

USING A DATA MINING APPROACH FOR THE

PREDICTION OF USER MOVEMENTS IN MOBILE

ENVIRONMENTS

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Gökhan Yavaş

December, 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52939773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Özgür Ulusoy (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. Uğur Güdükbay

I certify that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. İbrahim Körpeoğlu

Approved for the Institute of Engineering and Science:

 Prof. Dr. Mehmet Baray

 Director of the Institute

iii

ABSTRACT

USING A DATA MINING APPROACH FOR THE
PREDICTION OF USER MOVEMENTS IN MOBILE

ENVIRONMENTS

Gökhan Yavaş
M.S. in Computer Engineering

Supervisor: Prof. Dr. Özgür Ulusoy
December, 2003

Mobility prediction is one of the most essential issues that need to be explored for

mobility management in mobile computing systems. In this thesis, we propose a new

algorithm for predicting the next inter-cell movement of a mobile user in a Personal

Communication Systems network. In the first phase of our three-phase algorithm, user

mobility patterns are mined from the history of mobile user trajectories. In the second

phase, mobility rules are extracted from these patterns, and in the last phase, mobility

predictions are accomplished by using these rules.

The performance of the proposed algorithm is evaluated through simulation as

compared to two other prediction methods. The performance results obtained in terms of

Precision and Recall indicate that our method can make more accurate predictions than

the other methods.

Keywords: Location prediction, data mining, mobile computing, mobility patterns,

mobility prediction

iv

ÖZET

MOBİL SİSTEMLERDE VERİ MADENCİLİĞİ
KULLANILARAK KULLANICI HAREKETLER İNİN

TAHM İNİ

Gökhan Yavaş
Bilgisayar Mühendisliği, Yüksek Lisans
Tez Yöneticisi: Prof. Dr. Özgür Ulusoy

Aralık, 2003

Mobil bilgisayar sistemleri kapsamında yürütülen en önemli araştırma konularından biri

de konum bilgisi yönetimidir. Konum bilgisi yönetimi, sistemden servis alan mobil

kullanıcıların, zamana bağlı olarak değişen konum bilgilerinin uygun metodlar

kullanarak güncellenmesi, saklanması ve gerektiğinde kullanılması konularını içerir. Son

zamanlarda, hareket tahmini de konum bilgisi yönetimi alanında başlıca araştırma

konularından biri haline gelmiştir.

Bu tezde, mobil kullanıcıların hareket modellerinin veri madenciliği kullanılarak

çıkarılması ve bu modeller kullanılarak mobil kullanıcıların daha sonraki hareketlerinin

tahmin edilmesi için yeni bir algoritma geliştirilmi ştir. Üç aşamadan oluşan bu

algoritmanın ilk aşamasında kullanıcı hareket modelleri, kullanıcıların önceden

kaydedilmiş mobil yörüngelerinden veri madenciliği kullanılarak çıkarılmaktadır. İkinci

aşamada bulunan hareket modellerinden hareket kuralları üretilmekte, son aşamada ise

bu hareket kuralları kullanıcının bir sonraki hücreler arası hareketinin tahmini için

kullanılmaktadır.

Sunulan algoritmanın performansı simülasyonlar yardımıyla iki farklı tahmin

yöntemiyle karşılaştırılmıştır. Performans sonuçları algoritmamızın diğer metodlardan

daha doğru tahminler yapabildiğini göstermektedir.

Anahtar Sözcükler: Yer tahmini, veri madenciliği, mobil bilgisayar sistemleri, hareket

modelleri, hareket tahmini

v

Acknowledgements

First of all, I would like to express my gratitude to my supervisor Prof. Dr. Özgür

Ulusoy for his guidance during my graduate study.

I would like to thank Assist. Prof. Dr. Uğur Güdükbay and Assist. Prof. Dr. İbrahim

Körpeoğlu, for spending their time and effort to read and comment on this thesis.

I would also like to acknowledge the financial support of TÜBİTAK under the grant

102E201.

Finally, I would like to thank my family for their great support, love and patience.

vi

Contents

1 Introduction .. 1

2 Background Work .. 4

2.1 Problem Definition... 4

2.2 Related Work... 6

3 Mobility Prediction Based on Mobility Rules .. 10

3.1 Mining User Mobility Patterns from Graph Traversals 10

3.2 Generation of Mobility Rules ... 20

3.3 Mobility Prediction .. 21

4 Experimental Results.. 24

4.1 Simulation Design.. 24

4.2 Algorithms Used for Comparison... 25

4.3 Impact of Maximum Number of Predictions... 26

4.4 Impact of Minimum Support Value..29

4.5 Impact of Minimum Confidence Value .. 30

4.6 Impact of Corruption Factor... 32

4.7 Impact of Outlier Percentage.. 34

5 Conclusion and Future Work... 37

vii

List of Figures

3.1: An example coverage region and the corresponding graph G11

3.2: User Mobility Pattern Mining Algorithm ..12

3.3: Generation of length-(k+1) candidates. ...17

3.4: Mobility Prediction Algorithm. ...22

4.1: Precision as a function of the Maximum Number of Predictions made each time ..27

4.2: Recall as a function of the Maximum Number of Predictions made each time.......28

4.3: Precision as a function of the Minimum Support for UMP-Based Prediction

algorithm ...29

4.4: Recall as a function of the Minimum Support for UMP-Based Prediction algorithm

..30

4.5: Precision as a function of the Minimum Confidence for UMP-Based Prediction

algorithm ...31

4.6: Recall as a function of the Minimum Confidence for UMP-Based Prediction

algorithm ...32

4.7: Precision as a function of the Corruption Factor..33

4.8: Recall as a function of the Corruption Factor ..34

4.9: Precision as a function of the Outlier Percentage...35

4.10: Recall as a function of the Outlier Percentage. ..36

viii

List of Tables

 3.1: Database of User Actual Paths (UAPs)...18

 3.2: Length-1 candidate patterns (C1) and length-1 large patterns (L1).........................18

 3.3: Length-2 candidate patterns (C2) and length-2 large patterns (L2).........................19

 3.4: Length-3 candidate patterns (C3) and length-3 large patterns (L3).........................19

 3.5: The set of all large patterns ..19

 3.6: All possible mobility rules ...21

 4.1: Symbol table for the parameters used in our experiments25

1

Chapter 1

Introduction
Personal Communication Systems (PCSs) are becoming more popular by the help of the

recent developments in the computer and communication technologies. In the near

future, PCSs will support a huge user population and offer services that will allow the

users to access various types of data such as video, voice and images. A PCS allows

dynamic relocation of mobile users since these systems are based on the notion of

wireless access. Mobility of the users in PCSs gives rise to the problem of mobility

management.

Mobility management in mobile computing environments covers the methods for

storing and updating the location information of mobile users who are served by the

system. A hot topic in mobility management research field is mobility prediction.

Mobility prediction can be defined as the prediction of a mobile user’s next movement

where the mobile user is traveling between the cells of a PCS or GSM network. The

predicted movement can then be used to increase the efficiency of PCSs. By using the

predicted movement, the system can effectively allocate resources to the most probable-

to-move cells instead of blindly allocating excessive resources in the cell-neighborhood

of a mobile user.

CHAPTER 1. INTRODUCTION 2

Up until now, there has been a considerable amount of research on mobility

management. Most of the research has focused on the problem of location update, which

is concerned with the reporting of the up-to-date cell locations by the mobile users to the

PCS network [4]. Location update should be performed whenever a mobile user moves

to another cell in the network to be able to track the exact location of each mobile user.

When an incoming call arrives, the network simply routes the call to the last reported

location of the mobile user. Compared to the amount of work performed on location

update, little has been done in the area of mobility prediction [1, 6, 7, 8, 10, 11]. These

works have some deficiencies, which are explained in the following:

• Some of these works do not attempt to find mobility patterns. Instead, the

patterns are assumed to be already available. These patterns are then used for

mobility prediction.

• In some of these works, prediction is based on the probability distribution of the

speed and direction of the mobile user. For collecting such information, highly

sophisticated and expensive tools such as GPS (Global Positioning System) are

needed.

• Most of the methods studied in these works are highly sensitive to a change in a

mobile user’s path. For this reason, the prediction accuracy drops in case of

noisy data. These methods do not consider the difference between the

randomness and the regularity in users’ paths (i.e., they do not distinguish a

random movement and a regular movement of a user). In general, users follow

some path patterns when traveling in network and their random movements are

relatively few when compared to regular movements. Therefore random and

regular movements should not be treated equally.

Aiming to overcome the above deficiencies, we have developed an effective mobility

prediction algorithm. In the first phase of this three-phase algorithm, movement data of

mobile users is mined for discovering regularities in inter-cell movements. These

regularities are called mobility patterns. Mobility rules are then extracted from the

CHAPTER 1. INTRODUCTION 3

mobility patterns in the second phase of our algorithm. In the third phase, the mobility

rules, which match the current trajectory of a mobile user, are used for the prediction of

the user’s next movement. The first two phases of our prediction algorithm, which are

user mobility pattern mining and mobility rule generation, are accomplished offline by

the system. However, the last phase, i.e., the mobility prediction, is accomplished online.

It means that whenever a user intends to make an inter-cell movement, a prediction

request is sent to the system and the prediction is made by the system based on our

mobility rule based prediction algorithm.

The rest of this thesis is organized as follows. In Chapter 2, we present the network

model we have used in this work, formulate the problem that we deal with, and present

the related work. Our method for the solution of the problem is proposed in Chapter 3.

We present the experimental results in Chapter 4 and conclude our thesis in Chapter 5.

4

Chapter 2

Background Work

2.1 Problem Definition

In our work, we assume that the mobile users move in a wireless PCS network, which

has an architecture similar to those used in EIA/TIA IS41 and GSM standards [14]. The

coverage area of the PCS network is partitioned into smaller areas which are called cells.

In each cell in the PCS network, there is a base station (BS) which has the capability of

broadcasting and receiving information. The base stations are connected to each other

via a fixed wired network. Mobile users use radio channels to communicate with base

stations.

The coverage area consists of a number of location areas. Each location area may

consist of one or more cells but in our work we assume that each location area consists

of only one cell. Base stations regularly broadcast the ID of the cell in which they are

located. Therefore, the mobile users which are currently in this cell and listening to the

broadcast channel will know in which cell they are now. The movement of a mobile user

from his current cell to another cell will be recorded in a database which is called home

location register (HLR). In addition, every base station keeps a database in which the

profiles of the users located in this cell are recorded. This database is called visitor

CHAPTER 2.BACKGROUND WORK 5

location register (VLR). Therefore, in our system it is possible to get the movement

history of a mobile user from the logs on its home location register.

Since mobile users may initiate calls to other users or receive incoming calls while

moving in the coverage region, the ongoing calls should be transferred from one cell to

another without call dropping. To avoid call dropping due to insufficient resources at the

destination cell, apriori resource allocation could be employed at that cell.

In our work, we collect the movement trajectories of a user in the form of

T = <(id1, t1), (id2, t2) ...,(idk, tk)>. Here id1 denotes the ID number of the cell to which

the user enters at time t1. In this record it is clear that two consecutive ID numbers must

be the ID numbers of two neighbor cells in the network. After the movement history of a

user is collected in a predefined time interval in the above format, this record is

partitioned into subsequences. This procedure is accomplished as follows: If the mobile

user stays in a cell idi more than a threshold value, before moving to another one idi+1 at

ti+1, we assume that his trajectory up until now <id1,... idi> ends here, and at idi+1 a new

trajectory is started. Therefore, the first subsequence is <id1, ...idi>. By continuing in this

manner the record is partitioned into subsequences, and these subsequences are recorded

to be used in our algorithm.

We name the trajectories obtained by the above procedure as user actual paths

(UAPs). We consider the UAPs as a valuable source of information because the mobility

of the users contains both regular and random patterns [8]. Therefore by using the UAPs,

we may be able to extract the regular patterns and use them in prediction.

We assume that we have UAPs which have the form U = <c1, c2, ..., cn>. In this

notation, each ck denotes the ID number of the kth cell in the coverage region. In finding

the trajectories that are frequently used by the mobile users, we generalize the pattern

mining method presented in [2, 3], to be used in our domain. The method presented in

that work was intended for mining the frequent user access patterns from web logs, and

then using these access patterns for effective caching and prefetching.

CHAPTER 2.BACKGROUND WORK 6

We name the frequently followed trajectories as user mobility patterns (UMPs).

Mining of the UMPs enables us to generate mobility rules. By considering the mobility

rules and the trajectory of a user, we predict the next inter-cell movement of the user. In

the next chapter, we describe the algorithm developed for accomplishing the above

issues.

2.2 Related Work

Data mining can be defined as the process of discovering interesting knowledge, such as

patterns, associations, changes, anomalies and significant structures, from large amounts

of data stored in databases, data warehouses, or other information repositories.

Association rule mining [13] is the data mining task in which association relationships

between sets of items of a transactional database are discovered. The roots of our

method for sequential pattern mining go back to the Apriori algorithm [13].

In the association rule mining terminology, an itemset is a collection of items, the

support of an itemset is the fraction of transaction itemsets that contains the itemset and

large is an itemset that has support larger than a user-defined threshold. The Apriori

algorithm is a level wise algorithm and makes multiple passes over the data for

discovering large itemsets. In each subsequent pass, the algorithm starts with a seed set

of itemsets found to be large in the previous pass. This seed set is then used to generate

new itemsets, which are potentially large. These itemsets are called the candidates.

During the next pass over the database, the supports for these candidates are counted and

at the end of the pass, the candidates, which are large, become the seed for the next pass.

This process continues until there is no new large itemsets found.

Association rule mining differs from sequential pattern mining, because in

association rule mining, the ordering of the items in an itemset is not considered. In the

algorithms used for mining association rules, support counting is done with the subset

criterion, which does not take into account the ordering of items inside a transaction.

With respect to this criterion, if an itemset A is a subset of another itemset B, then it is

CHAPTER 2.BACKGROUND WORK 7

said that itemset A is supported by itemset B. However, in sequential pattern mining the

ordering of the items in an itemset must be taken into consideration.

The sequential pattern mining problem is studied in [5]. For our domain, the mobile

users are assumed to be moving between the cells of a PCS network. However, the

algorithms proposed in [5] cannot be applied directly to our domain for mining mobility

patterns. Because, these algorithms don’t take into account the network topology while

generating the candidate patterns. This weakness of the proposed algorithms gives rise to

generation of candidate patterns, which can not exist as mobility patterns on the

corresponding network, since only the sequence of neighboring cells of the network can

be considered as a mobility pattern. Therefore, the number of candidates generated can

be extremely high, and this factor can dramatically reduce the performance of the

mining algorithm.

In [2, 3], sequential pattern mining is applied to the domain of predictive Web

prefetching. Web prefetching can be defined as deriving users’ future requests for Web

documents based on their previous requests. For effectively predicting the users’ future

requests, user access patterns are mined from the Web logs of users’ previous requests

and then these patterns are used for prefetching. The method presented in [2, 3] extends

existing algorithms for mining sequential patterns in order to take the graph structure of

the corresponding Web site into account during support counting, candidate generation

and pruning. As we describe in Section 3.1, in the first phase of our mobility prediction

algorithm, we generalize the method presented in [2, 3] to be able to mine mobility

patterns of users in mobile computing environments. In the latter stages of our

algorithm, mobility rules are extracted from the mobility patterns, and by using these

rules, user movements are predicted.

There has been a considerable amount of research in mobility prediction, as well. The

work presented in [7] is among the pioneering research for predicting the mobile users’

movement behavior. In this work, user’s moving behavior is modeled as repetitions of

some elementary movement patterns which are indeed circular and straight line patterns.

CHAPTER 2.BACKGROUND WORK 8

In order to estimate the future location of a user, a mobile motion prediction (MMP)

algorithm is proposed. However, the MMP algorithm is highly sensitive to random

movements of the user. It is reported in [7] that as the random movements of the user

increase the performance of MMP decreases linearly.

The work in [8] proposes a two level scheme, which combines a local with a global

prediction model. The top level is the global mobility model (GMM), whose resolution is

determined in terms of the cells crossed by a mobile user during the lifetime of the

connection. The bottom level is the local mobility model (LMM), whose resolution is

determined in terms of a 3-tuple sample space (speed, direction, position) that varies

with time. LMM is used to model the intra-cell movements of the mobile users. On the

other hand, GMM is used to predict the inter-cell movement trajectory of a user by

matching the user’s actual path to one of the existing “mobility patterns”. For this

purpose pattern matching techniques are used. However, the weakness of the work is

revealed at this point because there is no method presented in [8] to discover these

mobility patterns.

In [6], a Gauss-Markov model is introduced, where a mobile user’s current velocity

and location is correlated in time to a various degree. Based on the Gauss-Markov

model, a mobile user’s future location is predicted by the network based on the

information gathered from the user’s last report of location and velocity. In [1], Aljadhai

and Znati use a first-order autoregressive filter in order to determine the direction of

movement of a user. It is claimed in that work that the proposed method guarantees that

the predicted mobile direction is not affected by small deviations in the mobile user’s

direction.

In the work [10], for location prediction cell-to-cell transition probabilities of a

mobile user is recorded, and based on this, resource allocation is done at the k most

probable cells that are in the neighborhood of the current cell. Here k is a user-defined

parameter.

CHAPTER 2.BACKGROUND WORK 9

In some of the other works such as [11, 9], data mining methods such as clustering

and association rule mining are used for exploring mobility patterns. In [11], a new

location tracking method called behavior-based strategy (BSS) is presented. The aim of

this work is designing a better paging area for each mobile user for each time region.

The moving behavior of each mobile is mined from long-term collection of the user’s

moving logs. Next, time varying probability of each mobile user is estimated by using

user’s moving behavior, and then optimal paging area of each time region is derived.

In [9], a method named dynamic clustering based prediction (DCP) of mobile user

movements is presented. In this work, DCP is used for discovering user mobility

patterns from collections of recorded mobile trajectories, and then these patterns are

used for the prediction of movements and dynamic allocation of resources. Collected

user trajectories are clustered according to their in-between similarity. Weighted edit

distance measure [8] is used for determining the similarity between two trajectories. The

clustering used in [9] is agglomerative. It means that initially every single trajectory

forms a cluster itself. At each iteration of the clustering algorithm, two most similar

clusters (i.e., clusters that are closest in terms of weighted edit distance) are merged to

form a new cluster. Each cluster is represented by a number of cluster representative

trajectories. After each merge operation, the representatives of new cluster are found to

be the union of representative sets of the merged clusters. The merge operation

continues until the number of the clusters is reduced to a predefined value. In the

prediction phase, the representatives of the clusters are used. A mobile user’s next

trajectory is predicted by finding the best matching representative with its current

trajectory. The best matching one has the minimum edit distance to the current

trajectory. In case of more than one match, all matched representatives can be used for

prediction.

10

Chapter 3

Mobility Prediction Based on Mobility
Rules

Our algorithm consists of three phases: user mobility pattern (UMP) mining phase,

generation of mobility rules using the mined UMPs, and the mobility prediction phase.

The next inter-cell movement of mobile users is predicted based on the mobility rules in

the last phase. We examine each phase in detail in the following sections.

3.1 Mining User Mobility Patterns from Graph Traversals

In order to mine the UMPs from user actual paths (UAPs), sequential pattern mining [5]

can be used. Sequential pattern mining has been previously used and examined in

various research domains. One such work has been performed in the domain of web log

mining [2, 3]. In that work, sequential pattern mining is used to mine the access patterns

of a user while he is visiting the pages of web sites. This method assumes the web pages

to be the nodes and the links between these pages to be the edges of an unweighted

directed graph, G. Then, sequential pattern mining is applied to web logs by

considering G.

In order to get a new method that is convenient for our domain, we generalize this

method and apply it for UMP mining. In our method, we use a directed graph G, where

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 11

C0

C6

C5

C1

C2

C3

C4

C8

C7

0

3

4

2

1

6

5

7

the cells in the coverage region are considered to be the vertices of G. The edges of G

are formed as follows: If two cells, say A and B, are neighboring cells in the coverage

region (i.e., A and B have a common border) then G has a directed and unweighted edge

from A to B and also from B to A. These edges demonstrate the fact that a user can

move from A to B or B to A directly. In Figure 3.1, an example coverage region and the

corresponding graph G is presented.

(a) (b)

Figure 3.1: An example coverage region (a) and the corresponding graph G (b)

The algorithm we have developed for UMP mining is presented in Figure 3.2. To

understand how the UMP mining algorithm works, assume that the set of candidate

patterns each including k cells is found in the (k-1)st run of the while loop and this set is

not empty (line 4, in Figure 3.2). The set of these patterns, denoted by Ck, is called

length-k candidate patterns. Returning to the execution of our algorithm, from line 5 to

line 12, first all the length-k subsequences of all UAPs are generated and these

subsequences are used to count the supports of the length-k candidate patterns. In order

to be more precise, the subsequence definition is given below:

Definition 1: Assume that we have two UAPs, A = <a1, a2, ... , an> and

B = <b1, b2, ... , bm>. B is a subsequence of A, iff there exists integers 1 ≤ i1 < … < im ≤ n

such that
kik ab = , for all k, where 1 ≤ k ≤ m.

8

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 12

UMPMining()

Input: All the UAPs in the database, D

 Minimum value for support, suppmin

 Coverage Region Graph, G

Output: User mobility patterns (UMPs), L

1. C1 ← the patterns which have a length of one

2. k = 1

3. L = ∅ // Initially the set of large patterns is empty

4. while ≠kC ∅ {

5. foreach UAP Da ∈ {

6. S = {s | kCs ∈ and s is a subsequence of a }

7. // S is the set of candidate length-k patterns which are also

8. // subsequences of UAP a

9. foreach Ss ∈ {

10. s.count = s.count + s.suppInc //increment the support of cands

11. }

12. }

13. // choose the candidates which has enough support

14. Lk = { s | kCs ∈ , s.count ≥ suppmin }

15. kLLL U= // add these length-k large patterns to the set of all large patterns

16. // Generate length-(k+1) candidate patterns

17. Ck+1 ← CandidateGeneration(Lk, G), 1+∈∀ kCc c.count = 0

18. k = k+1

19. }

20. return L

Figure 3.2: User Mobility Pattern Mining Algorithm

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 13

In other words, B is a subsequence of A, iff all cells in B also exist in A while keeping

their order in B (but they don’t need to be consecutive in A).

Let’s give an example by using the coverage region given in Figure 3.1: assume

A=<c3, c4, c0, c1, c6, c5>, then B=<c4, c5> will be a length-2 subsequence of A. In other

words, the UAP B is contained by the UAP A.

In line 10 of the mining algorithm, we see that every candidate ‘s’ has a count value

and this value is incremented by ‘s.suppInc’ value. The count value of a candidate keeps

the support given to this candidate by the UAPs. This is the point where our algorithm

extends the method presented in [2, 3]. The method presented in that work, increments

the count value of a candidate by 1 if this candidate is contained by a UAP. By this

method, the effect of possible noise in the data is minimized. Because the users who are

following a UMP may follow random paths between the consecutive cells of this UMP.

These paths can be characterized as noise and the UAPs containing noise are called

corrupted. If the number of corrupted UAPs in the data is high, then a pattern may not

have an adequate support and it will be missed.

However, this method of support counting treats a highly corrupted candidate pattern

and a slightly corrupted (or even not corrupted at all) candidate pattern in the same way

and assigns the support value of 1 to both patterns. Since this method is unfair for the

context of mobile motion prediction, unlike the work in [2, 3], our support counting

method considers the degree of corruption, i.e., we differentiate the support given to a

slightly corrupted pattern and to a highly corrupted pattern. In our method, we calculate

the support assigned to a candidate pattern B by an UAP A (i.e., suppInc) by using the

following formula:

totDist+1

1
, if pattern B is contained by UAP A.

suppInc =
 0, otherwise

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 14

We can define the totDist value by means of the notion of string alignment [12].

Given two strings, where a string is a sequence of characters, Gusfield demonstrates

methods for determining the similarity between these two strings by finding the optimal

alignment between them. For instance, assume that the two strings are “acbcdb” and

“cadbd”. Here is one possible alignment of these two strings, where the special character

“-” represents the insertion of a space.

 a c - - b c d b
 - c a d b - d -

Definition 2.1: If x and y are each single character or space, then ()yx,δ denotes the

score of aligning x and y. In our case, the scoring function is defined as follows:

() 0, =xxδ and () () () 1,,, =−=−= xxyx δδδ

Definition 2.2: If S is a string, then S denotes the length of S and []iS denotes the ith

character of S (where the first character is []1S rather than, say[]0S).

Definition 2.3: Let A be a UAP and B be a pattern. A containment alignment X ′ maps

A and B into strings A′ and B′ that may contain space characters, where

1. BA ′=′ ,

2. the pattern B is contained by the UAP A, and

3. the removal of all spaces from A′ and B′ leaves A and B, respectively.

The total score of the alignment X ′ is

[] []()∑
=

′′
m

ki

iBiA ,δ , where k is the index of first and m is the index of last non-space

character in B′ .

The above definition of containment alignment is an adaptation of the string

alignment definition given in [12]. For any two patterns, there are many possible

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 15

containment alignments. For instance, assume that A=<c3, c4, c0, c1, c6, c5, c8> and

B=<c4, c5>. Then, two possible containment alignments for these patterns are:

1. A′ = c3 c4 c0 c1 c6 c5 c8

B′ = - c4 - - - c5 -

2. A′ = c3 - c4 c0 c1 c6 c5 c8
B′ = - - c4 - - - c5 -

Definition 2.4: An optimal containment alignment of UAP A and pattern B is one that

has the minimum possible value for these two patterns. We call the containment

alignment with minimum value optimal by the nature of our scoring function that was

presented in Definition 2.1. As one can see, our scoring function gives a penalty of 1 for

each mismatch in the alignment, and in Definition 2.3 the value of an alignment is

defined as the sum of penalties which are naturally the result of mismatches. Therefore,

the optimal alignment will have the minimum value, which denotes the minimum

number of mismatches, and we call this value totDist for these patterns. Indeed, totDist

gives us the exact number of cells which exist between the consecutive cells of B in A.

For instance, an optimal containment alignment for the patterns A and B will be:

A′ = c3 c4 c0 c1 c6 c5 c8
B′ = - c4 - - - c5 -

The value of this optimal containment alignment is 3 and by Definition 2.4 totDist=3.

Actually, it can be said that the pattern B is 3 cells corrupted with respect to pattern A.

Therefore, the support value given to B by A is
4

1

31

1
suppInc =

+
= . It is easily seen that

the quality of the patterns will improve since this method is a more accurate way of

support counting. The improvement in the pattern quality will give rise to more accurate

mobility rules. Therefore, the prediction accuracy by using these rules will be higher

when compared to the accuracy by using the rules that are generated with the former

way of support counting [2, 3]. Indeed, our support counting method is a generalization

of the support counting method of [2, 3]. If we simply take totDist as 0, without

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 16

considering the degree of corruption, we will end up with the support counting method

of that work. Therefore, we can claim that applying different methods for calculating

totDist will affect the quality of the rules obtained. For this reason, an appropriate

method, such as ours, should be selected for calculating this value.

For support counting and storing large patterns, a trie data structure is used as in the

work [2, 3] instead of the hash-tree data structure recommended to be used for [13]. In

the hash-tree the candidates exist only in the leaves of the tree. On the other hand, every

trie node sequence, from root to any node, can represent a pattern in the trie data

structure. This property of the trie structure provides efficiency in support counting

procedure. Furthermore the trie data structure grows dynamically as its leaves are

extended and there is no need to build repeatedly a new hash-tree for every iteration.

To count the supports of length-k candidate patterns, first all candidate patterns are

inserted into the trie. Next the database of UAPs is scanned. For each UAP A of length

n, all possible length-k subsequences and their totDist values should be determined (If n

< k, then UAP A is skipped and not used in this phase of support counting). Then, each

of these subsequences are searched in the trie and for those who exist in the trie, their

support count is increased by suppInc value, which is calculated with the totDist value of

the corresponding subsequence.

After counting the supports of all the candidates, the candidates which have a support

smaller than the threshold value (suppmin) are eliminated. The remaining candidates are

called the length-k large patterns (Lk). Then, Lk is added to the set in which all the large

patterns are maintained.

The next step in the mining algorithm is the generation of length-(k+1) candidate

patterns, Ck+1. For this step, the CandidateGeneration() function, presented in

Figure 3.3, is used.

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 17

CandidateGeneration ()

Input: Length-k large patterns, Lk

 Coverage Region Graph, G

Output: Length-(k+1) candidate patterns, Candidates

1. Candidates = ∅ // Initially the candidates set is empty

2. foreach L = <l1, l2, ..., lk>, kLL ∈ { // for each length-k large pattern L

3. // determine all the cells which are neighbors of lk in G

4. N+ = {v | there is an edge in G such as lk → v}

5. foreach)(klNv +∈ { // for each of these neighbor cells, v

6. // generate a candidate by attaching v to end of L

7. C ′ = < l1, l2, ..., lk, v>

8. S = {s | s is a length-k subsequence of C ′ and s is a path in G}

9. if kLsSs ∈⇒∈∀

10. // if all k-length subsequences of new C ′ is large then add it to cands set

11 CCandidatesCandidates ′← U

12. }

13. }

14. return Candidates

Figure 3.3: Generation of length-(k+1) candidates

To illustrate how the candidate generation algorithm works, assume that there exists a

pattern C = <c1, c2, ..., ck> in Lk which is given as the input to this algorithm. To

generate the possible candidates from C, all the nodes in G which have an incoming

edge from the cell ck are assigned to a set which is denoted by N+(ck). This is the set of

all the cells to which a mobile user can move from ck. Next, a cell, v, from N+(ck) is

attached to the end of the pattern C in order to generate a possible candidate

C ′ =<c1, c2, ..., ck, v>. If all the length-k subsequence patterns of C ′ , which can exist as

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 18

paths in the corresponding network graph G, are elements of Lk, then C ′ is added to the

length-(k+1) candidates set. This procedure is repeated for all the cells in the set N+(ck).

Example: An example database of UAPs is given in Table 3.1.

UAP ID UAP
1 <3, 0, 6, 7>
2 <3, 4, 5, 6, 7>
3 <2, 1, 6, 8>
4 <4, 5, 8, 7>
5 <0, 5, 8>
6 <4, 5, 6, 7>

Table 3.1: Database of User Actual Paths (UAPs)

In Tables 3.2, 3.3, 3.4, 3.5, the execution of the UMP mining algorithm with suppmin=

2 and graph G which is given in Figure 3.1 is illustrated on an example using the

database of UAPs which is given in Table 3.1. In Table 3.2, set of length-1 candidate

patterns (C1) and set of length-1 large patterns (L1) are given.

C1 L1

CAND SUPP

PATTERN SUPP
<0> 2 <0> 2
<1> 1 <3> 2
<2> 1 <4> 3
<3> 2 <5> 4
<4> 3 <6> 4
<5> 4 <7> 4
<6> 4 <8> 3
<7> 4
<8> 3

Table 3.2: Length-1 candidate patterns (C1) and length-1 large patterns (L1)

Next, C2 is generated by using the candidate generation algorithm given in Figure 3.3

and, L1 is used in this process. Then, the supports of these candidates are counted and the

patterns which have a support value larger than suppmin are assigned to set L2. The sets

C2 and L2 are presented in Table 3.3.

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 19

C2 L2
CAND SUPP CAND SUPP PATTERN SUPP
<0, 3> 0 <5, 6> 2 <4, 5> 3
<0, 4> 0 <5, 8> 2 <5, 6> 2
<0, 5> 1 <6, 0> 0 <5, 8> 2
<0, 6> 1 <6, 5> 0 <6, 7> 3
<3, 0> 1 <6, 8> 1
<3, 4> 1 <6, 7> 3
<4, 0> 0 <7, 6> 0
<4, 3> 0 <7, 8> 0
<4, 5> 3 <8, 5> 0
<5, 4> 0 <8, 6> 0
<5, 0> 0 <8, 7> 1

Table 3.3: Length-2 candidate patterns (C2) and length-2 large patterns (L2)

Having L2, C3 is generated using CandidateGeneration() function, and then the large

patterns in C3 are assigned to the set L3. These sets are shown in Table 3.4.

C3 L3

CAND SUPP

PATTERN SUPP
<4, 5, 8> 1 <4, 5, 6> 2
<4, 5, 6> 2 <5, 6, 7> 2
<5, 6, 7> 2

Table 3.4: Length-3 candidate patterns (C3) and length-3 large patterns (L3)

C4 and L4 contain only the pattern <4, 5, 6, 7>. By using L4, CandidateGeneration()

function can not generate any length-5 candidates. Therefore, the UMP mining

algorithm terminates with the set of large candidates, L, which is shown in Table 3.5.

L

PATTERN SUPP PATTERN SUPP
<0> 2 <4, 5> 3
<3> 2 <5, 6> 2
<4> 3 <5, 8> 2
<5> 4 <6, 7> 3
<6> 4 <4, 5, 6> 2
<7> 4 <5, 6, 7> 2
<8> 3 <4, 5, 6, 7> 2

Table 3.5: The set of all large patterns

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 20

3.2 Generation of Mobility Rules

In the second phase of our movement prediction algorithm, the mobility rules which will

be used in the next phase (i.e., the prediction phase) are generated. Having the UMPs

mined in the previous phase, we can now produce the set of the mobility rules from

these UMPs. Assume that we have a UMP C = < c1, c2, ..., ck >, where k>1. All the

possible mobility rules which can be derived from such a pattern are:

< c1 > → < c2, … ck >

< c1, c2 > → < c3, … ck >

…

< c1, c2, …, ck-1 > → < ck >

For a mobility rule, we call the part of the rule before the arrow the head of the rule,

and the part after the arrow the tail of the rule. Moreover, when these rules are

generated, a confidence value is calculated for each rule. For a mobility rule R: < c1, c2,

…, ci-1 > → < ci, ci+1, ... ck >, the confidence is determined by using the following

formula:

100
.c , ,c ,c

.c , ,c ,c
)(

1-i21

k21 ×
>…<
>…<=

count

count
Rconfidence

By using the mined UMPs, all possible mobility rules are generated and their

confidence values are calculated. Then the rules which have a confidence higher than a

predefined confidence threshold (confmin) are selected. These rules are used in the next

phase of our algorithm, which is the mobility prediction.

Example: All possible mobility rules and their confidence values for the UMPs given in

Table 3.5 are demonstrated in Table 3.6.

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 21

Mobility Rules

Rule Conf Rule Conf
<4> → < 5> 100 <5> → <6, 7> 50
<5> → <6> 50 <5, 6> → <7> 100
<5> → < 8> 50 <4> → <5, 6, 7> 66.6
<6> → <7> 75 <4, 5> → <6, 7> 66.6

<4> → <5, 6> 66.6 <4, 5, 6> → <7> 100
<4, 5> → <6> 66.6

Table 3.6: All possible mobility rules

If the threshold confidence value, confmin, is assumed to be 50, then the rules having a

confidence bigger than or equal to confmin will be the same as the rules in Figure 10 since

all these rules have a confidence bigger than confmin.

3.3 Mobility Prediction

This is the third and the last phase of our algorithm. The pseudo-code for the mobility

prediction phase of our algorithm is presented in Figure 3. In this phase, the next

movement of the mobile user is predicted. The prediction procedure can be summarized

as follows: Assume that a mobile user has followed a path P=< c1, c2, …, ci-1 > up to

now. Our algorithm finds out the rules whose head parts are contained in path P, and

also the last cell in their head is ci-1. We call these rules the matching rules. We store the

first cell of the tail of each matching rule along with the confidence of the rule in an

array of such tuples. The tuples of this array are then sorted in descending order with

respect to their confidence.

Then, we define another parameter, m, which is the maximum number of predictions

that can be made each time the user moves. For prediction, we select the first m tuples

from the sorted tuples array. Then the cells of these tuples are our predictions for the

next movement of the mobile user. It means that we use the first m matching rules that

have the highest confidence for predicting the user’s next movement.

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 22

MobilityPrediction()

Input: Current trajectory of the user, P=< c1, c2, …, ci-1 >

 Set of mobility rules, R

 Maximum predictions made each time, m

Output: Set of predicted cells, PCells

1. PCells = ∅ // Initially the set of predicted cells is empty

2. k = 1

3. foreach rule r : <a1, a2, ..., aj>→<aj+1, ..., at> ∈ R { // check all the rules in R

4. // find the set of matching rules

5. if <a1, a2, ..., aj> is contained by P=< c1, c2, …, ci-1 > and aj = ci-1 {

6. // Add the rule into the set of matching rules

7. rlesMatchingRulesMatchingRu U←

8. // Add the (aj+1, r.confidence) tuple to the Tuples array

9. TupleArray[k] = (aj+1, r.confidence)

10. k = k+1

11. }

12. }

13. // Now sort the Tuples array w.r.t. the second element of the tuples

14. // (which is the confidence of the corresponding rule) in descending order

15. ()TupleArray sort TupleArray←

16. index = 0

17. // Select the first m elements of the Tuples array

18. while (index < m && index < TupleArray.length){

19. []PCells PCells TupleArray index← U

20. index = index+1

21. }

22. return PCells

Figure 3.4: Mobility Prediction Algorithm

CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES 23

Example: Assume that a mobile user is traveling through the cells of the coverage region

shown in Figure 1. Also the UAPs that the user has followed in its mobility history are

given in Figure 4. Then, the mobility rules that are given in Figure 10 will be used in

mobility prediction for this user. Moreover, suppose that the user has followed a path

P=<2, 3, 4, 5> up to now and he is currently in cell 5. Our algorithm will find the rules

<5> → <6>, <5> → < 8>, <4, 5> → <6>, <5> → <6, 7>, and <4, 5> → <6, 7> as the

matching rules. The first cell in each rule’s tail will be stored along with the rule’s

confidence in an array of (cell, confidence) tuples. If there are more than one tuple for a

cell in the array, then the one which has the biggest confidence is kept and the others are

deleted. Then, these tuples are sorted with respect to their confidence values in

descending order. For our example, the sorted tuple array will be:

TupleArray = [(6, 66.6), (8, 50)]. If m is equal to 1, then only cell 6 will be used for the

prediction of user’s next movement. If m is equal to 2, then both cells 6 and 8 are the

predicted cells for the next movement.

24

Chapter 4

Experimental Results

4.1 Simulation Design

For simulation, we have adapted the simulation model which is presented in our earlier

work [9]. In this model, it is assumed that a mobile user travels on a 15 by 15 hexagonal

shaped network which gives a total of 225 base stations.

In order to generate the user actual paths (UAPs), first a number of user mobility

patterns (UMPs) is generated. The length of a UMP is determined by a uniform

distribution with a mean length l. Each UMP is taken as a random walk over the

hexagonal network. There are two types of UAPs generated. The first type consists of

UAPs that follow a UMP and the second type consists of outliers (i.e., those which don’t

follow a pattern). The ratio of the number of outliers to the number of UAPs that follow

a UMP is denoted by o. For each new UAP we decide whether it is going to be an outlier

or not, according to the value o. If it is an outlier, then it is formed as a random walk

over the hexagonal network. Otherwise, a UMP is selected randomly that will

correspond to the generated UAP. We also use a corruption mechanism to distinguish

the UAP from its corresponding UMP. We insert random cells between the consecutive

cells of the UMP. In order to accomplish this, we define a corruption ratio c, which

denotes the ratio of the number of such random cells to the number of cells in the

corresponding UMP.

CHAPTER 4. EXPERIMENTAL RESULTS 25

Total number of UAPs is 10,000 and from these, we construct the training and test

sets. The number of UAPs in training set is 9,000 and the number of UAPs in test set is

1,000. UMPs are mined from the UAPs in the training set and then the mobility rules

that will be used in prediction are generated by using these UMPs. The UAPs in the test

set are used for evaluating the prediction accuracy of our algorithm. There are two

performance measures used for the evaluation of the proposed algorithm:

• Recall: the number of correctly predicted cells divided by the total number of

requests (i.e., the total number of inter-cell movements that the user makes).

• Precision: the number of correctly predicted cells divided by the total number of

predictions made.

The parameters used in the experiments and their default values are given in Table

4.1. The default values of l, c and o are adapted from [9].

Symbol Definition Default values
m Maximum number of predictions made each time 2
l Average length of UAPs 5
c Corruption factor 0.4
o Outlier Percentage 30 %
suppmin Minimum support percentage 0.05 %
confmin Minimum confidence percentage 70 %

Table 4.1: Symbol table for the parameters used in our experiments

4.2 Algorithms Used for Comparison

We compared our UMP-Based mobility prediction method with two different prediction

methods. The first method is Mobility Prediction based on Transition Matrix (TM). In

this method, a cell-to-cell transition matrix is formed by considering the previous inter-

cell movements of mobile users. The predictions are based on this transition matrix by

selecting the m most probable cells as the predicted cells. The second prediction method

is the Ignorant Prediction, which is presented in [15]. Ignorant Prediction method

disregards the information available from movement history. To predict the next inter-

CHAPTER 4. EXPERIMENTAL RESULTS 26

cell movement of a user, this method assigns equal transition probabilities to the

neighboring cells of the user’s currently residence cell. It means that prediction is

performed by randomly selecting m neighboring cells of the current cell.

The first experiment is conducted for choosing the m (the maximum number of

predictions made each time) value which is appropriate for all the methods. The next

two experiments are conducted for tuning the parameters of our method, which are:

suppmin (the minimum support threshold used in UMP mining algorithm) and confmin (the

minimum confidence threshold used in mobility rule generation algorithm). In these

experiments, we search for the best values for each parameter that make both recall and

precision good. The last two experiments are to measure the performance of our method

as compared to the performance of other methods.

4.3 Impact of Maximum Number of Predictions

In the first experiment, we examine the performance impact of parameter m, maximum

number of predictions made at each move of user. As Figure 4.1 indicates, the precision

obtained by our method and the precision obtained by TM decrease as m increases. The

decrease in precision obtained by TM is more dramatic when compared to that obtained

by our method. The decrease in both precision values is due to the fact that as the

number of predictions made at each movement of the user increases, the probability of

having some incorrect predictions gets higher. Therefore, the number of correct

predictions made by our method and TM doesn’t increase in the same rate with the

number of predictions.

On the other hand, the precision obtained by Ignorant Prediction method remains

almost constant as m increases, ignoring some statistical variations. It is around 0.2 for

all m values. As m increases, the total number of predictions and the number of correct

predictions for this method increase at the same rate. This explains why the precision of

the Ignorant method is fixed at 0.2. This value is very low when compared to the value

obtained by our method. Moreover, if the hexagonal simulation network is perfect (i.e.,

all the cells in the network have 6 neighbors), we would expect that the precision value

CHAPTER 4. EXPERIMENTAL RESULTS 27

of the Ignorant method should be fixed at
1

0.16
6

= . Our simulation network is not

perfect because the cells that are at the corners have 2 or 3 neighbors. Besides, the cells

which are along the left, right, top and bottom sides of the simulation network have less

than 6 neighbors.

Figure 4.1: Precision as a function of the Maximum Number of Predictions made each time

The recall values for all methods increase with increasing m as shown in Figure 4.2.

This observation can be explained by the fact that as the number of predictions made at

each move of the mobile increases, the probability of predicting the correct cell

increases. The increase in recall values with TM and Ignorant methods are more

significant when compared to the increase with our method. For our method, beginning

from m=3, recall values don’t increase significantly and become almost fixed at around

0.54. This is because the number of matching rules is the same for all m values.

Beginning from some m value, the number of correct predictions doesn’t increase

because the m value exceeds the number of matching rules. Therefore, the number of

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

m

P
re

ci
si

o
n UMP-Based

Ignorant

TM

CHAPTER 4. EXPERIMENTAL RESULTS 28

correct predictions becomes stable making the recall value stable. For TM and Ignorant

methods, recall values increase steadily, finally reaching to 1.

Figure 4.2: Recall as a function of the Maximum Number of Predictions made each time

By considering the above results, one can easily see that there is a trade-off between

recall and precision measures. Therefore a middle ground should be found for the m

value. The increase in recall with our method is not very significant when compared to

that obtained with TM which is the actual competitor to our method. Thus, setting m as

small as possible would be appropriate for our method since we don’t want the precision

to drop with increasing m because we don’t gain anything in recall with higher m values.

In addition, we can say that setting m=2 could be considered as a good choice for TM as

well, because the increase rate in the recall value from m values 1 to 2 is maximum for

TM. Since the precision value decreases with increasing m for TM, making m bigger

than 2 does not increase the recall value so much that it would be worth to decrease the

precision value. Moreover, if we set m bigger than 3, this would cause excessive

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6

m

R
ec

al
l UMP-Based

Ignorant

TM

CHAPTER 4. EXPERIMENTAL RESULTS 29

network resource waste. Therefore we will set m=2 for all the methods at the rest of the

performance experiments.

4.4 Impact of Minimum Support Value

Next, we investigate the effect of increasing minimum support (suppmin) value on the

recall and precision values obtained by our method. It is shown in Figures 4.3 and 4.4

that as the suppmin increases, the precision and recall values decrease. This is due to the

fact that the increase in the suppmin value leads to a decrease in the number of mined

mobility rules. Therefore, the number of correct predictions is reduced. This causes the

recall and the precision values to decrease.

Figure 4.3: Precision as a function of the Minimum Support for UMP-Based Prediction

algorithm

0.55

0.5625

0.575

0.5875

0.6

0.6125

0.625

0.6375

0.65

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Min Support

P
re

ci
si

o
n

CHAPTER 4. EXPERIMENTAL RESULTS 30

Figure 4.4: Recall as a function of the Minimum Support for UMP-Based Prediction algorithm

 Since both recall and precision values decrease for increasing suppmin, it would be

most appropriate to choose suppmin=0.05 which is the smallest value used in the

experiments. We have observed that recall and precision values do not increase

considerably (it can even be said that the values do not increase at all) for the suppmin

values smaller than 0.05.

4.5 Impact of Minimum Confidence Value

In this experiment, we examine the effect of increasing minimum confidence (confmin)

values on the recall and precision of our method. Figure 4.5 indicates the impact of

minimum confidence on the precision. As one can realize, the precision increases as

confmin increases. Even, the precision reaches to very high values such as 0.98 at

confmin = 100. Because, at high confmin values, only the rules that have high confidence

values are used for prediction. As a result, the number of rules used for prediction is

reduced and their quality gets higher with the increasing confmin. This leads to a higher

0.5

0.505

0.51

0.515

0.52

0.525

0.53

0.535

0.54

0.545

0.55

0.555

0.56

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Min Support

R
ec

al
l

CHAPTER 4. EXPERIMENTAL RESULTS 31

decrease rate in the number of predictions when compared to the decrease rate in the

number of correct predictions. Therefore, the precision value improves as confmin

increases.

Figure 4.5: Precision as a function of the Minimum Confidence for UMP-Based Prediction

algorithm

On the other hand, we observe the opposite effect on the recall as shown in

Figure 4.6. As the confmin value increases, the number of mined rules is reduced. The

decrease in the rules negatively affects the number of correct predictions. Therefore, the

recall decreases as confmin increases.

Once again a trade-off between recall and precision is observed with increasing

confmin values. This case is similar to the one observed with the experiment evaluating

the impact of parameter m. Using a similar approach, a middle ground value of 70 has

been chosen for confmin.

0.5

0.6

0.7

0.8

0.9

1

50 60 70 80 90 100

Min Conf

P
re

ci
si

o
n

CHAPTER 4. EXPERIMENTAL RESULTS 32

Figure 4.6: Recall as a function of the Minimum Confidence for UMP-Based Prediction

algorithm

4.6 Impact of Corruption Factor

Next, we examine the effect of corruption on the precision and recall values. The impact

of increasing corruption factor is illustrated in Figures 4.7 and 4.8. As one can observe

in Figure 4.7, the precision value is very high for our method when the corruption is

zero. However, this is not a realistic case because there is no possibility of absence of

corruption. A realistic corruption value would be 0.4 which is the default value used in

our experiments. As the corruption increases, the precision is reduced since the number

of mobility rules that are determined by our algorithm decreases. But the precision

values, which are never less than 0.45 can be considered good for such high corruption

factors. TM is also affected by corruption but the decrease in precision for TM is less

0

0.1

0.2

0.3

0.4

0.5

0.6

50 60 70 80 90 100

Min Conf

R
ec

al
l

CHAPTER 4. EXPERIMENTAL RESULTS 33

significant when compared to that of our method. However, the precision obtained by

our method is better than the precision obtained by its closest competitor, which is TM.

This is true for all corruption values. Although the Ignorant Prediction method

demonstrates a stable precision value, it presents the worst performance for precision.

This indicates the ineffectiveness of the Ignorant Prediction method.

Figure 4.7: Precision as a function of the Corruption Factor

The recall value also drops for both our method and TM with the increasing

corruption factor. For our method, we can explain this by the decreasing number of

mined rules. As the corruption in the data increases, the UAPs will provide less support

to large patterns. This leads to a decrease in the number of UMPs mined by our

algorithm. As a result, the number of mobility rules which are determined by our

algorithm decreases. There is another reason for the performance reduction of our

method. As a result of the corruption, our prediction algorithm will match less or even

will not match any mobility rules to the current trajectory of a mobile user. Therefore, no

prediction can be accomplished in many cases when the corruption gets very high.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8

corruption factor

P
re

ci
si

o
n UMP-Based

Ignorant

TM

CHAPTER 4. EXPERIMENTAL RESULTS 34

Increasing the corruption does not reduce the performance of Ignorant Prediction

significantly. This is an expected result because Ignorant Prediction disregards the

historical inter-cell movement of users and every prediction of this method is random.

Therefore the corruption factor does not affect the performance of Ignorant Prediction.

Figure 4.8: Recall as a function of the Corruption Factor

4.7 Impact of Outlier Percentage

In the last experiment, we examine the impact of outlier percentage in the data set. The

results are presented in Figures 4.9 and 4.10. When we increase the outlier percentage,

we observe a slight decrease in the recall. On the other hand, the precision of our method

is not affected by the increasing outlier percentage. This can be explained by the fact

that the rules which are mined from outlier UAPs are not used in predicting the next

trajectory in most of the predictions made. Because, these rules are supported by the

outliers and they are not common. When a user is following a UMP, these rules are not

used for prediction. Therefore, the precision is not reduced.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 0.2 0.4 0.6 0.8

corruption factor

R
ec

al
l UMP-Based

Ignorant

TM

CHAPTER 4. EXPERIMENTAL RESULTS 35

The recall and precision values obtained by TM behave similarly when compared to

the values obtained by our method. The recall of TM experiences a slight decrease but it

is better than the recall of our method for all outlier percentages. However the precision

of our method is always better than the precision of TM.

Figure 4.9: Precision as a function of the Outlier Percentage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20 30 40 50 60

outlier percentage

P
re

ci
si

o
n UMP-Based

Ignorant

TM

CHAPTER 4. EXPERIMENTAL RESULTS 36

Figure 4.10: Recall as a function of the Outlier Percentage

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 30 40 50 60

outlier percentage

R
ec

al
l UMP-Based

Ignorant

TM

37

Chapter 5

Conclusion and Future Work

In this thesis, we present a data mining algorithm for the prediction of user movements

in a mobile computing system. The algorithm proposed is based on mining the mobility

patterns of users, forming mobility rules from these patterns, and finally predicting a

mobile user’s next movements by using the mobility rules.

We have evaluated the performance of our algorithm using simulation and compared

the obtained results with the performance of two other prediction methods. These

methods are Mobility Prediction based on Transition Matrix (TM) and Ignorant

Prediction. In TM, mobility prediction is based on the cell-to-cell transition probability

matrix. The Ignorant method does not take any historical information into account when

making prediction. In this method, randomly selected neighbors of the current cell are

used as the predicted cells. This method can be considered as a baseline algorithm for

comparison.

Our method has performed well with a variety of corruption factor and outlier

percentage values. We have observed that although an increase in the corruption in the

data decreases the recall and precision, an increase in the outlier percentage has no

significant effect on the recall and precision. When compared to the performance of the

baseline method, which is Ignorant Prediction, our method provides a very good

performance in terms of precision and recall.

CHAPTER 5. CONCLUSION AND FUTURE WORK 38

When we compare its performance with the performance of TM, it can be seen that

the precision obtained with our method is better than that observed with TM. This result

indicates that our method makes more accurate predictions. Most of its predictions made

at each request are correct. On the other hand, the recall values obtained with TM are

higher than those obtained with our method for most of the experiments. This is due to

the nature of our method, which may not make prediction in response to some of the

requests. The reason is that there may not be any matching rule for the current trajectory

of the user when a prediction request is made. Thus, our method does not make any

prediction in that case. On the other hand, TM makes prediction at most of the requests

because it only keeps the transition probabilities of the cells. Therefore, even if there has

been only one transition from a cell, say A, then it will use this information to make a

prediction when the user is in cell A. It will have a higher potential to make predictions

at every request, resulting in higher probability to make a correct prediction. Since the

number of requests in the test set is the same for both methods and the number of correct

predictions is higher for TM, TM produces higher recall values.

The algorithm presented in this thesis can be extended in the following directions.

• As we explain in Section 3.1, the support counting method used in our prediction

algorithm is a generalization of the pattern mining approach presented in [2, 3].

For calculating the totDist value, our method takes the degree of corruption in

the patterns into account. This is accomplished by decreasing the support given

to a pattern by a UAP as the number of corrupted cells in the pattern increases.

By giving small support to more corrupted patterns, this method improves the

quality of mined patterns. Although our method for calculating this value is a

good choice, some other methods can also be employed for this calculation and

the results can be compared with our method.

• In our work, we do not consider the time domain of the mobility patterns and

mobility rules. There are no time stamps associated with the collected mobile

user trajectories. However, in real life, the mobility patterns of the users might be

CHAPTER 5. CONCLUSION AND FUTURE WORK 39

closely related to the time. In some specific time period of the day, users might

be following some specific movement paths. Therefore, different sets of rules

might be associated with different time intervals. As a future work, it may be a

good idea to extend our algorithm to include the time domain of mobility rules.

40

Bibliography

[1] A. Aljadhai and T. Znati. Predictive Mobility Support for QoS Provisioning in

Mobile Wireless Environments. IEEE Journal on Selected Areas in Communications,

19(10):1915-1930, 2001.

[2] A. Nanopoulos, D. Katsaros, Y. Manolopoulos, Effective Prediction of Web User

Accesses: A Data Mining Approach, In Proceedings of the WebKDD Workshop

(WebKDD’01), 2001.

[3] A. Nanopoulos, D. Katsaros, Y. Manolopoulos, A Data Mining Algorithm for

Generalized Web Prefetching, IEEE Transactions on Knowledge and Data Engineering,

vol. 15, no. 5, Sep./Oct. 2003.

[4] I. F. Akyildiz, S. M. Ho, and Y.-B. Lin. Movement-Based Location Update and

Selective Paging for PCS Networks. IEEE/ACM Trans. on Networking, 4(4):629-639,

Aug. 1996.

[5] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proceedings of the IEEE

Conference on Data Engineering (ICDE’95), pages 3–14, 1995.

BIBLIOGRAPHY 41

[6] B. Liang and Z. Haas. Predictive Distance-Based Mobility Management for PCS

Networks. In Proceedings of the IEEE Conference on Computer and Communications

(IEEE INFOCOM'99), pages 1377-1384, 1999.

[7] G.Y. Liu and M.Q. Gerald. A Predictive Mobility Management Algorithm for

Wireless Mobile Computing and Communications. In Proceedings of the IEEE

International Conference on Universal Personal Communications, pages 268-272, 1995.

[8] T. Liu, P. Bahl, and I. Chlamtac. Mobility Modeling, Location Tracking, and

Trajectory Prediction in Wireless ATM Networks. IEEE Journal on Selected Areas in

Communications, 16(6):922-936, 1998.

[9] D. Katsaros, A. Nanopoulos, M. Karakaya, G. Yavas, O. Ulusoy, Y. Manolopoulos,

Clustering Mobile Trajectories for Resource Allocation in Mobile Environments,

Intelligent Data Analysis Conference (IDA'2003), Lecture Notes in Computer Science

(Springer Verlag), vol.2810, 2003.

[10] S. Rajagopal, R.B. Srinivasan, R.B. Narayan, and X.B.C. Petit. GPS-Based

Predictive Resource Allocation in Cellural Networks. In Proceedings of the IEEE

International Conference on Networks (IEEE ICON'02), pages 229-234, 2002.

[11] H.-K. Wu, M.-H. Jin, J.-T. Horng, and C.-Y. Ke. Personal Paging Area Design

Based on Mobile's Moving Behaviors. In Proceedings of the IEEE Conference on

Computer and Communications (IEEE INFOCOM'01), pages 21-30, 2001.

[12] D. Gusfield, Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, 1997.

[13] R. Agrawal, R. Srikant, Fast Algorithms for Mining Association Rules. In

Proceedings of Very Large Databases Conference (VLDB’94), pages 487-499, 1994.

BIBLIOGRAPHY 42

[14] S. Mohan and R. Jain, Two User Location Strategies for Personal Communication

Systems. IEEE Personal Communications Magazine, pages 42-50, First Quarter 1994.

[15] Amiya Bhattacharya and Sajal K. Das. LeZi-- Update: An Information-Theoretic

Approach to Track Mobile Users in PCS Networks. ACM Wireless Networks, 8(2-3),

pages 121-135, 2002.

