CPU time, except 1000 case. As a further experimentation, we try different
type of crossover operators; hence change the structural parameter settings of proposed GA.
Uniform crossover is compared with the one-point crossover having 0.5 crossover probability.
Both analyses on fitness and CPU time using the original test problem reveal that not only the
crossover rate but also the crossover type is insignificant to our test problem. The other
factors, initial population type and mutation probability presents the same behavior as in the
original case of Section 6.1 under 90% precision level. The uniform crossover does not have

any effect on the other numerical factors.
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CHAPTER 7

DISCUSSION

This study is conducted to analyze the effects of numerical parameters of GA on its
performance under same setting of structural parameters. A test problem is used for the GA-
based simulation-optimization experimentation. According to the analysis conducted on the
original version of the test problem, the high levels of each factor except crossover probability
are preferable for maximizing the fitness value. Low levels of population size and maximum
generation number, and high level of mutation probability are concluded to be adequate for
CPU time minimization objective.

After making further analysis on conflicting parameters, we determine that GA ‘s
starting with seeded populations, having low population sizes, and maximum generations but
high mutation rates produce the best performance on the test problem. Insignificance of
crossover probability under the current levels forces us to apply further analysis, and it is
observed that even lack of crossover operator will not produce significant alterations in both
fitness and CPU time.

To observe the behavior of the parameters under different experimental conditions, we
modify the test problem, and set the population size and maximum generation number factors
to their low levels, since they are not effective on improving the fitness significantly; but they
have drastic effects on CPU time, resulting with high run times.

The modifications can be classified into two groups, objective function’s cost parameter
alterations, and imposing a linear constraint to the problem. Two different alterations of cost
parameters are conducted, each one forcing GA to search for different parts of the solution
space; creating distinct experimental conditions. The constrained version of the problem
shrinks the solution space, because there become infeasible solutions. Table 30 summarizes

the experimental analyses’ results for each case of the test problem.
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Table 30: Summary of Results of Analyses for All Cases

Pop Type| Cross P Mut P
Fitness
Original High - -
1000 - High High
Buffer - - -
Constrained - - -
General High High High
CPU Time
Original Low - High
1000 Low - High
Buffer Low - High
Constrained| Low - High
General Low - High

As observed from the above table, the GA parameters present consistent behavior for
the minimization of CPU time objective, while different behaviors of parameters are
experienced for fitness response under distinct experimental conditions. According to these
results, GA starting with a seeded initial population with high crossover and mutation rates is
appropriate for the fitness maximization of the test problem. The high mutation rate but
random initial population with any level of crossover probability will lead good performance
of GA in terms of CPU time. According to the Table 30, it can be concluded that high
mutation and crossover rates are appropriate for meeting both objectives, but the general
result of initial population type requires further analysis among seeded and random
populations. Table 31 shows the percentage changes in fitness and CPU time according to

change in initial population type from random to seeded case.

Table 31: Percentage Change in Responses According to Population Type for All Cases

Original 1000 Buffer Constrained
Pop Type | Fitness | CPU Time | Fitness |CPU Time|Fitness | CPU Time | Fitness | CPU Time
Random | 787822 | 5803,071 [1122538] 5589,61 |988835| 5845,247 | 594754 | 4445,148
Seeded | 795376 | 6274,808 |1123966| 6021,633 | 980078 | 6067,813 | 594966 | 4602,012
% Change 0,9 7,7 0,1 7,7 -0,8 3,8 0,03 3,5
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According to the results, seeded initial population increases the CPU time more
considering the percent improvement on the fitness value. Thus giving equal weights for each
response types, it is better to use random initial population. But the percentage differences are
very low, hence the only a slight increase in the importance of fitness response will state the
seeded population as the adequate level for initial population type. To sum up, the initial
population selection is dependent on the user’s preferences given to each objective.

Up to now, we have presented the computational results gathered from the analyses of
different versions of the test problem under consideration. But the main aspect of this study is
making general conclusions about GA parameters and presenting general guidelines for the
GA applicators. Thus we have to generalize the results we obtain from the previous analyses.

The first main conclusion is that, the performance of GA depends on the nature of
solution space, because even under different experimental conditions of the same test
problem, significance of factors is different. Thus, GA presents different behaviors in
different portions of the solution space. To generalize the computational findings, we have to
state the characteristic features of the problem domain we experienced, and make conclusions
about GA applications in such problem domains.

Considering the fitness response as the performance measure; the main characteristic
features of our problem domain are;

- There is a dominance of a set of decision variables over other variables with respect to the
objective function value of the optimization problem, the objective function value is directly
related with the combination of this dominant set of variables (machine number dominance
over buffer variables). Alteration of the values of dominant variable alters the solution’s
performance substantially when compared with the other decision variables.

- The good solutions for problems with different objective function parameters are highly
dominant over other solutions with respect to the objective function value, but not very
significantly diverse among each other. (Good solutions are significantly better than the other
feasible solutions, but no high dominance of a good solution occurs among good solutions)

- Combining the above two features; good solutions have specific set of patterns in dominant
set of decision variables, and these solutions are dominant over other feasible solutions among

the solution space.
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These properties of the problem domain generate a rapid convergent behavior of GA.
The effect of the dominant decision variable on the fitness value (objective function value),
guides GA to search for different levels of that variable instead of dealing with the patterns of
other variables. Once a good solution is reached, the convergence occurs rapidly. As the
fitness value of that solution is highly dominant over other feasible solutions, reproduction
mechanism always selects that solution as the potential parent of the following generation.
Thus GA will search among the neighborhood of that solution.

Considering the CPU time, more general statements can be made. With a solution space
presenting a rapid convergent behavior, the CPU time performance of GA is directly related
with the load of the good solutions. The dominant decision variable of the fitness case, also
presents dominance in terms of the effects on simulation time in the problem domain we
discuss.

Presenting the features and the type of the problem domain, we can now discuss the
relevance of effects of each factor one by one, and make general conclusions in this problem

domain.

Initial Population Type

Initial population type is effective in such problem domains. Dominance of good
solutions creates a rapid convergence of GA, which is experienced in all our analyses. The
performance of GA in terms of fitness will depend on the search proceeded among the
solutions with these specific patterns of dominant variables. Seeded initial populations having
good solutions help GA use its time more efficiently, because convergence occurs more
rapidly when compared to random start. A random start should find a good solution first, thus
GA will spend some run time for this process. At the same time seeded start has already
started with such a good solution and search among the good solutions by changing the values
of other variables’ levels.

The positive effect of seeded population also depends on the number of good solutions.
As this number decreases the difference in performance of GA between random and seeded
starts diminishes. Regardless of the type of the initial population, since convergence occurs
rapidly and the converged solutions is one of these few good solutions; thus probability of
finding the same solution under different starting conditions increases as the number of good

solution decreases. Moreover, less number of good solutions corresponds to few combinations
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of dominant decision variable. This property is relevant for our analysis; although seeded
population is effective in the original problem, in the cases with less number of good solutions
(buffer, constrained cases) the significance of a seeded start diminished.

If good solutions correspond to loaded systems in such domains; then seeded initial
population may produce an increase in CPU time. The main reason is; at least for the few
starting generations, GA proceeding with seeded initial population will have more loaded
systems compared with the random start case. Because a random start is searching for good
solutions with loaded systems while seeded started GA is continuing its search among good
hence loaded solutions. This may create discrimination among the initial population types,
where random initial population is better for such applications. But the opposite is true, when
the good solutions correspond to less-loaded systems. That time from the same reasoning
seeded initial population decreases the simulation time, so the CPU time.

The appropriate level of initial population type depends on the levels of other
parameters. If the population size or/and maximum generation number is high enough, the
difference among the GA applications with distinct starting conditions may not show a
significant behavior. As discussed previously, seeded start has more time to proceed among
good solutions, but if enough time is given for GA application, a random start can process
adequate number of good solutions, hence the difference will disappear.

Under the problem domain we consider, initial population type effect on CPU time
depends on the rate of mutation. This result is experienced in all of our cases. As the mutation
probability increases, the initial advantage of seeded populations will decrease, since more
frequent alterations are made on good solutions of the initial few generations of seeded start,
which may result with poor solutions. The frequent deviations from good solutions decrease
the number of more good solutions processed in the seeded start compared with a random

start, thus the effect of seeded start is mitigated.

Population Size and Maximum Generation Number

For the problems with domains presenting features mentioned above, high levels of
population size and maximum generation number are inappropriate. Increase in the levels of
these factors, increases the number of solutions processed by the algorithm, thus the
probability of hitting a better solution improves, but CPU time increases drastically at the

same time. Rapid convergent behavior of GA under such problem domains leads to reaching
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good solutions in short time, thus moderate levels are appropriate for a GA application. High
levels will increase the CPU time enormously without improving the fitness value

significantly as experienced in the original case of our analyses.

Crossover Probability

The crossover operator generally does not have significant effects on GA performance
in such problem domains. Crossover is mainly responsible from the maintenance of good
traits of solutions in future generations. It provides the exchange of genetic materials among
the previously selected solutions, and generates new solutions by this manner. The dominance
of good solutions leading to a rapid convergence of GA, forces selection procedure to select
the solutions, with same good patterns in terms of dominant decision variable, as the potential
parents for the next generation. The dominant decision variable’s settings of good solutions
are similar to each other; thus, two selected potential parents cannot create diverse solutions.

Even for many trials, since the dominant decision variables’ patterns of both potential
parents are exactly the same, to cross or not, from a cross-site selected inside the binary
representation of the dominant variable will produce same children. So crossover does not
have a significant impact on fitness response of problems with such domains.

Any level of crossover probability will be adequate for GA applications on such
problem domains. But since crossover is one of the strongest features of the algorithm, it is
convenient to set the crossover rate to positive values (not 0); because discarding the
crossover operator may affect the basic principles of GA, resulting with GA presenting erratic

or unexpected behavior.

Mutation Probability

The strongest feature of GA on such problem domains is the mutation operator. Rapid
convergence of GA, depending on the nature of solution space, decreases the number of
different solutions in populations as the generations proceed. Mutation creates diversity in the
populations. Probability of obtaining better solutions is directly proportional with the number
of solutions processed, which has similar dominant variable pattern but different levels of
other variables. After some initial generations all the populations are full of solutions with
good pattern of dominant variable. Thus the discrimination among these solutions is achieved

by selecting the appropriate levels for the other decision variables.
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As discussed previously, and shown analytically (pp.63) that mutation operator can
search more such solutions compared with the crossover operator. Thus increasing the
mutation probability increases the chance of hitting a better solution. Although mutation rate
ranges between 0.001 and 0.05 in GA literature, our further analyses revealed that higher

levels like 0.4 might result with the best performance.

The explanations stated in the previous paragraphs aim to make general conclusions
about the effects of numerical parameters of GA on the performance in terms of fitness and
CPU time on the problem domains with the defined characteristic features. These findings
construct guidelines for GA-based simulation-optimization applications on problems with
similar domains, and help the researchers in understanding the reasons and implications of the
effects of numerical parameters of GA on its performance.

As a future research direction, the effects of same parameters on different problem
domains may be investigated, and empirical studies can be conducted to state whether
numerical parameters present the same behavior or not. This analysis is conducted with a pre-
specified setting of structural parameters of GA. The significance of the numerical parameters
with different structural parameter setting can be examined. In further analyses we compare
the uniform crossover with one-point crossover; and the computation results present the
insignificance of uniform crossover, too. But other levels of structural parameters may alter
the effect of the numerical parameters even under the same problem domain. Studies
analyzing the effectiveness and interactions of both structural and numerical parameters on

GA performance will make up another research direction.
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APPENDIX A

SIMAN CODE OF SIMULATION MODEL

Model Frame

BEGIN;

CREATE;

READ, IN1:MC1;
READ, IN2:MC2;
READ, IN3:MC3;
READ, IN4:MC4;
READ, IN5:BUF2;
READ, IN6:BUF3;
READ, IN7:BUF4;
ALTER:MACHINE1, (MC1-1);
ALTER:MACHINEZ2, (MC2-1) ;
( )
)

’

ALTER:MACHINE3, (MC3-1
ALTER:MACHINE4, (MC4-1
DUPLICATE:10000;
QUEUE, WORKSTATIONOQI ;
SEIZE:MACHINEL;

’

IF: (TNOW.LT. (961*60)) .AND. (TNOW.GE.57600) .AND

WRITE, OUTFILELl:TOTALCOST;
ASSIGN:CONTROL=1;
ENDIF;
DELAY :EXPO(0.33333*60,5) ;
QUEUE, DUMMY1;
SCAN:NQ (WORKSTATIONQZ) .LT.BUF2;
RELEASE:MACHINEIL;

QUEUE, WORKSTATIONQZ2;
SEIZE:MACHINEZ;

DELAY :EXPO(0.5*60,5) ;

QUEUE, DUMMY?2 ;

SCAN:NQ (WORKSTATIONQ3) .LT.BUF3;
RELEASE:MACHINEZ2;

QUEUE, WORKSTATIONQ3;
SEIZE:MACHINE3;

DELAY:EXPO (0.2*60,5) ;

QUEUE, DUMMY 3;

SCAN:NQ (WORKSTATIONQ4) .LT.BUF4;
RELEASE :MACHINE3;

QUEUE, WORKSTATIONOQ4;
SEIZE:MACHINE4;

DELAY :EXPO(0.25*60,5) ;

RELEASE :MACHINE4;

IF: (TNOW.GE. (240*60)) ;
ASSIGN:THROUGHPUT=THROUGHPUT+1;

. (CONTROL.EQ.

ASSIGN:TOTALCOST=200*THROUGHPUT-25000* (MC1+MC2+MC3+MC4) -

1000* (BUF2+BUF3+BUF4) ;
ENDIF;
DELAY:0:DISPOSE;

END;



Experimental Frame

BEGIN;
PROJECT, THESIS1, ONUR BOYABATLI;
VARIABLES:MC1:MC2:MC3:MC4:BUF2:BUF3:BUF4 : THROUGHPUT : TOTALCOST : CONTROL

QUEUES : WORKSTATIONQ1 : WORKSTATIONQZ : WORKSTATIONQ3 : WORKSTATIONQ4
:DUMMY1 : DUMMY?2 : DUMMY 3 ;

RESOURCES : MACHINE1 : MACHINE?2 : MACHINE3 : MACHINE4 ;

FILES:IN1,"Dl.dat",SEQ, FREE,,,Rewind:IN2,"D2.dat", SEQ, FREE, , ,Rewind:
IN3,"D3.dat", SEQ, FREE, , ,Rewind:IN4,"D4.dat", SEQ, FREE, , ,Rewind:
IN5, "D5.dat", SEQ, FREE, , ,Rewind: IN6, "D6.dat", SEQ, FREE, , ,Rewind:
IN7,"D7.dat", SEQ, FREE, Rewind:OUTFILE1, "Outl.dat", SEQ, FREE;

REPLICATE,5,,57660,,,14400;

END;
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DIXB

C CODE OF GENETIC ALGORITHM

#include
#include
#include
#include
#include

#define
#define
#define
#define
#define

#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

struct i

<stdio.h>
<stdlib.h>
<string.h>
<time.h>
<math.h>

PopSize 10
MaxGen 2
NumDec 7
NumRep 5
NumBest 1

pcross 0.50
pmut 0.05

LowerDl
LowerD2
LowerD3
LowerD4
LowerD5
LowerD6
LowerD7
LengthDl
LengthD2
LengthD3
LengthD4
LengthDb5
LengthD6
LengthD7

el e el e

BN DD DN N

MaxString 20 /* MaxString=LengthDl+LengthD2+

ndiv{ int chromosome[MaxString];

short
short
short
short
short
short
short

int
int
int
int
int
int
int

decl;
dec2;
dec3;
dec4d;
decbh;
deco6;
dec7;

double fitness[NumRep+1];

short
short
short
short
short

int
int
int
int
int

individ;
parentl;
parent2;
xsite;
nmut;

...+LengthD7 */

} oldpop|[PopSize],newpop[PopSize],bestindiv[NumBest];

int childl[MaxString];
int child2[MaxString];

int gen,numcross, totmut,bestgen;
double sumfitness,maxfit,minfit,avgfit,globalmax, temp;
FILE *infile, *outfile;

char inputstr[MaxString];

long int

seed;



time t tl1,t2;

double randnumgen ()

{double result;

result=(double) rand() / 32767;
return result;

b

int main ()

{

int cntl,cnt2,cnt3;
int choicel, choice2;
double randomnum;

srand (time (NULL) ) ;
tl=time (NULL) ;
seed=rand () ;

globalmax=0;

ReadProblem() ;
gen=0;
while (gen<MaxGen)
{
++gen;
printf ("\n\nGeneration number: %i\n\n",gen);
sumfitness=0.0;
numcross=0; temp=100000000;
for (cntl=0;cntl<PopSize;++cntl)

{if (oldpopl[cntl].fitness[NumRep]<temp) {temp=oldpop[cntl].fitness[NumR
epl;};

}i

if (temp<0)

{for (cntl=0;cntl<PopSize;++cntl)
{oldpoplcntl].fitness[NumRep]=oldpop[cntl].fitness[NumRep]-temp;
}s

}s

for (cntl=0;cntl<PopSize;++cntl)

{sumfitness=sumfitness+ (oldpop[cntl].fitness[NumRep]) ;

}i

cntl=0;

while (cntl<PopSize)

{choicel=selectindiv () ;
choice2=selectindiv () ;
crossover (choicel, choice2,cntl);
cntl=cntl+2;

}s

for (cnt2=0;cnt2<PopSize;++cnt2)

{

outfile=fopen ("Dl.dat","w");

fprintf (outfile, "$hi\n", newpop[cnt2] .decl);
fclose (outfile);

outfile=fopen ("D2.dat","w");

fprintf (outfile, "$hi\n", newpop[cnt2] .dec2);
fclose (outfile);

outfile=fopen ("D3.dat","w");

fprintf (outfile, "$hi\n", newpop[cnt2].dec3);
fclose (outfile);

outfile=fopen ("D4.dat","w");

fprintf (outfile, "$hi\n", newpop[cnt2] .decd) ;

il



fclose (outfile);

outfile=fopen ("D5.dat","w");

fprintf (outfile, "$hi\n", newpop[cnt2] .dec5) ;
fclose (outfile);

outfile=fopen ("D6.dat","w");

fprintf (outfile, "$hi\n", newpop[cnt2] .decb) ;
fclose(outfile);

outfile=fopen ("D7.dat","w");

fprintf (outfile, "$hi\n", newpop[cnt2].dec7);
fclose (outfile);

system("siman law.p");
infile=fopen ("Outl.dat","r");
for (cnt3=0;cnt3<NumRep; ++cnt3)
{fscanf (infile,"%1f\n", & (newpop[cnt2].fitness[cnt3]));
}i
fclose(infile);
newpop[cnt2] .fitness [NumRep]=0;
for (cnt3=0;cnt3<NumRep; ++cnt3)
{newpop[cnt2].fitness[NumRep]=
newpop [cnt2] .fitness[cnt3] +newpop[cnt2].fitness [NumRep];
}s
newpop[cnt2] .fitness [NumRep]=newpop[cnt2].fitness [NumRep] /NumRep;
}s
compstats () ;
if (maxfit>globalmax)
{globalmax=maxfit;
bestgen=gen;

cntl=0;
while (newpop([cntl].fitness[NumRep] !=maxfit)
{++cntl;
}i
bestindiv[0].individ=newpop[cntl].individ;
bestindiv[0] .decl=newpop[cntl].decl;
bestindiv[0] .dec2=newpop[cntl].dec2;
bestindiv[0] .dec3=newpop[cntl].dec3;
bestindiv[0] .decd4=newpop[cntl] .dec4d;
bestindiv[0] .dec5=newpop[cntl].dec5;
bestindiv[0] .dec6=newpop[cntl].dec6;
bestindiv[0] .dec7=newpop[cntl].dec7;
bestindiv[0].fitness[0]=newpop[cntl].fitness[0];
bestindiv[0].fitness[l]=newpopl[cntl].fitness[1];
bestindiv[0].fitness[2]=newpopl[cntl].fitness[2];
bestindiv[0].fitness[3]=newpopl[cntl].fitness[3];
bestindiv[0].fitness[4]=newpop[cntl].fitness[4];
bestindiv[0].fitness[5]=newpop[cntl].fitness[5];
bestindiv[0].fitness[6]=newpopl[cntl].fitness[6];
bestindiv[0] .parentl=newpop[cntl].parentl;
bestindiv[0] .parent2=newpop[cntl] .parent2;

(0]

bestindiv .xsite=newpop[cntl] .xsite;
bestindiv[0] .nmut=newpop[cntl] .nmut;
for (cnt2=0;cnt2<MaxString;++cnt2)
{bestindiv[0].chromosome[cnt2]=newpop[cntl].chromosome[cnt2];
}s
outfile=fopen ("best.dat","w");
fprintf (outfile,"%$i %$hi %$hi %$hi %hi %hi %hi %hi %$hi %$1f $1f $1f %1f
$1f %1f\n",
bestgen,
(bestindiv[0] .individ),
(bestindiv[0] .decl),
(bestindiv[0] .dec?2),
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(bestindiv[0] .dec3),
(bestindiv[0] .dec4d),
(bestindiv[0] .decb),
(bestindiv[0] .dec6),
(bestindiv[0] .dec?7),
(bestindiv[0].fitness[0]),
(bestindiv[0].fitness[1]),
(bestindiv[0].fitness[2]),
(bestindiv[0].fitness[3]),
(bestindiv[0] .fitness[4]),
(bestindiv([0] .fitness[5])

);
fclose (outfile);
}s
writeresult () ;
popassign() ;
b
t2=time (NULL) ;

outfile=fopen ("time.dat","w");
fprintf (outfile,"%$f seconds \n",difftime(t2,tl));
fclose(outfile);

return 0;

b

int selectindiv ()
{double sum,num;
int cnt;
sum=0; cnt=0;
num=randnumgen () *sumfitness;
sum=sum+oldpop[cnt].fitness[NumRep];
while (sum<=num)
{++cnt;
sum=sum+oldpop[cnt].fitness [NumRep];
}i
return cnt;

}i

int crossover (int choicel, int choice2, int cntl)
{

double randnum;

short int jcross,cnt2,cnt3,mutnuml,mutnum?2;

mutnuml=0; mutnum2=0; cnt3=0;

randnum=randnumgen () ;

if (randnum<=pcross)
{jcross=1+floor (randnumgen () * (MaxString-1)) ;
++numcross;

}

else

{jcross=MaxString; };

for (cnt2=0;cnt2<jcross;++cnt2)

{
childl[cnt2]=o0ldpop[choicel].chromosome[cnt2];
child2[cnt2]=o0ldpop[choice2].chromosome[cnt2];
}i

for (cnt2=jcross;cnt2<MaxString;++cnt2)

v



{
childl[cnt2]=o0ldpop[choice2].chromosome[cnt2];
child2[cnt2]=oldpopl[choicel].chromosome[cnt2];

}s

for (cnt2=0;cnt2<MaxString;++cnt2)

{

if (randnumgen () <=pmut)
{if (childl[cnt2]==1) {childl[cnt2]=0;}
else {childl[cnt2]=1;};
++mutnuml;

}s
}s

for (cnt2=0;cnt2<MaxString; ++cnt?2)

{

if (randnumgen () <=pmut)
{if (child2[cnt2]==1) {child2[cnt2]=0;}
else {child2[cnt2]=1;};
++mutnum?2;

}s
}s

/* check for infeasibility */
/* check for infeasibility */

cntl] .individ=cntl;
cntl+l].individ=cntl+1;
cntl] .xsite=jcross;
cntl+l] .xsite=jcross;
cntl] .nmut=mutnuml;
cntl+1l].nmut=mutnum?2;
cntl] .parentl=choicel;
cntl+l] .parentl=choicel;
cntl] .parent2=choice2;
cntl+l] .parent2=choice2;

newpop
newpop
newpop
newpop
newpop
newpop
newpop
newpop
newpop
newpop
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for (cnt2=0;cnt2<MaxString; ++cnt?2)
{newpop[cntl].chromosome[cnt2]=childl[cnt2];};
for (cnt2=0;cnt2<MaxString;++cnt2)
{newpop[cntl+l].chromosome[cnt2]=child2[cnt2];};

newpop [cntl] .decl=LowerDl;
newpop |[cntl+l] .decl=LowerDl;
for (cnt2=0; cnt2<LengthDl;++cnt2)

{

newpop[cntl] .decl=

newpop [cntl] .decl+

(pow (2, (LengthD1-1) -cnt2) *newpop[cntl] .chromosome [cnt2]) ;
newpop [cntl+l].decl=

newpop [cntl+l].decl+

(pow (2, (LengthDl1-1) -cnt2) *newpop[cntl+l].chromosome[cnt2]) ;
}i

cnt3=cnt3+LengthDl;

newpop [cntl] .dec2=LowerD2;
newpop [cntl+l].dec2=LowerD2;

for (cnt2=0;cnt2<LengthD2; ++cnt?2)
{



newpop [cntl] .dec2=

newpop[cntl] .dec2+

(pow (2, (LengthD2-1) —-cnt2) *newpop[cntl].chromosome[cnt2+cnt3]);
newpop [cntl+l] .dec2=

newpop [cntl+l].dec2+

(pow (2, (LengthD2-1) —cnt2) *newpop[cntl+1l].chromosome [cnt2+cnt3]) ;
b

cnt3=cnt3+LengthD2;

newpop[cntl].dec3=LowerD3;

newpop [cntl+1l].dec3=LowerD3;

for (cnt2=0;cnt2<LengthD3; ++cnt2)

{

newpop [cntl] .dec3=

newpop [cntl] .dec3+

(pow (2, (LengthD3-1) -cnt2) *newpop[cntl].chromosome [cnt2+cnt3]) ;
newpop[cntl+l] .dec3=

newpop[cntl+1l].dec3+

(pow (2, (LengthD3-1) —cnt2) *newpop [cntl+l] .chromosome [cnt2+cnt3]) ;
}i

cnt3=cnt3+LengthD3;

newpop [cntl] .decd4d=LowerD4;

newpop [cntl+l].decd4d=LowerD4;

for (cnt2=0;cnt2<LengthD4; ++cnt?2)

{

newpop [cntl] .decd=

newpop[cntl] .decd+

(pow (2, (LengthD4-1) —cnt2) *newpop[cntl] .chromosome [cnt2+cnt3]) ;
newpop [cntl+l] .decd=

newpop [cntl+l] .decd+

(pow (2, (LengthD4-1) —cnt2) *newpop [cntl+1l] .chromosome [cnt2+cnt3]) ;
}i

cnt3=cnt3+LengthD4;

newpop [cntl].dec5=LowerD5;

newpop[cntl+l].decb5=LowerD5;

for (cnt2=0; cnt2<LengthD5; ++cnt2)

{

newpop [cntl] .decb=

newpop |[cntl] .dec5+

(pow (2, (LengthD5-1) —cnt2) *newpop [cntl] .chromosome [cnt2+cnt3]) ;
newpop [cntl+l].decbh=

newpop [cntl+l].decb+

(pow (2, (LengthD5-1) —cnt2) *newpop[cntl+1l].chromosome [cnt2+cnt3]) ;
}i

cnt3=cnt3+LengthD5;

newpop[cntl] .dec6=LowerD6;

newpop [cntl+l].dec6=LowerD6;

for (cnt2=0; cnt2<LengthD6; ++cnt2)

{

newpop [cntl] .dec6=

newpop [cntl] .dec6+

(pow (2, (LengthD6-1) —cnt2) *newpop[cntl].chromosome [cnt2+cnt3]) ;
newpop [cntl+l].dec6=

newpop[cntl+l].dec6+

(pow (2, (LengthD6-1) —cnt2) *newpop [cntl+l] .chromosome [cnt2+cnt3]) ;
}i

cnt3=cnt3+LengthD6;
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newpop [cntl].dec7=LowerD7;

newpop [cntl+l].dec7=LowerD7;

for (cnt2=0;cnt2<LengthD7;++cnt2)

{

newpop [cntl] .dec’=

newpop [cntl] .dec7+

(pow (2, (LengthD7-1) —cnt2) *newpop [cntl] .chromosome [cnt2+cnt3]) ;
newpop [cntl+l].dec7=

newpop [cntl+l].dec7+

(pow (2, (LengthD7-1) —cnt?2) *newpop [cntl+l] .chromosome[cnt2+cnt3]) ;
}i

cnt3=cnt3+LengthD7;

return 0;

bi

int compstats()
{int cnt;
double max,min, avg;

max=0;avg=0; totmut=0;
min=1000000000;
for (cnt=0;cnt<PopSize;++cnt)

{

if (newpop[cnt].fitness [NumRep]<min) {min=newpop[cnt].fitness[NumRep]; }

’

if (newpop[cnt].fitness [NumRep]>max) {max=newpop[cnt].fitness[NumRep];}
avg=avg+newpop[cnt] .fitness [NumRep];

totmut=totmut+newpop[cnt] .nmut;

}i

avg=avg/PopSize;

minfit=min;
maxfit=max;
avgfit=avg;

return O;

}i

int writeresult ()
{ char filename[10];
int cntl,cnt2;

sprintf (filename, "$s%i%s", "gen",gen, " .dat") ;

outfile=fopen (filename, "w") ;

if (temp<0) {fprintf (outfile, "Warning! Negative minfitness value!
$f\n", temp) ; };

for (cntl=0;cntl<PopSize;++cntl)

{

fprintf (outfile, "%$3hi ",newpoplcntl].individ);

for (cnt2=0;cnt2<MaxString;++cnt2)

{fprintf (outfile, "%i", newpoplcntl].chromosome[cnt2]) ;

}i

fprintf (outfile,”™ ");

fprintf (outfile,"%$3hi %3hi %3hi %3hi %3hi %3hi %$3hi %$101f %$101f
%$101f %101f %$101f %$101f %$3hi %3hi %3hi %3hi\n",
(newpop[cntl].decl),

(newpop[cntl].dec?2),

vii



(newpop[cntl] .dec3),
(newpop[cntl] .decd),
(newpop[cntl].dech),
(newpop[cntl] .decb),
(newpop[cntl] .dec7),
(newpop[cntl].fitness[0]),
(newpop[cntl].fitness[1]),
(newpop[cntl].fitness([2]),
(newpop[cntl].fitness[3]),
(newpop([cntl].fitness[4]),
(newpop[cntl].fitness[5]),
(newpop([cntl] .parentl),
(newpop([cntl] .parent?),
(newpop[cntl] .xsite),

( [ ] .nmut)

newpop[cntl
) i
}i

fprintf
fprintf
fprintf
fprintf

outfile, "Generation number=%i\n",gen) ;

outfile, "Maximum fitness=%1f\n",maxfit);

outfile, "Minimum fitness=%1f\n",minfit);

outfile, "Average fitness=%1f\n",avgfit);

fprintf (outfile,"Total fitness=%1f\n",avgfit*PopSize);
fprintf (outfile, "Total number of crossovers=%i\n",numcross);
fprintf (outfile, "Total number of mutations=%i\n",totmut) ;
fclose (outfile);

return 0;

}i

o~ e~ o~~~ —~

int popassign ()
{int cntl,cnt2;

for (cntl=0;cntl<PopSize;++cntl)
{

oldpoplcntl].individ=newpop[cntl].individ;
oldpopl[cntl] .decl=newpopl[cntl].decl;
oldpoplcntl] .dec2=newpop[cntl].dec2;
oldpoplcntl] .dec3=newpop[cntl].dec3;
oldpopl[cntl] .decd4=newpop[cntl].dec4d;
oldpop[cntl] .decb=newpop[cntl].dec5;
oldpop[cntl] .dec6=newpop[cntl].decb;
oldpop[cntl] .dec7=newpop[cntl].dec7;
oldpoplcntl].fitness[0]=newpop[cntl].fitness[0];
oldpoplcntl].fitness[1l]=newpop[cntl].fitness[1l];
oldpop[cntl].fitness[2]=newpop[cntl].fitness[2];
oldpop[cntl].fitness[3]=newpop[cntl].fitness[3];
oldpoplcntl].fitness[4]=newpopl[cntl].fitness[4];
oldpoplcntl].fitness[5]=newpop[cntl].fitness[5];
oldpoplcntl].fitness[6]=newpop[cntl].fitness[6];
oldpopl[cntl] .parentl=newpop[cntl].parentl;
oldpopl[cntl] .parent2=newpop[cntl] .parent?2;
oldpoplcntl] .xsite=newpop[cntl].xsite;

oldpop[cntl] .nmut=newpop[cntl].nmut;
for (cnt2=0;cnt2<MaxString;++cnt2)
{oldpoplcntl].chromosome[cnt2]=newpop[cntl].chromosome[cnt2];
}i
}i
return 0;

}s

int ReadProblem ()
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{
int cntl,cnt2;

infile=fopen("sicik.dat","z");

for (cntl=0;cntl<PopSize;++cntl)

{

fscanf (infile, "%hi
%$20c%hi%hi%hi%hi%hi%hi%hi$1f%1£f%$1£%$1£f%$1£%1£f%hi%shi%hi%hi\n",
& (oldpoplcntl].individ),

inputstr,

& (oldpoplcntl] .decl),

& (oldpoplcntl] .dec?2),
& (oldpoplcntl] .dec3),
& (oldpoplcntl] .decd),
& (oldpoplcntl] .dech),
& (oldpoplcntl] .dech),
& (oldpoplcntl] .dec?),
& (oldpoplcntl].fitness[0]),
& (oldpoplcntl].fitness[1l]),
& (oldpoplcntl].fitness[2]),
& (oldpop[cntl].fitness[3]),
& (oldpoplcntl].fitness([4]),
& (oldpoplcntl].fitness[5]),
& (oldpoplcntl] .parentl),
& (oldpop[cntl] .parent2),
& (oldpoplcntl] .xsite),
& (oldpopl[cntl] .nmut)
) ;

’

for (cnt2=0;cnt2<MaxString; ++cnt?2)

{if (inputstr[cnt2]=="1") {oldpopl[cntl].chromosome[cnt2]=1;}
else {oldpoplcntl].chromosome[cnt2]=0;};

}i

}i

fclose (infile);

return 0;

}i

X
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