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ABSTRACT 

 
ANALYSIS OF CANDIDATE MOLECULAR TARGETS IN ADULT (CML) AND 

CHILDHOOD (AML, ALL) LEUKEMIAS  
 

Cemaliye Akyerli Boylu 
Ph.D. in Molecular Biology and Genetics 
Supervisor: Assoc.Prof.Tayfun Özçelik 

May 2004, 131 Pages 
 

Candidate molecular targets were investigated in three different types of 
leukemias, chronic myeloid leukemia (CML), acute myeloid leukemia (AML) and 
acute lymphocytic leukemia (ALL). The first group of these molecular targets was 
identified through a cDNA based gene expression profile analysis in sixty-seven 
CML patients who were classified according to clinical parameters known as new 
prognostic score (NPS). CML patients can be divided into three groups of low-risk, 
intermediate-risk, and high-risk, based on NPS. Response of these risk groups to 
treatment is not uniform and the gene expression profiles associated with each risk 
group remain unknown. Seven genes were chosen from a cDNA microarray study in 
which two high versus two low-risk patients were analyzed.  Semi-quantitative and 
real-time reverse transcription polymerase chain reaction (RT-PCR) analysis of these 
differentially expressed transcripts highly correlated with the microarray data.  
Expression levels of all genes, except PTGS1, were significantly different between 
the high (n=9) and low-risk (n=7) CML by semi-quantitative RT-PCR (IFITM1 and 
CXCL3 p=0.001; CCNH p=0.012; RAB1A p=0.01, PRKAR2B p=0.016; UCP2 
p=0.04; and PTGS1 p=0.315).  Real-time RT-PCR analysis showed similar results 
for IFITM1 expression in thirty-four low and eleven high-risk patients (p=9.7976 x 
10-11).  Higher IFITM1 or lower CXCL3 expression correlated with improved 
survival (p=0.01 and p=0.059 respectively).  Gene expression profiling is a valuable 
tool to identify candidate risk group indicator genes for the development of a 
molecular classification system for CML, which may also predict survival. 

Although the connection between DNA-repair gene mutations and 
hematological malignancies are now well established, germ-line mutations in the 
base excision repair (BER) pathway was only recently documented in an inherited 
cancer syndrome in human homologue of E. coli mut Y (MYH). Interestingly, the 
cancer associated MYH missense mutations Tyr165Cys and Gly382Asp have been 
documented with a high frequency (1 percent) in a control group of the British 
population. Therefore, we screened the above mentioned missense variants in two 
different childhood leukemias, AML (n=45) and ALL (n=140). Neither mutation was 
present in any of the patient samples and controls, except for one patient diagnosed 
with AML/M3.  Tyr165Cys mutation in the heterozygous state was present in the 
sample obtained at the time of initial diagnosis.  Further sampling, at remission, and 
the analysis of parental DNA, showed only the normal allele.  Therefore, the 
mutation was considered to be specific for the leukemic blasts.  Based on these 
results, an association between childhood leukemias and the MYH missense variants 
Tyr165Cys and Gly382Asp was not observed.  Also, these variants appear to be 
absent -if not at a very low frequency- in the Turkish population, contrary to the 
British population.   
 



 

iv

 
 

ÖZET 
 
ADAY MOLEKÜLER HEDEFLERİN YETİŞKİN (KML) VE ÇOCUKLUK ÇAĞI 

(AML, ALL) LÖSEMİLERİNDE İNCELENMESİ 
 

Cemaliye Akyerli Boylu 
Doktora tezi, Moleküler Biyoloji ve Genetik Bölümü 

Tez Yöneticisi: Doç.Dr.Tayfun Özçelik 
Mayıs 2004, 131 Sayfa  

 
Aday moleküler hedefler üç farklı lösemi tipinde incelenmiştir. Bunlar, 

kronik miyelositer lösemi (KML), akut miyelositer lösemi (AML) ve akut lenfositik 
lösemi (ALL)’ dir. İlk moleküler hedef grubu yeni prognostik skorla sınıflandırılmış 
altmış yedi KML hastasında cDNA’ya bağlı gen ifade profillerinin incelenmesi ile 
saptanmıştır. Hastalar, yeni skorlama ile yüksek, orta ve düşük riskli olarak 
sınıflandırılmıştır. Risk gruplarının tedaviye cevapları farklıdır ve her grubun  gen 
ifade profilleri bilinmemektedir. cDNA mikrodizilimleri kullanılarak iki yüksek ve 
iki düşük riskli hasta karşılaştırılmış ve yedi adet gen seçilmiştir. Yarı-nicel ve 
gerçek zamanlı ters yazılımlı polimeraz zincir reaksiyonu (RT-PCR) yapılmış ve 
sonuçların cDNA mikrodizilimleri ile benzer olduğu gösterilmiştir. PTGS1 dışındaki 
tüm genlerin ifadeleri, yarı-nicel RT-PCR sonucuna göre, istatistiksel olarak yüksek 
(n=9) ve düşük (n=7) riskli grup arasında anlamlı farklılık göstermektedir (IFITM1 
ve CXCL3 p=0.001; CCNH p=0.012; RAB1A p=0.01, PRKAR2B p=0.016; UCP2 
p=0.04; ve PTGS1 p=0.315).  Gerçek zamanlı RT-PCR düşük (n=34) ve yüksek 
(n=11) riskli hastalarda IFITM1 için benzer sonuçları vermiştir (p=9.7976 x 10-11).  
Kaplan-Meier analizleri sonucunda yüksek IFITM1 veya düşük CXCL3 ifadelerinin 
sağ kalımla ilişkili olduğu saptanmıştır (sırası ile p=0.01 ve p=0.059).  Sonuçlarımız, 
gen ifade profillerinin risk gruplarının tanımlanmasında kullanılabileceğini 
göstermekte ve ayrıca sağ kalımları belirlemekte yardımcı olabilmektedir.   

DNA onarım genlerindeki mutasyonlarla hematolojik hastalıklar arasındaki 
ilişki iyi bilinmekle beraber, baz çıkarma onarım genlerinden insan E. coli mut Y 
homoloğu MYH’deki eşey hücre mutasyonu kalıtsal bir kanser hastalığında ilk kez 
geçtiğimiz yıl gösterilmiştir. Kanserle ilgili MYH mutasyonlarından Tyr165Cys ve 
Gly382Asp İngiliz kontrol populasyonunda yüksek sıklıkta (yüzde 1) gözlenmiştir. 
Bu bulgulara dayanarak, çocukluk çağı lösemileri olan AML (n=45) ve ALL (n=140) 
hastalarında yukarıda belirtilen mutasyonları kandan elde edilen DNA molekülünde 
inceledik. Mutasyonlar AML/M3 tanısı olan bir hasta hariç,  diğer hasta örneklerinde 
ve kontrolde saptanmamıştır. Tyr165Cys mutasyonu tanı sırasında alınan örnekte 
heterozigot olarak bulunmaktaydı. Remisyonda alınan örnek ve ebeveyn DNA’ları 
incelendiğinde sadece normal alel gözlenmiştir. Bu nedenle, mutasyonun lösemik 
blastlara özgü olduğu düşünülmüştür. Bu sonuçlar çocukluk çağı lösemileri ile MYH 
mutasyonları Tyr165Cys ve Gly382Asp arasında bir ilşki bulunabileceğini 
göstermemiştir. Son olarak, bu mutasyonların kontrol grubunda gösterilememesi 
Türk toplumundan elde edilen sonuçların İngiliz toplumundan farklı olduğunu 
düşündürmüştür.  
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CHAPTER 1. INTRODUCTION  
 
 
 
1.1 Hematopoiesis: Genesis and differentiation of blood cells 

 

Hematopoiesis is the formation of blood cells (Fauci et al., 1998).  The bone 

 marrow, lymph nodes and spleen are all involved in hematopoiesis.  These organs 

and tissues have traditionally been divided into myeloid tissue including the bone 

marrow and the cells derived from it-erythrocytes, platelets, granulocytes, and 

monocytes, and lymphoid tissue consisting of thymus, lymph nodes, and spleen 

(Cotran et al., 1989). 

 

 In 1924, Maximow postulated that blood cells were derived from a single 

class of progenitors.  In 1938, Downey added the concept of hierarchies of 

pluripotent cells.  The demonstration that single cells were capable of establishing 

nodules of hematopoietic growth in the spleen of irradiated mice and that such 

colonies displayed multilineage or pluripotent differentiation (erythroid, myeloid, 

megakaryocytic) came in 1961 by Till and McCulloch.  These landmark experiments 

established that a stem cell existed for hematopoiesis.  A stem cell has the ability of 

self-renewal and the production of progeny destined to differentiate (Lee et al., 

1993).  The common pluripotent hematopoietic stem cell (PHSC) gives rise to 

lymphoid and the trilineage myeloid stem cells (CFU-S) (Figure 1) (Cotran et al., 

1989). 

 

 The lymphoid stem cell (LSC) is the origin of precursors of T-cells (pro-T 

cells) and B cells (pro-B cells).  The former differentiates into mature T cells under 

the inductive influence of the thymus and the latter to mature B cells under the 

influence of bursa-equivalent tissue.  An important difference between lymphoid and 

myeloid differentiation is that, there are no distinctive, morphological recognizable 

stages in lymphoid differentiation.  From the multipotent myeloid stem cell, three 
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types of committed stem cell arise which differentiate along the erythroid / 

megakaryocytic, eosinophilic, and granulocyte / macrophage pathways (Cotran et al., 

1989).  Hematopoietic colonies could be grown in semisolid medium (Lee et al., 

1993).  Thus, the committed stem cells have been called the colony-forming units 

(CFU).  As it is indicated in Figure 1, granulocytes and macrophages have a common 

precursor, CFU-GM.  In the erythroid pathway, two distinct committed stem cells 

can be recognized.  Based on the morphology of the colonies, BFU-E (burst-forming 

unit-erythroid) is primitive one.  The later stage is CFU-E.  From all these different 

committed stem cells, intermediate stages are derived, and finally the morphological 

recognizable precursors of the differentiated cell lines are formed.  These are 

proerythroblasts, myeloblasts, megakaryoblasts, monoblasts and eosinophiloblasts, 

which in turn give rise to mature progeny.  The mature blood elements have a finite 

life span and their numbers must be constantly replenished.  Thus, self-renewal is an 

important property of stem cells.  The pluripotent stem cells have the greatest 

capacity of self-renewal, but normally most of them are not in cycle.  Self-renewal 

ability declines as commitment proceeds, but a greater fraction of the stem cells are 

found in cycle (Cotran et al., 1989). 
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Figure 1: Differentiation of hematopoietic cells (adapted from Cotran et al., 1989). 

 
 
  
1.2 Hematological malignancies 

 

Hematological malignancies arise as a clonal proliferation of one of the 

hematopoietic progenitor cells.  The clinical manifestations of a particular 

malignancy depend on the stage of differentiation and lineage of the affected cell.  

The specific nature of the initial mutation and of subsequent mutations that may take 

place during the clonal evolution is also critical.  The abnormal clone of cells must 

possess either a growth advantage or a block in apoptosis and/or differentiation over 

the normal cells.  Clonal analysis of mature blood cells indicates that many 

myeloproliferative and/or myelodysplastic disorders generally arise in the pluripotent 

stem cell (Fauci et al., 1998) 
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1.3 Leukemias 

 

The term “leukemia” was derived from the Greek word meaning “white 

blood” and was first described by John Hughes Bennett and Rudolf Vichow in 1845.  

The leukemias are a heterogeneous group of neoplasms that arise from the malignant 

transformation of hematopoietic cells (Wilson et al., 1991).  This group of cancers 

arises in immature hematopoietic cells.  They are characterized by the disturbance of 

normal hematopoiesis and failure in production of normally functioning cells.  The 

associated clinical features appear to reflect the level and the lineage in the stem cell 

hierarchy at which malignant transformation has taken place.  Leukemias account 

approximately 5% of all cancers (http://www.iarc.fr).   

 

Leukemic cells proliferate primarily in the bone marrow and lymphoid tissues 

where they interfere with normal hematopoiesis and immunity.  The accumulation of 

leukemic cells in the bone marrow is both due to excessive proliferation and to a 

defect in terminal maturation.  These cells further enter the circulation and infiltrate 

into other tissues such as lymph nodes, liver, spleen, skin, viscera, and the central 

nervous system (Wilson et al., 1991). 

 

Environmental toxins, cancer chemotherapy, radiation, and viruses such as 

human T-cell lymphotropic virus type-I (HTLV-I) in adult T-cell leukemia/ 

lymphoma are among the well-established leukomogenic factors (Wilson et al., 

1991).  Several hereditary factors have also been implicated as significant risk factors 

in leukemia, especially in childhood.  Most of them appear to be related to either 

some form of immune deficiency or a syndrome of chromosomal instability (Wilson 

et al., 1991).   

 

A limited number of hematopoietic stem cells sequentially enter into cell 

cycle.  These then differentiate into multiple lineages in the peripheral blood and 

lymphoid organs.  According to the traditional concepts of hematopoietic 

development, progenitor cells differentiate into a single phenotype without the ability 

to switch lineage.  However, some adult acute leukemias are “biphenotypic” in 

nature, with the expression of both lymphoid and myeloid linage cell surface 

antigens.  In addition, in a subset of acute leukemias, lymphoid and myeloid lineage 
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markers fail to be expressed and these are known as acute undifferentiated 

leukemias.  Such leukemic cells may represent leukemic expansion of the stem cell 

itself with no lineage markers (Sawyers et al., 1991).   

 

The classification of leukemias is based on the cell type involved and the 

state of maturity of the leukemic cells.  Thus, acute leukemias are characterized by 

the presence of very immature cells, blasts, and a rapid fatal course in untreated 

patients.  On the other hand, chronic leukemias are at least initially associated with 

well-differentiated, mature leukocytes and with a relatively slow course.  There are 

two major variants of acute and chronic leukemias known as lymphocytic and 

myelocytic.  Therefore, a simple classification yields four patterns of leukemia: acute 

lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), acute 

myelocytic leukemia (AML) and chronic myelocytic (myeloid) leukemia (CML) 

(Cotran et al., 1989). 

 

Most commonly leukemias are diagnosed by a blood test to count the number 

of red cells, white cells and platelets. A biopsy of the bone marrow may also be 

performed.  

 

 

1.4 Chronic myeloid leukemia (CML)  

 

1.4.1 Epidemiology and clinical characteristics of CML  

 

CML is a clonal myeloproliferative disease that results from neoplastic 

transformation of primitive hematopoietic progenitor cells. It involves myeloid, 

monocytic, erythroid, megakaryocytic, B-lymphoid and occasionally T-lymphoid 

lineages (Cortes et al., 1996; Faderl et al., 1999a; Kabarowski et al., 2000).   

 

CML accounts for 7-15% of leukemias in adults, and it has an incidence of 1-

2 cases per 100,000 people per year (Cortes et al., 1996; Faderl et al., 1999a; Faderl 

et al., 1999b).  The median age at presentation is 45-55 years, but the disease can be 

seen in all age groups.  The etiology of the disease is not clear.  It has been suggested 
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that there may be some correlation with HLA antigens CW3 and CW4. Therapeutic 

radiation has also been associated with increased risk of CML (Cortes et al., 1996).   

 

CML is historically important in two aspects.  It was the first human disease, 

in which a specific abnormality of the karyotype (Philadelphia chromosome (Ph)) 

could be linked to pathogenetic events of leukemogenesis (Faderl et al., 1999a; 

Deininger et al., 2000a).  Second is at the therapeutic level. CML is one of the first 

neoplastic diseases in which the use of a biological agent interferon could suppress 

the neoplastic clone and prolong survival (Faderl et al., 1999a).   

 

The disease is clinically divided into three phases as chronic, accelerated and 

blastic.  The most of the cases (85%) are diagnosed at the chronic phase (CP) (Faderl 

et al., 1999a; Chase et al., 2001).  In this phase, the number of myeloid progenitor 

cells increase and since differentiation continues, matured granulocytes are found in 

the peripheral blood.  This period is approximately 3-5 years.  The accelerated phase 

(AP) begins after several weeks to several years.  Terminal differentiation is quickly 

lost; thrombocytosis, basophilia and multiple cytogenetic differences are added to the 

picture.  The third phase known as blastic phase (blastic crisis (BC)) characterizes 

the last phase in which unmatured blast cells immediately increase.  30% or more 

leukemic cells are found in the peripheral blood or bone marrow.  At this period, 

average survival is 3-6 months (Faderl et al., 1999a).  

 

CML patients can be divided into three groups of low-risk, intermediate-risk, 

and high-risk, based on clinical parameters (age, spleen size, blast, platelet, 

eosinophil and basophil counts) known as new prognostic score (NPS) (Hasford et 

al., 1998; Bonifazi et al., 2000).  This scoring is the modified form of Sokal score, 

which worked well as a prognostic discriminator for survival of three different risk 

groups (Sokal et al., 1984; Sokal et al., 1985; Hehlmann et al., 1997).  Response of 

these risk groups to treatment is not uniform.  Low risk patients respond better to 

treatment including interferon-alfa administration and their survival is much better 

compared to high-risk ones (Alimena et al., 1996; Kloke et al., 2000).  The 

molecular characteristic of these three groups of patients is currently unknown.   
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1.4.2 Genetic and epigenetic factors in CML 

 

Although CML was the first human disease in which a specific abnormality 

of the karyotype could be linked to pathogenetic events of leukemogenesis, genetic 

factors related to CML are not very well known.  The specific chromosomal 

abnormality is known as Philadelphia chromosome (Ph) which results from 

reciprocal translocation of the long arms of chromosomes 9 and 22, t(9;22) 

(q34;q11).  It is observed in 90-95% of all cases (Kurzrock et al., 1988; Faderl et al., 

1999a; Warmuth et al., 1999a).   

 

. The translocation breakpoint encompasses ABL on 9q34 and BCR on 22q11. 

As a result of this translocation, different numbers of BCR exons are added to 

chimeric BCR/ABL fusion gene.  The BCR sequences in this mRNA are responsible 

for converting cellular proto-oncogene ABL to an oncogene (Heisterkamp et al., 

1985).  BCR causes ABL to become constitutively active as a tyrosine 

phosphokinase.  The chimeric protein has higher tyrosine phosphokinase activity 

than the normal ABL protein (Faderl et al., 1999a; Chopra et al., 1999; Deininger et 

al., 2000a; Deininger et al., 2000b).  The main characteristics of this disease can be 

listed as, adhesion independence, growth factor independence, and resistance to 

apoptosis (Di Bacco et al., 2000). 

 

Cytogenetic and molecular changes occur in 50-80% of patients during 

transition to accelerated and blastic phases (Faderl et al., 1999a).  Minor cytogenetic 

changes include monosomies of chromosomes 7, 17, and Y, trisomies of 

chromosomes 17 and 21, and translocation t(3;21)(q26;q22).  Major changes include 

trisomies 8 and 19, isochromosome i(17q), and an extra Ph chromosome (double Ph) 

(Faderl et al., 1999a).  Trisomy 8 is the most common, and i(17q) occurs almost 

exclusively in the blastic phase.  In addition molecular abnormalities in p53, RB1, c-

MYC, p16INK4A, RAS and AML-EVI-1, a fusion protein resulting from translocation 

t(3;21)(q26;q22) have been documented (Neubauer et al., 1993; Faderl et al., 1999a).  

Alteration of p53 such as deletions, rearrangements, and mutations occur in 20-30% 

of patients with CML at blastic phase (Randhawa et al., 1998; Faderl et al., 1999a).  

Amplification of c-myc is found in 20% of patients (Randhawa et al., 1998).  Other 

events occurring more rarely include mutations in RAS (6%) and rearrangements and 
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deletions of RB (14%) and p16 (15%) (Randhawa et al., 1998).  Majority of these 

structural aberrations are seen at the accelerated and blastic phases of the disease.  

 

Interestingly, a novel type of genetic alteration in CML appears to be loss of 

imprinting (LOI), which has been demonstrated for insulin-like growth factor-II gene 

(IGF2).  Genomic imprinting is an epigenetic modification of a specific parental 

allele of a gene, or the chromosome on which it resides, in the gamete or zygote 

leading to differential expression of the two alleles of the gene in somatic cells of the 

offspring.  LOI is a new disease mechanism in cancer which involves loss of parental 

origin-specific expression of genes which leads to activation of the normally silent 

copy of growth-promoting genes and/or silencing of the normally transcribed copy of 

tumor suppressor genes. LOI of IGF2 was documented in the accelerated and blastic 

phases of CML (Vogelstein et al., 1998; Randhawa et al., 1998).  

 

 

1.4.3 Molecular biology of CML 

 

1.4.3.1 Philadelphia chromosome (Ph) 

 

 The discovery of Ph chromosome in 1960 as the first consistent chromosomal 

abnormality associated with a specific type of leukemia was a breakthrough in cancer 

biology (Nowell et al., 1960).  It took 13 years before it was appreciated that the Ph 

chromosome is the result of a t(9;22) reciprocal chromosomal translocation (Rowley 

J.D., 1973) and another 10 years before the translocation was shown to involve the 

ABL proto-oncogene normally on chromosome 9 and a previously unknown gene on 

chromosome 22, later termed BCR for breakpoint cluster region (bcr) (Groffen et al., 

1984; Deininger et al., 2000a).  Translocations have one of two effects.  They may 

lead to the deregulation (overexpression) of oncogenes by their juxtaposition to 

enhancer or promoter sequences that are active in the cell type from which the tumor 

arises.  The alternative molecular consequence of translocations is gene fusion, 

which results in a chimeric oncoprotein, the contribution to whose transforming 

ability is from both partners (Solomon et al., 1991). 
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The physiologic function of translocation partners 

 

 The ABL gene is the human homologue of the v-abl oncogene carried by the 

Abelson murine leukemia virus (A-MuLV) (Deininger et al., 2000a).  It is about 225 

kb in size and is expressed as either 6 or 7 kb mRNA transcript, with alternatively 

spliced first exons, exon 1a and 1b respectively.  The gene encodes a nonreceptor 

tyrosine kinase, which is higly conserved from Drosophila to humans (Laneuville P., 

1995; Catherine et al., 1998).  This protein is a ubiquitously expressed 145-kd 

protein in all tissues with several structural domains.  Three SRC homology domains 

(SH1-SH3) are located toward the NH2 terminus.  The SH1 domain carries the 

tyrosine kinase function, whereas SH2 and SH3 domains allow for interaction with 

other proteins. The C-terminal part of ABL contains a DNA-binding domain, nuclear 

localization signals, and a binding site for actin (Catherine et al., 1998; Faderl et al., 

1999a; Deininger et al., 2000a).  Both the SH1 and SH2 protein are required for 

transformation.  DNA-binding and tyrosine kinase activity of nuclear ABL is 

regulated in a cell cycle dependent manner.  ABL is localized in both nucleus and 

cytoplasm.  The normal protein is involved in the regulation of cell cycle, in the 

cellular response to genotoxic stress and in the transmission of information about the 

cellular environment through integrin signaling.  Overall, ABL serves a complex role 

as a cellular module that integrates signals from various extracellular and 

intracellular sources and that influences decisions in regard to cell cycle and 

apoptosis.  Mice with targeted disruptions in the gene have high neonatal mortality 

rates and increased susceptibility to infections suggesting a role in B-cell 

development (Raitano et al., 1997).  However, ABL knockout mice failed to resolve 

most of the issues (Deininger et al., 2000a).  Because of this, the normal function of 

this gene is not completely understood.      

 

 The BCR gene occupies a region of about 135 kb on chromosome 22. It is 

expressed as mRNAs of 4.5 and 6.7, which encodes for the same cytoplasmic 160-kd 

protein.  Like ABL, BCR protein is ubiquitously expressed and has several distinct 

domains.  The first N-terminal exon encodes a serine-threonine kinase, which binds 

BCR-associated protein-1 (Bap-1), a member of the 14-3-3 family of proteins 

(Reuther et al., 1994) and possibly BCR itself.  This has an important role in signal 

transduction and cell cycle regulation.  A coiled-coil domain at N-terminus allows 
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dimer formation in vivo (McWhirter et al., 1993).  The center of the molecule 

contains a region with DBL-like and pleckstrin-homology (PH) domains that 

stimulate the exchange of guanidine triphosphate (GTP) for guanidine diphosphate 

(GDP) on Rho guanidine exchange factors, which in turn may activate transcription 

factors such as NF-ĸB  (Deininger et al., 2000a).  The C-terminus has GTPase 

activity for Rac, a small GTPase of the Ras superfamily that regulates actin 

polymerization and the activity of NADPH oxidase in phagocytic cells (Diekmann et 

al., 1995; Deininger et al., 2000a).  In addition, BCR can be phosphorylated on 

several tyrosine residues (Wu et al., 1998), especially tyrosine 177, which binds Grb-

2 (growth factor receptor-bound protein 2), an important adaptor molecule involved 

in the activation of the Ras pathway (Ma et al., 1997).  Interestingly, ABL has been 

shown to phosphorylate BCR in COS1 cells, resulting in a reduction of BCR kinase 

activity (Ma et al., 1997; Deininger et al., 2000a).  Although, these data argue for a 

role of BCR in signal transduction, their true biologic relevance remains to be 

determined.  The fact that the BCR knockout mice are viable, fertile and have no 

obvious defects in hematopoietic cell development and also the fact that an increased 

oxidative burst in neutrophils is thus far the only recognized defect probably reflect 

the redundancy of signaling pathways (Raitano et al., 1997; Catherine et al., 1998; 

Deininger et al., 2000a).  If there is a role for BCR in the pathogenesis of Ph-positive 

leukemias, it is not clearly discernible.   

 

 

Molecular anatomy of the BCR-ABL translocation 

 

The breakpoints within the ABL gene at 9q34 can occur anywhere over a 

large (greater than 300 kb) area at its 5’ end, either upstream of the first alternative 

exon Ib, downstream of the second alternative exon Ia, or more frequently between 

the two, and the breakpoints within the BCR gene at 22q11 occurs within a 5.8-kb 

area spanning BCR exons 12-16 (Deininger et al., 2000a; Salesse et al., 2002).  

Depending on the breakpoint in the BCR gene, three main types of BCR/ABL genes 

can be formed (Melo et al., 1996).  Regardless of the exact location of the 

breakpoint, splicing of the primary hybrid transcript yields an mRNA molecule in 

which BCR sequences are fused to ABL exon a2.  In contrast to ABL, breakpoints 

within BCR localize to 1 of 3 so-called bcr.  The majority of patients with CML have 
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breakpoints in introns 1 and 2 of the ABL gene and in the major breakpoint cluster 

region (M-bcr) of the BCR gene, either between exons 13 and 14 (b2) or 14 and 15 

(b3) (Figure 2).  Because of alternative splicing, fusion transcripts with either b2a2 or 

b3a2 junctions can be formed.  The final product of this genetic rearrangement is 210 

kDa cytoplasmic fusion protein, p210 BCR/ABL , which is essential and sufficient for 

the malignant transformation of CML, and responsible for the phenotypic 

abnormalities of chronic phase CML (Salesse et al., 2002).  Less frequent, the CML 

is caused by atypical BCR/ABL transcripts.  The breakpoints are further upstream in 

the 54.4-kb region between the BCR exons e1 and e2, termed the minor breakpoint 

cluster region (m-bcr).  The resultant e1a2 mRNA is translated into a 190 kDa 

protein (p190 BCR/ABL ).  Recently, a third breakpoint cluster region (µ-bcr) was 

identified downstream of exon 19, giving rise to a 230 kDa fusion protein (p230 
BCR/ABL ), associated with the rare Ph-positive chronic neutrophilic leukemia (Pane et 

al., 1996; Deininger et al., 2000a).   

In contrast to ABL, the BCR-ABL exhibits deregulated, constitutively active 

tyrosine kinase activity and is found exclusively in the cytoplasm of the cell, 

complexed with a number of cytoskeletal proteins (Salesse et al., 2002).   

These features appear to underlie the ability of BCR/ABL to induce leukemic 

phenotype.  However, the presence of the Ph chromosome in a hematopoietic cell is 

not in itself sufficient to cause leukemia, because, the fusion transcripts are 

detectable at low frequency in the blood of many healthy individuals (Biernaux et al., 

1996; Bose et al., 1998).  It is unclear why Ph-positive leukemia develops in a tiny 

minority of these persons.  It may be that the translocation occurs in cells committed 

to terminal differentiation that are thus eliminated or that an immune response 

suppresses or eliminates BCR/ABL expressing cells (Deininger et al., 2000a).  

Indirect evidence that such a mechanism may be relevant comes from the 

observation that certain HLA types protect against CML (Posthuma et al., 1999).  

Another possibility is that, BCR/ABL is not the only genetic lesion required to induce 

chronic-phase CML.  Indeed, a skewed pattern of G-6PD isoenzymes has been 

detected in Ph-negative Epstein-Barr virus transformed B-cell lines derived from 

patients with CML, suggesting that a Ph-negative pathologic state may precede the 

emergence of the Ph chromosome (Fialkow et al., 1981). 
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Figure 2: Locations of the breakpoints in the ABL and BCR genes and structure 

of chimeric mRNAs derived from the various breaks (Salesse et al., 2002). 

 

 

 

Functional domains of BCR/ABL 

 

 Several functional domains have been identified in the BCR/ABL protein that 

may contribute to cellular transformation (Figure 3).  In the ABL portion, these 

domains are the SH1 (tyrosine kinase), SH2 and actin-binding domains; in the BCR 

portion, they include the coiled-coil oligomerization domain comprised between 

amino acids 1-63, the tyrosine at position 177 (Grb-2 binding site) and the 

phosphoserine/threonine rich SH2 binding domain.  
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Figure 3: Functional domains of  p210 BCR/ABL (Salesse et al., 2002). Some of the 

important domains are illustrated, such as coiled-coil oligomerization domain, the 

tyrosine 177 (Grb-2 binding site), the phosphoserine/threonine rich SH2 binding 

domain and the rho-GEF (DBL-like) domain on BCR portion, and the regulatory src-

homology regions SH3 and SH2, the SH1 (tyrosine kinase domain), the nuclear 

localization signal (NLS), and the DNA-and actin-binding domains in the ABL 

portion.  

 

 

Physiological properties of BCR/ABL 

 

The physiological properties demonstrated for BCR/ABL are: the induction 

of neoplastic transformation and cell proliferation, the induction of growth factor 

independence and inhibition of apoptosis in growth factor dependent hematopoietic 

cell lines and the inhibition of adhesion of chronic myeloid cells to marrow stroma 

(Chopra et al., 1999).  These processes involve multiple and redundant intracellular 

pathways.  

 

 

Ph negative CML 

 

 About 9-16% of CML patients are Ph-negative without apparent 

rearrangement of chromosomes 9 and 22 (Kantarjian et al., 1985; Hild et al., 1990; 

Chase et al., 2001).  In 30-50% of these cases, however, the BCR/ABL fusion gene is 

detectable by molecular analysis (Cortes et al., 1995; Cross, 1997).  There is believed 

to be no prognostic difference between BCR/ABL-positive cases that do or do not 

have a visible Ph chromosome at diagnosis.  The term Ph-negative CML should 
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therefore be avoided or qualified to indicate whether patients have the BCR/ABL 

fusion or not.  Cases that are Ph-negative and BCR/ABL-negative are heterogeneous 

but usually have atypical clinical features, respond less well to treatment and show 

earlier disease progression (Chase et al., 2001). 

 

  

1.4.3.2 BCR-ABL signaling pathway 

 

 The mechanisms implicated in the pathogenesis of CML are altered adhesion 

to stroma cells and extracellular matrix (Gordon et al., 1987), constitutively active 

mitogenic signaling (Puil et al., 1994) and inhibition of apoptosis (Bedi et al., 1994; 

Deininger et al., 2000a).   

 

Increased tyrosine kinase activity of p210BCR/ABL results in the 

phosphorylation of several cellular substrates and in autophosphorylation of 

p210BCR/ABL , which in turn induces recruitment and binding of a number of adaptor 

molecules and proteins.  Activation of a number of signaling pathways by 

p210BCR/ABL  , leads to malignant transformation by interfering with basic cellular 

processes, such as control of cell proliferation and differentiation (Sawyers, 1993; 

Afar et al., 1994; Puil et al., 1994;  Jiang et al., 2000), adhesion (Gordon et al., 1987; 

Bhatia et al., 1999) and cell survival (Bedi et al., 1994; McGahon et al., 1994; Cortez 

et al., 1995; Cotter, 1995) (Figure 4).  

 

The structure of p210BCR/ABL  , allows multiple protein-protein interactions and 

suggests the involvement of diverse intracellular signaling pathways.  In brief, it 

activates signal transduction pathways such as RAS/MAPK (RAS/mitogen activated 

protein kinases), PI-3 kinase (phosphotidylinositol 3 kinase), c-CBL (casitas B-

lineage lymphoma protein) and CRKL (CRK-oncogene-like protein) pathways, JAK-

STAT (Janus kinase-signal transducers and activators of transcription) and the Src 

pathway.  Of these, the RAS that is at the center of the most prominent signaling 

pathways in CML, Jun-kinase, and PI-3 kinase pathways have been demonstrated to 

play a major role in transformation and proliferation (Raitano et al., 1995; Sawyers et 

al., 1995; Skorski et al., 1995, 1997).  Inhibition of apoptosis is thought to result 

from the activation of the PI-3 kinase and RAS pathways, with induction through 
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AKT (serine/threonine kinase) of c-myc and BCL-2 (Raitano et al., 1995; Sawyers et 

al., 1995; Skorski et al., 1995, 1997; Warmuth et al., 1999b).  p210BCR/ABL  , effects 

on CRKL, c-CBL, and on proteins associated with the organization of the 

cytoskeleton and cell membrane, such as paxillin, actin, talin, vinculin and 

FAK/PYK2 (focal adhesion kinase/ prolin-rich kinase 2) , result in adhesion defects 

and cytoskeletal abnormalities, characteristics of CML cells (Salgia et al., 1997; 

Sattler et al., 1998; Sattler et al., 2002).  

 

 

 
 

 

Figure 4: Signaling pathways of p210BCR/ABL  (Salesse et al., 2002).  

 

 

 

1.4.3.3 Diagnosis and monitoring of CML with BCR/ABL  

 

 Most commonly all leukemias are diagnosed by a blood test to count the 

number of red cells, white cells and platelets.  Bone marrow aspiration with 
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measurements of the percentage of blasts and basophils can be done.  A biopsy of the 

bone marrow may also be performed (Faderl et al., 1999b). 

 

 The cytogenetic analysis is the gold standard diagnostic test in CML.  It is also 

valuable in demonstrating additional karyotipic abnormalities that occur with disease 

resistant and transformation (Mitelman, 1993).  However, cytogenetic analysis is 

time-consuming, and only 20-25 cells are examined per sample (Faderl et al., 

1999b).  In 10% of patients with CML, Ph can not be demonstrated by cytogenetic 

studies, but molecular analysis will detect BCR/ABL rearrangements in up to one half 

of patients.  Genomic polymerase chain reaction (PCR) and Southern blot assay can 

determine the exact breakpoints of the fusion genes.  Reverse transcriptase PCR (RT-

PCR) and Northern blot analysis detect BCR/ABL transcripts at the RNA level.  

Western blot analysis or immunoprecipitation demonstrate p210 BCR/ABL protein by 

using monoclonal antibodies against N-terminal region of BCR and C-terminal 

region of ABL (Guo et al., 1991).   

 

 Monitoring patients who are receiving therapy is commonly done by PCR 

and fluorescence in situ hybridization (FISH) for BCR/ABL.  Quantitative RT-PCR is 

used for follow up of patients after stem cell transplantation (Hochhaus et al., 1998).  

Despite its sensitivity, RT-PCR may miss Ph-positive cells that are not transcribing 

the relevant gene product at the time of analysis.  FISH allows analysis of metaphase 

and non-dividing interphase cells and is easily quantifiable.  Interphase FISH is 

performed on peripheral blood.  This technique is fast, and it analyzes more cells 

than is possible with conventional cytogenetic methods.  It is therefore, more reliable 

in assessing cytogenetic responses in CML (Muhlmann et al., 1998).  However, it 

overestimates the degree of cytogenetic response at high Ph-positive percentage 

values.  Because of a false-positive rate of 10%, interphase FISH is not useful once 

the number of Ph-positive cells decreases to less than 10%.  Hypermetaphase FISH 

allows analysis of up to 500 cells in metaphase per sample in a time-efficient manner 

without false-positive results, but it requires bone marrow samples other than 

peripheral blood (Seong et al., 1995).  Another FISH technique applicable to blood 

samples uses double-color probes to detect Ph-positive leukemias and has shown 

superior sensitivity and specificity (Dewald et al., 1998; Buno et al., 1998).        
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1.4.3.4 Pathogenesis and transformation of CML 

 

 Despite the central influence of BCR/ABL, on the initial development of 

CML, secondary genetic driving forces mentioned above would presumably 

important in disease progression (Wetzler et al., 1993; Kantarjian et al., 1997; Faderl 

et al., 1999c).  The disease transformation is often results by refractoriness to 

treatment, leukocytosis with increases in blood and marrow blasts, basophilia, 

increases or decreases in platelet counts unrelated to therapy, and clinical 

manifestations such as unexplained fever, spleenomegaly, extramedullary disease, 

weight loss, and bone and joint pains.  

 

  

1.4.4 Treatment of CML   

 

 The accumulation of leukemic blasts in bone marrow suppresses normal 

hematopoietic stem cells.  Therapeutically, the aim is to decrease population of 

leukemic clone enough to allow the recovery of normal stem cells (Cotran et al., 

1989).   

 

 In order to cure a malignancy, all of the cancer cells must be destroyed.  

Hormones, cytokines (interferons, interleukins, tumor necrosis factor), monoclonal 

antibodies coupled to tumoricidal agents, cells (lymphokine activated killer (LAK) 

cells, tumor infiltrating lymphocytes (TIL)), and chemotherapeutic drugs are among 

biologic and chemical agents, which are used in cancer treatment (Wilson et al., 

1991).   

 

 To achieve a cure with chemotherapeutic drugs, (1) the cancer cells must be 

sensitive to the agent; (2) the drug must reach the malignant cell; (3) if the drug is 

effective only in a phase of the cell cycle, it must be given frequent enough that all 

the cancer cells enter this phase of the cycle in the presence of drug; and (4) the 

malignant cells must be destroyed before drug resistance emerges (Wilson et al., 

1991).   
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 The natural history of chronic myelogenous leukemia has changed 

significantly since the first treatment attempts with arsenicals (Fowler's solution) in 

1856 by Lissauer.  In the past, the median survival of patients with chronic 

myelogenous leukemia was 3 years; less than 20% of patients were alive 5 years 

after diagnosis.  Survival duration has since doubled to 5 to 7 years; 50% to 60% of 

patients are alive at 5 years, and more than 30% are alive at 10 years (Kantarjian et 

al., 1993).  Several reasons account for this change: earlier diagnosis; better 

supportive care; and more effective therapies, such as allogeneic stem-cell 

transplantation, interferon-α and tyrosine kinase inhibitors (Faderl et al., 1999b; 

Deininger et al., 1997).   Prognostic models based on multivariate analysis allowed 

stratification of treatment options according to a patient's risk profile, thereby 

maximizing the chances for the best possible therapeutic outcome (Sokal et al., 1988; 

Kantarjian et al., 1990; Hasford et al., 1998). 

 

Busulfan, an alkylating agent, controls hematologic variables.  In most 

patients receiving busulfan, disease cannot be controlled safely at the low leukocyte 

levels needed to induce a complete hematologic response; therefore, partial 

hematologic response is maintained (Faderl et al., 1999b). 

 

Hydroxyurea, a cell cycle-specific inhibitor of DNA synthesis, became 

available for the treatment of chronic myelogenous leukemia and it allows rapid but 

transient hematologic control, is well tolerated, and has few side effects (nausea, 

vomiting, diarrhea, mucosal ulcers, and skin manifestations) (Faderl et al., 1999b).  

 

Hydroxyurea and busulfan produce complete hematologic remission in 50% 

to 80% of patients (Kantarjian et al., 1998).  Cytogenetic remissions are rare, and 

both agents do not affect disease progression.  Patients will inevitably experience 

transformation to the blastic phase and die of its complications after a median of 3 to 

6 years.  Hydroxyurea therapy is superior to busulfan therapy (Faderl et al., 1999b). 

When these two agents were compared in a randomized study of patients with early 

chronic-phase chronic myelogenous leukemia, median survival (56 months compared 

with 44 months) and median duration of chronic-phase disease (47 months compared 

with 37 months) were significantly longer in the patients receiving hydroxyurea 

(Hehlmann et al., 1993).  
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  Allogeneic stem-cell transplantation has curative potential in chronic 

myelogenous leukemia.  It produces long-term survival in 50% to 80% of patients 

and disease-free survival in 30% to 70%.  Relapses occur in 15% to 30% of patients, 

and plateaus are reached at 5 years after transplantation.  However, late relapses 

rarely occur beyond years after transplantation.  Applicability of allogeneic stem-cell 

transplantation is limited by availability of matched siblings and age restrictions. 

Less than 30% of patients in Europe and North America receive stem-cell transplants 

from matched sibling donors (Horowitz et al., 1996). 

 

Several factors influence the outcome of stem-cell transplantation.  First, 

younger patients do best with this therapy: Disease-free survival is 60% to 70%, 

transplant-related mortality is 10%, and probability of relapse is 20% (Faderl et al., 

1999b).  Older patients do worse mainly because of an increase in treatment-related 

mortality.  Disease-free survival rates are about 30% at 5 years after therapy 

(Horowitz et al., 1996).  Second, disease phase determines outcome. Results are 

more favorable if patients undergo transplantation during the chronic phase instead 

of during transformation.  Transplantation during advanced phases is characterized 

by increased rates of leukemia relapse and treatment-related mortality.  Third, 

chemotherapy before transplantation affects disease-free survival.  In one study of 

patients with chronic-phase disease, disease-free survival after transplantation was 

significantly higher among those who were pretreated with hydroxyurea than among 

those who were pretreated with busulfan (Goldman et al., 1993).   Fourth, the 

preparative regimen and graft-versus-host disease prophylaxis affect outcome.  

 

Relapse after transplantation occurs in as few as 10% to 20% of patients 

(those with chronic-phase disease) to as many as 70% to 80% (those with blastic-

phase disease and T-cell depletion) (Mrsic et al., 1992; Arcese et al., 1993).  

Outcome with second transplantations from HLA-identical siblings depends on the 

time between transplant and relapse.  Patients who experienced relapse within 6 

months after transplantation had a disease-free survival rate of 7%, a treatment-

related mortality rate of 69%, and a probability of relapse of 77%.  For patients who 

experienced relapse more than 6 months after transplantation, the disease-free 

survival rate was 28%, the treatment-related mortality rate was 30%, and the 

probability of relapse was 59% (Mrsic et al., 1992).  
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Interferons are glycoproteins produced by eukaryotic cells in response to 

antigenic stimuli such as those that occur with viral infections and malignant 

diseases.  They have pleiotropic effects, including antiviral, immunomodulatory, 

antiproliferative and antiangiogenic activities (Estrov et al., 1993).  Interferon-α 

(IFN-α) administration is a promising therapeutic intervention in the chronic phase 

of CML (Sacchi et al., 1997).  It suppresses the leukemic clone and prolongs survival 

(Faderl et al., 1999a).  However, at the advanced stages of the disease IFN-α 

treatment does not offer a significant therapeutic advantage.  Single-arm studies of 

IFN-α therapy in CML have consistently produced high rates of complete 

hematologic (46% to 80% of patients) and cytogenetic responses (complete response 

in 13% to 32% of patients and partial response in 11% to 16%) (Kolb et al., 1995; 

Kantarjian et al., 1996; Collins et al., 1997; Mahon et al., 1998).  IFN-α treatment 

with chemotherapy confirmed better survival with IFN-α treatment than with either 

hydroxyurea therapy or busulfan therapy (Faderl et al., 1999b).  Five-year survival 

rates were 57% with IFN-α therapy and 42% with chemotherapy.   

 

Patients with CML who fail IFN-α therapy and who are not candidates for 

allogeneic stem cell transplantation have limited treatment options and a relatively 

poor prognosis.  Cytosine arabinoside (ara-C) have shown single-agent anti-CML 

activity and have induced hematologic and cytogenetic responses in CML.  The 

combination regimens with ara-C and IFN-α yielded substantially higher rates of 

complete hematologic and cytogenetic remission in good-risk patients (Thaler et al., 

1997).  This response translated into significantly longer survival (Guilhot et al., 

1997).  Combinations of IFN-α with other effective agents (hydroxyurea, busulfan) 

and intensive chemotherapy were not associated with better results than those seen 

with IFN-α alone (Kantarjian et al., 1991). 

 

Despite encouraging results with matched unrelated donor transplantation 

(2-year disease-free survival rates, 14% to 43%) (McGlave et al., 1993; Hansen et 

al., 1998) the procedure carries significant morbidity and mortality rates depending 

on patient age and degree of matching.   
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Autologous bone marrow transplantation results in transient cytogenetic 

responses, but a survival advantage has not been proven (Reiffers et al., 1994). 

Relapse due to reinfused Ph-positive cells may occur (Deisseroth et al., 1994). 

 

Homoharringtonine is a plant alkaloid derived from the Cephalotaxus 

fortuneii tree.  Used in a low-dose continuous infusion, homoharringtonine resulted 

in complete hematologic response in two thirds of patients and cytogenetic responses 

in one third (half of whom had major responses).  Combinations of 

homoharringtonine with IFN-α and ara-C are being tested, with promising results 

(Faderl et al., 1999b). 

 

5-Aza-2'-deoxycytidine (decitabine) is a potent hypomethylating cytidine 

analogue (Issa et al., 1997).  Decitabine produced response rates of 25% in patients 

with blastic-phase disease and 53% in patients with accelerated-phase disease (Faderl 

et al., 1999b).   

 

Polyethylene glycol (PEG) interferon is a modified IFN-α molecule that is 

covalently attached to polyethylene glycol.  This interferon has a significantly longer 

half-life than its parent compound and can be given once weekly instead of daily.  In 

addition to causing fewer side effects, PEG interferon produced a hematologic 

response in 50% of patients, including 4 of 13 patients who had been resistant to 

interferon (Faderl et al., 1999b).  Preliminary results with PEG interferon are 

promising, and further investigations are required to validate its role in the treatment 

of CML. 

 

  Antisense oligonucleotides are short DNA sequences modified to bind target 

RNA sequences within the cell, preventing translation of RNA into functional 

proteins.  BCR-ABL antisense oligonucleotides reduce the level of p210BCR/ABL in 

CML cells and slow the rate of growth and proliferation.  Antisense sequences 

directed against BCR-ABL for ex vivo purging in autologous bone marrow 

transplants are of interest (Ratajczak et al., 1992; De Fabritiis et al., 1998; Maran et 

al., 1998). 
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Adoptive immunotherapy: The role of a subset of T lymphocytes in the 

suppression of leukemic cells is increasingly appreciated.  The idea that leukemic 

cell proliferation is controlled by the immune system is based on several 

observations.  First, the frequency of disease recurrence is increased with T-cell-

depleted stem-cell transplantation.  Second, donor lymphocyte infusions reestablish 

cytogenetic remissions in many patients who experience relapse after allogeneic 

transplantation.  Third, a positive correlation has been seen between graft-versus-host 

disease and reduced risk for relapse after transplantation.  Finally, cytogenetic 

response correlates with interferon therapy-associated autoimmune phenomena 

(Faderl et al., 1999b).   

 

Research is focusing on identification of specific T-cell clones that can 

eliminate leukemic progenitors and on proteins that can serve as tumor-specific 

targets.  CML is a good model because p210BCR/ABL is uniquely associated with the 

Ph translocation (Lim et al., 1997; Moldremm et al., 1997; Choudhury et al., 1997). 

Identification of leukemia-specific antigens and stimulation of leukemia-specific T-

cell responses may allow the use of immunogenicity of leukemic cells in such 

approaches as immune gene therapy and peptide vaccination (Smit et al., 1997). 

 

Tyrosine kinases are enzymes that transfer phosphate from ATP to tyrosine 

residues on substrate proteins that in turn regulate cellular processes such as 

proliferation, differentiation, and survival (Druker et al., 2000).  Therefore, tyrosine 

kinase inhibitors are very attractive molecules in CML therapy.  Although many 

molecules along the signaling cascade can be targeted, inhibition of phosphotyrosine 

kinase activity has been studied most extensively (Levitzki et al., 1995).  Natural 

inhibitors of tyrosine kinases (herbimycin A, genistein, erbstatin, and lavendustin A) 

have broad specificity for various enzyme substrates.  To improve target specificity, 

synthetic compounds have been modeled after the naturally occurring kinase 

inhibitors, and more than 20 of them are known (Levitzki et al., 1995).  Some of 

these compounds (AG1112, AG568, and CGP57148B) showed a growth-inhibiting 

effect on CML cell lines in vitro (Druker et al., 1996; Deininger et al., 1997; Beran 

et al., 1998; Le Coutre et al., 1999).   
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 Therapeutic agent STI571 (signal transduction inhibitor number 571) 

(Gleevec, imatinib mesylate) formerly CGP57148B, is a rationally developed, 

potent and selective inhibitor for ABL tyrosine kinases, including BCR/ABL (Mauro 

et al., 2001; Goldman et al., 2001).  The BCR/ABL tyrosine kinase is a constitutively 

active kinase, which functions by binding ATP and transferring phosphate from ATP 

to tyrosine residues on various substrates.  This causes the excess proliferation of 

myeloid cells characteristic of CML.  STI571 functions by blocking the binding of 

ATP to BCR/ABL, inhibiting its activity.  As a result, substrates required for 

BCR/ABL function cannot be phosphorylated and subsequent event are abrogated 

(Mauro et al., 2001). 

 

 The phases I-II clinical trials in CML have demonstrated promising results, 

especially in the chronic phase of the disease (Etienne et al., 2001;Drummond et al., 

2001).   

 

Fifty patients with Philadelphia chromosome-positive CML in early chronic 

phase received imatinib mesylate, 400 mg orally daily.  After a median follow-up of 

9 months, 49 patients (98%) achieved a complete hematologic response and 45 

patients (90%) achieved a major cytogenetic response, complete in 36 patients (72%) 

(Kantarjian et al., 2003).  Compared with similar patients who received IFN-α with 

or without hydroxyurea or other IFN-α combination regimens, those receiving 

imatinib mesylate had higher incidences of complete and major (Ph < 35%) 

cytogenetic responses at 3 months (34% and 74% versus 1%-4% and 9%-24%, 

respectively), 6 months (52% and 80% versus 3%-7% and 11%-28%, respectively), 

and 9 months (60% and 77% versus 5%-11% and 14%-30%, respectively) 

(Kantarjian et al., 2003a).   

 

An investigation was made whether increasing the dose of imatinib mesylate 

might overcome drug resistance in patients with Philadelphia chromosome-positive 

CML whose disease manifests relapse or refractoriness to therapy (Kantarjian et al., 

2003b).  Fifty-four patients with Ph(+) CML in chronic phase and with hematologic 

or cytogenetic resistance or relapse on imatinib mesylate therapy at 400 mg orally 

daily were treated with a higher dose of 400 mg orally twice daily (800 mg daily, 47 

patients; or 600 mg daily increased from 300 mg daily, 7 patients).  Among 20 
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patients treated for hematologic resistance or relapse, 13 (65%) achieved a complete 

(n = 9) or partial (n = 4) hematologic response, but only 1 had a cytogenetic partial 

response (Ph reduction from 100% to 10%) and 1 had a minor response (Ph 

reduction from 100% to 50%).  Among 34 patients treated for cytogenetic resistance 

or relapse, 19 (56%) achieved a complete (n = 6) or partial (n = 7) cytogenetic 

response (Kantarjian et al., 2003b).  As a conclusion higher doses of imatinib 

mesylate may overcome disease-poor response to conventional doses and that this 

approach deserves further evaluation as frontline therapy for newly diagnosed CML. 

 

237 CML patients were treated with imatinib mesylate at accelerated-phase 

(Kantarjian et al., 2002).  Among the 200 patients with accelerated-phase CML for 

whom follow-up was 3 months or more, rates of complete and partial hematological 

response were 80% and 10%.  Cytogenetic responses were evident in 90 patients 

[45%; complete response in 47 patients (24%) and partial response (Ph 1-34%) in 21 

patients (11%)].  The estimated 18-month survival rate was 73%.  The estimated 

complete hematological response rate at 18 months was 68%; that for cytogenetic 

response was 82%.  Landmark analysis showed that achieving a cytogenetic response 

at 3 months or a major cytogenetic response (Ph < 35%) at 6 months was associated 

with better long-term survival.  

 

Blast crisis is the most advanced stage of CML and is highly refractory to 

therapy.  A total of 260 patients with CML were enrolled in a phase II trial, of whom 

229 had a confirmed diagnosis of CML in blast crisis (Sawyers et al., 2002).  

Imatinib induced hematologic responses in 52% of patients and sustained 

hematologic responses lasting at least 4 weeks in 31% of patients, including 

complete hematologic responses in 8% (Sawyers et al., 2002).  For patients with a 

sustained response, the estimated median response duration was 10 months.  Imatinib 

induced major cytogenetic responses in 16% of patients, with 7% of the responses 

being complete.  Median survival time was 6.9 months.  These results demonstrated 

that imatinib has substantial activity and a favorable safety profile when used as a 

single agent in patients with CML in blast crisis.  Additional clinical studies are 

warranted to explore the efficacy and feasibility of imatinib used in combination with 

other antileukemic drugs. 
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As a summary, imatinib mesylate is the new gold standard for treatment of 

CML.  The response rates (both hematologic and cytogenetic) exceeded the rates 

with other medical therapies (Peggs et al., 2003).  However, it remained to be shown 

whether imatinib therapy was superior to conventional therapy in a direct 

comparative study, whether the improved response rates translated into improved 

survival, and whether this treatment could induce molecular remission and possibly 

be curative in previously untreated patients.  

 

Acquired resistance to imatinib mesylate caused by kinase-domain mutations 

is common in patients with CML who are treated with the drug (Gorre et al., 2002).  

Such mutations have been reported only at the time of clinically apparent resistance 

or relapse (Roche-Lestienne et al., 2002; Shah et al., 2002).  A male patient with 

CML was screened for a mutation of the tyrosine kinase domain of BCR-ABL and 

was shown to have T315I substitution at diagnosis (Roche-Lestienne et al., 2003). A 

minor mutated clone present before any treatment seems to have expanded quickly 

under the selective pressure of imatinib monotherapy.   

 

 

1.4.4.1 Minimal residual disease (MRD) 

 

 The term minimal residual disease (MRD) describes leukemia cells present at 

a level below that is detectable by conventional methodology in patients being in 

complete hematological and clinical remission (CR). (Widzysska et al., 1995).  

Clinically, MRD can be an indicator for a prediction of relapse.  As an example, a 

greater MRD on entering CR tends to be related with an early relapse, a return to 

MRD-positive after disappearance of MRD will be a sign of impending relapse, and 

MRD negativity at the termination of therapy may be correlated with a long term 

disease free survival.  Therefore, more precise evaluation of MRD is necessary with 

regard to therapeutic strategy in monitoring of the disease (Misawa et al., 1995). 

PCR can be used for detection of MRD in CML (Lee et al., 1988).   
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1.5 The childhood leukemias 

 

 Advances in treatment and prognosis of childhood leukemia are considered a 

remarkable success of modern medicine.  Childhood leukemia, once considered a 

universally fatal disease, now boasts overall cure rates ranging from 75% to 85% for 

acute lymphocytic leukemia (ALL) and cure rates approaching 40% to 50% for acute 

myeloid leukemia (AML) (Colby-Graham et al., 2003).  Acute leukemia is the most 

common form of childhood cancer and is the primary cause of cancer-related 

mortality in children (Ravindranath, 2003).  In the United States, approximately 3250 

cases are diagnosed annually in children and adolescents younger than 20 years, of 

whom 2400 have acute ALL (Ravindranath, 2003).    

 

Cytogenetic and molecular analyses are essential for the classification of 

childhood hematological malignancies.  Nearly all children with leukemia should 

have an adequate cytogenetic analysis, which in 80-90% is expected to show clonal 

chromosomal abnormalities (Martinez-Climent, 1997).  Moreover, with the 

availability of appropriate gene probes and sophisticated molecular techniques, 

genetic rearrangements become detectable in the majority of leukemia patients. 

Genetic abnormalities often associate with particular clinical-biological 

characteristics of the disease. 

 

The leukemias of infancy, characterized by an equal distribution of lymphoid 

and myeloid subtypes, account for 2.5-5% of the ALL and 6-14% of the AML of 

childhood (Pui et al., 1995).  Rearrangements of the Mixed-Lineage Leukemia 

(MLL) gene on chromosome 11q23 are the most common genetic abnormalities in 

both ALL and AML, occurring in 70-80% and approximately 60% of cases, 

respectively (Pui et al., 1995).   

 

The most significant new development in the past 2 years has been the 

development of further evidence for fetal origin of childhood leukemias, and 

additional evidence to support the notion that postnatal events modulating the events 

of immune-mediated elimination of these leukemic clones play a major role in the 

eventual development of clinical disease (Ravindranath, 2003).  Other epidemiologic 

developments include (1) increased appreciation of the role of drug-metabolizing 
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enzymes, both in determining the predisposition to leukemia and response to therapy; 

and (2) both clinical observations and gene expression studies seeming to identify a 

new approach to the evaluation and treatment of children with MLL (11q23) 

rearrangements (Ravindranath, 2003).    

 

 

1.5.1 Acute lymphocytic leukemia (ALL) 

 

ALL is primarily a disease of children and young adults.  It can be subdivided 

by morphologic and immunologic criteria.  Morphologic subtypes designated as L1, 

L2, and L3 have been defined in the French-American-British (FAB) classification 

of acute leukemias (Cheson et al., 1990).  An alternative immunologic classification 

is also commonly used and is based on the origin of the leukemic lymphoblasts and 

their stage of differentiation.  It is defined by cell surface markers and antigen 

receptor gene rearrangements (Cotran et al., 1989).   

 

The common cytogenetic abnormalities in Pre-B ALL, T-cell ALL and B-cell 

ALL are t(9;22), t(4;11), t(1;19); t(8;14), t(7;19 ), t(1;14); and t(8;14), t(8;22), t(2;8) 

respectively (Fauci et al., 1998).  The TEL and AML1 genes are common targets of 

chromosomal translocations in hematopoietic malignancies.  The TEL-AML1 fusion 

gene, created by the t(12;21), is the most common genetic alteration in childhood 

ALL (28%) and is associated with a favorable outcome (Rubnitz et al., 1999).  The 

exact role of TEL-AML1 oncoprotein in cell transformation remains unclear, but 

emerging data suggest that the primary effect relates to a compromise of AML1 

transcriptional activity, which is required for normal hematopoiesis.   

 

 

1.5.2 Acute myeloid leukemia (AML) 

 

 The term ‘acute non-lymphocytic leukemia’ (ANLL) is also used for this 

group of leukemias.  AML primarily affect adults between ages of 15 and 39 years 

and constitutes only 20% of childhood leukemais (Cotran et al., 1989).  The 

incidence of AML is approximately 2.3 per 100,000 people per year and it increases 

with age (Fauci et al., 1998).  The extraordinary heterogeneity of AML reflects the 
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complexities of myeloid differentiation.  This group of leukemias is of diverse origin.  

Some arise by transformation of multipotent (trilineage) myeloid stem cells while in 

others the common granulocyte-monocyte precursor is involved (Figure 1).  In the 

widely used FAB classification, AML is divided into eight categories taking into 

account both the degree of maturation (M0 to M3) and the predominant line of 

differentiation of the leukemic stem cells (M4 to M7) (Cotran et al., 1989).  

Chromosomal abnormalities have been observed in approximately 90% of all AML 

cases.  Many of the nonrandom chromosomal abnormalities have prognostic 

implications which do not depend on other clinical prognostic factors.   

 

Analysis of patient karyotypes reveals that nonrandom, somatically acquired 

translocations and inversions occur in most acute myeloid leukemias.  Among these, 

fusion oncogenes have been identified that utilize similar signal transduction 

pathways and transcriptional activation pathways to mediate their leukemogeneic 

effect (Gilliland et al., 2002).  The most common chromosome abnormalities in 

AML are t(9;22), t(8;21), t(15;17), inversion 16 (inv(16)) or deletion 16q (Cotran et 

al., 1989; Gilliland et al., 2002).  These translocations may account for up to 30% of 

all cases of adult and childhood AML and their identification either by cytogenetics 

or molecular techniques is important for the routine diagnosis and treatment of AML, 

since they allow the identification of patients whose likelihood of cure is remarkably 

better (Biondi et al., 1996).  The t(8;21), resulting in expression of the AML1-ETO 

oncoprotein, is the most frequent chromosomal abnormality in the myeloid 

leukemias of both children and adults (Morgan et al., 1998).  The fusion protein 

appears to interfere with AML1-mediated transcriptional activation.  The CBFbeta 

subunit is involved in another major rearrangement in AML, the inversion 16, which 

affects 15 to 18 % of AML cases.  This rearrangement joins most of the CBFB gene 

to the carboxyl terminus of the heavy-chain gene of smooth muscle myosin (MYHII) 

Roumier et al., 2003). 
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1.6 DNA Base Excision Repair (BER) 

 

 The base excision repair (BER) pathway has a principle role in the repair of 

mutations caused by reactive oxygen species that are generated during aerobic 

metabolism (Lindahl, 1993).  Although oxidative DNA damage has been implicated 

in the ethiology of degenerative diseases, aging and cancer (Ames et al., 1991), so 

far there is no evidence to link inherited deficiencies of BER to these processes.   

 

 The excision of some forms of base damage is initiated by the action of a 

specific class of DNA repair enzymes called DNA glycosylases.  These enzymes 

catalyze the hydrolysis of the N-glycosylic bonds between modified bases and the 

sugar-phosphate backbone of DNA, leading to removal of the altered bases.  

Excision of modified bases generates another type of DNA damage, because it 

results in the formation of sites of base loss called apurinic or apyrimidinic (AP) 

sites.  The repair of AP sites requires further biochemical events to complete BER.  

The sugar phosphate with the missing base is cut out by the sequential action of AP 

endonuclease and a phosphodiesterase.  The gap of a single nucleotide is then filled 

by DNA polymerase and DNA ligase (Cheadle et al., 2003).   

 

 In E. coli, three enzymes help protect cells against the mutagenic effects of 

guanine oxidation (Michaels et al., 1992).  MutM DNA glycosylase removes the 

oxidized base from 8-oxoG:C base pairs in duplex DNA, MutY DNA glycosylase 

excises adenines misincorporated opposite unrepaired 8-oxoG during replication, and 

MutT, an 8-oxo-dGTPase, prevents the incorporation of 8-oxo-dGMP into nascent 

DNA (Cheadle et al., 2003).  Homologues of mutM, mutY, and mutT have been 

identified in human cells and termed OGG1, MYH and MTH1, respectively (Roldan-

Arjona et al., 1997; Slupska et al., 1996; Sakumi et al., 1993).  

 

 The MYH gene was cloned in 1996 (Slupska et al., 1996).  It contains 15 

introns and is 7.1 kb long.  The 16 exons encode a protein of 535 amino acids that 

displays 41% identity to the E. coli protein  (Slupska et al., 1996).  The gene maps on 

the short arm of chromosome 1, between p32.1 and p34.3.   
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1.7 DNA repair and childhood leukemias 

 

 DNA-repair gene mutations have been suspected as being a predisposing 

factor in the development of leukemia (Horwitz, 1997).  One of the first examples of 

a DNA-repair gene mutation to be causally linked to childhood hematological 

malignancies and neurofibromatosis type I, is the involvement of a homozygous 

germ-line mutation in the mismatch repair (MMR) gene MLH1 (Ricciardone et al., 

1999; Wang et al., 1999).  Subsequently, homozygous inactivation of MSH2, another 

MMR gene, was also found to be associated with early onset leukemia (Whiteside et 

al., 2002).   

 

 It is well known that heterozygous germline mutations in the MMR pathway 

genes, MLH1, MSH2, PMS1, PMS2 and MSH6 lead to hereditary non-polyposis 

colorectal cancer (HNPCC) (Peltomaki, 2001).  Thus, tumorigenesis through an 

MMR deficiency pathway appears to be associated with two different disease 

phenotypes, which are dependent on the status of the germ-line mutation: a) HNPCC 

when the mutation is present on only one allele (heterozygous), and b) hematological 

malignancies when the mutation(s) is present on both alleles (homozygous or 

compound heterozygous).   

 

 Inherited defects of BER have not been associated with any human genetic 

disorder, although mutations of the genes mutM and mutY, which function in E. coli 

BER, leads to increased transversions of G:C to T:A (Nghiem et al., 1998; Michaels 

et al., 1992; Moriya et al., 1993; Thomas et al., 1997).  Recently, inherited variants 

of MYH was shown to be associated with somatic G:C to T:A mutations in colorectal 

tumors (Al-Tassan et al., 2002).  To determine whether an inherited defect in the 8-

oxoG repair pathway was responsible for the pattern of somatic G:C to T:A 

mutations in family N, Al-Tassan et al. sequenced the ORFs of OGG1, MYH and 

MTH1 in a blood DNA sample from an affected sibling.  Two amino acid variants 

were identified in MYH (Y165C and G382D), but no likely pathogenic changes were 

identified in OGG1, and MTH1.  All three affected siblings were found to be 

compound heterozygotes for Y165C and G382D, and unaffected family members 

were either heterozygous for one of these variants or normal, suggesting transmission 

as an autosomal recessive trait. Consistent with this, no somatic mutations in MYH 
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were identified upon comprehensive analysis of the 11 MYH-deficient colorectal 

tumors (Al-Tassan et al., 2002).  In another study, biallelic germline mutations in 

MYH was found to predispose to multiple colorectal adenoma and somatic G:C to 

T:A muations (Jones et al., 2002). 

 

 

1.8 cDNA microarray technology 

 

 The Human Genome Project has spurred the emergence of “genome-wide” 

approaches to study gene function, regulation and interaction termed functional 

genomics (Collins et al., 1998).  Comprehensive analysis of differential gene 

expression is becoming a cornerstone for functional genomics.  To this end, several 

new technologies have been developed high-throughput differential gene expression 

analysis (Schena et al., 1995, DeRisi et al., 1996, Lockhart et al., 1996, Velculescu et 

al., 1995, Liang et al., 1992, Adams et al., 1991, Hubank et al., 1994).  The 

deposition of cDNAs in an array format to filters or glass is hybridized-based 

analytical tool at the forefront of this field.  The first proof of principle paper showed 

gene expression analysis for an array with 45 Arabidopsis genes (Schena et al., 

1995).  This approach has since grown rapidly to high-density microarrays of with 

tens of thousands of genes.  Today, many laboratories around the world have 

established cDNA microarrays for a range of applications and found it to be very 

useful for simultaneously profiling mRNA levels for thousands of genes.   

 

 The transition of cDNA microarrays from a working prototype to a practical 

and reliable technology remains the focus of enormous effort from industry and 

academia.  This has required the development and standardization of various 

hardware, analytical software, statistical methodology, biological resources and 

biochemical methodologies.  Though dream for many laboratories, all of the required 

functionally essential to reliably use the technology to find changes in gene 

expression levels between tissues, which provide abundant RNA, has been achieved.  

The system’s performance is currently being evaluated in model systems where 

observation of known changes and verification of newly observed changes will allow 

stringent characterization of the reliability with which such profiling can be carried 

out.  The ultimate goal of this effort is to develop the ability to scan the mRNA 
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expression state of all human genes simultaneously, and to be able to correlate this 

information with the underlying biochemistry and cellular biology producing the 

observed biological state.   

 

 

1.9 Microarray overview  

 

 A cDNA microarray experiment can be divided into several stages.  First, is 

the construction of very high density microarrays of specific and distinct DNA 

hybridization targets, each one representing a single gene, that are spotted in an 

arrayed format on a glass support.  Multiple glass slides, each containing thousands 

of spots of DNA, can be synthesized and used in subsequent experiments.  Then, for 

each experiment, probes are made which consist of a pool of fluorescently labeled 

cDNAs.   This step begins with the extraction and preparation of mRNAs from two 

populations of cells.  Then, each of the two mRNA is reversed transcribed separately 

with the incorporation of different fluorescently tagged nucleotides producing two 

populations of differentially labeled cDNA probes.  The two-labeled probes are 

combined and are then simultaneously hybridized to the cDNA targets on the 

microarray.  A device called reader (scanner) is used to detect the resulting 

fluorescence of the hybridized probes on the microarray after laser excitation.  If a 

particular gene predominates in one of the two samples, more of the corresponding 

cDNA will hybridize to the spot representing that gene and color of the fluorescent it 

is tagged with will predominate.  The ratio of the intensity of fluorescence from the 

two-labeled cDNA on a particular spot is determined using the scanner.  The 

resulting data can then be put into a database and analyzed.  Various bioinformatics 

approaches have been developed to process and visualize the enormous quantity of 

data generated and also, compare gene expression profiles from multiple 

experiments.  The cDNA microarray schema is summarized in Figure 5.     
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Figure 5: cDNA microaarray schema (Cummings et al., 2000). Capillary printing 

is used to array DNA fragments onto a glass slide (upper right). RNA is prepared 

from the two samples to be compared, and labeled cDNA is prepared by reverse 

transcription, incorporating either Cy3 (green) or Cy5 (red)(upper left). The two 

labeled cDNA mixtures are mixed and hybridized to the microarray, and the slide is 

scanned. In the resulting pseudocolor image, the green Cy3 and red Cy5 signals are 

overlaid--yellow spots indicate equal intensity for the dyes. With the use of image 
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analysis software, signal intensities are determined for each dye at each element of 

the array, and the logarithm of the ratio of Cy5 intensity to Cy3 intensity is 

calculated (center). Positive log(Cy5/Cy3) ratios indicate relative excess of the 

transcript in the Cy5-labeled sample, and negative log(Cy5/Cy3) ratios indicate 

relative excess of the transcript in the Cy3-labeled sample. Values near zero indicate 

equal abundance in the two samples. After several such experiments have been 

performed, the dataset can be analyzed by cluster analysis (bottom). In this display, 

red boxes indicate positive log(Cy5/Cy3) values, and green boxes indicate negative 

log(Cy5/Cy3) values, with intensity representing magnitude of the value. Black 

boxes indicate log(Cy5/Cy3) values near zero. Hierarchical clustering of genes 

(vertical axis) and experiments (horizontal axis) has identified a group of coregulated 

genes (some shown here) and has divided the experiments into distinct classes. 

(Illustration by J. Boldrick, Stanford University). 

 

 

 Microarray technology is still a new yet immensely powerful tool in 

molecular biology.  The demand for parallel gene expression analysis by cDNA 

microarray and the dramatic increase in the number of laboratories around the world, 

which have implemented, established and improved the technology, will lead to its 

rapid evolution.  Improvements are anticipated for every aspect of microarray 

technology.  Differential gene expression experiments have already been successful 

in a wide spectrum of application to identify single genes and group of genes, which 

are important in various biological processes.  In the future, however, analysis of 

data across thousands of experiments will enable the elucidation of gene expression 

fingerprints that can be associated with specific physiological and pathological states. 

It is becoming clear that, scientists have only scratched the surface of what can be 

accomplished with the creative application of microarray technology.  

 

1.10 Mutation screening  

 

Detection of unknown mutations can involve DNA sequences analysis of 

thousands of bases and would require large amounts of money and time.  This has 

lead to the development of many techniques that can be used in research and clinical 
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laboratories to screen populations for unknown mutations, as well as to detect known 

mutations.     

 

 An optimal mutation detection technique would (1) be fast, (2) be able to 

screen large stretches of DNA with high sensitivity and specificity, (3) not involve 

expensive or elaborate instrumentation, (4) not require toxic or dangerous 

compounds and (5) provide information about the location and nature of the 

mutation.  Unfortunately, no single procedure yet describe possesses all of these 

attributes.  

 

 

1.10.1 Restriction enzyme analysis 

 

 Restriction endonucleases recognize short DNA sequences and cleave double 

stranded DNA at specific sites within or adjacent to the recognition sequences. The 

recognition sequences are generally, but not always, 4 to 6 nucleotides in length and 

are usually characterized by palindromic sequences.  In palindromic sequences the 

recognition site sequence is the same on each DNA strand when read 5’→3’.  Some 

restriction enzymes cleave at the axis of symmetry yielding “blunt” ends.  Others 

make staggered cleavages yielding “sticky” ends.  Restriction enzyme cleavage is 

accomplished by incubating the enzyme with the DNA in appropriate reaction 

conditions.  The amounts of enzyme and DNA, the buffer and ionic concentrations, 

and the temperature and duration of reaction vary depending upon the specific 

application.   

 

 

1.10.2 Amplification refractory mutation system (ARMS) 

 

 ARMS is also known as PCR amplification of specific alleles (PASA) and 

allele-specfic PCR (ASPCR) (Wu et al., 1989).  It is a generally applicable technique 

for the detection of known single-base substitutions or microdeletions/insertions.  In 

this PCR-based technique, one of the PCR primers precisely matches one allelic 

variant of the target sequence, but it is mismatched to the other.  When the mismatch 

occurs at or near the 3’ end of the PCR primer, preferential amplification of the 
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perfectly matched allele is obtained (Sommer et al., 1989).  ARMS can generally 

detect a single copy of a mutant allele in the presence of 40 copies of the normal 

allele, and may also be used to perform haplotyping of nearby loci in the absence of 

relatives through double ARMS.   

 

 

1.11 Aim and strategy 

 

This thesis work had two main objectives. Initially, we focused on gene 

expression analysis in different risk groups of CML.  Furthermore, we investigated 

the association between MYH mutations and childhood leukemia risk.  

 

Specific Aim I: 

 
Although pathophysiologic role of the Philadelphia chromosome 

translocation in CML has been known for more than 20 years, molecular events that 

lead to blast crisis - which is seen as the most significant mortality and morbidity 

factor in CML - is not well understood.  At present mutations in genes such as p53, 

RB1, c-MYC, p16INK4A, RAS, structural and numerical chromosome anomalies such as 

trisomy 8, isochromosome i(17q), and an extra Ph chromosome are cited among the 

genetic abnormalities that appear to contribute to disease progression in CML. 

 

With respect to the development of resistance to treatment in CML, it is 

known that advanced patients who are at the blastic crisis phase of the disease, and 

also patients classified as high-risk at the initial diagnosis do not respond to treatment 

well.  The molecular characteristic of three risk groups (low, intermediate and high-

risk) of patients is currently unknown.  In particular, the relationship between the 

molecular events characteristics of CML and the biological features of the disease 

remain to be clarified.  Important questions, which need to be addressed, include: 1) 

What are the genes responsible for the pathogenesis of CML? 2) Are there any gene 

expression differences between low and high-risk patients at the time of initial 

diagnosis? 3) Which genes are responsible for high-risk CML and what could be the 

molecular mechanisms involved? 4) Could response to treatment be predicted at 
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initial diagnosis? and 5) Is it possible to predict disease outcome by correlating gene 

expression profiles with survival? 

  

In an attempt to answer these questions, we studied the gene expression 

profiles in different CML risk groups at the time of initial diagnosis by using cDNA 

microarrays and quantitative RT-PCR technique to identify candidate CML risk 

group indicator genes.  This profiling may lead to the development of a gene based 

classification system for CML and may predict disease outcome.   

 
Specific Aim II: 

 
The BER was not linked with any human genetic disorder until recently, 

when inherited variants of MYH was shown to be associated with somatic G:C to 

T:A mutations in colorectal tumors in a British family.  Interestingly, the missense 

variations Tyr165Cys and Gly382Asp, which significantly reduce the adenine 

glycosylase activity of MYH protein, were each identified once in a normal control 

group of 100 British individuals with no history of colorectal adenoma or carcinoma.  

Since a connection between DNA-repair gene mutations and the path to 

hematological malignancy is now well established, and individuals who carry 

heterozygous MYH missense mutations Tyr165Cys and Gly382Asp have been 

documented in a control group, we investigated the association between these two 

mutations and childhood leukemia risk.  
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CHAPTER 2. MATERIALS AND METHODS 
 

 

2.1 Materials  

 

2.1.1 Patient samples 

 

 CML patients were referred to Bilkent University, Faculty of Science, 

Molecular Biology Department (Ankara, Turkey) by collaborating physicians at 

Ankara University School of Medicine, Department of Hematology and Numune 

Hospital, Division of Hematology, (Ankara, Turkey).  Blood samples were collected 

in tubes containing EDTA with written informed consent.  The cDNAs from other 

hematological malignancies used in SRT-PCR experiments and DNA samples of 

AML and ALL were kindly provided by our collaborator Dr. Uğur Özbek, İstanbul 

University, Institute of Experimental Medicine, Department of Genetics (İstanbul, 

Turkey).  Please see 2.2.1 for detailed information.   

  

 

2.1.2 Cell lines and tissue culture reagents 

 

 Douglas W. Leaman from Borden laboratory, Center for Drug Discovery and 

Development, Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, 

USA, kindly supplied K562 cell line (myeloid cell line originally derived from a 

CML patient at blastic crisis).  RPMI 1640, fetal calf serum was obtained from 

BIOCHROM AG Seromed (Berlin, Germany). Magnesium-free phosphate buffered 

saline (PBS) and Penicillin / Streptomycin mixture was from Biological Industries 

(Haemel, Israel). Tissue culture flasks, petri dishes, 15 ml polycarbonate centrifuge 

tubes with lids and cryotubes were purchased from Costar Corp. (Cambridge, 

England). 
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2.1.3 Oligonucleotides 

 

 The oligonucleotides used in semi quantitative reverse transcription 

polymerase chain reaction (SRT-PCR), real-time RT-PCR and mutation screening 

were synthesized by İONTEK (Bursa, Turkey). The consensus primers (AEK M13 

and pSPORT) used in the array experiments for target cDNA preparations were from 

Life Technologies (MD, USA). Oligo dT(15)-T7, oligo dT18 and TS primers used in 

mRNA amplification were supplied from Williams laboratory, Lerner Research 

Institute, Cleveland Clinic Foundation, Cleveland, USA.  Random primers were from 

GibcoBRL Life Technology Inc. or Invitrogen Life Technologies (MD, U.S.A). 

Sequence of the primers used throughout this study is given in Table 1. 
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Table 1: List of primers and PCR conditions 
 

Primer Sequence (5’→3’) Product size 
(bp) 

Tm value 
(°C) 

Used in Target 
Gene/vector

AEK M13 / F 
AEK M13 / R 

GTTGTAAAACGACGGCCAGTG 
CACACAGGAAACAGCTATG Depends on size 

of cDNA insert 55 
target cDNA 

preparation for arrays 
RG 

clones 

      
pSPORT /  F 
pSPORT /  R 

CCAGTCACGACGTTGTAAAACGAC 
GTGTGGAATTGTGAGCGGATAACAA 

 
Depends on size 
of cDNA insert  

65 
target cDNA 

preparation for arrays RG clones 

      
CCNH  /  F 
CCNH /  R 

GGTTCTTCCGAATGATCCAG 
CTGTTCAAGTGCCTTCTCCT 310 55 SRT-PCR CCNH 

      
CXCL3/  F 
CXCL3/  R 

ACCAACTGACAGGAGAGAAG 
GGTGGCTGACACATTATGGT 344 55 SRT-PCR CXCL3 

      
IFITM1 / F 
IFITM1 / R 

TG CACAAGGAGGAACATGAG 
CTGTTACAG AGCCGAATACC 330 55 SRT-PCR 

Real-time RT-PCR 
IFITM1 

      
PRKAR2B/  F
PRKAR2B/ R 

TCACAAGGCGTGCCTCAGTAT 
CAGTGATTGTAGCTGCTCTGG 387 55 

SRT-PCR PRKAR2

B 

      
PTGS1 /  F 
PTGS1 /  R 

CTCTGGTTCTTGCTGTTCCTG 
CATGTGCTGAGTTGTAGGTGG 382 55 SRT-PCR PTGS1 
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RAB1A /  F 
RAB1A /  R 

GACTACACAACAGCGAAGGA 
ACCTGACTGCTTGACTGGAG 201 55 SRT-PCR RAB1A 

      
UCP2 /  F 
UCP2 /  R 

CTGCATCGCA G ATCTCATCAC 
ATAGGTCACCAGCTCAGCACA 520 55 SRT-PCR UCP2 

      
GAPDH  /  F 
GAPDH  /  R 

GGCTGAGAACGGGAAGCTTGTCAT 
CAGCCTTCTCCATGGTGGTGAAGA 

250 from gDNA 
151 from cDNA 55 SRT-PCR 

Real-time RT-PCR GAPDH 

      
TS (template 
switch) oligo 
primer 

AAGCAGTGGTAACAACGCAGAGTACG
CGGG - - 

mRNA amplification 
- 

      
Oligo dT(15)-
T7 

AAACGACGGCCAGTGAATTGTAATAC
GACTCACTATAGGCGC T(15) - - mRNA amplification - 

      
Y13 / F  
Y13 / R  

AGGGCAGTGGCATGAGTAAC  
GGCTATTCCGCTGCTCACTT 242  57 PCR for restriction 

enzyme analysis MYH 

      
165N/ normal 
165M/ mutant 
165C/ 
common 

CGCCGGCCACGAGAATGGT 
CGCCGGCCACGAGAATTGC 
AGTGCTTCCCTGGAGGTGAGA 147 62 

ARMS 

MYH 
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2.1.4 Enzymes 

 

 Ribonuclease H (RNase H) was from GibcoBRL Life Technology Inc. 

(Gaithersburgs, MD, U.S.A).  Anti-RNase was from Ambion Inc (TX, USA).  Taq 

DNA polymerases were supplied from Perkin Elmer (USA) and MBI Fermentas 

(Germany). Bgl II was supplied from MBI Fermentas (Germany).  

 

 

2.1.5 Thermal cyclers 

 

The GeneAmp System 9600 (Perkin-Elmer, USA) or DNA Engine Tetrad, PTC-225 

(MJ Research Inc., MA, USA) or Mastercycler Eppendorf Scientific, Inc. (NY, USA) 

thermal cyclers were used in this study.  iCycler instrument was from BioRad 

Laboratories (CA, U.S.A). 

 

 

2.1.6 cDNA clones  

 

 The microarrays utilized in this study contain 10,750 unique cDNAs from 

IMAGE consortium clones (Research Genetics, Huntsville, AL) (Ross et al., 2000; 

Frevel et al., 2003).  These are provided as E. coli cultures in 96-well plates.  The 

constructs pGIBS-PHE, pGIBS-THR, pGIBS-TRP and pGIBS-DAP used in the 

preparation of positive control probe (spike controls) from Bacillus subtilis were 

from American Type Culture Collection (ATCC, VA, USA). 

 

 

2.1.7 Chemicals, reagents and kits 

 

 All laboratory chemicals were analytical grade from Sigma Biosciences 

Chemical Company Ltd. (St. Louis, U.S.A), Farmitalia Carlo Erba (Milano, Italy), 

Merck (Schucdarf, Germany), MBI Fermantas (Germany) and Delta Kim Sanayi ve 

Ticaret A.S (Turkey).  TRIzol Reagent and Superscript II RNase H- Reverse 

Transcriptase were from GibcoBRL Life Technology Inc. (Gaithersburgs, MD, 

U.S.A). RNA/DNA Stabilization Reagent, Phenol:Chloroform:Isoamyl alcohol were 
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from Boehringer Mannheim.  T7 Megascript kit, DNA-free kit, Linear acrylamide, 

and Lithium chloride precipitation solution were from Ambion Inc (TX, USA). Phase 

Lock Gel (PLG) was from Eppendorf Scientific, Inc. (NY, USA).  Micro Bio-Spin 6 

Chromatography Columns, Tris were from Bio-Rad (CA, USA).  GFX PCR DNA - 

Gel Band Purification Kit (GFX columns) was from Amersham Pharmacia Biotech. 

Inc. (NJ, USA).  QIAquick PCR purification kit was from Qiagen (CA, USA). 

Advantage cDNA Polymerase Mix was from Clontech laboratories (CA, USA).  

Deoxyribonucleotide triphosphates (dNTPs) and RevertAid First Strand cDNA 

synthesis kit were from MBI Fermentas (Germany).  LightCycler-DNA Master 

SYBR Green I was from Roche, Molecular Biochemicals (Germany). 

 

 

2.1.8 Standard solutions and buffers  

 

DEPC-treated water (DEPC ddH20): 0.1% Diethylpyrocarbonate (DEPC) 

(v/v) in double-distilled water was 

stirred in loosely plugged bottle. Then 

autoclaved and stored at room 

temperature.    

 

5X Formaldehyde gel running buffer:  Per liter: 20 ml of 2M Sodium Acetate, 

20.6 gr MOPS, 780 ml of DEPC treated 

distilled water. pH was adjusted to 7.0 

with 5M NaOH. Then 10 ml of 0.5 M 

EDTA pH 8.0 and volume was 

completed to 1 liter with DEPC-treated 

water. Filtered through 0.2 µm filter and 

stored at room temperature in the dark. 

 

RNA loading buffer:   50% formamide, 20% Formaldehyde, 

15% 5X running buffer, 15% glycerol-

dye. Stored at -20 °C or 50% glycerol, 

1mM EDTA pH 8.0, 0.25% 
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bromophenol blue, 0.25% xylene 

cyanol in DEPC ddH20.  

 

1XTAE (Tris-acetic acid-EDTA): 40mM Tris-acetate, 2mM EDTA, pH 

8.0 

 

1XTBE(Tris-boric acid-EDTA):  89mM Tris-base, 89mM boric acid, 
2mM EDTA, pH 8.3 
 

20XSSC: 3M NaCl, 0.3 M trisodium citrate, pH 

7.0 

 

TE Buffer:     10mM Tris HCl, 1mM EDTA, pH 8.0 

 

Ethidium bromide:    10 mg/ml in water (stock solution), 

       30 ng/ml (working solution) 

 

5X Gel loading buffer:   0.25% bromophenol blue, 0.25% xylene 

      cyanol, 50% glycerol, 1mM EDTA 

 

10X Phosphate-buffered saline (PBS):  Per liter: 80 g NaCl, 2 g KCl, 14.4 g 

Na2HPO4, 2.4 g KH2PO4, pH 7.4 

 

Luria-Bertani medium (LB):  Per liter: 10 g bacto-tryptone, 5 g 

bacto-yeast extract, 10 g NaCl.  

 

Ampicillin: 100 mg/ml solution in double-distilled 

water, sterilized by filtration and stored 

at -20°C (stock solution). 200 µg/ml 

(working solution) 

 

Penicillin/streptomycin mixture: 100 U/ml Penicilin, 0.1 mg/ml 

streptomycin 
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Glass cleaning solution:  400 ml ddH20, 100 g NaOH and 600 ml 

95% ethanol.  First, NaOH pellets were 

dissolved in water, and then ethanol is 

added and stirred until the solution is 

clear.  If the solution does not clear, 

ddH20 is added until it does. 

 

Poly-L-lysine solution: 60 ml poly-L-lysine (0.1%w/v solution 

from Sigma), 60 ml 1XPBS and 480 ml 

ddH20.  

 

Blocking solution: 170 mM succinic anhydride, 70 mM 

sodium borate in 1-methyl-2-

pyrrolidinone. (11.08 g succinic 

anhydride was dissolved in 600 ml 1-

methyl-2-pyrrolidinone with stirring bar, 

and finally 46.1 ml 1M Borate buffer 

was added to the solution just before 

dipping the slides).  

 

 

2.1.9 Nucleic acids 

 

 DNA molecular weight standards ∅X174 DNA/HinfI Marker, 10 and pUC 

Mix Marker, 8 were supplied by MBI Fermentas (Germany).  

 

 

2.1.10 Fluorescent dyes 

 

 FluoroLink Cy3/Cy5 monofunctional NHS-ester dyes and FluoroLink 

Cy3/Cy5-dUTP (Cy3/Cy5-AP3-dUTP) dyes were supplied from Amersham 

Pharmacia Biotech. Inc. (NJ, USA) and stored at –20oC in the dark.  
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2.1.11 Electrophoresis and photography 

 

 Electrophoresis grade agarose was supplied from Sigma Biosciences 

Chemical Company Ltd. (St. Louis, MO, U.S.A). Horizontal electrophoresis 

apparatuses were from Stratagene (Heidelberg, Germany) and E-C Apparatus 

Corporation (Florida, U.S.A). The power supply Power-PAC300 was from Bio Rad 

Laboratories (CA, U.S.A).  The Molecular Analyst software used in agarose gel 

profile visualizing was from BioRad Laboratories (CA, U.S.A). 

 

 

 

2.2 Methods 

 

2.2.1 Sample collection and clinical scoring 

 

Blood was obtained from CML patients and four apparently healthy 

volunteers with written informed consent and left in EDTA tubes, in vertical 

position, overnight at 4oC until the serum, leukocytes and erythrocytes were 

separated. Buffy coats were aspirated, washed with 1xPBS and stored in RNA/DNA 

Stabilization Reagent (Boehringer Mannheim) at –80oC until RNA isolation.   

 

Sixty-seven chronic myeloid leukemia (CML) patients were classified 

according to new prognostic score (NPS) (Hasford et al., 1998).  At the time of 

initial diagnosis CML patients can be divided into three groups of low-risk, 

intermediate-risk, and high-risk, based on certain clinical parameters such as age, 

spleen size, blast, platelet, eosinophil, and basophil counts.  The scoring was done 

according to the formula below:  

 

NPS =  (0.6666 x age [0 when age <50 years; 1, otherwise] + 0.0420 x spleen size 

[cm below costal margin] + 0.0584 x blasts [%] + 0. 0413 x eosinophils [%] + 

0.2039 basophils [0 when basophils < 3%; 1, otherwise] + 1.0959 x platelet count [0 

when platelets < 1500 x 109/L; 1, otherwise]) x 1000.   
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http://www.pharmacoepi.de/cgi-bin/pharmacoepi/cmlscore.cgi is CML score 

calculator site, which can also be used for NPS calculation automatically.  NPS for 

low-risk, intermediate-risk, and high-risk CML are ≤ 780 with median survival time 

of 98 months,  > 780 and ≤ 1480 with median survival time of 65 months, and > 

1480 with median survival time of 42 months, respectively.  The patient information 

and informed consent forms that were filled at the time of blood collection are given 

in Appendix (a) and (b), respectively. 

 

185 cases of childhood leukemias subdivided into two groups, AML; n=45 

and ALL; n=140 were diagnosed at Istanbul University between 1998 and 2002.  The 

French-American-British Cooperative Study Group criteria were used for 

histological subgroup classification (Cheson et al., 1990).  Randomly selected 

Bilkent University students, with no history of hematological malignancies or any 

other type of cancer (n=124) were used as healthy controls. 

 

 

2.2.2 RNA isolation, DNaseI treatment and control RNA 

 

  For gene expression analysis in CML it is important to include all types of 

leukocytes since CML involves cells from multiple heamatopoietic lineages (Faderl 

et al., 1999a).  Therefore, RNA was isolated from the buffy coat.  Consequently, our 

results represent gene expression from whole blood leukocytes.  Total RNA was 

extracted by TRIzol Reagent (GibcoBRL) in 14 ml polypropylene round-bottom 

tube.  For 5-10 X 106 cells, 1 ml TRIzol was used.  The sample was mixed well by 

repetitive pipetting and incubated for 5 min at 15 to 30oC to permit the complete 

dissociation of nucleoprotein complexes.  200 µl chloroform was added for per 1 ml 

of TRIzol reagent.  The tube was shaken vigorously by hand for 15 sec, incubated at 

15 to 30oC for 2-3 min and centrifuged at 9,200 rpm for 15 min at 4oC.  Following 

centrifugation, the mixture was separated into a lower red, phenol-chloroform phase, 

an interphase and a colorless upper aqueous phase.  RNA remained exclusively in 

aqueous phase.  Because of this, it was transferred to a fresh tube.  The RNA was 

precipitated by mixing with 500 µl isopropyl alcohol per 1 ml of TRIzol used 

initially.  The sample was incubated for 10 min at 15 to 30oC and centrifuged at 

9,200 rpm for 10 min at 4oC.  The supernatant was removed and the RNA pellet was 
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washed once with 1 ml 75% ethanol.  The sample was mixed by vortexing and 

centrifuged at 7,250 rpm for 10 min at 4oC.  The pellet was air-dried for 5-10 min, 

dissolved in 20-30 µl RNase-free water by passing the solution a few times through a 

pipette tip, incubated at 55-60oC for 10 min, transferred to 1.5 ml tube and stored at –

80oC.     

 

The total RNA isolated was treated with DNaseI (DNA-free kit, Ambion) 

following the manufacturer’s directions.  Briefly, 1/10 volume of 10X DNase I 

buffer and 1µl DNase I (2 U/µl) was added to the RNA mix and incubated at 37oC 

for 45 min.  The DNase inactivation reagent was resuspended by flicking or 

vortexing the tube.  1/10 volume of slurry solution was added to the sample, the tube 

was flicked to disperse the reagent in the RNA preparation and incubated at room 

temperature for 2 min.  The tube was centrifuged at 10,000 rpm for 1 min to pellet 

the DNase inactivation reagent and the supernatant was transferred to a fresh tube.  

The quality/the concentration of RNA was measured by spectrophotometer 

(OD260/280) and all RNAs were run on denaturing agarose gel.  

 

Lithium chloride (LiCl) precipitation (Ambion) was performed for some 

CML samples while doing optimization experiments following the manufacturer’s 

directions.  This is an effective way to remove carbohydrates, some small RNAs and 

also genomic DNA.  One-half final volume of LiCl precipitation solution was added 

to RNA sample, mixed well and stored at –20oC for at least 30 min or overnight.  

After the centrifugation at 13,000 rpm for 15 min at 4oC, the supernatant was 

discarded.  Residual salts were removed by washing the pellet with EtOH.  300 µl 

75% EtOH was added per 1.5 ml tube and the tube was flicked for about 1 min.  The 

RNA was recovered by centrifugation at 7,500 rpm for 10 min at 4oC, air-dried and 

resuspended in 10-20 µl DEPC-H2O.   

 

Universal Human Reference RNA (Stratagene) was used as a control RNA in 

microarray experiments, allowing comparison of relative gene expression across 

samples.  This is a high-quality pool of total RNA for human microarray gene 

expression profiling and is a standard for accurate and consistent data comparison 

between different experiments.  The reference RNA cell lines providing consistent 
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and reproducible RNA populations include testis, brain, liver, skin, breast, cervix, T 

and B-cells, macrophages, and lipocytes.   

 

 

2.2.3 BCR-ABL analysis 

 

 BCR-ABL fusion gene analysis were done by fluorescence in situ 

hybridization (FISH) (Vysis, Inc. USA) and RT-PCR (Roche, Molecular 

Biochemicals) to confirm t(9;22) (q34;q11) at Ankara University, School of 

Medicine, Department of Hematology and at İstanbul University, Institute of 

Experimental Medicine, Department of Genetics.  All patients were positive for 

p210BCR-ABL. 

 

 

2.2.4 Treatment of K562 cells with Interferon α-2b and extraction of total RNA 

 

 K562 cells were cultured in RPMI-1640 with 10% fetal calf serum, 1% 

Penicillin / Streptomycin mixture and 5% CO2 at 37oC.  The cells were plated at 2 x 

106 cells/ml in 50 ml of medium overnight before being treated with 1,000 U/ml 

interferon α-2b (IFNα-2b) (Roche, specific activity, 2.7 x 108U/mg) for 16 hours.  

One plate was left untreated and used as a control.  After treatment, the cells were 

collected by centrifugation at 3,000 rpm for 3 min and the total RNA was isolated by 

TRIzol reagent as mentioned in detailed above.   

 

This optimization experiment was done basically to check the arrays before 

using them for patient samples and also to find out the amount of amplified RNA that 

will be used in microarray experiments.  

 

 

2.2.5 Agarose gel electrophoresis of nucleic acids 

 

 Horizontal agarose gels of DNA samples 
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DNA fragments were fractionated by horizontal electrophoresis by using 

standard buffers and solutions. DNA fragments less than 1 kb were generally 

separated on 1.0 % agarose gel, those greater than 1 kb (up to 11 kb) were separated 

on 0.8 % agarose gels. 

 

 Agarose were completely dissolved in 1x TAE (or 1xTBE) electrophoresis 

buffer to required percentage in microwave and ethidium bromide was added to final 

concentration of 30 ng-1 µg/ml. The samples were loaded onto agarose gel with 1/5 

volume of loading buffer. The gel was run in 1x TAE (or 1xTBE) at different voltage 

and time depending on the size of the fragments at room temperature. 

  

Gel electrophoresis of total RNA 

 

 RNA was fractionated through 1% (w/v) agarose gels containing 

formaldehyde, which disrupts hydrogen bonds. 0.75 g agarose was melted in 46.6 ml 

DEPC H2O, allowed to cool to 60°C. 15 ml of 5X formaldehyde gel running 

buffer and 13.5 ml of 37% (12.3M) formaldehyde were added. The gel was 

immediately poured in a laminar hood. 5µl of RNA sample was mixed with 15 µl 

of RNA loading buffer and heated at 70 °C for 5 minutes. Samples were 

quenched on ice and loaded onto gel. Electrophoresis was performed at a constant 

voltage (85 V) for 4 hr at   4 °C in 1X formaldehyde gel running buffer. 

Following electrophoresis, gel was soaked for 5 min in 5 volumes water to 

remove formaldehyde. This step was repeated for 3 times. The gel was stained in 

30ng/ml ethidium bromide solution for 5 min, and destained overnight in double-

distilled water.  

 

 Nucleic acids were visualized under ultraviolet light (long wave, 340 nm) and 

DNA size markers (MBI Fermentas) were used to estimate the fragment sizes. 

 

 

2.2.6 Quantification and qualification of nucleic acids 

 

 Concentration and purity of the double stranded nucleic acids, 

oligonucleotides and total RNAs were determined by using the Beckman Instruments 
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Du Series 600 Spectrophotometer software programs (ds DNA ,Oligo DNA Short 

and RNA methods) on the Beckman Spectrophotometer Du640 (Beckman 

Instruments Inc. CA. U.S.A). 

 

 

2.2.7 Construction of arrays 

 

The steps to prepare cDNA arrays are as follows which is described in details 

in the laboratory manual by Mousses S. et al, Cancer Genetics Branch, National 

Human Genome Research Institutes, NIH, USA.  

 

 

2.2.7.1 Preparation of target DNA 

 

 The choice of which genes, and how many will be printed on a glass 

microarray depends on the availability of clones and sequences, the capacity of the 

slide, but ultimately on the purpose of the experiment.  For this project, 10,750 

cDNAs from IMAGE consortium clones (Research Genetics) were prepared.  The 

sequence-verified for these were obtained from 40K human clone set.  The 

microarray contained all available genes from BRG Williams laboratory (CCF, LRI, 

Cleveland, USA), including AU-rich genes, interferon stimulated genes, house 

keeping genes, ESTs and four positive control sequences of bacterial origin.        

 

 

2.2.7.1.1 Isolation of clones from bacteria 

 

The bacteria (2 µl) that has the gene of interest from Research Genetics Plates 

(stored at –80oC and thawed on ice before growing) were grown in ampicilin 

(200µg/ml) containing 1200 µl LB at 37oC, 300 rpm overnight, in fresh 96 well 

plates (round bottom).  The glycerol stocks were prepared by transferring 100 µl 

grown culture into 100 µl 60% glycerol in 96 well plates (Evergreen Scientific, 

USA) and stored at –80oC.  In order to prepare PCR templates, 200 µl grown culture 

was transferred into PCR microplate 96-L-C (AxyGen Inc., USA) the lid was put on 
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and the plate was centrifuged at 3,200 rpm for 15 min.  The supernatant was 

discarded carefully and the pellets were stored at –20oC until further use. 

 

Plasmid DNA preparation (minipreps) from cultures can be done by using 

QIAprep 96 Turbo Miniprep Kit from Qiagen or Edge BioSystems 96 well Alkaline 

Lysis Miniprep Kit, in order to improve the success rate, yield and efficiency of 

PCR.  However, there is another simple method for template preparation, which is 

time efficient, cost effective, and has a success rate near that of purified plasmid.  

150 µl TE buffer was added to pellet of bugs, boiled at 98oC for 8 min and cooled at 

4oC for 10 min.  After pelleting the debris by centrifugation at 3,200 rpm, for 15 min, 

the supernatant was transferred to new 96 well PCR plates and used as a template in 

PCR.   

 

 

2.2.7.1.2 PCR amplification and purification of clones  

 

5 µl template DNA was used in 100 µl PCR reaction containing 1X PCR 

buffer (10mM Tris-HCl (pH 8.3), 50 mM KCl), 1.5 mM MgCl2, 200 µM dNTPs, 0.5 

µM from each primer (AEK M13 and/or pSPORT primers, Table 1) and 1 U Taq 

DNA polymerase ( PE Biosystems, CA, USA).  Amplification was done using DNA 

Engine Tetrad, PTC-225 (MJ Research Inc., MA, USA) or Mastercycler Eppendorf 

Scientific, Inc. (NY, USA) thermal cyclers under the following PCR conditions:  

 

For AEK M13 primers; initial denaturation at 94oC for 2 min, 40 cycles of 

94oC for 30 sec (denaturation), 55oC for 30 sec (annealing), 72oC for 1 min 

(extension) and a final extension at 72oC for 5 min.  For pSPORT primers; initial 

denaturation at 95oC for 1 min, 38 cycles of 94oC for 30 sec (denaturation), 65oC for 

45 sec (annealing), 72oC for 3 min (extension) and a final extension at 72oC for 3 

min.  After the PCR cycles were completed, the tubes were held at 4oC for at least 5 

min or until removal.  5 µl from PCR products were run on 1.5% agarose gel in 1x 

TAE and visualized under UV transilluminator.  
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PCR products were then purified with size exclusion filter plates (Milipore 

MANU 030 PCR).  Simply, the remaining products were transferred to purification 

plates and vacuumed approximately 5 min, sucking two times from bottom with 

paper towel until the filters were shiny.  100 µl sterile ddH2O was added to all and 

vacuumed again in the same way.  Next, 65 µl sterile ddH2O was added and the 

plates were put onto shaker (Orbital Shaker, Bellco, NJ, USA) for 10 min at speed 5.  

After, the samples were transferred to 96 well plate, quality controlled by agarose gel 

electrophoresis again and stored at –20oC until further use for preparation of spotting 

DNA plate.   

 

 

2.2.7.1.3 Preparation of spotting cDNAs  

 

5 µl filtered, 3X SSC was added to 384 well polypropylene, V bottom, 

microplate (Whatman Inc., NJ, USA).  Then, 5 µl from each cDNA product was 

transferred to microplate and mixed.  The final concentration of SSC must be 1.5X 

for the spotting plates.  Finally, the plates were wrapped with moist paper towel to 

prevent evaporation, put in plastic bags, sealed and stored at –20oC.   

 

2.2.7.2 Printing of DNA target microarrays on glass slides 

 

2.2.7.2.1 Treatment of glass slides (poly-L-lysine coating) 

 

Plain Gold Seal Microscope Slides (Gold Seal Products, NH, USA) were 

used because, these slides have consistently low intrinsic fluorescence.  Treatment of 

slides with poly-L-lysine prior to printing allows the target DNA to adhere to the 

surface (poly-L-lysine provides a positively charged surface for the negatively 

charged cDNA to bind) and minimize loss during hybridization.  Powder free gloves 

must be worn all times and detergents or other compounds that may cause 

background fluorescence must be kept away from slides.   

 

Slides were placed into 50-slide rack (stainless steel/glass) and fresh cleaning 

solution was prepared (400 ml ddH20, 100 g NaOH and 600 ml 95% ethanol).  The 
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rack was submerged in the cleaning solution in a glass tank/boat by shaking for 2 

hours.  The slides were then removed and rinsed with ddH20 5 times, 5 min each.  

The clean slides were placed into 25-30-slide rack (plastic or glass) so that they can 

be centrifuged after coating.  The poly-L-lysine solution was prepared freshly and the 

rack was submerged into the solution by shaking for 1 hour.  The rack was rinsed 

once in ddH20 for 1 min and centrifuged for 5 min in a low speed (1000 rpm) 

swinging holder centrifuge to remove free liquid.  After this, the slides were 

transferred to a clean plastic slide box immediately.  The lid of the box must be kept 

open in a clean drawer overnight to avoid moist on the slides.  Usually, the slides 

were allowed to age for 1-2 weeks or at least 4-5 days before printing.  Aged slides 

will be very hydrophobic (water drops leave no trail when they move across surface).   

 

 

2.2.7.2.2 Spotting with arrayer   

 

The cDNAs were printed with SDDC-2 Microarrayer (Virtek Vision Inc.) and the 

software used was ArrayMaker version 1.  Every gene probe was spotted in duplicate 

so that each array gives at least two data points for each gene.  This is helpful when 

determining the amount of variation one can expect in a single hybridization.  The 

SDDC-2 Microarrayer is the most precise arrayer on the market.  It is truly modular 

and reconfigurable.  The basic system has a robot carrying a dispenser head with up 

to 48 stealth pins.  The minimum spot size is 75 µm, minimum spotting center-to-

center distance is 120 µm and maximum number of spots per slide is approximately 

80,000.  The average production of gene arrays with SDDC-2 is 1 sec/spot/pin.  The 

main sub-systems of the arrayer are as follows: 

 3-Axis Robot Gantry Sub-system:  This unit is one of the key factors that give the 

SDDC series the leading edge above competing systems.  The preloaded ball screws 

provide negative compliance resulting in zero deviation under the effective loads 

during the robot operations.  The zero backlash transmission in the X, Y, and Z 

directions is combined with most sophisticated digital AC servo drives and special 

encoders.  Their integration is based on extensive analysis of structural deflections, 

temperature effects, acceleration forces, and optimum torque requirements.  Weight 

minimization of end-effector and each subsequent axis has resulted in nearly zero 
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deflection structure.  Dispenser and Pipettor Sub-system:  The SDDC series can be 

used with different types of dispensing and liquid transfer systems for the different 

needs (micro-arraying, pipetting).  Cleaning and Vacuum Sub-system:  A vacuum 

based cleaning sub-system for use with any dispenser is provided.  The vacuum 

chamber is designed with matching holes for the offered array.  Its dispensing head 

(up to 48 pins), such that an optimum gap between pins and holes results in effective 

suction.  Before and after vacuuming, the pins are dipped in water container.  The 

number of times this cycle is to be repeated is programmable.   

Slide and Source Plate Holder Platen Standard:  Size platen can 

accommodate one microwell source plate (96- and 384-well) and up to 75 of 25 mm 

x 75 mm slides. As well, 25 mm x 25 mm, 50 mm x 75 mm, or 75 mm x 75 mm 

slides can be used.  Large platen can accommodate up to 126 slides.  The modular 

version of the standard platen can accommodate up to 8 adapter plates instead of the 

slides.  An adapter plate can hold a microwell plate, membrane or 5 slides.  The 

modular version of the large platen can accommodate up to 15 adapter plates.  

Automatic Microwell Plate Stacker:  Internal plate stacker with a capacity 

of 18 plates is used to achieve automatic loading of microwell plates from an input 

stack and unloading of plates to the output stack.  The microwell plates are covered 

with plastic lids to prevent evaporation. A high-precision gripper assembly provides 

a flexible a reliable solution to the transfer of plates from the input stack to the 

working position and from the working position to the output stack. The stacker 

allows the machine to run for about 6 hours unattended.  The three pictures of the 

arrayer used are shown in Figure 6.  
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Figure 6:  SDDC-2 Microarrayer. The general view of the arrayer (left), the 

printing on glass slides with the pins (right top), and the 384-well printing plates on 

the source plate holder (right bottom) (Virtek Vision Inc.). 

 

 

2.2.7.2.3 Test prints 

 

It is important to do test prints with the tips that will be used for the print run, 

immediately before beginning the run.  A sample print plate, which is identical to the 

real print plates with 5 µl test print DNA or 1.5XSSC, was loaded and used for test 

printing onto slides from the same batch that will be printed on.  The test print 

parameters (spacing and number of spots across) should match what the real array is 

going to have.  Test prints must be done from different load positions on the 384-

well plate to check the plate alignment, and on different slide positions on the platter 

to check the slide height adjustment on the platter.  Because of the SSC, spots can be 

seen easily and even can be checked under the light microscope.  Once everything is 

working perfectly on the test print, array print can be started.  
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2.2.7.2.4 Printing the real microarray 

 

All the printing parameters (cycles of cleaning, sonication and drying times, 

total printing plates) were set properly.  The dust and glass shards on the platter were 

sprayed off and the surface was wiped with moist kimwipe (paper towel).  The slides 

were placed wearing powder free gloves, making sure they are aligned straight and 

lying flat.  The magnets were put along the edges of the slides, so that slides will not 

move during the print run.   

 

The spotting cDNAs in 384 well microplates were spun down just before 

putting on the plate holder.  No liquids must be left on the sides of wells.  The plates 

must be placed in the proper orientation.  The spreadsheet listing the contents of each 

well in the printing plates must be ready on the computer.  The order and orientation 

on the slide platter determines where each DNA is going to end up on the array.   

 

When everything is ready, the real run can be started and monitoring is 

essential throughout the run to make sure all the tips are printing well on all the 

slides.  The cDNA flows into the slit in the pin by capillary action, and is spotted on 

the slide by tapping down.    Often, the first few slides have larger spots and if they 

begin running in to each other a lot, you can stop the run.  This can be due to many 

problems (aging time of slides after poly-L-lysine coating, too much spotting DNA 

in wells, pin problems).  When stopping and restarting the run for any reason, one 

must be sure that printing starts exactly where it stopped.   

 

Once all plates are printed, all slides are kept in their position till the next day 

or at least 3 hours before numbering the slides on their right bottom side by using 

crystal pen.    

 

 

2.2.7.2.5 Blocking slides 

 

The glass slides also need to be treated after the printing process. First, the 

slides were UV-cross-linked.  A dose of 450 mJ was applied with a Stratagene 

Stratalinker to bind the cDNA probes to the lysine coating. 
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To reduce non-specific binding of strongly negatively charged probe on 

microarray slides, the positively charged amine groups on poly-L-lysine coated slides 

are passivated by reaction with succinic anhydride.  The slides were put in 25-30-

slide rack, placed in a clean glass tank and incubated for 20-30 min by shaking in 

freshly prepared blocking solution to block the poly-L lysine background.  Boiling 

water was prepared in a separate clean glass tank and the slides were dipped in it 

immediately for 1-2 min to denature the cDNAs on them.  The slides were then 

removed from water, immersed in 95% ethanol for about 1 min (190 proof, AAPer 

Alcohol, USA) and centrifuged for 5 min in a low speed (1000 rpm) swinging holder 

centrifuge and then transferred to a clean plastic slide box immediately, leaving lid 

open overnight in a dust-free cabinet to dry slides.  Finally, the slides were stored at 

room temperature up to 2 months.  

 

 

2.2.8 Amplification of mRNA  

 

Universal Human Reference RNA (Stratagene) and patients’ RNA was 

amplified by two rounds of ds cDNA synthesis (Superscript II RT-PCR kit 

,GibcoBRL)  with a dT (15) -T7 primer, followed by T7 in vitro transcription (T7 

Megascript kit, Ambion) and amplified RNA (aRNA) extraction (Wang et al,. 2000) 

by using Mastercycler Eppendorf Scientific, Inc. (NY, USA) thermal cycler.  

 

Current protocols for the competitive binding method of hybridization with 

two species of RNA require 100 µg of RNA from each sample.  This is a reasonable 

amount of RNA to obtain from cell lines.  When working with human samples, often 

one can not obtain this much RNA, and even if one can do, this material can not 

usually be reaccessed for follow up experiments.  Therefore, it is necessary to 

amplify the RNA while preserving the integrity of the message profile.  RNA 

amplified by this method has been demonstrated to give results similar to those 

obtained with total RNA.   
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2.2.8.1 First and second strand cDNA synthesis 

 

For first strand synthesis, 3 µg total RNA was mixed in 9 µl DEPC H2O with 

1µl (0.5µg/µl) oligo dT(15)-T7 primer, heated to 70oC for 3 min and cooled to room 

temperature.  Then, 4 µl 5X first strand buffer, 1 µl TS (template switch) oligoprimer 

(0.5µg/µl), 2 µl 0.1M DTT, 1 µl anti-RNase (20 U/µl), 2 µl 10mM dNTP and 2 µl 

Superscript II RNase H- Reverse Transcriptase (200 U/µl) were added and incubated 

at 42oC for 90 min.   

 

For second strand synthesis, 106 µl DEPC H2O, 15 µl Advantage PCR buffer, 

3 µl 10mM dNTP, 1 µl RNase H (2 U/µl) and 3 µl Advantage cDNA polymerase 

mix (50X) were added to the cDNA reaction tube and incubated at 37oC for 5 min to 

digest mRNA, 94oC for 2 min to denature, 65oC for 1 min for specific priming, and 

75oC for 30 min for extension.  These reagents were added by making a mastermix 

for multiple samples.  The reaction was stopped with 7.5 µl 1M NaOH solution 

containing 2mM EDTA and by incubating at 65oC for 10 min to inactivate enzyme.   

 

.  

2.2.8.2 Double strand cDNA clean up 

 

1 µl linear acrylamide (0.1 µg/µl) and 150 µl Phenol:Chloroform: 

Isoamylalcohol (25:24:1) were added to the sample and mixed well by pipeting.  The 

slurry solution was transferred to ready Phase Lock Gel (PLG) tube (centrifuged at 

13,000 rpm for 5 min before used) and centrifuged at 14,000 rpm for 5 min at room 

temperature in order to recover phenol free supernatant.  Approximately 150 µl 

aqueous phase was transferred to RNase/DNase-free eppendorf tube and first 70 µl 

7.5 M ammonium acetate and then 1 ml 100% EtOH (200 proof AAPer Alcohol, 

USA) were added and centrifuged at 14,000 rpm for 30 min at room temperature.  

The EtOH was removed carefully and the pellet was washed with 500 µl 100% EtOH 

and spun down at 14,000 rpm for 6 min.  The supernatant was discarded by using a 

pipette, the pellet was air dried and resuspended in 60 µl DEPC H2O.   

 

Bio-6 chromatography column was prepared by washing with 700 µl DEPC 

H2O 3 times to get rid of Tris and spun down at 3000 rpm for 2 min at room 
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temperature.  The columns must be shaken well before draining to get rid of air 

bubbles.  The gel in the column must become white and dry when ready to use.  60 

µl sample was added to the centre of the column and centrifuged at 3000 rpm for 4 

min.  Then, the cDNA was dried in SpeedVac at high temperature for approximately 

30 min and resuspended in 8 µl DEPC H2O.  The cDNA can be stored at –20oC if it 

will not be used directly for In Vitro Transcription (IVT) 

 

 

2.2.8.3 In vitro transcription and aRNA purification 

 

IVT reaction was performed using Ambion T7 Megascript kit.  2 µl of each 

75 mM NTP (A, G, C, and UTP), 2 µl reaction buffer and 2 µl enzyme mix (RNase 

inhibitor and T7 phage polymerase) were added to the 8 µl cDNA sample, mixed 

well by pipeting and incubated at 37oC for 5-6 hours.   

 

Amplified RNA (aRNA) was purified by using Trizol (GibcoBRL).  1 ml of 

Trizol solution was added to each IVT tube and mixed well.  200 µl chloroform was 

added per 1 ml Trizol solution, mixed well by shaking vigorously for 15 sec, 

incubated at room temperature for 2-3 min and centrifuged at 13,000 rpm for 15 min 

at 4oC.  The aqueous phase was transferred to a new RNase free tube and 500 µl 

isopropyl alcohol was added per 1 ml Trizol reagent.  The sample was mixed by 

inversion, incubated at room temperature for 10 min, and centrifuged at 14,000 rpm 

for 15 min.  The pellet was washed 2 times with 75% EtOH in DEPC-treated water 

and centrifuged at 14,000 rpm for 5 min.  The pellet was air-dried and quickly 

resuspended in 20 µl DEPC-treated water.  The concentration and quality of aRNA 

was measured by spectrophotometer.  

 

 

2.2.8.4 Second round amplification 

 

1µg aRNA was mixed in 9 µl DEPC H2O with 1µl random primer (2µg/µl), 

(GibcoBRL), heated to 70oC for 3 min and cooled to room temperature.  Then, 4 µl 

5X first strand buffer, 1 µl oligo dT-T7 primer (1µg/µl), 2 µl 0.1M DTT, 1 µl anti-

RNase (20 U/µl), 2 µl 10mM dNTP and 2 µl Superscript II RNase H- Reverse 
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Transcriptase (200 U/µl) were added and incubated at 42oC for 90 min.  From here, 

the above procedure of first round amplification for ds cDNA, clean up and IVT 

reactions were repeated.  
 

Positive control RNAs (Spike controls) 
 

 Positive control RNAs were obtained by in vitro transcription, from poly(A) 

tail-modified bacterial gene constructs pGIBS-PHE, pGIBS-THR, pGIBS-TRP and 

pGIBS-DAP (American Type Culture Collection).  Dr. Mathias Frevel kindly 

supplied these spike controls.   

 

 

2.2.9 Preparation of probe  

 

5 µg of aRNA from both test and reference RNA was used in the amino-allyl 

labeling reaction.  The 2 µl dT18 primer (1 µg/µl), 1 µl anti-RNase (20 U/µl), 2.7 µl 

random primer (3µg/µl) and 1 µl spike controls (1 ng/µl) were added to 5 µg aRNA 

and the volume was brought to 15.5 µl with DEPC H2O.  The mixture was vortexed, 

spun down, incubated at 70oC for 10 min and placed on ice.  Then, the reaction mix 

was assembled with 6 µl 5X first strand buffer, 0.6 µl 50X aadUTP/dNTP mix (500 

µM each dATP, dCTP, dGTP, 300 µM aa-dUTP and 200 µM dTTP for 1 X dNTPs), 

3 µl 0.1M DTT, 1.9 µl Superscript II RNase H- Reverse Transcriptase (200 U/µl), 3 

µl H2O, vortexed, spun down and incubated at 42oC for 2 hours.   

 

For RNA degradation, 10 µl 0.1M NaOH was added to each sample, 

incubated at 70oC for 10 min, and cooled to room temperature on bench for 5 min.  

Then, 10 µl 0.1M HCl was added per sample.  

 

For EtOH precipitation, the solution was transferred to 1.5 ml eppendorf tube.  

4 µl 3M NaAc and 1 µl glycogen (20 mg/ml) or 1 µl linear acrylamide (0.1 µg/µl) 

was added, vortexed and spun down.  100 µl ice-cold absolute EtOH was added, the 

tube was incubated at –20oC for 30 min and centrifuged for 15 min at 4oC.  The 

supernatant was discarded and the pellet was washed with 500 µl ice-cold 75% 
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EtOH.  After centrifugation for 15 min at 4oC, the supernatant was discarded and the 

pellet was dried in SpeedVac on high temperature for 2 min.  Finally, the pellet was 

resuspended in 5 µl 0.1M sodium carbonate buffer (pH 9).  

  

For dye coupling, 5 µl (30 nmoles) Cy5-NH ester-dUTP and 5 µl (30 nmoles) 

Cy3-NH ester-dUTP (Amersham Pharmacia Biotech, Uppsala, Sweden) dissolved in 

45 µl DMSO was added for test and reference samples respectively, mixed by 

pipetting up and down, and incubated at room temperature in the dark for 1 hour.   

 

Probe clean up was done either by using GFX columns (Amersham 

Pharmacia Biotech. Inc) or QIAquick PCR purification kit (Qiagen) according to 

manufacturer’s instructions.  For GFX columns, 90 µl H2O was added per dye 

coupling reaction and columns were placed in a collection tube.  500 µl Capture 

Buffer was added to the column and the DNA solution was transferred.  The mixture 

was mixed thoroughly by pipetting the sample up and down 4-6 times, and 

centrifuged at 13,000 rpm for 30 sec.  After the first elution, the flow-through was 

put back into the column and centrifuged again.  Then, the flow-through was 

discarded by emptying the collection tube and the GFX column was placed back 

inside the collection tube.  500 µl Wash Buffer was added and centrifuged at 13,000 

rpm for 30 sec.  Collection tube was discarded and GFX column was transferred to a 

fresh 1.5 ml microcentrifuge tube.  50 µl TE buffer (pH 8.0) was applied directly to 

the top of glass fiber matrix in the GFX column, incubated for 1 min at room 

temperature and centrifuged at 13,000 rpm for 1 min to recover purified DNA.  For 

QIAquick PCR purification kit, 35 µl 100 mM NaOAc pH 5.2 and 500 µl PB buffer 

was added to per dye coupling reaction, applied to Qiaquick column and centrifuged 

at 13,000 rpm for 1 min.  The flow-through was discarded and 750 µl PE buffer was 

added and centrifuged again at 13,000 rpm for 1 min.  After discarding the flow-

through, the column was centrifuged at 13,000 rpm for 1 min and placed in a new 

tube.  50 µl EB buffer was applied directly onto the middle of the column, incubated 

for 1 min at room temperature and centrifuged at 13,000 rpm for 1 min to recover 

purified DNA.   
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Finally, for both probe clean up systems, the samples were concentrated by 

SpeedVac at high temperature for approximately 40 min until pretty much dry, 

resuspended in 14.23 µl H2O and vortexed to ensure complete dissolving.   

             

 

2.2.10 cDNA microarray hybridization 

 

The volume required for hybridization is dependent on the size of array used.  

20 µl volume was sufficient for test arrays containing 1500 targets by using a 

standard (24 x 20 mm) cover slip, however 35 µl hybridization volume was used for 

10,750 targets using big (24 x 60 mm) cover slip.   

 

After labeling reaction, the samples (control and patient) labeled with 

different dyes were combined together and denatured in hybridization solution (3.5 

µl 20XSSC, 1.16 µl yeast tRNA (4 mg/ml) (Sigma), 1.16 µl polyd(A)40-60 (8 mg/ml) 

(Amersham) and 0.7 µl 5% SDS) for 2 min at 95oC and cooled to 65oC before 

hybridization.  Yeast tRNA and polyd(A)40-60 were used to block the species.  The 

slides (arrays) were prepared at least 1 hour before hybridization, by placing in 

hybridization-chamber, adding 30 µl hybridization-buffer (2XSSC/0.1%SDS) to 

reservoirs, closing hybridization-chamber and placing them in 65oC water bath.  

Then, the samples (35 µl) were placed on prewarmed slides and covered carefully 

with big cover slip.  The hybridization was performed in a sealed, humidified corning 

chamber at 65oC overnight (16-18 hours) in submerged water bath.     

 

 

2.2.11 cDNA microarray washing and scanning  

 

The next day, the residual unbound probe was removed from slides by 

washing 1X for 10 min with 2XSSC/0.1%SDS, 1X for 10 min with 2XSSC (both 

prewarmed to 55oC) and 1X for 5 min with 0.2XSSC (room temperature).  The final 

washing can be repeated if necessary.  Air drying of slides after this step, frequently 

leaves a fluorescent haze on the slide surface.  Because of this, before scanning, the 

slides were centrifuged in falcon tube for 5 min at 1000 rpm.  The water used for 

preparation of buffers must be ddH20.  
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The scanning was performed with a GenePix 4000A laser-scanner (Axon 

Instruments) as soon as possible.  The excitation was provided by individual 635 nm 

and 532 nm lasers. These wavelengths correspond to the ideal wavelengths used to 

excite the fluorophores Cy3 (excited by green laser light as 532nm) and Cy5 (excited 

by red laser light as 635nm) (Amersham Pharmacia Biotech, Uppsala, Sweden).    

 

 

2.2.12 Data normalization and analysis 

 

Raw fluorescence data were acquired with GenePix 1.0 software (Axon).  

Laser settings were chosen to avoid signal saturation and achieve an overall median 

Cy3/Cy5 ratio of 0.8 to 1.2.  The raw data was imported into GeneSpring software 

version 4.1.1 (Silicon Genetics).  Each spot was defined by manual positioning of a 

grid of circles over the array image.  Spots that were not suitable for accurate 

quantification, due to artifacts or low signal intensity, were excluded from further 

analysis.  For each gene probe, the signal intensity ratio of patient over the control 

sample was calculated with raw fluorescent intensities, with the local background 

subtracted to determine net signal.  The ratios were then normalized based on the 

distribution of all values with locally weighted polynomial regression (LOESS).  

That is to say, normalization was done for labeling efficiency, determined by scanner 

software based on the overall signal intensity (total intensity normalization) 

(Quackenbush, 2001).  In order to recover reality, the ratios of each array were 

corrected so that the mean ratio of the four positive-control probes that had been 

spiked into every sample in a constant amount equaled 1.  

 

Multiple image analysis (Gene clustering) was again done with GeneSpring 

software version 4.1.1 (Silicon Genetics, Redwood, CA).  As some experiments 

work better than the others, it was important to use spots that were common in all 

experiments before cluster analysis.  Because of this, 4,997 common data points that 

passed the restriction were used in gene clustering.   
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2.2.13 Expression analysis of a gene by semi-quantitative RT-PCR 

 

Semi-quantitative RT-PCR (SRT-PCR) was performed to confirm the array 

result, as well as analyze the remaining samples by using the GeneAmp System 9600 

(Perkin-Elmer, USA) thermal cycler.   

 

 

2.2.13.1 First strand cDNA synthesis, fidelity and DNA contamination control  

 

Equal amounts of original total RNA were used in cDNA syntheses 

performed by RevertAid First Strand cDNA synthesis kit (MBI-Fermentas, Vilnius, 

Lithuania).  3 µg of total RNA was mixed with 1 µl of oligo (dT)18 primer (0.5µg/µl) 

and reaction volume was completed to 12 µl by using nuclease free deionized water, 

incubated at 70oC for 5 min and chilled on ice.  Then, 4 µl 5X reaction buffer, 1 µl 

ribonuclease inhibitor (20U/µl) and 2 µl 10 mM dNTP were added and incubated at 

37oC for 5 min.  Following addition of 1 µl RevertAid M-MuLV reverse 

transcriptase (200U/µl), the mixture was incubated at 42oC for 60 min.  The reaction 

was stopped by heating at 70oC for 10 min.   

 

The quality of cDNA was initially tested by glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) RT-PCR amplification using 1/40 volume of cDNA 

preparation.  GAPDH primer pair was designed to produce a 151 bp fragment 

from cDNA and 250 bp fragment from genomic DNA, which enables detection of 

genomic DNA contamination in the RNA preparation.   

 

 

2.2.13.2 Determination of optimal cycle of a gene for semi-quantitative PCR 
 

To determine the total PCR cycle numbers that will define the logarithmic 

phase of amplification (optimum cycle not saturated for the amplified DNA 

fragment), an initial study was performed at 15 through 30 cycles for each primer 

pair.  80% of PCR product from each cycle was loaded on 2% agarose gel and 
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determined cycle number was used for amplification of the gene of interest in further 

studies.   

 

 

2.2.13.3 GAPDH normalization and semi-quantitative RT-PCR 

 

1/40 volume of first strand cDNA preparation was used for PCR 

amplification of GAPDH transcript using the pre-determined optimal cycle number 

(21 cycles) for GAPDH.  80% of all reactions were resolved by electrophoresis on 2 

% agarose gel and visualized by ethidium bromide staining.  Quantitation of relative 

band intensities was performed using Multi-Analyst software version 1.1 (Bio-Rad 

Laboratories).  These intensities were used as reference for cDNA equalization with 

GAPDH amplification.    

 

cDNA preparations yielding equal amounts of GAPDH products were used 

for further PCR studies (IFITM1, CXCL3, CCNH, RAB1A, PRKAR2B, UCP2, and 

PTGS1).  All reactions were carried out under the following conditions: initial 

denaturation at 94oC for 3 min, optimum cycles of 94oC for 30 sec (denaturation), 

55oC for 30 sec (annealing), 72oC for 40 sec (extension) and a final extension at 72oC 

for 10 min.  After the PCR cycles were completed, the tubes were held at 4oC for at 

least 5 min or until removal.  80% of all reactions were resolved by electrophoresis 

on 2 % agarose gel and visualized by ethidium bromide staining.  Quantitation of 

relative band intensities was performed using Multi-Analyst software version 1.1 

(Bio-Rad Laboratories).  Each product was normalized against GAPDH.  

 

The RT-PCR reactions were repeated several times.  A pool of RNA from 

leukocytes of four healthy volunteers was used as a control sample.   

 

 

2.2.14 Expression analysis of a gene by real-time RT-PCR 

 

The real-time RT-PCR assays were done with the iCycler instrument (BioRad 

Laboratories) using LightCycler-DNA Master SYBR Green I (Roche, Molecular 

Biochemicals).  The cDNA synthesis was done as mentioned above.  The PCR 
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reactions were set up in a volume of 20 µl, containing 5 µl of sample cDNA (1:5 

dilution of the RT reaction in nuclease free water), 1x SYBR Green I dye, 1.5 mM 

MgCl2, and 5 pmoles from IFITM1 and GAPDH specific primers.  The cycling 

conditions were as follows : 95oC for 30 sec, 55oC for 30 sec, and 72oC for 30 sec for 

45 cycles with initial melting at 95oC for 5 min.   

 

Relative expression levels were calculated using the PCR threshold cycle 

number (CT) for each CML and control sample (both of which were normalized 

according to GAPDH mRNA for differences in amount of total RNA added to the 

reaction), using the formula 2-(∆C
T

 sample – ∆C
T

control) (Pfaffl  2001 ; Livak et al., 2001 ; 

Tanaka et al., 2003).  ∆CT represents the difference in CT values between the target 

and GAPDH transcripts.  RT-PCR was performed in duplicates for each sample and 

average CT values were calculated.   

 

 

2.2.15 Statistical analysis 

 

 Mann-Whitney U test 

 

Levels of gene transcripts between high and low-risk CML were compared 

using Mann-Whitney U test (SPSS software version 10.0 and Matlab 6 

www.mathworks.com, mannwhit matlab routine, http://www.biol.ttu.edu/Strauss/ 

Matlab/matlab.htm) (Mann et al., 1947). P values <0.05 were considered statistically 

significant. 

 

Kaplan-Meier analysis   

 

The goal of Kaplan-Meier analysis was to estimate a survival curve from a 

sample.  Vertical axis represents estimated probability of survival for a hypothetical 

cohort.  In this study, overall survival of patients was done according to new 

prognostic score (NPS) and gene expressions using SPSS software version 10.0 at 

Ankara University, School of Medicine, Department of Hematology.  P values <0.05 

were considered statistically significant.   
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2.2.16 Polymerase chain reaction (PCR) 

 

 PCR is a rapid procedure for in vitro enzymatic amplification of a specific 

segment of DNA.  There are three distinct events in PCR: template denaturation, 

primer annealing and DNA synthesis.  Template DNA was denatured by heating the 

reaction to 95-96oC.  After denaturation the primers were allowed to hybridize to 

their complementary single-stranded target sequences.  The temperature of this step 

depends on the homology of the primers for the target sequence as well as the base 

composition of the oligonucleotides.  The last step was the extension of the 

oligonucleotide primer by the thermostable polymerase.  Traditionally, this step was 

carried out at 72oC.  Usually, the larger the template, the longer the time required for 

a proper extension.   

 

In general, 50-100 ng DNA was used as a template.  A 50 µl PCR reaction 

contained 5 µl 10X PCR buffer (final concentration 1X PCR buffer), 1.5-3.0 mM 

MgCl2, 200 µM dNTP, 10 pmol forward primer, 10 pmol reverse primer and 1 U Taq 

polymerase.  The volume was adjusted to 50 µl by adding ddH2O.  MgCl2 

concentration was optimized for each primer pair by setting up a series of PCR 

reactions using a range of MgCl2 concentrations.   

 

 

2.2.17 PCR and restriction enzyme digestion 

 

For restriction enzyme digestion, PCR was performed in a reaction volume of 

25 µl which contained 2.5 µl 10X PCR buffer, 1.5 mM MgCl2, 200 µM dNTP, 10 

pmol forward primer (Y13F), 10 pmol reverse primer (Y13R), and 1 U Taq 

polymerase.  In general, 50-100 ng DNA was used as a template.  The volume was 

adjusted to 25 µl by adding ddH2O.  Amplification was performed in the GeneAmp 

PCR with the following parameters:  initial denaturation at 95oC for 3 min; 30 cycles 

of 95oC for 30 sec (denaturation), 57oC for 30 sec (annealing), 72oC for 30 sec 

(extension); and a final extension at 72oC for 10 min.  After the PCR cycles were 

completed, the tubes were held at 4oC for at least 5 minutes or until removal.  
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 Restriction enzyme digestion with Bgl II (the recognition site is 5’-

A▼GATCT-3’) was performed in 20 µl reaction volumes using the reaction buffer 

recommended by the manufacturer.  One unit of enzyme was sufficient to digest 

approximately 30-50 ng PCR product.  The PCR template was quantitated by agarose 

gel electrophoresis using a DNA size marker of known concentration.  In general, 5-

10 µl PCR product was used.  The incubation temperature was 37oC for 2 hours.  

After digestion, heat inactivation was performed at 65oC for 10 min.  After 

incubation, the cut and uncut PCR fragments were analyzed by agarose gel 

electrophoresis (2%).   

 

2.2.18 PCR and amplification refractory mutation system (ARMS) 

  

 

In this PCR-based technique, one of the PCR primers precisely matches one 

allelic variant of the target sequence, but it is mismatched to the other.  Two PCR 

reactions were performed for each sample.  One reaction contained the specific 

primer (165N) for the normal allele and the other (165M) for the mutant allele.  Both 

reactions had a common primer (165C).  PCR reactions were carried out in a total of 

25 µl which contained 2.5 µl 10X PCR buffer, 3 mM MgCl2, 200 µM dNTP, 20 

pmol from each primer, 50-100 ng genomic DNA and 1 U Taq polymerase.  The 

volume was adjusted to 25 µl by adding ddH2O.  Amplification was performed in the 

GeneAmp PCR with the following parameters:  initial denaturation at 95oC for 3 

min; 30 cycles of 95oC for 30 sec (denaturation), 62oC for 30 sec (annealing), 72oC 

for 30 sec (extension); and a final extension at 72oC for 10 min.  After the PCR 

cycles were completed, the tubes were held at 4oC for at least 5 minutes or until 

removal.  
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CHAPTER 3. RESULTS 
 

3.1 Patient information 

 

Patient information with NPS calculated is given in Table 2.  NPS for low-

risk (n=39, NPS:21→708), intermediate-risk (n=12, NPS:784→1379), and high-risk 

(n=16, NPS:1483→3853) CML are ≤ 780 with median survival time of 98 months,  

> 780 and ≤ 1480 with median survival time of 65 months, and > 1480 with median 

survival time of 42 months, respectively.  Patients ranged in age from eighteen to 

eighty years old, with a mean age of 43.4±13.2 (mean±SD), and a male to female 

ratio of thirty-one to thirty-six.  Regardless of risk group assignment, all patients 

received a short course of hydroxyurea followed by hydroxyurea or interferon during 

the median follow up duration of 26.5 months.  Six patients who did not achieve 

remission with interferon based on BCR-ABL fusion analysis, received imatinib 

mesilate sequentially.  Four patients (two low, one intermediate and one high-risk) 

received stem cell transplantation from siblings and are still alive.   

 

 

Table 2: Patient samples with NPS values 
 

RNA Code Age at Diagnosis New Prognostic Score (NPS) 
High Risk (n=16)     

CML-2 31 1494,6 
CML-3 45 1510,8 
CML-4 42 1968,3 
CML-7 22 3853,2 

CML-10 50 1782,7 
CML-15 29 1483,7 
CML-23 28 1671,6 
CML-32 38 2549,9 
CML-45 56 1513,4 
CML-55 53 1604,1 
CML-58 52 1514,1 
CML-64 20 1518,2 
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CML-71 50 1496,4 
CML-87 51 1511,2 
CML-89 55 1617,2 
CML-91 37 1498,4 

      
Low Risk (n=39)     

CML-6 24 141,8 
CML-8 35 583,9 

CML-12 52 707,9 
CML-13 40 578,2 
CML-14 46 382,9 
CML-17 63 707,9 
CML-18 25 41,3 
CML-22 36 634,5 
CML-25 43 259,4 
CML-29 36 258,5 
CML-31 47 21 
CML-46 39 20,7 
CML-51 38 24,8 
CML-54 42 141,4 
CML-56 46 111,5 
CML-59 32 204 
CML-60 65 667 
CML-62 35 496,5 
CML-65 47 204 
CML-66 18 21 
CML-67 32 210 
CML-68 37 210 
CML-69 24 550,4 
CML-70 58 667 
CML-74 23 141 
CML-75 34 214 
CML-76 28 102,4 
CML-77 34 118,1 
CML-78 49 163,5 
CML-79 26 20,6 
CML-80 33 41,7 
CML-81 38 217,3 
CML-82 25 104,8 
CML-83 51 707,6 
CML-84 43 576,2 
CML-85 47 258,5 
CML-86 29 284,1 
CML-88 54 624 
CML-90 35 43,1 

      
Intermediate Risk (n=12)     

CML-9 43 829,8 
CML-11 70 1024,7 
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CML-19 51 1237,7 
CML-20 51 1309,6 
CML-28 57 1168,6 
CML-30 66 1378,6 
CML-38 54 783.6 
CML-43 42 1101,9 
CML-53 29 841,7 
CML-63 69 1017 
CML-72 80 912 
CML-73 53 1079,6 

 
 
 
 

 

3.2 Test array experiment with K562 cell line 

 

The aim of this experiment was to optimize the amount of amplified RNA 

(aRNA) that would be used in microarray experiments and to test the printed arrays 

that had known interferon stimulated genes (ISGs) spotted on the glass slides.   

 

Two sets of K562 cells were plated at 2 x 106 cells/ml in 50 ml of medium 

overnight and one of them was treated with 1,000 U/ml interferon α-2b (IFNα-2b) 

for 16 hours.  The other plate was left untreated and used as a control.  Total RNA 

was isolated and amplified.  1, 3, 5, 10 and 15 µg aRNA from treated and untreated 

samples were labeled with Cy5-NH ester-dUTP and Cy3-NH ester-dUTP, 

respectively.  5 µg aRNA was found to give better results on arrays and therefore, the 

same amount was used for CML samples in future experiments.   

 

One part of this array is shown in Figure 7 and the two red spots indicated by 

the arrow, represent G1P3 interferon, alpha-inducible protein (clone IFI-6-16) 

(Hs.265827).  This gene is induced approximately 16-fold in the treated sample with 

IFNα-2b, compared to untreated sample.  The list of genes at least 2-fold induced is 

given in Table 3.  The down-regulated genes were not observed in this particular 

experiment as expected.       
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Figure 7: K562 cell line array picture. The red spots indicate the gene IFI-6-16.   

 

 

Table 3: Genes at least 2 fold induced by IFNα-2b in K562 cell line 

 
Unigene ID  Gene Name      Fold Induction 

 
Hs.265827  interferon,alpha-inducible protein   16 
Hs.77225  ADP-ribosyltransferase    11 
Hs.5947  mel transforming oncogene    8 
Hs.840   indoleamine-pyrrole 2,3 dioxygenase   7 
Hs.833   interferon-stimulated protein, 15kDa   5.5 
Hs.146360  interferon-induced transmembrane protein  3 
Hs.170040  platelet-derived growth factor receptor  2.3 
 

 

 

 

3.3 Array results of CML samples 

 

Problems with the samples 

 

All CML samples were prepared, stored and processed in the same way.  

However, most of the samples did not work on the arrays.  There was no obvious 

problem in the RNA extraction and amplification.   

 

Current protocols for the competitive binding method of hybridization with 

two species of RNA require at least 100 µg of total RNA from each sample.  This is 

a reasonable amount of RNA to obtain when working with cell lines.  However, with 

human samples, often one cannot obtain this much RNA, and even if having the 
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enough amounts, this material cannot usually be reaccessed for follow up 

experiments.  Therefore, it was necessary to amplify the RNA while preserving the 

integrity of the message profile.  The amplification protocol used involved two 

rounds of double stranded cDNA synthesis followed by in vitro transcription (IVT).  

RNA amplified by this method has been demonstrated to give results similar to those 

obtained with total RNA (Wang et al., 2000).   

 

The quality of the RNA in labeling reactions has a marked effect on the 

quality of the hybridization.  RNA preparations, which look good by the standard 

molecular biology criteria, can give poor results.  Because of this, many optimization 

experiments must be performed to standardize the protocols.  

 

In some cases, after the labeled probe clean up, the samples produced a 

gelatinous precipitate that was recovered in the concentrated volume.  The presence 

of this material, signals the presence of contaminants.  The more extreme the 

contamination is, the greater the fraction of probe, which will be captured in this gel.  

Even if heat solubilized, this material tends to produce uniform, non-specific binding 

to the DNA targets.   

 

To get rid of the possible contaminants and carbohydrates, Lithium chloride 

(LiCl) precipitation solution was used in some CML samples for trial, which is an 

effective way.  Then, the amplification and labeling reactions were repeated.  

However, the gelatinous precipitate was still obvious.  To treat all the CML samples 

the same way, LiCl precipitation was not performed further in order not to lose the 

RNA samples.   

 

Most probably, one problem of the samples resulted from preparation of 

buffy coat.  For example washing it with 1xPBS affected the quality of RNA in most 

of the samples.  Because, washing cells before TRIzol extraction, is not preferred as 

this increases the possibility of mRNA degradation.   

 

Collection of whole blood is the first step in many molecular assays used to 

study cellular RNA.  However, the major problem in such experiments is the 

instability of the cellular RNA profile in vitro.  A method that preserves the RNA 
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expression profile during and immediately after blood is drawn is therefore essential 

for accurate analysis of gene expression in human whole blood.  Nowadays, 

PAXgene Blood RNA System (Qiagen) is available for RNA isolation from blood.  

This system enables the collection, stabilization and transportation of whole blood 

specimens, together with a rapid and efficient protocol for isolation of cellular RNA.  

The system allows researchers to obtain a gene expression profile that is closer to the 

patient’s true profile, facilitating studies of gene transcription in disease and drug 

monitoring.  It was tried on arrays and gave very good results (www. 

preanalytix.com).    

 

Poor array results of CML samples 

 

The following figures are some examples for poor array results.  These were 

not analyzed in detailed or the good parts of the array were analyzed in some cases, 

excluding artifacts.   

 

In Figure 8, there is a high background over the entire hybridized surface.  

This may be a result of contaminants in the samples, such as carbohydrates.  

Excessive washing of arrays with SSC tends to minimize the noise but not 

completely solves the problem.  

 

 

 

 

 

 

 

 

 

 

Figure 8: Array with high background. 
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In Figure 9, the array looks fine, however, there is a scratch on the right side, 

most probably due to cover slip friction problem during washing steps.  

 

 

 

 

 

 

 

 

 

Figure 9: Array with scratches. 
 

 

Cy5 labeling that did not work for a CML sample is shown in Figure 10.  

Since, spike controls worked for both labeling reactions, the problem is due to the 

sample. 

 

 

 

 

 

 

 

 

 

Figure 10: Array with Cy5 labeling problem. 

 

 

Some of the spots are running into each other in Figure 11.  This can be due 

to excess amount of the cDNA spotted in the 384 well plates and/or the aging 

problem of the slide after poly-L-lysine coating and/or pin problems of the arrayer. 
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Figure 11: Array with spots running into each other. 

 

 

In Figure 12, only the spike controls worked.  Because of this, labeling 

reactions are fine, however both samples are not working.  In this experiment, 

control sample was obtained from four volunteered healthy individuals.    

 

 

 

 

 

 

 

 

 

Figure 12: Array with not working samples. 

 

 

There is a non-specific fluorescent background at the corner of the slide in 

Figure 13.  This can be a result of air-drying of the slides after washing which 

frequently leaves a fluorescent haze on the slide surface.  More likely, this 

background can be formed after blocking the slides.  Because, when scanned after 

printing and before blocking, the slides look clean.  However, after blocking, this 

fluorescent noise sometimes appears.   
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Figure 13: Array with fluorescent background. 
 

 

 

Good array results of CML samples 

 

 Unfortunately, most of the CML samples did not work on the arrays, 

probably because of the total RNA quality that was poor for arrays.  However, CML 

2, CML 4, CML 8 and CML 12, which were not selected on purpose, worked very 

well.  

 

Figure 14, 15, 16 and 17 show the array pictures of the CML 2, 4, 8, and 12 

respectively.  The red spots indicate that the test cDNA for that gene is more 

abundant than the reference cDNA, which means that it is being expressed at a level 

higher than the reference cDNA and a green spots indicates that the test cDNA is 

being expressed at a level lower than the reference cDNA.  The yellow spots mean 

that there is no change in the expression level between the two population of test and 

reference cDNA.  
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Figure 14: Array of CML 2 versus reference RNA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 15: Array of CML 4 versus reference RNA. 
 
 
 
 



 80

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16: Array of CML 8 versus reference RNA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 17: Array of CML 12 versus reference RNA. 
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The scatter plot view of CML samples 

 

The scatter plot view is useful for examining the expression levels of genes in 

two distinct conditions, samples, or normalization schemes.  For instance, you can 

use the scatter plot to identify genes that are differentially expressed in one sample 

versus another.  A scatter plot can also be used to compare two values associated 

with genes in two gene lists.   

 

In any scatter plot view, each `+' symbol represents a gene.  The vertical 

position of each gene represents its expression level in the current condition, and the 

horizontal position represents its control strength (the median expression level of this 

gene).  Thus, genes that fall above the diagonal are overexpressed and genes that fall 

below the diagonal are underexpressed as compared to their median expression level 

over the course of the experiment. 

 

The scatter plots of CML experiments are given in Figure 18, 19, 20 and 21 

respectively, for CML 2, 4, 8, and 12.  The raw fluorescent data plotted onto scatter 

plot was obtained from GenePix scanner software and imported into the GeneSpring 

software version 4.1.1 for analysis.  The Cy3 labeled reference is plotted on the x-

axis and Cy5 labeled CML samples are plotted on the y-axis.  
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Figure 18:  Scatter plot of CML 2 versus reference. Cy3 is on the x-axis and Cy5 

is on the y-axis.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19:  Scatter plot of CML 4 versus reference. Cy3 is on the x-axis and Cy5 

is on the y-axis.  
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Figure 20:  Scatter plot of CML 8 versus reference. Cy3 is on the x-axis and Cy5 

is on the y-axis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21:  Scatter plot of CML 12 versus reference. Cy3 is on the x-axis and Cy5 

is on the y-axis.  
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3.4 Cluster analysis of two high and two low-risk samples 

 

Since some experiments work better than the others, it is important to include 

common spots while performing cluster analysis.  Spots that were not suitable for 

accurate quantification, due to artifacts or low signal intensity, were excluded from 

further analysis, resulting in 4,997 common data points between all four experiments. 

In Figure 22, cluster of four samples are shown.  The same reference cDNA was used 

in each experiment.  In this image, the red colored genes indicate that they are more 

expressed than the green colored genes in each experiment. Differentially expressed 

genes are obvious, indicating the potential risk group indicator genes.    

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22: Gene clusters of four CML samples. The top two are the low-risk 

samples and the bottom two are the high-risk samples. 

 

 

 

 

 

 

 

 

p

cml12 cml12 

cml8 cml8 

cml2 cml2 

cml4 cml4 

CML 12 

CML 8 

CML 2 

CML 4 
High-risk CML 

Low-risk CML 



 85

Figure 23 shows the gene clusters of four CML samples after zooming one 

specific part.  The potential risk group indicator genes are more obvious in this 

image.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23: Zoomed gene cluster images of four CML samples. The potential risk 

group indicator genes are more obvious.   

 
 

 

Differentially expressed genes identified by cluster analysis of the high (CML 

2 and CML 4) and low (CML 8 and CML 12) risk CML patients are shown in Table 

4.  58 genes were found to be expressed at least 3-fold higher in both high-risk 

samples compared to both low-risk samples and 25 genes were found to be expressed 

at least 3-fold higher in both low-risk samples compared to both high-risk samples.  

The top eleven differentially expressed genes in high-risk and low-risk samples are 

given in Table 5 and 6 respectively with fold inductions.  The raw fluorescent data 

obtained from the patient samples and the controls are given in Appendix (c).  
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Table 4: Differentially expressed transcripts in high and low-risk CML patients  
 
a. 58 transcripts expressed at least 3-fold higher in high-risk compared to low-risk 
samples.  
 
Accession Gene symbol  Function 
AA279147 CSF2R hematopoietic cell activation 
AA181500* PRKAR2B  signaling 
W47101* IL1B thymocyte proliferation 
R06438 ? unknown 
N70773 DDEF2 regulator of cell growth and cytoskeletal organization 
T74192 PROS1 anticoagulant plasma protein 
N22684 DDX17 RNA dependent ATPase 
AA935273 CXCL3 CXC chemokine 
AA454668 PTGS1 proliferation 
AA482286 SEL1L notch signaling 
AA707321/W86182* PNN adhesion, desmosome associated 
N73222 MGP inhibitor of bone formation 
AI026973 HGD homogentisate oxidation 
AA463544* MCP membrane protein 
R36587 PPI5PIV unknown 
AA913804 RIPK2 CASP-8-mediated apoptosis. NF-kappaB activation. 
W42723 CXCL1 CXC chemokine 
N78902 LEPR leptin receptor 
N24824 KIT stem cell factor receptor 
AA456869 RCOR unknown 
AA425238 RUNX1 transcription, acute myeloid leukemia 1 protein 
AA453593 ATE1 arginilation 
AA287107 ZNF302 transcription 
H54020 SFRS7 splicing factor 
R92806 GDI2 GDP/GTP exchange reaction regulator of RAB proteins 
AA127116* HNRPA1 RNA packaging and transport 
T71308 CYP2C8 electron transport, principal enzyme of Taxol metabolism  
R20770 STXBP3 structural protein 
AA044390 UGP2 glucosyl donor in cellular metabolic pathways 
N75017* RPS6 selective translation of particular classes of mRNA 
AA489232 APT6M8-9 acidification of a variety of intracellular compartments 
R27581 CUL3 cell proliferation control 
NM_001959 EEF1B2 eukaryotic translation elongation factor 
AA019511 HMGB2 chromosomal protein, unwinds dsDNA 
AA460930 TCEB1 regulatory subunit of the transcription elongation factor B 
H50229 PP metabolism 
AW075605 RPL9 ribosomal protein 
NM_003750 EIF3S10 translation factor 
R93829 NAP1L1 modulation of chromatin formation and regulation of cell 

proliferation 
N47717 FABP5 keratinocyte differentiation 
AA454146* CCNH cell cycle control, transcription and DNA repair 
AA448814 APG3 unknown 
AA412053 CD9 platelet activation and aggregation 
AA476508 ENPP2 potent tumor cell motility-stimulating activity 
AA465603 MGC14433 unknown 
N69689 RAB1A protein transport  
AA460981 GOLGA4 vesicular transport 
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N67039 ? unknown 
AA099383 WRB potential transcription factor 
N59851 WASF1 signaling, thyrosine kinase receptors and small GTPases 
AA446819 OAT proline and ornithine metabolic pathway 
R52654* HCS mitochondrial electron transport 
AA598526* HIF1A homeostasis; angiogenesis, erythropoïesis 
AA424824 DSTN actin depolymerizing protein 
AA406332 SEC23A secretory, plasma membrane, and vacuolar protein transport 
AW004895 HSPD1 chaperon; mitochondrial protein import and macromolecular 

assembly 
AA001745 DC2 unknown 
N93924 RFC4 DNA replication 
 
 
b. 25 transcripts expressed at least 3-fold higher in low-risk compared to high-risk 
samples. 
 
Accession Gene symbol Function 
AA630549* HLA-DRB1 MHC 
T63324* HLA-DQA1 MHC 
AA634006* ACTA2 cell motility 
H08749 MAP2K3 signaling 
AA436459 NFIX transcription and replication 
H61243 UCP2 mitochondrial protein transport 
AI871056 S100A4 Calcium binding 
AA931043* HAGH metabolism 
T83159 LSP1 unknown 
T58146 P5-1 MHC 
AA599177 CST3 cysteine proteinase inhibitor 
AA933862 CD3E signaling 
AI253411 ELAVL2 RNA binding 
AA620426 AMPH synaptic vesicle endocytosis 
AA419251 IFITM1 IFN signaling 
N69335* COL9A1 structural protein  
AA480071 TCF7 transcription, t-cell lymphocyte 

differentiation 
NM_002168 IDH2 intermediary metabolism and energy 

production 
AA458965 NK4 lymphocyte activation 
T47442 PROCR coagulation control 
AA444009 GAA metabolism 
AA630328 LGALS3 galactose-specific lectin 
AI675889 NPY control of feeding 
AA838691 EPHX1  metabolism 
AI208702 MAP4K3  signaling 
 
*Genes recovered multiple times on different spots on the array. 
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Table 5: The top eleven differentially expressed genes in high-risk compared to 
low-risk samples   
 
 
Gene name Gene symbol Fold induction 
   
Development and differentiation 
enhancing factor 2 

DDEF2 17.0 

Heat shock 60kd protein 1 HSPD1 12.0 
Protein kinase, cAMP dependent 
regulatory, type ii beta  

PRKAR2B 11.0 

Pinin, desmosome associated protein PNN 10.5 
Interleukin 1, beta  IL1B 10.0 
Chemokine C-X-C motif ligand 3  CXCL3 9.3 
Membrane cofactor protein MCP 8.7 
Cytochrome c HCS 8.3 
Dead/h (asp-glu-ala-asp/his) box 
polypeptide 17 (72kd) 

DDX17 8.0 

Receptor-interacting serine threonine 
kinase 2 

RIPK2 8.0 

Chemokine C-X-C motif ligand 1 CXCL1 7.0 
 
 
 
Table 6: The top eleven differentially expressed genes in low-risk compared to 
high-risk samples  
 
Gene name Gene symbol Fold induction 
   
Hydroxyacyl glutathione hydrolase HAGH 17.7 
Natural killer cell transcript 4 NK4 17.2 
Major histocompatibility complex, class 
ii, dr beta 1 

HLA-DRB1 15.8 

Lectin, galactoside-binding 3 LGALS3 10.6 
Major histocompatibility complex, class 
ii, dq alpha 1 

HLA-DQA1 10.5 

Isocitrate dehydrogenase 2  IDH2 8.7 
Interferon induced transmembrane 
protein 1 (9-27) 

IFITM1 8.5 

S100 calcium-binding protein a4 S100A4 8.3 
Transcription factor 7, t-cell specific TCF7 8.2 
Mitogen-activated protein kinase kinase 3 MAP2K3 6.0 
Epoxide hydrolase 1 EPHX1 6.0 
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The scatter plots of 58 risk group indicator genes that were found to be 

expressed higher in high-risk samples are given in Figure 24, 25, 26 and 27 

respectively, for CML 2, 4, 8, and 12.  This appearance confirms the higher 

expression of these genes in high-risk CML samples, 2 and 4, because, almost all 

genes are above the cutoff line, compared to CML samples 8 and 12.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24: Scatter plot of 58 risk group indicator genes in CML 2. These genes 
were found to be expressed at least 3-fold higher in high-risk samples.  In this figure, 
CML 2 is on the y-axis and the reference is on the x-axis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25: Scatter plot of 58 risk group indicator genes in CML 4. These genes 
were found to be expressed at least 3-fold higher in high-risk samples.  In this figure, 
CML 4 is on the y-axis and the reference is on the x-axis.  
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Figure 26: Scatter plot of 58 risk group indicator genes in CML 8. These genes 
were found to be expressed at least 3-fold higher in high-risk samples.  In this figure, 
CML 8 is on the y-axis and the reference is on the x-axis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27: Scatter plot of 58 risk group indicator genes in CML 12. These genes 
were found to be expressed at least 3-fold higher in high-risk samples.  In this figure, 
CML 12 is on the y-axis and the reference is on the x-axis.  
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Another confirmation result comes from other array experiments.  For 

example, CML 2 was hybridized against CML 4 and 8.  The scatter plot distributions 

of these 58 genes are given in Figure 28 and 29.  In Figure 28, CML 2 (high-risk) is 

on the y-axis and the CML 8 (low-risk) is on the x-axis.  Almost all genes are above 

the cutoff line.  However, in Figure 29, CML 4 (high-risk) is on the y-axis and the 

CML 2 (high-risk) is on the x-axis.  Since both samples are high-risk, all genes are 

distributed around the cutoff line.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28: Scatter plot of CML 2 versus CML 8. CML 2 is on the y-axis and the 
CML 8 is on the x-axis.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29: Scatter plot of CML 2 versus CML 4. CML 4 is on the y-axis and the 
CML 2 is on the x-axis.  
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3.3 Semi-quantitative RT-PCR analysis 

 

Determination of optimal cycle of a gene for semi-quantitative PCR 

 

To determine the total PCR cycle numbers that will define the logarithmic 

phase of amplification (optimum cycle not saturated for the amplified DNA 

fragment), an initial study was performed at 15 through 30 cycles for each primer 

pair.  80% of PCR product from each cycle was loaded on 2% agarose gel and 

determined cycle number was used for amplification of the gene of interest in 

further studies.  Figure 30 shows the results obtained from GAPDH, IFITM1, 

UCP2 and CCNH genes.  The optimal cycle number is 22 for CCNH, 21 for 

UCP2 and GAPDH, and 18 for IFITM1. 

 
 
 

 

Figure 30: Cycle optimization of GAPDH, IFITM1, UCP2 and CCNH genes. 

Amplification of each gene was performed by using the primer pairs given in 

Table 1. 80% of PCR product from each cycle was loaded on 2% agarose gel.  

∅X174 DNA/HinfI Marker, 10 in first lane and cycles 15-29 in the following lanes.   
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Semi-quantitative RT-PCR results of seven genes in high, low & 

intermediate risk CML, and other hematological malignancies 

 

To examine relative transcript levels in the remaining patient samples, RT-

PCR analysis of seven genes were performed: IFITM1 (interferon induced 

transmembrane protein 1), CXCL3 (chemokine (C-X-C motif) ligand 3), CCNH 

(cyclin H), RAB1A (member RAS oncogene family), PRKAR2B (protein kinase, 

cAMP-dependent, regulatory, type II beta), PTGS1 (prostaglandin-endoperoxide 

synthase 1), UCP2 (uncoupling protein 2).   

 

Higher expression of CXCL3 (9/9), RAB1A (7/9), CCNH (7/9), PRKAR2B 

(6/9) and PTGS1 (4/9), and lower expression of IFITM1 (9/9) and UCP2 (6/9) was 

seen in the high-risk patients compared to the low-risk patients (Figure 31A).  

PRKAR2B expression was not detected in any one of the low-risk samples, and 

PTGS1 was minimally expressed in only three low-risk samples (Figure 31B).  With 

respect to the intermediate-risk group, gene expression profiles follow the pattern of 

low-risk samples, except for UCP2, which resembles that of the high-risk patients 

(Figure 31C). 

 

Since PRKAR2B expression was observed only in the high-risk CML 

patients, and similarly PTGS1 expression appeared to be specific to high-risk CML 

patients, we analyzed the expression of these transcripts in fourteen patients with 

other hematological malignancies (Figure 31D).  Neither PRKAR2B nor PTGS1 is 

expressed in any one of these samples, suggesting that expression of these is not a 

general feature of hematological malignancies.  
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Figure 31: Semi-quantitative RT-PCR results of seven genes in high, low & intermediate 

risk CML, and other hematological malignancies.  (A) High-risk CML; ∅X174 DNA/HinfI 

Marker, 10 in first lane; C: pool of four healthy controls; LP: pool of all low-risk samples; IP: 

pool of all intermediate-risk samples; HP: pool of all high-risk samples; high-risk CML samples 

2, 4, 3, 7, 10, 15, 23, 32 in the following lanes consecutively.  (B) Low-risk CML; Marker; C; 

LP; IP; HP; low-risk CML samples 8, 12, 6, 13, 14, 22, 29 in the following lanes consecutively.   

(C) Intermediate-risk CML; Marker; C; LP; IP; HP; intermediate-risk CML samples 9, 11, 19, 

20, 28, 30 in the following lanes consecutively.   (D) Other hematological malignancies; Marker; 

t(12;21) ALL in lanes 2 to 5; t(15:17) AMLM3 in lanes 6 to 9; t(4;11) infant ALL in lanes 10 

and 11; t(1;19) B cell ALL in lane 12; t(8;21) AML in lane 13; t(9;22) ALL in lane 14; 

myeloproliferative disease in lane 15; pool of all high-risk samples in lane 16.  
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3.4 Real-time RT-PCR analysis 

 

The relative transcript level of IFITM1 was determined in forty-nine CML 

patients by real-time RT-PCR analysis.  The results showed that the relative 

transcript levels were significantly different between the high-risk (ranged between 

0.034-0.67; n=11), and low-risk (1.0-6.06; n=34) groups (p=9.7976 x 10-11).   The 

intermediate-risk group (1,62-7,38; n=4) was similar to the low-risk group.  The 

comparison of the relative IFITM1 expressions in the high and low-risk samples is 

shown in Figure 32. 

 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 32: Relative expression of IFITM1 by real-time PCR in low- and high-

risk CML. Levels of gene transcripts between high and low-risk CML were 

compared and found to be highly significant (p=9.7976 x 10-11). 
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3.5 Statistical analysis of data 

 

Mann-Whitney U test 

 

Levels of gene transcripts between high and low-risk CML were compared 

using Mann-Whitney U test (SPSS software version 10.0).  P values <0.05 were 

considered statistically significant.  Quantitation of relative band intensities was 

performed using Multi-Analyst software version 1.1 (Bio-Rad Laboratories).  Each 

product was normalized against GAPDH.  

 

Expression levels of all genes except for PTGS1 are significantly different 

between the high and low-risk groups (IFITM1 and CXCL3 p=0.001; CCNH 

p=0.012; RAB1A p=0.01, PRKAR2B p=0.016; UCP2 p=0.04; and PTGS1 p=0.315).     

 

 

3.8 Kaplan-Meier analysis for correlation of survival with gene expression  

 

The goal of Kaplan-Meier analysis was to estimate a survival curve from a 

sample.  Vertical axis represents estimated probability of survival for a hypothetical 

cohort.  Horizontal axis represents the time in months.  P values <0.05 were 

considered statistically significant.  Quantitation of relative band intensities was 

performed using Multi-Analyst software version 1.1 (Bio-Rad Laboratories).  Each 

product was normalized against GAPDH.  

   

Kaplan-Meier analysis was performed in all patients who have follow-up data 

for at least 26.5 months (n=24).  Kaplan-Meier plot of overall patient survival 

indicates that low-risk assignment based on NPS does not significantly correlate with 

increased survival (Figure 33A).  However, when patient survival was plotted 

according to IFITM1 expression below or above the cutoff value of 2.0 (calculated as 

median of intensity ratio of IFITM1 and GAPDH amplicons), the low-risk patients 

demonstrate higher levels of IFITM1 expression compared to the high-risk patients.  

This finding significantly correlates with survival (p=0.01; Figure 33B).  Similarly, 

lower CXCL3 expression correlates with survival (p=0.059; cutoff value 1.0; Figure 

33C).   
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Figure 33: Kaplan-Meier analysis. (A) Kaplan-Meier plot of overall survival of 

patients according to NPS score (p=0.10). Survival according to (B) IFITM1 

(p=0.01), and (C) CXCL3 (p=0.059) expression. 

 
 

 

3.9 Detection of Gly382Asp MYH mutation by Bgl II digestion 

   
 G1145A point mutation is a missense mutation that leads to G to A 

substitution at nucleotide 1145 in exon 13 of MYH and results in Gly to Asp amino 

acid substitution at codon 382.  The mutation occurs within the recognition site of the 

restriction enzyme Bgl II.  Thus, digestion of the MYH exon 13 PCR product 

provides a simple, cost-effective assay for identifying patients who had the mutation.  

Bgl II has no recognition site in the wild type MYH exon 13 DNA sequence.  The 

PCR amplified fragment is 242 bp.  The G1145A mutation introduces a Bgl II site.  

In a heterozygous individual, the expected fragment sizes are 242 bp, 158 bp and 84 

bp, and in a homozygous mutant individual, the expected fragment sizes are, 158 bp 

and 84 bp. 
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 Amplified MYH exon 13 PCR products were incubated with Bgl II in the 

recommended buffer at 37oC for 2 hours.  To make sure enzyme is working, a 

plasmid DNA (pBlueScripSK, 6715 bp) having Bgl II recognition sites was also 

digested.  The expected size fragments are 4000 bp, 2200 bp, 515 bp (Figure 34).  

After digestion, the cut and uncut DNA samples were analyzed on 2% agarose gel.  

No mutation was observed in any of the patient samples (n=185) and controls 

(n=124).      

 

   1     2      3           4      5      6      7      8  

                              
 

Figure 34: Bgl II digestion profile in detection of Gly382Asp. PCR reactions are 

electrophoresed in 2% agarose. Lane 1: Undigested plasmid pBlueScripSK, Lane 2: 

Digested plasmid pBlueScripSK, Lane 3: pUC Mix Marker, 8, Lane 4: pUC Mix 

Marker, 8, Lane 5-8: Digested AML samples, 184, 185, 190, 197.   

 

 

3.10 Detection of Tyr165Cys MYH mutation by ARMS 

 

 A494G point mutation is a missense mutation that leads to A to G 

substitution at nucleotide 494 in exon 7 of MYH. As a result, Tyr is substituted to 

Cys amino acid at codon 165.  The size of the PCR fragment produced is 147 bp.  

Upon the presence or absence of the bands, genotyping was performed in all patient 

samples and controls by ARMS.  The wild-type, heterozygous and homozygous 

mutant individuals are expected to have A/A, A/G and G/G alleles, respectively.  No 

mutation was present in any of the patient samples (n=184) and controls (n=124), 

except for that one patient diagnosed with AML/M3.  The DNA code for this patient 

is 02-91.  Tyr165Cys mutation in the heterozygous state was present in the sample 

obtained at the time of initial diagnosis (Figure 35).  Further sampling, at remission, 

242 bp 
515 bp 
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and the analysis of parental DNA, showed only the normal allele.  Therefore, the 

mutation was considered to be specific for the leukemic blasts.   

 

              

 
 

Figure 35: Detection of Tyr165Cys MYH mutation by ARMS. PCR reactions are 

electrophoresed in 2% agarose. Lane 1: pUC Mix Marker, 8, Lane 2: PCR of 02-91 

with 165N primer, specific to normal allele, Lane 3: PCR of 02-91 with 165M 

primer, specific to mutant allele.          

 

 

 

147 bp 

1 2 3
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CHAPTER 4. DISCUSSION 
 

  

We have studied the gene expression profiles in different risk groups of CML 

patients at the time of initial diagnosis by using cDNA microarrays and quantitative 

RT-PCR technique to constitute an initial attempt to identify candidate CML risk 

group indicator genes.  Seven genes, IFITM1, CXCL3, CCNH, RAB1A, PRKAR2B, 

PTGS1, and UCP2 were chosen from the initial cDNA microarray data and studied. 

These genes were recovered multiple times on different spots of the arrays and also 

gave high fluorescent intensity.  Expression level of all genes, except PTGS1, was 

significantly different between the high and low-risk groups (IFITM1 and CXCL3 

p=0.001; CCNH p=0.012; RAB1A p=0.01, PRKAR2B p=0.016; UCP2 p=0.04; and 

PTGS1 p=0.315).  Although NPS failed to correlate with patient survival, higher 

IFITM1 or lower CXCL3 expression correlated with improved survival (p=0.01, 

p=0.059 respectively). 

 

Although gene expression profiles associated with CML have been reported 

(Ohmine et al., 2001; Li et al., 2002), to the best of our knowledge, this is the first 

study in which gene transcript levels at initial diagnosis are correlated with clinical 

parameters and survival.  Our results show that the expression levels of IFITM1 and 

CXCL3 were significantly different between the high- and low-risk groups.  Higher 

IFITM1 (p=0.01) and lower CXCL3 (p=0.059) expressions correlated with improved 

survival.  IFITM1, a component of a multimeric complex involved in the 

trunsduction of antiproliferative and cell adhesion signals implicated in the control of 

cell growth (Deblandre et al., 1995), was suggested to play a role in the 

antiproliferative activity of interferons (Gutterman, 1994).  The sensitivity to 

inhibition of cell growth induced by interferons was found to correlate with the 

expression of this gene in various cell lines (Knight et al., 1985; Evans et al., 1990; 

Evans et al., 1993). Furthermore, culture of human RSa cells with interferon-α 
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resulted in increased resistance of the cells to cell killing by X-rays, and increased 

levels of IFITM1 mRNA (Kita et al., 2003).   

 

  These observations support our finding that high-risk CML samples which 

are expected to have a high proliferative capacity, show decreased IFITM1 

expression levels.  In another study, IFIT2 (interferon induced protein with 

tetratricopeptide repeats-2) was found to be the most highly expressed gene during 

chronic phase CML (Ohmine et al., 2001).  These results suggests that higher 

expression of interferon induced genes in CML patients may serve as an indicator of 

interferon-α sensitivity, which in turn may be used as a molecular marker to predict 

response to interferon-α treatment.  IFITM1 could be a molecular marker to identify 

patients in different CML risk groups based on the observations that this gene has a 

role in the antiproliferative activity of interferons, and low-risk CML patients 

respond better to interferon-alfa treatment.  In an independent study, IFITM1 was 

found to be increased in multiple myeloma (MM) versus normal twin plasma cells 

(PCs) (Munshi et al., 2004).  Genetic heterogeneity between individuals confounds 

the comparison of gene profiling of MM cells versus normal PCs.  To overcome this 

barrier, the gene expression profile of CD138(+) MM cells from a patient bone 

marrow (BM) sample with CD138(+) PCs from a genetically identical twin BM 

sample was compared using microarray profiling. Despite cell survival pathway 

genes, oncogenes, and transcription factors, IFITM1 was found to be 32.4 fold 

increased in MM cells versus normal twin PCs. 

 

With respect to the function of CXCL3, the available information implicates 

its involvement in inflammation and on endothelial cell functions in an autocrine 

fashion (Haskill et al. 1990; Tekamp-Olson et al. 1990).  In addition, it may be 

constitutively overexpressed in transformed human cells (Anisowicz et al. 1987).  

High CXCL3 expression in high-risk CML is supported by these observations.   

 

IFITM1 and CXCL3 expression levels do not appear to be directly correlated 

with the blast counts of the patients based on the real-time and semi-quantitative RT-

PCR results.  For example, the highest blast counts in low-risk patients were 

observed for CML 8 (blasts 5%), CML14 (5%), and CML 22 (8%), but the IFITM1 

expression levels were high and CXCL3 levels were low (Fig.31B).   Among the 
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high-risk patients, although some had blast counts similar to low-risk patients, as 

exemplified by CML 4 (8%), CML 2 (7%), CML 10 (4%), the IFITM1 and CXCL3 

expression levels did not resemble the low-risk patients (Fig.31A). 

 

Although we are not able to present the quantitative expression of HLADRB1 

in all patients, our microarray results of higher expression in the two low-risk 

patients agree with previous findings in solid tumors and acute myeloid leukemia, 

where increased HLADRB1 expression was associated with less metastasis or 

improved survival (Moos et al., 2002; Bernsen et al., 2003).   

 

We also compared the chromosomal localization of high-risk indicator genes 

with the recurrent chromosome aberrations reported for CML (Mitelman Database of 

Chromosome Aberrations in Cancer. (http://cgap.nci.nih.gov/Chromosomes/Mitel_ 

Search#MARK).  Most interestingly, PTGS1 at 9q33.2 lies very close to the t(9;22) 

breakpoint.  Furthermore, PRKAR2B at 7q22.3 and CCNH at 5q14.3 map near 

unbalanced 7q22 and 5q13 translocations respectively.  Finally, RAB1A at 2p14 maps 

close to balanced translocations at 2p13.   

 

We have shown that candidate CML risk group indicator genes can be 

identified using gene expression profiling, and this profiling may lead to the 

development of a gene expression based classification system for CML which 

appears to be highly correlated with the clinical scoring at the time of initial 

diagnosis.  Furthermore, a gene expression based classification system for CML may 

more accurately predict disease outcome. 

 

 In the second part of this study, we screened for the MYH Tyr165Cys and 

Gly382Asp variants using genomic DNA in childhood AML and ALL.  Neither 

mutation was present in any of the patient samples and controls, except for one 

patient diagnosed with AML/M3.  Tyr165Cys mutation in the heterozygous state was 

present in the sample obtained at the time of initial diagnosis.  Further sampling, at 

remission, and the analysis of parental DNA, showed only the normal allele.  

Therefore, the mutation was considered to be specific for the leukemic blasts.  It may 

be interesting to screen the whole MYH gene for mutations in hematological 

malignancies in future, especially if increased transversions of G:C to T:A proved to 
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be present in leukemic blasts.  Based on these results, an association between 

childhood leukemias and the MYH missense variants Tyr165Cys and Gly382Asp was 

not observed.  Also, these variants appear to be absent -if not at a very low 

frequency- in the Turkish population, contrary to British population.   
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CHAPTER 5. FUTURE PERSPECTIVES 
 

  
 

The CML risk group indicator genes identified in this study may lead to the 

development of a gene expression based classification system for CML which 

appears to be highly correlated with the clinical scoring at the time of initial 

diagnosis.  Since the candidate genes identified in our study are novel and have not 

been previously analyzed in different populations, further studies are needed to 

increase the impact of our initial screening.  

 

Monitoring IFITM1 expression levels at given time intervals in patients who 

are treated with interferon-α might help to determine the validity of utilizing IFITM1 

expression profiling as a potentially important molecular marker in CML. 

 

Structural and numerical chromosome aberrations and mutations have long 

been recognized in cancer development.  But recent observations indicate epigenetic 

alterations as equally important players in carcinogenesis including hematological 

malignancies.  It is plausible that the genes we identified to be differentially 

expressed in different CML risk groups are subject to epigenetic changes.  DNA 

methylation plays an important role in the establishment and maintenance of 

epigenetic changes in the human genome.  The major epigenetic modification of 

human genomic DNA is the methylation of cytosine residues located within the 

dinucleotide CpG.  Several genes have been shown to be independently 

hypermethylated in hematological malignancies (Esteller, 2003).  Based on these 

considerations, two types of studies could be performed in our patient samples.  First, 

mutations can be analyzed in genes associated with the addition of methyl residues to 

the DNA molecule or genes that constitute the transcription repression complex.  In 

addition, the methylation pattern of the genes that we identified as differentially 

expressed in different CML risk groups can be analyzed by employing new genome 
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analysis technologies such as sodium bisulfite modification of DNA followed by 

methylation-specific PCR (MSP) (Gutierrez et al., 2003).  

 

In the second part of this study, MYH Tyr165Cys and Gly382Asp variants 

were screened in childhood leukemias.  It may be interesting to screen the whole 

MYH gene for mutations in hematological malignancies in the future, especially if 

increased transversions of G:C to T:A proved to be present in leukemic blasts. 
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a. The patient information form 

 
Bilkent Üniversitesi/Ankara Üniversitesi/The Cleveland Clinic Foundation 

       Moleküler Biyoloji ve Genetik Bölümü 
       KML Chip Çalışması Formu 

 
(İstenilen örnek EDTA’lı tüplerde 30-50 ml kan)  

 
Hastanın Adı ve Soyadı: 

Yaşı:   Cinsiyeti:      Mesleği:       Dosya numarası: 

Adresi: 

 

Telefon no (ev) :     Telefon no (cep) :  

Telefon no (iş) :      Faks no :  

Doktorun  Adı ve Soyadı: 

Bölümü ve Üniversitesi : 

Telefon no:  

Hasta tanısı:       Tanı zamanı: 

Tanıyı koyan doktor: 

Diğer hastalıklar: 

Hastanın kan değerleri ve dalak büyüklüğü: 
 
     Tanı sırasında   Şimdi 
a. Lökosit sayısı         :   

b. blast sayısı (%)         : 

c. eosinofil sayısı (%)   : 

d. bazofil sayısı (%)     :    

e. platellet sayısı (109/L): 

f. dalak büyüklüğü (kosta sınırından itibaren kaç cm): 

Hastanın risk gurubu:  Yüksek:   Düşük: 

Hastanın tedavi durumu (kemoterapi, interferon, vs): 

Tedaviye başlama tarihi ve protokolü:      

Hücre kodu:     cDNA kodu:    

RNA kodu:    DNA kodu: 
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b. The informed consent form  

 
BİLGİLENDİRİLMİŞ ONAY FORMU* 

 
 

Kendimde KML hastalığı olup olmadığının anlaşılması için FISH ve/veya 

RT-PCR ile t (9:22) incelemesi işleminin yapılması gerektiği ve işlem hakkında 

bilgiler bana aktarıldı. Bunun yanında Bilkent ve Ankara Üniversiteleri ile The 

Cleveland Clinic Foundation arasında başlatılan KML hastalığının tedaviye cevabı 

ile ilgili araştırma projesi çerçevesinde interferon sinyal ileti yolu incelemesi 

yapılacağı belirtildi.  

 

Bu bilgiler ışığında KML hastalığı genetik incelemesi işleminin yapılmasını 

onaylıyorum.  

  Hasta        Doktor  

(İsim Soyad, İmza)     (İsim Soyad, İmza)  

 

 

 

Şahit  

(İsim Soyad, İmza)   

 

 

 

*Ref. T.C. Sağlık Bakanlığı, Ana Çocuk Sağlığı ve Aile Planlaması Genel 

Müdürlüğü, Genetik Hastalıklar Tanı Merkezleri Yönetmeliği, (1998)den 

uyarlanmıştır.     
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c. The raw fluorescent data obtained from arrays of CML patients and control 
 
                          
  CML4     CML2     CML8     CML12     
Genbank Normalized Raw Control Normalized Raw Control Normalized Raw Control Normalized Raw Control 
AA279147 48,2 18579,0 385,5 52,4 29958,0 571,2 14,3 6010,5 419,1 11,2 3407,5 305,6
AA181500 21,7 14130,0 650,0 17,1 8959,5 522,8 1,1 1318,0 1213,3 2,5 1092,5 445,9
W47101 21,4 7552,0 352,4 10,6 5275,0 497,9 1,7 975,0 567,5 1,6 313,5 197,3
AA181500 17,2 25020,5 1454,0 10,2 14596,0 1436,6 1,6 3891,5 2367,9 2,1 1416,0 678,2
R06438 15,2 7536,0 494,4 5,3 3741,0 710,5 0,9 658,0 696,4 1,4 541,5 376,0
N70773 12,4 14783,5 1191,7 6,1 7664,5 1261,2 0,6 140,0 224,6 0,5 250,0 540,3
W47101 10,3 4143,5 403,1 8,6 7619,5 890,3 2,1 2105,0 1007,7 1,4 623,5 453,6
T74192 7,4 7259,0 977,9 4,7 5870,0 1258,7 0,8 695,5 885,9 1,1 500,0 447,8
N22684 6,4 5035,0 790,3 2,2 2166,0 1006,1 0,4 619,5 1516,6 0,7 224,0 343,9
AA935273 6,1 5201,5 847,3 3,2 3951,0 1221,1 0,6 915,0 1559,2 0,4 249,0 619,3
AA454668 5,2 10662,5 2033,9 4,4 10610,0 2398,2 1,3 1090,0 841,3 1,4 1076,0 742,4
AA482286 4,8 4195,5 877,5 3,6 3032,0 843,9 0,6 556,5 1008,7 0,7 237,5 357,3
W86182 4,3 17047,0 3959,5 4,5 12235,0 2694,3 0,4 872,0 2432,0 0,5 564,0 1160,0
AA707321 4,3 10896,0 2531,1 4,1 8820,5 2157,3 0,3 533,5 1823,4 0,5 427,0 850,2
N73222 3,7 8356,5 2249,4 3,6 9350,5 2565,8 1,2 4327,5 3614,2 0,9 582,5 649,5
W86182 3,7 11067,5 2985,0 4,0 10459,0 2634,2 0,3 697,0 2298,7 0,5 234,5 479,4
AI026973 3,5 1871,0 541,1 2,3 1565,0 679,2 0,3 237,5 770,6 0,8 179,0 237,1
AA707321 3,5 8635,5 2500,3 3,6 10834,0 2998,8 0,3 1260,5 3852,4 0,5 614,0 1193,1
AA463544 3,5 6361,5 1842,3 3,2 5478,0 1724,4 0,4 92,0 248,2 0,4 359,0 861,7
R36587 3,4 3267,0 962,5 5,4 4364,5 807,7 0,4 434,5 977,6 0,9 217,0 253,9
AA913804 3,4 2124,0 629,5 4,5 2967,0 665,0 0,8 814,0 1031,8 0,2 68,0 277,8
W42723 3,3 2188,0 659,7 4,4 4528,0 1035,4 0,6 786,5 1407,3 0,5 268,5 518,7
N78902 2,8 1288,5 454,4 2,1 1235,5 597,1 0,4 355,5 904,9 0,4 151,5 358,3
N24824 2,7 1262,0 462,4 1,3 1439,5 1089,7 0,4 626,0 1672,5 0,3 205,0 688,7
AA456869 2,5 3671,5 1442,0 2,2 3080,5 1371,6 0,3 624,5 2090,1 0,7 290,0 425,3
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AA463544 2,5 2650,5 1074,8 2,7 2376,0 872,7 0,3 242,0 886,4 0,3 112,5 331,9
AA425238 2,4 802,5 332,4 2,4 862,5 359,6 0,7 208,0 301,8 0,8 203,0 263,0
AA453593 2,4 1125,0 466,4 2,4 3955,5 1682,9 0,6 157,5 276,2 0,7 383,0 587,7
N78902 2,3 1376,5 586,7 2,1 1660,5 794,0 0,3 346,0 1007,2 0,5 88,0 193,5
AA287107 2,2 1482,0 659,7 1,0 1074,0 1095,0 0,2 242,5 1490,5 0,3 107,0 368,3
H54020 2,2 8235,0 3815,8 2,1 10460,5 5001,7 0,3 1745,0 5595,6 0,6 716,5 1263,5
R92806 2,1 12908,0 6059,5 3,2 21844,5 6850,7 0,6 1254,5 2001,4 0,4 1120,0 2652,5
AA127116 2,0 43569,5 22128,9 1,6 20094,0 12597,0 0,3 9773,0 36803,0 0,3 3842,5 12429,1
T71308 1,9 1211,5 624,4 3,1 1936,5 625,9 0,4 429,0 960,6 0,5 124,0 243,8
R20770 1,9 2113,5 1090,2 1,9 2705,0 1422,9 0,5 760,0 1457,9 0,4 173,0 449,7
AA044390 1,9 2995,5 1582,9 1,9 2693,0 1423,4 0,1 214,0 1710,6 0,4 248,0 557,0
N75017 1,9 1969,5 1050,9 2,4 2498,0 1047,6 0,5 515,5 1065,9 0,6 211,5 361,6
AA489232 1,9 1081,5 579,3 2,6 2232,0 860,5 0,6 480,5 831,2 0,6 163,0 270,6
R27581 1,9 2843,0 1524,7 1,9 3415,0 1814,8 0,4 331,5 832,7 0,6 315,0 540,3
N75017 1,8 2771,5 1545,8 2,7 3876,0 1446,9 0,4 145,0 361,5 0,5 290,0 627,9
NM_001959 1,7 34761,0 20892,7 0,7 20583,0 31510,2 0,2 7145,5 37928,1 0,2 2234,0 11920,9
AA019511 1,7 8226,5 4977,8 3,6 13258,0 3689,7 0,5 4288,5 7928,3 0,5 1211,0 2274,1
AA460930 1,6 7640,0 4689,3 2,1 18974,0 9042,7 0,4 240,5 600,6 0,5 1730,5 3407,8
AA416785 1,6 18323,5 11311,1 2,0 28808,0 14478,8 0,2 1603,0 9208,3 0,4 3537,0 9495,0
H50229 1,6 1184,0 734,4 0,8 1422,5 1723,9 0,2 408,0 2293,2 0,2 144,0 690,7
AW075605 1,6 16156,0 10196,3 1,2 18155,5 14624,9 0,2 2987,0 16249,7 0,3 1118,0 4210,6
NM_003750 1,6 3983,0 2515,2 1,5 4688,5 3102,4 0,4 1070,5 2866,2 0,5 737,0 1608,8
R93829 1,5 7956,5 5247,0 2,1 11108,0 5231,8 0,3 471,0 1719,6 0,4 922,5 2323,0
N47717 1,5 4258,5 2933,1 0,5 1864,0 3442,4 0,2 424,5 2816,6 0,2 171,5 951,7
AA454146 1,4 1293,0 923,2 1,2 1296,0 1120,0 0,3 210,0 815,2 0,3 166,0 522,5
AA448814 1,4 3155,0 2264,8 1,7 3470,5 2032,2 0,4 1664,5 3708,5 0,4 311,5 766,3
AA412053 1,3 5279,0 3957,2 1,9 7820,0 4044,4 0,2 742,0 3837,3 0,3 601,5 2081,6
AA476508 1,3 630,5 486,4 1,5 1056,5 706,6 0,4 245,0 586,1 0,3 80,5 273,0
AA465603 1,3 2288,0 1787,6 1,2 2575,5 2171,0 0,2 544,0 2410,0 0,2 105,5 456,9
AA454146 1,2 1333,0 1104,5 1,3 2047,0 1576,8 0,2 259,0 1324,6 0,4 120,5 304,1
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N69689 1,2 3556,5 2969,0 1,9 7457,0 3948,7 0,2 1020,0 4961,4 0,4 505,5 1424,0
AA460981 1,2 1267,5 1064,0 1,0 1198,0 1183,5 0,2 238,0 1115,0 0,3 125,5 393,2
N67039 1,2 1241,5 1058,3 1,2 2041,5 1711,7 0,1 227,0 1875,5 0,2 131,5 717,0
AA099383 1,1 1466,5 1371,9 1,5 2979,5 1972,6 0,2 529,0 2292,2 0,3 210,0 743,8
N59851 1,0 1221,5 1171,8 0,6 631,5 1118,0 0,1 265,0 1824,9 0,2 67,0 435,9
AA446819 1,0 2453,0 2391,4 2,7 16207,5 6064,0 0,3 139,5 433,2 0,3 537,0 1855,5
R52654 1,0 4148,0 4338,1 1,5 8272,0 5510,4 0,1 547,0 4887,7 0,2 467,5 2118,9
AA598526 0,9 2811,5 3096,2 1,0 2613,0 2649,4 0,2 630,5 3045,2 0,3 268,5 944,0
NM_001530 0,9 2603,5 2881,8 0,9 2221,5 2349,4 0,2 398,0 2400,0 0,3 400,5 1351,2
AA424824 0,8 5666,5 6986,7 0,6 5258,5 8373,3 0,1 1409,5 10130,3 0,2 432,0 2140,0
R52654 0,8 3158,0 4001,1 1,1 5837,5 5181,5 0,1 225,5 2007,9 0,2 339,0 1394,3
AA406332 0,7 2767,0 4059,3 0,8 2837,5 3387,7 0,1 462,5 4260,5 0,2 265,5 1193,6
AW004895 0,7 10525,5 15511,7 0,5 8996,0 17218,6 0,0 506,0 15336,8 0,1 941,0 6451,2
AA001745 0,6 2015,5 3310,0 0,7 2199,0 3121,4 0,2 443,0 2250,1 0,2 213,5 1055,6
N93924 0,6 1311,5 2281,9 0,7 1240,5 1804,0 0,1 190,0 2856,2 0,2 137,5 748,6
AA598526 0,6 792,5 1379,3 0,8 745,5 971,9 0,1 176,0 1241,8 0,2 60,0 327,1
                          
                          
  CML4     CML2     CML8     CML12     
Genbank Normalized Raw Control Normalized Raw Control Normalized Raw Control Normalized Raw Control 
AA630549 2,8 3779,0 1369,6 3,1 3509,5 1150,3 70,3 63612,5 905,4 22,9 11893,0 520,2
AA630549 2,5 2658,5 1057,2 2,8 1938,0 694,8 57,2 34017,0 594,6 17,0 6273,5 369,3
T63324 1,2 477,5 391,2 1,6 825,0 528,7 23,0 11408,0 495,8 6,2 2150,5 348,2
AA634006 5,9 14252,5 2425,6 4,4 9133,0 2069,4 22,0 9339,5 425,1 23,3 21937,0 941,2
H08749 1,7 2393,0 1387,3 5,9 9095,0 1531,4 20,3 33854,5 1664,5 24,8 12853,5 518,2
T63324 1,5 761,5 505,2 1,6 604,5 369,9 18,1 4546,5 251,2 5,5 818,5 148,5
AA634006 3,7 13258,5 3538,7 3,4 2296,0 669,4 17,8 15211,0 854,8 14,4 14105,0 978,0
T63324 1,4 1105,5 777,2 1,3 945,0 714,4 16,2 2737,5 169,5 4,3 1600,0 370,2
AA436459 1,7 1438,5 840,5 2,6 3149,5 1224,0 11,7 15128,5 1290,0 10,1 3181,0 315,6
H61243 2,8 4042,5 1434,6 2,5 4803,5 1937,9 11,4 26987,0 2373,4 14,4 9471,5 658,6
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AI871056 0,5 633,0 1302,3 1,1 2323,5 2080,6 9,5 13972,5 1474,0 3,7 3788,5 1031,2
AA931043 0,5 1042,0 1931,8 1,2 4772,5 3835,3 8,4 51895,0 6148,0 18,9 24027,5 1274,5
T83159 2,2 1687,0 750,4 2,3 1281,0 547,8 8,3 2785,0 334,9 10,7 2279,0 213,6
T58146 1,5 716,0 470,4 2,4 1046,5 444,7 7,4 1884,0 255,2 7,6 1494,5 197,8
AA931043 0,5 740,5 1601,1 1,1 1518,5 1433,7 5,2 4816,0 921,0 23,1 5608,0 242,8
AA599177 0,9 3216,5 3579,1 0,8 2360,5 3013,9 5,2 10055,0 1941,7 4,5 3390,5 751,0
AA933862 0,7 390,0 593,6 0,9 655,5 768,6 5,0 2616,5 520,9 3,8 1310,5 341,5
AI253411 1,3 2002,5 1494,5 1,6 1790,0 1145,4 4,9 772,0 156,4 4,8 2648,5 556,1
AA620426 1,3 993,0 747,5 1,4 949,5 685,6 4,2 556,5 133,4 4,4 1186,0 270,6
T63324 0,6 560,0 977,3 0,4 485,5 1123,9 4,2 2601,5 626,2 2,2 513,5 234,7
AA419251 0,6 2048,5 3469,7 0,6 4533,0 7438,5 4,1 29003,0 7074,5 6,0 16324,0 2721,9
N69335 1,1 952,5 862,7 1,2 620,5 532,1 3,9 1316,5 336,9 4,2 1055,5 254,3
N69335 1,0 1267,5 1293,2 1,2 1078,5 920,6 3,9 3261,5 843,8 5,2 2482,0 479,0
AA480071 0,3 272,5 834,2 0,3 307,5 881,0 3,2 974,5 308,3 1,1 664,0 596,8
NM_002168 0,3 2555,5 8814,7 0,4 4178,5 11283,1 2,2 20898,0 9643,5 3,9 11829,0 2997,8
AA458965 0,2 181,0 1065,1 0,4 706,5 1771,3 2,1 1466,5 695,4 8,2 4685,5 570,0
T47442 0,6 398,0 719,6 0,6 685,5 1201,6 2,0 2318,0 1142,6 1,7 905,0 526,4
AA444009 0,3 519,5 1764,2 0,5 808,0 1638,4 1,7 2498,0 1488,5 2,1 1419,5 682,5
AA630328 0,2 815,0 4908,9 0,3 1969,0 6954,8 1,5 3703,5 2507,2 3,8 5422,5 1429,7
AI675889 0,4 119,0 310,2 0,4 175,5 421,2 1,3 312,0 243,2 2,8 802,5 285,9
AA838691 0,2 103,5 503,5 0,2 314,0 1296,8 1,0 1282,0 1224,3 1,4 660,5 472,3
AI208702 0,3 571,5 2185,6 0,3 414,0 1510,9 0,8 699,5 846,8 1,2 619,5 500,5
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Introduction

DNA-repair gene mutations have been suspected as
being a predisposing factor in the development of leu-
kemia (Horwitz 1997). Our group identified one of the
first examples of a DNA-repair gene mutation to be
causally linked to childhood hematological malignancies
and neurofibromatosis type I, which involves a homo-
zygous germ-line mutation in the mismatch repair
(MMR) gene MLH1 (Ricciardone et al. 1999; Wang
et al. 1999). Subsequently, homozygous inactivation of
MSH2, another MMR gene, was also found to be
associated with early onset leukemia (Whiteside et al.
2002). It is well known that heterozygous germ-line
mutations in the MMR pathway genes MLH1, MSH2,
PMS2, PMS1, and MSH6 lead to hereditary non-
polyposis colorectal cancer (HNPCC) (Peltomaki 2001).
Thus, tumorigenesis through an ‘‘MMR deficiency
pathway’’ appears to be associated with two different
disease phenotypes which are dependent on the status of
the germ-line mutation: (a) HNPCC when the mutation
is present on only one allele (heterozygous), and
(b) hematological malignancies when the mutation(s)
is present on both alleles (homozygous or compound
heterozygous).

Base excision repair (BER) is another important
DNA-repair pathway and plays a significant role in the
repair of mutations generated by reactive oxygen species
during aerobic metabolism. BER was not linked with
any human genetic disorder until recently, when a

British family in which three siblings affected by multiple
colorectal adenomas and carcinoma was shown to be
compound heterozygous for MYH missense variants
Tyr165Cys (Y165C) andGly382Asp (G382D) (Al-Tassan
et al. 2002). MYH is a homologue of E. coli mutY, and
the mutations mentioned above affect residues that are
conserved (Tyr82 and Gly253). Tyrosine 82 is predicted
to function in mismatch specificity and is located in the
pseudo-helix-hairpin-helix (Guan et al. 1998). Adenine
glycosylase activity assays of the Tyr82Cys and
Gly253Asp mutant proteins with 8-oxoG:A and G:A
substrates show that their rate for adenine removal at
37�C is reduced by approximately 98% (Tyr82Cys) and
86% (Gly253Asp) (Al-Tassan et al. 2002). Furthermore,
bi-allelic germ-line mutations in MYH were identified in
seven unrelated patients with colorectal adenomas (six
with colorectal cancer) (Jones et al. 2002). Interestingly,
the missense variations Tyr165Cys and Gly382Asp,
which significantly reduce the adenine glycosylase
activity of MYH protein, were each identified once in a
normal control group of 100 British individuals with no
history of colorectal adenoma or carcinoma (Al-Tassan
et al. 2002). Since a connection between DNA-repair
gene mutations and the path to hematological malig-
nancy is now well established, and individuals who carry
heterozygous MYH missense mutations Tyr165Cys and
Gly382Asp have been documented in a control group
(Al-Tassan et al. 2002), we investigated the association
between these two MYH missense mutations and
childhood leukemia risk.

Results and discussion

The study population included 185 cases of childhood
leukemias subdivided into two groups: acute myeloid
leukemia (AML; n=45) and acute lymphoblastic leu-
kemia (ALL; n=140) diagnosed at Istanbul University
between 1998 and 2002. Detailed clinical data are
available for all patients. The French–American–British
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Cooperative Study Group criteria were used for histo-
logical subgroup classification (Cheson et al. 1990).
Randomly selected Bilkent University students, with no
history of hematological malignancies or any other type
of cancer (n=124), were genotyped in order for us to
assess the status of the MYH mutations in apparently
healthy Turkish individuals. Informed consent was
obtained from all the students.

We screened for the MYH Tyr165Cys and Gly382-
Asp variants using genomic DNA as described
(Al-Tassan et al. 2002). Neither mutation was present in
any of the samples, except for that of one patient diag-
nosed with AML/M3. MYH Tyr165Cys mutation in the
heterozygous state was present in the sample obtained at
the time of initial diagnosis. Further sampling at
remission, and the analysis of parental DNA, showed
only the normal allele. Therefore, the mutation was
considered to be specific for the leukemic blasts. It may
be interesting to screen the whole MYH gene for
mutations in hematological malignancies in the future,
especially if increased transversions of G:C to T:A
proved to be present in leukemic blasts. Based on these
results, an association between childhood leukemias and
the MYH missense variants Tyr165Cys and Gly382Asp
was not observed. Also, these variants appear to be
absent—if not at a very low frequency—in the Turkish
population, contrary to the British population.
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