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ABSTRACT

SILICON AND CARBON BASED NANOWIRES

Sefaattin TONGAY

M.S. in Physics

Supervisor: Prof. Dr. Salim Çıracı

January, 2004

Nanowires have been an active field of study since last decade. The reduced

dimensionality end size allowing electrons can propagate only in one direction has

led to quantization which are rather different from the bulk structure. As a re-

sult, nanowires having cross section in the range of Broglie wavelength have shown

stepwise electrical and thermal conductance, giant Young modulus, stepwise vari-

ation of the cross-section etc. Moreover, the atomic structure of nanowires have

exhibited interesting regularities which are not known in two or three dimensions.

These novel properties of nanowires have been actively explored since last decade

in order to find an application in the rapidly developing field of nanotechnology.

In the present thesis, we investigated the atomic and electronic structure of

a variety of Si and C atom based very thin nanowires starting from linear chain

including pentagonal, hexagonal and tubular structures. We found that the C

and Si linear chains form double bonds and have high binding energy. Although

bulk carbon in diamond structure is an insulator, carbon linear chain is metal and

has twice conductance of the gold chain. We carried out an extensive analysis

of stability and conductance of the other wires. Our study reveals that Si and

C based nanowires generally show metallic properties in spite of the fact that

they are insulator or semiconductor when they are in bulk crystal structure.

Metallicity occurs due to change in the character and order of bonds.

Keywords: ab initio, first principles, nanowires, density functional theory, nan-

otubes, conductance.
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ÖZET

SİLİKON VE KARBON TABANLI NANOTELLER

Sefaattin TONGAY

Fizik , Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Salim Çıracı

Ocak, 2004

Nanoteller geçen on yıldan beridir aktif bir araştırma alanidir. İndirgenmiş

boyut ve büyüklügün elektronların bir yönlü hareketine izin vermesi, bulk yapıdan

oldukça farklı olarak, kesikliliğe sebebiyet vermektedir. Sonuç olarak, Broglie dal-

gaboyu mertebesinde kesit alanına sahip nanoteller, basamaklı yapıda elektriksel

ve ısısal iletkenlik, yüksek Young modulü ve kesikli olarak değişen kesit alanı gibi

özellikler göstermektedir. Dahası, nanotellerin atomik yapısı iki ve üç boyutta

bilinmeyen ilginç düzenliliğe sahiptir. Nanotellerin bu belli başlı özellikleri nan-

oteklonojinin hızla gelişen alanlarında bir uygulama bulmak amacıyla geçtigimiz

on yıldan beridir aktif olarak araştırılmaktadır.

Bu tezde, silikon ve karbon içn doğrusal zincir yapıdan başlayarak, beşgensel,

altıgensel ve tüpsel yapıların atomik ve elektronik yapılari incelenmiştir. C ve

Si doğrusal zincir yapılarında çift bağ oluşumu sebebiyle bu yapıların yüksek

bağlanma enerjisine sahip oldukları bulunmuştur. Elmas yapıdaki bulk kar-

bon yalıtkan olmakla beraber, karbon doğrusal zincir yapı metalik olup, altın

doğrusal zincir yapıya nazaran iki kat iletkenliğe sahiptir. Diğer tel yapılar icin

detaylı kararlılık ve iletkenlik analizleri yürütülmüştür. Yapılan analizler Si ve

C temelli nanotellerin, bulk kristal yapılarının yalıtkan veya yarıiletken olmasına

rağmen, genel olarak metalik özelliklere sahip olduğunu göstermektedir. Bu meta-

lik davranış, bağların karekterindeki ve yönlenimindeki değişiklikten ileri gelmek-

tedir.

Anahtar sözcükler : ab initio, temel prensipler, nanoteller, durum fonksiyonu

teorisi, karbon nanotüp, iletkenlik.
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I would like to thank to Funda Güney for her moral support in my hard times

and endless love... Thank you for everything!..

I bless to my mother Suzan Tongay, my father Ergün Tongay for their end-

less love and support. I would like to thank to my sister Nazan Gezek, Pervin

Villasenor Ville, my brother Mehmet Ali Aydın, and Ahmet Gezek, Dilek Aydın,

Selim Gezek, Altay Gezek, Mert Aydın. But someone that I never forget their
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d1−4 ∼ d2−4 = 2.58Å. (c) Top view of SiT2 and CT2 structure. . . 52

4.21 Energy band structure of relaxed SiT1 structure. There are four

bands that cross EF . The structure is metallic with conductance

4G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.22 DOS of SiT1with finite state density at EF . . . . . . . . . . . . . 53

4.23 (a) Initial structure of CT3 and SiT3 structure. CT3 structure dis-

integrated after optimization, while SiT3 relaxed to top to top

triangle with linear chain with binding energy Ebinding = 4.34

eV/atom and bond lengths d1−2 = 3.55Å, d1−3 = 3.93Å, d2−3 =
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Chapter 1

Introduction

Importance of nanotechnology was first pointed out by Richard Feynman as early

as in 1959. In his now famous lecture entitled , ”There is Plenty of Room at the

Bottom.”, he stimulated his audience with the vision of exciting future discoveries

if one could fabricate materials and devices at the atomic/molecular scale. He

pointed out that, for this to happen, a new class of miniaturized instrumentation

would be needed to manipulate and measure the properties of these small-”nano”-

structures. But at that time, it was not possible for researchers to manipulate

single atoms or molecules because they were far too small to be dedected by the

existing tools. Thus, his speech was completely theoretical, but fantastic. He

described how the laws of physics do not limit our ability to manipulate single

atoms and molecules. Instead, it was our lack of the appropriate methods for

doing so. However, he correctly predicted that the time would come in which

atomically precise manipulation of matter would inevitably arrive.

It was not until the 1980s that instruments were invented with the capabilities

Feynman envisioned. These instruments, including scanning tunnelling micro-

scopes, atomic force microscopes, and near-field microscopes, provide the ”eyes”

and ”fingers” required for nanoscale measurements and atomic manipulations.

In a parallel development, expansion of computational capability now enables

sophisticated simulations of material behavior at the nanoscale. These new tools

and techniques have sparked excitement throughout the scientific community.

1
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Traditional models and theories for material properties and device operations

involve assumptions based on ”critical length scales” which are generally larger

than several nanometers. When at least one dimension of a material structure is

under the critical length, distinct behavior often emerges that cannot be explained

by traditional or classical models and theories. Thus, scientists from many dis-

ciplines are avidly fabricating and analyzing nanostructures for the advancement

of nanoscience and nanotechnology.

Nowadays science society defines nanotechnology as the ability to work at

the molecular level, atom by atom, to create large structures with fundamen-

tally new molecular organization. Compared to the behavior of bulk materials,

nanostructures in the range of about 10−9 to 10−7 m (1 to 100 nm - a typical

dimension of 10 nm is 1,000 times smaller than the diameter of a human hair)

exhibit important changes. Nanotechnology is concerned with materials and sys-

tems whose structures and components exhibit novel and significantly improved

physical, chemical, and biological properties, phenomena, and processes due to

their nanoscale size. The aim is to exploit these properties by gaining control

of structures and devices at atomic, molecular, and supramolecular scale and

to learn how to efficiently manufacture these devices. Maintaining the stability

of interfaces and the integration of these ”nanostructures” at the micron-length

scale and macroscopic scale is another objective

New behavior at the nanoscale is not necessarily predictable from that ob-

served at large size scales. The most important changes in behavior are caused

not by the order of magnitude size reduction, but by newly observed phenomena

intrinsic to or becoming predominant at the nanoscale, such as size confinement,

predominance of interfacial phenomena and quantum mechanics. Once it is pos-

sible to control feature size, it is also possible to enhance material properties

and device functions beyond those that we currently know or even consider as

feasible. Reducing the dimensions of structures leads to entities, such as car-

bon nanotubes, nanowires and quantum dots, DNA-based structures, and laser

emitters, which have unique properties. Such new forms of materials and devices

herald a revolutionary age for science and technology, provided we can discover

and fully utilize the underlying principles.
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Materials and Manufacturing. Nanotechnology is fundamentally changing the

way materials and devices will be produced in the future. The ability to synthesize

nanoscale building blocks with precisely controlled size and composition and then

to assemble them into larger structures with unique properties and functions will

revolutionize segments of the materials manufacturing industry. At present we

perceive only the tip of the iceberg in terms of the benefits that nano structuring

can bring: lighter, stronger, and programmable materials; reductions in life-cycle

costs through lower failure rates; innovative devices based on new principles and

architectures; and use of molecular/cluster manufacturing, which takes advantage

of assembly at the nanoscale level for a given purpose. We will be able to develop

structures not previously observed in nature. Challenges include synthesis of

materials by design, development of bio- and bio-inspired materials, development

of cost-effective and scalable production techniques, and determination of the

nanoscale initiators of materials failure.

Nanoelectronics and Computer Technology. Within ten years of the funda-

mental discovery of the new phenomenon of giant magnetoresistance, this nan-

otechnology completely replaced older technologies for computer disk heads and

opened new market worth $34 billion in 1998. Other potential breakthroughs

include (a) nanostructured microprocessor devices which continue the trend in

lower energy use and cost per gate, thereby improving the efficacy of computers

by a factor of millions; (b) communications systems with higher transmission fre-

quencies and more efficient utilization of the optical spectrum to provide at least

ten times more bandwidth, with consequences in business, education, entertain-

ment, and defense; (c) small mass storage devices with capacities at multi-terabit

levels, one thousand times better than today; and (d) integrated nanosensor sys-

tems capable of collecting, processing, and communicating massive amounts of

data with minimal size, weight, and power consumption. Potential applications of

nanoelectronics also include affordable virtual reality stations that provide indi-

vidualized teaching aids (and entertainment); computational capability sufficient

to enable unmanned combat and civilian vehicles; and communication capability

that obviates much commuting and other business travel in an era of increasingly

expensive transport fuels.
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In the last decade, there has been a great interest in both geometrical, me-

chanical, electrical properties of nanowires and their fabrication. Nanowires are

most important structures of nanoscience and nanotechnology since they have

great potential in applied fields such as nanoelectronics as well as their very in-

teresting nature. It’s well known that the electrical and mechanical properties

of any metal are not so different, whether its size is in millimeters or in meters.

But, as soon as its size approaches the atomic size all common knowledge about

the fundamental properties of these metals becomes invalid. For example, in

Ohm’s law, the electrical resistance of any metal is proportional to its length.

However, since the distance an electron travels between two scattering events is

typically much larger than the atomic size, this fundamental law breaks down.

The electrons transverse the atomic sized conductor ballistically, and resistance

becomes independent of its length. In fact, the character of the resistance changes

conceptually and it will be necessary to invoke the wave nature of the electrons

in the conductor for a proper description. The energy scales involved are much

larger than that of the quantum effects become visible at room temperature. The

chemical nature of the metals starts to play an essential role while the size gets

smaller. As a result, while in macroscopic world any metal, say gold, with re-

spect to the other metal,say lead, is better conductor, in nanoscaled dimensions

this time lead is better than that of gold. Metal nanowires also exhibits very

interesting quantum behavior, such as quantum of conductance, even at room

temperature due to large energy level separation of the transport channels unlike

in semiconductors. In addition to unusual electronic properties the mechanical

properties by themselves are also quite unusual: plastic deformation in a macro-

scopic metal occur via structural dislocation motion. On the other hand, atomic

sized metal wires flows in response to applied stresses via structural rearrange-

ments and their yield strength is one or two orders of magnitude larger than for

bulk materials.

The experimental investigation of these phenomena requires tools for manip-

ulation and characterization of structure at the atomic and molecular scale. An

important tools that make the fabrication of such nanowires possible are Scan-

ning Tunnelling Microscope (STM) (which was developed by Gerd Binnig and
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Heinrich Rohrer, for which they were awarded the nobel price in 1986) and High

Resolution Electron Microscope (HRTEM) and Mechanical Controllable Break

Junction (MCJB). One of the most important milestones in nanoscience is the

fabrication of the stable gold monatomic chains suspended between two elec-

trodes. Ohnishi et al [1], visualized these single atomic chains the first time by

transmission electron microscopy (TEM). Concomitantly Yanson et al. [2] has

produced four or five gold monatomic chain by using STM and MCJB, provided

indirect evidence for their existence.

After having pioneered the idea of molecular electronics, where individual

molecules plays the role of simple electronic device such as diod, transistor, tun-

nelling device, it is pointed out that the real challenge is in connecting these

devices. In fact, the interconnects between molecular devices have crucial device

elements as the device sizes have reduced at few nanometers.

Nanoelectronics has imposed the fabrication of stable and reproducible inter-

connects with the high conductivity with diameters smaller than that of the device

that they are connected to. Nanowires have been produced first to investigate

the coherent electron transport as fallow up of Gimzewski and Möller’s experi-

ment. Very thin metal wires and atomic chains have been produced by refracting

the STM tip from an indentation and then by thinning the neck of materials

that wets the tip. While these nanowires produced so far have played crucial

role in understanding the quantum effects in electronic and thermal conductance

they were neither stable nor reproducible to offer any relevant application. Re-

cent research has shown that armchair nanotubes and nanowires, or metal coated

carbon nanotubes can be served for this purpose and hence they make high con-

ducting, nanometersize wires to connect these devices. Apart from being used

as interconnects, nanowires have important aspects which attract the interest of

researches.

If the atoms forming a wire have net magnetic moment, and also the wire

itself have magnetic ground state, such a nanowire may offer applications as

nanomagnets. This is expected to be an emerging field for data storage and

electromagnetic devices.
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In metallic electron densities, when the diameter of a wire becomes in the

range of Broglie wave lenght (ie. D ∼ λB ) the energy level spacing of electronic

and phononic states transversely confined to these wires become significant. Ow-

ing to that large level spacing, the quantized nature of electrons and phonons

continue to be observable even at room temperature. As a result the electrical

conductance G and heat conductance K exhibit quantized nature. The variation

of G itself is clearly related with the atomic structure of the wire.

The structure of nanowires itself is important. The stability and periodicity

of the atomic structure in one dimension (1D) is of academical and technologi-

cal interest, because of our limited knowledge in crystallography in one dimen-

sion. Besides, earlier research have argued that at D ∼ λB, the conductance G

(even the diameter D or size) of nanowires are quantized. In this respect, we

remind the reader from magic numbers of Si atom making silicon nanoclusters.

Group IV elements, Carbon and Silicon, make semiconductor or insulator in di-

amond structure, because of their even number of valence electrons appropriate

for tetrahedrally directed covalent bonds. Our interest in this thesis is to find

their electronic properties when they form very thin nanowires.

In this thesis, we have studied the physical properties of carbon and silicon

nanowires in detail. These two elements give many different stable nanowire

structures which can be used as an interconnect between the nanodevices. In this

thesis, various nanowires starting from carbon and silicon linear chain structure

to more complex wires and their physical properties have been extensively dis-

cussed in chapter 4. Since tubes are another class of structure for one-dimensional

nanowires, we focussed on the tubular structures of silicon. In the past decade sev-

eral novel properties of carbon nanotubes have been investigated actively. These

properties have been used to make prototypes of various electronic devices at

nanoscale. In this thesis, we will not involve with the physical properties of car-

bon nanotubes. On the other hand, Si being in the same IV column as C atom,

has similar structure and it is of intent to know whether Si has stable tubular

structure. This way, additional tubular structures such as silicon (8,0) and (3,3)

nanotubes also studied in detail. Calculated energy-band structure and density of

states of these tubular structures attribute metallic properties to them. Although
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Generalized Gradient Approximation (GGA) method gives stable structure, we

applied stability test to the structure. Stability test can be applied in various ways

as discussed in Chapter 4.3.1. In our work, we chose to deform the structures and

then look for the relaxed positions of the atoms. In the second part, conduction

of C1 and Si1 is calculated by Empirical Tight-Binding Method (ETBM). This

method is discussed in Chapter 3 and Chapter 4.3.1.

This thesis is organized as follows: Chapter 2 gives a brief information about

the physical properties of different types of nanowires. Chapter 3 summarizes

the theoretical background, method of calculation and approximation methods,

Chapter 4, presents results and discussion. This work ends by giving concluding

remarks and suggestion for possible future work.



Chapter 2

Nanowires

2.1 Different types of nanowires

In the previous chapter we present an introductory explanation on the importance

and fabrication of nanowires. In this chapter we will discuss different types of

nanowires and their physical properties.

2.1.1 Single Nanowires

Nanowires have been produced by retracting the STM tip from nano indentation.

The atoms of the sample, which wet the tip have formed a neck between the tip

and sample. Metal wires having lengths as long as ∼ 400A0 were produced.

However, the prime drawback in those wires produced by STM were irregulari-

ties in their structure. Since their size and structure were not controllable and

not reproducible, serious technological applications involving those wires are not

possible.

Earlier studies based on classical molecular dynamics calculations have shown

that single atom nanowires can form. This finding confirmed experimentally by

Ohnishi et al [1] and Yanson et al [2], who fabricated stable single atom chain

8
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of Au between two electrodes. Later, first principle calculations demonstrated

the stability and electronic structure of single atom chains by performing phonon

calculation. Gulseren et al. [3] performed an extensive study using an empirical

potential and determined the exotic structure of very thin nanowires of Al and

Pb. However, lattice parameters Au deduced from experiment have been matter

of dispute among various theoretical studies.

2.1.2 Single Wall Carbon Nanotubes (SWNTs)

After the synthesis of single wall carbon nanotubes (SWNTs) in 1993 by Bethune

et al [5] and by Iijima et al. [4, 6], the focus of carbon research has shifted

towards the SWNTs, especially through the development of an ancient synthesis

method for their large scale production by Smalley and colleagues [7].

Nanotubes are simply rolled up structure of 2-D graphite layer which is spec-

ified as graphene layer.

Figure 2.1: Representation single wall carbon nanotubes by rolling up the
graphene layer.

Graphite is simply a 3 dimensional hexagonal lattice of carbon atoms, and

each single layer of graphite structure is called graphene. In a graphene layer, sp2

orbitals of nearest neighbort carbon atoms overlap with each other in order to

make strong covalent bonds. The bonding combination of two sp2 orbitals gives

the most stable bonding, which is called σ bonding.

The physical properties of SWNTs depend on the diameter and chirality,

which are defined by the indices (n,m). Chirality is a term used to specify a
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Figure 2.2: Carbon nanotube is a single layer of graphite rolled into a cylinder.

nanotube structure, which does not have mirror symmetry. The structure of a

SWNTs is specified by the vector Ch, and this vector is written as follows,

Ch = na1 + na2 (2.1)

where a1 and a2 are unit vectors of the hexagonal lattice shown in Fig. 2.2

. The vector Ch connects two crystallographically equivalent sites O and A on a

two-dimensional graphene sheet, where a carbon atom is located at each vertex

of the honeycomb structure. When we join the line AB
′

to the parallel line

OB in Fig. 2.2, we get a seamlessly joined SWNT which is classified by the

integers (n,m), since the parallel lines AB
′

and OB cross the honeycomb lattice

at equivalent points. There are only two kinds of SWNTs, which have mirror

symmetry: zigzag nanotubes (n,0), and armchair nanotubes (n,n). The other

nanotubes are called chiral nanotubes. A chiral nanotube has C-C bonds that

are not parallel to the nanotube axis, denoted by the chiral angle θ. Here the

direction of the nanotube axis corresponds to OB. The zigzag, armchair and

chiral nanotubes correspond, respectively, to Θ=00, Θ=300 and 0 ≤ Θ ≤ 300.

In a zigzag (armchair) nanotube one of three C-C bonds from a carbon atom is

parallel (perpendicular) to the nanotube axis.

Since the quantum properties of the single wall carbon nanotube depend on



CHAPTER 2. NANOWIRES 11

the diameter and chirality, it will be suitable to indicate the diameter of a (n,m)

nanotube dt,

dt = Ch/π =
√

3ac−c(m
2 + mn + n2)1/2/π (2.2)

where ac−c is the nearest-neighbour C-C distance (1.42 Angstrom in graphite),

and Ch is the lenght of the chiral vector Ch. The chiral angle θ can be given by,

θ = tan−1[
√

3m/(m + 2n)]] (2.3)

Figure 2.3: A (5,5) armchair nanotube (top), a (9,0) zigzag nanotube (middle)
and a (10,5) chiral nanotube.

The electronic structure of SWNTs can be summarized as follows: In general,

(n,m) tubes with n-m=3q (n − m 6= 3q), where q is an integer are metallic

(semiconductor) [8]. Hence armchair nanotubes with (n,n) are metallic while

zigzag nanotubes with (n,0) are metallic or semiconductor depending on whether

n=3q or not. This behavior of nanotubes can be explained by zone-folding and

the curvature effects [8].
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2.1.3 Functionalized SWNTs

Physical properties of SWNTs can be modified by the adsorption of a foreign atom

or molecule on the surface of the tube. Adsorption can take plane externally or

internally. For example the band gap of a zigzag tube can be reduced by coverage

of O2. Exohydrogenation, i.e hydrogen atom coverage of a zigzag tube leads to

the widening of the band gap. Transition metal adsorption give rise to permanent

magnetic moment. The modification of physical properties through adsorption

of atoms or molecules is called functionalization of SWNT [9].

2.1.4 Coated Carbon Nanotubes

Coating of SWNTs (i.e, molecular or multilayer atom adsorption on SWNTs) is of

particular interest in the context of nanowires or conductors. It has been shown

experimentally that semiconducting SWNTs can be coated quite uniformly by Ti

atoms.First principle calculations by Dağ et al [10]. have shown that (8,0) tube

can be uniformly covered by Ti atoms, and becomes a good conductor. Those

studies clearly showed that metal atom coating of SWNTs can be used to formate

interconnects with reproducible properties. Not all the atom can form uniform

coverage, they rather appear as small particles on the surface of the SWNT. For

example, good conductors such as Au, Ag and Cu cannot make uniform coating.

This difficulty can be overcome by the coating of Au and Ag on the buffer layer

of Ti or Ni, that can make uniform coverage of the surface of the tube.

SWNT coated by transition metal atoms are used not only for conductors,

but for nanomagnets. The first principle calculations reveals that net magnetic

moment can be created upon the coating of SWNT by atom such as Ti, Co, Cr

etc.



CHAPTER 2. NANOWIRES 13

2.2 Physical Properties of Nanowires

2.2.1 Electronic Structure

A finite nanowire between two metal electrodes displays discrete energy spec-

trum. The energy level spacing decreases as the number of atoms in the wire

increases. As the lenght of nanowire increases these energy levels can be de-

scribed by a band having dispersion along the axis of the wire. Under these

circumstances, the wave vector along the axis starts to be a good quantum num-

ber. If the wire consists of a few atoms, the energy states give rise to resonances.

2.2.2 Quantum Conductance

The discrete nature of electronic and phononic states of nanowire connecting two

electrodes reflects to the electrical and thermal conductance between two elec-

trodes connected by this wire. At the end it yields resorvable effects in measured

conductance.

The conductance of large samples obeys Ohm’s law, namely, G=σS/L, where

S is the cross section and L is the lenght. At microscopic scale, which are mea-

sured in nanometer, the behavior of conductance, namely its variation with the

L or S differs from that in macroscopic scale. Firstly there is an interface resis-

tance independent of the lenght L of the sample. Secondly the conductance does

not decrease uniformly with the width W. Instead it depends on the number of

transverse modes in the conductor and goes down in discrete steps (of quantum

conductance 2e2/h). The Landauer formula incorporates both of these features

[37].

G =
2e2

h

∑
niTi (2.4)
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Here ni is the degeneracy of the propagating modes, and the factor T transmis-

sion coefficient, i.e. represents the average probability that an electron injected

at one end of the conductor will transmit to the other end through the channel

i. If the transmission probability is unity, then we recover the correct expression

for the resistance of a ballistic conductor.

After introducing Landauer formula, now we can discuss the conductance of

nanotubes and nanowires. The conductance of the (n,n) armchair SWNTs can

be estimated from the number of bands crossing EF . There are two px derived

bands at the Fermi level, one even and one odd parity under the n axial mirror

symmetries of the tube. Therefore one expects that a single armchair nanotube

has a conductance of (Te+To)G0 , where Te and To are the transmission coefficients

associated with parity. If the transmission coefficients are unity, we then get a

conductance of 2G0 where G0 = 2e2/h at the Fermi level. If we generalize this

for MWNTs which is composed of m individual tubes, each having two channels

at the Fermi level, the maximum ballistic conductance is thus 2mG0 However,

experiments showed G = G0 rather than G = 2G0

Figure 2.4: Conductance G at room temperature measured as a function of depth
of immersion of the nanotube bundle into the liquid gallium. As the nanotube
bundle is dipped into the liquid metal, the conductance increases in steps of
G0=2e2/h. The steps corresponds to different nanotubes coming successively
into the contact with the liquid. [11]

But this puzzling situation has been clarified by Ihm and Louie [12] The
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incident π* band electrons have a very high angular momentum with respect to

the tube axis, and these electrons go through the tube without being scattered by

the free electrons in surrounding metal and contribute a quantum unit (2e2/h)

to the conductance. On the other hand, the incident π band electrons, with

the pz atomic orbitals in phase along the tube circumference, experience strong

resonant back-scattering because the low-angular-momentum states at the Fermi

level have a dominantly metallic character in the nanotube jellium metal coexis-

tence region. So these results obtained by Ihm and Louie provide an explanation

for the experimentally observed conductance of one quantum unit instead of two

for nanotubes with one end dipped into liquid metal such as gallium. Fig. 2.4

Having discussed the quantum conductance of nanotubes, further discussion

about the quantum conductance of nanowires is in order. On the basis of ab

initio calculations it has been shown that the conductance depends on the va-

lence states as well as the site where the single atom is bound to the electrode

[13]. The coupling to electrodes and hence the transmission coefficients are ex-

pected to depend on the binding structure. Scheer et al [14] found a direct link

between valence orbitals and the number of conduction channels in the conduc-

tance through a single atom. Lang [15] calculated the conductance through a

single Na atom, as well as a monatomic chain comprising two, three and four Na

atoms between two jellium electrodes by using the Green’s function formalism.

He found an anomalous dependence of the conductance on the lenght of the wire.

The conductance through a single atom was low (about G0/3), but increased by

a factor of two in going from a single atom to the two-atom wire. This behavior

was explained as the incomplete valence resonance of a single Na atom interacting

with the continuum of states of the jellium electrodes. Each additional Na atom

modifies the electronic structure and shifts the energy levels. The closer a state

is to the Fermi level, the higher is its contribution to the electrical conductance.

According to the Kalmeyer-Laughlin theory [16], a resonance with the maximum

DOS at the Fermi level makes the highest contribution to the transmission; the

conductance decreases as the maximum shifts away from the Fermi level.

This explanation is valid for a single atom between two macroscopic electrodes

forming a neck with length l < λF . The situation is, however, different for long



CHAPTER 2. NANOWIRES 16

monatomic chains. Since the electronic energy structure of a short monatomic

chain varies with the number of atoms, the results are expected to change if one

goes beyond the jellium approximation and considers the details of the coupling of

chain atoms to the electrode atoms. It is also expected that the conductance will

depend on where the monatomic chain ends and where the jellium edge begins.

In fact, Yanson et al [17] argued that the conductance of the Na wire calculated

by Lang [18] is lower than the experimental value possibly due to the interface

taken with the jellium.

2.2.3 Thermal Conductance

In nanowires thermal transport occurs by phonons and electrons. In dielectric

wires the energy is transported only by phonons, but in metalic wires this trans-

portation occurs mainly by electrons, since phononic contribution is small. There-

fore, in discussing the thermal transportation through wires, it will be suitable

to distinguish the thermal conductance through electrons and phonons.

When the width of the constriction of lenght l and width w is in the range

of Fermi wavelength, the transverse motion of electrons confined to w becomes

quantized. The finite level spacing of the quantized electronic states reverberates

into the ballistic electron transport, and gives rise to resolvable quantum features

in the variation of electrical and thermal conductance.

The phononic thermal conductance through a perfect and infinite chain, Kp,

is calculated by Buldum, Ciraci and Fong [19] by using a model Hamiltonian

approach, has been expressed as

Kp =
∑

(π2k2
b/3h)T (2.5)

Accordingly the ballistic thermal conductance of each branch i of the uniform

and harmonic atomic chain is limited by the value K0 = π2k2
bT/3h. It is indepen-

dent of any material parameter, and is linearly dependent on T = (TL + TR)/2.
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The total thermal conductance becomes Kp = NK0, where N is the total num-

ber of phonon branches. For an ideal 1D atomic chain, N=3, if the transverse

vibrations are allowed. Furthermore, Ozpineci and Ciraci [20], showed that

the phononic thermal conductance through dielectric atomic chain having 1-10

atoms exhibits features similar to that found in the ballistic electrical conductance

through similar atomic chains.



Chapter 3

Theoretical Background

3.1 Born-Oppenheimer Approximation

Since the electrons have small mass compared with mass of the nuclei, electrons

move much faster than nuclei. So this means that electrons have the ability

to follow the motion of the nuclei instantaneously, so they remain in the same

stationary state of the electronic Hamiltonian all the time [21].This stationary

state will vary in time because of the coulombic coupling of these two sets of

freedom. So this means that as the nuclei follow their dynamics, the free electrons

instantaneously adjust their wavefunction according to the nuclear wavefunction.

Within these conditions, full wavefunction can be expressed as follows;

Ψ(R,r,t) = Θ(R, t)Φ(R, r) (3.1)

Here nuclear wave function Θ(R, t) obeys the time-dependent Schrödinger

equation and electronic wave function Φ(R, r) is the m-th stationary state of

the electronic Hamiltonian where m is any electronic eigenstate, but most of the

applications in the literature are focused on the ground state, i.e m=0.

18
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Since the nuclear wavefunction satisfies the time-dependent Schrödinger equa-

tion, we can easily construct the time-dependent Schrödinger equation. But solv-

ing this equation is a formidable task for mainly two reasons; first of all it is a

many-body equation in N (N:number of atoms) nuclear coordinates, where the

interaction potential being given in a implicit form. Secondly the determination

of the potential energy surface for every possible nuclear configuration R involves

MN times the electronic equation, where M is defined as typical number of grid

points. However in many cases of our interest this nuclear solution is not neces-

sary since the thermal wavelength for a particle of mass M is λT = ( e2

MkbT
), so the

regions of space separated by more than λL do not exhibit quantum coherence

and potential energy surfaces in typical bonding environments are stiff enough to

localize the nuclear wavefunctions to large extent.

Assuming these approximations, now we are left with the problem of solving

the many-body electronic Schrödinger equation for fixed nuclear positions.

3.2 The Electronic Problem

Although we are left with only solving the electronic part, solving Schrödinger

equation for a system of N interacting particle electrons in an external field is

still very difficult problem in many-body theory. The numerical solution is known

only in the case of uniform electron gas (for atoms with small number of electrons

and for a few molecules). For getting the analytical solution we have to resort to

approximations.

To cope with many electron Hamiltonian in 1928 Hartree proposed that many-

electron wave function (electronic wavefunction) can be written as product one-

electron wave functions each of which satisfies one-particle Schrödinger equation

in an effective potential. [22]

Φ(R, r) = Πiϕ(ri) (3.2)
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(− h̄2

2m
∇2 + V

(i)
eff (R, r))ϕi(r) = εiϕi(r) (3.3)

with effective potential

V
(i)
eff (R, r) = V (R, r) +

∫ ∑N
j 6=i ρj(r’)

|r − r’| dr’ (3.4)

where

ρj(r) = |φj(r)|2 (3.5)

is the electronic density associated with particle j. The second term in Eq. 3.4 is

the mean field potential and the third term is the interactions of one electron with

the other electrons in a mean field. But it should be noted that total energy of

the many-body system is not just the sum of the eigenvalues of Eq. 3.3 because

the formulation in terms of an effective potential makes the electron-electron

interaction to be counted twice. So that the correct expression for the energy is

written as

EH =
N∑

i

εn − 1

2

∫ ∫ ρ(r)ρ(r’)

|r − r’| drdr’ (3.6)

where second term is correction due to effective potential as discussed above.

Wavefunctions Φi(r̂) and charge density ρ(r), as well as εi energies are determined

by using self-consistent field (SCF) method.

Hartree approximation can be improved by considering the fermionic nature

of electrons. Due to Pauli exclusion principle, two fermions (electrons in our case)

cannot occupy the same state with all of their quantum numbers are the same. In

this case electronic wavefunction in 3.2 becomes an antisymmetrized many-body

electron wavefunction in the form of a Slater determinant as follows;

Φ(R, r) =
1√
N !




φ1(r1) . . . φ1(rN)
...

. . .
...

φN(r1) . . . φN(rN)


 (3.7)

This approximation is called Hartree-Fock (HF) and it explains particle ex-

change in an exact manner [23, 24]. It also provides a moderate description of
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inter-atomic bonding but many-body correlations are completely absent. Re-

cently, the HF approximation is routinely used as a starting point for more ad-

vanced calculations. It should be also noted that although HF equations look

same as Hartree equations, there is an additional coupling term in the differential

equations.

Parallel to the development in electronic theory, Thomas and Fermi proposed,

at about same time as Hartree, that the full electron density was the fundamental

variable of the many-body problem, and derived a differential equation for the

density without referring to one-electron orbitals. Although, this theory which

known as Thomas-Fermi Theory [25, 26], did not include exchange and corre-

lation effects and was able to sustain bound states, it set up the basis of later

development of Density Functional Theory (DFT).

3.3 Density Functional Theory

The initial work on DFT was reported in two publications: first by Hohenberg-

Kohn in 1964 [27], and the next by Kohn-Sham in 1965 [28]. This was almost

40 years after Schrödinger (1926) had published his pioneering paper marking the

beginning of wave mechanics. Now Density Functional Theory is very powerful

method for solving N interacting electron system.

The total ground state energy of an inhomogeneous system composed by N

interacting electrons includes three terms, namely kinetic energy T̂ , interaction

with external fields V̂ and electron-electron interaction Ûee;

E = 〈T̂ 〉 + 〈V̂ 〉 + 〈Ûee〉 (3.8)

Before concentrating on the electron-electron interaction term, we can indicate

the kinetic energy and interaction with external fields terms as follows;
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V =
P∑

I=1

〈Φ|
N∑

i=1

υ(ri − RI)|Φ〉 =
P∑

I=1

∫
ρ(r)υ(r − RI)dr (3.9)

T = 〈Φ|−h̄2

2m

N∑

i=1

∇2
i |Φ〉 = − h̄2

2m

∫
[∇2

rρ1(r, r
′)]r′=rdr (3.10)

Returning back to electron-electron interaction term, this can be written by

considering the coulomb interaction between them,

Ûee = 〈Φ|Ûee|Φ〉 = 〈Φ|1
2

N∑

i=1

N∑

j 6=i

1

| (ri − rj) |
|Φ〉 =

∫ ρ2(r, r
′)

| (r − r′) |drdr′ (3.11)

By redefining ρ2(r, r
′) by using the two-body direct correlation function g(r, r′)

and the one-body density matrix ρ(r, r′) as in Eq. 3.12, Eq. 3.11 simplify to

Eq. 3.13

ρ2(r, r
′) =

1

2
ρ(r, r)ρ(r, r′)g(r, r′) (3.12)

Uee =
1

2

∫ ρ(r)ρ(r′)

| (r − r′) |drdr′ +
1

2

∫ ρ(r)ρ(r′)

| (r − r′) | [g(r, r′) − 1]drdr′ (3.13)

It is obvious that the first term is the classical electrostatic interaction energy

corresponding to a charge distribution ρ(r) and the second term includes the clas-

sical and quantum correlation effects. By introducing exchange depletion written

in Eq. 3.14 instead g(r, r′), we achieve another expression for total energy of

many-body electronic system Eq. 3.15.

gx(r, r
′) = 1 −

∑
σ | ρHF

σ (r, r′) |2
ρHF (r)ρHF (r′)

(3.14)

E = T + V +
1

2

∫ ρ(r)ρ(r′)

| (r − r′) |drdr′ + Exc (3.15)
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In this equation the last term corresponds to exchange and correlation energy,

and this can be expressed as follows,

Exc =
1

2

∫ ρ(r)ρ(r′)

| (r − r′) | [g(r, r′) − 1]drdr′ (3.16)

3.3.1 Hohenberg-Kohn Formulation

The Hohenberg-Kohn [27] formulation of DFT can be explained by two theorems:

Theorem 1: The external potential is univocally determined by the electronic

density, except for a trivial additive constant.

Since ρ(r) determines V(r), then this also determines the ground state wave-

function and gives the full Hamiltonian for the electronic system. So that ρ(r)

determines implicitly all properties derivable from H through the solution of the

time-dependent Schrödinger equation.

Theorem 2: The minimal principle can be formulated in terms of trial charge

densities, instead of trial wavefunctions.

The ground state energy E could be obtained by solving the Schrödinger

equation directly or from the Rayleigh-Ritz minimal principle:

E = min
〈Ψ̃|H|Ψ̃〉
〈Ψ̃|Ψ̃〉

(3.17)

Using ρ̃(r) instead of Ψ̃(r) was first presented in Hohenberg and Kohn. For a

non-degenerate ground state, the minimum is attained when ρ̃(r) is the ground

state density. And energy is given by the equation:

EV [ρ̃] = F [ρ̃] +
∫

ρ̃(r)V (r)dr (3.18)

with

F [ρ̃] = 〈Ψ[ρ̃]|T̂ + Û |Ψ[ρ̃]〉 (3.19)

and F [ρ̃] requires no explicit knowledge of V(r).
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These two theorems form the basis of the DFT. The main remaining error

is due to inadequate representation of kinetic energy and it will be cured by

representing Kohn-Sham equations.

3.3.2 Kohn-Sham Equations

Thomas and Fermi gave a prescription for constructing the total energy in terms

only of electronic density by using the expression for kinetic, exchange and corre-

lation energies of the homogeneous electron gas to construct the same quan-

tities for the inhomogeneous system [28]. This was the first time that the

Local Density Approximation (LDA) was used. But this model is a severe short-

coming since this does not hold bound states and also the electronic structure is

absent!!!

W.Kohn and L.Sham then proposed that the kinetic energy of the interact-

ing electrons can be replaced with that of an equivalent non-interacting system

which can be calculated easily. With this idea, the density matrix ρ(r, r′) of an

interacting system can be written as sum of the spin up and spin down density

matrices,

ρs(r, r
′) =

∞∑

i=1

ni,sΦi,s(r)Φ
∗
i,s(r

′) (3.20)

Where ni,s ar the occupation numbers of single particle orbitals, namely

Φi,s(r). Now the kinetic energy term can be written as Eq. 3.21

T =
2∑

s=1

∞∑

i=1

ni,s〈Φi,s| −
∇2

2
|Φi,s〉 (3.21)

This expression can be developed by considering that the Hamiltonian has no

electron-electron interactions and thus eigenstates can now be expressed in the

form of Slater determinant. By using this argument the density is written as
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ρ(r) =
2∑

s=1

Ns∑

i=1

|ϕi,s(r)|2 (3.22)

and the kinetic term becomes

T [ρ] =
2∑

s=1

Ns∑

i=1

〈ϕi,s| −
∇2

2
|ϕi,s〉 (3.23)

Now, we can write the total energy of the system which is indicated in Eq.

3.15 in terms only of electronic density as follows,

EKohn−Sham[ρ] = T [ρ] +
∫

ρ(r)v(r)dr +
1

2

∫ ∫ ρ(r)ρ(r′)

|r − r′| drdr′ + EXC [ρ] (3.24)

This equation is called the Kohn-Sham Equations After writing main equa-

tion, now the solution of the Kohn-Sham equations can be achieved by applying

the same iterative procedure, in the same way of Hartree and Hartree-Fock equa-

tions. As a remark after all, in this approximation we have expressed the density

functional in terms of KS orbitals which minimize the kinetic energy under the

fixed density constraint. In principle these orbitals are a mathematical object

constructed in order to render the problem more tractable, and do not have a

sense by themselves.

3.4 Exchange and Correlation

If we know the exact expression for the kinetic energy including correlation effects,

then we can use the original definition of the exchange-correlation energy E0
XC [ρ]

which does not contain kinetic contributions.

E0
XC [ρ] =

1

2

∫ ∫ ρ(r)ρ(r′)

| (r − r′) | [g(r, r′) − 1]drdr′ (3.25)
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In this equation E0
XC [ρ] is the exchange-correlation energy without kinetic

contributions. For writing the exchange-correlation energy EXC [ρ] as a function

of ρ, we redefine Eq. 3.25 by considering the non-interacting expression for the

kinetic energy TR[ρ] in the following way,

EXC [ρ] = E0
XC [ρ] + T [ρ] − TR[ρ] (3.26)

In this equation second term is interacting kinetic energy with correlation ef-

fects, while the last term corresponds to non-interacting kinetic energy. These

two term can be considered as a modification to two-body correlation function

g(r, r′) in Eq. 3.25. Updated two-body correlation function is now called as

average of pair correlation function, and the exchange-correlation energy with ki-

netic contribution can be written as,

EXC [ρ] =
1

2

∫ ∫ ρ(r)ρ(r′)

| (r − r′) | [g̃(r, r′) − 1]drdr′ (3.27)

where g̃(r, r′) can be expressed as follows,

g̃(r, r′) = 1 −
∑

σ | (ρσ(r, r′) |2)
ρ(r)ρ(r′)

+ ˜gxc(r, r′) (3.28)

For further simplification for EXC [ρ], the exchange-correlation hole ˜gxc(r, r′)

is defined

˜gxc(r, r′) = ρ(r′)[g̃(r, r′) − 1] (3.29)

so EXC [ρ] becomes,

EXC [ρ] =
1

2

∫ ∫ ρ(r) ˜gxc(r, r′)

| (r − r′) | drdr′ (3.30)
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Having discussed fundamental equations of DFT, we introduce next the

Local Density Approximation (LDA) and Generalized Gradient Approximation

(GGA)

3.4.1 Local Density Approximation (LDA)

The local density approximation has been the most widely used approximation

to handle exchange correlation energy. It has been proposed in the seminal paper

by Kohn and Sham, but the philosophy was already present in Thomas-Fermi

theory. In Local Density Approximation, the exchange-correlation energy of an

electronic system is constructed by assuming that the exchange-correlation energy

per electron at a point ρ in the electron gas, is equal to the exchange-correlation

energy per electron in a homogeneous electron gas that has the same electron

density at the point ρ. In fact LDA based on two main approximations, (1) The

pair function is approximated by that of the homogeneous electron gas density

ρ(r) corrected by the density ratio ρ(r)/ρ(r′) to compansate the fact that the

LDA exchange-correlation hole is now centered at r instead of r′ (2) The LDA

exchange-correlation hole interacts with the electronic density at r, and is centered

at r. But as we know that the real exchange-correlation hole is actually centered

at r′ instead r.

Figure 3.1: Schematic representation of Local Density Approximation
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3.4.2 Generalized Gradient Approximation (GGA)

Although the LDA was the universal choice for ab-initio calculations on amor-

phous systems, there were well known problems with the approximation: (1)

First of all in the local density approximation the optical gap is always poorly es-

timated (normally underestimated). Of course, this does not affect ground state

properties like charge density, total energy and forces, but it serious problem for

calculations of conduction states, as for example in the case of transport or opti-

cal properties.(2) In strongly (electronically) inhomogeneous systems such as SiO,

the basic assumption of weak spatial variation of the charge density is not well

satisfied, hence the LDA has difficulty. (3) The LDA assumes that the system

is paramagnetic; the local spin density approximation [34] (LSDA) (in which

a separate “spin up” and “spin down” density functional is used) is useful for

systems with unpaired spins, as for example a half filled state at the Fermi level.

Several workers, but especially Perdew [35], have worked on next

step to the LDA: inclusion of effects proportional to the gradient of

the charge density. Recent improvements along these ways are called

Generalized Gradient Approximations (GGA), it seems that these have led to

significant improvements in SiO [36], and intermolecular binding in water is

better described with GGA than in the LDA. In some ways the GGA has been

disappointing; on very precise measurements on molecules the results have been

mixed. But overall, the GGA seems to be an improvement over the conventional

LDA.

In GGA exchange-correlation energy can be written as follows,

EXC [ρ] =
∫

ρ(r)εXC [ρ(r)]dr +
∫

FXC [ρ(r,∇ρ(r))]dr (3.31)

where the function FXC is asked to satisfy the formal conditions.

GGA approximation improves binding energies, atomic energies, bond lengths

and bond angles when compared the ones obtained by LDA. In our calculations,

we used the GGA approximation [45].
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Figure 3.2: Summary of the electron-electron interactions where the coulombic
interactions excluded. (a) the Hartree approximation, (b) the Hartree-Fock ap-
proximation, (c) the local density approximation and (d) the local spin density
approximation which allows for different interactions for like-unlike spins.

As a summary of all approximations Fig. 3.2 will be useful for the reader.

3.5 Other Details of Calculations

By using the represented formalisms observables of many-body systems can be

transformed into single particle equivalents. However, there still remains two

difficulties: A wave function must be calculated for each of the electrons in the

system and the basis set required to expand each wave function is infinite since

they extend over the entire solid.

k-point Sampling : Electronic states are only allowed at a set of k-points

determined by boundary conditions. The density of allowed k-points are propor-

tional to the volume of the cell. The occupied states at each k-point contribute to

the electronic potential in the bulk solid, so that in principle, an finite number of

calculations are needed to compute this potential. However, the electronic wave

functions at k-points that are very close to each other, will be almost identical.
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Hence, a single k-point will be sufficient to represent the wave functions over a

particular region of k-space. There are several methods which calculate the elec-

tronic states at special k-points in the Brillouin zone [47]. Using these methods

one can obtain an accurate approximation for the electronic potential and total

energy at a small number of k-points. The magnitude of any error can be reduced

by using a denser set k-points.

Plane-wave Basis Sets : According to Bloch‘s theorem, the electronic wave

functions at each k-point can be extended in terms of a discrete plane-wave basis

set. Infinite number of plane-waves are needed to perform such expansion. How-

ever, the coefficients for the plane waves with small kinetic energy (h̄2/2m)|k+G|2

are more important than those with large kinetic energy. Thus some particular

cutoff energy can be determined to include finite number of k-points. The trun-

cation of the plane-wave basis set at a finite cutoff energy will lead to an error in

computed energy. However, by increasing the cutoff energy the magnitude of the

error can be reduced.

Plane-wave Representation of Kohn-Sham Equations : When plane

waves are used as a basis set, the Kohn-Sham(KS) [28] equations assume a par-

ticularly simple form. In this form, the kinetic energy is diagonal and potentials

are described in terms of their Fourier transforms. Solution proceeds by diago-

nalization of the Hamiltonian matrix. The size of the matrix is determined by

the choice of cutoff energy, and will be very large for systems that contain both

valence and core electrons. This is a severe problem, but it can be overcome by

considering pseudopotential approximation.

Nonperiodic Systems : Bloch theorem cannot be applied to a non-periodic

systems, such as a system with a single defect. A continuous plane-wave basis set

would be required to solve such systems. Calculations using plane-wave basis sets

can only be performed on these systems if a periodic supercell is used. Periodic

boundary conditions are applied to supercell so that the supercell is reproduced

through out the space. As seen schematically in Fig. 3.3 even a molecule can be

studied by using a supercell which prevents interactions between molecules.

Pseudopotential Approximation : Numerically and mathematically, a
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Figure 3.3: Supercell geometry for a molecule. Supercell is chosen large enough
to prevent interactions between the nearest neighbor molecules.

plane wave basis is the most convenient basis set to be implemented for crys-

tals. However, the plane wave basis set suffers from the slow convergence in the

presence of core potential of atom’s. Convergence drawback is circumvented by

the use of pseudopotential approximation. The core electrons are relatively un-

affected by the chemical environment of an atom. Hence it will be convenient

to assume that their (large) contribution to the total binding energy does not

change when isolated atoms are brought together to form a molecule or crystal.

In fact the actual energy differences of interest are the changes in valence electron

energies, and so if the binding energy of the core electrons can be subtracted out,

the valence electron energy change will be a much larger fraction of the total

binding energy, and hence much easier to calculate accurately.

Since the atomic wavefunctions are eigenstates of the atomic Hamiltonian,

they must all be mutually orthogonal. Since the core states are localized in the

vicinity of the nucleus, the valence states must oscillate rapidly in this core re-

gion in order to maintain this orthogonality with the core electrons. This rapid
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oscillation results in a large kinetic energy for the valence electrons in the core re-

gion, which roughly cancels the large potential energy due to the strong Coulomb

potential.

It is therefore convenient to attempt to replace the strong Coulomb potential

and core electrons by an effective pseudopotential which is much weaker, and

replace the valence electron wavefunctions, which oscillate rapidly in the core

region, by pseudo-wavefunctions, which vary smoothly in the core region [29,

30](For further details see [31] and also [32, 33] for recent reviews).

Figure 3.4: Schematic diagram of the relationship between all electron and pseudo
potentials, and wavefunctions (Reproduced from University Basel Nanoscience
web-page).

In our calculations, we used Ultrasoft Pseudopotential which uses a basis set

that constitutes of smaller number of planewaves than that of a basis set used by

normal pseudopotential.
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3.6 Calculation of Conductance Based on Em-

pirical Tight-Binding Method

In order to calculate ballistic conductance G for some of our specific nanowire

structures, we used empirical tight-binding method and computer programming

developed by Nardelli code. The method used in this code is based on the

Surface Greens Function Matching Formalism and combines the iterative calcu-

lation of transfer matrices with the Landauer formula for the coherent conduc-

tance. This section presents a brief outline of the method of calculation.

3.6.1 Green’s Function Method

In order to explain conductance calculations of any extended system, such as

nanowires in our case, let us consider a system composed of a conductor C con-

nected to two semi-infinite leads, R and L. Fig. 3.5

Figure 3.5: A conductor described by the Hamiltonian HC , connected to leads
L and R, through the coupling matrices hLC and hCR .

The conductance G through a region of interacting electrons is related to the

scattering properties of the region itself via the Landauer formula [37]

G =
2e2

h
T (3.32)

In this equation T corresponds to transmission function which is expressed in

terms of the coupling of the conductor to the leads and the Green’s functions of

the conductors [38]
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T = Tr(ΓLgr
CΓRga

C) (3.33)

where Γ[L,R] are functions that describe the coupling of the conductor to the

leads and g
[r,a]
C are the retarded and advanced Green’s functions. The Green’s

function of the conductor can be computed starting from the following equation

for the Green’s function of the whole system,

(ε − H)g = I (3.34)

where ε = E−iη with η arbitrarily small, and I is the identity matrix. In here,

Green’s function of the whole system (g) can be separated into submatrices that

corresponds to Green’s functions of individual subsystems. Further calculation

steps give us, G which is the conductance of conductor C shown in Fig. 3.5

As seen the core of the problem lies in the calculation of the Greens functions

of the semi-infinite leads (further details about method for solving this problem

can be found at [39]). It should be noted that the solution of Green’s functions,

requires Hamiltonian matrix, H. This Hamiltonian matrix of the system can be

determined by Empirical Tight-Binding approach. After constructing H, Green’s

functions, T transmission function and finally conductance G can be determined

by making use of last three equations.

3.6.2 Empirical Tight-Binding Method (ETB)

The empirical or parameterized tight-binding method (ETB) has been employed

extensively in the past for the study of semiconductors due to the simplicity of

the approach and its ability to describe properties in terms of chemical bonds.

This gives the model a more realistic nature as opposed to methods based on

weak periodic potentials. The ETB approach is suitable to deal with larger

systems compared to the first-principles methods based on plane waves, due to

the relatively lower computation time. The ETB method was originally described
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by Slater and Koster [40] as an interpolation scheme. It has been developed

extensively since then and is now a well established technique to elucidate the

electronic structure of solids. Wavefunction of the system can be written as,

Ψ(r) =
∑

R

eik·RΦ(r − R) (3.35)

where Φ(r − R) are atomic orbitals (s,px, py, pz). The Hamiltonian of the

system can be composed of the Hamiltonian, Hat, of single atom at the atomic

site and all corrections to the atomic potential at the interatomic region ∆[U(r)]

to produce the full periodic potential of the system.

H ∼= Hat + ∆[U(r)] (3.36)

By using this idea, now we can easily construct the Hamiltonian matrix of the

system. Normally, each element of Hamiltonian matrix (Hij) is calculated by the

following integral,

Hij =
∫

Ψ∗

iHΨjdr3 (3.37)

However this integration is not so simple and requires three dimensional multi

center integrals. Therefore, instead of computing the integral, one can represent it

by some parameters, i.e tight-binding parameters [41, 42, 43]. Number of these

parameters depends on the approximation (i.e first nearest or second nearest

neighbor interaction or etc.). In the present thesis up to second nearest neighbor

interaction have been taken into account. Therefore 12 different tight-binding

parameters Es, Epx
, Epy

, Epz
, Vssσ1

, Vssσ2
, Vspσ1

, Vspσ2
, Vppσ1

, Vppσ2
, Vppπ1

, Vppπ2
must

be fitted to the known electronic energy band values (obtained from ab-initio

calculations or experimental measurements).
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Results and Discussion

4.1 Motivation

The structure of nanowires itself is important. The stability and periodicity of

the atomic structure in one dimension (1D) is of academical and technological

interest, because of our limited knowledge in one-dimensional crystallography.

Besides, earlier research have argued that at D ∼ λB, the conductance G (even the

diameter D or size) of nanowires are quantized. Group IV elements, Carbon and

Silicon, make semiconductor an insulator in diamond structure, because of their

even number of valence electrons appropriate for tetrahedrally directed covalent

bonds. Now it’s of interest to find their electronic properties when they form very

thin nanowires. Possible conductors predicted from these nanowires are expected

to be important in microelectronics, which aims at to fabricate device with with

dimensions less than 200Å.

36
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4.2 Method of calculations

Our study deals with physical properties of various carbon and silicon nanowire

structures from linear chain to hexagonal structure The physical properties com-

prise optimized atomic structure, electronic Energy bands, bonding and cohesive

energy, conductance and metallicity. The binding energy and resulting electronic

structure of any stable structure have been calculated by using a first-principles

pseudopotential plane wave method within the generalized gradient approxima-

tion (GGA) [45].

In our first-principle calculations, we used ultrasoft pseudopotential [46] and

plane waves up to an energy cutoff of 330 eV depending on the element. The Bril-

louin zone (BZ) of the supercell is sampled by (1,1,11) to (1,1,41) k-points within

the Monkhorst-Pack special k–point scheme depending on the element type and

the size of (BZ) [47]. Convergence tests have been performed with respect to

the energy cutoff and number of k-points. Calculations have been performed in

momentum space by using periodically repeating tetragonal supercell with lattice

constants, as = bs ∼ 10 whereby interaction of nearest neighbors in the x and

y directions are negligible. The lattice constant along the axis of the nanowire

structure coincides with the lattice constant of supercell cs. In our calculation,

we optimized the lattice constant c of the wire by optimizing the lattice constant

cs of the supercell. To enhance the variational freedom in the atomic geometry,

we examinedd certain structures in double supercell with cs = 2c.

4.3 Carbon and Silicon Nanowires

4.3.1 Linear Chain C1 and Si1

In order to find the electronic properties of carbon and silicon linear chain (C1

and Si1), we first optimized its structure. This structure is relaxed by selecting

the appropriate number of k-points and energy cutoff values determined from

convergence tests. Number of k-points used in Brillouin zone sampling and energy
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Figure 4.1: Energy versus number of k-points graph for carbon.

cutoff values have been determined by convergence tests. Convergence tests have

been done by searching the 1 meV energy tolerance between the single-run energy

values calculated for each k-point (energy cutoff) values. From the total energy

versus number of k-points (Fig. 4.1) and total energy versus energy cutoff value

(Fig. 4.2) graphs for carbon (silicon), it is clear that when 41 k-points and 330

eV energy cutoff (37 k-points and 210 eV) values are used, we reach 1meV energy

tolerance between two single-run energy values.

Thus for our calculations, we have used 41 k-points (37 k-points) and 330

eV (210 eV) energy cutoff value for carbon (silicon).In our calculations lattice

parameters as = bs is taken to be 10 Å as discussed in the previous section.

Relaxation process have been done by using program packages. The energy values

corresponding to each cs gives minimum where the system in this configuration is

now the most stable structure with respect to the other structures obtained from

different cs values. In order to confirm that the relaxed structure obtained from

one unit cell is actually the most stable structure, relaxation is also performed in

double unit cell with cs = 2c.
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Figure 4.2: Energy versus energy cutoff value graph for carbon.

The optimized structures of C1 and Si1 obtained from first-principle pseu-

dopotential method are shown in Fig. 4.3

Figure 4.3: Relaxed structure of C1 and Si1 in double unit cell with lattice
parameters as = bs = 10 Å, cs = 2 · 1.269 Å and binding energy Ebinding = 8.29
eV/atom for relaxed C1 structure, and as=bs=10 Å, c = 2·2.217Å, Ebinding = 3.45
eV/atom for Si1 relaxed structure. Supercell is defined by lateral black lines.

Although the atomic structures determined by using Congugate Gradient

(CG) method is generally stable, we performed further stability tests of the

structures. This way, we excluded the probability the CGA optimized structures

corresponds to metastable structure.
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Stability test can be applied in various ways. In our work, we chose deforming

the structure and looking for the relaxed position of this deformed structure. We

deformed C1 and Si1 along the chain (z-direction) and also along x,y directions.

By first imposing small deformations in different directions and then by relaxing

the structure, we obtained that the deformed structure returns to undeformed

one described in Fig. 4.3. This way, we concluded that C1 and Si1 are stable

structure. We have been also performing stability tests by calculating the phonon

dispersion along Γ-Z direction. Finite temperature quantum molecular dynamics

calculations are also used for stability. To this end, first the temperate of the

the optimized structure is suddenly raised to Tk 500 < Tk < 1000Ko for a short

time for ∼ps. Subsequently the structure is cooled quickly. This procedure is

called stimulated anneling and conveys useful information about the possible

other structures corresponding to neighboring minima in the Born-Oppenheimer

surfaces.
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Figure 4.4: Energy band structure of carbon linear chain C1. The Fermi level
(EF ) is set at the zero conventionally in this thesis and is shown by dashed dotted
line.

The electrical properties of nanowires can be revealed by analyzing their En-

ergy band structure. Energy band structure of C1 and Si1 are similar and shown
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Figure 4.5: Energy band structure of optimized silicon linear chain (Si1). Dashed
dotted line corresponds to Fermi level (EF ) set at 0 eV.

in Fig. 4.4 and 4.5. In both cases, the lowest Energy band corresponds to σ

band, while Energy band that intersects the Fermi level (EF ) is double degener-

ate π-band. Upperbands are derived from σ∗ and π∗ orbitals. From Fig. 4.4 and

4.5 the double degenerate π-band are derived from 2px and 2py orbitals intersects

the Fermi energy level . Therefore, it can be concluded that optimized C1 and

Si1 structures are metallic. It is also obvious from density of states of C1 and Si1

(Fig. 4.6 and 4.7), since there is finite density of states at EF set at 0 eV as a

convention in this thesis.

Since there is one two-fold degenerate Energy band intersecting EF in Fig. 4.4

and Fig. 4.5, one predicts that the conductance of the linear chain is about 2G0

(G0 = 2e2/h). Conductance calculations have been carried out by using empirical

tight-binding method (ETM) discussed in Chapter 3.6.2. The Hamiltonian ma-

trix constructed within empirical parameters, determined by fitting tight-binding

band shown in Fig. 4.8 to first-principle bands in Fig. 4.5.

The conductance of C1 is determined by the Band structure shown in Fig. 4.4.

For an infinite, perfect C1 structure electrons are transported ballistically without
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Figure 4.6: Density of states (DOS) of carbon linear chain described in Fig. 4.3.
Dashed dotted lines corresponds to Fermi level EF set at 0 eV. The claim is
metallic owing to the finite DOS at EF .
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Figure 4.7: Density of states of Silicon linear chain (Si1) described in Fig. 4.3.
Dashed dotted lines corresponds to Fermi level EF set at 0 eV. Since there is
finite density of states at EF , Si1 structure is metallic.
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Figure 4.8: The band-structure of C1 calculated by emprical tight-binding
method (ETB) fitted to first-principle band structure shown in Fig. 4.4. + indi-
cate the first-principle band energies. EF shown by dashed dotted line set at 0 eV.
Tight-binding parameters are: Es = −17.096 eV,Ep1 = −3.545 eV,Ep2 = 3.282
eV,Vssσ = −1.559 eV,Vspσ = 1.463 eV,Vppσ = −1.276 eV,Vppπ = −3.827
eV,Vssσ = 0.256 eV,Vspσ = 0.956 eV,Vppσ = −1.228 eV,Vssσ = −0.841 eV, where
the last four parameters obtained from second nearest interaction.

any scattering. Under these circumstances the mean free path, lm ∼ ∞. Under

a finite bias voltage Vb, the conductance of G of C1 are calculated by the tight-

binding Green’s function (TBGF) technique using program developed by Nardelli.

In this calculation of Green’s function the tight-binding band structure of C1 is

essential to this and the ab-initio band structure of C1 in Fig. 4.4 is fitted to a

tight-binding band shown in Fig. 4.8. In Fig. 4.8 the tight-binding band energies

are compared with first-principles band energies.

The conductance G versus Vb curve calculated for C1 by the TBGF method is

shown in Fig. 4.9. At Vb=0, the G(Vb)=2(2e2/h) since double degenerate π-band

crosses the Fermi level hence makes two current transporting states available for

conductance.

Similar calculation have been also carried out for Si1, and hence conductance

G versus Vb curve calculated by using the TBGF method is shown in Fig. 4.10.

Same interpretations for C1 structure are also valid for silicon linear chain Si1.
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Figure 4.9: Ballistic quantum conductance G versus bias voltage Vb of carbon
linear chain. Vertical dashed line indicates the Fermi level. At Fermi level,
conductance of carbon linear chain is 2G0 where G0 = 2e2h

Figure 4.10: Quantum ballistic conductance G versus bias voltage Vb for silicon
linear chain (Si1). Vertical line indicates the Fermi level. At EF , conductance of
silicon linear chain is 2G0.
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4.3.2 Planar Triangular (C2 and Si2)

In this structure, all (C or Si) atom forming the trianglular structure lie in the

same plane as shown in Fig 4.11. Accordingly the supercell comprises two atoms.

In order to find the electronic properties of C2 and Si2 (Fig. 4.11(a)), we first op-

timized these structures. Si2 structure is relaxed by selecting appropriate number

of k-points (37) and energy cutoff value (210 eV) determined from convergence

tests discussed in Chapter 4.3.1.

(a) (b) (c) (d)

1 1

1 2

3

2

2

Figure 4.11: (a) Initial structure of C2 and Si2 with initial angle 60o (b) Optimized
structure of Si2 with binding energy Ebinding = 4.19eV/atom, bond distances 1-
2=2.38Å, 2-3=2.38Å, 1-3=2.45Åand angle 1̂23 = 62o (c) Relaxed configuration of
C2 structure which corresponds to 1st minimum in Fig. 4.14. Since C2 structure
is compressed in z direction, it favors to construct two non-interacting carbon
linear chains with distance between them 3.5Åand C-C bond length 1-2=1.27Å(d)
Relaxed structure at 2nd minimum of Fig. 4.14 Since the lattice parameter in z
direction, cs = 2.55Å, C atoms form a linear chain with C-C distance 1.27Å

After optimization, the structure of Si2 has changed to the equilateral triangle

to an isosceles triangle with the opex angle of 62o. In order to confirm that this

structure is stable, we performed stability tests by deforming the structure and

relaxing this deformed one. The structure is deformed by changing the angle 1̂23

and by displacing atoms labelled by 2 and 3 by finite distance of order 0.1Å-0.3Å.

Stability tests reveal that the relaxed structure of Si2 is stable, since deformed

structure returns to its initial position.

Energy band structure of this stable structure of Si2 is shown in Fig. 4.12.
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Figure 4.12: Energy band structure of optimized Si2 structure. There are four
bands that intersect the Fermi level shown by a thick line.

Since there are four bands intersecting the Fermi level, this structure is metal-

lic. This is also clear from DOS of Si2 structure, since there is finite density of

states at EF . One can estimate the quantum ballistic conductance of the stable

structure near EF from the total number of bands that intersect EF . In our case,

conductance is estimated to be 4G0. Owing to the difficulties of fitting of complex

band structure we did not perform conductance calculations.

The optimized structure of C2 obtained from first-principle pseudopotential

method has changed to the linear chain (C1) structure. Energy-lattice parameter

versus cs graph, which is obtained by calculating total energy corresponding to

different cs’s (see Fig. 4.14) give two global minimum at cs = 1.27Å and cs =

2.55Å. The relaxed structures at these two minima corresponds to same linear

chain and these are illustrated in Fig. 4.11(c,d).
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Figure 4.13: Calculated DOS of Si2 structure. There is finite density of states at
the Fermi level set at 0 eV, acoordingly this structure is metallic.

4.3.3 Zigzag Structure (C3 and Si3)

The zigzag structure can be described by isosceles triangular structure with large

apex angle (> 100o). It has two atoms in the supercell.

Silicon zigzag structure Si3 and carbon zigzag structure C3 shown in Fig. 4.15

are optimized. The optimized structure of Si3 obtained from the pseudopotential

method is illustrated in Fig. 4.15.

In the stability tests, Si3 is first deformed and subsequently is relaxed. The

displaced atoms have returned to its initial positions. Electronic properties of Si3

is studied by analyzing the band structure illustrated in Fig. 4.16. Since there is

no bands intersecting the Fermi level, this structure is semiconductor with band

gap Egap = 0.3eV .

Similar calculation steps also done for C3 structure, and we found that C3 is

not a stable structure, since this structure relaxes to C1.
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Figure 4.14: Total energy versus lattice constant cs for carbon triangular and
zigzag structure. There are two minima at cs=1.27Å and cs=2.55Å. Relaxed
structures of 1st and 2nd minimum are identical.

1

2

3

Figure 4.15: Initial zigzag structure with 1̂23 = 120o. The optimized Si3 has
zigzag structure with bond lengths d12 = d23 = 2.18Å, d13 = 3.74Å, angle 1̂23 =
118.22o, and binding energy Ebinding = 3.85eV . C3 structure disintegrated after
optimization.

4.3.4 Dumbell Structure (C4 and Si4)

Dumbell structure is made by perpendicular Si2 (C2) molecules and includes

four atoms in the unit cell. Carbon and Silicon dumbell structure described

in Fig. 4.17, is relaxed. Similar to the relaxation of carbon zigzag structure,

C4 structure has changed to linear chain structure after relaxation as shown in

Fig. 4.17(b).

With appropriate parameters, Si4 structure is optimized to dumbell structure

with structure parameters indicated in Fig. 4.17(a). In the tests of stability we

first deformed this structure by rotating each C-C pair, i.e 1-2 or 3-4 in Fig 4.17 by
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Figure 4.16: Energy band structure of Si3. This structure is semiconductor with
Energy band gap Egap = 0.3eV .

a finite angle φ and by displacing the carbon atoms from its initial positions.Upon

relaxation displaced atoms have returned to their original positions indicating the

fact that the Si4 structure is stable.

Energy band structure of this stable structure is illustrated in Fig. 4.18. Since

there is three bands intersecting the Fermi level, this structure is metallic and one

can estimate the conductance to be 3G0. DOS of Si4 is illustrated in Fig. 4.19.

The finite state density of EF shows the metallicity of the nanowire.
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Figure 4.17: (a) Carbon and silicon dumbell structures shown in different an-
gles. This is also optimized structure of Si4 with binding energy Ebinding = 4.58
eV/atom and bond lengths d12 = d34 = 2.6Å, d23 = d14 = 2.45Å, d13 = d24 =
2.46Å (b) Structure obtained after the relaxation of carbon dumbell structure,
where two noninteracting carbon linear chains separated by 3.821Å is generated
with dc−c = 1.259Å distance.
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Figure 4.18: Band structure near Fermi level EF . There are three bands that
intersect EF , therefore the structure is metallic with conductance G=3G0.
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Figure 4.19: Density of states of Si4. It is clear that the stable structure is
metallic, since there is finite DOS at Fermi level.

4.3.5 Triangular Structure (CT1, CT2 and SiT1, SiT2)

In this category, the triangles of atoms are perpendicular to the axis of the wire

which passes through their centers. We consider two types of structures. Namely

top to top triangular structures (CT1 and SiT1) and staggered triangular struc-

tures (CT2 and SiT2). Those structures are relaxed in single and double supercell.

Upon relaxation, we found that CT1 as well as CT2 are not stable.

Our structure optimization calculations yield stable SiT1 structure, with a

binding energy Ebinding = 4.58 eV/atom. In the tests of stability, we first deformed

the structure by rotating one triangle around the axis by a finite angle relative

to adjacent. In the Energy band structure of SiT1 illustrated in Fig. 4.21 four

bands intersecting EF attribute metallic properties to the nanowire. Accordingly

the quantized ballistic conductance is estimated to be G = 4G0. The calculated

density of states shown in Fig. 4.22 has very high density of states at EF . This

situation indicates the possibility that SiT1 can be a superconductor.

Similar to SiT1, SiT2 has satisfied the stability tests and has been found to

be metallic with 3G0.



CHAPTER 4. RESULTS AND DISCUSSION 52

(a) (b) (c)

1 2

3

4

Figure 4.20: (a)Initial CT1 and SiT1 structure. After optimization CT1 system is
disintegrated, while SiT1 gives stable top to top triangular structure with binding
energy Ebinding = 4.58 eV/atom and bond lengths d1−2 ∼ d1−4 ∼ d2−4 = 2.41Å,
d2−3 = 2.37Å. (b) Initial CT2 and SiT2 structure. After optimization CT2 sys-
tem is disintegrated, while SiT2 gives stable staggered triangular structure with
binding energy Ebinding = 4.55 eV/atom and bond lengths d1−2 ∼ d1−3 ∼ d2−3 ∼
d4−5 = 2.42Å, d2−3 = 2.37Å, d1−4 ∼ d2−4 = 2.58Å. (c) Top view of SiT2 and CT2

structure.
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Figure 4.21: Energy band structure of relaxed SiT1 structure. There are four
bands that cross EF . The structure is metallic with conductance 4G0.
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Figure 4.22: DOS of SiT1with finite state density at EF .

4.3.6 Triangular Structure with Linear Chain

This type of structure is similar to ones described in section 4.3.5, except a linear

chain which passes through the centers of triangles. Thus the linear chain coin-

cides with the axis of the nanowire. Silicon top to top triangular with linear chain

(SiT3) and silicon staggered triangular with linear chain (SiT4) structures are op-

timized. The optimized structures of SiT3 and SiT4 are illustrated in Fig. 4.23.

In order to test whether the structures obtained by CGA are stable or not, we

performed stability tests. Stability tests have revealed that the optimized struc-

tures are stable, since these structures returns to their initial undeformed position

after deformation.

Electrical properties of optimized SiT3 and SiT4 can be summarized as fol-

lows; Since there are bands crossing EF as in SiT1 in Fig. 4.21, both of these

structures are metallic. In the Energy band structure of SiT3 (SiT4) there are six

(three) bands that intersect EF , hence one expects 6G0 (3G0) conductance for

this structure.

Similar calculations have been performed for CT3 and CT4, and both of these

structures are disintegrated after relaxation process.
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Figure 4.23: (a) Initial structure of CT3 and SiT3 structure. CT3 structure dis-
integrated after optimization, while SiT3 relaxed to top to top triangle with
linear chain with binding energy Ebinding = 4.34 eV/atom and bond lengths
d1−2 = 3.55Å, d1−3 = 3.93Å, d2−3 = 3.84Å,d4−5 = 2.35 (b) Initial structures of
CT4 and SiT4. CT4 disintegrated after optimization. (c) Relaxed structure of SiT4

with Ebinding = 4.47 eV/atom and bond lengths d15 = 2.3Å, d23 = d24 = 4.15Å,
d34 = 2.56Å

4.3.7 Triangle+Single Atom+Single Atom (CT5)

In this structure there are two atoms in the axis of the wire between two adjacent

top to top triangles. In order to find the detailed electronic properties of CT5

structure described in Fig. 4.24(a), we first optimized the atomic positions. The

optimized structure of CT5 is depicted in Fig. 4.24(b). We performed stability

tests in which structure is deformed, by imposing small deformations in different

directions to two single atoms and staggering triangle by finite angle ∆φ, and

then the deformed structure is optimized. Since the deformed structures have

returned to their original optimized structures in Fig. 4.24(b) upon relaxation, it

is concluded that CT5 structure is stable.

Energy band structure of the relaxed structure is shown in Fig 4.25. Energy

band structure shows that this stable structure is insulator with Egap = 3.4eV .

This situation is also obvious from density of states graph illustrated in Fig. 4.26.
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Figure 4.24: (a) Initial CT5 structure. (b) Relaxed CT5 structure with Ebinding =
7.42 eV/atom and bond lengths d12 = 1.80Å, d13 = 1.47Å, d34 = 1.46Å.
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Figure 4.25: Energy band structure of the CT5 structure. CT5 is insulator owing
to huge band gap of Egap = 3.4eV .
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Figure 4.26: Calculated DOS of CT5 structure.

4.3.8 Pentagonal structures

This structure consists of top to top and staggered pentagons perpendicular to

the axis of nanowire. Both top to top (Cp1) and staggered (Cp2) structure of

carbon have been optimized. Optimized structure have been found in the top

to opt pentagonal structure. The binding energy Ebinding = 7.46 eV/atom and

bond lengths d12 = d23 = 1.55Å, d34 = 1.59Å (Fig. 4.27). The stability of the

optimized structure confirmed by performing stability tests.

Energy-band structure reveals that this structure is semiconductor with

0.75eV band gap. This is also clear from density of states shown in Fig. 4.29

Similar calculations have been done for the silicon pentagonal structures. Af-

ter optimization top to top pentagon (SiP1), relaxed to top to top pentagon with

binding energy Ebinding = 4.78 eV/atom and bond lengths d12 = d23 = 2.36Å,

d34 = 2.39Å. Optimization of staggered pentagon (SiP2) give staggered structure

with Ebinding = 4.67 eV/atom in Fig. 4.27. In this structure distance between

each pentagon plane is 1.96Å. Stability tests for SiP1 and SiP2 confirmed that,

both of these structures are stable.

The calculated energy band structure of Sip1 shown in Fig. 4.30 suggests
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Figure 4.27: (a) Initial structure of pentagonal structures CP1 and SiP1. After
optimization both of these structures give top to top pentagon structure with
binding energies Ebinding = 7.46 eV/atom for CP1 and Ebinding = 4.78 eV/atom
for SiP1.(b) Initial structure of CP2 and SiP2. CP2 relaxed to CP1, while SiP2

gives 36o staggered pentagon with binding energy Ebinding = 4.67 eV/atom
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Figure 4.28: (a)Energy band structure of optimized structures of CP1. (b) En-
larged view depicts the band structure near the Fermi level at T = 0Ko with 0.75
eV band gap. Hence the relaxed structure is a semiconductor
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Figure 4.29: Density of states of relaxed structure of CP1. State density vanishes
at EF .
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Figure 4.30: Energy band structure of SiP1 structure. There are four bands
crossing the Fermi level EF .

metallic properties. Since there are four bands intersecting EF the conductance

of this structure is expected to be 4G0. Band structure and density of states of

SiP2 structure is similar to that of SiP1 except that there are three bands crossing

the Fermi level instead of four and state density at Fermi level is less than the

value for SiP2 at EF .
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Figure 4.31: Total density of states for SiP1 structure. Finite density of states at
Fermi level indicates that the structure is metallic.

4.3.9 Pentagonal Structures with Linear Chain

This structure differs from the pentagonal structure in the previous section by the

inclusion of atomic chain (having single atom between the pentagons) coinciding

with the axis of the wire.

Silicon top to top pentagon with linear chain structure (SiP3) and staggered

pentagon with linear chain (SiP4) structures are described in Fig. 4.32. The latter

structure consists of two staggered pentagons where one pentagon is rotated by an

angle φ = 36o with respect to the other pentagon in the supercell and one single

atom placed between these two pentagon. Upon optimization we found that both

structures SiP3 and SiP4 are stable with binding energy Ebinding = 4.65eV and

Ebinding = 4.60eV respectively.

Electronic properties of SiP3 and SiP4 are comparable to that of SiP1. Since

there are six bands crossing the Fermi level for SiP3 and four bands for SiP4,

these structures are metallic with 6G0 and 4G0 conductance values. Energy band

structures and density of states are similar to that of SiP1 structure shown by

Fig. 4.30 and Fig. 4.31. CP3 and CP4 are disintegrated after optimization.
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Figure 4.32: (a) Initial CP3 and SiP3 structures. After optimization SiP3 relaxed
to top to top pentagonal structure with linear chain structure with Ebinding =
4.65eV and bond lengths d12 = 2.47Å, d34 = 2.7Å, while CP3 disintegrates. (b)
Staggered pentagonal, CP4 and SiP4, structures. Similarly, the Cp4 structure has
disintegrated after relaxation process. SiP4 has changed to staggered pentagon
with linear chain with binding energy Ebinding = 4.60eV and bond lengths d12 =
2.51Å, d34 = 2.78Å

4.3.10 Hexagonal Structures

Similar to the pentagonal structure, top to top or staggered hexagons are per-

pendicular to the axis of the wire. After optimization, both carbon top to top

hexagon (CH1) and staggered hexagon (CH2) where one hexagon is staggered

by π/6 relative to adjacent ones shown (Fig. 4.33) are relaxed to top to top

hexagon structure, with binding energy Ebinding = 7.42 eV/atom and same dis-

tances d12 = d23 = 1.55Å, d34 = 1.60Å.

Band structure of the resulting relaxed structure presented in Fig. 4.34 indi-

cates that the structure is semiconductor with band gap Egap = 0.6eV . This is

also clear from the calculated density of states in Fig. 4.35.

Similar calculations have been performed for top to top hexagon (SiH1) and

staggered hexagon structure (SiH2) structures.Both SiH1 and SiH2 kept their

structurel form after relaxation with binding energies Ebinding = 4.72eV/atom

and Ebinding = 4.63eV/atom. Bond lengths were d12 = d23 = 2.35Å, d34 = 2.38Å

for SiH1 and d12 = 2.49Å, d23 = 2.30Å, d34 = 2.39Å for SiH2. We performed
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Figure 4.33: (a) Staggered hexagon structure. One hexagon is staggered by
amount of π/12 with respect to the other hexagon. (b) Top to top hexagon
structure

1 0

0

10

B
an

d 
en

er
gy

 (e
V

)

ZG k

Figure 4.34: Band structure of stable carbon top to top hexagon structure CH1.
The structure is semiconductor with band gap Egap = 0.6eV .
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Figure 4.35: Calculated total density of states of CH1.
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Figure 4.36: Energy band structure of SiH1 structure.There are four bands inter-
secting the Fermi level represented by dashed lines.

stability tests by deforming these structures in such a way that one hexagon is

staggered by an angle φ with respect to the other hexagon in the same supercell.

Stability tests confirmed that structures obtained from CG results are stable.

Electrical properties of SiH1 can be determined from its Energy band struc-

ture. Since there are four bands crossing the Fermi level (Fig. 4.36) leading to a

finite density of states at EF as shown in Fig. 4.37, SiH1 is a good metal. One

can estimate 4G0 quantum ballistic conductance for the structure. Electrical

properties of SiH2 is similar to the SiH1, except that three bands are crossing

EF .
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Figure 4.37: Calculated density of states (DOS) of SiH1.

4.3.11 Hexagonal Structures with Linear Chain

This structure is similar to hexagonal structures in the previous section, except

that an axial atomic chain, passes through the centers of hexagons. First we con-

sider silicon top to top hexagon with linear chain (SiH3) and staggered hexagon

with linear chain (SiH4). Upon optimizing SiH3 (SiH4) remained top to top

(staggered) hexagon with binding energy Ebinding = 4.75eV (Ebinding = 4.65eV )

and bond distances d12 = 2.35Å (d12 = d25 = 2.48Å, d34 = 2.3Å). Stability tests

have shown that SiH3 and SiH4 structures are stable.

Energy band structure and DOS of SiH3 and SiH4 are similar to that of SiH1

structure. Both structures are metallic with 6G0 for SiH4 and 4G0 conductance

for SiH3 structure.

Similar calculations were performed for carbon top to top hexagon with lin-

ear chain (CH3) and carbon staggered hexagon with linear chain (CH4). After

relaxation, both of these structures are disintegrated.
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4.3.12 Hexagon+Hexagon+Triangle Structure (CH5 and

SiH5)

This structure consists of two hexagons and one triangle and is reminiscent of a

diamond along the [111] direction. Optimized carbon hexagon+hexagon+triangle

structure (CH5) is stable and has binding energy Ebinding = 7.42 eV/atom. Band

structure of the optimized stable structure is illustrated in Fig. 4.40. Since there is

one two-fold degenerate band that intersects EF , stable CH5 structure is metallic,

this is also clear from the calculated DOS in Fig. 4.41. From the number of bands

that intersect Fermi level, one can predict that quantum ballistic conductance of

the system is 2G0.

Similar optimization calculations on silicon hexagon+hexagon+triangle

(SiH5) structure, resulted in disintegration.

Figure 4.38: (a) Staggered hexagon with linear chain structure where one hexagon
is rotated in its plane by an angle φ = 30o relative to the adjacent hexagons. (b)
Top to top hexagon with linear chain structure.
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Figure 4.39: (a) Initial CH5 and SiH5 structures. This structure consists of
two buckled hexagons and one triangle (b) The optimized structure of CH5 with
Ebinding = 7.99eV and bond lengths d12 = 1.35Å, d23 = 1.51Å, d34 = 1.33Å. This
structure is similar to the initial one, except that the bond lengths between the
atoms of triangular layer are now stretched.
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Figure 4.40: (a) Energy band structure of stable CH5 structure. There is one two-
fold degenerate band which intersects the Fermi level. Therefore the structure is
metallic with conductance 2G0.
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Figure 4.41: Calculated DOS of CH5

4.3.13 Buckled Hexagon and Triangle Based Structure(CH6

and SiH6)

This structure consists of two triangle where one triangle 180o staggered with

respect to the other triangle and two buckled hexagon. Each buckled hexagon

structure can be envisioned as composed of two 180o staggered triangle with a

0.51Å spacing. Carbon triangle+ buckled hexagon+staggered triangle+buckled

hexagon structure CH6 in Fig. 4.42 (a) is relaxed. The optimized structure of

CH6 is depicted in Fig. 4.42 (b), with binding energy Ebinding = 7.93 eV/atom.

The stability tests of the CH6 structure is further performed by displacing atoms

from equilibrium positions. Upon relaxing displaced atoms have returned to their

original positions.

Electronic properties of this stable structure are summarized in Fig. 4.43.

Calculated band structure and density of states indicate that this structure is

metallic. We can estimate conductance of the stable structure near Fermi level

from the number of crossing bands. Since there are three bands that intersect

Fermi level, we can say that the conductance of the structure 3G0. Similar

calculations carried out for silicon triangle+buckled hexagon+staggered trian-

gle+buckled hexagon structure (SiH6) have resulted in instable structure.
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Figure 4.42: (a) Initial triangle+hexagon+staggered triangle+hexagon structure
(CH6 and SiH6). (b) The optimized structure of CH6 with Ebinding = 7.93eV and
bond lengths d12 = 1.319Å, d23 = 1.319Å, d34 = 1.52Å, d45 = 1.315Å.

−1

−0.5

0

0.5

1

B
an

d 
en

er
gy

 (e
V

)

ZΓ

Figure 4.43: (a) Energy band structure of stable CH6 structure. There are roughly
3 bands that intersect Fermi level.
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Figure 4.44: Calculated DOS of stable CH6 structure.

4.3.14 Silicon Nanotubes

Tubes are another class of structure for one-dimensional nanowires. In the past

decade several novel properties of carbon nanotubes have been investigated ac-

tively. These properties have been used to make prototypes of various nanoscale

electronic devices. In this thesis, we do not involve with the physical properties

of carbon nanotubes. On the other hand Si being in the same IV column as C

atom, has similar crystal structure. It is of intent to know whether Si has stable

tubular structures.

Silicon (8,0) nanotubes is optimized by using 7 k-points and 300 eV energy

cutoff value with supercell lattice parameters as = bs = 20 Åand cs = c = 6.67 Å.

Optimization carried out by CG on the (8,0) tube yields binding energy Ebinding =

4.80 eV/atom (Etotal = −3455.88eV ). The relaxed structure is illustrated in

Fig. 4.45.

Electrical properties of relaxed (8,0) tube are investigated by analyzing the

calculated energy band structure in Fig. 4.46. We found silicon zigzag (8,0) tube

is metallic with G = 3G0 due to three bands intersecting the Fermi level.
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a
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Figure 4.45: Silicon (8,0) tube in a supercell with lattice parameters as = bs =
20 Åand cs = 6 Å. After optimization (8,0) tube relaxed to (8,0) tube with
c=6.67Åand binding energy Ebinding = 4.80 eV/atom.
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Figure 4.46: Energy band structure of silicon (8,0) tube. There are three bands
intersecting the Fermi level.
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Figure 4.47: Calculated DOS of the silicon zigzag (8,0) SWNT. There is finite
density of states at Fermi level represented by dashed dotted lines.

After obtaining the relaxed structure of the zigzag (8,0) Si tube, we per-

formed stability test for this structure first by deforming it with a %20 strain.

Upon relaxation, the strained (or deformed) tube did not returned to the initial

(unstrained) structure.

This calculation reveals that silicon tubes are not stable as carbon nanotubes,

since strained silicon tube does not return to its undeformed structure. But

it is interesting that silicon tube neither relaxes to undeformed structure nor

disintegrates. Other important result is that, relaxed deformed tube is energically

more favorable than the relaxed structure of non-strained silicon (8,0) tube. This

energy difference can be explained by the increased Si-Si interaction at the high

curvature sites of the elliptically deformed tube. As far the electrical properties

of metallic %20 strained structure are similar to the undeformed one, with 3G0

conductance value near Fermi level where G0 = 2e2/h.

After obtaining the general properties of silicon (8,0) tube, we fo-

cussed on (3,3) tube. By performing the similar calculations for armchair

Si (3,3) nanotube, we obtained that the structure in Fig. 4.48 is stable with

lattice parameter c=3.82Åand binding energy Ebinding = 4.7 eV/atom (Etotal =
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Figure 4.48: Relaxed structure of armchair silicon (3,3) nanotube. with
c=3.82Åand binding energy Ebinding = 4.7 eV/atom.

−1294.66eV ).

By analyzing Band structure of silicon (3,3) tube, we concluded that the

relaxed structure is metallic with 2G0 conductance.

We performed stability tests for silicon (3,3) tube, by deforming the struc-

ture in radial direction by amount of %5,%10 and %15. After relaxation, we

observed that these structures return to the %5,%10 and %15 strained struc-

tures with total energies Etotal5 = −1294.61eV , Etotal10 = −1294.60eV and

Etotal15 = −1294.54eV . By analyzing these energy values, we concluded that

the non-strained silicon (3,3) tube is the most stable structure, but it should be

noted that there is not much energy difference between these strained tubes.

Electrical properties of these structures are similar to that of silicon (3,3)

tube, except that %15 strained (3,3) tube has 3G0 conductance value instead of

2G0 for other structures.
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Figure 4.49: Calculated band structure of Si (3,3) nanotube. Two bands inter-
secting the EF attribute metallic charecter to the structure.
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Figure 4.50: Calculated density of states of (3,3) armchair Si nanotube.
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4.4 Conclusions and Future Work

4.4.1 Conclusions

Our work reveals a number of interesting physical properties of different types of

silicon and carbon nanowires which are explained in the previous chapter. We

believe that these findings are essential for future development of nanoelectronics

design both experimentally and theoretically. The structures by themselves are

important and essential to understand 1-D periodicity, namely crystallography

in one-dimension. Now, we highlight some of the important findings by way of

conclusion:

1. Carbon linear chain structure is the most stable structure among other

stable carbon nanowires with binding energy Ebinding = 8.29eV/atom which is

comparable with the cohesive energy of bulk carbon in diamond structure with

Ebinding ' 8.43eV (Fig. 4.51).

The stability of the carbon chain atoms stems from the two-fold π-bonds

formed by carbon 2px and 2py orbitals, and also σ-bond made from carbon 2s+2pz

orbitals. As compared to the tetrahedrally bonded diamond, bonds in the linear

chain are stronger and charge is more localized along the C-C bands. We specify

the bond as double bond. This explains also why the cohesive energy of the carbon

linear chain is comparable to the bulk diamond, in spite of the reduced nearest

neighbor interaction (2 in chain, 4 in diamond) Interestingly, other structures,

such as C2, C3 and C4, have changed to linear structure upon relaxation. In

spite of the fact that diamond is an insulator with band gap ∼5.4 eV, the chain

structure is metallic with quantum ballistic conductance G=2G0. It is interesting

to note that the conductance of carbon linear chain is twice larger than that of

the gold linear chain.

Carbon linear chains have been fabricated in the center of carbon multiwall

nanotubes (MWNT). The high stability of the carbon linear chain revealed in this

thesis suggest that one can also obtain stable suspended carbon linear chains. One

contemplates that stretching of SWNTs can give rise to linear chains.
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We found that Si also form stable linear chain structure which exhibits physical

properties similar to that of the carbon linear chain. It is metallic and has

quantum ballistic conductance of 2G0. Si linear chains have not been synthesized

yet. This work indicates that the fabrication of double bonded Si linear chain can

lead to important applications, in particular as a interconnects in the Si-based

microelectronics where device size is rapidly reducing to 20-30 nanometers.

Simple nanowire structures, which are similar to linear chain are zigzag and

triangular structures can be formed by Si, but these structures are not stable in

carbon. It has been shown that these structures are stable also in metals such

as Al and Au. The instability of these structures in carbon are attributed to

the absence of sizeable core electron density. We found that Si nanowires having

triangular or zigzag structure are good conductors.

3. Some of the carbon nanowires from CT1 to CH6 has been disintegrated after

optimization while others give stable structure with binding energy less than that

of linear chain (C1). But it should be noted that, binding energy of CH5 and CH6

is still close to the bulk carbon binding energy and these structures are metallic.

4. None of the silicon nanowires has been disintegrated after optimization by

using first-principle pseudopotential. Hence, we concluded that silicon element is

possibly very suitable material for interconnection.

5. As described in detail in the previous section, we revealed a number of

interesting nanowire structures; some of them stable in Si, some of them in C or

in both elements. Some structures are metal, some are semiconductor. This work

is opening a new field which is full of novel physical properties.

4.4.2 Future Work

Our more systematic study of stability using temperature dependent quantum

molecular dynamics (QMD) and calculation of phonon spectrum is in progress.

In fact, stability of the structure, such as linear chain have been tested by QMD

and phonon density calculations.
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We also performed first-principle calculations of transmission coefficient based

on the Keldysh non-equilibrium quantum statistical mechanics. We plan to per-

form similar calculation for wires suspended between two electrodes.

We plan to extend our study for composite wires made by metal and Si (C)

atoms, and calculate their magnetic properties. The magnetic ground state of

these wires can be important for spintronics.

4.4.3 General Remarks

Based on the first-principles pseudopotential plane wave calculations, we showed

that most of the Si and C based nanowires are metallic despite their parent bulk

crystals are semiconductor or insulator and strongly directed bonds. In fact, Si

and C being group IV elements have (ns)2 and (np)2 valance structure. One of the

valance s-orbitals are promoted to p-state, and finally (ns)1 (np)3 valance orbital

form four tetrahedrally directed (sp)3 orbitals. These hybrid orbitals, in turn,

form covalent bonds with nearest neighbor atoms. The crystal structure which

is formed at the end is specified as diamond structure; it is an open structure

but relatively strong owing to these directed bonds. Since number of electrons

stored to each band are even, and also conduction bands do not overlap with the

valance band, a finite band gap (1.1 eV for Si and 5.4 eV for diamond) forms

between them. In nanowires, one faces a different situation, where the banding

may be different from the tetrahedral coordination as far as number of bands and

their directions are concerned. In the case of linear chain, each atom has two

nearest neighbors and cylindrical symmetry. Then the atomic orbitals are forced

to form double bands. Because of the cylindrical symmetry around the axis of

the chain and valency of the atoms, the chain is metallic, and has conductance

two times higher than the conductance of gold chain. The situation may be

different for the nanowires which have coordination number higher that four.

For certain pentagonal and hexagonal structures the number of nearest neighbor

can be much larger than four, where the character of the bonds is remarkably

different. As far the question, whether the bonding can be stable in spite of thee

higher coordination can be sought in the 3D crystal structure of these elements
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having different lattice’s. In Fig. 4.51 and Fig. 4.52, we present the variation

of interaction energy of C in bcc, fcc and diamond structures, having 8, 12 and

four nearest-neighbors. It is seen that all three yields an attractive interaction

with a cohesive energy at well defined lattice parameters. Of course, the highest

binding and hence the global minimum occurs in the diamond structure. As

demonstrated, structures yielding coordination numbers higher than four can

result in a minimum on the Born-Oppenheimer surface.
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Figure 4.51: The variation of interaction energy of C in bcc, fcc and dia-
mond structures obtained by using GGA. These structures have binding ener-
gies, Ebccbinding=-2 eV/atom, Efccbinding=-3.3 eV/atom and Ediamondbinding=-8.43
eV/atom.
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Figure 4.52: The variation of interaction energy of C in bcc, fcc and diamond
structures with binding energies, Ebccbinding = −2.64 eV/atom, Efccbinding = −3.97
eV/atom and Ediamondbinding = −9.45 eV/atom obtained by using LDA.
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