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ABSTRACT

ON THE S-PROCEDURE AND SOME VARIANTS

Kürşad Derinkuyu

M.S. in Industrial Engineering

Supervisor: Prof. Dr. Mustafa Çelebi Pınar

July, 2004

In this thesis, we deal with the S-procedure that corresponds to verifying that the

minimum of a quadratic function over constraints consisting of quadratic func-

tions is positive. S-procedure is an instrumental tool in control theory and robust

optimization analysis. It is also used in linear matrix inequality (or semi definite

programming) reformulations and analysis of quadratic programming. We im-

prove an error bound in the Approximate S-Lemma used in establishing levels of

conservatism results for approximate robust counterparts. Moreover we extend

the S-procedure and obtain some general results in this field. Finally, we get a

bound similar to Nesterov’s bound for trust region subproblem, which consists

in minimizing an indefinite quadratic function subject to a norm-1 constraint by

using the Approximate S-Lemma.

Keywords: S-procedure, Approximate S-Lemma, Extended S-procedure, robust

optimization, (conic) quadratic programming.
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ÖZET

S-PROSEDÜR VE BAZI ÇEŞİTLERİ HAKKINDA

Kürşad Derinkuyu

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Mustafa Çelebi Pınar

Temmuz, 2004

Bu tezde ikinci dereceden fonksiyon kısıtları olan ikinci dereceden fonksiy-

onun pozitif oldug̃unu tetkik eden S-prosedür ile ilgilendik. S-prosedür

kontrol teori ve sag̃lam optimizasyon analizinde etkili bir araçtır. Ayrıca

dog̃rusal matris eşitsizliklerinin (ya da kısmi belirli [semi-definite] program-

lamalarının) yeniden formüle edilmesi ve ikinci dereceden programlama anal-

izinde kullanılmaktadır. Yaklaşık sag̃lam tamamlayıcılar için tutuculuk sonuçları

derecesinin tesis edilmesinde kullanılan Yaklaşık S-Önermesinde hata sınırını

geliştirdik. Bundan başka S-prosedürü genişlettik ve bu alanda genel sonuçlar

elde ettik. Son olarak, Yaklaşık S-Önermesi kullanarak norm-1 kısıtı olan ik-

inci dereceden fonksiyonun en aza indirgenmesine dayanan güvenilir bölge [trust

region] alt problemleri için Nesterov’un sonucuna benzer sonuç elde ettik.

Anahtar sözcükler : S-prosedür, Yaklaşık S-Önerme, Genişletilmiş S-prosedür,

sag̃lam optimizasyon, (konik) ikinci dereceden programlama .
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Chapter 1

Introduction

S-procedure is an instrumental tool in control theory and robust optimization

analysis. It is also used in linear matrix inequality (or semi-definite programming)

reformulations and analysis of quadratic programming. It was given in 1944 by

Lure and Postnikov [28] without theory. Theoretical foundation of S-procedure

was made in 1971 by Yakubovich and his students [40].

S-procedure takes its importance from the quadratic and convexity world by

linking them to one another. One can suppose that these two old and well known

fields of mathematics are not related with each other, despite their surprising

proximity. During many years, both convex sets and quadratic maps were in the

interest of active research by being in the center of many problems of interest.

Hence finding a relationship between these two fields is important for future

research. At this point, S-procedure comes to help us to fulfill this need.

S-procedure deals with the nonnegativity of a quadratic function on a set

described by quadratic functions and provides a powerful tool for proving sta-

bility of nonlinear control systems. For simplicity, if the constraints consist of

one quadratic function, we refer to it as S-Lemma and if there are at least two

quadratic inequalities in the constraints, we refer to it as S-procedure. Yakubovich

[40] proves the S-Lemma and gives a definition of S-procedure. Polyak [32] gives

a result related to S-procedure for problems with two constraints.
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CHAPTER 1. INTRODUCTION 2

Although the S-Lemma was proved in 1971, people have begun to find results

about the convexity problems of quadratic functions since 1918. From Toeplitz-

Hausdorff [37, 20] theorem to today’s complicated theorems, many important

results are available. In this period, not only the S-Lemma was improved, but

also two new areas were introduced, called approximate S-Lemma and extended

S-procedure.

Approximate S-Lemma developed by Ben-Tal et.al. [8] establishes a bound

for problems with more than one constraints of quadratic type. Their result also

implies the S-Lemma of Yakubovich. Extended S-procedure is a new term coined

by this thesis and implies both the theorems of Yakubovich and Polyak. This

procedure is a corollary of Au-Yeung and Poon [2], and Barvinok’s [3] theorems.

In this thesis, firstly we give two results about bounds of approximate S-

Lemma. Then the thesis is interested in the construction of extended S-procedure.

The thesis also deals with an example of trust region subproblem, which consists

in minimizing a quadratic function subject to an L1 norm constraint as an ex-

ample of application of approximate S-Lemma. In this thesis, Corollaries 22, 24

and 25 are new for the extended S-procedure. Moreover, Lemmas 26 and 28 are

new for the approximate S-Lemma.

The remainder of this study is organized as follows: Chapter 2 is devoted to

provide a background on the S-procedure with an extensive review of literature.

In Chapter 3, our results for approximate S-Lemma and extended S-procedure

are given. In Chapter 4, evaluation of the results and an instance of a problem

as an example of approximate S-Lemma is considered, whereas the last chapter

is devoted to concluding remarks and future research directions.

Notation. We work in a finite dimensional (euclidian) setting Rn , with the

standard inner product denoted by 〈., .〉 and associated norm denoted by ‖.‖. We

use SR
n to denote (n × n) symmetric real matrices. For A ∈ SR

n , A � 0 (A � 0)

means A is positive semi-definite (positive definite). Also we use Mn,p(R) to

denote the space of real (n, p)-matrices. If A ∈ SR
n and X ∈ Mn,p(R), then

〈〈AX, X〉〉 = 〈〈A, XXT 〉〉 := trace of AT (XXT ).



Chapter 2

Background

S-procedure is one of the fundamental tools of optimal control and robust opti-

mization. It is related with several mathematical fields such as numerical range,

convex analysis and quadratic functions. Since it is at the crossroads of several

fields, efforts were undertaken to improve it or to understand its structure. Be-

cause of that, we should talk about its history to realize its importance before

discussing what the S-procedure is.

In 1918, O. Toeplitz [37] introduced the idea of the numerical range of a

complex (n×n) matrix A in the ”Das algebraische Analogon zu einem Satze von

Fejér”. For a quadratic form z∗Az, he proved that it has a convex boundary

for z belonging to the unit sphere in Cn (It is also called the numerical range

of A). He also conjectured that the numerical range itself is convex, and one

year later, F. Hausdorff [20] proved it. The Toeplitz-Hausdorff theorem is a main

theorem for its extensions in the numerical range and it is applied in many fields

of mathematics. This theorem can be formulated as: let

W (A) = { z∗Az | ‖z‖ = 1 }.

Then, the set W is convex, which is the first assertion on convexity of quadratic

maps.

For the real field, the first result was obtained by Dines [13] in 1941 for two

3



CHAPTER 2. BACKGROUND 4

real quadratic forms. Dines proved that for two dimensional image of Rn and for

any real symmetric matrices A and B, the set

D = { (〈Ax, x〉, 〈Bx, x〉) | x ∈ Rn }

is a convex cone where 〈Ax, x〉 = xT Ax, and under some additional assumption

it is closed.

The next result was obtained by Brickman [11]. He proved that the image of

the unit sphere for the n ≥ 3 (for any real symmetric matrices A and B),

B = { (〈Ax, x〉, 〈Bx, x〉) | ‖x‖ = 1 }

is a convex compact set in R2.

These three papers are the main papers of the numerical range, and math-

ematicians tried in several ways to generalize them. Before explaining these

developments, let us look at our main subject: S-procedure.

S-procedure deals with nonnegativity of a quadratic form which is bounded by

quadratic inequalities. The first work on this area is Finsler’s Theorem [18](known

as Débreu’s lemma). Calabi [12] also proved this result independently in studying

differential geometry and matrix differential equations by giving new and short

topological proof. (A unilateral version of this theorem is proved by Yuan [41],

1990)

Theorem 1 The theorem of Finsler(1936),Calabi(1964)

For n ≥ 3, let A, B ∈ SR
n . Then the following are equivalent:

(i) 〈Ax, x〉 = 0 and 〈Bx, x〉 = 0 implies x = 0.

(ii) ∃µ1, µ2 ∈ R such that µ1A + µ2B � 0.

In 1971, Yakubovich [40] saw the relation between the convex world and

quadratic maps, and proved the S-Lemma. Then, this lemma became popular in

the control area. There exist several methods to prove it but we want to give here
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a proof that uses Dines’ theorem to understand the link between convexity and

the S-Lemma. (One can consult Nemirovski’s [30] book (pp. 132–135) or Sturm

and Zhang’s [35] paper to see a different proofs).

Theorem 2 (S-Lemma) Let A,B be symmetric n matrices, and assume that the

quadratic inequality

xT Ax ≥ 0

is strictly feasible(there exists x such that xT Ax > 0). Then the quadratic in-

equality:

xT Bx ≥ 0

is a consequence of it,i.e.,

xT Ax ≥ 0 ⇒ xT Bx ≥ 0

if and only if there exists a nonnegative λ such that

B � λA.

Proof: From Dines’ theorem:

S1 = {s1 := (xT Ax ≥ 0, xT Bx ≥ 0) : x ∈ Rn}

and

S2 = {s2 := (xT Ax ≥ 0, xT Bx < 0) : x ∈ Rn}

are convex. Since their intersection is empty, a separating hyperplane exists. In

other words, there exists nonzero c = (c1, c2) ∈ R2, such that (c, s1) ≥ 0, ∀s1 ∈ S1

and (c, s2) ≤ 0, ∀s2 ∈ S2. From second inequality, c1 ≤ 0, c2 ≥ 0. From first

inequality, for ∀x ∈ Rn,

c1x
T Ax + c2x

T Bx ≥ 0.

We know that there exists x such that xT Ax > 0 and c1 ≤ 0, so c2 cannot

be equal to zero. Finally, dividing inequalities by c2, and defining λ = − c1
c2

, we

obtain:

B � λA.
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The converse is trivial:

xT Bx ≥ λ(xT Ax) ≥ 0.

The idea of this proof is used in many papers about the subject. It is also used

in the first two results in the next section. At this point, we divide the subject

into two sub-areas. Firstly, we try to generalize this theorem to obtain more

complicated cases. Then we look at a new area recently developed by Ben-Tal

et.al.[8] to obtain approximate version of the general result.

2.1 Review of Research on the S-procedure

The first attack to generalize these theorems was made by Hestenes and McShane

[21] in 1940. They generalized the theorem of Finsler (1936).

Theorem 3 The theorem of Hestenes and McShane(1940) [Extension of

Finsler(1936)]

Assume that xT Sx > 0 for all nonzero x such that {x ∈ Rn|⋂r
i=1(〈Tix, x〉 =

0)}. Let Ti be such that
∑

i aiTi is indefinite for any nontrivial choice of ai ∈ R.

Moreover assume that for any subspace L ⊆ Rn \ ⋂r
i=1(〈Tix, x〉 = 0) there are

constants bi ∈ R such that xT (
∑

i biTi)x > 0 for all nonzero x ∈ L. Then, there

exists c ∈ Rr+1 that;

c0S + c1T1 + ... + crTr � 0

For r = 1 only the first assumption needs to be made.

There are several papers in this area by Au-Yeung [1], Dines [14, 15], John

[24], Kühne [26], Taussky [36] and others. One of the benefits of Finsler, and

Hestenes and McShane’s theorems is understanding how we obtain an assumption

of positive definiteness of a linear combination of matrices if we take it in the S-

procedure. One can find these theorems until 1979 in a good survey written by
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Uhlig [38]. To generalize the S-Lemma, researchers either extend the set of vectors

to the set of matrices or make additional assumptions. First, we search in the

first category and among these theorems, we deal with one of the most popular

unpublished papers: the theorem of Bohnenblust [9] on the joint positiveness of

matrices. Although this theorem can be written for the field of complex numbers

and the skew field of real quaternions, we only deal with the field of real numbers.

Theorem 4 The theorem of Bohnenblust

Let 1 ≤ p ≤ n − 1, m < (p+1)(p+2)
2

− δn,p+1 and A1, ..., Am ∈ SR
n . Suppose

(0, , , 0) /∈ Wp(A1, ..., Am) where

Wp(A1, ..., Am) = {(
p∑

i=1

xT
i A1xi, ...,

p∑
i=1

xT
i Amxi) : xi ∈ Rn,

p∑
i=1

xT
i xi = 1}.

Then there exist α1, ..., αm ∈ R such that the matrix
∑m

1 αiAi is positive definite.

(δn,p+1 is Kronecker delta).

With the help of this theorem, Au-Yeung and Poon [2] showed the extension

of Brickman’s and Toeplitz-Hausdorff theorem in 1979, and Poon [33] gives the

final version of this result in 1997. Here is the Au-Yeung and Poon’s theorem for

real cases:

Theorem 5 The theorem of Au-Yeung and Poon(1979) [Extension of Brick-

man(1961) using Bohnenblust]

Let 1 ≤ p ≤ n− 1, m < (p+1)(p+2)
2

− δn,p+1 and A1, ..., Am ∈ SR
n . Then,

{(〈〈A1X, X〉〉, 〈〈A2X, X〉〉, ..., 〈〈AmX, X〉〉)|X ∈ Mn,p(R), ‖X‖ = 1}

is a convex compact subset of Rm. (δi,j is equal to one when i = j, otherwise

zero). (‖.‖ denotes the Schur-Frobenius norm on Mn,p(R), derived from 〈〈., .〉〉).

Here 〈〈AX, X〉〉 = TrAXXT =
∑p

i=1 xT
i Axi and xi denotes the columns of X. A

corollary of this theorem is given in the paper of Hiriart-Urruty and Torki [22] to

show a different perspective of it in 2002:
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Theorem 6 Corollary (Hiriart-Urruty and Torki, 2002) of the theorem of Poon

(1997)

Let A1, A2, ..., Am ∈ SR
n and let

p :=

 b
√

8m+1−1
2

c if n(n+1)
2

6= m + 1

b
√

8m+1−1
2

c+ 1 if n(n+1)
2

= m + 1


(thus p = 1 when m = 2 and n ≥ 3, p = 2 when m=2 and n=2, etc.) Then the

following are equivalent:

(i)



〈〈A1X,X〉〉 = 0

〈〈A2X,X〉〉 = 0

.

.

.

〈〈AmX, X〉〉 = 0


⇒ (X = 0).

(ii) There exists µ1, ..., µm ∈ R such that

m∑
i=1

µiAi � 0.

In 1995, Barvinok [3] gives another theorem that extends the Dines’s and

Toeplitz-Hausdorff theorem while working on distance geometry.

Theorem 7 The theorem of Barvinok(1995)[Extension of Dines(1941)]

Let A1, A2, ..., Am ∈ SR
n , and let p := b

√
8m+1−1

2
c. Then

{(〈〈A1X, X〉〉, 〈〈A2X, X〉〉, ..., 〈〈AmX, X〉〉)|X ∈ Mn,p(R)}

is a convex cone of Rm.

Papers of Poon and Barvinok are important for our extension results, because

we use them for the extended S-procedure in Chapter 3. Now we give the def-

inition of both S-procedure and extended S-procedure and turn our interest to

results about S-procedure without extension but using additional assumptions.
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The definition of S-procedure is given by Yakubovich [40] and his students in 1971.

Before talking about related papers on S-procedure, let us define the S-procedure

and extended S-procedure in our notation:

Definition 8 (S-procedure and Extended S-procedure)

Define

qi(x) =
p∑

j=1

xT
j Qixj+2bT

i

p∑
j=1

xj+ci, Qi ∈ Sn, i = 0, ...,m, j = 1, ..., p, x = (x1, ..., xp)

F := {xj ∈ Rn : qi(x) ≥ 0, i = 1, ...,m, j = 1, ..., p},

qi(xj) is called quadratic function and if bi and ci are zero, then it is called

quadratic form. Now consider the following conditions:

(S1) q0(x) ≥ 0 ∀x ∈ F

(S2) ∃s ∈ Rm
+ : q0(x)−∑m

i=1 siqi(x) ≥ 0, ∀x ∈ Rn

Method of verifying (S1) using (S2) is called S-procedure for p = 1 and called

extended S-procedure for p > 1.

Note that always S2 ⇒ S1. Indeed,

q0(x) ≥
m∑

i=1

siqi(x) ≥ 0.

Unfortunately, the reverse is in generally false. If S1 ⇔ S2, the S-procedure is

called lossless and this condition appears only in some special cases. If we define

the S-procedure as a method of verifying S1 using S2, computation of S2 is much

easier than computation of S1. For this reason the S-procedure is important and

popular.

The first paper we review in this field is the paper of Megretsky and Treil [29]

in 1993. They prove the S-procedure for the continuous time-invariant quadratic

forms.
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Let L2 = L2((0,∞);Rn) be the standard Hilbert space of real vector-valued

square-summable functions defined on (0,∞). A subspace L ∈ L2 is called time

invariant if for any f ∈ L, and τ > 0 the function f τ ,defined by f τ (s) = 0 for

s ≤ τ , f τ (s) = f(s−τ) for s > τ , belongs to L. Similarly, a functional σ : L → R

is called time invariant if σ(f τ ) = σ(f) ∀f ∈ L, τ > 0.

Theorem 9 The S-procedure losslessness theorem of Megretsky and Treil(1993)

Let L ⊂ L2 be time invariant subspace, σj : L → R(j = 0, 1, ...,m) be contin-

uous time-invariant quadratic forms. Suppose that there exists f∗ ∈ L such that

σ1(f∗) > 0, ..., σm(f∗) > 0.

Then the following statements are equivalent:

(i) σ0(f) ≤ 0 for all f ∈ L such that σ1(f) > 0, ..., σm(f) > 0;

(ii) There exists τj ≥ 0 such that

σ0(f) + τ1σ1(f) + ... + τmσm(f) ≤ 0

for all f ∈ L.

Although this theorem gives us the S-procedure, time-invariant quadratic

forms are very specific for this area. Moreover, one can find another convex-

ity result for commutative matrices in the paper of Fradkov, 1973 [19] (Detailed

information about commutative matrices can be obtained from Matrix Analysis

book of Horn and Johnson [23]).

Theorem 10 Theorem of Fradkov,1973

If matrices A1, ..., Am commute and m quadratic forms fi(x) = 〈Aix, x〉, x ∈
Rn, i = 1, ...,m are given. Then

Fm = {(f1(x), ..., fm(x))T : x ∈ Rn} ⊂ Rm

is a closed convex cone for all m,n.
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Despite of Megretsky and Treil, and Fradkov’s papers, they are not the only

angles to deal with the S-procedure. Extension for matrix variables is another

viewpoint of this problem given by Luo et.al. [27] which uses quadratic matrix

inequalities instead of linear matrix inequalities.

Theorem 11 Theorem of Luo et.al., 2003

The data matrices (A, B, C,D, F, G, H) satisfy the robust fractional quadratic ma-

trix inequality H F + GX

(F + GX)T C + XT B + BT X + XT AX

 � 0 for all I −XT DX � 0

if and only if there is t ≥ 0 such that
H F G

F T C BT

GT B A

− t


0 0 0

0 I 0

0 0 −D

 � 0.

Neither Megretsky and Treil, and Fradkov’s results nor extension of Luo et.al.

satisfy the S-procedure in general. Therefore the S-procedure is still an open

problem for us.

In 1998, Polyak [32] succeeded in proving the quadratic form case of S-

procedure for m = 2 by making an additional assumption, and it is the most

valuable result found recently in this field. He first proved the following theorem

to obtain the S-procedure for m = 2:

Theorem 12 Convexity result of Polyak,1998[relies on Brickman’s theo-

rem,1961]

For n ≥ 3 the following assertions are equivalent:

(i) There exists µ ∈ R3 such that

µ1A1 + µ2A2 + µ3A3 � 0.
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(ii) For fi(x) = 〈Aix, x〉, x ∈ Rn, i = 1, 2, 3, the set:

F = {(f1(x), f2(x), f3(x))T : x ∈ Rn} ⊂ R3

is an acute (contains no straight lines), closed convex cone.

This nice theorem and its beautiful proof bring us the following S-procedure

for quadratic forms, m = 2.

Theorem 13 Polyak’s theorem,1998[uses separation lemma]

Suppose n ≥ 3, fi(x) = 〈Aix, x〉, x ∈ Rn, i = 0, 1, 2, real numbers αi, i = 0, 1, 2

and there exist µ ∈ R2, x0 ∈ Rn such that

µ1A1 + µ2A2 � 0

f1(x
0) < α1, f2(x

0) < α2.

Then

f0(x) ≤ α0 ∀x : f1(x) ≤ α1, f2(x) ≤ α2

holds if and only if there exist τ1 ≥ 0, τ2 ≥ 0:

A0 � τ1A1 + τ2A2

α0 ≥ τ1α1 + τ2α2.

Polyak’s theorem is good but not enough for our complicated world. Because

of that, researchers begin to work on quadratic equations in a different way to get

lower and upper bounds for optimal values of quadratic functions with quadratic

constraints. Recently a new lemma was proved by Ben-Tal, Nemirovski and Roos

[8] called Approximate S-Lemma.

2.2 Review of Research on the Approximate S-

Lemma

In this section of this chapter, we not only deal with the approximate S-Lemma

but also concentrate on its impact on robust systems of uncertain quadratic and
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conic quadratic problems. With this method, the reader may appreciate the

importance of approximate S-Lemma.

S-Lemma has been widely used within the robust optimization paradigm of

Ben-Tal and Nemirovski and co-authors [6, 5, 7] and El-Ghaoui and co-authors

[17, 10] to find robust counterparts for uncertain convex optimization problems

under an ellipsoidal model of the uncertain parameters. Now we concentrate on

approximate S-Lemma, so we use the same notation as the paper of Ben-Tal et.al.

[8]. Before beginning to talk about the subject, we need additional notations and

definitions about robust methodology and conic quadratic problems.(For conic

programming, Ben-Tal’s [4] book is a good reference).

Definition 14 Let K ⊆ Rn be a closed pointed convex cone with nonempty in-

terior. For given data A ∈ Mn,p(R), b ∈ Rn and c ∈ Rp, optimization problem of

the form

min
x∈Rp

{cT x : Ax− b ∈ K} (2.1)

is a conic problem (CP). When the data of the constraint (A, b) is coming from

uncertain set U , the problem

{min
x∈Rp

{cT x : Ax− b ∈ K} : (A, b) ∈ U} (2.2)

is called uncertain conic problem (UCP) and the problem

min
x∈Rp

{cT x : Ax− b ∈ K : ∀(A, b) ∈ U} (2.3)

is called robust counterpart (RC).

A feasible/optimal solution of (RC) is called a robust feasible/optimal solution

of (UCP). Surely, the difficulty of problem is closely related with the uncertain

set U which is

U = (A0, b0) + W

where (A0, b0) is a nominal data and W is a compact convex set, symmetric with

respect to the origin.(W is interpreted as the perturbation set). If the uncertain

set U is too complex, we need an approximation to put the optimal value of the
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problem in acceptable bounds. If the set X is the set of robust feasible solutions,

then we can define it as

X = {x ∈ Rp : Ax− b ∈ K ∀(A, b) ∈ (A0, b0) + W}.

Also with an additional vector u, let the set R be

R := {(x, u) : Px + Qu + r ∈ K̂}

for a vector r, some matrices P and Q, and a pointed closed convex nonempty

cone K̂ with nonempty interior.

Definition 15 R is an approximate robust counterpart of X if the projection of

R onto the plane of x-variables, i.e., the set R̂ ⊆ Rp given by

R̂ := {x : Px + Qu + r ∈ K̂for some u},

is contained in X :

R̂ ⊆ X .

To find a subset for R̂, the set X should shrink. To do this, we should increase

the size of uncertain set U as

Uρ = {(A0, b0) + ρW}, ρ ≥ 1.

Then the new set of robust feasible solutions corresponding to Uρ is:

Xρ = {x ∈ Rp : Ax− b ∈ K ∀(A, b) ∈ Uρ}.

If ρ is sufficiently large, the new robust feasible set becomes a subset of R̂.

Let us give the formal definition of these words:

Definition 16 The smallest ρ to obtain:

ρ∗ = infρ≥1{ρ : Xρ ⊆ R̂},

is called the level of conservativeness of the approximate robust counterpart R.
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Finally we get

Xρ ⊆ R̂ ⊆ X .

After all of these definitions, now it is time to turn our interest into the

uncertain quadratic constraint (It can also be written as a conic quadratic form):

xT AT Ax ≤ 2bT x + c ∀(A, b, c) ∈ Uρ,

where;

Uρ =

{
(A, b, c) = (A0, b0, c0) +

L∑
l=1

yl(A
l, bl, cl) : y ∈ ρV

}
,

and

V = {y ∈ RL : yT Qky ≤ 1, k = 1, ..., K},

for each Qk � 0 and
∑K

k=1 Qk � 0.

At this point, let us give an example to understand where the S-Lemma enters

the system from the paper of Ben-Tal and Nemirovski [6] in 1998.(Theorem 3.2

in that paper).(It is also discussed in the paper of El Ghaoui and Lebret [16]).

For the case K = 1, Q1 is identity matrix:

Theorem 17 For Al ∈ Mn,p(R), bl ∈ Rp, cl ∈ R, l = 0, ..., L a vector x ∈ Rp is

a solution of

xT AT Ax ≤ 2bT x + c ∀(A, b, c) ∈ Usimple, (2.4)

where

Usimple =

{
(A, b, c) = (A0, b0, c0) +

L∑
l=1

yl(A
l, bl, cl) : ‖y‖2 ≤ 1

}
,

if and only if for some λ ∈ R the pair (x, λ) is a solution of the following linear

matrix inequality (LMI):

c0 + 2xT b0 − λ 1
2
c1 + xT b1 . . . 1

2
cL + xT bL (A0x)T

1
2
c1 + xT b1

.

.

.
1
2
cL + xT bL

λ

.

.

.

λ

(A1x)T

.

.

.

(ALx)T

(A0x) (A1x) . . . (ALx) In


� 0.



CHAPTER 2. BACKGROUND 16

Its proof can be seen in the appendix part of this thesis. Clearly, the proof

completely depends on the S-Lemma. However the S-Lemma works only for single

quadratic form. Therefore we need a somehow different theorem that also works

for the cases K > 1. Of course, it does not give exact results as above, but it

gives reasonable bounds for us to work on more complicated problems. Now it is

time to obtain this lemma and see how it works.

Ben-Tal et al. proved the following result; see [8] Lemma A.6, pp.554–559.

(Ben-Tal et al. also showed that the Approximate S-Lemma implies the usual

S-Lemma).

Lemma 18 (Approximate S-Lemma). Let R,R0, R1, ..., Rk be symmetric n × n

matrices such that

R1, ..., Rk � 0, (2.5)

and assume that

∃λ0, λ1, ..., λk ≥ 0 s.t.
K∑

k=0

λkRk � 0. (2.6)

Consider the following quadratically constrained quadratic program,

QCQ = max
yεRn

{ yT Ry : yT R0y ≤ r0, y
T Rky ≤ 1, k = 1, ..., K } (2.7)

and the semidefinite optimization problem

SDP = min
µ0,µ1,...,µK

{ r0µ0 +
∑K

k=1 µk :
∑K

k=0 µkRk � R, µ ≥ 0 }. (2.8)

Then

(i) If problem (2.7) is feasible, then problem (2.8) is bounded below and

SDP ≥ QCQ. (2.9)

Moreover, there exists y∗ ∈ Rn such that

yT
∗ Ry∗ = SDP, (2.10)
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yT
∗ R0y∗ ≤ r0, (2.11)

yT
∗ Rky∗ ≤ ρ̃2, k = 1, ..., K, (2.12)

where

ρ̃ := ( 2log( 6
∑K

k=1 rank Rk ) )
1
2 , (2.13)

if R0 is a dyadic matrix (that can be written on the form xxT , x ∈ Rn) and

ρ̃ := ( 2log( 16n2∑K
k=1 rank Rk ) )

1
2 (2.14)

otherwise.

(ii) If

r0 > 0, (2.15)

then (2.7) is feasible, problem (2.8) is solvable, and

0 ≤ QCQ ≤ SDP ≤ ρ̃2QCQ. (2.16)

The proof of this lemma (due to Ben-Tal, Nemirovski and Roos) is given in

the appendix. After giving the theorem, now we are ready to work on more

complicated uncertainty sets which are the cases K > 1, from the paper of Ben-

Tal et al. [8]. Let us begin by defining the robust feasible set of them:

Xρ = { x : xT AT Ax ≤ 2bT x + c ∀(A, b, c) ∈ Uρ },

where

Uρ =
{

(A, b, c) = (A0, b0, c0) + ρ
∑L

l=1 yl(A
l, bl, cl) : yT Qky ≤ 1, k = 1, ..., K

}
.

Note that the robust counterpart of uncertain quadratic constraint with the

∩-ellipsoid uncertainty Uρ is, in general NP-hard to form. In fact, not only this,

but also the problem of robust feasibility check is NP-hard. (Ben-Tal et al., pp.

539 [8]).

To combine the sets of Xρ and Uρ, we need additional notations that are:

a[x] = A0x, c[x] = 2xT b0 + c0, Aρ[x] = ρ(A1x, ..., ALx),
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and

bρ[x] = ρ



xT b1

.

.

.

xT bL


, dρ = 1

2
ρ



c1

.

.

.

cL


.

Then one may easily verify that x ∈ X ρ holds if and only if

yT Qky ≤ 1, k = 1, ..., K ⇒ (a[x]+Aρ[x]y)T (a[x]+Aρ[x]y) ≤ 2(bρ[x]+dρ)
T y+c[x].

If y satisfies the above, −y also does. Therefore it is the same as:

yT Qky ≤ 1, k = 1, ..., K ⇒

yT Aρ[x]T Aρ[x]y ± 2yT (Aρ[x]T a[x]− bρ[x]− dρ) ≤ c[x]− a[x]T a[x].

If we take the t2 ≤ 1, inequality can be written as;

t2 ≤ 1, yT Qky ≤ 1, k = 1, ..., K ⇒

yT Aρ[x]T Aρ[x]y + 2tyT (Aρ[x]T a[x]− bρ[x]− dρ) ≤ c[x]− a[x]T a[x].

If there exists λk ≥ 0, k = 1, ..., K, we can join these inequalities such that

for all t and for all y:

K∑
k=1

λky
T Qky +

(
c[x]− a[x]T a[x]−

K∑
k=1

λk

)
t2

≥ yT Aρ[x]T Aρ[x]y + 2tyT (Aρ[x]T a[x]− bρ[x]− dρ).

Surely, our new inequality needs more conditions than the first one. Therefore

if the last inequality holds, then the previous one also holds. If we write our

inequality in matrix form, we obtain

∃λ ≥ 0 s.t.

 c[x]− a[x]T a[x]−∑K
k=1 λk (Aρ[x]T a[x]− bρ[x]− dρ)

T

(Aρ[x]T a[x]− bρ[x]− dρ)
∑K

k=1 λkQk − Aρ[x]T Aρ[x]

 � 0.

From the Schur complement (see appendix (30)), we will obtain the following

theorem:
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Theorem 19 The set Rρ of (x, λ) satisfying λ ≥ 0 and
c[x]-

∑K
k=1 λk (-bρ[x]− dρ)

T a[x]T

(-bρ[x]− dρ)
∑K

k=1 λkQk -Aρ[x]T

a[x] -Aρ[x] IM

 � 0 (2.17)

is an approximate robust counterpart of the set Xρ of robust feasible solutions of

uncertain quadratic constraint.

Now we get the approximate robust counterpart but we still do not know the

level of conservativeness of this set. Now, we will see the relationship between

level of conservativeness and approximate S-Lemma.

Theorem 20 The level of conservativeness of the approximate robust counterpart

R (as given by 2.17) of the set X is at most

ρ̃ := ( 2log( 6
∑K

k=1 rank Rk ) )
1
2 , (2.18)

Proof: We have to show that when x cannot be extended to a solution (x, λ),

then there exists ζ∗ ∈ Rn such that

ζT
∗ Qkζ∗ ≤ 1, k = 1, ..., K (2.19)

and

ρ̃2ζT
∗ Aρ[x]T Aρ[x]ζ∗ + 2ρ̃ζT

∗ (Aρ[x]T a[x]− bρ[x]− dρ) > c[x]− a[x]T a[x]. (2.20)

The proof is based on approximate S-Lemma, so we need to work with the

following notation. Let

R =

 0 (Aρ[x]T a[x]− bρ[x]− dρ)
T

Aρ[x]T a[x]− bρ[x]− dρ Aρ[x]T Aρ[x]

 ,

R0 =

 1 0T

0 0

 , Rk =

 0 0T

0 Qk

 ,
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and r0 = 1. Note that R1, ..., RK are positive semidefinite, and

R0 +
K∑

k=1

Rk =

 1 0T

0
∑K

k=1 Qk

 � 0.

Therefore conditions of Approximate S-Lemma are satisfied, the estimate is

valid.

Case I. In the first case we will prove that the following two conditions cannot

appear at the same time for our case written at the beginning of the proof.

Inequalities are:

R �
K∑

k=0

λkRk, (2.21)

K∑
k=0

λk ≤ c[x]− a[x]T a[x]. (2.22)

Note: Ben-Tal et.al. try to prove this case by claiming: assumption that x

cannot be extended to a solution of (2.17) implies that x cannot be extended to a

solution of uncertain quadratic constraint. However this claim is wrong because

the uncertain quadratic constraint set is larger than the set (2.17). Therefore, x

cannot be extended to a solution of (2.17), but may be extended to a solution

of uncertain quadratic constraint. Hence we change this part of the proof and

instead of it, we claim that these two inequalities cause x to be a solution of

(2.17), which contradicts our assumption.

Let us turn to the proof with the new claim. Assume that there exist

λ0, ..., λk ≥ 0 such that

R ≺
K∑

k=0

λkRk,

K∑
k=0

λk ≤ c[x]− a[x]T a[x].

From assumption x cannot be extended to a solution of (2.17). On the other

hand, we have

(t, yT )R

 t

y

 ≤
K∑

k=0

λk(t, y
T )Rk

 t

y

 ∀t, y
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or

(t, yT )

 0 (Ap[x]T a[x]− bp[x]− dp)
T

(Ap[x]T a[x]− bp[x]− dp) Ap[x]T Ap[x]

 t

y

 ≤ λ0t
2+

K∑
k=1

λky
T Qky

or, equivalently

λ0t
2 +

K∑
k=1

λky
T Qky− 2tyT (Ap[x]T a[x]− bp[x]− dp)− yT Ap[x]T Ap[x]y ≥ 0 (2.23)

We know that
K∑

k=0

λk ≤ c[x]− a[x]T a[x],

λ0 +
K∑

k=1

λk ≤ c[x]− a[x]T a[x],

λ0 ≤ c[x]− a[x]T a[x]−
K∑

k=1

λk.

From (2.23) and taking −t instead of t, we obtain

(c[x]−a[x]T a[x]−
K∑

k=1

λk)t2+
K∑

k=1

λky
T Qky+2tyT (Ap[x]T a[x]−bp[x]−dp)−yT Ap[x]T Ap[x]y ≥ 0,

or,

∃λ ≥ 0, s.t. (t, yT )

 c[x]− a[x]T a[x]−
∑K

k=1 λk (Ap[x]T a[x]− bp[x]− dp)T

(Ap[x]T a[x]− bp[x]− dp)
∑K

k=1 λkQk −Ap[x]T Ap[x]

 t

y

 ≥ 0, ∀t, y.

However x is extended to a solution of (2.17), so it contradicts with our

assumption. Case I cannot occur.

Case II. There is no λ0, ..., λK ≥ 0 that satisfies both (2.21) and (2.22). Hence

from approximate S-Lemma:

SDP > c[x]− a[x]T a[x]. (2.24)

There exists y∗ = (t∗, η∗) such that

yT
∗ R0y∗ = t2∗ ≤ r0 = 1,
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yT
∗ Rky∗ = ηT

∗ Qkη∗ ≤ ρ̃2, k = 1, ..., K,

yT
∗ Ry∗ = ηT

∗ Aρ[x]T Aρ[x]η∗ + 2t∗η
T
∗ (Aρ[x]T a[x]− bρ[x]− dρ) = SDP

> c[x]− a[x]T a[x],

from (2.24). Setting η = ρ̃−1η∗, these inequalities turn into

|t∗| ≤ 1,

ηT Qkη ≤ 1, k = 1, ..., K,

ρ̃2ηT Aρ[x]T Aρ[x]η + 2ρ̃ηT t∗(Aρ[x]T a[x]− bρ[x]− dρ) > c[x]− a[x]T a[x].

If (t∗, η) is a solution of this system, then ζ∗ = η or ζ∗ = −η is a solution of

(2.19)-(2.20). This completes the proof.

This concludes this chapter. Although the background on S-Lemma, S-

procedure and approximate S-Lemma is vast, we tried to give the main theorems

in our view here and explain them by giving some examples. In the next chapter,

we give some results that strongly rely on these theorems.



Chapter 3

Results

In this chapter, we give some results about the extended S-procedure and approx-

imate S-Lemma. Although we find two results by giving additional assumptions

and extending S-procedure in the first section, we improve or attempt to improve

the lemmas that are necessary for approximate S-Lemma in the other section.

3.1 Some Results on Extended S-procedure

We defined extended S-procedure (8) in the previous chapter. Now we show some

results by using Barvinok, and Au-Yeung and Poon’s theorems.

3.1.1 Corollary for Barvinok’s Theorem(1995)

In this subsection, we deal with changing Barvinok’s result into the form of the

extended S-procedure. If we define the function f(X) whose ith component is

fi(X) = (〈〈AiX, X〉〉, with i = 0, 1, ...,m−1 and X ∈ Mn,p(R), then the theorem

of Barvinok can be written as:

23
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Theorem 21 Let A0, A2, ..., Am−1 ∈ SR
n , and let p := b

√
8m+1−1

2
c. Then

{(f0(X), f1(X), ..., fm−1(X))|X ∈ Mn,p(R)}

is a convex cone of Rm.

By using separation lemma of convex analysis, we obtain the following corol-

lary:

Corollary 22 Let A0, A2, ..., Am−1 ∈ SR
n , and let p := b

√
8m+1−1

2
c. Assume there

exists X0 ∈ Mn,p(R), such that

fi(X
0) = (〈〈AiX

0, X0〉〉 > 0, i = 1, ...,m− 1. (3.1)

Then

f0(X) ≥ 0 ∀X : fi(X) ≥ 0, i = 1, ...,m− 1. (3.2)

holds if and only if there exists τi ≥ 0 for i = 1, ...,m− 1:

f0(X) ≥
m−1∑
i=1

τifi(X). (3.3)

Proof: From Barvinok’s theorem (7),

S1 = {s1 := (〈〈A0X, X〉〉 ≥ 0, 〈〈A1X,X〉〉 ≥ 0, ..., 〈〈Am−1X, X〉〉 ≥ 0) : X ∈ Mn,p(R)}

and

S2 = {s2 := (〈〈A0X, X〉〉 < 0, 〈〈A1X, X〉〉 ≥ 0, ..., 〈〈Am−1X, X〉〉 ≥ 0) : X ∈ Mn,p(R)}

are convex. Since their intersection is empty, a separating hyperplane exists. In

other words, there exists nonzero c = (c0, c1, ..., cm−1) ∈ Rm, such that (c, s1) ≥ 0,

∀s1 ∈ S1 and (c, s2) ≤ 0, ∀s2 ∈ S2. From second inequality, c0 ≥ 0, c1 ≤
0, ..., cm−1 ≤ 0. (If S2 is empty, choose any point d = (d0, d1, ..., dm−1) ∈ Rm,

where d0 < 0, di ≥ 0 for i = 1, ...,m− 1 and obtain the same result for c). From

first inequality, for ∀X ∈ Mn,p(R),

c0〈〈A0X, X〉〉+ c1〈〈A1X, X〉〉+ ... + cm−1〈〈Am−1X, X〉〉 ≥ 0.
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We know that there exists X0 such that fi(X
0) = (〈〈AiX

0, X0〉〉 > 0 and

ci ≤ 0 for i = 1, ...,m−1, so c0 cannot be equal zero. Finally, dividing inequalities

by c0, and defining τi = − ci

c0
, we obtain:

f0(X) ≥
m−1∑
i=1

τifi(X).

The converse is trivial:

f0(X) ≥
m−1∑
i=1

τifi(X) ≥ 0.

The proof is complete. Clearly, there exists a strong relationship between the

S-procedure and convexity. The link between these two fields is provided by the

separation lemma.

3.1.2 Corollary for Au-Yeung and Poon(1979) and Poon’s

Theorem(1997)

The next theorem we deal with is the theorem of Au-Yeung and Poon(1979) that

strongly relies on Bohnenblust’s unpublished paper. Turning it to an extended S-

procedure is not very hard. With same definition of f(X) as in the first corollary,

we can write this theorem as follows.

Theorem 23 Let the integer p be defined as

p :=

 b
√

8(m−1)+1−1

2
c if n(n+1)

2
6= m

b
√

8(m−1)+1−1

2
c+ 1 if n(n+1)

2
= m

 ,

and A0, ..., Am−1 ∈ SR
n . Then,

{(f0(X), f1(X), ..., fm−1(X))|X ∈ Mn,p(R), ‖X‖ = 1}

is a convex compact subset of Rm.

Firstly, we will show the following corollary by using the procedure of Polyak’s

proof in the paper [32]:
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Corollary 24 Let A0, A1, ..., Am ∈ SR
n , and let p be defined as in theorem of Au-

Yeung and Poon. Also fi(X) = (〈〈AiX, X〉〉, with i = 0, 1, ...,m. If there exists

µ ∈ Rm+1 such that;

∑m
i=0 µifi(X) > 0, i = 0, ...,m, (3.4)

then the set

F = {(f0(X), f1(X), ..., fm(X))|X ∈ Mn,p(R)}

is convex.

Proof: If f ∈ F, f = f(X) = (f0(X), f1(X), ..., fm(X)), for λ > 0, then

λf = f(
√

λX) ∈ F, thus F is a cone.

Linear combination of quadratic forms is a quadratic form. Therefore there

exists a linear map g = Tf such that gm =
∑m

i=0 µifi(X) > 0 and G = {g(X) :

X ∈ Mn,p(R)} is convex if and only if F is convex. Because when you fix

g0 = f0, g1 = f1, ....gm−1 = fm−1, the variable of gm only depends on fm.

Also we can make a nonsingular linear transformation and assume gm = ‖X‖2.

Because we can write ‖X‖2 =
∑p

i=1 ‖xi‖2 with n × 1 vectors xi. We know that

from Polyak’s paper, it is nonsingular linear transformation when X is a one

column matrix. Therefore we have nothing but summation of nonsingular linear

transformations which is also nonsingular linear transformation. (It has still the

characteristic of being injective, ‖X‖2 = 0 ⇔ X = 0 and surjective, its range

equals R+ ∪ {0}). From the Theorem of Au-Yeung and Poon;

H = {((g0(X), g1(X), ..., gm−1(X)))T |X ∈ Mn,p(R), ‖X‖ = 1}

is convex, but also G = {λQ, λ ≥ 0} where

Q = {(h0, h1, ..., hm−1, 1)T : h ∈ H}.

Hence G is convex therefore F is convex. Therefore we can write following

corollary:
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Corollary 25 Let A0, A1, ..., Am ∈ SR
n , and let

p :=

 b
√

8m+1−1
2

c if n(n+1)
2

6= m + 1

b
√

8m+1−1
2

c+ 1 if n(n+1)
2

= m + 1

 .

Assume there exists X0 ∈ Mn,p(R), such that

fi(X
0) = (〈〈AiX

0, X0〉〉 > 0, i = 1, ...,m. (3.5)

and that
m∑

i=1

µifi(X) > 0. (3.6)

Then

f0(X) ≥ 0 ∀X : fi(X) ≥ 0, i = 1, ...,m. (3.7)

holds if and only if there exists τi ≥ 0 for i = 1, ...,m:

f0(X) ≥
m∑

i=1

τifi(X). (3.8)

Proof: The proof is the same as in corollary of Barvinok’s theorem given

above.

These corollaries are extended versions of Yakubovich and Polyak’s S-

procedures. However none of them give a better solution for the case p = 1.

In other words, we still have the same lemmas when X is a one column matrix.

In the next section, we deal with some results about the approximate S-

Lemma.

3.2 Some Results on Approximate S-Lemma

In this section, we attempt to improve bounds of the Approximate S-Lemma

given by Ben-Tal et.al. both for dyadic case and general case. For dyadic case,

our idea failed but we get some related result for relaxed case. Despite of it,

we were able to improve the bound for general case. Firstly, we talk about the

dyadic case.
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3.2.1 Partial Result for Dyadic Case

In the paper of Ben-Tal et.al., they give a conjecture to improve dyadic case which

is

Conjecture: Let x = {x1, , , , xn} and ξ = {ξ1, , , , ξn} ∈ Rn. If ‖x‖2 = 1 and

the coordinates ξi of ξ are independently identically distributed random variables

with

Pr(ξi = 1) = Pr(ξi = −1) = 1/2 (3.9)

then one has,

Pr(|ξT x| ≤ 1) ≥ 1/2 (3.10)

This conjecture improve the bound to 1
2

from 1
3
. We work on this conjecture

by using n-dimensional geometry. However we only proved the following relaxed

version of it:

Lemma 26 Let x = {x1, , , , xn} and ξ = {ξ1, , , , ξn} ∈ Rn. If ‖x‖2 = 1 and

‖ξ‖2
2 = n then one has

Pr(|ξT x| ≤ 1) ≥ 1/2. (3.11)

Proof: This lemma is a relaxed version of conjecture, because the vectors ξ

are equally distributed on the surface of hyper-sphere of ‖ξ‖2
2 = n. The conjecture

wants that for any x, at least half of the vectors satisfies the inequality. However

we prove that for any x, half of the surface of the hyper-sphere satisfies the

inequality. We also prove the opposite side of it. In other words, for any ξ, half

of the surface of the hyper-sphere of x, which is ‖x‖2 = 1, satisfies the inequality.

Now let us begin the proof.

The condition of ‖x‖2 = 1 and ‖ξ‖2
2 = n are surfaces of hyper-sphere with

radius 1 and
√

n, respectively, in multidimensional geometry. Firstly, we prove

that for any ξ, more than half of the x vectors satisfy (3.11). In fact for any ξ,

we get two such parallel hyperplanes passing through hyper-sphere ‖x‖2 = 1, so

taking ξ = (1, 1, ..., 1) does not hinder our general situation.
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By taking ξ = (1, 1, ..., 1), we get (|∑xi| ≤ 1) the volume between two hyper-

planes. These two conditions define the surface of hyper-sphere between
∑

xi = 1

and
∑

xi = −1 hyperplanes. Therefore we should search the ratio on the surface

of hyper-sphere which corresponds to our conditions. From symmetry, we can

take the upper hyper-hemisphere which satisfies
∑n

i=1 xi ≥ 0 and get the ratio of

surface under hyperplane
∑n

i=1 xi = 1 to the surface of hyper-hemisphere.

The proof shows it directly for dimension one, two and three, then calculates

it for the dimensions larger than 3.

N=1

‖x‖2 = 1 ⇒ x = ∓1

Pr(|ξT x| ≤ 1) = 1 ≥ 1/2.

Note: If x is bigger than 1, corresponding probability is zero. Hence, we

cannot take such x for any dimension n bigger than 1. (Because the same result

occurs for any dimension n when you give xi = 1 and any j 6= i, xj = 0 in other

dimensions)

N=2 For x = (x1, x2),

x2
1 + x2

2 = 1

.

It is a circle with radius 1. For semi-circle, the curve between

0 ≤ x1 + x2 ≤ 1

has 90 degrees which is half of semi-circle. (The other side of circle also gives

same result).

N=3 For x = (x1, x2, x3),

x2
1 + x2

2 + x2
3 = 1 and x1 + x2 + x3 ≥ 0

is a hemisphere. We know that the distance between the origin and the plane

that cuts the surface of hemisphere to two equal parts is r/2, which is 1/2 for
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our case. Also, the distance between origin and x1 + x2 + x3 = 1 is 1/
√

3 which

is bigger than 1/2, so the surface between x1 + x2 + x3 = 1 and x1 + x2 + x3 = 0

is more than half of total surface of hemisphere.

N ≥ 4

For dimensions larger than 3, we should introduce the surface contend geo-

metric center of hyper-hemisphere (SCGCoH) which is, (pp. 137, Sommerville

[34]) (distance from origin, r = 1)

Γ(n/2)√
πΓ(n + 1/2)

r. (3.12)

Geometric center depends on both area and distance. One may imagine it

as the center of gravity of surface of hyper-hemisphere. Now, we should prove

following two statements which are enough to complete our proof for the fixed ξ.

• For the hyperplane which is parallel to ground of hyper-hemisphere,∑n
i=1 xi ≥ 0, and passes through SCGCoH, the surface of sphere under

this hyperplane is larger than or equal to the other part.

• The distance between origin and the SCGCoH is smaller than the distance

between origin and the hyperplane
∑n

i=1 xi = 1.

These two statements are enough to complete proof because first of them

indicates the relationship between SCGCoH and half of the surface of hyper-

hemisphere, and second one shows the relationship between SCGCoH and our

cutting hyperplane.

Firstly, let us look at the first statement. For more than three dimensions,

we know that (3.12) is less than 1/2. In other words, the lower part is more con-

centrated than the upper part. Also we know that if we divide hyper-hemisphere

into small equal length parts along the direction passing from the origin and per-

pendicular to the hyperplane, the parts nearer to the origin has larger area than

the parts far away from it.
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If we take a line passing from origin and the SCGCoH, the hyper-hemisphere

encircles this line. Therefore we can suppose that the points of surface of hyper-

hemisphere are on this line. By projecting these points to the line, we can calcu-

late the SCGCOH.

Because the distance between origin and the SCGCoH is less than 1/2, let us

subtract the points on the surface in the below (closer to origin) and above of

hyperplane which has equal distance to hyperplane. At the end of this procedure,

we already have points in the below part but there is no point between the

SCGCoH and 2SCGCoH. Therefore, from definition of geometric center;

(Area Remaining Below)(Dist. Bet. SCGCoH and SCGCoH of Remaining Below Part)

=

(Area Remaining Above)(Dist. Bet. SCGCoH and SCGCoH of Remaining Above Part).

Because there is no point between the SCGCOH and 2SCGCoH on the above

part after the procedure, the distance between the SCGCoH and SCGCoH of

remaining above part is bigger than the distance between origin and the SCGCoH.

Therefore, distance between the SCGCoH and SCGCoH of remaining below part

is smaller than the other. (Observe that SCGCoH of remaining below part is

between origin and the SCGCoH). Hence

(Area Remaining Below) > (Area Remaining Above),

(Area Below) > (Area Above).

The proof of the first statement is complete. Secondly, let us show that the

distance between origin and the hyperplane x1 + ... + xn = 1 which is 1/
√

n, is

bigger than the distance between origin and the SCGCoH. Before explaining the

proof, let us introduce the notation double prime:

Definition 27 Double Prime

n!! =


n(n-2)...5.3.1 if n > 0, odd

n(n-2)...6.4.2 if n > 0, even

1 −1, 0
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The proof will be done by using induction. For n even, SCGCoH is (r = 1)

=
Γ(n/2)√
πΓ(n+1

2
)

=
n−2

2
!

√
π (n−1)!!

√
π

2n/2

=
(n

2
− 1)!2n/2

(n− 1)!!
√

π
.

For n = 4,
(n

2
− 1)!2n/2

(n− 1)!!π
=

4

3π
≤ 1√

4
.

Assume, it is true for n = k;

(k
2
− 1)!2k/2

(k − 1)!!π
=

(k − 2)!!2

(k − 1)!!π
≤ 1√

k
.

Let us look at the case for n = k + 2;

(k
2
)!2

k+2
2

(k + 1)!!π
=

(k)!!2

(k + 1)!!π

?
≤ 1√

k + 2

(k)!!2

(k + 1)!!π
= B

k

k + 1

?
≤ 1√

k + 2

B
k

k + 1
≤ k√

k(k + 1)

?
≤ 1√

k + 2

⇒
√

k(k + 2)
?
≤ k + 1

⇒ k2 + 2k
?
≤ k2 + 2k + 1

⇒ 0 ≤ 1

so it is true for even case.

For n odd, SCGCoH is (r = 1)

=
Γ(n/2)√
πΓ(n+1

2
)

=

(n−2)!!
√

π

2
n−1

2√
π n−1

2
!

=
(n− 2)!!
n−1

2
!2

n−1
2

.

For n = 5 we have
(n− 2)!!
n−1

2
!2

n−1
2

=
3

8
≤ 1√

5
.
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Assume, it is true for n = k;

(k − 2)!!
k−1
2

!2
k−1
2

=
(k − 2)!!

(k − 1)!!
≤ 1√

k
.

Let look at the case for n = k + 2;

(k)!!
k+1
2

!2
k+1
2

=
(k)!!

(k + 1)!!

?
≤ 1√

k + 2

=
(k)!!

(k + 1)!!
= C

k

k + 1

?
≤ 1√

k + 2

= C
k

k + 1
≤ k√

k(k + 1)

?
≤ 1√

k + 2

⇒
√

k(k + 2)
?
≤ k + 1

⇒ k2 + 2k
?
≤ k2 + 2k + 1

⇒ 0 ≤ 1.

It is true for odd case. The proof of the second statement is also complete.

Let us look at the other side which is for fixed x, whether more than half of

the ξ vectors is in the system or not, which is (|ξT x| ≤ 1).

By taking x = (1, 0, ..., 0), we get (|ξ1| ≤ 1) the volume between two hyper-

planes with distance 1 to the origin. In fact for any ξ, we get two such parallel

hyperplanes. Because ‖ξ‖2 =
√

n is a hyper-sphere, taking x = (1, 0, ..., 0) does

not create loss of generality.

For the previous case, the distance between origin and the hyperplane x1 +

... + xn = 1 is 1/
√

n and radius is 1. Now the distance between origin and the

hyperplane (|ξ1| = 1) is 1 and radius is
√

n. We know that SCGCoH depends on

radius linearly, so the previous proof is sufficient for these cases.

We proved that both fixed x, more than half of the ξ vectors satisfies the

system and fixed ξ, more than half of the x vectors satisfies the system which is

(|ξT x| ≤ 1).

We proved all the cases of our claim. This concludes the proof of the lemma.
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3.2.2 Improvement Lemma for General Case

The following result is crucial in establishing the bound

ρ := ( 2log( 4n
∑K

k=1 rank Rk ) )
1
2 (3.13)

in an improved version of Lemma 34. The original result of Ben-Tal et al. in

[8] has the right-hand side of Lemma 34 equal to 1
8n2 . They conjectured that its

right-hand side can be 1
4
. Unlike their proof which uses moments, our proof relies

on recursive subdivision of a matrix into 4 submatrices.

Lemma 28 Let B denote a symmetric n × n matrix and ξ = {ξ1, , , , ξn} ∈ Rn.

The coordinates ξi of ξ are independently identically distributed random variables

with

Pr(ξi = 1) = Pr(ξi = −1) = 1/2 (3.14)

then one has

Pr(ξT Bξ ≤ TrB) ≥ 1

2dlog2(n)e >
1

2n
. (3.15)

Proof: Consider the random variable

γ :=
∑
i<j

ξiξjBij =
1

2
(ξT Bξ − TrB).

Then (3.15) is equivalent to

ω := Pr(γ ≤ 0) >
1

2n
.

Before beginning to construct the proof for general n, let us look at the cases

n = 1, 2, 3, 4.

For n = 1, we have

ω := Pr(γ ≤ 0) = 1.

For n = 2, we have

ω := Pr(
ξT Bξ − TrB

2
≤ 0) = Pr(ξ1ξ2B12 ≤ 0) = Pr(−ξ1ξ2B12 ≤ 0) =

1

2
.
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For n = 3 assume there exists a 3× 3 symmetric matrix C satisfying

Pr(ξT Cξ ≤ TrC) <
1

4
,

P r(ξT Cξ > TrC) >
3

4
.

The latter inequality says that

Pr(ξ1ξ2C12 + ξ1ξ3C13 + ξ2ξ3C23 > 0) >
3

4
.

Now, let C1, C2, C3 be (3× 3) symmetric matrices such that

C1 =


C11 −C12 −C13

−C21 C22 C23

−C31 C32 C33

 , C2 =


C11 −C12 C13

−C21 C22 −C23

C31 −C32 C33

 ,

C3 =


C11 C12 −C13

C21 C22 −C23

−C31 −C32 C33


then we have

Pr(ξT Cξ > TrC) = Pr(ξT C1ξ > TrC1) = Pr(ξT C2ξ > TrC2) = Pr(ξT C3ξ > TrC3).

For multiplication of any vector ξ with matrix Ci for i = 1, 2, 3, there exists

multiplication of another vector ξ with matrix C which gives same result. To see

why this is true, simply change the ξ1, ξ2, ξ3 elements of vector ξ with negative

ones for C1, C2, C3 respectively, and obtain same result as with matrix C .

If

Pr(ξT Cξ > TrC) = Pr(ξ1ξ2C12 + ξ1ξ3C13 + ξ2ξ3C23 > 0) >
3

4
,

and

Pr(ξ1ξ2C
1
12 + ξ1ξ3C

1
13 + ξ2ξ3C

1
23 > 0) >

3

4
.

At least half of the ξ vectors satisfy both of the inequalities above so it holds

that

Pr(ξ2ξ3C23 > 0) >
1

2
(
3

4
+

3

4
− 1). (3.16)
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If we have

Pr(ξ1ξ2C
2
12 + ξ1ξ3C

2
13 + ξ2ξ3C

2
23 > 0) >

3

4

Pr(ξ1ξ2C
3
12 + ξ1ξ3C

3
13 + ξ2ξ3C

3
23 > 0) >

3

4

then

Pr(−ξ2ξ3C23 > 0) >
1

2
(
3

4
+

3

4
− 1). (3.17)

Both (3.16) and (3.17) cannot be true simultaneously. Therefore, we obtained

a contradiction and finished the proof for n = 3.

For n = 4 assume there exists a 4 × 4 symmetric matrix D matrix violating

(B.33), i.e., one has

Pr(ξT Dξ ≤ TrD) <
1

4

Pr(ξT Dξ > TrD) >
3

4
.

Let D1, D2, D3, D4 be 4× 4 symmetric matrices defined as follows:

D1 =



D11 −D12 −D13 −D14

−D21 D22 D23 D24

−D31 D32 D33 D34

−D41 D42 D43 D44


, D2 =



D11 −D12 D13 D14

−D21 D22 −D23 −D24

D31 −D32 D33 D34

D41 −D42 D43 D44


,

D3 =



D11 D12 −D13 D14

D21 D22 −D23 D24

−D31 −D32 D33 −D34

D41 D42 −D43 D44


, D4 =



D11 D12 D13 −D14

D21 D22 D23 −D24

D31 D32 D33 −D34

−D41 −D42 −D43 D44


then it is immediate to observe that

Pr(ξT Dξ > TrD) = Pr(ξT Dkξ > TrDk), k = 1, 2, 3, 4

since changing the ξ1, ξ2, ξ3, ξ4 elements of vector ξ with negative ones for

D1, D2, D3, D4, respectively, we obtain the same result as with matrix D.

Now, if it is true that

Pr(ξT D1ξ > TrD1) = Pr(−ξ1ξ2D12−ξ1ξ3D13−ξ1ξ4D14+ξ2ξ3D23+ξ2ξ4D24+ξ3ξ4D34 > 0) >
3

4
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Pr(ξT D2ξ > TrD2) = Pr(−ξ1ξ2D12+ξ1ξ3D13+ξ1ξ4D14−ξ2ξ3D23−ξ2ξ4D24+ξ3ξ4D34 > 0) >
3

4

then we have

Pr(−ξ1ξ2D12 + ξ3ξ4D34 > 0) >
1

2
(
3

4
+

3

4
− 1). (3.18)

On the other hand, if

Pr(ξT D3ξ > TrD3) = Pr(+ξ1ξ2D12−ξ1ξ3D13+ξ1ξ4D14−ξ2ξ3D23+ξ2ξ4D24−ξ3ξ4D34 > 0) >
3

4

Pr(ξT D4ξ > TrD4) = Pr(+ξ1ξ2D12+ξ1ξ3D13−ξ1ξ4D14+ξ2ξ3D23−ξ2ξ4D24−ξ3ξ4D34 > 0) >
3

4

then

Pr(+ξ1ξ2D12 − ξ3ξ4D34 > 0) >
1

2
(
3

4
+

3

4
− 1). (3.19)

Again, both (3.18) and (3.19) cannot be true at the same time. Therefore, we

obtained a contradiction.

Up to this point, we proved the base cases. Because there is no off-diagonal

element for n = 1, we can focus on the other base cases which are 2,3,4. If

a larger matrix can be decomposed (for nonzero elements) into these smaller

matrices from their diagonals, we can easily say that the resulting matrices

also obey the 1/4 criteria that led to the contradictions above. If this de-

composition is not possible, then there exists a matrix B which has nonzero

elements:{B12, B34, B35, B45,−B67,−B68,−B69, B78, B79, B89, }. Moreover there

exist B1, B2, B3 matrices which give the same result as with matrix B and their

nonzero elements are

{−B12,−B34,−B35, B45,−B67, B68, B69,−B78,−B79, B89, } for B1

{B12,−B34, B35,−B45, B67,−B68, B69,−B78, B79,−B89, } for B2

{−B12, B34,−B35,−B45, B67, B68,−B69, B78,−B79,−B89, } for B3.

By using the same steps above, we can get a contradiction. Therefore, our

aim is to get these bases matrices from a larger matrix. To do this, we developed
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the meiosis (a term borrowed from biology) procedure below which divides the

matrix into four smaller submatrices at each step.

Let us now concentrate on n > 4. Assume that the result holds true for n < k,

k > 4, and let us look at n = k by using the contradiction method. Assume that

the conclusion is false for n = k, i.e., there exists k× k symmetric matrix B such

that

Pr(ξT Bξ ≤ TrB) <
1

2dlog2(k)e .

Now, we define the symmetric matrices B1, B2, B3, B4 and begin the meiosis

procedure:

B1
ij =


−Bij i = 1, ...dk

4
e, j 6= 1, ...dk

4
e, i < j

B1
ji i 6= j

Bij i = j, o.w.

 ,

B2
ij =


−Bij i = dk

4
e+ 1, ..., 2dk

4
e, j 6= dk

4
e+ 1, ..., 2dk

4
e, i < j

B2
ji i 6= j

Bij i = j, o.w.

 ,

B3
ij =


−Bij i = 2dk

4
e+ 1, ..., min(3dk

4
e, k), j 6= 2dk

4
e+ 1, ..., min(3dk

4
e, k), i < j

B3
ji i 6= j

Bij i = j, o.w.

 .

If min(3dk
4
e, k) = k then we let B4 = B, otherwise we take

B4
ij =


−Bij i = 3dk

4
e+ 1, ..., k, j 6= 3dk

4
e+ 1, ..., k, i < j

B4
ji i 6= j

Bij i = j, o.w.

 .

For example if n = 5, we subdivide into {1, 2}, {3, 4}, {5}, {} (B4 = B). For

n = 9, we subdivide into {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {} (B4 = B). For n = 11,

we subdivide into {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11}.

Now, we have

Pr(ξT Bξ > TrB) = Pr(ξT Blξ > TrBl), l = 1, 2, 3, 4
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by negating the elements of vector ξ corresponding to the changed element of Bl.

For example, for n = 5 and Bl = B1, make (ξ1, ξ2) take negative of their values

in multiplication with B. We obtain the same result as with B.

If

Pr(ξT B1ξ − TrB1 > 0) > 1− 1

2dlog2(k)e

and

Pr(ξT B2ξ − TrB2 > 0) > 1− 1

2dlog2(k)e

then we have

Pr(ξT (B1 + B2)ξ − Tr(B1 + B2) > 0) > 1− 2

2dlog2(k)e (3.20)

On the other hand, if

Pr(ξT B3ξ − TrB3 > 0) > 1− 1

2dlog2(k)e

and

Pr(ξT B4ξ − TrB4 > 0) > 1− 1

2dlog2(k)e

then we have

Pr(ξT (B3 + B4)ξ − Tr(B3 + B4) > 0) > 1− 2

2dlog2(k)e . (3.21)

From (3.20) and (3.21) we obtain

Pr(ξT (B1 +B2 +B3 +B4)ξ−Tr(B1 +B2 +B3 +B4) > 0) > 1− 4

2dlog2(k)e (3.22)

which is the same as

Pr(
∑
i<j

i<d k
4
e

j≤d k
4
e

ξiξjBij +
∑
i<j

d k
4
e+1≤i<2d k

4
e

d k
4
e+1<j≤2d k

4
e

ξiξjBij +
∑
i<j

2d k
4
e+1≤i<min(3d k

4
e,k)

2d k
4
e+1<j≤min(3d k

4
e,k)

ξiξjBij+

∑
if min(3d k

4
e,k)=k, empty

otherwise, i<j

3d k
4
e+1≤i<k

3d k
4
e+1<j≤k

ξiξjBij > 0) > 1− 4

2dlog2(k)e
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= Pr(
∑
i<j

i<d k
4
e

j≤d k
4
e

ξiξjBij > 0) > 1− 1

2dlog2(k)e−2
= 1− 1

2dlog2(d k
4
e)e

This gives a contradiction using the induction argument since the matrix in

the last summation is a dk
4
e × dk

4
e matrix. More precisely, the last step consists

in applying the meiosis procedure for each of the four summations until we get

to the point where none of them contains more than a 4-dimensional matrix.

Observe that all the summations are independent from one another. Therefore

we can invoke the base cases n = 2, 3, 4 given at the beginning. The proof is

complete.

This concludes the chapter. In Chapter 4, we talk about the impact of the

previous results and present an example about using approximate S-Lemma.



Chapter 4

Evaluation

In this chapter, we give a critical evaluation of our results on extended S-Lemma

and approximate S-Lemma.

For extended S-Lemma, we developed two corollaries from theorems of Barvi-

nok and Poon. Although they resemble each other, we can get better result from

corollary of Poon if we have positive linear combination of given matrices.

For corollary of Barvinok’s theorem, the relationship between p and m is

p := b
√

8m+1−1
2

c. On the other hand, in the corollary of Poon’s result, it is:

p :=

 b
√

8(m−1)+1−1

2
c if n(n+1)

2
6= m

b
√

8(m−1)+1−1

2
c+ 1 if n(n+1)

2
= m

 ,

However, you need additional assumption in the second case. In fact this

assumption is same as positive definiteness of a linear combination of matrices.

One can reach this result by observing 〈〈AX, X〉〉 =
∑p

i=1 xT Ax for X ∈ Mn,p, x ∈
Rn. To obtain this positive definiteness, the corollary of Poon’s theorem is given

by Hiriart-Urruty and Torki that we explained in the background chapter. Also

Polyak gives an analysis for m = 2 case. For generalization of this result, Uhlig’s

survey is a useful paper.

Although we extend the S-Lemma, it does not improve the S-Lemma of

41
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Yakubovich or Polyak for the cases X ∈ Mn,1. (Note that the corollary of Poon’s

result gives m = 3 for p = 1. It corresponds to quadratic function over two

quadratic constraints in the S-procedure). Therefore, we have still problems for

m > 2.

In the second part of results, we dealt with approximate S-Lemma. We tried

to improve the bounds for both dyadic and general case. Although we only obtain

the relaxed version of conjecture of dyadic case, we improved the bound of general

case.

In the dyadic case, our result does not carry any meaning to improve the

bound. Because we just proved for the continuous case, but the lemma requires

the discrete case. In fact, the conjecture is very strong. We know that there

is no better bound for the inequality. From this conjecture, we also obtain the

following sub-conjecture which is also an open problem.

Sub-Conjecture: For x = ( 1√
n
, ..., 1√

n
), |ξT x| ≤ 1 becomes |∑k

i=1 xi −∑n
i=k+1 xi| ≤ 1. Therefore the probability of inequality is same as: n

dn−
√

n
2
e

+ ... +

 n

n− dn−
√

n
2
e


2n

≥ 1

2
.

The final result of previous chapter is about general case of approximate S-

Lemma. In this case, we improve the bound from 1
8n2 to 1

2n
. Final version of

approximation of general case is:

ρ := ( 2log( 4n
∑K

k=1 rank Rk ) )
1
2 , (4.1)

which was previously

ρ := ( 2log( 16n2∑K
k=1 rank Rk ) )

1
2 . (4.2)

We offered an improvement from n2 to n under the logarithm. Moreover the

improvement is better for small
∑K

k=1 rank Rk, because it is fixed term in both
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(4.1) and (4.2). In addition, if the matrix

M =


A

B

C

D


has square sub-matrices A, B, C,D on the diagonal which are zero matrices, then

the procedure of the proof solves it in the first step and give the 1
4

result what

the conjecture says.

After explaining effects of results, let us continue with an example of appli-

cation for approximate S-Lemma. From Chapter 2, we see that the approximate

S-Lemma can be used to find relationship between uncertain quadratic constraints

and their robust counterparts. Remember that we gave an example of a general

case of uncertain quadratic constraints in the previous chapter. Now we deal

with an another example that includes a specific uncertain set called norm-1

uncertainty. We define

Xρ = { x : xT AT Ax ≤ 2bT x + c ∀(A, b, c) ∈ Uρ },

where

Uρ =
{

(A, b, c) = (A0, b0, c0) + ρ
∑L

l=1 yl(A
l, bl, cl) : ‖y‖1 ≤ 1

}
.

with

Al ∈ Mn,p(R), bl ∈ Rp, cl ∈ R, l = 0, ..., L.

Let us focus on ‖y‖1 ≤ 1. It is the intersection of 2L hyperspaces which

are (∓x1... ∓ xL ≤ 1). These hyperspaces can be defined with 2L−1 squared

inequalities which are ((+x1 ∓ x2...∓ xL)2 ≤ 1)

Note: The L× L symmetric matrix Q which has range

(x1, ..., xL)T Q(x1, ..., xL) = (x1 + .. + xk − xk+1 − ..− xL)2

can be defined as,

Qij =


−1 i < j, i = k + 1, ..., L j 6= k + 1, ..., L

Qji j < i

1 otherwise

 .
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Now we know that these inequalities can be represented by a positive semi-

definite matrix which are given in the note above.

We also know that summation of these 2L−1 positive semi-definite matrix is

positive definite matrix, because if any nonzero vector makes one of the matrices

zero, then

(∓x1...∓ xL)2 = 0 ⇒ ∓x1...∓ xL = 0.

At least two elements of the vector should be nonzero. Among these 2L−1

matrices, there exists a matrix which makes one of the nonzero elements (not

first one) of the vector negative. Therefore we obtain the nonzero value for the

new matrix which is already in the system. Then summation of these matrices is

positive definite matrix.

Therefore, we can apply Approximate S-Lemma to the problem by making

same steps as in (19) and (20), and obtain robust counterpart given in the (2.17)

with K = 2L−1 and the level of conservativeness which is:

ρ :=
(

2 log
(

6
∑2L−1

l=1 rank Ql

) ) 1
2

where

Ql = (x1 ∓ x2...∓ xL)2 l = 1, ..., 2L−1.

Only remaining is rank analysis of matrices. The matrix that has following

form,

(x1, ..., xL)T Q(x1, ..., xL) = (x1 + .. + xk − xk+1 − ..− xL)2

can be written as:

Q = xyT

where x ∈ RL, y ∈ RL with

x = (x1, .., xk,−xk+1, ..,−xL)

y = (x1 + .. + xk − xk+1 − ..− xL, ......., x1 + .. + xk − xk+1 − ..− xL).
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Therefore we can say that rank Q is one. (see Matrix Analysis book of Horn

and Johnson (pp.61)) At the end, we obtain the level of conservativeness which

is:

ρ̃ :=
(

2 log(6)(2L−1)
) 1

2
.

Hence, we found O(
√

L) bound for norm-1 cases by using approximate S-

Lemma. Similar bound can also be found by Nesterov in Handbook of Semidefi-

nite Programming book [39] (pp.387). For the problem:

P ∗ = max
{
〈Ax, x〉 : ‖x‖1 ≤ 1, x ∈ RL

}
.

For an indefinite A with its maximal eigenvalue λmax(A), Nesterov gave the

inequality

λmax(A) ≥ P ∗ ≥ λmax(A)

L
.

For calculating quadratic function 〈Ax, x〉, take the square of our bound and

there is no need to use R0 of approximate S-Lemma in that problem so coefficient

of bound is:

ρ̃2 := 2 log(2)(2L−1) = L log 4,

and the bound is:

P ∗ ≥ SDP
ρ̃2 , SDP = minµ (

∑2L−1

l=1 µl :
∑2L−1

l=1 µlQl � A, µ ≥ 0),

that depends on also L. For λmax(A) ≥ SDP
log 4

, even though bound of Nesterov

is slightly better than ours, that uses specific character of norm 1 case, both of

them depend on L.

It is the end of the example and the chapter. Although important results

are found by mathematicians, there are still some open problems. In the next

chapter, we talk about some possible future works and conclude the thesis.



Chapter 5

Conclusion

In this study, we dealt with S-procedure and its variants. Since it is a fundamental

tool of different fields such as optimal control and robust optimization, both

S-procedure and approximate S-Lemma are important for us. In general, S-

procedure corresponds to verifying that the minimum of a non-convex function

over a non-convex set is positive. This problem belongs to NP complete. Hence to

find new theorems either in S-procedure by extending or giving extra assumptions

or in approximate S-Lemma by narrowing the bounds will be valuable assets for

mathematical world.

For general case, we dealt with corollary of the theorems of Barvinok and Poon

to understand their meaning for S-procedure. It also gives an idea of relationship

between convex and quadratic worlds. In the corollary of Barvinok, we obtain

the extended version of Yakubovich’s theorem. However it does not give any

improvement for classical vector case. On the other hand, we obtain a better

result in the corollary of Poon’s theorem, if we take an assumption of positive

definiteness of a linear combination of matrices. This corollary also gives the

same result with Polyak’s theorem for classical vector case.

In the case of S-procedure, the best result we get is about m = 2 case. Polyak

shows counterexamples in his paper that the assumptions he gives are not enough

for the m > 2 case. Therefore we need additional assumptions to prove new results
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on m > 2 case. The problem in this area is what the minimal assumptions are

to satisfy the case m > 2. This attractive problem is still open and is potentially

the future work of many mathematicians.

Then, we turned our interest into approximate S-Lemma. We firstly work on

the dyadic case. We find the extended version of conjecture needed. Our claim

is for continuous case but the necessary case is the discrete case which is related

with the popular subject of today’s mathematicians: number theory. Therefore,

our lemma is not enough to improve the bound. The conjecture is still waiting

for someone to prove or disprove it.

Our second interest on approximate S-Lemma is the conjecture of general

case. The bound given by Ben-Tal et.al. is 1
8n2 and we improve this bound to

1
2n

. These coefficients are given under the logarithm in total bound. Also this

bound is related on summation of ranks of matrices. Therefore our improvement

is better for small summation of ranks of matrices. Although we improved the

bound, we were not able to prove the conjecture given by Ben-Tal et.al. which is
1
4
. It is the other possible future work for researchers.

Finally, we give an example about norm 1 and try to solve it with approximate

S-Lemma. We get O( 1
n
) bound for this problem which is similar with the bound

of Nesterov. People also try to improve this bound. For example, Pinar [31] finds

an O( 1
logn

) bound but the relaxed problem he uses is not convex. Therefore, it is

an another open area for further research.

Although getting an improvement is difficult in this area, any little success

is important for several fields of science. Therefore this subject keeps its attrac-

tiveness in the future even though we come to the end of our journey: cursum

perficio.
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Appendix A

Application of S-Lemma on

Robust Optimization

Theorem 29 For Al ∈ Mn,p(R), bl ∈ Rp, cl ∈ R, l = 0, ..., L a vector x ∈ Rp is

a solution of

xT AT Ax ≤ 2bT x + c ∀(A, b, c) ∈ Usimple, (A.1)

where

Usimple =

{
(A, b, c) = (A0, b0, c0) +

L∑
l=1

yl(A
l, bl, cl) : ‖y‖2 ≤ 1

}
,

if and only if for some λ ∈ R the pair (x, λ) is a solution of the following linear

matrix inequality (LMI):

c0 + 2xT b0 − λ 1
2
c1 + xT b1 . . . 1

2
cL + xT bL (A0x)T

1
2
c1 + xT b1

.

.

.
1
2
cL + xT bL

λ

.

.

.

λ

(A1x)T

.

.

.

(ALx)T

(A0x) (A1x) . . . (ALx) In


� 0.
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Proof: Using uncertain set, (2.4) can be written as:

−xT [A0+
L∑

l=1

ylA
l]T [A0+

L∑
l=1

ylA
l]x+2[b0+

L∑
l=1

ylb
l]T x+[c0+

L∑
l=1

ylc
l] ≥ 0 ∀(y : ‖y‖2 ≤ 1).

Taking τ ≤ 1,

−xT [A0τ+
L∑

l=1

ylA
l]T [A0τ+

L∑
l=1

ylA
l]x+2τ [b0τ+

L∑
l=1

ylb
l]T x+τ [c0τ+

L∑
l=1

ylc
l] ≥ 0 ∀((τ, y) : ‖y‖2 ≤ τ2).

Clearly, If τ 2 − ‖y‖2 ≥ 0 then the first inequality holds. Now the S-Lemma

enters the system and links these inequalities because both sides can be written

as a single matrix. From S-Lemma, we can write

−xT [A0τ+
L∑

l=1

ylA
l]T [A0τ+

L∑
l=1

ylA
l]x+2τ [b0τ+

L∑
l=1

ylb
l]T x+τ [c0τ+

L∑
l=1

ylc
l]−λ(τ 2−‖y‖2) ≥ 0

which is the same as

(τ, yT )





c0 + 2xT b0 1
2
c1 + xT b1 . . 1

2
cL + xT bL

1
2
c1 + xT b1

.

.
1
2
cL + xT bL


− (A0x, A1x, .., ALx)



A0x

A1x

.

.

ALx




 τ

y



+(τ, yT )



−λ

λ

.

.

λ


 τ

y

 ≥ 0.

From Schur complement given below, we obtain the matrix in the theorem.

This completes the proof.

Lemma 30 (Schur complement) Suppose A, B, C are respectively n × n, n × p,

and p× p matrices. Also C is positive definite and A is symmetric. Let

M =

 A B

BT C
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so that M is a (n + p)× (n + p) matrix. Then the Schur complement of the block

C of the matrix M is the n× n matrix

A−BC−1BT .

The following are equivalent:

• M is positive (semi)definite

• A−BC−1BT is positive (semi)definite.

Proof: The proof can be seen from de Klerk’s book [25], (pp.236).



Appendix B

Approximate S-Lemma and Its

Proof

Lemma 31 (Approximate S-Lemma). Let R,R0, R1, ..., Rk be symmetric n × n

matrices such that

R1, ..., Rk � 0, (B.1)

and assume that

∃λ0, λ1, ..., λk ≥ 0 s.t.
K∑

k=0

λkRk � 0. (B.2)

Consider the following quadratically constrained quadratic program,

QCQ = max
yεRn

{ yT Ry : yT R0y ≤ r0, y
T Rky ≤ 1, k = 1, ..., K } (B.3)

and the semidefinite optimization problem

SDP = min
µ0,µ1,...,µK

{ r0µ0 +
∑K

k=1 µk :
∑K

k=0 µkRk � R, µ ≥ 0 }. (B.4)

Then

(i) If problem (B.3) is feasible, then problem (B.4) is bounded below and

SDP ≥ QCQ. (B.5)

55



APPENDIX B. APPROXIMATE S-LEMMA AND ITS PROOF 56

Moreover, there exists y∗ ∈ Rn such that

yT
∗ Ry∗ = SDP, (B.6)

yT
∗ R0y∗ ≤ r0, (B.7)

yT
∗ Rky∗ ≤ ρ̃2, k = 1, ..., K, (B.8)

where

ρ̃ := ( 2log( 6
∑K

k=1 rank Rk ) )
1
2 , (B.9)

if R0 is a dyadic matrix (that can be written on the form xxT , x ∈ Rn) and

ρ̃ := ( 2log( 16n2∑K
k=1 rank Rk ) )

1
2 (B.10)

otherwise.

(ii) If

r0 > 0, (B.11)

then (B.3) is feasible, problem (B.4) is solvable, and

0 ≤ QCQ ≤ SDP ≤ ρ̃2QCQ. (B.12)

Proof: Notice that problem (B.4) is the SDP dual of

RQCQ = max
X�0

{ TrRX : TrR0X ≤ r0, T rRkX ≤ 1, k = 1, ..., K }. (B.13)

The latter problem is the standard SDP -relaxation of the QCQ-problem

(B.3), so we have

RQCQ ≥ QCQ. (B.14)

In part (i) of the lemma, (B.3) is assumed to be feasible, hence (B.13) is

feasible as well, and hence, by weak duality, between problem (B.4) and its dual

(B.13), problem (B.4) is bounded below. Now assumption (B.2) ensures that

(B.4) is strictly feasible, thus from SDP -duality theory, problem (B.13) is solvable

and

SDP = RQCQ. (B.15)
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By (B.14) and (B.15), SDP ≥ QCQ, which completes the proof of the first

part of claim (i) in the lemma. To prove the second part, we first simplify the

system (B.6)-(B.8). Letting X∗ denote an optimal solution of problem (B.13), we

introduce

R̂ = X
1
2∗ RX

1
2∗ . (B.16)

Let

R̂ = UR̃UT (UT U = I, R̃ = diag(r1, ..., rn)) (B.17)

be the eigenvalue decomposition of R̂. Choosing

y∗ = X
1
2∗ Uu, u ∈ Rn, (B.18)

we have

yT
∗ Ry∗ = uT UT X

1
2∗ RX

1
2∗ Uu = uT UT R̂Uu = uT R̃u =

n∑
i=1

riu
2
i .

Also

SDP = RQCQ = TrRX∗ = TrR̂ = TrR̃ =
n∑

i=1

ri,

and thus (B.6) is equivalent to

n∑
i=1

riu
2
i =

n∑
i=1

ri.

Now defining

R̂k = X
1
2∗ RkX

1
2∗ , R̃k = UT R̂U, k = 0, 1, ..., K,

and using (B.18), we obtain

yT
∗ Rky∗ = uT UT X

1
2∗ RkX

1
2∗ Uu = uT UT R̂Uu = uT R̃u. (B.19)

Since X∗ solves RQCQ,

r0 ≥ TrR0X∗ = TrR̂0 = TrR̃0 (B.20)

and

1 ≥ TrRkX∗ = TrR̂k = TrR̃k, k = 0, 1, ..., K. (B.21)
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From (B.19) and (B.20) we see that (B.7) holds if

uT R̃0u ≤ TrR̃0,

from (B.19) and (B.21), relation (B.8) holds if

uT R̃ku ≤ ρ̃2TrR̃k, k = 1, ..., K.

We conclude that if there exist a u satisfying

n∑
i=1

riu
2
i =

n∑
i=1

ri, (B.22)

uT R̃0u ≤ TrR̃0, (B.23)

uT R̃ku ≤ ρ̃2TrR̃k, k = 1, ..., K, (B.24)

then y∗ = X
1
2∗ Uu satisfies (B.6)-(B.8). Note that (B.22) is automatically satisfied

if u is a ±1-vector. Thus it suffices to show that (B.23) and (B.24) can be satisfied

by a ±1-vector u.

Let us pretend for a moment that the vector u is a random ±1-vector such

that Pr(ui = 1) = Pr(ui = −1) = 1
2

for each i. Let B denote the event that u

satisfies (B.23) and Ck the event that uT R̃ku ≤ ρ̃2TrR̃k, and C = ∩kCk, i.e., C

denotes the event that u satisfies (B.24). Then we only need to show that

Pr(B ∩ C) > 0. (B.25)

(In the original paper, there is a notation error for ∩,∪. We give here a corrected

version of it. It does not affect the proof). Since

B ⊆ (B ∩ C) ∪ Cc,

we have

Pr(B) ≤ Pr((B ∩ C) ∪ Cc) ≤ Pr(B ∩ C) + Pr(Cc),

P r(B ∩ C) ≥ Pr(B)− Pr(Cc) = Pr(B)− Pr((∩kCk)
c),
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= Pr(B)− Pr(∪kC
c
k) ≥ Pr(B)−

K∑
k=1

Pr(Cc
k).

Hence (B.25) will certainly hold for some p0 > 0,

Pr(B) > p0. (B.26)

Therefore, we have
K∑

k=1

Pr(Cc
k) ≤ p0. (B.27)

At this point, we need extra lemmas from the paper of Ben-Tal et.al [8] (pp.

551–554) to complete the proof which are:

Lemma 32 Let x = {x1, , , , xn} and ξ = {ξ1, , , , ξn} ∈ Rn. If ‖x‖2 = 1 and the

coordinates ξi of ξ are independently identically distributed random variables with

Pr(ξi = 1) = Pr(ξi = −1) = 1/2 (B.28)

then one has,

Pr(|ξT x| ≤ 1) ≥ 1/3. (B.29)

Lemma 33 Let rank B = k, B � 0, and ξ = {ξ1, , , , ξn} ∈ Rn. The coordinates

ξi of ξ are independently identically distributed random variables with

Pr(ξi = 1) = Pr(ξi = −1) = 1/2 (B.30)

then

Pr(ξT Bξ ≥ αTrB) ≤ 2ke−
α
2 , ∀α > 0. (B.31)

Lemma 34 Let B denote a symmetric n × n matrix and ξ = {ξ1, , , , ξn} ∈ Rn.

The coordinates ξi of ξ are independently identically distributed random variables

with

Pr(ξi = 1) = Pr(ξi = −1) = 1/2 (B.32)
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then one has

Pr(ξT Bξ ≤ TrB) >
1

8n2
. (B.33)

We first consider the case in which R0 is dyadic. Then R̂0 and R̃0 are also

dyadic, and hence we may write, for a suitable vector b,

R̃0 = bbT .

Then condition (B.23) is equivalent to

Pr(|uT x| ≤ 1) > p0, (B.34)

where x is the unit vector b
‖b‖ . By Lemma 32 this inequality certainly holds if

p0 = 1
3
. On the other hand, by Lemma 33, for each k,

Pr(Cc
k) = Pr(uT R̃ku > ρ̃2TrR̃k) ≤ 2(rank R̃k)e

− ρ̃2

2 .

Since rank R̃k ≤ rank Rk, we obtain

K∑
k=1

Pr(Cc
k) ≤ 2e−

ρ̃2

2

K∑
k=1

rank Rk,

and so inequalities (B.26) and (B.27) will hold if p0 = 1
3

and ρ̃ is such that

2e−
ρ̃2

2

K∑
k=1

rank Rk =
1

3
= p0. (B.35)

One may easily verify that the value of ρ̃ as given by (B.9) is indeed the

solution of (B.35). Thus the proof is complete for the case where R0 is dyadic.

We finally consider the general case, where R0 is an arbitrary symmetric

matrix. Then we apply Lemma 34, which gives that (B.26) holds for p0 = 1
8n2 .

Then solving ρ̃ from (B.35) with this value of p0 we get the value given in (B.10).

To complete the proof of the lemma we only need to prove SDP ≤ ρ̃2QCQ,

the last inequality in (B.12). For this, let y∗ satisfy (B.6)-(B.8). Then, since

ρ̃ > 1, the vector

y =
y∗
ρ̃
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is feasible for problem (B.3). Therefore using (B.6),

QCQ ≥ yT Ry =
1

ρ̃2
yT
∗ Ry∗ =

SDP

ρ̃2
,

and hence the proof is complete.


