
PARALLEL IMAGE RESTORATION

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Tahir Malas

January, 2004

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Mustafa Pınar

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Uğur Güdükbay

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

PARALLEL IMAGE RESTORATION

Tahir Malas

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

January, 2004

In this thesis, we are concerned with the image restoration problem which has

been formulated in the literature as a system of linear inequalities. With this for-

mulation, the resulting constraint matrix is an unstructured sparse-matrix and

even with small size images we end up with huge matrices. So, to solve the

restoration problem, we have used the surrogate constraint methods, that can

work efficiently for large size problems and are amenable for parallel implemen-

tations. Among the surrogate constraint methods, the basic method considers all

of the violated constraints in the system and performs a single block projection

in each step. On the other hand, parallel method considers a subset of the con-

straints, and makes simultaneous block projections. Using several partitioning

strategies and adopting different communication models we have realized several

parallel implementations of the two methods. We have used the hypergraph par-

titioning based decomposition methods in order to minimize the communication

costs while ensuring load balance among the processors. The implementations

are evaluated based on the per iteration performance and on the overall perfor-

mance. Besides, the effects of different partitioning strategies on the speed of

convergence are investigated. The experimental results reveal that the proposed

parallelization schemes have practical usage in the restoration problem and in

many other real-world applications which can be modeled as a system of linear

inequalities.

Keywords: Parallel image restoration, distortion, parallel algorithms, linear feasi-

bility, surrogate constraint method, hypergraph partitioning, rowwise partition-

ing, checkerboard partitioning, fine-grain partitioning, point-to-point communi-

cation, all-to-all communication, convergence rate.

iii

ÖZET

PARALEL GÖRÜNTÜ ONARIMI

Tahir Malas

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Ocak, 2004

Bu çalışmada, doğrusal eşitsizlikler sistemine dönüştürülmüş olan görüntü

onarımı problemi üzerinde durulmuştur. Bu yöntemle elde edilen matrisler belli

bir yapısal dizilime sahip olmayan seyrek matrislerdir. Ayrıca, küçük ölçekli

görüntülerde dahi çok büyük ölçekli matrisler oluşmaktadır. Dolayısıyla, prob-

lemin çözümünde, büyük ölçekli problemler için verimli çalışabilen ve paralel

gerçekleştirmelere uygun olan aracı kısıtlar yöntemleri kullanılmıştır. Önerilen

yöntemler arasından, sağlanmayan kısıtların tümünü dikkate alan ve her adımda

tek bir izdüşüm gerçekleştiren temel yöntem ve sağlanmayan kısıtların alt

kümelerini dikkate alıp oluşan izdüşümlerin dışbükey birleşimini alan paralel

yöntem kullanılmıştır. Çeşitli bölümleme stratejileri ve farklı iletişim model-

leri kullanılarak bir çok paralel gerçekleştirimler yapılmıştır. Hiper-çizge temelli

bölümlemeler kullanılarak iletişim maliyeti azaltılırken işlemciler arasındaki yük

dengesi sağlanmıştır. Gerçekleştirimler yineleme bazında ve toplam bazda

değerlendirilmiştir. Aynı zamanda, bölümlemelerin yakınsama hızına olan etkisi

araştırılmıştır. Deney sonuçları, önerilen paralel yöntemlerin, görüntü onarımı

probleminde ve doğrusal eşitsizlikler sistemine çevrilebilen gerçek uygulamalarda

pratik kullanımı olduğunu göstermiştir.

Anahtar sözcükler : Paralel görüntü onarımı, bozunum, paralel algoritmalar, li-

neer fizibilite, aracı kısıtlar yöntemi, hiper-çizge parçalama, sırasal parçalama,

damatahtası parçalama, ince tane parçalama, noktasal iletişim, herkes-herkese

iletişim, yakınsama hızı.

iv

Acknowledgement

I would like to express my gratitude to Prof. Dr. Cevdet Aykanat for his super-

vision, guidance, and suggestions throughout the development of this thesis.

I would like to thank the committee members Assist. Prof. Dr. Uğur Güdükbay

and Assoc. Prof. Dr. Mustafa Pınar for reading and commenting on this thesis.

I would like to give my special thanks to Bora Uçar. He helped me a lot and

gave invaluable support during the last year. I also thank to my office mates

Emre Şahin and Gökhan Yavaş for their friendship.

Especially, I would like to thank my wife for her tolerance, patience, and moral

support. I am also grateful for her future supports that she will provide for me.

v

Contents

1 Introduction 1

2 Image Restoration Problem 6

2.1 Digital Image Representation . 6

2.2 Digital Image Restoration . 8

2.2.1 Formulation of the Problem 9

2.2.2 Image Restoration Methods 11

2.3 Image Restoration and the Linear Feasibility Problem 12

2.3.1 The Linear Feasibility Problem 12

2.3.2 Feasibility Problem Formulation 12

2.4 Iterative Methods for Linear Feasibility Problems 13

3 Surrogate Constraint Methods 15

3.1 Basic Surrogate Constraint Method 16

3.2 Sequential Surrogate Constraint Method 18

3.3 Parallel Surrogate Constraint Method 20

vi

CONTENTS vii

3.4 Comparison of the Methods . 21

4 Parallelization based on 1D Partitioning 24

4.1 Hypergraph Partitioning based 1D Decomposition 25

4.1.1 Hypergraph Partitioning Problem 27

4.1.2 Column-net and Row-net Models 29

4.1.3 Minimizing Communication Costs 30

4.2 Parallel Algorithms . 31

4.2.1 Parallelization of the Basic Method 31

4.2.2 Parallel Surrogate Constraint Method 34

4.3 Implementation Details . 34

4.3.1 Provide partition indicators and problem data to processors 36

4.3.2 Setup communication . 36

4.3.3 Set Local Indices . 38

4.3.4 Assemble Local Sparse Matrix 39

4.4 Performance Analysis . 39

5 Parallellization based on 2D Partitioning 41

5.1 Hypergraph Partitioning based 2D Decomposition 42

5.1.1 Checkerboard Partitioning 42

5.1.2 Fine-grain Partitioning . 43

5.2 Parallel Algorithms . 43

CONTENTS viii

5.2.1 Parallelization of the Basic Method 43

5.2.2 Parallel Surrogate Constraints Method 48

5.3 Implementation Details . 48

5.3.1 Point-to-point Communication Scheme 48

5.3.2 All-to-all Communication Scheme 52

5.4 Performance Analysis . 56

5.4.1 Point-to-point Communication 56

5.4.2 All-to-all Communication 57

6 Results 59

6.1 Data Sets . 59

6.2 Per Iteration Performance . 61

6.3 Overall Performance . 73

6.4 Restoration Results . 75

7 Conclusion 79

A Storage Schemes for Sparse Matrices 86

B Sparse Matrix-Vector Multiplies 89

List of Figures

3.1 Basic surrogate constraint method 18

3.2 Sequential surrogate constraint method 20

3.3 Coarse grain formulation of parallel surrogate constraint method . 22

4.1 1D Basic surrogate constraint method 33

4.2 Improved parallel surrogate constraint method 35

4.3 Setting up communication for 1D decomposition 37

5.1 2D Basic surrogate constraint method 46

5.2 2D Parallel surrogate constraint method 49

5.3 Setting up communication in 2D decomposition for the point-to-

point communication scheme . 51

5.4 Combining algorithm . 54

5.5 Expand operation based on the combining algorithm 54

5.6 Fold operation based on the combining algorithm 55

6.1 Translational motion observed in the combined blur. 60

ix

LIST OF FIGURES x

6.2 Sparsity patterns corresponding to three type of blur 61

6.3 BSCM speedup curves . 65

6.4 PSCM speedup curves . 66

6.5 Parallel execution times of the implementations with 200×150 image 70

6.6 Parallel execution times of the implementations with 400×300 image 71

6.7 Parallel execution times of the implementations with 800×600image 72

6.8 Overall speedup charts of the parallel methods 76

6.9 Original image . 77

6.10 Blurred images . 78

6.11 Restored images . 78

6.12 Restored image with decreased tolerance value 78

B.1 Inner Product Form of Sparse Matrix Vector Product 90

B.2 Outer Product Form of Sparse Matrix Vector Product 90

List of Tables

6.1 Properties of test matrices . 62

6.2 Per iteration execution times of BSCM 63

6.3 Per iteration execution times of PSCM 64

6.4 Partition results . 68

6.5 Partition results for 2D decompositions 69

6.6 Overall number of iterations of the surrogate constraint methods . 74

6.7 Preprocessing times for the data sets of the 400×300 image 77

xi

Chapter 1

Introduction

Images are produced in order to record or display useful information. However,

due to imperfections in the electronic or photographic medium, the recorded im-

age is sometimes distorted. The distortions may have many causes, but two types

of causes are often dominant: blurring and noise. Blurring is a form of bandwidth

reduction of the image due to imperfect image formation process. It can be caused

by the relative motion between the camera and the original scene, by an optical

system out of focus, by an atmospheric turbulence for aerial photographs, or by

spherical aberrations of the electron lenses for electron micrographs. In addition

to blurring effects, the recorded image can also be corrupted by noises. These

may be introduced by the recording medium (i.e. film grain noise), transmission

medium (i.e. a noisy channel), measurement errors due to the limited accuracy

of the recording system, and quantization of the data for digital storage.

Image restoration is the estimation of the original scene from a distorted and

noisy one. The characteristics of the degrading system and the noise are assumed

to be known a priori for the image restoration methods [18].

Since the introduction of restoration in digital image processing in 1960s, a

variety of image restoration methods have been developed. One class of the pro-

posed methods is iterative methods. The advantage of using iterative algorithms is

1

CHAPTER 1. INTRODUCTION 2

that they allow a flexible and improved formulation to the solution of the restora-

tion problem [18]. Furthermore, they are the most straightforward to implement

and the large dimensions involved in image restoration also makes these meth-

ods favorable. However, the drawback of iterative methods is the computational

demand.

One way of formulating an iterative solution to the restoration problem is to

convert the problem into a linear feasibility problem [5] and then using iterative

techniques to find a feasible point of the system. The linear feasibility problem

is to find a feasible point with respect to a set of linear inequalities. In matrix

notation, the problem can be formulated as follows. Given an M×N matrix A

and b ∈ RM , find a feasible point x ∈ RN such that

Ax ≤ b. (1.1)

Note that, for an m×n image, A in Eq. 1.1 is an mn×mn sparse matrix which

has an irregular sparsity pattern. So, even for small size images, A becomes very

large.

One class of commonly used iterative methods for the linear feasibility prob-

lem is the projection methods. This class of methods has been developed for the

solution of the equality systems in 1930s by Kacmarz (cited in [26]), and Cim-

mino (cited in [5]). Later, Gubin et al. [9] extended Kacmarz’s work, and Censor

and Elfving [6] extended Cimmino’s work to linear inequalities. Gubin’s tech-

nique has been known in the literature as the successive orthogonal projections

method. In this method, an initial guess is successively projected onto hyper-

planes corresponding to the boundary of the violated constraints until a feasible

point is found which satisfies all the constraints. Censor and Elfving’s method has

been known as the simultaneous orthogonal projections method. In this method,

the current point is projected onto each of the violated constraint’s hyperplanes

simultaneously, and the new point is taken to be the convex combination of all

projections.

It is impossible to adopt both approaches to image restoration process since

the dimensions involved are very large. Both methods become computationally

very expensive since a projection is made for each violated constraint from the

CHAPTER 1. INTRODUCTION 3

current point. The surrogate constraint methods proposed by Yang and Murty

[29] eliminate this problem by processing a group of violated constraints at a time.

In each iteration, instead of performing projections onto each violated constraint,

a surrogate constraint is derived from a group of violated constraints and block

projections are carried out. The current point is orthogonally projected onto this

surrogate constraint treated as an equation, and the process is repeated until a

feasible solution is found.

Three kind of surrogate constraint methods have been proposed by Yang and

Murty in [29]. The Basic Surrogate Constraint Method (BSCM) takes all vio-

lated constraints in the system and makes successive projections of the current

point. Sequential Surrogate Constraint Method (SSCM) and Parallel Surrogate

Constraints Method (PSCM) on the other hand, work on a small subset of the vi-

olated constraints. SSCM is based on successive block projections, while PSCM is

based on simultaneous block projections. However, PSCM converges very slowly

compared to SSCM. To compensate this, Özaktaş et al. [23] introduced an ad-

justed step sizing rule and proposed an improved version of PSCM. Instead of

taking the convex combination, block projections are added up, and then to in-

crease the movement of the current point towards the feasible area, a step size

adjustment rule is used.

Both of the works by Yang and Murty and Özaktaş et al. concentrated on

SSCM and PSCM. However, considering the sequential behavior, even though

requiring a large number of iterations, the simplicity of BSCM makes it faster

than SSCM. Moreover, developments in the hardware technologies allow us to

work on whole matrices instead of the smaller blocks.

On the other hand, recent developments in the parallel processing techniques

allow us to efficiently parallelize the basic method, instead of performing simul-

taneous projections. So, in this study, we implemented both a parallel version

of BSCM and the improved version of PSCM, then compared these with the

sequential version of BSCM.

As well as the parallel algorithm employed, efficiency of a parallel system de-

pends on the distribution of the data and the work among the processors. A good

CHAPTER 1. INTRODUCTION 4

partitioning scheme should evenly distribute the computations over the proces-

sors while minimizing interprocessor communication. For the problem at hand,

computational times of the methods are dominated by the sparse matrix-vector

multiplies, so the load of the processors depends on the number of nonzero ele-

ments in a partition. Hence, the matrix should be distributed to processors in

such a way that each processor ends up with approximately the same number of

nonzero elements. On the other hand, for the parallel system used, the interpro-

cessor communication time depends on the number of elements communicated

(volume of communication), the message latency (start-up time) which depends

on the number of messages communicated, and maximum volume and number of

messages handled by any single processor [11].

For the first parallelization scheme utilized, namely uniform row-wise striped

partitioning, four of the mentioned communication-cost metrics are tried to be

minimized, based on the communication-hypergraph partitioning model proposed

by Uçar and Aykanat [2]. This model maintains the computational load balance

as well. In the first phase of the partitioning process, using existing 1D partition-

ing methods, total message volume is minimized and load balance is maintained.

Then, this partitioning is input to the second phase, in which the remaining

three communication-cost metrics are encapsulated, while trying to attain the

total message-volume bound as much as possible.

The second type of parallelization scheme is based on 2D checkerboard par-

titioning of matrix A. A two-phase multi-constraint hypergraph partitioning

method is used [4] with two kinds of cutsize metrics. First, connectivity cutsize

metric is used in the partitioning process, and a point-to-point, local commu-

nication scheme is employed. In this communication scheme, each processor

sends(receives) the required vector components from the processors in its con-

nectivity set for the expand(fold) operation. For a mesh of K = r×c processors,

the proposed method enforces an upper bound of r + c − 2 on the number of

messages handled by a single processor, while explicitly minimizing the commu-

nication volume. Secondly, the cut net metric is used in the partitioning process.

In this way, matrix A is divided row-wise and column-wise into internal and ex-

ternal parts. The internal parts allow independent computations while external

CHAPTER 1. INTRODUCTION 5

parts induce interprocessor communications. Here minimizing cut net metric cor-

responds to minimizing the size of the external parts. The required expand and

fold operations are carried out in the external parts using an efficient all-to-all

broadcast operation based on the combining algorithm developed by Jacunski

et al. for switch based clusters of workstations [14].

Final parallelization scheme employed is based on 2D decomposition of the

problem in a fine-grain manner. The fine-grain hypergraph model proposed in [3]

is used in the partitioning process. By using a point-to-point, local communica-

tion scheme, this method substantially decreases the communication volume.

The proposed methods are validated by restoring severely blurred images. Im-

ages are blurred using isotropic scaling, rotation motion, and a combined motion

including translational and rotation motion, as well as isotropic scaling. Then

they are deblurred using proposed parallel implementations.

The organization of the rest of the thesis is as follows: The next chapter

gives a number of fundamentals issues related to the image restoration problem

and clarifies its relation with the feasibility problem. Furthermore, some iterative

methods used in the linear feasibility problems are reviewed. Chapter 3 introduces

surrogate constraint methods. Then, Chapter 4 and Chapter 5 gives parallel im-

plementations based on 1D and 2D partitioning schemes, respectively. Chapter 6

presents experimental results and evaluates restoration and parallel performance

of the implementations. Finally, the thesis is concluded in Chapter 7.

Chapter 2

Image Restoration Problem

This chapter summarizes a number of fundamental issues related to the image

restoration problem. First section describes digital image representation and in-

troduces a few concepts related to digital images. Then, image restoration prob-

lem is defined and some restoration techniques are reviewed. The third section

presents linear feasibility problem and clarifies its relation with the restoration

problem. The chapter concludes with a discussion of the iterative techniques

developed for the solution of the linear feasibility problem.

2.1 Digital Image Representation

Images are denoted by two-dimensional functions of the form f(x, y). For

monochromatic images, the value or amplitude of f at spatial coordinates (x, y)

is a positive scalar quantity. We call that value of monochrome image at any

coordinates (x, y) the gray level (l) of the image at that point. That is,

l = f(x, y). (2.1)

The interval that l takes is called the gray scale. Common practice is to shift

this interval numerically to the interval [0, L− 1], where l = 0 is considered black

6

CHAPTER 2. IMAGE RESTORATION PROBLEM 7

and l = L− 1 is considered white on the gray scale. All intermediate values are

shades of gray varying from black to white.

An image may be continuous with respect to x- and y-coordinates, and also

in amplitude. Digital images are produced by sampling in both coordinates and

in amplitude. Digitizing the coordinate values is called sampling. Digitizing the

amplitude values is called quantization.

The result of the sampling and quantization is a matrix of real numbers.

Suppose that an image f(x, y) is sampled so that the resulting digital image

has m rows and n columns. So the complete m×n image can be written in the

following matrix form:

f(x, y) =

f(1, 1) f(1, 2) . . . f(1, n)

f(2, 1) f(2, 2) . . . f(2, n)
...

...
...

...

f(m, 1) f(m, 1) . . . f(m,n)

(2.2)

Digitization process requires decisions about values for m, n, and for the

number L, of discrete gray levels allowed for each pixel. There are no require-

ments on m and n, however due to processing, storage, and sampling hardware

considerations, the number of gray levels is a power of two:

L = 2k (2.3)

The number, b, of bits required to store a digitized image is

b = mnk. (2.4)

When m = n, this equation becomes

b = n2k (2.5)

So, we can deduce that storage requirement for an n×n pixel monochromatic

image is Θ(n2) [8].

CHAPTER 2. IMAGE RESTORATION PROBLEM 8

2.2 Digital Image Restoration

Due to imperfections in the electronic or photographic medium, the recorded im-

age often represents a degraded version of the original scene. The degradations

may have many causes, but two types of degradations are often dominant: blur-

ring and noise. Blurring is a form of bandwidth reduction of the image due to

image formation process. It can be caused by relative motion between the camera

and the original scene, or by an optical system which is out of focus. Other blur-

ring sources are nonlinearity of the electro-optical sensor, atmospheric turbulence

in remote sensing or astronomy, spherical aberrations of the electron lenses for

electron micrographs, and X-ray scatter for CT scans [18].

In addition to the blurring effects, the recorded image may also be corrupted

by the noise. The noise may be introduced by the recording medium, transmission

medium, measurement errors due to the limited accuracy of the recording system,

and quantization of the data for digital storage.

The field of image restoration (also referred to as image deblurring or image

recovery) is concerned with the recovery or estimation of the uncorrupted image

from a distorted and noisy one. Essentially, it tries to perform an operation on

the image which is the inverse of the imperfections in the image formation system.

In the use of image restoration methods, the characteristics of the degrading

system and the noises are known to be a priori. Estimation of the properties of

the imperfect imaging system is the subject of image identification [18].

In this work, we study restoration of monochromatic images. Extension of

the methods to color images is straightforward if the color image is described

by a vector with three components corresponding to the tri-stimilus values, red,

green, and blue. Considering each of these as a monochromatic image itself, and

neglecting mutual relations between the color components, the processing of a

color image becomes equivalent to processing three independent monochromatic

images [18].

CHAPTER 2. IMAGE RESTORATION PROBLEM 9

2.2.1 Formulation of the Problem

Image formation is generally described by a linear spatially invariant relation and

the noise is considered to be additive [18]. The observed or recorded image g(i, j)

is then given as

g(i, j) = d(i, j) ∗ f(i, j) + w(i, j), (2.6)

where d(i, j) denotes the point-spread function of the image formation system,

f(i, j) is the ideal or original image that would have resulted from a perfect

recording of the original scene, and w(i, j) models the noise in recording image.

In terms of the mathematical model in Eq. 2.6, the purpose of image restora-

tion can now be specified as the computation of an estimate f̂(i, j) of the original

image f(i, j) when g(i, j) is observed, and some (statistical) knowledge of both

d(i, j) and w(i, j) is available.

In [24], a more general formulation of the problem is given which can model a

rather general class of image recovery problems having the following properties:

(i) Nonseparable. The two dimensions are coupled and the problem cannot be

reduced to two one-dimensional problems.

(ii) Anisotropic. The distortion is different along different directions.

(iii) Space Variant. The distortion is different for different parts of the image;

it is not space invariant.

(iv) Nonlocal. The value of the distorted image at a certain point may depend

on values of the original image at distant points.

According to this formulation the image g(r) recorded on the film is given by

g(r) = K
∫ T

t=0
f(ρ(r, t))dt (2.7)

where r denotes position vector (x, y), K is a constant, ρ(r, t) represents the time

varying, nonlinear distortion which can model the following type of motions:

CHAPTER 2. IMAGE RESTORATION PROBLEM 10

(i) Translational Motion. ρ(r, t) = r − r(t) where ρ(r, t) is a given function

representing the motion of the original image or camera as a function of

time. Arbitrarily two dimensional motions with arbitrarily accelerations

are possible.

(ii) Isotropic Scaling. ρ(r, t) = r/m(t) where m(t) is an arbitrarily scaling

function of time. By properly choosing m(t), it is possible to model the

movement of the object towards or away from the camera.

(iii) Rotation. ρ(r, t) = Rφ(t)r where Rφ(t)r is the 2×2 rotation matrix

[cos φ(t), sin φ(t);− sin φ(t), cos φ(t)]. Here, φ(t) is an arbitrary function of

time representing the angle of rotation.

Other special cases and their combinations may also be considered.

Since, Eq. 2.7 represents a linear relation between g and f , it is possible to

write it in the form

g(r) =
∫

r′
H(r, r′)f(r′)dr′, (2.8)

where H(r, r′) represents the blurring system. To find H(r, r′) we use,

f(ρ(r, t)) =
∫

r′
f(r′)δ(r′ − ρ(r, t))dr′ (2.9)

in Eq. 2.7 to obtain

g(r) =
∫

r′

[
K

∫ T

t=0
δ(r′ − ρ(r, t))dt

]
f(r′)dr′, (2.10)

where K is a constant. Comparing Eq. 2.8 and Eq. 2.10 we conclude that,

H(r, r′) = K
∫ T

t=0
δ(r′ − ρ(r, t))dt. (2.11)

In discrete domain this can be written as,

H[r, r′] = K
K∑

k=0

δ[r′ − ρ[r, t]]. (2.12)

Equation 2.8 can also be written in discrete domain in the following form

g[r] =
∑

r′
H[r, r′]f [r′]. (2.13)

CHAPTER 2. IMAGE RESTORATION PROBLEM 11

If the columns of the f and g matrices are stacked on top of each other,

Eq. 2.13 can be converted to the matrix-vector multiplication form:

g = Hf, (2.14)

where H is an mn×mn matrix for an m×n pixel image. For example, 800×600

pixel image produces a matrix H which has a size of 480000×480000. Normally,

matrices of this size cannot be handled if they are not sparse.

2.2.2 Image Restoration Methods

All image restoration methods concentrate on inverting Eq. 2.6 in order to get

an estimate of f̂(i, j) which is “as close as possible” to the original image f(i, j).

Image restoration methods can be classified as frequency domain methods, recur-

sive methods, and iterative methods. Frequency domain methods are the most

restrictive restoration techniques which can handle only space-invariant blurs. It

restores an image by applying inverse filtering. Recursive methods make use of the

recursive filters all of which are based on Kalman filtering. Recursive filters have

also some restrictions on the modeling and have difficulty of imposing nonlinear

constraints on the restoration result [18].

Iterative methods produce a sequence of vectors x(0), x(1), x(2), . . . such that

the sequence converges to x∗ = f̂ for a finite number of iterations. Of the three

categories, iterative restoration methods are the most straightforward to imple-

ment and the most flexible to apply. The large dimensions involved in image

restoration also makes these methods favorable.

The primary drawback of the iterative schemes is the computational demand.

The most time consuming computational steps are matrix-vector products. The

size of the matrices are large and obtaining a restoration may be much more

expensive compared to recursive or frequency-domain methods.

CHAPTER 2. IMAGE RESTORATION PROBLEM 12

2.3 Image Restoration and the Linear Feasibil-

ity Problem

2.3.1 The Linear Feasibility Problem

The linear feasibility problem is how to find a point in the non-empty intersection

Φ = ∩m
i=1Φi 6= ∅ of a finite family of convex sets Φi ⊆ Rn, i ∈ I = {1, 2, . . . , m}

in the n-dimensional Euclidean space Rn. When the sets are given in the form

Φi = {x ∈ Rn | yi(x) ≤ 0, yi is a convex function}, (2.15)

we are faced with the problem of solving a system of inequalities with convex

functions, of which the linear case, (i.e. yi(x) = Aix− bi, where Ai is the ith row

of an m×n constant matrix A) is an important and special case [5].

2.3.2 Formulation of the Restoration Problem as a Linear

Feasibility Problem

Consider Eq. 2.14. Defining a suitable error tolerance parameter ε for the additive

noise, we can rewrite the equation as

|(g′ −Hf)i| < ε i = 1, . . . , MN (2.16)

where (g′ − Hf)i is the ith component of g′ − Hf . For i = 1, . . . ,MN , |(g′ −
Hf)i| < ε implies that

g′i −Hfi < ε if g′i > Hfi

−g′i + Hfi < ε if g′i < Hfi

(2.17)

or,

Hfi < ε + g′i if g′i < Hfi

−Hfi < ε− g′i if g′i > Hfi

(2.18)

So, Equation Eq. 2.16 can be converted to a linear feasibility problem of the

form Ax ≤ b by setting

A =

[
H

−H

]

2MN×MN

, x = fMN×1, b =

[
ε + g′

ε− g′

]

2MN×1

(2.19)

CHAPTER 2. IMAGE RESTORATION PROBLEM 13

where ε is an MN × 1 vector of ε’s.

2.4 Iterative Methods for Linear Feasibility

Problems

Iterative methods are commonly used to solve inequality systems since they are

based on simple computation steps and easy to program. Moreover, large dimen-

sions confronted in image restoration and image reconstruction problems prohibit

the use of direct methods. So, linear inequality solvers used in these areas are

often based on iterative methods.

One class of iterative methods is the projection approach. Projection methods

are based on the works of Kacmarz [15] and Cimmino [7] to solve linear equa-

tions. In Kacmarz’s approach, successive projections are made onto hyperplanes

which represent linear equations. This approach is highly sequential in nature.

Cimmino’s method makes simultaneous projections onto hyperplanes and allow

a certain degree of parallelism.

Gubin et al. [9] developed the method of successive orthogonal projections

(also known as the method of projections onto convex sets) which is an extension

of the Kacmarz’s method for solving linear inequality systems. In this method,

a violated constraint is identified, and a projection is made onto violated convex

sets successively. An orthogonal projection onto a single linear constraint is com-

putationally inexpensive, but since this step is carried out for each constraint,

the overall computation becomes costly for large systems. Moreover, this method

is not suitable for parallel implementations.

On the other hand, Censor and Elfving [5] developed a Cimmino-type algo-

rithm for linear inequalities. This method makes orthogonal projections simulta-

neously onto each of the violated constraints from the current point and takes the

new point as a convex combination of those projection points. This method is

CHAPTER 2. IMAGE RESTORATION PROBLEM 14

suitable for parallel implementation but making projections for each of the con-

straints is again not desirable. Moreover, instead of accumulating the projections,

taking convex combination of them results in slow convergence.

Later, Yang and Murty proposed surrogate constraint methods which makes

block projections by considering all or a subset of the violated constraints [29].

Surrogate constraint methods are able to process a group of constraints at the

same time while retaining the computational simplicity of the projection meth-

ods. Moreover, they are amenable to parallel implementations. In the following

chapter we will discuss these methods in more detail.

Chapter 3

Surrogate Constraint Methods

In order to solve the image restoration problem, we will concentrate on finding a

feasible solution to the system,

Ax ≤ b, (3.1)

where A is an M×N matrix, x is a N×1 vector, and b is an M×1 vector. If Ai

and bi are the ith row of the system, then Aix ≤ bi defines the ith constraint.

As discussed in Section 2.4, to solve the system in Eq. 3.1, if at step t the

current point xt violates the ith constraint of the system, successive orthogo-

nal projections method developed by Kacmarz [15] successively projects xt onto

hyperplanes Aix
t = bi and generates the next point xt+1 as follows,

xt+1 = xt − dt, (3.2)

where the projection vector dt is computed as

dt =
(Aix

t − bi)

||Ai||2 AT
i . (3.3)

On the other hand, instead of dealing with each of the violated constraints,

surrogate constraint methods proposed by Yang and Murty [29] derive surrogate

hyperplanes from a set of the violated constraints and then take the projection of

the current point onto surrogate hyperplanes. Surrogate hyperplanes eliminate

the drawback of making projections for each of the violated constraints.

15

CHAPTER 3. SURROGATE CONSTRAINT METHODS 16

Among the methods proposed by Yang and Murty, basic surrogate constraint

method (BSCM) derives surrogate hyperplanes from all of the violated constraints

in the system, whereas sequential surrogate constraint method (SSCM) and par-

allel surrogate constraint method (PSCM) consider a subset of the constraints.

In this chapter we will present these methods and discuss their performances.

3.1 Basic Surrogate Constraint Method

Basic surrogate constraint method is the simplest method proposed in [29]. This

method combines all of the violated constraints and makes just one projection

in each cycle as follows: If the current point xt at step t violates the system

in Eq. 3.1, an 1×M weight vector π is generated such that 0 < πi < 1 if the

ith constraint is violated (i.e. for i such that Aix
t > bi), and πi = 0 otherwise.

Moreover, for convenience we let
∑M

i=1 πi = 1. Then, the surrogate constraint

(πA)xt ≤ (πb) is generated for which the corresponding surrogate hyperplane is

Hs = {x : (πA)xt = (πb)}.

The next point xt+1 is generated by projecting xt onto this surrogate hyperplane

as follows:

xt+1 = xt − λd, (3.4)

where the projection vector d is computed as,

d =
πAxt − πb

||πA||2 (πA)T , (3.5)

and λ is the relaxation parameter that determines the location of the next point

which is in the line segment joining the current point and its reflection on the

hyperplane. When λ = 1 the next generated point is the exact orthogonal pro-

jection of the current point. If 0 < λ < 1, the step taken is shorter which refers

to underrelaxation case and if 1 < λ < 2, then the step taken is longer which

refers to the overrelaxation case [5].

An important issue for the solution of the problem is the selection of the weight

vector π. Weights may be distributed equally among all violated constraints or

CHAPTER 3. SURROGATE CONSTRAINT METHODS 17

they can be assigned in proportion to the amount of violations. We prefer to use

the hybrid approach and compute the ith element of π as:

πi =

w1(Aix
k − bi)/

∑V C
i=1(Aix

k − bi) + w2/V C ifAix
k − bi > 0

0 otherwise
(3.6)

where w1 and w2 are two appropriate weights summing up to 1, and V C is the

number of violated constraints at step t.

For convenience, we give in Fig. 3.1 the pseudocode of the serial version of

BSCM method. The notations used in the algorithm are as follows:

• A is an M×N matrix containing Z non-zero entries. (A = H , see

Eq. 2.19).

• b+ = ε + g′ and b− = ε − g′ are M×1 vectors (see Eq. 2.19).

• π, π+, and π− are 1×M vectors.

• δ+ and δ− are M×1 vectors.

• q, d, and x are N×1 vectors.

• µ, γ, and λ are scalars.

Since our system in Eq. 3.1 is composed of the same matrices with different

signs (see Eq. 2.19 in Section 2.3.2), only the positive H matrix is held during

the computations. We call the system Hx ≤ ε + g as the upper system and

−Hx ≤ ε− g as the lower system. Since qT = π+A + π−(−A) = (π+− π−)A, we

form the vector π = π+ − π− and then perform the multiplication. To compute

y− = −Ax, simply y = Ax is negated. In this way, we have also saved computa-

tional time since the sparse matrix vector multiplications −Ax and π−(−A) are

not performed.

In terms of the number of floating point operations (which are scalar addition,

subtraction, and multiplication), the computational time of a single iteration of

BSCM is:

Ts = (4Z + 12M + 5N)tflop. (3.7)

CHAPTER 3. SURROGATE CONSTRAINT METHODS 18

while true do
y ← Ax , multiply A from right {t = 2Z}
δ+ ← y − b+ , error of the upper system {t = M}
δ− ←− y − b− , error of the lower system {t = M}
π+ ← updatePi(δ+) , update π+ using Eq. 3.6 {t = 3M}
π− ← updatePi(δ−) , update π− using Eq. 3.6 {t = 3M}
if π+ = 0 and π− = 0 then , check convergence

exit
π ← π+ − π− , compute π {t = M}
q ← (πA)T , multiply A from left {t = 2Z}
µ ← π+δ+ + π−δ− , sum of inner products {t = 3M}
γ ← qT q , inner product {t = 2N}
d ← µ/γ q , compute projection vector {t = N}
x ← x − λ d , update x {t = 2N}

endwhile

Figure 3.1: Basic surrogate constraint method

Verification of the convergence of the algorithm is based on the Fejer-

monotonicity of the generated sequence {xt}∞k=0. If the feasibility check is allowed

a certain degree of tolerance ε, so that Aix
t is compared with bi + ε, then the

algorithm converges after a finite number of iterations [29].

3.2 Sequential Surrogate Constraint Method

Instead of working on the whole A matrix, sequential surrogate constraint method

partitions the system in Eq. 3.1 into subsystems and then solves the feasibility

problem by applying the basic method on the subsystems in a cyclic order. Specif-

ically, let the matrix A be partitioned into K submatrices, and the right-hand

CHAPTER 3. SURROGATE CONSTRAINT METHODS 19

side vector b be partitioned conformably into K subvectors, as follows:

A =

A1

...

Ak

...

AK

, b =

b1

...

bk

...

bK

, (3.8)

where Ak is an mk×N matrix having zk nonzeros, and

K∑

k=1

mk = M,
K∑

k=1

zk = Z.

Surrogate constraints are defined as πkAkx ≤ πkbk for each block where πk is

an 1×mk vector as defined before. Sequential surrogate constraint method solves

the system in Eq. 3.1 by projecting current point onto surrogate hyperplanes

(πkAk)x = πkbk successively for k = 1, . . . , K in cyclic order. For each block, the

next point is generated as:

xt+1 = xt − λdt
k, (3.9)

where dt
k is the projection vector of block k, which is computed as,

dt
k =

πt
k(Akx

t − bk)

||πt
kAk||2 (πt

kAk)
T . (3.10)

The pseudocode given in Fig. 3.2 clarifies the steps followed in the method.

In terms of the number of floating operations, per iteration time of the method

is:

Ts =
K∑

k=1

(4zk + 12mk + 5N)tflop (3.11)

Ts = (4Z + 12M + 5NK)tflop (3.12)

We see that the computational time of SSCM increases with the increasing

number of blocks. Each block brings an extra computation time of 5N which can

be a serious overhead for sparse systems.

CHAPTER 3. SURROGATE CONSTRAINT METHODS 20

while true do
for k = 1 to K do

yk ← Ak x , multiply Ak from right {t = 2zk}
δ+

k ← yk − b+
k , error of the upper system {t = mk}

δ−
k ←− yk − b−

k , error of the lower system {t = mk}
π+

k ← updatePi(δ+
k) , update π+ using Eq. 3.6 {t = 3mk}

π−
k ← updatePi(δ−

k) , update π− using Eq. 3.6 {t = 3mk}
πk ← π+

k − π−
k , compute πk {t = mk}

qk ← (πk Ak)T , multiply A from left {t = 2zk}
µk ← δ+

k π+
k + δ−

k π−
k , sum of inner products {t = 3mk}

γk ← qk
T qk , inner product {t = 2N}

dk ← µk/γk qk , compute projection vector {t = N}
x ← x − λ dk , update x {t = 2N)}

endfor

if π+
k = 0 and π−

k = 0 ∀ k then , check convergence
exit

endwhile

Figure 3.2: Sequential surrogate constraint method

3.3 Parallel Surrogate Constraint Method

In the sequential surrogate constraint method each point xt that will be projected

in block k is a result of the projection of xt−1 performed in the preceding block

k − 1. Thus, successive block projection imply a dependency between the blocks

of the system, causing the employed algorithm to be highly sequential. So, for the

parallel version of the surrogate constraint algorithm, Yang and Murty proposed

a Cimmino type algorithm [7] which carries out simultaneous block projections

and generates the next point as a convex combination of the block projections.

As in the case of SSCM, we will assume that matrix A is divided row-wise into

K contiguous blocks as shown in Eq. 3.8. In iteration t of the parallel method,

the next point xt+1 is computed as follows:

xt+1 = xt − λ
K∑

k=1

τkd
t
k, (3.13)

CHAPTER 3. SURROGATE CONSTRAINT METHODS 21

where τk are nonnegative numbers summing up to 1, and the kth projection is

defined in the same way as Eq. 3.10.

In Eq. 3.13 each projection has its own influence on the next point. This

influence can be taken into account so as to accelerate the convergence of the

system. Hence, τk can be taken to be proportional to the number of violated

constraints or the cumulative error of the respective block.

However, as clarified in [22], no matter how τk is chosen, the movement of

this original parallel routine is much shorter than the movement in the sequential

case, leading to slow convergence. Actually this method is a variance of the Cim-

mino type algorithms which suffers from slow convergence. To compensate this

behavior, Garcia Palomeras proposed an acceleration procedure for the Cimmino

type algorithms [25]. They give an improved step for the generation of the next

point. Later, Özaktaş et al. used this step sizing rule in the parallel surrogate

algorithm and generated the next point as follows [23]:

xt+1 = xt − λ

∑K
k=1 ||dt

k||2
||∑K

k=1 dt
k||2

K∑

k=1

dt
k, (3.14)

where dt
k is defined as in Eq. 3.10.

With this modification, the step sizes taken are enlarged so that the parallel

method converges much more rapidly. In Fig. 3.3 we give the coarse-grain parallel

formulation of the improved parallel surrogate method.

In terms of the floating point operations per iteration, the run time of the

algorithm is

Ts =
K∑

k=1

(4zk +12mk +6N)tflop +4Ntflop = (4Z +12M +6NK +4N)tflop. (3.15)

3.4 Comparison of the Methods

As discussed in [23], accumulating the projections instead of taking convex com-

binations speeds up the convergence of SSCM compared to the original PSCM

CHAPTER 3. SURROGATE CONSTRAINT METHODS 22

while true do
α ← 0
d ← 0
for k = 1 to K do

yk ← Ak x , multiply Ak from right {t = 2zk}
δ1+

k ← yk − b1k , error of the upper system {t = mk}
δ−

k ←− yk − b−
k , error of the lower system {t = mk}

π+
k ← updatePi(δ+

k) , update π+ using Eq. 3.6 {t = 3mk}
π−

k ← updatePi(δ−
k) , update π− using Eq. 3.6 {t = 3mk}

πk ← π+
k − π−

k , compute πk {t = mk}
qk ← (πk Ak)T , multiply A from left {t = 2zk}
µk ← δ+

k π+
k + δ−

k π−
k , sum of inner products {t = 3mk}

γk ← qk
T qk , inner product {t = 2N}

dk ← µk/γk qk , compute projection vector {t = N}
α ← α + dk

T dk , inner product sum {t = 2N}
d ← d + dk , sum the projection vectors {t = N}

endfor

if π+
k = 0 and π−

k = 0 ∀ k then , check convergence
exit

β ← dT d , inner product {t = 2N}
x ← x − λ α/β d , update x {t = 2N}

endwhile

Figure 3.3: Coarse grain formulation of parallel surrogate constraint method

of Yang and Murty. We also observed that, in SSCM and improved PSCM, as

the number of blocks increases, the number of iterations required for convergence

decreases in general. However, as we showed in the corresponding sections, each

block brings an extra computational time of 5Ntflop and 6Ntflop, for SSCM and

PSCM, respectively. These are serious overheads for sparse systems. In fact, they

are in the order of a sparse-matrix vector multiply for the systems used in the

restoration process. Hence, by increasing number of blocks even though the num-

ber of iterations decreases, the computational time increases for both SSCM and

PSCM. We conclude that, for sequential implementations, BSCM is preferable

to SSCM. However, considering the parallel implementations, modified version of

PSCM can be preferable to BSCM, since PSCM converges with less number of

CHAPTER 3. SURROGATE CONSTRAINT METHODS 23

iterations compared to BSCM. Nonetheless, we implemented parallel versions of

both BSCM and PSCM in order to make comparisons between them. We will

consider serial version of BSCM in our performance analyses since it is the fastest

sequential code among the surrogate constraint methods.

Chapter 4

Parallelization based on 1D

Partitioning

In this chapter we will focus on parallelization of the surrogate constraint methods

for 1D decomposition of the problem. The partitioning scheme is rowwise striped

partitioning, as shown in Eq. 3.8. As mentioned in the previous chapter, we will

perform parallel implementations of the basic surrogate constraint method and

the parallel surrogate constraint method, for which a coarse-grain formulation is

given.

The computational scheme and communication requirements of the surrogate

constraint methods are common in many iterative methods used to solve unsym-

metric linear systems [10, 28]. The kernel operation of these methods are repeated

matrix-vector and matrix-transpose-vector multiplies in the form of y = Ax and

w = AT z, where A is a sparse, unsymmetric, square or rectangular coefficient ma-

trix. The input vectors and output vectors of these multiplications are obtained

from each other through linear vector operations. That is, vector z, of the second

multiply w = AT z, is obtained from y; the output vector of the first multiply

y = Ax, and vice versa. In a parallel implementation with a rowwise partition-

ing of data, y = Ax multiplication requires an expand operation before the local

24

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 25

yk = Akx multiply, in which each processor Pk sends some of its x-vector com-

ponents to other processors that has a nonzero entry in the respective column.

Similarly a fold operation is required to form w-vector after the local wk = AT
k zk

multiply. In this operation, each processor Pk receives some of the w vector com-

ponents and accumulates them. These two multiplications also take place in the

surrogate constraints algorithms; y = Ax multiply is used to check the feasibility

of the system. Other multiplication q = (πA)T = AT πT is used to form surrogate

hyperplanes. However, in PSCM, after the second multiply, we form the local

projection vector d from q through some linear vector operations and then fold

d vectors instead of q vectors, to form the sum of the projections. Hence, the

communication pattern of BSCM is the same as that of PSCM.

In the literature, graph-theoretic decomposition methods have been devel-

oped to efficiently parallelize sparse-matrix vector multiplications. The aim is to

minimize the the communication costs of the fold and expand operations while

maintaining load balance. Among these methods, hypergraph partitioning based

methods accurately models the communication requirements, and can handle un-

symmetric partitioning as well.

So we have decomposed our problem data using hypergraph partitioning based

methods. In the next section hypergraph partitioning based decomposition meth-

ods for matrix-vector multiplies will be introduced. Then parallel algorithms of

BSCM and PSCM for 1D partitioning will be given. We will also mention some

implementation details. Finally, performance of the parallel methods will be dis-

cussed.

4.1 Hypergraph Partitioning based 1D Decom-

position

Decomposition is a preprocessing applied to a problem to minimize the overheads

of parallel processing. There are mainly three sources of overhead for parallel

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 26

programs: Load imbalance, interprocessor communication, and extra computa-

tion [17]. Load imbalance occurs when different processors have different work

loads during the parallel program execution. Interprocessor communication is

the time to transfer data between processors and is usually the most significant

source of parallel processing overhead. Extra computations takes place when the

fastest known sequential algorithm for a problem is difficult or impossible to par-

allelize, and a poorer but easily parallelizable algorithm is preferred instead (this

overhead will be discussed in Chapter 6).

To ensure computational load balance of a parallel system, work load should

evenly be distributed among the processors. However, even if perfect load balance

is achieved, interprocessor communication is an unavoidable overhead of parallel

processing. For a parallel system with a cut-through routing scheme, the time

tcomm to send a message of length l between two processors is tcomm = ts + ltw

where ts is the latency or start-up time and tw is the per-word transfer time. So,

interprocessor communication time depends on the volume of communication and

the number of messages communicated. Both the volume of communication and

the number of messages communicated should be minimized to decrease the effect

of communication overhead. Moreover, since the last terminating process of a

parallel system determines the run time of a parallel program, the communication

effort should be well balanced as well as the computational load. So, maximum

volume and message handled by a single processor should also be considered

during the decomposition process [11].

Because of these multi-constraints confronted in the decomposition problem,

graph theoretical partitioning methods have been developed in the parallel pro-

cessing community which can encapsulate data dependencies among the proces-

sors and the load distribution in the modeling. Minimization of the communica-

tion overhead while ensuring load balance is formulated as the well known K-way

graph partitioning problem, where K is the number of processors in the target

parallel architecture. Then existing graph partitioning methods are utilized to

decompose the work and data for an efficient parallel computation. The computa-

tional load is represented by partition weights and interprocessor communication

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 27

is represented by edge crossings between the partitions. So, minimizing the num-

ber of edge crossings corresponds to minimizing the volume of communication,

and ensuring balance between the parts corresponds to maintaining load balance

among the processors.

The standard graph model though widely used, has some limitations and

deficiencies in the modeling, as mentioned in [2, 11]. First of all, this model

can only be used for symmetric square matrices, so it is not applicable to the

solution of linear feasibility problems, in which rectangular matrices may arise

since the output vector size (dimension of the problem) and the input vector size

(number of constraints) are in general different. Even if the matrix is square,

there is no computational dependency between the output and the input vectors,

which is an assumption for this model. Furthermore, it tries to minimize wrong

objective function, since the number of edge-crossings does not reflect the actual

communication volume.

Later, Çatalyürek and Aykanat proposed the computational hypergraph model

which can reflect the actual communication volume requirement and can handle a

wide class of problems [2]. In their work, Çatalyürek and Aykanat concentrated

on 1D symmetric decomposition of square matrices for parallel sparse-matrix

vector multiplication, however, it can model non symmetric decomposition of

square matrices and decomposition of rectangular matrices as well.

4.1.1 Hypergraph Partitioning Problem

A graph G = (V, E) consists of a set of vertices, V = {v1, v2, . . . , vn}, and a set of

pairwise relationships, E ⊂ V ×V , between the vertices which are called edges. A

hypergraph H = (V, N) is a generalization of a graph, such that an edge ni ∈ N

can include more than two vertices and can be a subset of vertices, i.e. ni ⊂ V .

The term net is used instead of edge for hypergraphs. For the decomposition

problem, the vertices of a graph or hypergraph represent atomic tasks, and the

edges or nets encode data dependencies. Also, weights can be associated with the

vertices to designate the amount of computation and costs can be associated with

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 28

edges or nets, to indicate the amount of dependency between the computations.

Definition of a K-way partitioning of a hypergraph can be made as follows:

Π = {P0, P1, . . . , PK−1} is a K-way partition of a hypergraph H = (V, N) if the

following conditions hold:

• each part Pk is a non-empty set of V , i.e. Pk ⊂ V and Pk 6= ∅ for

0 ≤ k ≤ K − 1.

• union of K parts is equal to V , i.e.
⋃K−1

k=0 Pk = V

• parts are pairwise disjoint, i.e. Pk ∩ Pl = ∅ for 0 ≤ k < l ≤ K − 1.

A partition is said to be balanced if each part Pk satisfies the balance criterion

Wavg(1− ε) ≤ Wk ≤ Wavg(1 + ε), for k = 0, 1, . . . , K − 1 (4.1)

where weight Wk =
∑

vi∈Pk
wi of a part is defined as the sum of the weights

of vertices in the part Pk, Wavg = (
∑

vi∈V wi)/K denotes the weight of each

part under perfect load balance condition, and ε is the predetermined maximum

imbalance ratio allowed.

In a partition Π of H, a net that has at least one pin (vertex) in a part is said

to connect that part. Connectivity set Ψ of a net nj is defined as the set of parts

connected by nj. Connectivity ψ = |Ψ| of a net nj denotes the number of parts

connected by nj. A net nj is said to be cut if it connects more than one part (i.e.

ψ > 1), and uncut otherwise (i.e. ψ = 1). The set of cut nets of a partition Π is

denoted as Nε. Two cutsize definitions used for the decomposition problem are:

(a) Υ(Π) = |Nε| and (b) Υ(Π) =
∑

nj∈Nε

(ψj − 1). (4.2)

In Eq. 4.2.a, cut size is equal to the number of cut nets, and in Eq. 4.2.b,

each cut net contributes ψj − 1 to the cut size. These two metrics are called as

the cutnet metric, and as the connectivity metric [19]. With the help of these

definitions hypergraph partitioning problem can be defined as the task of dividing

a hypergraph into two or more parts so that cut size is minimized, while balance

criterion in Eq. 4.1 is satisfied.

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 29

4.1.2 Column-net and Row-net Models

Two hypergraph models, namely column-net and row-net models have been pro-

posed in [2] for rowwise and columnwise decomposition of sparse matrices, re-

spectively.

In the column-net model, matrix A is represented by a hypergraph

HR = (VR, NC) for rowwise decomposition of sparse matrices. Each row is repre-

sented by a vertex, and each column is represented by a net in the hypergraph.

Net nj ⊂ VR contains the vertices corresponding to the respective row entries

which has a nonzero element. That is vi ∈ nj if and only if aij 6= 0. Formally,

a hypergraph HC = (VR, NC) is a column-net representation of an M×N sparse

matrix A, if the following conditions hold:

• VR = {v1, v2, . . . , vi, . . . , vM}, where vi corresponds to the ith row of matrix

A.

• NC = {n1, n2, . . . , nj, . . . , nN}, where nj corresponds to the jth column of

matrix A.

• For each vi ∈ VR and for each nj ∈ NC , vi ∈ nj if and only if aij 6= 0.

Similarly, row-net hypergraph model HR = (VC , NR) can be used for colum-

nwise decomposition of a sparse matrix A ∈ RM×N , if the following conditions

hold:

• VC = {v1, v2, . . . , vj, . . . , vN}, where vj corresponds to the jth column of

matrix A.

• NR = {n1, n2 . . . , ni, . . . , nM}, where ni corresponds to the ith row of matrix

A.

• For each vj ∈ VC and for each ni ∈ NR, vj ∈ ni if and only if aji 6= 0.

In the column-net model, for the y = Ax multiply, each vertex vi corresponds

to atomic task i of computing the inner product of row i with the x vector. For

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 30

the q = πA multiply, vi corresponds to atomic task i of computing the partial

vector qi = πiAi where q =
∑M

i=1 qi. For both operations we can assign the total

number of nonzero elements in row i as the computational weight of wi.

On the other hand, the nets of HC represent dependency relations of the

atomic tasks on the x-vector components during the fold and expand operations.

Each net nj contains the set of vertices (tasks) that needs xj in the y = Ax

multiply and the set of vertices (tasks) that computes qj in the q = πA multiply.

In [2] it is shown that the proposed column-net model correctly reduces the

rowwise decomposition problem to the K-way hypergraph partitioning problem.

Minimizing the cut size corresponds to minimizing the actual communication

volume, whereas maintaining the balance criterion corresponds to balancing the

computational load among the processors. So, by equally distributing the vertices

among the parts so that cut nets are split among as few processors as possible,

the total communication volume of the fold and expand operations are minimized

while computational load balance is maintained.

4.1.3 Minimizing Communication Costs

As well as the total communication volume, the message latency, (which depends

on the number of messages communicated), maximum volume and number of

messages handled by a single processor are the parallel overheads that should

be considered in parallel implementations [11]. As mentioned before, there is no

computational dependency between the input and output vectors for our problem.

This fact avoids the restriction on the partitioning of input vector components

contrary to symmetric partitioning. (In a symmetric partitioning we have to

assign the corresponding input and output vector elements to the same processor.)

In order to handle the four cost factors, we used the two-phase approach

proposed by Uçar and Aykanat [28]. In the first phase, this method tries to mini-

mize total message volume using 1D hypergraph partitioning method while main-

taining load balance among the processors. In the second phase, other metrics

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 31

are minimized using their communication-hypergraph partitioning model. With

proper weighting, vertices of the communication-hypergraph represent primitive

communication operations whereas nets represent processors. By partitioning the

communication hypergraph into balanced parts so that nets are split among as

few as vertex parts as possible, the model minimizes total number of messages

communicated and also ensures the communication balance among the proces-

sors.

4.2 Parallel Algorithms

In this section we will present parallel methods of BSCM and PSCM for 1D

rowwise decomposition. We assume that, matrix A is divided rowwise into K

contiguous blocks, where K is the number of processors, and each processor Pk

holds the kth row stripe for k = 1, 2, . . . , K. The rowwise partitioning of matrix A

defines a partition on the y-space vectors (vectors that goes into linear operations

with the y-vector) as well, so each processor Pk holds and computes kth block of

the y-space vectors. The x-space vectors (vectors that goes into linear operations

with the x-vector) are also partitioned into K subvectors and processor Pk holds

and computes kth block of the x-space vectors.

4.2.1 Parallelization of the Basic Method

In Fig. 4.1 we give the pseudocode of the parallel BSCM method. Each processor

Pk accesses the following components in the algorithm:

• an m×N matrix Ak containing z non-zero entries, where m ≈ M/K and

z ≈ Z/K are respectively, average number of rows and average number of

nonzero elements in a block.

• x-space vectors:

- N × 1 global vector x which represents the current point.

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 32

- n × 1 local vector xk which is the kth block of x, where n ≈ N/K is

the average length of xk vectors.

- N × 1 column vector qk which is the partial vector resulting from the

local matrix-vector multiply πkAk.

- n× 1 column vector qk which is the kth block of vector q that would

result from the global matrix-vector multiply πA.

- n×1 column vector dk which is the kth block of the projection vector d.

• y-space vectors:

– m × 1 local vectors b+
k and b−

k which are the right hand side vectors

of our system.

– 1×m local vectors πk, π+
k , and π−

k .

– m × 1 local vectors δ+
k and δ−

k which denotes the error in the upper

and lower systems, respectively.

• scalars:

- Global scalars µ and γ which are used to form the projection vector d.

- Corresponding local scalars µk and γk.

Note that we use superscripts with vectors to indicate partial vectors and sub-

scripts to denote the subvectors that reside in Pk.

As mentioned, the x-vector is partitioned among the processors so that each

Pk is responsible to compute the kth block of the global x-vector, namely xk.

However, in order to check the feasibility of the subsystem and define a new

surrogate plane in the infeasible case, processor Pk requires all x-vector compo-

nents that corresponds to the nonzero columns of Ak. So an expand operation

is performed at the beginning of the loop. Since we employ a point-to-point

communication scheme, each processor sends some of its local vector components

to the processors having a nonzero entry in that respective column. Then the

local matrix-vector multiply yk = Akx is performed and the error vectors are

computed for the lower and upper systems. Then, local πk vectors are generated

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 33

while true do
x ← expand(xk) , expand xk vector {t = texpand}
yk ← Akx , multiply Ak from right {t = 2z}
δ+

k ← yk − b+
k , error of the upper system {t = m}

δ−
k ←− yk − b−

k , error of the lower system {t = m}
π+

k ← updatePi(δ+
k) , update π+ using Eq. 3.6 {t = 3m}

π−
k ← updatePi(δ−

k) , update π− using Eq. 3.6 {t = 3m}
if π+

k = 0 and π−
k = 0 then , check convergence

fk ← true , block k feasible
else

fk ← false , block k not feasible
f ← glblAnd(fk) , check the whole system {t = (ts + tw) log K}
if f = true then

exit

πk ← π+
k − π−

k , compute πk {t = m}
qk ← (πk Ak)T , multiply A from left {t = 2z}
qk ← fold(qk) , fold q vector {t = tfold}
µk ← δ+

k π+
k + δ−

k π−
k , sum of inner products {t = 3m}

γk ← (qk)T qk , inner product {t = 2n}
(µ, γ) ← glblSum(µk, γk) , form µ and γ {t = (ts + 2tw) log K}
dk ← µ/γ qk , form projection vector {t = n}
xk ← xk− λ dk , update x {t = 2n}

endwhile

Figure 4.1: 1D Basic surrogate constraint method

and the feasibility of the subsystems are checked. If all of the blocks are feasible,

which means πk = 0 for each block, then the method terminates. If this is not

the case, then a new surrogate plane is generated with the current πk vector. In

order to update the kth block of the x-vector, processor Pk needs the kth block

of the q vector which would result from the matrix-vector multiply πA. However,

the result of the local matrix-vector multiply is the partial vector qk. So, a fold

operation is required in which Pk receives and adds partial vectors corresponding

to the kth block. Finally, to obtain the global scalars µ and γ, one more com-

munication operation is performed in which each processor receives and adds the

local scalars. Then, each processor Pk updates the kth block of xk and in the

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 34

next loop the feasibility of the system is checked again. This process repeats until

a feasible solution is found.

Note that, in the algorithm, when we right multiply Ak with x, we map the

problem from x-space to y-space. Then we perform linear operations on the

y-space vectors and when we left multiply Ak with πk, we again transform the

problem from y-space to x-space. Hence there is no computational dependency

between the the input and output vectors of the two multiplications.

4.2.2 Parallel Surrogate Constraint Method

The pseudocode of the improved parallel surrogate algorithm is given in Fig. 4.2

which is very similar to the parallel algorithm of BSCM. However, in this method,

being different from BSCM, we form the local projection vectors dk and then add

up them to obtain the global combined projection vector d. Moreover, remember

that in PSCM we apply a step sizing rule while generating the next point, which

is actually a regulating scalar in the form of α/β =
∑K

k=1 ‖dk‖2/‖∑K
k=1 dk‖2.

The first component of this ratio, α, is the sum of the inner products of the

local projection vectors among all processors, and can be obtained using a global

sum operation. After the fold operation each processor Pk ends up with dk, the

kth block of the combined vector d and can compute its local scalar, namely

βk = ‖dk‖2. Since β = ‖d2‖ =
∑K

k=1 ‖d2
k‖ = β2

k , the second component again can

be obtained via a global sum operation among the processors.

4.3 Implementation Details

In order to implement these algorithms, first partition indicators and problem

data should be distributed among the processors. Then, using these, each pro-

cessor sets up the communication pattern and then pass to local indices for proper

communication. Finally, local sparse matrix is assembled and then the surrogate

methods are initiated. These steps are explained below.

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 35

while true do
x ← expand(xk) , expand xk vector {t = texpand}
yk ← Akx , multiply Ak from right {t = 2z}
δ+

k ← yk − b+
k , error of the upper system {t = m}

δ−
k ←− yk − b−

k , error of the lower system {t = m}
π+

k updatePi(δ+
k) , update π+ using Eq. 3.6 {t = 3m}

π−
k ← updatePi(δ−

k) , update π− using Eq. 3.6 {t = 3m}
if π+

k = 0 and π−
k = 0 then , check convergence

fk ← true , block k feasible
else

fk ← false , block k not feasible
f ← glblAnd(fk) , check the whole system {t = (ts + tw) log K}
if f = true then

exit

πk ← π+
k − π−

k , compute πk {t = m}
qk ← (πk Ak)T , multiply A from left {t = 2z}
µk ← δ+

k π+
k + δ−

k π−
k , sum of inner products {t = 3m}

γk ← (qk)T qk , inner product {t = 2N}
dk ← µk/γk qk , form local projection vector {t = N}
α ← (dk)T dk , inner product {t = 2N}
dk ← fold(dk) , fold d vector {t = tfold}
β ← dk

T dk , inner product {t = 2n}
(α, β) ← glblSum(αk, βk) , form α and β {t = (ts + 2tw) log K}
xk ← xk− λα/β dk , update x {t = 2n}

Figure 4.2: Improved parallel surrogate constraint method

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 36

4.3.1 Provide partition indicators and problem data to

processors

Hypergraph decomposition methods provide us the partition indicators for the

x- and y-space vectors. We also use the y vector partition indicator to determine

the rows of the matrix that each processor owns. In our implementation a central

processor reads these indicators and then broadcasts them to other processors.

Then according to the partition data, central processor also reads and distributes

the rows of the matrix and the right hand side vector components.

4.3.2 Setup communication

Consider the expand operation carried out before the local matrix-vector multiply

yk = Akx. This operation is required to supply Pk the x-vector components that

is not owned by Pk but for which it has a nonzero column. Remember that we

employ a point-to-point local communication scheme in our 1D implementation,

so each processor should know the processors and the corresponding vector com-

ponents to be communicated. By examining the local sparse matrix Ak, processor

Pk can determine from which processor it will receive which vector components,

since each Pk has the partition indicator on the x-vector components. However,

each processor Pk should also know to which processors it will send vector com-

ponents and the corresponding indices. This is provided to processors via an

all-to-all communication, in which each processor exchanges its data with the

others and finally each Pk knows to which processor it will send which x-vector

components that belongs to Pk.

To clarify the set up procedure, in Fig. 4.3, we give the steps followed to

determine the communication pattern of expand operation for 1D decomposition.

In this code xSendCnts[p] denotes the number of x components that processor Pk

has to send to processor p, and xSendLists[p] is the pointer to the beginning of the

corresponding component list. Similarly for xRecvCnts and xRecvLists. This

code is executed once in the beginning of the program and the communications

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 37

are performed using the data structures generated within this procedure.

for each nonzero aij ∈ Ak do
p = xPart[j]
if j is not marked and p 6= myId then

mark j
increase xRecvCnts[p]

endfor
send xRecvCnts, receive into xSendCnts // All-to-all communication
for each column j do

if j is marked then
p = xPart[j]
append j into xRecvLists[p]

endfor
send xRecvLists, receive into xSendLists // All-to-all communication

Figure 4.3: Setting up communication for 1D decomposition

Consider the fold operation which is carried out after the local matrix-vector

multiply qk = πkAk. The output of this product is the partial results of q vector

entries for all processors. Since a processor Pk is responsible of computing the

the kth block of subvectors, it has to receive partial results of the corresponding

vector components from other processors to end up with qk. Actually, as clarified

in [28, 10] these two communication operations are the duals of each other. That

is, the processor numbers and the global vector indices sent/received are the same

for fold and expand operations except that, the xSendCnts and xSendLists of

the expand operation become, xRecvCnts and xRecvLists for the expand. To

have a better understanding of this fact, suppose that x-space vector components

that Pk accesses (updates or produces partial results) are divided into three parts:

Internal components (xInt) that Pk is responsible to compute, and for which

no other processors produces partial results.

Border components (xBorder) that Pk is responsible to compute, and for

which other processors also produces partial results. (Note that local com-

ponents xk = xIntk ∪ xBorderk for processor Pk.)

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 38

External components (xExt) that Pk is not responsible to compute, but pro-

duces partial results.

During a fold operation, other processors having nonzero entries which have

the same column indices with xBorderk will compute and send partial results to

Pk. Note that each processor sends the vector components corresponding to their

external parts. Then, during the expand operation, the same processors will need

the same indexed vector components that it has sent during the fold operation,

to be able to perform the multiplication yk = Akx. So, now Pk will collect and

send the vector components from xBorderk to the processors that it has received

partial results in the fold operation.

4.3.3 Set Local Indices

It is customary to renumber x-vector components such that the entries belonging

to the same processor have contiguous indices. This is necessary in order to send

partial results to other processors without searching the indices at the beginning of

the fold operation, and to make no searches after receiving the vector components

in the expand operation. In 1D partitioning, we numbered the vector components

according to the rank of the processors responsible on the components as in

[27]. In this renumbering scheme, processor Pk gives labels to the external vector

components belonging to some other processor pj where j < k, then gives labels

to the local vector components and then continue with labeling the external

vector components belonging to some other processor pj where k < j. Note

that processor Pk can give labels to external vector components belonging to a

processor pj in any order; xi can get label that is less than the label of xj even

processor pj labels xj before xi. Since processors communicate global indices in

Fig. 4.3 this does not cause any problem.

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 39

4.3.4 Assemble Local Sparse Matrix

To maximize communication and computation overlap, we explicitly split a pro-

cessor’s matrix into two sparse matrices Aloc and Acpl where Aloc contains all

nonzeros aij where xj is local to the processor and Acpl contains all nonzeros

where xj belongs to some other processor. Initially we store the matrix in coordi-

nate format, but after distribution of the matrix and before entering to the main

loop of the methods we pass to CSC format for both Aloc and Acpl (see appendix

for the description of these storage schemes and corresponding matrix-vector mul-

tiplys). In this way Pk performs its local multiplication yk = Aloc xk while sending

its local components to other processors. Then, whenever Pk receives some of its

external x components from a processor, it can continue multiplying with them

before waiting all external x components to arrive.

4.4 Performance Analysis

The run time spent in the computational steps of the iterations is given on the

right hand side of the parallel algorithms. In terms of the floating point operations

per iteration, the parallel run times of BSCM and PSCM are,

TBSCM = (4z + 12m + 5n)tflop + Tcomm (4.3)

TPSCM = (4z + 12m + 5N + 4n)tflop + Tcomm (4.4)

where Tcomm is the total time consumed for the communications. Assuming per-

fect load balance Eq. 4.3 and Eq. 4.4 can be simplified as,

TBSCM = Ts

K
+ Tcomm

TPSCM = (4z + 12m + 5n + 5N − n)tflop + Tcomm

= (Ts

K
+ 5N − n)tflop + Tcomm

(4.5)

where Ts is the sequential run time of BSCM given in Eq. 3.7.

The overhead of the computation can be computed for both algorithms as:

Tcomm = texpand + tfold + log K(2ts + 3tw)

CHAPTER 4. PARALLELIZATION BASED ON 1D PARTITIONING 40

= ψavg(ts + υavgtw) + ψavg(ts + υavgtw + υavgtflop) + log K(2ts + 3tw)

= ts(2ψavg + 2 log K) + tw(2ψavgυavg + 3 log K) + tflop(ψavgυavg)

where ψavg is the average number of connectivity of all nets, (i.e. average number

of messages), υavg is the average number of cut nets of each part (i.e. average

message length), and tflop is the time required for one floating point operation.

Since total size of the messages (ψavgυavg) is much larger than log K, this can be

approximated as:

Tcomm ≈ 2ts(ψavg + log K) + 2twψavgυavg + tflopψavgυavg. (4.6)

Speed up is a measure of the relative benefit gained by parallelizing a sequen-

tial algorithm which is defined by the ratio of the serial run time of the best

sequential algorithm to the parallel run time. As clarified in Section 3.4, BSCM

is the best sequential algorithm in our problem. So, the speed up S of the parallel

algorithms become:

SBSCM =
Ts

TBSCM

=
Ts

Ts/K + Tcomm

=
K

1 + K Tcomm

Ts

(4.7)

SPSCM =
Ts

TPSCM

=
Ts

Ts/K + 5N − n + Tcomm

=
K

1 + K 5N−n+Tcomm

Ts

(4.8)

Another performance metric for the parallel systems is the efficiency, which

is defined as the ratio of the speed up to the number of processors. This can be

calculated for BSCM and PSCM as follows:

EBSCM =
S

K
=

1

1 + K Tcomm

Ts

(4.9)

EPSCM =
S

K
=

1

1 + K 5N−n+Tcomm

Ts

(4.10)

We see from Eq. 4.9 that as long as Ts = Θ(KTcomm) and from Eq. 4.10

that as long as Ts = Θ(KTcomm + 5NK) our parallel implementations are cost

optimal.

Chapter 5

Parallellization based on 2D

Partitioning

In this chapter we will concentrate on parallel implementations of the surrogate

constraint methods for 2D decomposition of the system Ax ≤ b. First, checker-

board partitioning will be used in which the underlying system is decomposed row-

wise and columnwise into smaller blocks. The matrix will be distributed among

the processors using a two-phase decomposition method which is based on multi-

constraint hypergraph partitioning proposed by Çatalyürek and Aykanat [4]. We

employed two communication schemes for the required fold and expand communi-

cation operations. The first one is a point-to-point communication scheme which

uses the connectivity metric as the hypergraph cut size. With this scheme we

exploit the sparsity of the matrix, hence no redundancy occurs in the communi-

cation. The second communication scheme uses cutnet metric as the hypergraph

cut size so that the partitioning method tries to minimize the external parts of

the processor blocks which necessitate communication. A global all-to-all com-

munication is performed in the external parts so that each processor ends up with

the whole external vector.

Secondly, a fine-grain decomposition strategy is employed which distributes

the matrix among the processors on a nonzero basis. We used the fine-grain

41

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 42

hypergraph model again proposed by Çatalyürek and Aykanat [3]. However, this

method is only used with BSCM, since PSCM is based on the projection of the

row blocks, which cannot be easily carried out with a fine-grain partitioning of

the system.

5.1 Hypergraph Partitioning based 2D Decom-

position

In this section we will briefly review hypergraph models proposed for the checker-

board partitioning [4] and fine-grain partitioning [3] of sparse matrices.

5.1.1 Checkerboard Partitioning

In checkerboard partitioning the matrix is divided rowwise into r contiguous row

blocks, then each row block is again divided columnwise into c blocks, and this

partitioning naturally maps into an r×c mesh of processors. In a matrix-vector

multiply, this partitioning scheme incurs expand operation along the columns of

the processor mesh as well as the fold operation along the rows of the processor

mesh. Expand operation is carried out in each mesh column concurrently, and

the fold operation is carried out in each mesh row concurrently. In their work

Çatalyürek and Aykanat [4] concentrated on the parallelization of the sparse

matrix-vector multiply for the checkerboard partitioning. Previous checkerboard

partitioning schemes proposed only aim at load balancing and are suitable for

dense matrices or sparse matrices with a structured sparsity pattern [12, 20, 21].

The proposed model of Çatalyürek and Aykanat on the other hand, exploits the

sparsity for reducing communication volume and can handle decomposition of

any sparse matrix.

The proposed model is a two-phase method. In the first phase, using existing

hypergraph-partitioning model, matrix A is decomposed r-way into contiguous

rows. So, total volume of expand operation is minimized. In the second phase,

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 43

for columnwise partitioning of the matrix, a c-way multi-constraint hypergraph-

partitioning is performed using the row-net representation of the matrix. Multi-

constraint hypergraph-partitioning is necessary in order to balance the computa-

tional loads that will be executed concurrently.

In the partitioning process for checkerboard decomposition of the matrix, we

have used both of the cut size definitions given in Eq. 4.2. First, as in 1D case

for point-to-point communication scheme, connectivity metric is used. Since for

the second communication scheme an all-to-all type operation is carried out in

the external parts, the communication time is proportional to the size of these

external parts. So, for the second communication scheme, we used the cutnet

metric given in Eq. 4.2.a, the number of cut nets and hence the size of the

external parts are minimized.

5.1.2 Fine-grain Partitioning

For the fine-grain decomposition of the matrix, in another work, Çatalyürek

and Aykanat proposed the fine-grain hypergraph model [3]. In this model each

nonzero element is represented by a vertex and models scalar multiplication op-

eration. Nets of the hypergraph represent the dependency relations of the scalar

multiplication operations on the x- and y-vector entries. According to the con-

nectivity cutsize metric, the proposed model reduces 2D fine-grain matrix decom-

position problem into the K-way hypergraph partitioning problem.

5.2 Parallel Algorithms

5.2.1 Parallelization of the Basic Method

For checkerboard partitioning scheme with a parallel system of K = r × c pro-

cessors, matrix A is decomposed into r × c blocks and each block is assigned to

a processor. If we label the blocks in a row-major order, the distribution looks

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 44

like,

A =

P11 . . . P1l . . . P1c

...
. . .

...
. . .

...

Pk1 . . . Pkl . . . Pkc

...
. . .

...
. . .

...

Pr1 . . . Prl . . . Prc

.

The y-space vectors are partitioned first into r slices each assigned to a row

block, and each slice is again partitioned into c slices, as follows,

y =

y1

...

yk

...

yr

and yk =
(

yk1 · · · ykl · · · ykc

)
.

So, a y-space vector denoted as ykl corresponds to the kth row and lth column,

hence belong to processor Pkl.

The x-space vectors, on the other hand, partitioned first into c slices, and

then each slice is partitioned again into r slices,

x =
(

x1 · · · xl · · · xc

)
and xl =

x1l

...

xkl

...

xrl

.

So again an x-space vector xkl belongs to processor Pkl.

In Fig. 5.1 we see the parallel pseudocode of BSCM. Each processor Pkl ac-

cesses the following components in the algorithm:

• an m × n matrix Akl containing z non-zero entries, where m ≈ M/r,

n ≈ N/c, and z ≈ Z/K.

• x-space vectors:

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 45

- n × 1 global vector xl which belongs to the lth column of processor

mesh.

- n× 1 local vector xkl where n ≈ N/K.

- n× 1 column vector qk
l which is the partial vector resulting from the

local matrix-vector multiply πkAkl.

- nk×1 column vector qkl which is the kth block of vector ql that would

result from the global matrix-vector multiply πA∗l where A∗l is the lth

column block of A.

- nk × 1 local projection vector dkl.

• y-space vectors:

– mk × 1 local vectors b+
kl and b−

kl where mk ≈ M/K.

– 1×mk local vectors πkl, π+
kl, and π−

kl.

– 1×m global vector of a row block π−
k .

– mk × 1 local vectors δ+
kl and δ−

kl which denotes the error in the upper

and lower systems, respectively.

• scalars:

- Global scalars µ and γ.

- Corresponding local scalars µkl and γkl.

With the parallelization scheme described, each processor Pkl is responsible

for computing the corresponding portion xkl of the x-vector. Similar to the 1D

case, in order to be able to perform the local matrix-vector multiply Aklxl, an

expand operation is required along the mesh column so that each processor Pkl

initially holding xkl ends up with xl. After the local matrix-vector multiply,

processor Pkl has partial y vectors yl
k. Since we have redistributed the kth block

of y vectors yk into c subvectors, each row of the processor mesh steps into rowwise

fold operation so that each processor Pkl end up with the appropriate portion of

the yk vector, namely ykl. Then, processors can find their local πkl values and

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 46

while true do
xl ← colExpand(xkl) , expand xkl in column mesh {t = tcolexpand}
yl

k ← Aklxl , multiply Akl from right {t = 2z}
ykl ← rowFold(yl

k) , fold yl
k along the row mesh {t = trowfold}

δ+
kl ← ykl − b+

k , error of the upper system {t = mk}
δ−

kl ←− ykl − b−
k , error of the lower system {t = mk}

π+
kl ← updatePi(δ+

kl) , update π+ using Eq. 3.6 {t = 3mk}
π−

kl ← updatePi(δ−
kl) , update π− using Eq. 3.6 {t = 3mk}

if π+
kl = 0 and π−

kl = 0 then , check convergence
fk ← true , block k feasible

else
fk ← false , block k not feasible

f ← glblAnd(fk) , check the whole system {t = (ts + tw) log K}
if f = true then

exit

πkl ← π+
kl − π−

kl , compute πkl {t = mk}
πk ← rowExpand(πkl) , expand πkl in row mesh {t = trowexpand}
qk

l ← πkAkl , multiply A from left {t = 2z}
qlk ← colFold(qk

l) , fold qk
l in column mesh {t = tcolfold}

µkl ← π+
klδ

+
kl + π−

klδ
−
kl , sum of inner products {t = 3mk}

γkl ← (qlk)T qlk , inner product {t = 2nk}
(µ, γ) ← glblSum(µkl, γkl) , form µ and γ {t = (ts + 2tw) log K}
dk ← µ/γ qkl , form projection vector {t = nk}
xkl ← xkl− λ dkl , update x {t = 2nk}

endfor

Figure 5.1: 2D Basic surrogate constraint method

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 47

the feasibility check is performed. However, in order Pkl to perform local matrix-

vector multiply πkAkl, it requires all πk components belonging to the kth row of

processor mesh. So, again an expand operation is performed, but this time along

the row-mesh of processors. After the local matrix-vector multiply πkAkl, each

processor has the vector qk
l ; the lth portion of the q vector due to the kth block,

hence ql =
∑r

k=1 qk
l . So, a columnwise fold operation is carried out which leaves

the appropriate portion qkl of ql on processor Pkl. Since, each processor has a

subblock of the π, δ, and q vectors, global scalars µ and γ can be obtained via a

global sum operation among all processors of the mesh. With these components

at hand, processors can now compute the projection vector and then update the

current value of x. In the next cycle, once more the feasibility check is made with

this value and this process repeats until a feasible solution is found.

The pseudocodes of the implementations with the point-to-point and all-to-all

communication schemes are the same; only the fold and expand operations are

carried out in different ways. In the point-to-point communication scheme, each

processor knows the processor numbers and the vector components to commu-

nicate, and performs the communication in a local manner with point-to-point

send and receive type communication operations. In all-to-all communication

scheme, each processor carries out a global reduce-scatter type operation for the

fold operation and an all-to-all broadcast operation for the expand operation. In

Section 5.3 we give the details.

With the fine-grain partitioning of the matrix A, we do not have a definite

processor organization as in the checkerboard partitioning. Nonzero elements of

A are distributed among the processors with no constraints. So, a single row

or a single column of the matrix can be shared among all K processors. The

pseudocode of the fine-grain implementation is almost identical to the algorithm

shown in Fig. 5.1. However, fold and expand operations are carried out among

all K processors whether they are performed rowwise or columnwise.

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 48

5.2.2 Parallel Surrogate Constraints Method

The 2D implementation of PSCM is similar to the 2D implementation of BSCM.

However, in order to calculate the projection vector of the kth block, µkl and

γkl is summed in the kth row mesh. Moreover, since α =
∑r

k=1

∑c
l=1 αkl and

β =
∑r

k=1

∑c
l=1 βkl, a global sum operation is required to apply the step sizing

rule in the calculation of the next point.

We have performed 2D implementation of PSCM for point-to-point and all-

to-all communication schemes. As mentioned, PSCM is composed of block pro-

jections, hence we require a row-block of the matrix to be distributed among a

set of processors. Since, in fine-grain partitioning block structure definition is not

preserved, it is not suitable for PSCM.

5.3 Implementation Details

In this section we will give the preprocessing steps that should be followed be-

fore the surrogate methods in order to maximize the parallel performance of the

system. For point-to-point communication scheme which is used both in checker-

board partitioning and fine-grain partitioning the steps are similar to 1D case.

For all-to-all communication scheme, we will first introduce the combining al-

gorithm proposed by Jacunski et al. [14]. Then the preprocessing steps will be

detailed.

5.3.1 Point-to-point Communication Scheme

For point-to-point communication scheme, similar to the 1D case, the following

initialization steps should be performed before the main loop of the surrogate

methods.

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 49

while true do
xl ← colExpand(xkl) , expand xkl in column mesh {t = tcolexpand}
yl

k ← Aklxl , multiply Akl from right {t = 2z}
ykl ← rowFold(yl

k) , fold yl
k along the row mesh {t = trowfold}

δ+
kl ← ykl − b+

k , error of the upper system {t = mk}
δ−

kl ←− ykl − b−
k , error of the lower system {t = mk}

π+
kl ← updatePi(δ+

kl) , update π+ using Eq. 3.6 {t = 3mk}
π−

kl ← updatePi(δ−
kl) , update π− using Eq. 3.6 {t = 3mk}

if π+
kl = 0 and π−

kl = 0 then , check convergence
fk ← true , block k feasible

else
fk ← false , block k not feasible

f ← glblAnd(fk) , check the whole system {t = (ts + tw) log K}
if f = true then

exit
πkl ← π+

kl − π−
kl , compute πkl {t = mk}

πk ← rowExpand(πkl) , expand πkl in row mesh {t = trowexpand}
qk

l ← πkAkl , multiply A from left {t = 2z}
µkl ← π+

klδ
+
kl + π−

klδ
−
kl , sum of inner products {t = 3mk}

γkl ← (qk
l)T qk

l , inner product {t = 2n}
(µk, γk)← rowSum(µkl, γkl) , form µk and γk {t = (ts + 2tw) log c}
dk

l ← µk/γk qk
l , form projection vector {t = n}

αkl ← (dk
l)T dk

l , inner product {t = 2n}
dkl ← colFold(dk

l) , fold dk
l in column mesh {t = tcolfold}

βkl ← dkl
T dkl , inner product {t = 2nk}

(α, β) ← glblSum(αkl, βkl) , form α and β {t = (ts + 2tw) log K}
xkl ← xkl− λα/β dkl , update x {t = 2nk} endfor

Figure 5.2: 2D Parallel surrogate constraint method

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 50

5.3.1.1 Provide partition indicators and problem data to processors

In 2D partitioning, we have the partition indicator of the nonzero elements of

matrix A, as well as the x and y-space vectors’ partition indicators. We need

the partition indicator of the nonzero elements since the indicators of the x and

y-space vectors tell just the responsibility for computing the components. The

central processor reads this nonzero partition indicator and scatters the nonzero

elements of the matrix. Then it also distributes the RHS vector values. Finally, it

also reads the partition indicators of x and y-space vectors and broadcasts them

to all processors in the parallel system.

5.3.1.2 Setup communication

Similar to the 1D case, each processor should know the processor numbers and the

vector components that will be communicated in the fold and expand operations.

We give the pseudocode which is used to prepare the data structures used in the

expand operation in Fig. 5.3. Note that all-to-all communications are performed

along the rows and columns of the processor mesh in 2D case. The fold operation

is performed with the same data structures with an exchange of the meanings of

the recvCnts with the sendCnts and recvLists with the sendLists.

5.3.1.3 Set Local Indices

In order to make in-place receives in expand operation and in-place sends in fold

operation, the vector components to be received and the vector components to

be sent should be numbered contiguously for each processor in the system. For

this purpose, we numbered the indices of the local matrices beginning from the

local indices, and then continuing with the external components according to the

processor ranks.

Note that in point-to-point communication scheme, the components to be sent

should be collected from the border vector components in the expand operation,

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 51

for each nonzero aij ∈ Akl do
p = xPart[j]
if j is not marked and p 6= myId then

mark j
rowId = row number of p in proc mesh
increase xRecvCnts[rowId]

endif
p = yPart[i]
if j is not marked and p 6= myId then

mark i
colId = col number of p in proc mesh
increase xRecvCnts[colId]

endif
send xRecvCnts, receive into xSendCnts // All-to-all communication along column mesh
send yRecvCnts, receive into ySendCnts // All-to-all communication along row mesh
for each column j do

if j is marked then
p = xPart[j]
rowId = row number of p in proc mesh
append rowId into xRecvLists[p]

endif
endfor
for each row i do

if i is marked then
p = xPart[i]
colId = col number of p in proc mesh
append colId into yRecvLists[p]

endif
endfor
send xRecvLists, receive into xSendLists // All-to-all communication along column mesh
send yRecvLists, receive into ySendLists // All-to-all communication along row mesh

Figure 5.3: Setting up communication in 2D decomposition for the point-to-point
communication scheme

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 52

and for the fold operation, after receiving the partial results, processors should

determine the indices to be added and then perform the accumulation of the

border components. So, we cannot make in-place communications for the sends

in expand operation and for the receives in fold operation.

5.3.1.4 Assemble Local Sparse Matrix

In 2D case, we store the local sparse matrix both in CSR and CSC formats and

overlap local matrix-vector multiply operation with the expand communication.

While performing right multiplication of the matrix A with the x-vector, first

we prepare send data and then initiate communications. Then A is multiplied

with xk; the local components of the x-vector and a partial result is obtained.

Afterwards, whenever external components of the x-vector arrive they are mul-

tiplied with the corresponding matrix components and results are added up to

the partial result. In order to make immediate access to the row indices that has

nonzero elements in a given column, the storage scheme should be CCS. For the

left multiplication operation on the other hand, in order processor Pk to continue

multiplying before waiting all external components of the πk vector, it should be

able to make immediate access to the column indices. Hence, the storage scheme

CSR is used for this operation.

5.3.2 All-to-all Communication Scheme

We performed the expand operation using an efficient all-to-all broadcast oper-

ation based on the combining algorithm developed by Jacunski et al. [14]. In

the next section we will describe this algorithm, and then give the details of the

implementation for all-to-all communication scheme.

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 53

5.3.2.1 Combining Algorithm

As mentioned, in all-to-all communication scheme, at the end of the expand oper-

ation all processors ends up with the concatenation of the external vectors. This

type of communication is known as all-to-all broadcast in the parallel community

[17], and as the allgather operation in the MPI community [16]. Using a hyper-

cube algorithm it can be performed in optimum time of tcomm = ts log2 p + mtw

[17]. However, this algorithm is applicable in the switch-based clusters only when

K = 2d, where K is the number of processors and d is the dimension of the

hypercube. Later, Jacunski et. al. made an extension to the hypercube algo-

rithm which allows hypercube algorithm to be used even if K is not a power of 2.

Proposed combining algorithm makes dlog2 Ke steps during the communication

operation [14] and in each step, the local message is combined with the receiving

one, and in the next step this combined message is sent. So, in each step except

the last one, the size of the message sent and received is doubled. In the last

step, each processor sends a portion of the local message. In Fig. 5.4 we give

the pseudocode of the algorithm, and in Fig. 5.5, we illustrate the algorithm for

K = 6.

Fold operation can be performed with a similar algorithm by reversing the

communication steps of the combining algorithm. However, after each step, in-

stead of concatenating the incoming vectors, processors should add them up with

the appropriate vector components. Fig. 5.6 illustrates this procedure for K = 6.

5.3.2.2 Setup communication

During the fold and expand operations, the vector components corresponding to

cut nets will be communicated. These are the border components that has been

defined in Section 4.3.2. In order to find the border components, processors first

obtain the arrays sendLists and recvLists as in the point-to-point case. Then

each processor examines its local vector components and the sendLists array in

order to find the number of cut nets. Then with an allgather operation each

processor obtains the number of cuts of all of the processors.

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 54

d = blog2 Kc
result = myMsg
for step = 0 to d do

dest = (myId + 2step) mod K
srce = (myId− 2step) mod K
send result to dest
receive msg from srce
result = result ∪msg

endfor
if dlog2 Ke > d then

dest = (myId + 2d) mod K
srce = (myId− 2d) mod K
send first K − 2d msgs to dest
receive msg from srce
result = result ∪msg

endif

Figure 5.4: Combining algorithm

p0:

p1:

p2:

p3:

p4:

p5:

M0

M1

M2

M3

M4

M5

−→

M0M5

M1M0

M2M1

M3M2

M4M3

M5M4

−→

M0M5M4M3

M1M0M5M4

M2M1M0M5

M3M2M1M0

M4M3M2M1

M5M4M3M2

−→

M0M5M4M3M2M1

M1M0M5M4M3M2

M2M1M0M5M4M3

M3M2M1M0M5M4

M4M3M2M1M0M5

M5M4M3M2M1M0

Figure 5.5: Expand operation based on the combining algorithm

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 55

p0:

p1:

p2:

p3:

p4:

p5:

M0
0 M0

5 M0
4 M0

3 M0
2 M0

1

M1
1 M1

0 M1
5 M1

4 M1
3 M1

2

M2
2 M2

1 M2
0 M2

5 M2
4 M2

3

M3
3 M3

2 M3
1 M3

0 M3
5 M3

4

M4
4 M4

3 M4
2 M4

1 M4
0 M4

5

M5
5 M5

4 M5
3 M5

2 M5
1 M5

0

→

M0
0 + M4

0 M0
5 + M4

5 M0
4 M0

3

M1
1 + M5

1 M1
0 + M5

0 M1
5 M1

4

M2
2 + M0

2 M2
1 + M0

1 M2
0 M2

5

M3
3 + M1

3 M3
2 + M1

2 M3
1 M3

0

M4
4 + M2

4 M4
3 + M2

3 M4
2 M4

1

M5
5 + M3

5 M5
4 + M3

4 M5
3 M5

2

→

M0
0 + M4

0 + M2
0 M0

5 + M4
5 + M2

5

M1
1 + M5

1 + M3
1 M1

0 + M5
0 + M3

0

M2
2 + M0

2 + M4
2 M2

1 + M0
1 + M4

1

M3
3 + M1

3 + M5
3 M3

2 + M1
2 + M5

2

M4
4 + M2

4 + M0
4 M4

3 + M2
3 + M0

3

M5
5 + M3

5 + M1
5 M5

4 + M3
4 + M1

4

→

∑5

p=0
M

p
0

∑5

p=0
M

p
1

∑5

p=0
M

p
2

∑5

p=0
M

p
3

∑5

p=0
M

p
4

∑5

p=0
M

p
5

Figure 5.6: Fold operation based on the combining algorithm

5.3.2.3 Set Local Indices

Since the internal vector components of the processors can be computed indepen-

dently, each processor in the system begins to number its local elements beginning

from the internal indices. Then they label the border components and then con-

tinue with the vector components of other processors following the same pattern

of the fold and expand operations. That is they renumber remaining indices in

the order myId−1,myId−2, . . . , 1, 0, K−1, K−2, . . . , myId+1. In this way we

can make in-place communication during both send and receives of the combining

algorithm. This is an advantage of the all-to-all communication scheme on the

point-to-point communication scheme, for which we should search and collect the

components to be sent during the expand operation.

5.3.2.4 Assemble Local Sparse Matrix

In 2D implementations, we hold the matrix A in CSC format for the right mul-

tiplication, and in CSR format for the left multiplication in order to overlap

the communication time of the expand operation with the computation time of

matrix-vector multiplies. However, contrary to the point-to-point case, there is a

strict order in the expand operation such that each processor should wait for the

arrival of the vector components in order to send them in the next step. Moreover,

during the fold operation of the point-to-point communication scheme, we can add

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 56

up the incoming vector components while waiting for the arrival of others. This is

again not possible in the combining algorithm due to the strict order that should

be followed. So we can deduce that we have a better chance of communication-

computation overlap in the point-to-point communication scheme.

5.4 Performance Analysis

5.4.1 Point-to-point Communication

The parallel run times of the algorithms for point-to-point communication of 2D

surrogate methods are as follows:

TBSCM = (4z + 12mk + 5nk)tflop + Tcomm =
Ts

K
+ Tcomm (5.1)

TPSCM = (4z + 12mk + 5n + 4nk)tflop + Tcomm

= (4z + 12mk + 5nk + 5n− nk)tflop + Tcomm

= Ts

K
+ (5n− nk)tflop + Tcomm

(5.2)

where Ts is the sequential run time of BSCM, and Tcomm is the total time con-

sumed for the communications. The time consumed by the expand and fold

operations are:

tcolexpand = ψcolavg(ts + υcolavgtw)

trowexpand = ψrowavg(ts + υrowavgtw)

trowfold = ψrowavg(ts + υrowavgtw + υrowavgtflop)

tcolfold = ψcolavg(ts + υcolavgtw + υcolavgtflop),

where ψcolavg is the average number of messages in a column mesh, υcolavg is

the average message length in a column mesh, ψrowavg is the average number of

messages in a row mesh, υrowavg is the average message length in a row mesh

and tflop is the time required for one floating point operation. So, total time of

communication spent in BSCM is:

Tcomm = tcolexpand + trowexpand + trowfold + tcolfold + (2ts + 3tw) log K (5.3)

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 57

and for PSCM,

Tcomm = tcolexpand + trowexpand + trowfold + tcolfold +(2ts +3tw) log K +(ts +2tw) log c

(5.4)

The speed up S of the parallel algorithms are:

SBSCM =
Ts

TBSCM

=
Ts

Ts/K + Tcomm

=
K

1 + K Tcomm

Ts

(5.5)

SPSCM =
Ts

TPSCM

=
Ts

Ts/K + 5n− nk + Tcomm

=
K

1 + K 5n−nk+Tcomm

Ts

(5.6)

The efficiency of the programs can be calculated for BSCM and PSCM as

follows:

EBSCM =
S

K
=

1

1 + K Tcomm

Ts

(5.7)

EPSCM =
S

K
=

1

1 + K 5n−nk+Tcomm

Ts

(5.8)

We see from Eq. 5.7 that as long as Ts = Θ(KTcomm) 2D parallel implemen-

tation of BSCM is cost optimal. Since nK ≈ N/rK = Nc, from Eq. 5.8 as long

as Ts = Θ(KTcomm + 5Nc) 2D implementation of PSCM is also cost optimal.

5.4.2 All-to-all Communication

The computational time expressions of the implementations based on all-to-all

communication schemes are the same as that of point-to-point scheme. The com-

munication time of the fold and expand operations can be computed as follows:

Let nε be the average number of cut nets reside in a column mesh and let each

processor in the column mesh owns approximately nε/r of the cut nets. As-

sume that r is a power of 2 so it takes log r steps for the algorithm to finish.

Since the message size is doubled in each phase of the combining algorithm, the

communication time of an expand operation along a column mesh is:

Tcolexpand =
log r∑

k=1

ts + 2k−1(nε/r)tw = ts log r + twnε
r − 1

r
. (5.9)

CHAPTER 5. PARALLELLIZATION BASED ON 2D PARTITIONING 58

In a fold operation, except the local part of the vector, each communicated

message is summed. So the expression for the fold time is:

Tcolfold = ts log r + twnε
r − 1

r
+ tflopnε

r − 1

r
. (5.10)

Similarly the communication time of the operations in a row mesh are as

follows:

Trowexpand =
log c∑

k=1

ts + 2k−1(mε/c)tw = ts log c + twmε
c− 1

c
. (5.11)

Trowfold = ts log c + twmε
c− 1

c
+ tflopmε

c− 1

c
(5.12)

where mε is the average number of cut nets reside in a row mesh.

In the next chapter, the experimental results and the evaluations of the im-

plementations will be presented.

Chapter 6

Results

In this section we will evaluate the parallel performance and the restoration per-

formance of the surrogate constraint methods. Parallel performance analysis will

be first on iteration basis. This way, we will have a chance to see how much

performance gain is achieved by the parallelization schemes. Then, we will con-

sider overall performance results. Finally, we will give the examples of blurred

and restored images. However, the data sets used in the experiments need to be

explained first.

6.1 Data Sets

In our experiments we have used three types of blurs for the construction of the

distortion system. First type of blur models isotropic scaling. This motion is

represented by the function ρ(r, t) = r/m(t) where m(t) is an arbitrary scaling

function of time and r is the position vector. We have chosen the components

u(x, y, t) and v(x, y, t) of ρ as:

u(x, t) =
x

(0.1t2)

v(y, t) =
y

(0.1t2)

and set the record time as 5 seconds.

59

CHAPTER 6. RESULTS 60

The second blur is a result of rotation motion. We set the record time 8

seconds and let the image to rotate clockwise 6 degrees per second in the first

5 seconds and then rotate counterclockwise with the same angular speed in the

remaining 3 seconds.

Third blur denotes a combined effect of translational motion, isotropic scaling,

and rotation. For the first 5 seconds the image rotates clockwise 8 degrees per

second and then for three seconds it rotates counterclockwise with the same

angular speed. Meanwhile the image undergoes the same isotropic scaling effect

of the first type blur and makes the translational motion shown in Fig. 6.1.

0 1 2 3 4 5 6 7 8
−5

0

5

10

x(t)

t

0 1 2 3 4 5 6 7 8
0

2

4

6

8

y(t)

t

−6 −4 −2 0 2 4 6 8
0

2

4

6

8

y

x

Figure 6.1: Translational motion observed in the combined blur.

CHAPTER 6. RESULTS 61

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 507
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 490
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 743

(a) (b) (c)

Figure 6.2: Sparsity patterns corresponding to three types of blur: (a) isotropic
blur, (b) rotation blur, (c) combined blur.

These blurring effects are modeled by H matrix which is constructed using

Eq. 2.12. We have used three different image sizes of 200×150, 400×300, and

800×600 pixels. In Fig. 6.2 and Table 6.1, we see the sparsity patterns and

the properties of the resulting matrices. We use the prefixes “iso”, “rot”, and

“irt” to denote the isotropic, rotation, and combined (isotropic + rotation +

translational) blurs, respectively. It should be noted that, the matrices have

quite irregular and unstructured patterns.

6.2 Per Iteration Performance

Our experiments are carried on a Beowulf Cluster equipped with 400 MHz Intel

Pentium II processors with 512KB cache size and having 64MB RAM. The op-

erating system is Debian GNU/Linux 3.0 distribution with Linux kernel 2.4.14.

The parallel algorithms are implemented using LAM/MPI 6.5.6 [1].

Tables 6.2 and 6.3 display per iteration run times of the implementations of

BSCM and PSCM, in milliseconds. Besides, the serial run times and resulting

speedups are given. As mentioned before, per iteration run time of BSCM is taken

as the sequential run time. In Fig. 6.3 and 6.4 we depict the results graphically

CHAPTER 6. RESULTS 62

number of number of nonzeros
Matrix rows/cols total row/col per row per col

avg max min max min
iso200x150 30,000 179,247 5.97 6 1 35 1
iso400x300 120,000 718,547 5.99 6 1 35 1
iso800x600 480,000 2,877,147 5.99 6 1 35 1
rot200x150 30,000 173,955 5.80 9 1 14 1
rot400x300 120,000 697,112 5.81 9 1 14 1
rot800x600 480,000 2,790,781 5.81 9 1 14 1
irt200x150 30,000 254,498 8.48 9 3 145 1
irt400x300 120,000 999,444 8.28 9 3 145 1
irt800x600 480,000 3,899,702 8.12 9 3 146 1

Table 6.1: Properties of test matrices

by giving the speedup curves of the parallel implementations.

We note that for all partitions we set the allowed imbalance ratio as 1%, hence

we do not need to consider the overhead due to load imbalance in our discussions.

The results of the per iteration times can be evaluated with respect to data sets,

the implementation schemes used, and the algorithms employed.

From the given results, as expected, for a fixed number of processors, as the

problem size increases, speed up and hence efficiency increases. Among the blur

types used, the data sets produced by the rotation blur leads to best speedups,

whereas the data sets modeling combined blur leads to worst. Notice that from

Table 6.1, matrices resulting from rotation blur are the most sparse, and the com-

bined blur produces the densest matrices. In fact, with denser matrices we would

expect higher speedups since the communication-computation ratio is likely to

reduce. This unexpected situation results because of the sparsity pattern of the

datasets. The nonzero entries of the rotation blur has a quite uniform distribu-

tion so they can be easily assigned to processors in a way to reduce the commu-

nication while preserving load balance. On the other hand, the combined blur

produces fairly dense column blocks which may necessitate excessive columnwise

communications. Moreover, they cannot be assigned to a single column mesh in

2D implementations since otherwise we would disturb the load balance. Hence

CHAPTER 6. RESULTS 63

1D PtoP 2D PtP 2D AtoA 2D FG
Data Sets K Ts Tp S Tp S Tp S Tp S

4 55.7 20.4 2.73 16.3 3.42 17.0 3.28 17.1 3.26
iso200x150 8 55.7 11.6 4.80 10.9 5.11 12.4 4.49 10.9 5.11

16 55.7 8.9 6.26 7.6 7.33 11.6 4.80 8.6 6.48
24 55.7 6.8 8.19 7.0 7.96 13.1 4.25 9.5 5.86
4 249.8 83.7 2.98 68.2 3.66 76.91 3.62 69.6 3.59

iso400x300 8 249.8 43.9 5.69 38.1 6.56 43.0 5.81 36.4 6.86
16 249.8 24.7 10.11 20.2 12.37 30.8 8.11 23.1 10.81
24 249.8 18.8 13.29 16.1 15.52 28.6 8.73 20.1 12.43
4 1067.6 356.0 3.00 331.5 3.22 294.1 3.63 356.1 3.00

iso800x600 8 1067.6 178.0 6.00 155.4 6.87 167.0 6.39 150.3 7.10
16 1067.6 97.6 10.94 76.5 13.96 104.1 10.26 88.8 12.02
24 1067.6 66.3 16.10 59.4 17.97 93.8 11.38 66.2 16.13
4 57.6 20.1 2.87 15.9 3.62 17.4 3.31 15.7 3.67

rot200x150 8 57.6 11.8 4.88 9.6 6.00 11.4 5.05 9.6 7.60
16 57.6 7.7 7.48 6.9 8.35 8.7 6.62 6.5 8.86
24 57.6 6.3 9.14 6.4 9.00 9.0 6.40 7.0 8.23
4 254.4 90.5 2.81 69.4 3.67 73.1 3.48 71.3 3.57

rot400x300 8 254.4 48.3 5.27 35.1 7.25 40.4 6.30 39.7 6.41
16 254.4 24.9 10.22 20.1 12.66 23.0 11.06 20.4 12.47
24 254.4 18.6 13.68 15.3 16.63 20.4 12.47 15.1 16.85
4 1365.7 377.3 3.62 306.9 4.45 315.9 4.32 313.8 4.35

rot800x600 8 1365.7 199.2 6.86 149.4 9.14 162.7 8.39 158.6 8.61
16 1365.7 103.2 13.23 80.7 16.92 87.0 15.70 83.5 16.36
24 1365.7 73.4 18.61 58.6 23.31 67.1 20.35 61.3 22.28
4 66.2 28.3 2.34 26.8 2.47 29.6 2.24 26.8 2.47

irt200x150 8 66.2 18.4 3.60 17.3 3.83 26.0 2.55 19.3 3.43
16 66.2 14.4 4.60 15.4 4.30 25.3 2.62 17.2 3.85
24 66.2 11.9 5.56 12.8 5.17 24.4 2.71 19.6 3.38
4 286.3 119.7 2.39 115.2 2.49 131.0 2.19 103.6 2.76

irt400x300 8 286.3 68.1 4.20 64.6 4.43 83.2 3.44 77.1 3.71
16 286.3 46.7 6.13 60.0 4.77 76.3 3.75 44.6 6.42
24 286.3 35.1 8.16 44.0 6.51 71.2 4.02 41.4 6.92
4 1516.0 506.4 2.99 407.3 3.72 545.5 2.78 462.8 3.28

irt800x600 8 1516.0 298.0 5.09 242.2 6.26 339.1 4.47 312.6 4.85
16 1516.0 202.9 7.47 233.6 6.49 354.7 4.27 142.5 10.64
24 1516.0 146.5 10.35 149.5 10.14 266.5 5.69 127.0 11.94

Table 6.2: Per iteration execution times of BSCM

CHAPTER 6. RESULTS 64

1D PtoP 2D PtoP 2D AtoA
Data Sets K Ts Tp S Tp S Tp S

4 55.7 20.0 2.79 17.1 3.26 17.8 3.06
iso200x150 8 55.7 11.8 4.72 10.7 5.21 13.0 2.64

16 55.7 8.0 6.96 7.5 7.43 11.3 2.58
24 55.7 7.4 7.53 7.0 7.96 10.7 2.48
4 249.8 84.5 2.96 70.3 3.55 70.8 3.53

iso400x300 8 249.8 42.1 5.93 38.1 6.56 44.0 5.68
16 249.8 25.0 9.99 20.3 12.31 30.7 8.14
24 249.8 17.8 14.03 16.4 15.23 29.2 8.55
4 1067.6 366.1 2.92 318.9 3.35 295.6 3.61

iso800x600 8 1067.6 184.3 5.79 159.1 6.71 174.7 6.11
16 1067.6 99.7 10.71 81.2 13.15 105.5 10.12
24 1067.6 68.1 15.68 57.2 18.66 93.1 11.47
4 57.6 20.3 2.84 17.1 3.37 18.2 3.16

rot200x150 8 57.6 12.1 4.76 9.8 5.88 11.7 4.92
16 57.6 8.4 6.89 7.4 7.78 8.9 6.47
24 57.6 6.0 9.60 6.6 8.73 9.0 6.40
4 254.4 93.6 2.72 73.9 3.44 75.0 3.39

rot400x300 8 254.4 48.5 5.25 36.5 6.97 41.2 6.17
16 254.4 24.7 10.30 20.6 12.35 23.5 10.83
24 254.4 18.6 13.68 45.2 17.69 20.9 12.17
4 1365.7 390.4 3.50 324.2 4.21 320.7 4.26

rot800x600 8 1365.7 203.3 6.72 158.2 8.63 168.5 8.11
16 1365.7 104.7 13.04 86.2 15.84 89.4 15.28
24 1365.7 74.4 18.36 61.8 22.10 65.1 20.98
4 66.2 28.7 2.31 28.1 2.36 30.6 2.16

irt200x150 8 66.2 18.1 3.66 17.7 3.74 26.5 2.49
16 66.2 13.6 4.87 16.9 3.92 26.4 2.51
24 66.2 12.8 5.17 12.8 5.17 24.9 2.66
4 286.3 122.7 2.33 121.4 2.36 132.3 2.16

irt400x300 8 286.3 69.1 4.14 65.6 4.36 85.6 3.34
16 286.3 46.7 6.13 57.8 4.95 76.6 3.74
24 286.3 35.6 8.04 45.2 6.33 71.2 4.02
4 1516.0 521.4 2.91 439.0 3.45 516.9 2.93

irt800x600 8 1516.0 310.5 4.88 254.9 5.95 341.1 4.44
16 1516.0 201.5 7.52 232.8 6.51 364.4 4.16
24 1516.0 148.0 10.24 146.3 10.36 277.0 5.47

Table 6.3: Per iteration execution times of PSCM

CHAPTER 6. RESULTS 65

ISO

0

4

8

12

16

20

0 4 8 12 16 20 24

Number of Processors

S
p

e
e
d

u
p

iso200x150

iso400x300

iso800x600

ROT

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Number of Processors
S

p
e
e
d

u
p

rot200x150

rot400x300

rot800x600

IRT

0

4

8

12

0 4 8 12 16 20 24

Number of Processors

S
p

e
e
d

u
p

irt200x150

irt400x300

irt800x600

(a) 1D rowwise partitioning with point-to-point communication

ISO

0

4

8

12

16

20

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

iso200x150

iso400x300

iso800x600

ROT

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

rot200x150

rot400x300

rot800x600

IRT

0

4

8

12

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

irt200x150

irt400x300

irt800x600

(b) 2D checkerboard partitioning with point-to-point communication

ISO

0

4

8

12

16

20

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

iso200x150

iso400x300

iso800x600

ROT

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

rot200x150

rot400x300

rot800x600

IRT

0

4

8

12

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

irt200x150

irt400x300

irt800x600

(c) 2D checkerboard partitioning with all-to-all communication

ISO

0

4

8

12

16

20

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

iso200x150

iso400x300

iso800x600

ROT

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

rot200x150

rot400x300

rot800x600

IRT

0

4

8

12

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

irt200x150

irt400x300

irt800x600

(d) 2D fine-grain partitioning with point-to-point communication

Figure 6.3: BSCM speedup curves

CHAPTER 6. RESULTS 66

ISO

0

4

8

12

16

20

0 4 8 12 16 20 24

Number of Processors

S
p

e
e
d

u
p

iso200x150

iso400x300

iso800x600

ROT

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Number of Processors

S
p

e
e
d

u
p

rot200x150

rot400x300

rot800x600

IRT

0

4

8

12

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

irt200x150

irt400x300

irt800x600

(a) 1D rowwise partitioning with point-to-point communication

ISO

0

4

8

12

16

20

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

iso200x150

iso400x300

iso800x600

ROT

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

rot200x150

rot400x300

rot800x600

IRT

0

4

8

12

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

irt200x150

irt400x300

irt800x600

(b) 2D checkerboard partitioning with point-to-point communication

ISO

0

4

8

12

16

20

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

iso200x150

iso400x300

iso800x600

ROT

0

4

8

12

16

20

24

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

rot200x150

rot400x300

rot800x600

IRT

0

4

8

12

0 4 8 12 16 20 24

Number of Processors

S
p

e
e

d
u

p

irt200x150

irt400x300

irt800x600

(c) 2D checkerboard partitioning with all-to-all communication

Figure 6.4: PSCM speedup curves

CHAPTER 6. RESULTS 67

these blocks also increase rowwise communication in 2D implementations. This

situation can be better seen from Table 6.4 in which we give the total communi-

cation volume and the number of messages for the datasets corresponding to the

400×300 image. We give various partition results of the 2D implementations in

Table 6.5. The values in these tables are the averages of ten different partitioning

strategies. From these tables, it is clear that the partitioning tool has been able to

reduce both the communication volume and number of messages of the rotation

data set significantly better than the dataset resulting from the combined blur.

The isotropic data set is somewhere in between.

To have a better chance of comparing the parallelization schemes, in Figures

6.5, 6.6, and 6.7, we give the bar charts of the parallel run times. From these

figures, we can see that among the decomposition schemes utilized, for the ro-

tation blur and the isotropic blur, 2D point-to-point communication performs

better than other schemes. Even though we explicitly reduce the number of com-

munications in 1D decomposition, 2D decomposition yields better results since it

reduces the number of messages handled by a single processor from K to r+c−2,

for a K = r×c mesh of processors. Moreover, fold and expand operations are

performed along the columns and the rows of the mesh concurrently, hence com-

munication overhead is decreased. As explained in Section 5.3.2.4, we have better

communication-computation overlap in point-to-point communication compared

to all-to-all communication scheme. Moreover, since in all-to-all communication

scheme all processors ends up with the whole external vector, redundant com-

munication takes place and the communication volume is increased. Fine-grain

partitioning scheme though decreasing the total volume, increases the message-

count since in the worst case, it induces 2(K−1) messages per processor. However,

for the third data set, the sparsity pattern of the resulting matrices increases the

columnwise and rowwise communication in 1D and 2D checkerboard partition-

ing schemes, hence a fine-grain partitioning strategy performs better than other

parallelization schemes.

Finally, considering per iteration performance, we see that BSCM yields better

speedups compared to PSCM. This is consistent with our performance analysis

made in Sections 4.4 and 5.4.

CHAPTER 6. RESULTS 68

Total Message Maximum Message
Data Volume Num Volume Num Volume Num
Set K y = Ax q = πA

1D Point-to-Point
4 7,946.5 8.3 2,518.0 2.9 3,678.8 3.0

iso400x300 8 9,956.9 27.1 1,579.8 5.3 4,150.5 6.7
16 13,106.0 66.1 1,013.3 7.3 4,565.9 13.1
24 15,851.6 110.2 837.2 11.8 4,279.4 17.8
4 616.9 6.1 178.7 2.1 281.6 2.1

rot400x300 8 1,575.1 17.6 275.2 3.5 367.0 3.4
16 3,596.6 39.8 326.7 4.7 370.8 4.2
24 5,937.0 63.8 336.1 5.3 439.9 4.8
4 43,011.1 12.0 11,697.1 3.0 12,318.7 3.0

all400x300 8 69,593.5 44.6 9,607.6 7.0 10,913.8 6.9
16 104,833.5 188.4 6,977.4 15.0 7,736.8 14.5
24 124,262.7 386.5 5,555.5 22.9 5,983.5 20.4

2D Checkerboard with Point-to-Point Communication Scheme
4 6,830.2 8.0 1,905.8 2.0 1,905.8 2.0

iso400x300 8 12,221.2 31.9 1,899.0 4.0 1,899.0 4.0
16 25,198.3 95.8 2,602.1 6.0 2,602.1 6.0
24 32,900.1 190.4 2,164.8 8.0 2,164.8 8.0
4 832.5 6.2 309.4 2.0 309.4 2.0

rot400x300 8 2,100.0 26.0 353.1 4.0 353.1 4.0
16 5,487.5 69.5 536.1 5.8 536.1 5.8
24 8,881.5 136.0 610.1 7.5 610.1 7.5
4 61,805.1 8.0 19,828.3 2.0 19,828.3 2.0

all400x300 8 96,042.2 32.0 14,186.9 4.0 14,186.9 4.0
16 191,667.4 96.0 13,678.5 6.0 13,678.5 6.0
24 219,250.1 192.0 10,407.2 8.0 10,407.2 8.0

2D Checkerboard with All-to-All Communication Scheme
4 7,341.6 8.0 1,977.4 2.0 1,977.4 2.0

iso400x300 8 23,009.7 24.0 3,165.2 3.0 3,165.2 3.0
16 51,242.4 64.0 4,099.5 4.0 4,099.5 4.0
24 78,321.1 120.0 4,278.0 5.0 4,278.0 5.0
4 699.2 8.0 267.7 2.0 267.7 2.0

rot400x300 8 2,873.1 24.0 542.1 3.0 542.1 3.0
16 10,964.7 64.0 1,096.9 4.0 1,096.9 4.0
24 18,194.0 120.0 1,148.1 5.0 1,148.1 5.0
4 55,349.6 8.0 17,000.4 2.0 17,000.4 2.0

all400x300 8 118,787.5 24.0 17,598.1 3.0 17,598.1 3.0
16 291,516.0 64.0 20,749.0 4.0 20,749.0 4.0
24 371,198.0 120.0 17,564.2 5.0 17,564.2 5.0

2D Fine-grain
4 6,957.9 17.3 4,984.7 5.4 4,984.7 5.4

iso400x300 8 8,191.9 50.5 4,601.5 9.3 4,601.5 9.3
16 10,580.3 130.2 4,627.5 16.5 4,627.5 16.5
24 12,804.2 206.2 4,567.2 21.6 4,567.2 21.6
4 575.6 12.8 208.3 4.4 208.3 4.4

rot400x300 8 1,185.9 28.0 220.5 4.0 220.5 4.0
16 2,463.9 61.2 230.9 4.6 230.9 4.6
24 3,739.5 100.2 250.0 6.0 250.0 6.0
4 40,291.2 24.0 20,244.2 6.0 20,244.2 6.0

all400x300 8 64,555.5 111.5 17,124.9 14.0 17,124.9 14.0
16 97,661.5 441.4 15,981.1 30.0 15,981.1 30.0
24 117,222.0 919.0 15,751.4 45.8 15,751.4 45.8

Table 6.4: Partition results

CHAPTER 6. RESULTS 69

2D Point-to-Point
Expand Ax / Fold πA Fold Ax / Expand πA

Data Volume Number Volume Number
Sets K Total Max Total Max Total Max Total Max

4 (2×2) 5,288.4 1,442.9 4.0 1.0 1,541.8 464.0 4.0 1.0
iso 8 (4×2) 8,322.1 1,400.4 23.9 3.0 3,899.1 783.5 8.0 1.0

16 (4×4) 8,854.5 764.6 47.8 3.0 16,343.8 2,047.8 48.0 3.0
24 (6×4) 10,892.2 575.5 118.4 5.0 22,007.9 1,741.9 72.0 3.0
4 (2×2) 220.5 110.2 2.2 1.0 612.0 199.4 4.0 1.0

rot 8 (4×2) 894.5 190.2 18.0 3.0 1,205.5 217.0 8.0 1.0
16 (4×4) 904.2 151.4 21.5 2.8 4,583.3 474.3 48.0 3.0
24 (6×4) 1,579.0 135.6 64.0 4.5 7,302.5 544.6 72.0 3.0
4 (2×2) 16,146.4 6,154.8 4.0 1.0 45,658.7 13,674.0 4.0 1.0

all 8 (4×2) 42,836.5 6,372.7 24.0 3.0 53,205.7 7,913.3 8.0 1.0
16 (4×4) 43,063.0 3,413.6 48.0 3.0 148,604.4 10,944.1 48.0 3.0
24 (6×4) 61,790.7 3,064.5 120.0 5.0 157,459.4 7,713.2 72.0 3.0

2D All-to-All
4 (2×2) 5,507.0 1,428.8 4.0 1.0 1,834.6 548.6 4.0 1.0

iso 8 (4×2) 18,919.8 2,441.8 16.0 2.0 4,089.9 723.4 8.0 1.0
16 (4×4) 19,379.4 1,338.6 32.0 2.0 31,863.0 2,760.9 32.0 2.0
24 (6×4) 37,604.5 1,722.1 72.0 3.0 40,716.6 2,555.9 48.0 2.0
4 (2×2) 219.1 109.7 4.0 1.0 480.1 158.0 4.0 1.0

rot 8 (4×2) 1,733.7 297.1 16.0 2.0 1,139.4 245.0 8.0 1.0
16 (4×4) 1,745.7 257.6 32.0 2.0 9,219.0 839.3 32.0 2.0
24 (6×4) 4,706.0 334.6 72.0 3.0 13,488.0 813.5 48.0 2.0
4 (2×2) 16,178.7 5,369.8 4.0 1.0 39,170.9 11,630.6 4.0 1.0

all 8 (4×2) 73,502.1 10,762.3 16.0 2.0 45,285.4 6,835.8 8.0 1.0
16 (4×4) 73,054.8 5,416.0 32.0 2.0 218,461.2 15,333.0 32.0 2.0
24 (6×4) 139,044.5 6,985.6 72.0 3.0 232,153.5 10,578.6 48.0 2.0

2D Fine-grain
4 (2×2) 6,716.6 4,917.8 10.6 3.0 241.3 94.1 6.7 2.4

iso 8 (4×2) 7,745.4 4,536.5 34.7 6.6 446.5 86.9 15.8 2.8
16 (4×4) 9,563.0 4,543.1 95.7 13.4 1,017.3 117.8 34.5 3.3
24 (6×4) 11,077.4 4,498.3 153.0 18.6 1,726.8 169.4 53.2 3.6
4 (2×2) 244.0 89.7 6.4 2.2 331.6 120.1 6.4 2.2

rot 8 (4×2) 510.3 92.8 14.0 2.0 675.6 133.7 14.0 2.0
16 (4×4) 1,050.7 102.4 30.6 2.3 1,413.2 135.9 30.6 2.3
24 (6×4) 1,517.0 104.4 50.1 3.0 2,222.5 163.6 50.1 3.0
4 (2×2) 22,303.4 12,880.1 12.0 3.0 17,987.8 7,629.8 12.0 3.0

all 8 (4×2) 35,346.9 12,632.1 55.7 7.0 29,208.6 5,889.5 55.8 7.0
16 (4×4) 51,636.6 12,699.6 224.8 15.0 46,024.9 4,152.4 216.6 15.0
24 (6×4) 61,067.5 13,394.2 476.2 23.0 56,154.5 3,591.9 442.8 22.8

Table 6.5: Partition results for 2D decompositions

CHAPTER 6. RESULTS 70

(a)

(b)

(c)

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �0

5

10

15

20

25

4 8 16 24

Number of Processors

P
er

 It
er

at
io

n
 R

u
n

 T
im

e
(m

se
cs

)

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � 1D Point-to-point 2D Point-to-point 2D All-to-all 2D Fine-grain

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �0

5

10

15

20

25

4 8 16 24

Number of Processors

P
er

 It
er

at
io

n
 R

u
n

 T
im

e
(m

se
cs

)

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �0

5

10

15

20

25

30

35

4 8 16 24

Number of Processors

P
er

 It
er

at
io

n
 R

u
n

 T
im

e
(m

se
cs

)

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

Figure 6.5: Parallel execution times of the implementations with 200×150 image:
(a) isotropic blur, (b) rotation blur, (c) combined blur.

CHAPTER 6. RESULTS 71

(a)

(b)

(c)

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �0

10

20

30

40

50

60

70

80

90

100

4 8 16 24

Number of Processors

P
er

 It
er

at
io

n
 R

u
n

 T
im

e
(m

se
cs

)

� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � 1D Point-to-point 2D Point-to-point 2D All-to-all 2D Fine-grain

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �0

10

20

30

40

50

60

70

80

90

100

110

4 8 16 24

Number of Processors

P
er

 It
er

at
io

n
 R

u
n

 T
im

e
(m

se
cs

)

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

0

20

40

60

80

100

120

140

4 8 16 24

Number of Processors

P
er

 It
er

at
io

n
 R

u
n

 T
im

e
(m

se
cs

)

Figure 6.6: Parallel execution times of the implementations with 400×300 image:
(a) isotropic blur, (b) rotation blur, (c) combined blur.

CHAPTER 6. RESULTS 72

(a)

(b)

(c)

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �0

50

100

150

200

250

300

350

400

4 8 16 24

Number of Processors

P
er

 It
er

at
io

n
 R

u
n

 T
im

e
(m

se
cs

)
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � 1D Point-to-point 2D Point-to-point 2D All-to-all 2D Fine-grain

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �0

50

100

150

200

250

300

350

400

450

4 8 16 24

Number of Processors

P
er

 It
er

at
io

n
 R

u
n

 T
im

e
(m

se
cs

)

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �0

100

200

300

400

500

600

4 8 16 24

Number of Processors

P
er

 It
er

at
io

n
 R

u
n

 T
im

e
(m

se
cs

)

Figure 6.7: Parallel execution times of the implementations with 800×600 image:
(a) isotropic blur, (b) rotation blur, (c) combined blur.

CHAPTER 6. RESULTS 73

6.3 Overall Performance

Iterative methods have the flexibility that the system parameters effecting con-

vergence can be explicitly set by the user according to the requirements of the

application. As far as image restoration is concerned, by decreasing the tolerance

parameter, one can have better restorations with the cost of increasing computa-

tional time. In our experiments we have set the tolerance parameter as 5% of the

mean value of the observed image. The other parameter effecting convergence

is the relaxation parameter λ, which is taken as 1.7. The starting point of the

iterations is taken as the zero vector which means that every pixel in the image to

be recovered is assumed to be black, initially. With these values the number of it-

erations required for convergence are given in Table 6.6. In this table the column

‘Block’ refers to block-striped partitioning in which each processor is assigned

contiguous rows, ‘Cyclic’ means sequential distribution of the rows of the matrix

in a wraparound manner, and ‘HG’ denotes the partitioning schemes obtained

using hypergraph partitioning tools. In order to be able to make comparisons

among different partitioning strategies, we have taken the results with different

partitioning strategies.

From Table 6.6 we see that the permutation of the rows severely affects the

convergence behavior of the surrogate constraint methods. The effect of the hy-

pergraph partitioning is clustering nonzero elements to diagonal blocks to reduce

the communication costs. When the blocks of a matrix are clustered in such a

way, the effect is likely to reduce the dimension of the system. To see this, con-

sider the extreme case in which all elements of a matrix A are clustered in the

diagonal blocks and assume that matrix and the x-vector are partitioned into K

blocks as in 1D case. Then kth row block of the system defines a constraint in

the form Akx ≤ bk, or Ak1x1 + · · ·+ Aklxl + · · ·AkKxK , where Akl is the column

block corresponding to xk. But if, xl = 0 for l 6= k, then each block consists of

≈ N/K size independent systems. In [29] it is given that speed of convergence

is proportional to N2/M , where N is the dimension of the system and M is the

number of constraints. Hence, clustering results in reduced-decoupled systems

and increases the convergence performance.

CHAPTER 6. RESULTS 74

PSCM
Data Sets K Block Cyclic HG BSCM

4 6591 3834 4334
iso200x150 8 5185 3398 3300 8508

16 4526 3286 3041
24 4845 3421 3158
4 20451 10370 11297

iso400x300 8 15112 9231 8965 24721
16 12531 8002 7850
24 12665 8789 8516
4 41312 30785 31781

iso800x600 8 38154 26351 24857 64909
16 31159 21265 19124
24 26720 17421 14789
4 442 387 192

rot200x150 8 391 262 153 511
16 279 223 123
24 272 186 108
4 849 342 386

rot400x300 8 809 341 281 1745
16 507 560 233
24 501 577 199
4 4804 1548 645

rot800x600 8 907 1113 323 2647
16 798 1664 272
24 628 1677 300
4 8949 1813 1477

irt200x150 8 6745 1513 1302 12267
16 5885 1477 1178
24 5628 1519 1108
4 48678 12984 8429

irt400x300 8 37284 11776 7385 79044
16 31181 11746 6403
24 34257 11026 5767
4 141928 38193 19479

irt800x600 8 88336 34113 12748 171129
16 71759 33988 9249
24 49967 33197 8993

Table 6.6: Overall number of iterations of the surrogate constraint methods

CHAPTER 6. RESULTS 75

The decrease in the speed of convergence substantially improves the overall

performance of PSCM especially with increasing size of the blocks. The overhead

induced by the extra computations (which is mentioned in Section 3.4) does not

much effect the parallel performance, however it has the nice effect of accelerating

the convergence rate. In Fig. 6.8 we give the overall performance results of the

parallel methods for the 400×300 pixel image. The increase in the number of

iterations makes PSCM much more favorable compared to BSCM for the overall

case. Moreover, we see that 1D implementation is superior to 2D in the overall

performance, since in 1D case number of processors is equal to number of row

blocks, where in 2D case number of blocks is equal to number of row-meshes. As

the number of blocks increases, the iteration number decreases, hence with 1D

partitioning we get better overall performance results.

Finally, we consider the preprocessing overhead of our parallel implementa-

tions. In Table 6.7 we give the partitioning times of the matrices expressed in

terms of the number of iterations. With an increasing number of processors,

the preprocessing time increases and may become comparable to the overall run

times of the algorithms. However, as well as yielding efficient parallelization,

hypergraph partitioning methods substantially decreases the iteration numbers.

So, although producing high preprocessing overhead, this partitioning strategy

increases the performance of the methods.

6.4 Restoration Results

To evaluate the restoration performance of the parallel methods, we have chosen

the image f shown in Fig. 6.9. Blurred image g is generated using Eq. 2.7, or by

simply multiplying f with H so that g = Hf . In Fig. 6.10 the resulting distorted

images are shown for the three types of blurs.

With the same parameter values given in Section 6.3 we have restored the

images by the surrogate constraint methods. The results corresponding to three

blurs are given in Fig. 6.11. Even though the images become fairly deblurred

CHAPTER 6. RESULTS 76

(a)

(b)

(c)

� �
� �
� �
� �

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �0

10

20

30

40

50

4 8 16 24

Number of Processors

S
p

ee
d

u
p

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � � 1D Point-to-point 2D Point-to-point 2D All-to-all 2D Fine-grain

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �0

10
20
30
40
50
60
70
80
90

100
110
120

4 8 16 24

Number of Processors

S
p

ee
d

u
p

� �
� �

� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �0

10
20
30
40
50
60
70
80
90

100
110

4 8 16 24

Number of Processors

S
p

ee
d

u
p

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

BSCM PSCM BSCM PSCM BSCM PSCM BSCM PSCM

Figure 6.8: Overall speedup charts of the parallel methods:
(a) isotropic blur, (b) rotation blur, (c) combined blur.

CHAPTER 6. RESULTS 77

Parallel Scheme
Data Sets K 1D P2P 2D P2P 2D A2A 2D FG

4 125 115 220 285
iso400x300 8 291 302 149 803

16 618 835 110 1709
24 912 1287 81 2187
4 68 83 144 285

rot400x300 8 184 248 110 816
16 458 553 70 1892
24 699 858 55 2964
4 335 230 514 296

irt400x300 8 1413 596 494 59
16 4093 1290 258 1367
24 5228 3106 247 1705

Table 6.7: Preprocessing times for the data sets of the 400×300 Image. Expressed
in terms of the per iteration times of the corresponding PSCM implementation.

for this case, we can have better results by decreasing the tolerance parameter.

One such result is given in Fig. 6.12 for the rotation blur with a tolerance value

decreased to 0.1% of the mean value of the observed image.

Figure 6.9: Original image

CHAPTER 6. RESULTS 78

(a) (b) (c)

Figure 6.10: Blurred images: (a) isotropic blur, (b) rotation blur, (c) combined
blur.

(a) (b) (c)

Figure 6.11: Restored images: (a) isotropic blur, (b) rotation blur, (c) combined
blur.

Figure 6.12: Restored image with decreased tolerance value

Chapter 7

Conclusion

In this thesis, we are concerned with the image restoration problem by formulating

it as a system of linear inequalities. The coefficient matrix of the system is a

non-structured sparse-matrix and even with small size images we end up with

huge matrices. We have used the surrogate constraint methods proposed by

Yang and Murty [29], which can work efficiently for the large size problems and

are amenable for parallel implementations. Among the proposed methods, we

have decided to use BSCM, which is the basic method proposed, and a modified

version of the parallel method which is proposed by Özaktaş et al. [23]. For

the solution of the system we have used several parallel implementation schemes.

Since the nonzero patterns of the resulting matrices are irregular, decomposition

of the problem data for efficient parallelization is a non-trivial process. We have

used hypergraph partitioning based methods which minimizes communication

overhead significantly and maintains the load balance at the same time.

For 1D decomposition of the problem data we have explicitly tried to min-

imize the total volume and the number of communications. At the same time,

communication balance is tried to be maintained among the processors as well as

the load balance. We have adopted a point-to-point communication scheme, in

which the sparsity of the matrices are exploited and no redundant communica-

tion is performed. For 2D checkerboard decomposition, first we have performed

the communications in a point-to-point manner using the connectivity metric of

79

CHAPTER 7. CONCLUSION 80

the cut size definition, and then we tried to minimize the the external parts of

the vector components using cutnet metric of the cut size. Then, in-place, all-to-

all communications are performed along the external parts. Finally for BSCM,

we have decomposed the matrix in a fine-grain manner on a nonzero basis, and

performed the communications in a point-to-point manner.

To evaluate the performance of the parallel implementations and the restora-

tion methods, we used three types of blurs with three different size images con-

stituting 9 data sets. All of the blurs denote serious distortions which have

non-local, space-variant, and anisotropic nature. The experimental results of the

parallel implementations are evaluated on a per iteration basis and with respect

to overall performance. According to our experimental results, we end up with

the following arguments for the parallelization schemes utilized:

• 1D point-to-point communication scheme is not as scalable as its 2D coun-

terpart, namely 2D checkerboard partitioning with point-to-point commu-

nication scheme. Though with 1D rowwise decomposition of the matrix

we respect the row coherence and no rowwise communication takes place,

concurrent communications performed along the rows and columns of the

processor mesh decreases the communication overhead of the checkerboard

partitioning significantly. However, considering the overall performance,

1D decomposition produces better speedup since the number of iterations

required for convergence decreases significantly with the increasing number

of row blocks of the system.

• Among 2D decomposition schemes, we see that point-to-point communica-

tion scheme produces better results compared to all-to-all communication

scheme, even though we can perform in-place communications for all-to-all

case. This is mainly because of the increasing communication volume con-

fronted in all-to-all communication. Note that the performance of all-to-all

communication scheme is fairly good for the rotation blur for which the

communication volume is not significant. Moreover, in all-to-all communi-

cation scheme with checkerboard partitioning, number of communications

CHAPTER 7. CONCLUSION 81

per processor scales with dlog2(r + c)e, where r and c is the number of pro-

cessors per column and per row respectively. So, with an increasing number

of processors, all-to-all communication scheme is likely to produce better

results.

• With a fine-grain partitioning of the problem data, for some data sets we can

achieve satisfactory results. Note that, fine-grain partitioning decreases the

communication volume significantly however is apt to increase the message-

count since it does not respect neither row nor column coherence and can

produce up to 2(K − 1) messages per processor. However, if the communi-

cation volume requirements are high as in the combined blur case, fine-grain

partitioning strategy can outperform other partitioning schemes.

Considering the parallel methods, BSCM produced better results compared

to PSCM for the per iteration case. However, though causing some extra cost,

increasing the number of blocks accelerates the convergence rate significantly,

hence PSCM outperforms BSCM considering the overall performance.

We should also mention the positive effect of the partitioning strategy on the

convergence rate. We have seen that the permutations performed on the rows

of the coefficient matrix during the partitioning process significantly reduces the

iteration number required for convergence. We think that, this is due to the

decoupling effect induced on the blocks of the system during the partitioning

process.

Concerning the restoration performance, we see that satisfactory restorations

can be achieved especially by decreasing the tolerance parameter, with the incom-

ing cost of increased computational time. Actually, the system parameters can

be set according to the requirements of the application. Moreover, the iterative

restoration technique has the advantage that, the image can be viewed during

the restoration process and the process can be terminated after a while when the

restoration level satisfies the application requirements.

Finally we note that the parallel implementations performed in this work can

also be used in other real-world applications which can be formulated as a linear

CHAPTER 7. CONCLUSION 82

feasibility problem and requires processing of large data sets. The process of

image reconstruction from projections used in computerized tomography is such

an example [13].

Bibliography

[1] G. Burns, R. Daoud, and J. Vaigl. Lam: an open cluster environment for

mpi. In J. W. Ross, editor, Proceedings of Supercomputing Symposium, pages

179–186, 1994.

[2] Ü. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning-based decom-

position for parallel sparse-matrix vector multiplication. IEEE Transactions

on Parallel and Distributed Systems, 10(7):673–693, 1999.

[3] Ü. V. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2d

decomposition of sparse matrices. In Scientific Computing 2001, 2001.

[4] Ü. V. Çatalyürek and C. Aykanat. A hypergraph-partitioning approach for

coarse-grain decomposition. Proceedings of Scientific Computing, pages 10–

16, November 2001.

[5] Y. Censor. Parallel optimization: theory, algorithms, and applications. Ox-

ford University Press, 1997.

[6] Y. Censor and T. Elfving. New method for linear inequalities. Linear Algebra

and its Applications, 42:199–211, 1982.

[7] G. Cimmino. Calcolo approssimato per le seluzioni dei sistemi di equizoni

lineari. Ricerca Scientifica, 1:326–333, 1938.

[8] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley,

2001.

83

BIBLIOGRAPHY 84

[9] L. G. Gubin, B. T. Polyak, and E. V. Raik. The method of projections for

finding the common point of convex sets. USSR Computational Mathematics

and Mathematical Physics, 6:326–333, 1967.

[10] B. Hendrickson and T. G. Kolda. Partitioning rectangular and structurally

nonsymmetric sparse matrices for parallel processing. SIAM Journal of Sci-

entific Computing, 21(6):2048–2072, 1998.

[11] B. Hendrickson and T. G. Kolda. Graph partioning models for parallel

computing. Parallel Computing, 26:1519–1534, 2000.

[12] B. Hendrickson, R. Leland, and S. Plimpton. An efficient parallel algorithm

for matrix-vector multiplication. International Journal of High Speed Com-

puting, 7(1):73–88, 1995.

[13] G. T. Herman. Image Recostruction from Projections, The Fundamentals of

Computerized Tomography. Academic Press, 1980.

[14] M. Jacunski, P. Saddayapan, and D. K. Panda. All-to-all broadcast on

switch-based clusters of workstations. IPPS / SPDP, pages 325–329, 1999.

[15] S. Kacmarz. Angenherte auflösung von systemn linearer gleichungen. Sci-

ences Mathematiques et Naturelles, 35:355–357, 1937.

[16] J. Kowalik, editor. MPI: The Complete Reference. The MIT Press, 1996.

[17] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel

Computing. The Benjamin/Cummings Publishing Company, 1994.

[18] R. L. Lagendijk and J. Biemond. Iterative Identification and Restoration of

Images. Kluwer Academic Publishers, 1991.

[19] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley-

Teubner, 1990.

[20] J. G. Lewis, D. G. Payne, and R. A. van de Geijn. Matrix-vector multiplica-

tion and conjugate gradient algorithms on distributed memory computers. In

Proceedings of the Scalable High Performance Computing Conference, pages

943–948, November 1994.

BIBLIOGRAPHY 85

[21] J. G. Lewis and R. A. van de Geijn. Distributed memory matrix-vector

multiplication and conjugate gradient algorithms. IEEE, Proceedings of Su-

percomputing, 1993.

[22] H. Özaktaş. Algorithms for Linear and Convex Feasibility Problems: A Brief

Study of Iterative Projection, Localization and Subgradient Methods. PhD

thesis, Bilkent University, 1996.

[23] H. Özaktaş, M. Ç. Pınar, and M. Akgül. The parallel surrogate constraint

approach to the linear feasibility problem. Lecture Notes in Computer Sci-

ence, pages 565–574, 1996.

[24] H. Özaktaş, M. Ç. Pınar, and M. Akgül. Restoration of space-variant global

blurs caused by severe camera movements and coordinate distortions. Jour-

nal of Optics, 29(303-310), 1998.

[25] G. Palomares and G. Castano. Acceleration technique for solving convex

(linear) systems via projection methods. Technical report, ESCOLA TEC-

NICA SUPERIOR DE ENXENEIROS DE TELECOMUNICACION, 1996.

[26] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing,

Boston, second edition, January 1996.

[27] B. Uçar and C. Aykanat. Parmxvlib: A library for sparse-matrix vector

multiplies. In Proceedings of the 7th World Multiconference on Systemics,

Cybernetics and Informatics (SCI’2003), pages 393–398, July 2003.

[28] B. Uçar and C. Aykanat. Encapsulating multiple communication-cost met-

rics in partitioning sparse rectengular matrices for parallel matrix-vector

multiplies. SIAM Journal of Scientific Computing, to appear.

[29] K. Yang and K. G. Murty. New iterative methods for linear inequalities.

Journal of Optimization Theory and Applications, pages 163–185, 1992.

Appendix A

Storage Schemes for Sparse

Matrices

In order to take advantage of the large number of zero elements, special schemes

are required to store sparse matrices. The main goal is to represent only the

nonzero elements, and to be able to perform the common matrix operations in

an efficient way.

The simplest storage scheme for sparse matrices is the so-called coordinate

format. The data structure consists of three arrays to store an M × N matrix

with Z nonzero entries:

• An array VAL of length Z containing all the values of the nonzero elements

in any order.

• An integer array JA of length Z containing their column indices.

• An integer array IA of length Z containing their row indices

86

APPENDIX A. STORAGE SCHEMES FOR SPARSE MATRICES 87

For example, tha matrix,

A =

1 0 0 2 0

0 3 0 4 0

5 0 0 6 7

0 0 8 9 0

can be represented by,

VAL 2 4 5 3 8 1 6 9 7

JA 3 3 0 1 2 0 3 3 4

IA 0 1 3 1 4 0 3 4 3

Note that the row and column indices begins from 0.

If the elements of the matrix were listed by row, the array IA which contains

redundant information can be replaced by an array which points to the beginning

of each row instead. This would involve nonnegligible savings in storage. The

new data structure has three arrays with the following functions:

• An array VAL of length Z containing all the nonzero elements stored row

by row, from row 0 to M − 1.

• An integer array JA of length Z containing the column indices of the nonzero

elements in the array VAL.

• An integer array IA containing the pointers to the beginning of each row in

the arrays VAL and JA. Thus, the content of IA is the position in arrays

VAL and JA where the ith row starts. The length of IA is M + 1, with

IA[M] containing the number IA[0] + z, i.e., the address in VAL and JA of

the beginning of a fictitious row number M .

So, the above matrix may be stored as follows:

VAL 1 2 3 4 5 6 7 8 9

JA 0 3 1 3 0 3 4 2 3

IA 0 2 4 7 9

APPENDIX A. STORAGE SCHEMES FOR SPARSE MATRICES 88

This format is probably the most popular for storing general sparse matrices.

It is called the Compressed Sparse Row (CSR) format. This scheme is preferred

over the coordinate scheme because it is often more useful for performing typical

computations. On the other hand, the coordinate scheme is advantageous for its

simplicity and its flexibility. It is often used as an entry format in sparse matrix

software packages.

There are a number of variations for the Compressed Sparse Row format.

The most obvious variation is storing the columns instead of the rows. The

corresponding scheme is known as the Compressed Sparse Column (CSC) scheme,

in which an integer array JA holds the pointers to the beginning of each column.

Appendix B

Sparse Matrix-Vector Multiplies

The multiplication of a sparse matrix with a dense vector is one of the key oper-

ations in solving systems of linear ineqaulities, as well as in many other iterative

methods. It often determines the overall computational complexity of the entire

algorithm of which it is a part. Thus, efficient multiplication routines are crucial.

The product y = Ax with A stored in CSR format can be expressed in the

usual inner product form of multiplication yi = Aix =
∑

j ai,jxj (Ai is the ith

row of A and ai,j are the nonzero entries), since this traverses the rows of the

matrix A. For an M × N matrix, y = Ax multiplication is given in Figure B.1.

Since only the non-zero matrix entries are multiplied, the operation count is two

times the number of non-zero entries, which is a significant saving over the dense

operation requirement of 2MN .

The second type of a SpMxV is the outer-product form. We can view matrix-

vector multiplication y = Ax as the linear combination of the column vectors of

A with the x-vector elements, hence we perform the multiplication as y =
∑

j yj,

where yj = a∗,jxj. Fig. B.2 outlines this multiplication scheme for the SpMxV

y = Ax. This type of SpMxV is again results in 2Z time in terms of number of

floating point operations performed.

89

APPENDIX B. SPARSE MATRIX-VECTOR MULTIPLIES 90

for i = 0 to M − 1 do
kstart ← IA[i]
kend ← IA[i + 1]− 1
sum ← 0.0
for k = kstart to kend do

j ← JA[k]
sum ← sum + x[j]V AL[k]

y[i] ← sum

Figure B.1: Inner Product Form of Sparse Matrix Vector Product

y ← 0
for j = 0 to N − 1 do

kstart ← JA[j]
kend ← JA[j + 1]− 1
for k = kstart to kend do

i ← IA[k]
y[i] ← y[i] + x[j]V AL[k]

endfor
endfor

Figure B.2: Outer Product Form of Sparse Matrix Vector Product

