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ABSTRACT  

USING A DATA MINING APPROACH FOR THE 
PREDICTION OF USER MOVEMENTS IN MOBILE 

ENVIRONMENTS 
 

Gökhan Yavaş 
M.S. in Computer Engineering  

Supervisor: Prof. Dr. Özgür Ulusoy 
December, 2003 

 

Mobility prediction is one of the most essential issues that need to be explored for 

mobility management in mobile computing systems. In this thesis, we propose a new 

algorithm for predicting the next inter-cell movement of a mobile user in a Personal 

Communication Systems network. In the first phase of our three-phase algorithm, user 

mobility patterns are mined from the history of mobile user trajectories. In the second 

phase, mobility rules are extracted from these patterns, and in the last phase, mobility 

predictions are accomplished by using these rules. 

 

The performance of the proposed algorithm is evaluated through simulation as 

compared to two other prediction methods. The performance results obtained in terms of 

Precision and Recall indicate that our method can make more accurate predictions than 

the other methods. 

 

 

 

 

 

 

 

Keywords: Location prediction, data mining, mobile computing, mobility patterns, 

mobility prediction 
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ÖZET 

 

MOBİL SİSTEMLERDE VERİ MADENCİLİĞİ 
KULLANILARAK KULLANICI HAREKETLER İNİN 

TAHM İNİ 
 

Gökhan Yavaş 
Bilgisayar Mühendisliği, Yüksek Lisans 
Tez Yöneticisi: Prof. Dr. Özgür Ulusoy 

Aralık, 2003  
 

Mobil bilgisayar sistemleri kapsamında yürütülen en önemli araştırma konularından biri 

de konum bilgisi yönetimidir. Konum bilgisi yönetimi, sistemden servis alan mobil 

kullanıcıların, zamana bağlı olarak değişen konum bilgilerinin uygun metodlar 

kullanarak güncellenmesi, saklanması ve gerektiğinde kullanılması konularını içerir. Son 

zamanlarda, hareket tahmini de konum bilgisi yönetimi alanında başlıca araştırma 

konularından biri haline gelmiştir. 

 
Bu tezde, mobil kullanıcıların hareket modellerinin veri madenciliği kullanılarak 

çıkarılması ve bu modeller kullanılarak mobil kullanıcıların daha sonraki hareketlerinin 

tahmin edilmesi için yeni bir algoritma geliştirilmi ştir. Üç aşamadan oluşan bu 

algoritmanın ilk aşamasında kullanıcı hareket modelleri, kullanıcıların önceden 

kaydedilmiş mobil yörüngelerinden veri madenciliği kullanılarak çıkarılmaktadır. İkinci 

aşamada bulunan hareket modellerinden hareket kuralları üretilmekte, son aşamada ise 

bu hareket kuralları kullanıcının bir sonraki hücreler arası hareketinin tahmini için 

kullanılmaktadır. 

 
Sunulan algoritmanın performansı simülasyonlar yardımıyla iki farklı tahmin 

yöntemiyle karşılaştırılmıştır. Performans sonuçları algoritmamızın diğer metodlardan 

daha doğru tahminler yapabildiğini göstermektedir. 

 

Anahtar Sözcükler: Yer tahmini, veri madenciliği, mobil bilgisayar sistemleri, hareket 

modelleri, hareket tahmini 
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Chapter 1   

Introduction 
Personal Communication Systems (PCSs) are becoming more popular by the help of the 

recent developments in the computer and communication technologies. In the near 

future, PCSs will support a huge user population and offer services that will allow the 

users to access various types of data such as video, voice and images. A PCS allows 

dynamic relocation of mobile users since these systems are based on the notion of 

wireless access. Mobility of the users in PCSs gives rise to the problem of mobility 

management.   

 
Mobility management in mobile computing environments covers the methods for 

storing and updating the location information of mobile users who are served by the 

system. A hot topic in mobility management research field is mobility prediction. 

Mobility prediction can be defined as the prediction of a mobile user’s next movement 

where the mobile user is traveling between the cells of a PCS or GSM network. The 

predicted movement can then be used to increase the efficiency of PCSs. By using the 

predicted movement, the system can effectively allocate resources to the most probable-

to-move cells instead of blindly allocating excessive resources in the cell-neighborhood 

of a mobile user. 
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Up until now, there has been a considerable amount of research on mobility 

management. Most of the research has focused on the problem of location update, which 

is concerned with the reporting of the up-to-date cell locations by the mobile users to the 

PCS network [4]. Location update should be performed whenever a mobile user moves 

to another cell in the network to be able to track the exact location of each mobile user. 

When an incoming call arrives, the network simply routes the call to the last reported 

location of the mobile user. Compared to the amount of work performed on location 

update, little has been done in the area of mobility prediction [1, 6, 7, 8, 10, 11]. These 

works have some deficiencies, which are explained in the following:  

 
•  Some of these works do not attempt to find mobility patterns. Instead, the 

patterns are assumed to be already available. These patterns are then used for 

mobility prediction.  

 
•  In some of these works, prediction is based on the probability distribution of the 

speed and direction of the mobile user. For collecting such information, highly 

sophisticated and expensive tools such as GPS (Global Positioning System) are 

needed.  

 
•  Most of the methods studied in these works are highly sensitive to a change in a 

mobile user’s path. For this reason, the prediction accuracy drops in case of 

noisy data. These methods do not consider the difference between the 

randomness and the regularity in users’ paths (i.e., they do not distinguish a 

random movement and a regular movement of a user). In general, users follow 

some path patterns when traveling in network and their random movements are 

relatively few when compared to regular movements. Therefore random and 

regular movements should not be treated equally.  

 
Aiming to overcome the above deficiencies, we have developed an effective mobility 

prediction algorithm. In the first phase of this three-phase algorithm, movement data of 

mobile users is mined for discovering regularities in inter-cell movements. These 

regularities are called mobility patterns. Mobility rules are then extracted from the 
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mobility patterns in the second phase of our algorithm. In the third phase, the mobility 

rules, which match the current trajectory of a mobile user, are used for the prediction of 

the user’s next movement. The first two phases of our prediction algorithm, which are 

user mobility pattern mining and mobility rule generation, are accomplished offline by 

the system. However, the last phase, i.e., the mobility prediction, is accomplished online. 

It means that whenever a user intends to make an inter-cell movement, a prediction 

request is sent to the system and the prediction is made by the system based on our 

mobility rule based prediction algorithm. 

 
The rest of this thesis is organized as follows. In Chapter 2, we present the network 

model we have used in this work, formulate the problem that we deal with, and present 

the related work. Our method for the solution of the problem is proposed in Chapter 3. 

We present the experimental results in Chapter 4 and conclude our thesis in Chapter 5.  
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Chapter 2   

Background Work 
 

2.1 Problem Definition 
 
In our work, we assume that the mobile users move in a wireless PCS network, which 

has an architecture similar to those used in EIA/TIA IS41 and GSM standards [14]. The 

coverage area of the PCS network is partitioned into smaller areas which are called cells. 

In each cell in the PCS network, there is a base station (BS) which has the capability of 

broadcasting and receiving information. The base stations are connected to each other 

via a fixed wired network. Mobile users use radio channels to communicate with base 

stations. 

 
The coverage area consists of a number of location areas. Each location area may 

consist of one or more cells but in our work we assume that each location area consists 

of only one cell. Base stations regularly broadcast the ID of the cell in which they are 

located. Therefore, the mobile users which are currently in this cell and listening to the 

broadcast channel will know in which cell they are now. The movement of a mobile user 

from his current cell to another cell will be recorded in a database which is called home 

location register (HLR). In addition, every base station keeps a database in which the 

profiles of the users located in this cell are recorded. This database is called visitor 
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location register (VLR). Therefore, in our system it is possible to get the movement 

history of a mobile user from the logs on its home location register. 

 
Since mobile users may initiate calls to other users or receive incoming calls while 

moving in the coverage region, the ongoing calls should be transferred from one cell to 

another without call dropping. To avoid call dropping due to insufficient resources at the 

destination cell, apriori resource allocation could be employed at that cell. 

 
In  our  work,  we  collect  the  movement  trajectories  of a  user  in  the  form   of    

T = <(id1, t1), (id2, t2)  ...,(idk, tk)>.  Here id1 denotes the ID number of the cell to which 

the user enters at time t1. In this record it is clear that two consecutive ID numbers must 

be the ID numbers of two neighbor cells in the network. After the movement history of a 

user is collected in a predefined time interval in the above format, this record is 

partitioned into subsequences. This procedure is accomplished as follows: If the mobile 

user stays in a cell idi more than a threshold value, before moving to another one idi+1 at 

ti+1, we assume that his trajectory up until now <id1,... idi> ends here, and at idi+1 a new 

trajectory is started. Therefore, the first subsequence is <id1, ...idi>. By continuing in this 

manner the record is partitioned into subsequences, and these subsequences are recorded 

to be used in our algorithm.  

 
We name the trajectories obtained by the above procedure as user actual paths 

(UAPs). We consider the UAPs as a valuable source of information because the mobility 

of the users contains both regular and random patterns [8]. Therefore by using the UAPs, 

we may be able to extract the regular patterns and use them in prediction. 

 
We assume that we have UAPs which have the form U = <c1, c2,  ..., cn>. In this 

notation, each ck denotes the ID number of the kth cell in the coverage region. In finding 

the trajectories that are frequently used by the mobile users, we generalize the pattern 

mining method presented in [2, 3], to be used in our domain. The method presented in 

that work was intended for mining the frequent user access patterns from web logs, and 

then using these access patterns for effective caching and prefetching. 
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We name the frequently followed trajectories as user mobility patterns (UMPs). 

Mining of the UMPs enables us to generate mobility rules. By considering the mobility 

rules and the trajectory of a user, we predict the next inter-cell movement of the user. In 

the next chapter, we describe the algorithm developed for accomplishing the above 

issues. 

2.2 Related Work 
 
Data mining can be defined as the process of discovering interesting knowledge, such as 

patterns, associations, changes, anomalies and significant structures, from large amounts 

of data stored in databases, data warehouses, or other information repositories. 

Association rule mining [13] is the data mining task in which association relationships 

between sets of items of a transactional database are discovered. The roots of our 

method for sequential pattern mining go back to the Apriori algorithm [13].  

 

In the association rule mining terminology, an itemset is a collection of items, the 

support of an itemset is the fraction of transaction itemsets that contains the itemset and 

large is an itemset that has support larger than a user-defined threshold. The Apriori 

algorithm is a level wise algorithm and makes multiple passes over the data for 

discovering large itemsets. In each subsequent pass, the algorithm starts with a seed set 

of itemsets found to be large in the previous pass. This seed set is then used to generate 

new itemsets, which are potentially large. These itemsets are called the candidates. 

During the next pass over the database, the supports for these candidates are counted and 

at the end of the pass, the candidates, which are large, become the seed for the next pass. 

This process continues until there is no new large itemsets found. 

 

Association rule mining differs from sequential pattern mining, because in 

association rule mining, the ordering of the items in an itemset is not considered. In the 

algorithms used for mining association rules, support counting is done with the subset 

criterion, which does not take into account the ordering of items inside a transaction. 

With respect to this criterion, if an itemset A is a subset of another itemset B, then it is 
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said that itemset A is supported by itemset B.  However, in sequential pattern mining the 

ordering of the items in an itemset must be taken into consideration. 

 

The sequential pattern mining problem is studied in [5]. For our domain, the mobile 

users are assumed to be moving between the cells of a PCS network. However, the 

algorithms proposed in [5] cannot be applied directly to our domain for mining mobility 

patterns. Because, these algorithms don’t take into account the network topology while 

generating the candidate patterns. This weakness of the proposed algorithms gives rise to 

generation of candidate patterns, which can not exist as mobility patterns on the 

corresponding network, since only the sequence of neighboring cells of the network can 

be considered as a mobility pattern. Therefore, the number of candidates generated can 

be extremely high, and this factor can dramatically reduce the performance of the 

mining algorithm.  

 

In [2, 3], sequential pattern mining is applied to the domain of predictive Web 

prefetching. Web prefetching can be defined as deriving users’ future requests for Web 

documents based on their previous requests. For effectively predicting the users’ future 

requests, user access patterns are mined from the Web logs of users’ previous requests 

and then these patterns are used for prefetching. The method presented in [2, 3] extends 

existing algorithms for mining sequential patterns in order to take the graph structure of 

the corresponding Web site into account during support counting, candidate generation 

and pruning. As we describe in Section 3.1, in the first phase of our mobility prediction 

algorithm, we generalize the method presented in [2, 3] to be able to mine mobility 

patterns of users in mobile computing environments. In the latter stages of our 

algorithm, mobility rules are extracted from the mobility patterns, and by using these 

rules, user movements are predicted. 

 

There has been a considerable amount of research in mobility prediction, as well. The 

work presented in [7] is among the pioneering research for predicting the mobile users’ 

movement behavior. In this work, user’s moving behavior is modeled as repetitions of 

some elementary movement patterns which are indeed circular and straight line patterns. 
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In order to estimate the future location of a user, a mobile motion prediction (MMP) 

algorithm is proposed. However, the MMP algorithm is highly sensitive to random 

movements of the user. It is reported in [7] that as the random movements of the user 

increase the performance of MMP decreases linearly. 

 

The work in [8] proposes a two level scheme, which combines a local with a global 

prediction model. The top level is the global mobility model (GMM), whose resolution is 

determined in terms of the cells crossed by a mobile user during the lifetime of the 

connection. The bottom level is the local mobility model (LMM), whose resolution is 

determined in terms of a 3-tuple sample space (speed, direction, position) that varies 

with time. LMM is used to model the intra-cell movements of the mobile users. On the 

other hand, GMM is used to predict the inter-cell movement trajectory of a user by 

matching the user’s actual path to one of the existing “mobility patterns”. For this 

purpose pattern matching techniques are used. However, the weakness of the work is 

revealed at this point because there is no method presented in [8] to discover these 

mobility patterns.  

 

In [6], a Gauss-Markov model is introduced, where a mobile user’s current velocity 

and location is correlated in time to a various degree. Based on the Gauss-Markov 

model, a mobile user’s future location is predicted by the network based on the 

information gathered from the user’s last report of location and velocity. In [1], Aljadhai 

and Znati use a first-order autoregressive filter in order to determine the direction of 

movement of a user. It is claimed in that work that the proposed method guarantees that 

the predicted mobile direction is not affected by small deviations in the mobile user’s 

direction.  

 

In the work [10], for location prediction cell-to-cell transition probabilities of a 

mobile user is recorded, and based on this, resource allocation is done at the k most 

probable cells that are in the neighborhood of the current cell.  Here k is a user-defined 

parameter. 
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In some of the other works such as [11, 9], data mining methods such as clustering 

and association rule mining are used for exploring mobility patterns. In [11], a new 

location tracking method called behavior-based strategy (BSS) is presented. The aim of 

this work is designing a better paging area for each mobile user for each time region. 

The moving behavior of each mobile is mined from long-term collection of the user’s 

moving logs. Next, time varying probability of each mobile user is estimated by using 

user’s moving behavior, and then optimal paging area of each time region is derived.  

 

In [9], a method named dynamic clustering based prediction (DCP) of mobile user 

movements is presented. In this work, DCP is used for discovering user mobility 

patterns from collections of recorded mobile trajectories, and then these patterns are 

used for the prediction of movements and dynamic allocation of resources. Collected 

user trajectories are clustered according to their in-between similarity. Weighted edit 

distance measure [8] is used for determining the similarity between two trajectories. The 

clustering used in [9] is agglomerative. It means that initially every single trajectory 

forms a cluster itself. At each iteration of the clustering algorithm, two most similar 

clusters (i.e., clusters that are closest in terms of weighted edit distance) are merged to 

form a new cluster. Each cluster is represented by a number of cluster representative 

trajectories. After each merge operation, the representatives of new cluster are found to 

be the union of representative sets of the merged clusters. The merge operation 

continues until the number of the clusters is reduced to a predefined value. In the 

prediction phase, the representatives of the clusters are used.  A mobile user’s next 

trajectory is predicted by finding the best matching representative with its current 

trajectory. The best matching one has the minimum edit distance to the current 

trajectory. In case of more than one match, all matched representatives can be used for 

prediction.
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Chapter 3   

Mobility Prediction Based on Mobility 
Rules 
 

Our algorithm consists of three phases: user mobility pattern (UMP) mining phase, 

generation of mobility rules using the mined UMPs, and the mobility prediction phase. 

The next inter-cell movement of mobile users is predicted based on the mobility rules in 

the last phase. We examine each phase in detail in the following sections. 

 

3.1 Mining User Mobility Patterns from Graph Traversals 
 
In order to mine the UMPs from user actual paths (UAPs), sequential pattern mining [5] 

can be used. Sequential pattern mining has been previously used and examined in 

various research domains. One such work has been performed in the domain of web log 

mining [2, 3]. In that work, sequential pattern mining is used to mine the access patterns 

of a user while he is visiting the pages of web sites. This method assumes the web pages 

to be the nodes and the links between these pages to be the edges of an unweighted 

directed  graph, G. Then,  sequential pattern mining is applied to web logs by 

considering G.  

 
In order to get a new method that is convenient for our domain, we generalize this 

method and apply it for UMP mining. In our method, we use a directed graph G, where 
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the cells in the coverage region are considered to be the vertices of G.  The edges of G 

are formed as follows: If two cells, say A and B, are neighboring cells in the coverage 

region (i.e., A and B have a common border) then G has a directed and unweighted edge 

from A to B and also from B to A. These edges demonstrate the fact that a user can 

move from A to B or B to A directly. In Figure 3.1, an example coverage region and the 

corresponding graph G is presented. 

 

 

 

 

 

 

 

 

(a)                 (b) 

Figure 3.1: An example coverage region (a) and the corresponding graph G (b) 

 

The algorithm we have developed for UMP mining is presented in Figure 3.2. To 

understand how the UMP mining algorithm works, assume that the set of candidate 

patterns each including k cells is found in the (k-1)st run of the while loop and this set is 

not empty (line 4, in Figure 3.2). The set of these patterns, denoted by Ck, is called 

length-k candidate patterns. Returning to the execution of our algorithm, from line 5 to 

line 12, first all the length-k subsequences of all UAPs are generated and these 

subsequences are used to count the supports of the length-k candidate patterns. In order 

to be more precise, the subsequence definition is given below: 

 
Definition 1:    Assume   that   we   have   two   UAPs,    A  =  <a1, a2, ... , an>   and       

B = <b1, b2, ... , bm>. B is a subsequence of A, iff there exists integers 1 ≤ i1 < … < im ≤ n 

such that  
kik ab = , for all k, where 1 ≤ k ≤ m. 

8 
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UMPMining() 

Input: All the UAPs in the database, D 

   Minimum value for support, suppmin 

   Coverage Region Graph, G 

Output: User mobility patterns (UMPs), L 

 

1.  C1 ← the patterns which have a length of one 

2.  k = 1  

3.  L = ∅   // Initially the set of large patterns is empty 

4.  while ≠kC ∅  { 

5.   foreach UAP Da ∈ {  

6.    S = {s | kCs ∈  and s is a subsequence of a }  

7.    // S is the set of candidate length-k patterns which are also  

8.    // subsequences of UAP a 

9.    foreach Ss ∈ { 

10.    s.count = s.count + s.suppInc  //increment the support of cands  

11.   } 

12.   } 

13.   // choose the candidates which has enough support 

14.   Lk = { s | kCs ∈ , s.count ≥ suppmin }  

15.  kLLL U=  // add these length-k large patterns to the set of all large patterns 

16.  // Generate length-(k+1) candidate patterns 

17.  Ck+1 ← CandidateGeneration(Lk, G), 1+∈∀ kCc  c.count = 0 

18.  k = k+1 

19. } 

20. return L 

Figure 3.2: User Mobility Pattern Mining Algorithm 
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In other words, B is a subsequence of A, iff all cells in B also exist in A while keeping 

their order in B (but they don’t need to be consecutive in A). 

 
Let’s give an example by using the coverage region given in Figure 3.1: assume 

A=<c3, c4, c0, c1, c6, c5>, then B=<c4, c5> will be a length-2 subsequence of A. In other 

words, the UAP B is contained by the UAP A.  

 
In line 10 of the mining algorithm, we see that every candidate ‘s’ has a count value 

and this value is incremented by ‘s.suppInc’ value. The count value of a candidate keeps 

the support given to this candidate by the UAPs. This is the point where our algorithm 

extends the method presented in [2, 3]. The method presented in that work, increments 

the count value of a candidate by 1 if this candidate is contained by a UAP. By this 

method, the effect of possible noise in the data is minimized. Because the users who are 

following a UMP may follow random paths between the consecutive cells of this UMP. 

These paths can be characterized as noise and the UAPs containing noise are called 

corrupted. If the number of corrupted UAPs in the data is high, then a pattern may not 

have an adequate support and it will be missed.  

 
However, this method of support counting treats a highly corrupted candidate pattern 

and a slightly corrupted (or even not corrupted at all) candidate pattern in the same way 

and assigns the support value of 1 to both patterns. Since this method is unfair for the 

context of mobile motion prediction, unlike the work in [2, 3], our support counting 

method considers the degree of corruption, i.e., we differentiate the support given to a 

slightly corrupted pattern and to a highly corrupted pattern. In our method, we calculate 

the support assigned to a candidate pattern B by an UAP A (i.e., suppInc) by using the 

following formula: 

          
totDist+1

1
, if pattern B is contained by UAP A. 

suppInc =  
      0, otherwise 
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We can define the totDist value by means of the notion of string alignment [12]. 

Given two strings, where a string is a sequence of characters, Gusfield demonstrates 

methods for determining the similarity between these two strings by finding the optimal 

alignment between them. For instance, assume that the two strings are “acbcdb” and 

“cadbd”. Here is one possible alignment of these two strings, where the special character 

“-” represents the insertion of a space. 

 
      a  c  -  -  b  c  d  b 
      -  c  a  d  b  -  d  - 
 
Definition 2.1: If x and y are each single character or space, then ( )yx,δ  denotes the 

score of aligning x and y. In our case, the scoring function is defined as follows:  

 
( ) 0, =xxδ and ( ) ( ) ( ) 1,,, =−=−= xxyx δδδ  

 
Definition 2.2: If S is a string, then S  denotes the length of S and [ ]iS  denotes the ith 

character of S (where the first character is [ ]1S  rather than, say[ ]0S ). 

 
Definition 2.3: Let A be a UAP and B be a pattern. A containment alignment X ′  maps 

A and B into strings A′  and B′  that may contain space characters, where 

 
1. BA ′=′ , 

2. the pattern B is contained by the UAP A, and 

3. the removal of all spaces from A′  and B′  leaves A and B, respectively. 

 
The total score of the alignment X ′  is 
   

[ ] [ ]( )∑
=

′′
m

ki

iBiA ,δ , where k is the index of first and m is the index of last non-space 

character in B′ . 

 
The above definition of containment alignment is an adaptation of the string 

alignment definition given in [12]. For any two patterns, there are many possible 



CHAPTER 3.MOBILITY PREDICTION BASED ON MOBILITY RULES                      15 

 
 

containment alignments. For instance, assume that A=<c3, c4, c0, c1, c6, c5, c8> and 

B=<c4, c5>. Then, two possible containment alignments for these patterns are:  

 
1. A′  = c3  c4  c0  c1  c6  c5   c8 

B′  = -  c4  -  -  -  c5  - 
 

2. A′  =  c3  -  c4  c0  c1  c6  c5   c8 
B′  =  -  -  c4  -  -  -  c5  - 

 
Definition 2.4: An optimal containment alignment of UAP A and pattern B is one that 

has the minimum possible value for these two patterns. We call the containment 

alignment with minimum value optimal by the nature of our scoring function that was 

presented in Definition 2.1. As one can see, our scoring function gives a penalty of 1 for 

each mismatch in the alignment, and in Definition 2.3 the value of an alignment is 

defined as the sum of penalties which are naturally the result of mismatches. Therefore, 

the optimal alignment will have the minimum value, which denotes the minimum 

number of mismatches, and we call this value totDist for these patterns. Indeed, totDist 

gives us the exact number of cells which exist between the consecutive cells of B in A.  

 
For instance, an optimal containment alignment for the patterns A and B will be: 
 

A′  =  c3  c4  c0  c1  c6  c5   c8 
B′  =  -  c4  -  -  -  c5  - 

 
 

The value of this optimal containment alignment is 3 and by Definition 2.4 totDist=3. 

Actually, it can be said that the pattern B is 3 cells corrupted with respect to pattern A. 

Therefore, the support value given to B by A is 
4

1

31

1
suppInc =

+
= . It is easily seen that 

the quality of the patterns will improve since this method is a more accurate way of 

support counting. The improvement in the pattern quality will give rise to more accurate 

mobility rules. Therefore, the prediction accuracy by using these rules will be higher 

when compared to the accuracy by using the rules that are generated with the former 

way of support counting [2, 3]. Indeed, our support counting method is a generalization 

of the support counting method of [2, 3]. If we simply take totDist as 0, without 
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considering the degree of corruption, we will end up with the support counting method 

of that work. Therefore, we can claim that applying different methods for calculating 

totDist will affect the quality of the rules obtained. For this reason, an appropriate 

method, such as ours, should be selected for calculating this value. 

 
For support counting and storing large patterns, a trie data structure is used as in the 

work [2, 3] instead of the hash-tree data structure recommended to be used for [13]. In 

the hash-tree the candidates exist only in the leaves of the tree. On the other hand, every 

trie node sequence, from root to any node, can represent a pattern in the trie data 

structure. This property of the trie structure provides efficiency in support counting 

procedure. Furthermore the trie data structure grows dynamically as its leaves are 

extended and there is no need to build repeatedly a new hash-tree for every iteration. 

 
To count the supports of length-k candidate patterns, first all candidate patterns are 

inserted into the trie. Next the database of UAPs is scanned. For each UAP A of length 

n, all possible length-k subsequences and their totDist values should be determined (If n 

< k, then UAP A is skipped and not used in this phase of support counting). Then, each 

of these subsequences are searched in the trie and for those who exist in the trie, their 

support count is increased by suppInc value, which is calculated with the totDist value of 

the corresponding subsequence. 

 
After counting the supports of all the candidates, the candidates which have a support 

smaller than the threshold value (suppmin) are eliminated. The remaining candidates are 

called the length-k large patterns (Lk). Then, Lk is added to the set in which all the large 

patterns are maintained. 

 
The next step in the mining algorithm is the generation of length-(k+1) candidate 

patterns,  Ck+1.  For  this  step,  the CandidateGeneration()  function,  presented  in 

Figure 3.3, is used. 
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CandidateGeneration () 

Input: Length-k large patterns, Lk   

   Coverage Region Graph, G 

Output: Length-(k+1) candidate patterns, Candidates 

 

1.  Candidates = ∅  // Initially the candidates set is empty 

2.  foreach L = <l1, l2, ..., lk>, kLL ∈  { // for each length-k large pattern L 

3.   // determine all the cells which are neighbors of lk in G 

4.   N+ = {v | there is an edge in G such as lk → v} 

5.   foreach )( klNv +∈  { // for each of these neighbor cells, v 

6.    // generate a candidate by attaching v to end of L 

7.    C ′  = < l1, l2, ..., lk, v> 

8.    S = {s | s is a length-k subsequence of C ′  and s is a path in G} 

9.    if kLsSs ∈⇒∈∀   

10.   // if all k-length subsequences of new C ′ is large then add it to cands set 

11    CCandidatesCandidates ′← U      

12.  }   

13. } 

14.   return Candidates 

Figure 3.3: Generation of length-(k+1) candidates 

 
To illustrate how the candidate generation algorithm works, assume that there exists a 

pattern C = <c1, c2, ..., ck>  in Lk which is given as the input to this algorithm. To 

generate the possible candidates from C, all the nodes in G which have an incoming 

edge from the cell ck are assigned to a set which is denoted by N+(ck). This is the set of 

all the cells to which a mobile user can move from ck. Next, a cell, v, from N+(ck) is  

attached   to  the end of the  pattern  C  in  order to  generate   a   possible  candidate    

C ′  =<c1, c2, ..., ck, v>. If all the length-k subsequence patterns of C ′ , which can exist as 
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paths in the corresponding network graph G, are elements of Lk, then C ′  is added to the 

length-(k+1) candidates set. This procedure is repeated for all the cells in the set N+(ck). 

 
Example: An example database of UAPs is given in Table 3.1. 
 

UAP ID UAP 
1 <3, 0, 6, 7> 
2 <3, 4, 5, 6, 7> 
3 <2, 1, 6, 8> 
4 <4, 5, 8, 7> 
5 <0, 5, 8> 
6 <4, 5, 6, 7> 

Table 3.1: Database of User Actual Paths (UAPs) 

 
In Tables 3.2, 3.3, 3.4, 3.5, the execution of the UMP mining algorithm with suppmin= 

2 and graph G which is given in Figure 3.1 is illustrated on an example using the 

database of UAPs which is given in Table 3.1. In Table 3.2, set of length-1 candidate 

patterns (C1) and set of length-1 large patterns (L1) are given. 

 
C1 L1 

CAND SUPP 
  

PATTERN SUPP 
<0> 2    <0> 2 
<1> 1   <3> 2 
<2> 1   <4> 3 
<3> 2   <5> 4 
<4> 3   <6> 4 
<5> 4   <7> 4 
<6> 4   <8> 3 
<7> 4     
<8> 3     

Table 3.2: Length-1 candidate patterns (C1) and length-1 large patterns (L1) 

 
Next, C2 is generated by using the candidate generation algorithm given in Figure 3.3 

and, L1 is used in this process. Then, the supports of these candidates are counted and the 

patterns which have a support value larger than suppmin are assigned to set L2. The sets 

C2 and L2 are presented in Table 3.3. 
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C2   L2 
CAND SUPP CAND SUPP   PATTERN SUPP 
<0, 3> 0 <5, 6> 2   <4, 5> 3 
<0, 4> 0 <5, 8> 2   <5, 6> 2 
<0, 5> 1 <6, 0> 0   <5, 8> 2 
<0, 6> 1 <6, 5> 0   <6, 7> 3 
<3, 0> 1 <6, 8> 1     
<3, 4> 1 <6, 7> 3     
<4, 0> 0 <7, 6> 0     
<4, 3> 0 <7, 8> 0     
<4, 5> 3 <8, 5> 0     
<5, 4> 0 <8, 6> 0     
<5, 0> 0 <8, 7> 1     

Table 3.3: Length-2 candidate patterns (C2) and length-2 large patterns (L2) 

 
Having L2, C3 is generated using CandidateGeneration() function, and then the large 

patterns in C3 are assigned to the set L3. These sets are shown in Table 3.4. 

 

C3 L3 

CAND SUPP 
  

PATTERN SUPP 
<4, 5, 8> 1    <4, 5, 6> 2 
<4, 5, 6> 2   <5, 6, 7> 2 
<5, 6, 7> 2     

Table 3.4: Length-3 candidate patterns (C3) and length-3 large patterns (L3) 

 
C4 and L4 contain only the pattern <4, 5, 6, 7>. By using L4, CandidateGeneration() 

function can not generate any length-5 candidates. Therefore, the UMP mining 

algorithm terminates with the set of large candidates, L, which is shown in Table 3.5. 

 
L 

PATTERN SUPP PATTERN SUPP 
<0> 2 <4, 5> 3 
<3> 2 <5, 6> 2 
<4> 3 <5, 8> 2 
<5> 4 <6, 7> 3 
<6> 4 <4, 5, 6> 2 
<7> 4 <5, 6, 7> 2 
<8> 3 <4, 5, 6, 7> 2 

Table 3.5: The set of all large patterns 
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3.2 Generation of Mobility Rules 
 
In the second phase of our movement prediction algorithm, the mobility rules which will 

be used in the next phase (i.e., the prediction phase) are generated. Having the UMPs 

mined in the previous phase, we can now produce the set of the mobility rules from 

these UMPs. Assume that we have a UMP C = < c1, c2, ..., ck >, where k>1. All the 

possible mobility rules which can be derived from such a pattern are:   

 
< c1 > → < c2, … ck > 

< c1, c2 > → < c3, … ck > 

… 

< c1, c2, …, ck-1 > → < ck > 

 
For a mobility rule, we call the part of the rule before the arrow the head of the rule, 

and the part after the arrow the tail of the rule. Moreover, when these rules are 

generated, a confidence value is calculated for each rule. For a mobility rule R: < c1, c2,  

…, ci-1 > → < ci, ci+1, ... ck >, the confidence is determined by using the following 

formula: 

100
.c , ,c ,c 

.c , ,c ,c 
)(

1-i21

k21 ×
>…<
>…<=

count

count
Rconfidence  

 
By using the mined UMPs, all possible mobility rules are generated and their 

confidence values are calculated. Then the rules which have a confidence higher than a 

predefined confidence threshold (confmin) are selected. These rules are used in the next 

phase of our algorithm, which is the mobility prediction. 

 
Example: All possible mobility rules and their confidence values for the UMPs given in 

Table 3.5 are demonstrated in Table 3.6. 
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Mobility Rules 

Rule Conf Rule Conf 
<4> → < 5> 100 <5> → <6, 7> 50 
<5> → <6> 50 <5, 6> → <7> 100 
<5> → < 8> 50 <4> → <5, 6, 7> 66.6 
<6> → <7> 75 <4, 5> → <6, 7> 66.6 

<4> → <5, 6> 66.6 <4, 5, 6> → <7> 100 
<4, 5> → <6> 66.6   

Table 3.6: All possible mobility rules  

 
If the threshold confidence value, confmin, is assumed to be 50, then the rules having a 

confidence bigger than or equal to confmin will be the same as the rules in Figure 10 since 

all these rules have a confidence bigger than confmin.  

3.3 Mobility Prediction  
 
This is the third and the last phase of our algorithm. The pseudo-code for the mobility 

prediction phase of our algorithm is presented in Figure 3. In this phase, the next 

movement of the mobile user is predicted. The prediction procedure can be summarized 

as follows: Assume that a mobile user has followed a path P=< c1, c2,  …, ci-1 > up to 

now. Our algorithm finds out the rules whose head parts are contained in path P, and 

also the last cell in their head is ci-1. We call these rules the matching rules. We store the 

first cell of the tail of each matching rule along with the confidence of the rule in an 

array of such tuples. The tuples of this array are then sorted in descending order with 

respect to their confidence.  

 
Then, we define another parameter, m, which is the maximum number of predictions 

that can be made each time the user moves. For prediction, we select the first m tuples 

from the sorted tuples array. Then the cells of these tuples are our predictions for the 

next movement of the mobile user. It means that we use the first m matching rules that 

have the highest confidence for predicting the user’s next movement. 
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MobilityPrediction() 

Input: Current trajectory of the user, P=< c1, c2,  …, ci-1 >   

   Set of mobility rules, R 

   Maximum predictions made each time, m 

Output: Set of predicted cells, PCells 

 

1.  PCells = ∅  // Initially the set of predicted cells is empty 

2.  k = 1 

3.  foreach rule r : <a1, a2, ..., aj>→<aj+1,  ..., at> ∈   R { // check all the rules in R  

4.   // find the set of matching rules 

5.   if <a1, a2, ..., aj> is contained by P=< c1, c2,  …, ci-1 > and aj = ci-1 { 

6.    // Add the rule into the set of matching rules 

7.    rlesMatchingRulesMatchingRu U←  

8.    // Add the (aj+1, r.confidence) tuple to the Tuples array 

9.    TupleArray[k] = (aj+1, r.confidence)  

10.   k = k+1 

11.  } 

12. }   

13. // Now sort the Tuples array w.r.t. the second element of the tuples 

14. // (which is the confidence of the corresponding rule) in descending order  

15. ( )TupleArray sort TupleArray←  

16. index = 0 

17. // Select the first m elements of the Tuples array   

18. while (index < m && index < TupleArray.length){  

19.   [ ]PCells PCells TupleArray index← U  

20.  index = index+1  

21. } 

22. return PCells 

Figure 3.4: Mobility Prediction Algorithm 
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Example: Assume that a mobile user is traveling through the cells of the coverage region 

shown in Figure 1. Also the UAPs that the user has followed in its mobility history are 

given in Figure 4. Then, the mobility rules that are given in Figure 10 will be used in 

mobility prediction for this user. Moreover, suppose that the user has followed a path 

P=<2, 3, 4, 5> up to now and he is currently in cell 5. Our algorithm will find the rules 

<5> → <6>, <5> → < 8>, <4, 5> → <6>, <5> → <6, 7>, and <4, 5> → <6, 7> as the 

matching rules. The first cell in each rule’s tail will be stored along with the rule’s 

confidence in an array of (cell, confidence) tuples. If there are more than one tuple for a 

cell in the array, then the one which has the biggest confidence is kept and the others are 

deleted. Then, these tuples are sorted with respect to their confidence values in     

descending   order.  For   our   example,   the   sorted   tuple  array  will  be:    

TupleArray = [(6, 66.6), (8, 50)]. If m is equal to 1, then only cell 6 will be used for the 

prediction of user’s next movement. If m is equal to 2, then both cells 6 and 8 are the 

predicted cells for the next movement. 
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Chapter 4   

Experimental Results 
 

4.1 Simulation Design 
 
For simulation, we have adapted the simulation model which is presented in our earlier 

work [9]. In this model, it is assumed that a mobile user travels on a 15 by 15 hexagonal 

shaped network which gives a total of 225 base stations.  

 
In order to generate the user actual paths (UAPs), first a number of user mobility 

patterns (UMPs) is generated. The length of a UMP is determined by a uniform 

distribution with a mean length l. Each UMP is taken as a random walk over the 

hexagonal network. There are two types of UAPs generated. The first type consists of 

UAPs that follow a UMP and the second type consists of outliers (i.e., those which don’t 

follow a pattern). The ratio of the number of outliers to the number of UAPs that follow 

a UMP is denoted by o. For each new UAP we decide whether it is going to be an outlier 

or not, according to the value o. If it is an outlier, then it is formed as a random walk 

over the hexagonal network. Otherwise, a UMP is selected randomly that will 

correspond to the generated UAP. We also use a corruption mechanism to distinguish 

the UAP from its corresponding UMP. We insert random cells between the consecutive 

cells of the UMP. In order to accomplish this, we define a corruption ratio c, which 

denotes the ratio of the number of such random cells to the number of cells in the 

corresponding UMP. 
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Total number of UAPs is 10,000 and from these, we construct the training and test 

sets. The number of UAPs in training set is 9,000 and the number of UAPs in test set is 

1,000. UMPs are mined from the UAPs in the training set and then the mobility rules 

that will be used in prediction are generated by using these UMPs. The UAPs in the test 

set are used for evaluating the prediction accuracy of our algorithm. There are two 

performance measures used for the evaluation of the proposed algorithm: 

 
•  Recall: the number of correctly predicted cells divided by the total number of 

requests (i.e., the total number of inter-cell movements that the user makes). 

 
•  Precision: the number of correctly predicted cells divided by the total number of 

predictions made. 

 
The parameters used in the experiments and their default values are given in Table 

4.1. The default values of l, c and o are adapted from [9]. 

 
Symbol Definition Default values 
m Maximum number of predictions made each time 2 
l Average length of UAPs 5 
c Corruption factor 0.4 
o Outlier Percentage 30 % 
suppmin Minimum support percentage 0.05 % 
confmin Minimum confidence percentage 70 % 

Table 4.1: Symbol table for the parameters used in our experiments 

4.2 Algorithms Used for Comparison 

 
We compared our UMP-Based mobility prediction method with two different prediction 

methods. The first method is Mobility Prediction based on Transition Matrix (TM). In 

this method, a cell-to-cell transition matrix is formed by considering the previous inter-

cell movements of mobile users. The predictions are based on this transition matrix by 

selecting the m most probable cells as the predicted cells. The second prediction method 

is the Ignorant Prediction, which is presented in [15]. Ignorant Prediction method 

disregards the information available from movement history. To predict the next inter-
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cell movement of a user, this method assigns equal transition probabilities to the 

neighboring cells of the user’s currently residence cell. It means that prediction is 

performed by randomly selecting m neighboring cells of the current cell. 

 
The first experiment is conducted for choosing the m (the maximum number of 

predictions made each time) value which is appropriate for all the methods. The next 

two experiments are conducted for tuning the parameters of our method, which are: 

suppmin (the minimum support threshold used in UMP mining algorithm) and confmin (the 

minimum confidence threshold used in mobility rule generation algorithm). In these 

experiments, we search for the best values for each parameter that make both recall and 

precision good. The last two experiments are to measure the performance of our method 

as compared to the performance of other methods. 

4.3 Impact of Maximum Number of Predictions 

 
In the first experiment, we examine the performance impact of parameter m, maximum 

number of predictions made at each move of user. As Figure 4.1 indicates, the precision 

obtained by our method and the precision obtained by TM decrease as m increases. The 

decrease in precision obtained by TM is more dramatic when compared to that obtained 

by our method. The decrease in both precision values is due to the fact that as the 

number of predictions made at each movement of the user increases, the probability of 

having some incorrect predictions gets higher. Therefore, the number of correct 

predictions made by our method and TM doesn’t increase in the same rate with the 

number of predictions.  

 
On the other hand, the precision obtained by Ignorant Prediction method remains 

almost constant as m increases, ignoring some statistical variations. It is around 0.2 for 

all m values. As m increases, the total number of predictions and the number of correct 

predictions for this method increase at the same rate. This explains why the precision of 

the Ignorant method is fixed at 0.2. This value is very low when compared to the value 

obtained by our method. Moreover, if the hexagonal simulation network is perfect (i.e., 

all the cells in the network have 6 neighbors), we would expect that the precision value 
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of the Ignorant method should be fixed at 
1

0.16
6

= . Our simulation network is not 

perfect because the cells that are at the corners have 2 or 3 neighbors. Besides, the cells 

which are along the left, right, top and bottom sides of the simulation network have less 

than 6 neighbors.  

 

Figure 4.1: Precision as a function of the Maximum Number of Predictions made each time 

 

The recall values for all methods increase with increasing m as shown in Figure 4.2. 

This observation can be explained by the fact that as the number of predictions made at 

each move of the mobile increases, the probability of predicting the correct cell 

increases. The increase in recall values with TM and Ignorant methods are more 

significant when compared to the increase with our method. For our method, beginning 

from m=3, recall values don’t increase significantly and become almost fixed at around 

0.54. This is because the number of matching rules is the same for all m values. 

Beginning from some m value, the number of correct predictions doesn’t increase 

because the m value exceeds the number of matching rules. Therefore, the number of 
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correct predictions becomes stable making the recall value stable. For TM and Ignorant 

methods, recall values increase steadily, finally reaching to 1. 

Figure 4.2: Recall as a function of the Maximum Number of Predictions made each time 

 

By considering the above results, one can easily see that there is a trade-off between 

recall and precision measures. Therefore a middle ground should be found for the m 

value. The increase in recall with our method is not very significant when compared to 

that obtained with TM which is the actual competitor to our method. Thus, setting m as 

small as possible would be appropriate for our method since we don’t want the precision 

to drop with increasing m because we don’t gain anything in recall with higher m values. 

In addition, we can say that setting m=2 could be considered as a good choice for TM as 

well, because the increase rate in the recall value from m values 1 to 2 is maximum for 

TM. Since the precision value decreases with increasing m for TM, making m bigger 

than 2 does not increase the recall value so much that it would be worth to decrease the 

precision value. Moreover, if we set m bigger than 3, this would cause excessive 
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network resource waste. Therefore we will set m=2 for all the methods at the rest of the 

performance experiments. 

4.4 Impact of Minimum Support Value 

 
Next, we investigate the effect of increasing minimum support (suppmin) value on the 

recall and precision values obtained by our method. It is shown in Figures 4.3 and 4.4 

that as the suppmin increases, the precision and recall values decrease. This is due to the 

fact that the increase in the suppmin value leads to a decrease in the number of mined 

mobility rules. Therefore, the number of correct predictions is reduced. This causes the 

recall and the precision values to decrease. 

 

Figure 4.3: Precision as a function of the Minimum Support for UMP-Based Prediction 

algorithm 
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Figure 4.4: Recall as a function of the Minimum Support for UMP-Based Prediction algorithm 

 
  Since both recall and precision values decrease for increasing suppmin, it would be 

most appropriate to choose suppmin=0.05 which is the smallest value used in the 

experiments. We have observed that recall and precision values do not increase 

considerably (it can even be said that the values do not increase at all) for the suppmin 

values smaller than 0.05. 

4.5 Impact of Minimum Confidence Value 
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values on the recall and precision of our method. Figure 4.5 indicates the impact of 

minimum confidence on the precision. As one can realize, the precision increases as 
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values are used for prediction. As a result, the number of rules used for prediction is 

reduced and their quality gets higher with the increasing confmin. This leads to a higher 
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decrease rate in the number of predictions when compared to the decrease rate in the 

number of correct predictions. Therefore, the precision value improves as confmin 

increases. 

Figure 4.5: Precision as a function of the Minimum Confidence for UMP-Based Prediction 

algorithm 

 
On  the other  hand,  we  observe the  opposite effect  on  the recall as shown in 

Figure 4.6. As the confmin value increases, the number of mined rules is reduced. The 

decrease in the rules negatively affects the number of correct predictions. Therefore, the 

recall decreases as confmin increases.  
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Figure 4.6: Recall as a function of the Minimum Confidence for UMP-Based Prediction 

algorithm 

 

4.6 Impact of Corruption Factor 

 
Next, we examine the effect of corruption on the precision and recall values. The impact 

of increasing  corruption factor is illustrated  in Figures 4.7  and  4.8. As one can observe 

in Figure 4.7, the precision value is very high for our method when the corruption is 

zero. However, this is not a realistic case because there is no possibility of absence of 

corruption. A realistic corruption value would be 0.4 which is the default value used in 

our experiments. As the corruption increases, the precision is reduced since the number 

of mobility rules that are determined by our algorithm decreases. But the precision 

values, which are never less than 0.45 can be considered good for such high corruption 

factors. TM is also affected by corruption but the decrease in precision for TM is less 
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significant when compared to that of our method. However, the precision obtained by 

our method is better than the precision obtained by its closest competitor, which is TM. 

This is true for all corruption values. Although the Ignorant Prediction method 

demonstrates a stable precision value, it presents the worst performance for precision. 

This indicates the ineffectiveness of the Ignorant Prediction method. 

Figure 4.7: Precision as a function of the Corruption Factor 

 
The recall value also drops for both our method and TM with the increasing 

corruption factor. For our method, we can explain this by the decreasing number of 

mined rules. As the corruption in the data increases, the UAPs will provide less support 

to large patterns. This leads to a decrease in the number of UMPs mined by our 

algorithm. As a result, the number of mobility rules which are determined by our 

algorithm decreases. There is another reason for the performance reduction of our 

method. As a result of the corruption, our prediction algorithm will match less or even 

will not match any mobility rules to the current trajectory of a mobile user. Therefore, no 

prediction can be accomplished in many cases when the corruption gets very high. 
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Increasing the corruption does not reduce the performance of Ignorant Prediction 

significantly. This is an expected result because Ignorant Prediction disregards the 

historical inter-cell movement of users and every prediction of this method is random. 

Therefore the corruption factor does not affect the performance of Ignorant Prediction. 

Figure 4.8: Recall as a function of the Corruption Factor 

4.7 Impact of Outlier Percentage 

 
In the last experiment, we examine the impact of outlier percentage in the data set. The 

results are presented in Figures 4.9 and 4.10. When we increase the outlier percentage, 

we observe a slight decrease in the recall. On the other hand, the precision of our method 

is not affected by the increasing outlier percentage. This can be explained by the fact 

that the rules which are mined from outlier UAPs are not used in predicting the next 

trajectory in most of the predictions made. Because, these rules are supported by the 

outliers and they are not common. When a user is following a UMP, these rules are not 

used for prediction. Therefore, the precision is not reduced. 
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The recall and precision values obtained by TM behave similarly when compared to 

the values obtained by our method. The recall of TM experiences a slight decrease but it 

is better than the recall of our method for all outlier percentages. However the precision 

of our method is always better than the precision of TM. 

 

 

 

Figure 4.9: Precision as a function of the Outlier Percentage 
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Figure 4.10: Recall as a function of the Outlier Percentage 
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Chapter 5  

Conclusion and Future Work 

 
In this thesis, we present a data mining algorithm for the prediction of user movements 

in a mobile computing system. The algorithm proposed is based on mining the mobility 

patterns of users, forming mobility rules from these patterns, and finally predicting a 

mobile user’s next movements by using the mobility rules.  

 
We have evaluated the performance of our algorithm using simulation and compared 

the obtained results with the performance of two other prediction methods. These 

methods are Mobility Prediction based on Transition Matrix (TM) and Ignorant 

Prediction. In TM, mobility prediction is based on the cell-to-cell transition probability 

matrix. The Ignorant method does not take any historical information into account when 

making prediction. In this method, randomly selected neighbors of the current cell are 

used as the predicted cells. This method can be considered as a baseline algorithm for 

comparison. 

 
Our method has performed well with a variety of corruption factor and outlier 

percentage values. We have observed that although an increase in the corruption in the 

data decreases the recall and precision, an increase in the outlier percentage has no 

significant effect on the recall and precision. When compared to the performance of the 

baseline method, which is Ignorant Prediction, our method provides a very good 

performance in terms of precision and recall.  
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When we compare its performance with the performance of TM, it can be seen that 

the precision obtained with our method is better than that observed with TM. This result 

indicates that our method makes more accurate predictions. Most of its predictions made 

at each request are correct. On the other hand, the recall values obtained with TM are 

higher than those obtained with our method for most of the experiments. This is due to 

the nature of our method, which may not make prediction in response to some of the 

requests. The reason is that there may not be any matching rule for the current trajectory 

of the user when a prediction request is made. Thus, our method does not make any 

prediction in that case. On the other hand, TM makes prediction at most of the requests 

because it only keeps the transition probabilities of the cells. Therefore, even if there has 

been only one transition from a cell, say A, then it will use this information to make a 

prediction when the user is in cell A. It will have a higher potential to make predictions 

at every request, resulting in higher probability to make a correct prediction. Since the 

number of requests in the test set is the same for both methods and the number of correct 

predictions is higher for TM, TM produces higher recall values. 

 
The algorithm presented in this thesis can be extended in the following directions. 

 
•  As we explain in Section 3.1, the support counting method used in our prediction 

algorithm is a generalization of the pattern mining approach presented in [2, 3]. 

For calculating the totDist value, our method takes the degree of corruption in 

the patterns into account. This is accomplished by decreasing the support given 

to a pattern by a UAP as the number of corrupted cells in the pattern increases. 

By giving small support to more corrupted patterns, this method improves the 

quality of mined patterns. Although our method for calculating this value is a 

good choice, some other methods can also be employed for this calculation and 

the results can be compared with our method. 

 
•  In our work, we do not consider the time domain of the mobility patterns and 

mobility rules. There are no time stamps associated with the collected mobile 

user trajectories. However, in real life, the mobility patterns of the users might be 
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closely related to the time. In some specific time period of the day, users might 

be following some specific movement paths. Therefore, different sets of rules 

might be associated with different time intervals. As a future work, it may be a 

good idea to extend our algorithm to include the time domain of mobility rules.  
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