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ABSTRACT

TIME–FREQUENCY COMPONENT ANALYZER

Ahmet Kemal Özdemir

Ph.D. in Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Orhan Arıkan

September 2003

In this thesis, a new algorithm, time–frequency component analyzer (TFCA), is proposed

to analyze composite signals, whose components have compact time–frequency supports.

Examples of this type of signals include biological, acoustic, seismic, speech, radar and

sonar signals. By conducting its time–frequency analysis in an adaptively chosen warped

fractional domain the method provides time–frequency distributions which are as sharp as

the Wigner distribution, while suppressing the undesirable interference terms present in the

Wigner distribution. Being almost fully automated, TFCA does not require any a priori

information on the analyzed signal. By making use of recently developed fast Wigner slice

computation algorithm, directionally smoothed Wigner distribution algorithm and fractional

domain incision algorithm in the warped fractional domain, the method provides an overall

time-frequency representation of the composite signals. It also provides time–frequency

representations corresponding to the individual signal components constituting the composite

signal. Since, TFCA based analysis enables the extraction of the identified components from

the composite signals, it allows detailed post processing of the extracted signal components

and their corresponding time–frequency distributions, as well.

Keywords: time–frequency distributions, time–frequency analysis, component analysis,

fractional domain warping, fractional Fourier transformation, Wigner distribution, ambiguity

function.
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ÖZET

ZAMAN–FREKANS BİLEŞEN ÇÖZÜMLEYİCİSİ

Ahmet Kemal Özdemir

Elektrik ve Elektronik Mühendisliği Doktora

Tez Yöneticisi: Doç. Dr. Orhan Arıkan

Eylül 2002

Bu tezde, bileşenleri zaman–frekans düzleminde sık bir dayanaǧa sahip olan çok bileşenli

sinyalleri analiz etmek amacıyla zaman–frekans bileşen çözümleyicisi (ZFBÇ) adı verilen

yeni bir algoritma öneriliyor. Bu tip sinyallere örnek olarak biyolojik, akustik, sismik, ses,

radar ve sonar sinyalleri gösterilebilir. Önerilen yöntem zaman–frekans analizini, incelenen

sinyale uyumlu bir biçimde seçilen büzülmüş kesirli Fourier alanında gerçekleştirerek, Wigner

daǧılımı kadar keskin bir daǧılım sunarken, Wigner daǧılımında var olan ancak istenmeyen

çapraz terim gürültüsünü de oldukça bastırır. Neredeyse tamamen otomatik bir şekilde

çalışan yeni yöntem, analiz edilen sinyal ile ilgili her hangi bir ön bilgiye ihtiyaç duymaz.

Yakın zamanda geliştirilen, hızlı Wigner dilimi hesaplama algoritması, yönsel Wigner

daǧılımı yumuşatma algoritması ve kesirli bölge kesme algoritmasını büzülmüş kesirli Fourier

alanında kullanan ZFBÇ, incelenen çok bileşenli işaretin oldukça iyi bir zaman–frekans

daǧılımını verir. ZFBÇ aynı zamanda çok bileşenli işaretin her bir bileşenine ait zaman–

frekans daǧılımını da ayrı ayrı hesaplar. ZFBÇ’ye dayalı analiz, incelenen çok bileşenli işarete

ait bileşenleri ayrı ayrı özütlediǧi için, kestirilen bileşenler veya bunlara ait zaman–frekans

daǧılımları üzerinde arzu edilen art işlemlerin gerçekleştirilmesine de olanak saǧlar.

Anahtar Kelimeler: zaman–frekans daǧılımları, zaman–frekans analizi, bileşen analizi,

kesirli bölge büzme işlemi, kesirli Fourier dönüşümü, Wigner daǧılımı, belirsizlik işlevi.
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Chapter 1

Introduction

Time–frequency distributions (TFDs) are two dimensional functions which designate the

energy content of signals in the time–frequency (t–f) plane [6], [7]. Composite signals

whose components have compact time-frequency supports form an important application area

for time-frequency signal analysis. Examples cover a wide range of applications including

biological [8], [9], acoustic [10], [11], seismic [12], [13], speech [14], [15], radar [16–18] and

sonar [16], [19] signals. Much of the research in time–frequency signal processing has been

devoted to design of new TFDs. The performance of a TFD is regarded as good if it can

offer an accurate description of the signal’s energy content in the time–frequency plane with

negligible spurious terms.

Among the distributions developed so far the Wigner distribution (WD) has attracted much

of the attention because of its nice theoretical properties [2], [6], [20], [21]. The WD Wx(t, f)

of a signal x(t) is defined by the following integral1

Wx(t, f) �
∫

x(t + t′/2)x∗(t− t′/2)e−2πft′ dt′ . (1.1)

WD is regarded as a time–frequency distribution since it possesses many important and

desirable mathematical properties expected from a distribution. Notably, it is always real and

integration of the WD across the time axis gives the signal’s spectrum and integration of the

WD across the frequency axis gives the signal’s instantaneous energy [6],[7]. For a component

with convex time–frequency support, the WD gives very high auto–term concentration. It is

1All integrals are from −∞ to +∞ unless otherwise stated.
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even argued that more concentration than in the Wigner distribution would be undesirable for

this type of signals [22].

Although, WD possesses mathematically pleasing properties, its bilinear form gives rise to

spurious structures in the time–frequency plane which are called as cross–term interference

[6], [7]. Cross–terms appear as a result of both the interaction among different signal

components in a multi–component signal and interaction of signal components by themselves.

These cross–terms usually interfere with the auto–components and decrease the interpretability

of the Wigner distribution.

The geometry of the cross–terms in the Wigner distribution has been extensively analyzed

[23]. Even for mono–component signals, there will be cross–term interference if the signal has

a non–convex time–frequency support. Thus cross–terms of the WD are classified under two

categories. The cross–terms which appear due to the interaction of different signal components

(i.e., auto–components) in a multi–component signal are called as outer interference (cross)

terms and the cross–terms which appear due to the interaction of a single signal component

with itself as inner interference (cross) terms [23].

The analysis on cross–terms has revealed that, the cross terms might have a peak value

as high as twice that of the auto–components, they lie at mid–time and mid–frequency of the

auto–components, they are highly oscillatory and the frequency of oscillations increases with

the increasing distance in time and frequency [23]. Based on these observations it has been

suggested that some sort of smoothing of the Wigner distribution is necessary to suppress the

cross–term interference. In a unified framework, the distributions obtained by smoothing the

WD are studied under the name of Cohen’s bilinear class of time–frequency distributions [6].

In this class, the time–frequency distributions of a signal x(t) are given by

TFx(t, f) =

∫∫
κ(ν, τ)Ax(ν, τ)e−2π(νt+τf) dν dτ , (1.2)

where κ(ν, τ) is called as the kernel of the transformation [6], [24] and Ax(ν, τ) is the

(symmetric) ambiguity function (AF) which is defined as the 2–D inverse Fourier transform

(FT) of the WD:

Ax(ν, τ) �
∫∫

Wx(t, f)e2π(νt+τf) dt df (1.3a)

=

∫
x(t + τ/2)x∗(t− τ/2)e2πνt dt . (1.3b)
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Besides time–frequency analysis, AF has found important application areas in radar and sonar

signal processing as well [25–27]. Traditionally, the low-pass smoothing kernel κ(ν, τ) is

designed with the objective of passing the auto–terms which are centered at the origin of

the AF plane and suppressing the cross–terms which are located away from the origin. The

properties of the resultant time–frequency distribution are closely related to the properties of

the chosen kernel [6]. This type of time–frequency distributions with fixed kernels such as

Page [28], Mergenau and Hill [29], Rihaczek [30], Choi and Williams [31], Papandreou and

Boudreaux–Bartels [32] can perform well only for a limited class of signals whose auto–terms

in the AF plane are located inside the pass–band region of the kernel κ(ν, τ). For other signals

they offer a trade–off between good cross–term suppression and high auto–term concentration.

To overcome the shortcomings of the TFDs with fixed–kernels, it has been proposed that

kernel κ(ν, τ) should be chosen as signal dependent [33–38]. For instance in well known

Optimal Radially Gaussian Kernel (ORGK) [35] design, κ(ν, τ) is chosen from the family of

kernels with Gaussian radial slices

κp(r, θ) = exp

(
− r2

2σ2(θ)

)
, (1.4)

where r =
√
τ 2 + ν2, θ = atan2(τ, ν) and κp(r, θ) ≡ κ(r cos θ, r sin θ) is the polar

representation of the kernel. In [35], the spread σ2(θ) is computed by solving the optimization

problem

max
κ

∫ 2π

0

∫ ∞

0

|Ap
x(r, θ) κp(r, θ)|2 r dr dθ , (1.5)

subject to

1

4π2

∫ 2π

0

∫ ∞

0

|κp(r, θ)|2 r dr dθ =
1

4π2

∫ 2π

0

σ2(θ) dθ ≤ α , α ≥ 0 . (1.6)

Here, Ap
x(r, θ) ≡ Ax(r cos θ, r sin θ) is the polar representation of the AF. As discussed in [35],

by (1.5) ORGK tries to adjust the pass–band of the low–pass kernel to cover the auto–terms,

while by (1.6) it limits the volume of the kernel to α to keep cross–terms, which are located

away from the origin, out of the pass-band region of the kernel.

By adapting the pass–band of the kernel based on the location of the auto–terms in the

AF domain, signal–dependent TFDs usually offer better cross–term suppression and higher

resolution than the TFDs with fixed kernels. However, as discussed in [39], design of a single

kernel for the entire signal may lead to some compromises when analyzing multi–component
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signals. The adaptation of the kernel at each time to achieve optimal local performance usually

provides better TFDs at the expense of significantly increased computational complexity

[39]. Nevertheless, the design of a single kernel at each time instant may lead to similar

compromises as in ORGK when there are signal components that overlap in time.

There exists another class of time–frequency distributions, which is based on the expansion

of a signal on a redundant set of waveforms (also called as atoms) chosen from a dictionary. In

the work of Mallat and Zhang the dictionary consists of translated and scaled Gaussian atoms

which have compact time–frequency support [40]. After linear expansion of the signal onto

atoms in the dictionary, the TFD of the original signal is computed as the weighted sum of

the WDs of the atoms used in the signal expansion. Extension of this approach to chirplets

is given in [41] and to windowed exponential frequency modulated (FM) functions is given

in [42]. Although, these techniques offer a cross–term free distribution, their performance is

satisfactory only when the components of the analyzed signal resemble the atoms constituting

the dictionary. Otherwise, as illustrated in [43], a blotchy representation is obtained. On the

other hand if too many atoms are used in the expansion so that a large class of signals resemble

to the atoms in the dictionary, the computational burden of the suboptimal matching pursuits

algorithm utilized by these techniques become overwhelming.

On the other hand, some of the researchers investigated different paths to enhance the

sharpness and resolution of Cohen’s bilinear class of TFDs by using image processing

techniques. For instance, in their original work Kodera et. al. suggested displacement of the

value of the spectrogram at the point (t, f) to a different point (t′, f ′) in the time–frequency

plane [44], [45]. Much later, this idea is coined as reassignment method and extended to other

bilinear TFDs [46]. When implemented as in [44–46] moving the value of a distribution to a

new location away from where its computed increases the readability. On the other hand this

may lead to an over localized t–f distribution which may not be desired in all applications.

For instance, the reassigned t–f distribution of a sinusoidal signal at frequency fs approaches

to an impulse in the t–f plane around the frequency fs [46]. Therefore, the reassigned

distribution tends to get away from a valid distribution and violates the uncertainty principle.

Hence, unlike the WD, the frequency marginal of the reassigned distribution does not give

the energy of spectrum of the time–limited sinusoid. Although this suits to applications where

identification of the instantaneous frequency law is prime importance, some caution is required
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in applications where the accurate description of the signal’s energy content in t–f plane is

desired. Another drawback of this method is that relocation of energy at different t–f points to

the same location amplifies the amplitudes of stronger components in the t–f plane much more

than the weaker components. Hence reassignment method decreases the relative strength of

the weaker components.

In this thesis, we present a new algorithm, to analyze and extract the components of

a composite signal whose components have compact time-frequency supports [8–19]. The

developed algorithm is called as the Time–Frequency Component Analyzer: TFCA [5],

[47–52]. When the signal component has a convex time–frequency support, TFCA just

provides its corresponding Wigner distribution. Otherwise, by using a fractional domain2

warping technique, it provides a high resolution distribution with negligible inner and outer

interference terms. Although TFCA produces a signal dependent TFD as in [33–39], it

doesn’t lead to a compromise between accurate representation of distinct signal components,

since TFCA doesn’t design a global kernel for the entire signal. In one aspect, TFCA

is similar to the techniques which aim to analyze the signal into its components and then

compute the TFDs of the individual components as in [40–42]. However, in TFCA signal

components are estimated by analyzing the time–frequency distribution of the signal, therefore

the disadvantages associated with using a pre–determined and limited set of admissible

components are avoided. As it will be illustrated on simulation examples, the TFCA can

provide high resolution analysis of signal components which may have non–convex and non–

parametric time–frequency supports. By conducting its analysis based on a novel warped

fractional Fourier transformation, the obtained high resolution time–frequency distribution

does not belong to Cohen’s class. Furthermore, as a distinctive feature, TFCA extracts the

individual signal components from the analyzed composite signal as well.

In the development of TFCA, very important theoretical results are obtained which are

partially presented in [47–52]. In the remaining chapters of this thesis both the theoretical

and the practical issues concerning the TFCA are presented in a gradually increasing order of

complexity. Following a short chapter about the preliminaries on time–frequency analysis, the

main results are presented in four chapters. In the following, a more detailed description of

these chapters are given.

2Fractional domain is also called fractional Fourier transform domain [53].
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In Chapter 3, we present novel theoretical results regarding the slices of the ambiguity

function and the Wigner distribution. Although there exist fast algorithms in the literature

for digital computation of the AF and the WD samples on Cartesian grids [1], [2], [54],

these algorithms lose their efficiency when only a few slices of the AF and the WD are

required. Since the fast computation of the arbitrarily located slices of these functions is of

prime importance for the efficiency of TFCA, a considerable amount of time is invested in

this chapter to develop novel theoretical results concerning the AF and WD slices. First,

closed form expressions are derived for the Radon transformations of the cross–Wigner

distribution and the cross–ambiguity function by using the fractional Fourier transformation

(FrFT). Based on these novel formulations for the projections of the Wigner distribution and

the ambiguity function and by using the well known 2–D Fourier transformation relationship

between the ambiguity and Wigner domains, closed form expressions are obtained for the

slices of the ambiguity function and the Wigner distribution on arbitrary line segments

in the time-frequency and lag–Doppler plane respectively. By discretizing the obtained

analytical expressions, the fast ambiguity–slice computation (FAC) and the fast Wigner–slice

computation (FWC) algorithms are developed for computation of uniformly spaced samples

of the ambiguity function and the Wigner distribution located on arbitrary line segments. The

complexity of these algorithms is only O(N logN) flops3 for a signal with N samples duration.

With repeated use of these algorithms, it is possible to obtain samples of the WD and AF

on non–Cartesian grids such as rotated Cartesian grids or polar grids which are the natural

sampling grids for chirp–like signals.

In Chapter 4, we extend the fast algorithms developed in Chapter 3 to obtain a simplified

version of the TFCA which is tailored for chirp–like signals buried in severe outer cross–

term interference. To obtain a very high resolution time–frequency description for this type of

signals, we develop a novel and efficient algorithm for directionally filtering the slices of the

Wigner distribution based on the efficiency of the FWC algorithm presented in Chapter 3 [51].

The main advantage of the new algorithm is its ability to suppress outer interference terms

on chirp–like auto–components with convex time–frequency supports without any detrimental

effect to the auto–components. For a signal with N samples, the computational complexity of

the algorithm is O(N logN) flops for each filtered slice of the Wigner distribution.

3Complex multiplication and addition.
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The simplified version of the TFCA algorithm presented in Chapter 4, provides very good

results for signals with convex time–frequency supports. However, the inner interference terms

of components with non–convex time–frequency supports could only be partially suppressed.

In Chapter 5, we alleviate this problem by presenting a more advanced form of the TFCA

algorithm which includes a novel fractional domain warping technique as one of its main

ingredients. With the incorporation of the warping technique, the high performance of the

TFCA on chirp–like components with convex time–frequency supports is extended to mono–

component signals with non–convex time–frequency supports. This more advanced form of

the TFCA algorithm provides very good time–frequency descriptions by suppressing not only

the outer interference terms but also the inner interference terms in the Wigner distribution.

When digitally implemented, the complexity of the algorithm is only O(N logN) flops for

each computed slice of the distribution for a signal with N samples duration.

In the Chapter 6, the final form of the TFCA is given as an iterative signal adaptive

time–frequency distribution, which can handle both mono and multi–component signals with

convex or non–convex supports in time frequency plane. This form of the TFCA is almost

fully automated. First of all, by utilizing an image segmentation algorithm [3], the warping

parameters are automatically computed without user interaction. Secondly, by making use of

an efficient time–frequency domain incision technique components of the composite signal

are extracted. Although, various approaches based on time–frequency processing techniques

have been investigated in the literature [55–61], in this thesis, results based on the fractional

domain incision (FDI) algorithm [52], [56] are presented. Since the FDI algorithm operates

on the time–domain signal, it provides reliable estimates for each component of a composite

signal in O(N logN) flops, when the composite signal has a duration of N samples. Then,

the time–frequency representation of the extracted signal component is computed by using the

techniques presented in Chapters 3-5. After the estimate of the component is subtracted from

the composite signal the same analysis is conducted on the residual signal. At the end, the

time–frequency representations of individual auto–terms are summed to obtain the TFCA of

the composite signal. Based on a set of synthetic and real data simulations, it is shown that

the proposed iterative algorithm provides highly accurate representation of multi–component

signals.

Finally, remarks and conclusions are provided in Chapter 7.
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Chapter 2

Preliminaries on Time–frequency

Analysis

2.1 Wigner Distribution and the Ambiguity Function

Discrete time–frequency analysis is the primary investigation tool in the synthesis, character-

ization and filtering of time–varying signals. Among the alternative time–frequency analysis

algorithms, those belonging to the Cohen’s class are the most commonly utilized ones. In this

class, the time–frequency distributions of a signal x(t) are given by1:

TFx(t, f) =

∫∫∫
κ(ν, τ)x(u + τ/2)x∗(u− τ/2)e2π(νu−νt−τf) du dν dτ , (2.1)

where the function κ(ν, τ) is called the kernel [6],[24]. Recent research on the time–frequency

signal analysis has revealed that signal dependent choice of the kernel helps in localization of

the time–frequency components of the signals [33–39], [62]. By choosing κ(ν, τ) = 1, the

most commonly used member of the Cohen’s class, the Wigner distribution, is obtained:

Wx(t, f) �
∫

x(t + t′/2)x∗(t− t′/2)e−2πft′ dt′ . (2.2)

Because of its nice energy localization properties, the WD has found important application

areas. The definition (2.2) has been generalized to define the cross–Wigner distribution of two

1All integrals are from −∞ to +∞ unless otherwise stated.
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signals x(t) and y(t) as:

Wxy(t, f) �
∫

x(t + t′/2)y∗(t− t′/2)e−2πft′ dt′ . (2.3)

The properties of the cross–Wigner distribution has been investigated in detail [2], [63]. Note

that, Wxx(t, f) ≡ Wx(t, f) holds.

The 2–D inverse Fourier transform of the WD is called the (symmetric) ambiguity function

which has found important application areas in time–frequency and radar signal processing:

Ax(ν, τ) �
∫∫

Wx(t, f)e2π(νt+τf) dt df (2.4a)

=

∫
x(t + τ/2)x∗(t− τ/2)e2πνt dt . (2.4b)

Similar to the cross–Wigner distribution, the cross–ambiguity function of two signals x(t) and

y(t) is defined as

Axy(ν, τ) �
∫

x(t + τ/2)y∗(t− τ/2)e2πνt dt . (2.5)

As in (2.4a), the cross–ambiguity function is related to the cross–Wigner distribution through

the 2–D inverse Fourier transformation:

Axy(ν, τ) =

∫∫
Wxy(t, f)e2π(νt+τf) dt df . (2.6)

2.2 The Fractional Fourier Transformation

The ath order, a ∈ 	, 0 < |a| < 2, fractional Fourier transform of a function x(t) is defined

as [64]:

xa(t) ≡ {Fa x}(t) �
∫

Ka(t, t
′)x(t′) dt′ , (2.7)

where the kernel of the transformation Ka(t, t
′) is

Ka(t, t
′) = Aφ exp

[
jπ(t2 cotφ− 2tt′ cscφ + t′2 cotφ)

]
, (2.8)

Aφ =
exp(−jπ sgn(sinφ)/4 + jφ/2)

| sinφ|1/2
, (2.9)

φ =
aπ

2
. (2.10)

The transformation kernel is the complex exponential e−2πtt′ for a = 1, and it approaches

to δ(t) for a = 0, and to δ(t + t′) for a = ±2. Thus, it follows that 1st order FrFT is the
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ordinary Fourier transform and 0th order FrFT is the function itself. The definition of the FrFT

is easily extended to outside the interval [−2, 2], by noting that F4k is the identity operator for

any integer k and FrFT is additive in index, i.e., Fa1Fa2 = Fa1+a2 . The other interesting and

useful properties of the FrFT can be found in [65].
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Chapter 3

Fast Computation of the Ambiguity

Function and the Wigner Distribution on

Arbitrary Line Segments

3.1 Introduction

Time–frequency signal processing is one of the fundamental research areas in signal

processing. Wigner distribution plays a central role in the theory and practice of time–

frequency signal processing [2],[6],[7],[63],[66–71]. Likewise, the ambiguity function, which

is the 2–D Fourier transform of the Wigner distribution, plays a central role in time–frequency

signal analysis [62], [72], [73], radar and sonar signal processing [25–27], [74].

The TFCA presented in this thesis requires efficient computation of the WD samples on

arbitrary line segments. For a signal of duration N samples, the existing algorithms require

O(N2 logN) flops for each line segment [1], [2], [54] in Wigner and ambiguity planes. In this

chapter, we develop fast computational algorithms for both the WD and the AF. Due to lack of

theoretical results in the literature, in the following sections we invest a great amount of time

to develop a solid theoretical basis for the proposed algorithms.

In this chapter, first we derive closed form expressions for the Radon transformations

of the cross–Wigner distribution and the cross–ambiguity function by using the fractional
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Fourier transformation. Although the expression for cross–Wigner projection, which first

appeared in [50] and then in [75], is a straightforward extension of a similar property for

the auto Wigner distribution [76], the simple closed form expressions presented in [49], [50]

for the auto and cross ambiguity function projections are quite novel with deep theoretical

and practical implications. Then, based on the well known 2–D Fourier transformation

relationship between the ambiguity and Wigner domains, novel closed form expressions are

obtained for the slices of both the WD and the AF. By using discretization of the obtained

analytical expressions, fast Wigner–slice and the fast ambiguity–slice computation algorithms

are proposed to compute uniformly spaced samples of the WD and the AF located on arbitrary

line segments. With repeated use of these algorithms, it is possible to obtain samples of the

WD and AF on non–Cartesian grids, such as rotated Cartesian grids and the polar grids which

are the natural sampling grids of chirp like signals. Apart from its use in this thesis, the ability

of obtaining WD and AF samples over rotated Cartesian grids and polar grids is potentially

very useful in various important application areas including time–frequency domain kernel

design, multi–component signal analysis, time–frequency domain signal detection and particle

location analysis in Fresnel holograms [33], [34], [36], [39], [77–79].

The organization of this chapter is in accordance with the dual nature of the ambiguity

function and Wigner distribution. In Section 3.2, by using the Radon–Wigner transformation,

analytical expressions are derived for the slices of the auto ambiguity functions. Then,

by discretizing the obtained analytical expressions, efficient algorithms are presented for

the computation of slices of the ambiguity function. In Section 3.3, we follow a similar

development leading to novel closed form expressions for the Radon–ambiguity function,

and present efficient algorithms for the computation of slices of the Wigner distribution. In

Section 3.4, both the analytical and computational results are extended to the cross AF and

WD. In Section 3.5, we provide results of simulated applications of the proposed algorithms.

Finally, the chapter is concluded in Section 3.6.
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3.2 Fast Computation of the Ambiguity Function on Arbi-

trary Line Segments

In this section, an efficient algorithm to compute the ambiguity function on uniformly spaced

samples along an arbitrary line segment is provided. For the sake of simplicity, a gradual

method of presentation is used where we first consider obtaining uniformly spaced samples

of the AF on a line segment centered at the origin. Then, we extend this approach to obtain

samples on a line segment positioned radially. Finally, we consider the case of an arbitrary line

segment. The presentation of the proposed approach will be as follows: first the well known

projection–slice relationship between the WD and the AF domains will be given. Then, the

projections in the WD domain will be related to the fractional Fourier transformation of the

signals involved. Finally, the obtained continuous–time relationship will be discretized to

allow the use of a fast fractional Fourier transformation algorithm.

3.2.1 The Radon–Wigner Transform

The Radon–Wigner transform (RWT) or Radon transformation of the Wigner distribution has

been introduced for the analysis and classification of multi–component chirp signals in noise.

Several authors investigated RWT and some of its applications in multi–component signal

analysis, time–varying filtering and adaptive kernel design [77], [80–83]. The RWT of a

function x(t) is defined as the Radon transform of its WD. Using the geometry in Fig. 3.1 ,

RWT can be written as

RDN [Wx](r, φ) =

∫
Wx(r cosφ− s sinφ, r sinφ + s cosφ) ds , (3.1)

where (r, φ) are the transform domain variables in polar format. With this definition, the

RWT can be viewed as the family of the projections {RDN [Wx](r, φ), 0 ≤ φ < π}. The

projection–slice theorem [84] establishes an important link between the projections of the WD

and the slices of the AF: the 1–D inverse Fourier transform of the projection RDN [Wx](r, φ)

with respect to the radial variable r is the radial slice of the ambiguity function at the angle φ∫
RDN [Wx](r, φ)e2πrλ dr = Ax(λ cosφ, λ sinφ) (3.2a)

= Ap
x(λ, φ) , (3.2b)
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Figure 3.1: Radon transform geometry for the RWT.

where Ap
x(λ, φ) � Ax(λ cosφ, λ sinφ) is the polar representation of the AF. Therefore,

once we have the projection RDN [Wx](r, φ), we can use the fast Fourier transform (FFT)

algorithm to efficiently approximate the samples on the radial slice of the AF. However, to

have a practically useful algorithm, we have to obtain the RWT efficiently as well. Fortunately,

as it has been shown in [76], the radial slices of the RWT, RDN [Wx](r, φ), can be computed

directly from the time signal x(t) by using the fractional Fourier transformation:

RDN [Wx](r, φ) = |{Fa x}(r)|2 ≡ |xa(r)|2 , for a =
2φ

π
, (3.3)

where RDN [Wx](r, φ) is the φ–Radon projection of the WD given by (3.1), and xa(r) is the

ath–order FrFT of the signal as given in Section 2.2. Combining (3.2) and (3.3), we obtain the

following relation between the AF and the FrFT of a signal:

Ap
x(λ, φ) =

∫
|xa(r)|2e2πrλ dr . (3.4)

Thus, the ordinary one–dimensional inverse Fourier transform of the magnitude squared ath

order FrFT of a signal is equal to the radial slice of its ambiguity function that makes an angle

of aπ/2 with respect to the ν–axis in the ν − τ plane.
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3.2.2 Efficient Computation Of the Ambiguity Function Samples Along

Radial Slices of the Ambiguity Plane

In this section, we provide the details of a fast algorithm for computing radial samples of the

ambiguity function. As it will be shown in detail, for an input sequence of length N , it is

possible to compute the samples of AF on an arbitrary line segment centered at the origin in

O(N logN) flops. We start with the approximation of the integral in (3.4) with its uniform

Riemann summation. For an equally valid approximation at all angles φ, in the rest of this

chapter, we assume that prior to obtain its samples, x(t) is scaled so that its Wigner domain

support is approximately confined into a circle with radius ∆x/2 centered at the origin. In

other words, any ath order FrFT of x(t), including the signal itself and its ordinary Fourier

transform, has negligible energy outside the symmetric interval [−∆x/2, ∆x/2]. For a signal

x(t) with approximate time and frequency supports of ∆t and ∆f respectively, the required

scaling is x(t/s) where s =
√

∆f/∆t [85].

After the scaling, the double–sided bandwidth of |xa(r)|2 is 2∆x. Therefore its inverse FT

given in (3.4) can be approximated in terms of its uniformly obtained samples at a rate 2∆x

using the following discrete–time inverse Fourier transform relation1:

Ap
x(λ, φ) =

1

2∆x

N−1∑
n=−N

|xa[n]|2e πλn
∆x , −∆x ≤ λ < ∆x , (3.5)

where N is an arbitrary integer that is greater than ∆2
x, which is the time–bandwidth product

of xa(r) and xa[n] � xa(n/2∆x) is the nth sample of the FrFT xa(r). To obtain 2N equally–

spaced radial samples of Ap
x(λ, φ), we substitute λ = k∆x/N in the above equation:

Ap
x(

k

N
∆x, φ) =

1

2∆x

N−1∑
n=−N

|xa[n]|2e 2πkn
2N , −N ≤ k ≤ N − 1 . (3.6)

After the discretization, the obtained form lends itself for an efficient digital computation

since the required samples of the FrFT, xa(n/2∆x), −N ≤ n ≤ N−1, can be computed using

the recently developed fast computation algorithm [85] in O(N logN) flops. The summation

in (3.6) can be recast into a 2N point discrete Fourier transformation which can be computed

1From this observation we deduce the following fact: If the WD of x(t) is confined into a circle with radius
∆x/2 in the Wigner plane, then its AF is confined into a circle with radius ∆x in the ambiguity plane.
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3.2.3 Computation of the Ambiguity Function along the Segments of the

Radial Slices

In order to compute the samples of the AF on an arbitrarily positioned segment of a radial

slice, the chirp z–transform (CZT) algorithm [86] can be used. Here, we will use a special

version of this algorithm (also called chirp transform algorithm) to compute N ′ uniformly

spaced samples of a radial slice Ap
x(λ, φ) on the interval [λi, λf ] mod (2∆x) for arbitrary values

of the parameters N ′, λi and λf .

To obtain the required samples, we substitute λ = λi + k∆λ, 0 ≤ k ≤ N ′ − 1, in (3.5),

where the sampling interval of the frequency variable is ∆λ =
λf−λi
N ′−1

. After the rearrangement

of the summation as

Ap
x(λi + k∆λ, φ) =

1

2∆x

N−1∑
n=−N

(
|xa[n]|2eπ

λi
∆x

n
)
eπ

∆λ
∆x

kn (3.7a)

=
N−1∑

n=−N

g[n]W kn , k = 0, 1, . . . , N ′ − 1 , (3.7b)

where g[n] and W are defined as

g[n] =
1

2∆x

|xa[n]|2eπ
λi
∆x

n (3.8)

W = eπ
∆λ
∆x , (3.9)

we use the identity kn = 1
2
[k2+n2−(k−n)2] in (3.7b) and obtain an alternative but equivalent

expression for Ap
x(λi + k∆λ, φ):

Ap
x(λi + k∆λ, φ) = W k2/2

N−1∑
n=−N

W−(k−n)2/2(g[n]W n2/2) , k = 0, 1, . . . , N ′ − 1 .

(3.10)

In this expression, Ap
x(λi + k∆λ, φ), can be interpreted as the convolution of the chirp–

modulated signal g[k] and the chirp W−k2/2, multiplied with another chirp W k2/2. Since

the convolution can be computed efficiently by using the FFT algorithm, for the usual case

of N ′ ≤ N , the uniformly spaced samples of the radial slice Ap
x(λ, φ) located in the segment

[λi, λf ] mod (2∆x) can be obtained in O(N logN) flops. In Fig. 3.2(b), we illustrate the shape

of a partial polar grid, on which the samples of the AF Ax(ν, τ) can be computed by using

the algorithm of the previous section combined with the CZT algorithm. In this plot, the polar
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Figure 3.3: A non–radial line segment in the ambiguity function plane which lies on a line that
passes through the point (νo, τo) and makes an angle of φ radians with the ν–axis.

grid has denser samples in the middle region. The samples on the radial slices which pass

through both the denser and non–denser parts of the grid can be obtained by using the CZT

algorithm three times: once to compute the samples in the denser region and twice to compute

the samples in the non–denser regions.

3.2.4 Computation of the Ambiguity Function Along Arbitrary Line

Segments

In this section we present a fast computational algorithm that computes the samples of AF on

a non–radial slice. Let us consider the case of computing the samples of the AF Ax(ν, τ) along

the line segment LA shown in Fig. 3.3. The following parameterization for the line segment

LA will be used in the derivations:

LA = {(ν, τ)|ν = νo + λ cosφ, τ = τo + λ sinφ, λi ≤ λ ≤ λf} , (3.11)

where (νo, τo) is an arbitrary point which lies on LA and φ is the angle between LA and the

ν–axis. Using this parameterization of LA and the definition of the AF, the non–radial slice of
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the AF which lies on the line segment LA can be written as

Ax(νo + λ cosφ, τo + λ sinφ) =

∫
x(t+

τo + λ sinφ

2
)x∗(t− τo + λ sinφ

2
)

× e2π(νo+λ cos φ)t dt (3.12a)

≡ Ayz(λ cosφ, λ sinφ) , (3.12b)

where Ayz(ν, τ) is the cross–ambiguity function of the following time–domain signals y(t)

and z(t)

y(t) = x(t+ τo/2)e
πνot (3.13)

z(t) = x(t− τo/2)e
−πνot . (3.14)

Thus, the non–radial slice of Ax(ν, τ) is equal to the radial slice of the Ayz(ν, τ) where both

of the slices are in parallel. Hence, similar to (3.2), the projection–slice theorem can be used

to express the slice of the Ax(ν, τ) along the line segment LA as the 1–D inverse FT of the

φ–Radon projection of the corresponding cross–Wigner distribution Wyz(t, f):

Ax(νo + λ cosφ, τo + λ sinφ) =

∫
RDN [Wyz](r, φ)e

2πrλ dr . (3.15)

We note that analogous to (3.3), the φ–Radon projections of the cross WD can be obtained

from the following FrFT relation [49], [75]:

RDN [Wyz](r, φ) = [{Fa y}(r)] [{Fa z}(r)]∗ ≡ ya(r)z
∗
a(r) , (3.16)

where a = 2φ/π is the FrFT order. Then, following the discussions in Section 3.2.2 and 3.2.3,

we obtain the following expression for the N ′ uniformly spaced samples of the AF on the line

segment LA:

Ax(νo+λk cosφ, τo+λk sinφ) =
1

2∆x

N−1∑
n=−N

ya(
n

2∆x

)z∗a(
n

2∆x

)e
πλkn

∆x , k = 0, 1, . . . , N ′−1 ,

(3.17)

where λk = λi +
λf−λi
N ′−1

k. As in the last section, these samples of the AF on the non–radial line

segment LA can be computed using the chirp transform algorithm.
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3.3 Fast Computation of the Wigner Distribution on Arbi-

trary Line Segments

In the rest of this chapter, we will present the dual development for the Wigner distribution. In

the next section, we introduce the dual of the Radon–Wigner transform: the Radon–ambiguity

function transform (RAFT). Then, we derive the relationship between the RAFT and FrFT.

As in the computation of the AF samples, this relationship will naturally lead us to the fast

computation algorithm for the required WD samples.

3.3.1 Radon–Ambiguity Function Transform

The Radon transformation has been found to be a useful tool in time–frequency signal

processing with applications to detection of chirp rates [78] and signal–dependent kernel

design [33]. As we show in the following sections, the Radon transform of the ambiguity

function itself is also an important tool in the efficient computation of the WD slices.

Here, we introduce the Radon–ambiguity function transform of a signal y(t) as the Radon

transform of its ambiguity function. The RAFT can be written as

RDN [Ay](r, φ) =

∫
Ay(r cosφ− s sinφ, r sinφ+ s cosφ) ds , (3.18)

where (r, φ) are the polar format variables. Using the projection–slice theorem, the radial slice

of the WD at an angle φ can be written as the FT of RDN [Ay](r, φ) with respect to the radial

variable r

∫
RDN [Ay](r, φ)e

−2πrλ dr = Wy(λ cosφ, λ sinφ) (3.19a)

= W p
y (λ, φ) , (3.19b)

where W p
y (λ, φ) � Wy(λ cosφ, λ sinφ) is the polar representation of the WD.

To obtain a fast computational algorithm similar to that in Section 3.2.2, the samples of

the projections RDN [Ay](r, φ) have to be obtained efficiently. One of the important results

obtained in this thesis is the following simple relation between the RAFT and the FRFT

RDN [Ay](r, φ) = y(a−1)(r/2)y
∗
(a−1)(−r/2) , (3.20)

20



which is proved in Appendix A. Thus combining (3.19) with (3.20) and discretizing the

obtained relationship, we obtain an algorithm which can be used to compute the samples of

the WD on polar grids, such as the ones shown in Fig. 3.2(a) and Fig. 3.2(b). In the following

section, based on the above relationship we propose an efficient algorithm to compute samples

of the WD on arbitrary line segments.

3.3.2 Computation of the Wigner Distribution Along Arbitrary Line

Segments

Suppose that we want to compute samples of the WD of a waveform x(t), along an arbitrary

line segment LW in the Wigner plane. Since the line segment LW may not pass through

the origin, we cannot immediately use the results of the previous section. However, as in

Section 3.2.4, we will express the required non–radial slice as the radial slice of the WD of

another function which allows us to use the results of the previous section. In the following

derivation we parameterize the line segment LW as:

LW = {(t, f)|t = to + λ cosφ, f = fo + λ sinφ, λi ≤ λ ≤ λf} . (3.21)

In this expression, (to, fo) is an arbitrary point which lies on LW and φ is the angle of LW

with the t–axis. Using this parameterization of LW , the non–radial slice of the WD can be

expressed as

Wx(to + λ cosφ, fo + λ sinφ) =

∫
x(to + λ cosφ+ t′/2)x∗(to + λ cosφ− t′/2)

× e−2π(fo+λ sin φ)t′ dt′ (3.22a)

≡ Wy(λ cosφ, λ sinφ) , (3.22b)

where Wy(λ cosφ, λ sinφ) is the radial slice of the WD of y(t):

y(t) = x(t+ to)e
−2πfot . (3.23)

Hence, the non–radial slice of the WD of x(t) is the same as the radial slice of the WD of

the time–shifted and frequency–modulated version of it, where both slices are in parallel. By

using the projection–slice theorem given in (3.19), the non–radial slice of the WD of x(t) can

be obtained as

Wx(to + λ cosφ, fo + λ sinφ) =

∫
RDN [Ay](r, φ)e

−2πrλ dr , (3.24)
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where RDN [Ay](r, φ) is the φ–Radon projection of the ambiguity function Ay(ν, τ). Since

the required φ–Radon projection satisfies the following FrFT relationship:

RDN [Ay](r, φ) = y(a−1)(r/2)y
∗
(a−1)(−r/2) , (3.25)

where a = 2φ/π, it can be efficiently computed by using the fast FrFT algorithm proposed

in [85] and given here as Algorithm 2. The steps of the proposed O(N logN) algorithm is

given in Algorithm 4. Note that, unlike RDN [Wx](r, φ), which is the φ–Radon projection of

the WD given by (3.1), the double–sided bandwidth of RDN [Ay](r, φ) is ∆x.

3.4 Fast Computation of the Cross Ambiguity Function

and the Cross Wigner Distribution on Arbitrary Line

Segments

Up to now, our main objective was developing algorithms for efficient computation of the

samples of the AF and WD on arbitrary line segments. However, in some applications [25],

[60] it is required to compute the cross AF and the cross WD of a pair of given signals. As we

show below, the same algorithms, with some slight modifications, can still be used to compute

samples of the cross AF and the cross WD on arbitrary line segments efficiently.

3.4.1 Fast Ambiguity–slice Computation Algorithm: Fast Computation

of the Cross Ambiguity Function on Arbitrary Line Segments

Suppose that we want to compute the samples of the cross AF of the two signals y(t) and z(t)

on the line segment LA shown in Fig. 3.3. This non–radial slice of the cross AF function is

given as

Ayz(νo + λ cosφ, τo + λ sinφ) =

∫
y(t+

τo + λ sinφ

2
)z∗(t− τo + λ sinφ

2
)

× e2π(νo+λ cos φ)t dt (3.26a)

≡ Aỹz̃(λ cosφ, λ sinφ) , (3.26b)

22



where Aỹz̃(λ cosφ, λ sinφ) is the radial slice of the cross AF of the signals ỹ(t) and z̃(t):

ỹ(t) = y(t+ τo/2)e
πνot (3.27)

z̃(t) = z(t− τo/2)e
−πνot . (3.28)

The radial–slice of the Aỹz̃(ν, τ) is the 1–D inverse FT of the φ–Radon projection of the

Wỹz̃(t, f)

Aỹz̃(λ cosφ, λ sinφ) =

∫
RDN [Wỹz̃](r, φ)e

2πλr dr , (3.29)

where the φ–Radon projection satisfies the following relation with the FrFTs of ỹ(t) and z̃(t):

RDN [Wỹz̃](r, φ) = ỹa(r)z̃
∗
a(r) , a =

2

π
φ . (3.30)

Then, the required non–radial slice of the Ayz(ν, τ) can be obtained as

Ayz(νo + λ cosφ, τo + λ sinφ) =

∫
ỹa(r)z̃

∗
a(r)e

2πλr dr . (3.31)

Discretization of this expression yields the fast computational algorithm which is tabulated in

Algorithm 3.

3.4.2 Fast Wigner–slice Computation Algorithm: Fast Computation of

the Cross Wigner Distribution on Arbitrary Line Segments

In this section, we derive the algorithm for fast computation of the samples of the Wyz(t, f)

on an arbitrary line segment LW as parameterized in (3.21). This non–radial slice of the cross

WD can be expressed as the radial slice of Wỹz̃(t, f):

Wyz(to + λ cosφ, fo + λ sinφ) =

∫
y(to + λ cosφ+ t′/2)z∗(to + λ cosφ− t′/2)

× e−2π(fo+λ sin φ)t′ dt′ (3.32a)

≡ Wỹz̃(λ cosφ, λ sinφ) , (3.32b)

where the signals ỹ(t) and z̃(t) are defined as

ỹ(t) = y(t+ to)e
−2πfot (3.33)

z̃(t) = z(t+ to)e
−2πfot . (3.34)
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Using the projection–slice theorem, this radial slice of the Wỹz̃(t, f) can be expressed as the

1–D FT of the φ–Radon projection RDN [Aỹz̃](r, φ) of the Aỹz̃(ν, τ)

Wỹz̃(λ cosφ, λ sinφ) =

∫
RDN [Aỹz̃](r, φ)e

−2πλr dr , (3.35)

where the φ–Radon projection is given in terms of the (a− 1)th order FrFTs of the signals ỹ(t)

and z̃(t):

RDN [Aỹz̃](r, φ) = ỹ(a−1)(r/2)z̃
∗
(a−1)(−r/2) . (3.36)

Finally substituting (3.35) and (3.36) into (3.32) gives

Wyz(to + λ cosφ, fo + λ sinφ) =

∫
ỹ(a−1)(r/2)z̃

∗
(a−1)(r/2)e

−2πλr dr . (3.37)

Discretization of this expression as in (3.17) yields the fast computational algorithm which is

tabulated in Algorithm 4.

3.5 Simulations

In this section, by using simulations, we will investigate the performance of the proposed

algorithms. For this purpose, we consider the signals with analytically known ambiguity

functions and Wigner distributions. This way, we will be able to investigate the error due

to discretization of the fractional Fourier transformation on the obtained samples. First we

will investigate the performance of the Algorithm 3 which computes the samples of the

ambiguity function on arbitrary line segments. In this simulation, we use a linear–frequency

modulated chirp signal with a rectangular envelope, x(t) = rect(t/T )eπ[at2+2bt], where the

rect(·) function takes the value 1 if its argument falls into the range [−T/2, T/2], a is the rate

of the chirp and b is its initial phase. The corresponding ambiguity function has the following

closed form expression:

Ax(ν, τ) = e2πτb (T − |τ |) sinc((ν + aτ)(T − |τ |)) rect(τ/2T ) . (3.38)

In the simulation performed here, the values of the parameters are chosen as T = 6,

a = −1/4 and b = 1. Then by sampling x(t) at a rate ∆x = 14, we obtained N = 196

uniformly spaced samples in the interval [−∆x/2, ∆x/2). Since the significant energy of the
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ath order FrFTs of x(t) are confined into this interval, no scaling is applied to the continuous

time signal x(t). In other words the value of the scaling parameter is given as s = 1 which

is also true for the other simulations in this section. In Fig. 3.4 (a), Algorithm 3 is used to

compute the AF samples on the full polar grid with the angular spacing of π/85 radians and

radial spacing of ∆x/210 normalized units. As shown in Fig. 3.4 (b), by using the same

algorithm, samples of the AF can also be obtained over a partial polar grid with the same

angular and radial sampling intervals. For the display purpose, the AF of the same signal

could also be computed on a Cartesian grid. In this simulation, first the AF is computed by

using the algorithm in [1], on the whole Cartesian grid with Doppler and delay spacings of

1/∆x units. Then, in Fig. 3.4(c) and (d), real parts of the computed AF samples which reside

on a full and partial circular disks with radius 3 are plotted, respectively. To investigate the

accuracy of the proposed algorithm, we computed in O(N logN) flops the samples of the

ambiguity function of the same chirp pulse over the radial line–segment shown in Fig. 3.5(a).

The real parts of the computed samples and their deviation from the samples computed by

using (3.38) are shown in Fig. 3.5 (b) and (c), respectively. As it can be seen from this

example, the computed samples are highly accurate. Alternatively, the samples on the line

segment shown in Fig. 3.5(a) could be approximated from the computed AF samples on the

Cartesian grid by using a crude interpolator such as the nearest neighbor interpolator. The

result of this alternative approach is shown in Fig. 3.5(d) where the real parts of the computed

samples are plotted. With the comparison of the approximation errors in Fig. 3.5(c) and (e),

it becomes apparent that the new algorithm produces a 10 times more accurate result for this

simulation. Furthermore, when the line segment has arbitrary orientation with O(N) samples

on it, the alternative computation based on the Cartesian grid requires O(N2 logN) flops. On

the other hand, by using Algorithm 3, the same AF samples can be computed with 10 times

more accuracy only in O(N logN) flops!
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Figure 3.4: The digital computation of the AF of a chirp signal with a rectangular envelope:
In the top two plots the real part of the AF of the pulse is computed on (a) full and (b) partial
polar grids by repeated use of the Algorithm 3. For the purpose of comparison, the AF samples
are also computed on a Cartesian grid by using [1]. In (c) and (d), the real parts of these AF
samples which lie on a full and partial circular disks are plotted, respectively.
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Figure 3.5: The digital computation of the AF of a chirp signal with a rectangular envelope: (a)
shows the support of a radial line segment on which the samples of the AF given in Fig. 3.4 are
computed. The real parts of the actual and computed AF samples on this line segment by using
Algorithm 3 are in very good agreement as shown by the close overlay in (b). The error in the
computation shown in (c) reveals the highly accurate nature of the computational algorithm.
In (d), the same AF samples are approximated from the samples on the Cartesian grid by using
nearest neighbor interpolation. The peak approximation error in (e) is approximately 10 times
larger than the one in (c).
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Next we investigate the accuracy of the algorithms in computing the WD of the Gaussian

pulse x(t) = 21/4e−πt2 , which has the Wigner distribution

W (t, f) = 2e−2π(t2+f2) . (3.39)

By sampling x(t) at a rate ∆x = 10
√
2, we obtained N = 200 uniformly spaced samples in the

interval [−∆x/2, ∆x/2). The plots (a) and (b) in Fig. 3.6 are obtained by repeated application

of the Algorithm 4. In plot (a) the WD is computed over a full and in plot (b) it is computed

over a partial polar grid. For the purpose of comparison, the WD samples are also computed

on a Cartesian grid by using the algorithm in [2] with a sampling interval of 1/(2∆x) units

both in time and frequency. Then, in Fig. 3.6(c) and (d), only the WD samples which lie on a

full and partial circular disks are plotted.

To show the accuracy of the proposed algorithm, we computed in O(N logN) flops,

samples of the Wigner distribution of the same Gaussian pulse over the non–radial line–

segment shown in Fig. 3.7(a). The obtained samples and the approximation error are plotted

in Fig. 3.7(b) and (c) respectively. For the purpose of comparison, the same AF samples are

approximated from the Cartesian grid samples by using nearest neighbor interpolation. In

Fig. 3.7(d) the approximated and actual AF samples, and in Fig. 3.7(e) the computation error

are shown. As in the AF case presented above, not only the accuracy of the computed samples

shown in Fig. 3.7(e) is significantly less than the accuracy obtained by using Algorithm 4, but

also the computation of the Cartesian grid based algorithm requires O(N2 logN) flops.
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Figure 3.6: The digital computation of the WD of a Gaussian pulse: In the top two plots
the WD of the pulse is computed on (a) full and (b) partial polar grids by repeated use of
the Algorithm 4. For the purpose of comparison, the WD samples are also computed on a
Cartesian grid by using [2]. In (c) and (d), the WD samples which lie on a full and partial
circular disks are plotted, respectively.
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Figure 3.7: The digital computation of the WD of a Gaussian pulse: (a) shows the support of a
non–radial line segment on which the samples of the WD given in Fig. 3.6 are computed. The
actual and computed WD samples on this line segment are in very good agreement as shown by
the close overlay in (b). The error in the computation shown in (c) reveals the highly accurate
nature of the computational algorithm. In (d), the same WD samples are approximated from
the samples on the Cartesian grid by using nearest neighbor interpolation. The error shown in
(e) is approximately 1000 times larger than the one in (c).
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Next we consider the digital computation of the WD of a multi–component signal x(t)

which is composed of two chirp pulses x1(t) and x2(t):

x(t) = x1(t) + x2(t) . (3.40)

The chirp pulses are chosen as

xk(t) = eπ[a(t−to)2+2bk(t−to)] rect((t− to)/T ) , (3.41)

for k = 1 or 2. The WD of x(t) can be analytically computed as

Wx(t, f) = Wr(t− to, f − at− b1) +Wr(t− to, f − at− b2)

+2 cos(2π(b2 − b1)(t− to))Wr(t− to, f − at− (b1 + b2)/2) , (3.42)

where Wr(t, f) is the WD of the rect(t/T ) function:

Wr(t, f) = 2T (1− 2|t|/T ) rect(t/T ) sinc(2(1− 2|t|/T )fT ) . (3.43)

In (3.42), the first two terms are the auto–terms and the third one is the cross–term.

For the reported simulation here, the parameters of x(t) are chosen as ∆x = 30, a = −3,

b1 = 3, b2 = −1, to = 3 and T = 5+1/∆x. The WD of x(t) with these parameters is digitally

computed on a grid like the one in Fig. 3.2(d) by using the Algorithm 4. The obtained result

shown in Fig. 3.8(a) demonstrates the agreement with the analytical result given in (3.42). In

this plot, we easily identify the auto–terms of the WD as the two darker shaded lines which

are closer to the edges, and we identify the cross–term as the line which is at the middle part

of the plot. The cross–term is highly oscillatory because of the cosine modulation in (3.42).

In Fig. 3.8(b) and Fig. 3.8(c) computed samples of the auto and cross terms are shown over

highly localized grids of the type given in Fig. 3.2(d). Finally, in Fig. 3.8(d) we provide the

approximation error for the auto–terms only.

In Fig. 3.9, the Radon–Wigner transform and Radon–ambiguity function transform of the

same multi–component signal are computed on polar grids by using the fractional Fourier

transform relations (3.3) and (3.20). The locations of the peaks in the RWT are related to the

rate and initial phase of the chirps in (3.41). When the chirp components are contaminated

with additive white Gaussian noise, the locations of the peaks in the Radon–Wigner transform

provide the maximum likelihood estimate of these parameters [82], [87]. Note that the
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computation of the RWT and the RAFT of a signal over a full polar grid requires the

computation of the same set of fractional Fourier transforms of the signal. Hence, when

these transforms are to be calculated simultaneously, significant computational saving can be

achieved by avoiding any extra computation of the FrFT samples.

Figure 3.8: Computation of the WD samples of a multi–component chirp signal over various
parallelogram grids to investigate the (a) whole, (b) auto and (c) cross terms. The efficient
computation of the highly localized samples of the WD as in plots (b), (c) has a wide range
application areas including component analysis, signal detection and signal extraction for non–
stationary signals. As shown in (d), the error in the computed samples of the auto terms is very
small.
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Figure 3.9: The digital computation of (a) the Radon–Wigner transform and (b) magnitude of
the Radon–ambiguity function transform. In this chapter, the computation of these transforms
constitute the intermediate steps in computation of the ambiguity function and the Wigner
distribution on polar grids. These transforms have important applications in signal detection,
multi–component signal analysis and data–adaptive kernel design for time–frequency signal
analysis.
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3.6 Conclusions

By using the fractional Fourier transformation of the time-domain signals, closed form

expressions for the projections of their auto and cross ambiguity functions are derived.

Based on a similar formulation for the projections of the auto and cross Wigner distributions

and the well known 2-D Fourier transformation relationship between the ambiguity and

Wigner domains, closed form expressions are obtained for the slices of both the Wigner

distribution and the ambiguity function. By using the obtained analytical results, efficient

algorithms are proposed for the computation of the auto or cross Wigner distribution and

ambiguity function samples on arbitrary line segments. The proposed algorithms make use

of a digital computation algorithm to approximate N uniformly spaced samples of FrFT

in O(N logN) flops. The ability of obtaining samples on arbitrary line segments provides

significant flexibility not only in computation of the high resolution distribution provided by

TFCA but also in numerous computational applications of the Wigner distribution and the

ambiguity function.
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Chapter 4

The Simplified Version of the TFCA for

Signals with Convex Time–Frequency

Supports

4.1 Introduction

Much of the research in time–frequency signal processing has been devoted to design of

new time–frequency representations. Among the representations developed so far the Wigner

distribution has attracted much of the attention because of its nice theoretical properties [2],

[6], [20], [21]. For signals with convex time–frequency supports, the WD gives the highest

auto–term concentration. However, since it is a bilinear representation, it suffers from severe

cross–term interference in the presence of more than one signal components. For instance the

Wigner distribution of a multi–component signal x(t) =
∑m

i=1 si(t) contains m(m − 1)/2

cross terms of the form 2Re{Wsisj(t, f)}, i < j, in addition to the auto–components

Wsisi(t, f) ≡ Wsi(t, f), where Wsisj(t, f) is the cross WD of the signals si(t) and sj(t) as

defined in (2.3). The cross–terms usually interfere with the auto–components and decrease the

interpretability of the Wigner distribution. Thus the existence of cross–terms limits the use of

the Wigner distribution in some practical applications.

The geometry of the cross–terms has been extensively analyzed [23]. It has been found that
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the cross terms lie at mid–time and mid–frequency of the auto–components, they are highly

oscillatory and the frequency of oscillations increases with the increasing distance in time and

frequency. Furthermore, cross–terms might have a peak value as high as twice that of the

auto–components. Since cross–terms are highly oscillatory, it has been suggested that some

sort of smoothing of the Wigner distribution is necessary to suppress the cross–terms.

In a unified framework, the distributions obtained by low–pass filtering the Wigner

distribution are studied under the name of Cohen’s bilinear class of shift invariant distributions

[6]. In this class, the time–frequency distribution TFx(t, f) of a signal x(t) is obtained as

shown in (2.1). Equivalently, the time–frequency distribution of the signal x(t) corresponding

to a fixed kernel κ(ν, τ) can be written as

TFx(t, f) =

∫∫
Ax(ν, τ)κ(ν, τ)e

−2π(νt+τf) dν dτ , (4.1)

where Ax(ν, τ) is the (symmetric) ambiguity function given in (2.4b). The drawback of this

class of distributions is that a fixed kernel can perform well only for a limited class of signals

whose auto–terms in the AF plane are located inside the pass–band region of the kernel κ(ν, τ).

For other signals they offer a trade–off between good cross–term suppression and high auto–

term concentration. Therefore to obtain a high–quality time–frequency representation, the

kernel must be adapted to the characteristics of the input signal to obtain a data–adaptive

smoothing. These considerations led to the development of Cohen’s class of time–frequency

representations with data–dependent kernels [6].

In this chapter we develop a novel approach to design data–adaptive time–frequency

distributions for composite signals. Being a simpler version of TFCA, the new technique

is tailored to analysis of composite signals whose components have convex time–frequency

supports. Although, the analysis of this type of signals has been studied in depth in literature,

the proposed method provides considerably better distribution than well–known techniques.

In contrast to the vast body of previous work, the proposed approach is based on the Radon

transform of the ambiguity function of the input signal, which is called as the Radon ambiguity

function transform as defined in Section 3.3.1. By performing windowing on the resultant

RAFT’s, it eliminates significant part of the outer interference terms without reducing the

auto–component concentration. Another limited but more advanced version of the TFCA
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algorithm, which is capable of removing the inner interference terms of signals with non–

convex time–frequency supports will be given in Chapter 5.

The outline of this chapter is as follows. In Section 4.2 the mathematical details of the new

approach are given, in Section 4.3 some simulation results are presented and in Section 4.4

some conclusions are drawn.

4.2 Directional Smoothing of the Wigner Distribution

The suppression of cross–terms is usually performed by smoothing the WD with a low–pass

filter. When, the low–pass filter is not appropriately chosen, the WD is smoothed in many

directions in the time–frequency plane. However, if the auto–terms of the signal do not have

low–pass characteristics along all orientations, naturally this leads to broadening of the auto–

terms. For instance the WD slice of a linear frequency modulated chirp has a low–pass

characteristic when the slice is along the chirp’s major axis, but is has considerably higher

frequency content when the slice is lying along its minor axis as illustrated in Fig. 4.1. Thus,

during smoothing the WD to suppress the cross–terms, the broadening of the auto–terms can be

avoided by using directional low–pass filters with adaptively chosen cut–off frequencies. By

smoothing each auto–term only along its support, the oscillatory cross–terms with significant

high–frequency content are suppressed without essentially decreasing the auto–component

concentration. At the end a high resolution time–frequency distribution is obtained.

In this chapter, we assume that supports of the auto–components or the regions of the

Wigner plane which are suspected to contain auto–components are specified before–hand.

What has to be done is to efficiently filter the slices of these regions with data–adaptive low–

pass filters. In the next subsection we develop a procedure to efficiently filter any arbitrarily

chosen slice of the WD.

4.2.1 Directional Filtering Algorithm

Suppose that we want to filter the non–central Wigner distribution slice, Wx(to + λ cosφ, fo +

λ sinφ), of x(t) which passes through the point (to, fo) and makes an angle of φ with

37



−5 0 5
−5

0

5

fr
eq

ue
nc

y

(a)

Major axis Minor axis 

−10 0 10
0

0.5

1

1.5

2

2.5

3

m
ag

ni
tu

de

(b)

−10 0 10
0

0.05

0.1

0.15

m
ag

ni
tu

de

(c)

Figure 4.1: An illustration showing that different time–frequency slices of a signal may have
significantly different bandwidths. For instance, although the WD slice of the chirp signal
whose t–f distribution given in (a) has a low–pass spectrum along the major axis as shown in
(b), it has considerably broader bandwidth along the minor axis as shown in (c).
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Figure 4.2: An illustration showing that the non–central (left) slice of a Wigner distribution
Wx(t, f) is the same as the central (right) slice of a Wigner distribution Wy(t, f) when y(t) =
x(t + to)e

−2πfot. This basic relationship is used in Section 4.2 to compute the adaptively
smoothed slices of the Wigner distribution Wx(t, f).

the time–axis as shown in Fig. 4.2 . It is straightforward to prove that this non–central

Wigner distribution slice of x(t) is the same as the central Wigner distribution slice,

Wy(λ cosφ, λ sinφ), of y(t) at the same angle φ (see Fig. 4.2) provided that the latter signal is

defined in terms of the original one through the relation

y(t) = x(t+ to)e
−2πfot . (4.2)

Thus we can formulate the filtering problem in terms of the WD Wy. By denoting the radial

slice of the WD Wy as SLC [Wy](λ, φ) ≡ Wy(λ cosφ, λ sinφ), and impulse response of the

real smoothing filter as h(t), the directional filtering can be mathematically expressed as

s(λ, φ) = h(λ) ∗
λ
SLC [Wy](λ, φ) , (4.3)

where s(λ, φ) is the slice of the filtered Wigner distribution. By using the projection slice

theorem [84], the central slice of the Wigner distribution Wy can be expressed as the Fourier

transform of the Radon transform of the ambiguity function Ay:

SLC [Wy](λ, φ) =

∫
RDN [Ay](r, φ)e

−2πrλ dr , (4.4)

where the Radon transform of the ambiguity function is defined as

RDN [Ay](r, φ) =

∫
Ay(r cosφ− s sinφ, r sinφ+ s cosφ) ds . (4.5)
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Thus (4.3) can be expressed in the (inverse) Fourier transform domain as

S(r, φ) = H(r)RDN [Ay](r, φ) , (4.6)

where S(r, φ) is the inverse Fourier transform of the slice s(λ, φ) with respect to the radial

variable λ, and H(r) is the inverse Fourier transform of the smoothing filter h(t). As tabulated

below, this equation gives the basis of the algorithm for filtering any slice of the Wigner

distribution of a signal x(t):

Algorithm 1 Directional Filtering Algorithm

Object of the algorithm: Given y(t) = x(t + to)e
−2πfot to smooth the non–central slice of

the WD of x(t) as shown in Fig. 4.2.
Steps of the algorithm:

1. Compute the Radon transform RDN [Ay](r, φ) of the ambiguity function Ay(ν, τ).
2. Design a multiplicative filter H(r) to capture the energy around the origin and suppress
the cross–terms away from the origin.
3. Apply the multiplicative filter H(r) to the Radon transform RDN [Ay](r, φ) to obtain
S(r, φ).
4. Compute the slice s(λ, φ) of the smoothed distribution from S(r, φ) by using the Fourier
transformation.

This procedure can be repeated on different slices where adaptively chosen filters are

utilized on each slice depending on the auto–component location in the corresponding

RDN [Ay](r, φ). In digital implementation, the computation of the radon transform from

ambiguity function requires O(N2) operations for a signal of N samples duration. Thus, to

have a practically useful algorithm, we have to obtain the Radon transform of the ambiguity

function efficiently. As we prove in Appendix A, the Radon transform of the ambiguity

function Ay(ν, τ) can be computed as

RDN [Ay](r, φ) = x(a−1)(r/2 + d)x∗
(a−1)(−r/2 + d) , (4.7)

where a = 2φ/π and x(a−1)(t) is the (a − 1)th order fractional Fourier transformation [88] of

the signal x(t) and in polar format (d, φ − π/2) is the closest point on the non–central slice

of the WD to the origin as shown in Fig. 4.2 . Thus, by using (4.6) and (4.7), the smoothed

non–central WD slice of x(t) is obtained as

SWx(to+λ cosφ, fo+λ sinφ) =

∫
H(r)x(a−1)(r/2+d)x∗

(a−1)(−r/2+d)e−2πrλ dr . (4.8)
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Since digital computation of the fractional Fourier transform of a signal with N samples

duration requires only O(N logN) operations [85], by discretization of (4.8), each WD slice

of x(t) can be smoothed in O(N logN) operations.

The expression given by (4.8) is in a form which is very suitable for digital computation.

However, to find the kernel of the distribution, the effect of the directional smoothing should

be investigated on the cartesian grid. For instance, if the smoothing operation is carried out in

a single direction at all parts of the time–frequency plane, it can be shown that, the resultant

distribution is equivalent to

SWx(t, f) = Wx(t, f) ∗∗
t,f

(h(t cosφ− f sinφ)δ(t sinφ+ f cosφ)) . (4.9)

Hence, the obtained distribution is in the Cohen’s class of time–frequency distributions and

h(t cosφ − f sinφ)δ(t sinφ + f cosφ) is the Fourier transform of the kernel κ(ν, τ) of the

distribution given in (2.1). On the other hand, if there are multiple components lying at

different orientations, each component is smoothed along its orientation. Thus, the resultant

distribution becomes

SWx(t, f) =
∑

i

[
Wx(t, f) ∗∗

t,f
(hi(t cosφi − f sinφi)δ(t sinφi + f cosφi))

]
Mi(t, f) ,

(4.10)

where φi denotes the orientation angle of the ith component in the time–frequency plane, hi(λ)

denotes the corresponding smoothing filter and Mi(t, f) is an indicator function denoting the

support of the ith component in the time–frequency plane. It should be emphasized that, when

multiple components are present in x(t), the resultant distribution is not in Cohen’s class of

time–frequency distributions, since (4.10) can not be put into the form given in (2.1).

4.3 Simulations

In this section we investigate the performance of the proposed method in removing the cross–

terms residing on the auto–components of the Wigner distribution. The synthetic test signal

used in the first simulated example is generated by linearly combining 5 linear FM signals

with Gaussian envelopes as shown in Fig. 4.3(a). The readability of the Wigner distribution

of this multi–component signal is severely degraded by the existence of cross–terms as seen
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in Fig. 4.3(b). In Fig. 4.4(a), the Wigner distribution is computed on rectangular grids which

contain supports of three of the auto–components. The smoothed WD slices computed by

using the proposed approach are plotted in Fig. 4.4(b). In Fig. 4.5(a), the corresponding auto–

term WD is given. Although the auto–term WD is a desirable distribution, in general it is

not computable. However for the synthetic test signal considered here since the components

si(t) constituting the composite signal x(t) are known beforehand, auto–term WD can be

computed as WA(t, f) =
∑5

i=1 Wsi(t, f), where Wsi(t, f) is the WD of si(t). In Fig. 4.5(b),

the difference between the desired auto–term WD and the computed TFD is plotted to illustrate

the good performance of TFCA for this simulation example.

In the next example we investigate the case, where not only the interference terms but also

one of the auto–components are superimposed on an auto–component. As shown in Fig. 4.6(a),

the Wigner distribution of the multi–component signal displays significant cross and auto–term

noise on the chirp signal centered at the origin. In Fig. 4.6(b), the smoothed slices of the WD

along this chirp signal are plotted. As it can be seen from this plot, the noise terms are greatly

suppressed.

4.4 Conclusions

A simplified form of the TFCA is presented for smoothing slices of the Wigner distribution

to suppress the oscillatory cross–term components yielding a highly accurate representation

of the auto–terms of the Wigner distribution. The simpler version of the TFCA algorithm,

which is tailored for signals with convex–time frequency supports, is based on the recently

established relationship between the Radon ambiguity function transform and fractional

Fourier transform derived in Chapter 3. In contrast to the smoothing algorithms which work

by applying a low pass filter globally to the WD, the new algorithm works locally on the

WD slices. As shown by simulation examples, for signal terms with convex time–frequency

supports, the proposed algorithm avoids the usual trade–off between cross–term suppression

and auto–term broadening by taking into account the characteristics of the cross–terms on the

WD slices.
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Figure 4.3: (a) The time domain representation of a composite signal which is composed of 5
linear FM signals and (b) the corresponding Wigner distribution.
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Figure 4.4: (a) The WD slices of the signal given in Fig. 4.3(a), which are computed along
auto–term supports by using the Fast Wigner–Slice computation algorithm of Chapter 3.
Although the WD slices given in (a) show significant cross–term interference, the smoothed
WD slices computed by using the simplified version of the TFCA show negligible interference
and auto–term distortion as shown in (b).
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Figure 4.5: (a) The auto–term WD of the signal given in Fig. 4.3 (a), which is obtained by
removing any noise and interference terms from its WD. Although the auto–term WD is a
desirable distribution, in general it is not computable. However for the synthetic test signal
considered here since the components si(t) constituting the composite signal x(t) are known
beforehand, auto–term WD can be computed as WA(t, f) =

∑5
i=1 Wsi(t, f), where Wsi(t, f)

is the WD of si(t). In (b), the difference between the desired auto–term WD and the computed
TFD by TFCA is plotted to illustrate the good performance of TFCA.
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Figure 4.6: This simulation illustrates the use of directional smoothing algorithm when there
are overlapping components in the time–frequency plane as shown in (a). The TFD slices
along one of the auto–components are computed by using the simplified version of TFCA.
The smoothed slices shown in (b) carries little auto–term and cross–term noise.
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Chapter 5

The Simplified Version of the TFCA for

Mono–Component Signals

5.1 Introduction

Time–frequency analysis is the primary tool for the analysis of non–stationary signals. Much

of the research effort in time–frequency analysis is devoted to design of distributions which

give a better description of the joint time and frequency content of signals. However,

most of the algorithms have a trade–off between sharp auto–term concentration and reduced

cross–term interference, or they are computationally very expensive to be useful in practical

applications. The TFCA developed in this thesis provides a very sharp description of the

signals with complicated structures while suppressing both inner and outer interference terms

in the time–frequency plane. For instance, the limited version of the TFCA developed

in Chapter 4 avoids the usual trade–off between the auto–term concentration and cross–

term interference for signals with convex time–frequency supports by performing directional

smoothing on the WD slices on the time–frequency support of the auto components. However,

the inner interference terms of components with non–convex time–frequency support could

only be partially suppressed by that limited version of the TFCA. To alleviate this problem,

in this chapter we develop a more advanced form of the TFCA by incorporating a novel
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fractional domain1 warping technique, which is first presented in [48]. This more general

but still limited version of the TFCA can handle not only signals with convex time–frequency

supports but also mono–component signals with non–convex supports in the time–frequency

plane. Although the obtained high resolution time–frequency representation does not belong

to Cohen’s class2, it gives a very good time–frequency description of mono–component signals

by suppressing their inner interference terms. When digitally implemented for a signal with N

samples duration, the complexity of the algorithm is only O(N logN) flops for each computed

time–frequency slice. The final form of the TFCA, that can handle both mono and multi–

component signals which may have convex or non–convex time–frequency supports will be

presented in Chapter 6.

The outline of the chapter is as follows. In Section 5.2 the concept of fractional domain

warping is introduced, in Section 5.3 the mathematical details of the new approach are given

on a simulated example and finally in Section 5.4 conclusions are drawn.

5.2 Fractional Domain Warping

Time domain warping is especially useful in the processing of frequency modulated signals.

It has been utilized in a diverse set of applications such as speaker and speech recognition

[89], transversal filtering with non–uniform tap spacing [90], synthesis of time–varying filters

for frequency varying signals [91] and time–frequency signal decomposition [92]. A typical

member of frequency modulated signals is in the form of x(t) = A(t)e2πϕ(t), where A(t) is

the narrow–band amplitude and ϕ(t) is the phase in Hz. Ideally, the warping function for the

FM signal should be chosen as the inverse of its phase, ζ(t) = ϕ−1(fst), where fs > 0 is an

arbitrary scaling constant. With this choice, the warped function takes the following form

xζ(t) ≡ x(ζ(t)) = A(ζ(t))e2πfst . (5.1)

which is a sinusoidal function at frequency fs with envelope A(ζ(t)). Consequently, the

algorithms designed to operate on sinusoidal signals can be utilized on the warped signal

xζ(t).

1Fractional domain is also called fractional Fourier transform domain [53].
2It does not belong to Cohen’s class of time–frequency distributions defined by (2.1), because it cannot be

described by either a fixed or signal dependent kernel.
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Figure 5.1: (a)–(b) the spines of the signals x(t) and xa(t) given in Fig. 5.2 plotted on the
support of their auto–term WDs, respectively. Although the spine in (a) is a multi–valued
function of time, the spine corresponding to the rotated support becomes a single–valued
function of time as shown in (b).

Fractional domain warping is the generalization of the time domain warping to fractional

domains [48], [93]. The warped fractional Fourier transform of a signal x(t) is obtained by

replacing the time-dependence of its FrFT with a warping function ζ(t). Thus, if x(t) is the

time domain signal with the ath order FrFT xa(t), a ∈ R, and ζ(t) is the warping function,

then the warped FrFT of the signal is computed by the following equations

xa(t) := {Fa x}(t) �
∫

Ka(t, t
′)x(t′) dt′ (5.2a)

xa,ζ(t) := xa(ζ(t)) , (5.2b)

where the kernel of the FrFT Ka(t, t
′) is given in Section 2.2 and ζ(t) is the warping function

associated with xa(t). For each analyzed signal component, the warping function is determined

based on spine of the component, which is defined as the center of mass along the time–

frequency domain support of the signal component. To compute the warping function ζ(t),

a single valued spine is needed as formulated in Section 5.3. If the support of the signal

component x(t) is as shown in Fig. 5.1 (a), its spine is a multiple valued function of time.

However if the support is rotated as shown in Fig. 5.1 (b), the spine corresponding to the

rotated support becomes a single valued function of time and is identical with the instantaneous

frequency. Since, these time–frequency domain rotations are made possible by fractional

Fourier transformation as illustrated in Fig. 5.2, fractional Fourier transformation extends the
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class of signals which may benefit from the warping transformation.

In the following sections, we introduce the use of fractional domain warping transforma-

tion to time–frequency analysis of signals with localized time–frequency supports. For the sake

of clarity, first we present a simplified form of the TFCA for the analysis of mono–component

signals, then extend it to multi–component case in Chapter 6.
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Figure 5.2: (a) A signal x(t), (b) its a = (−0.75)th order FrFT xa(t) and (c)–(d) the WDs of
the signals x(t) and its FrFT. The Wigner plots illustrate the rotation property of the fractional
Fourier transform on time–frequency plane: (right) The WD of xa(t) is the same as (left) the
WD of the x(t) rotated by −aπ/2 = 3π/8 radians in the counter–clock wise direction.
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5.3 Analysis of Mono–Component Signals by TFCA

The analysis of mono–component signals by TFCA starts with estimating support of the

signal in the time–frequency plane. To this end either the conventional short–time Fourier

transform (STFT) or one of its enhanced versions can be utilized [94], [95]. Since the STFT

is a linear transformation, unlike bilinear time–frequency distributions, it does not pass cross–

term interference. Although it has a lower resolution compared to bilinear time–frequency

distributions, its use is satisfactory in this application, since TFCA requires only an estimate

of the signal’s support in the time–frequency plane. In Fig. 5.3(a), the magnitude of the STFT

of the signal shown in Fig. 5.2(a) is given, where h(t) = e−πt2 is used as the window function

in STFT computation. Then, by using the watershed segmentation algorithm [3], the support

of the STFT is computed automatically as shown in Fig. 5.3(b).
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Figure 5.3: (a) The short–time Fourier transform STFTx(t, f) of the signal x(t) given in
Fig. 5.2(a), and (b) support of the STFT computed by using watershed segmentation algorithm
[3].

In the second stage of the TFCA, the order a of the FrFT is chosen such that after aπ/2

radians rotation of the time–frequency support of x(t) in the clock–wise direction, spine

becomes a single valued function of time. For this example with a = −0.75 chosen, the

rotated support of x(t) has a single valued spine as shown in Fig. 5.1(b). Actually, any a in the

interval of [−0.50, − 1.00] could have been reliably used for this purpose.

In the third stage of the TFCA, the spine of the signal xa(t) is estimated. Since after
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Figure 5.4: (a) The estimated spine ψa(t) overlaid with the actual instantaneous frequency of
the fractional Fourier transformed signal xa(t), (b) spine ψa(t) of xa(t) shown on the support
of its STFT.

the rotation, the spine of xa(t) becomes a single valued function of time, an instantaneous

frequency estimation algorithm [24], [71], [94], [96], [97] can be used to determine the spine.

In this thesis the spine is obtained by

ψa(t) =

∫
f |STFTxa(t, f)|2 df∫ |STFTxa(t, f)|2 df

, (5.3)

where the magnitude squared STFT in (5.3) is called as spectrogram, which is a smoothed

bilinear t–f distribution [24]. The close fit of the estimated spine by using this estimator and

the actual instantaneous frequency is shown in Fig. 5.4(a). The estimated spine is also shown

on the time–support of the STFT in Fig. 5.4(b).

After identification of the spine, the inverse of the warping function is found by integration.

When the time domain support of ψa(t) is t1 ≤ t ≤ tN , the inverse of the warping function is

computed by

Γ(t) =

∫ t

t1

ψa(t
′) dt′ , t1 ≤ t ≤ tN (5.4)

ζ−1(t) = Γ(t)/fψa + t1 , t1 ≤ t ≤ tN , (5.5)

where fψa is the mean of the spine

fψa =

∫ tN

t1

ψa(t
′) dt′ . (5.6)
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With these definitions, the warping function ζ(t) becomes

ζ(t) = Γ−1(fψa(t− t1)) , t1 ≤ t ≤ tN . (5.7)

If the spine ψa(t) is a strictly positive function of time, Γ(t) defined in (5.4) is a monotonically

increasing function of time. Therefore, its inverse given in (5.7) exists and it is unique.

Otherwise, we work with the frequency modulated signal x
δf
a (t) � xa(t)e

2πtδf , where δf

is chosen such that the spine ψ
δf
a (t) � ψa(t) + δf of x

δf
a (t) is a strictly positive function of

time. Hence, for clarity of the presentation, we assume that ψa(t) is a strictly positive function

of time. As an illustration, the effect of the warping operation on the synthetic signal given in

Fig. 5.2(a) is shown in Fig. 5.5(a). In this example, the warped signal xa,ζ(t) is computed by

using (5.2) with a = −0.75 and δf = 0.

In digital implementation of the fractional domain warping transformation, uniformly

spaced samples xa,ζ(kT ), k ∈ Z, of xa,ζ(t) are to be computed from the available uniformly

spaced samples x(kT ) of x(t), where T is the sampling interval. This can be done by using

the fast FrFT computation algorithm [85] in (5.2a) and by using an interpolation algorithm in

(5.2b). A multitude of interpolation algorithms exist for this purpose. In this thesis the spline

interpolator is preferred for its simplicity [98].

After the warping operation, time–frequency support of the signal xa,ζ(t) is localized

around the line segment (λ, fψa), t1 ≤ λ ≤ tN , in the time–frequency plane. Thus, by

using the warping operation the signal component with non–convex time–frequency support

is transformed to a component with convex support in the time–frequency plane. Since xa,ζ(t)

is a mono–component signal with a convex time–frequency support, the simplified form of

the TFCA given in Chapter 4 provides a high resolution time–frequency representation with

negligible inner interference term in the warped fractional domain. In the following, we will

detail how the time–frequency representation will be obtained from the smoothed Wigner

distribution of the warped signal in ath fractional domain. A summary of the steps is as follows.

To obtain, the time–frequency representation of the mono–component signal, the smoothed

Wigner distribution of the warped signal will be used to obtain a high resolution time–

frequency representation of the signal in the ath fractional domain. Then, this fractional domain

representation has to be rotated back to obtain the desired time–frequency representation. In

the rest of this section, these steps are presented in detail.
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Figure 5.5: (a) The fractional domain warped version x(−0.75,ζ)(t) of the signal x(t) given in
Fig. 5.2 (a), and (b) the corresponding smoothed WD slice Hx(−0.75,ζ)

(t, fψ) of x(−0.75,ζ)(t).
The TFCA uses this smoothed WD slice to compute the time–frequency slice Hx(−0.75)

(t, f)
of x(−0.75)(t) which lies on the spine ψa(t) shown in Fig. 5.4(b).

Following the computation of the smoothed WD slice of the warped signal on the line

segment (λ, fψa), t1 ≤ λ ≤ tN , as illustrated in Fig. 5.5(b), the time–frequency slice of the

distribution Hxa(t, f) which lies on the spine ψa(t) is found as

Hxa(ζ(λ), ψa(ζ(λ))) = SWxa,ζ(λ, fψa) , t1 ≤ λ ≤ tN , (5.8)

where the smoothed WD slice SW (xa,ζ(λ, fψa) is computed by using the simplified version of

the TFCA given in Chapter 4. In digital implementation, samples of the smoothed WD slice

SWxa,ζ(t, fψa), t1 ≤ λ ≤ tN , can be computed by using the fast computation algorithm given

in [49].

Samples of Hxa(t, f) lying on translated spines can also be computed efficiently as follows.

By imposing the frequency shifting property on the TFD of xa(t), we require that when ya(t) =

xa(t)e
2π∆ψa t is a linearly frequency modulated version of xa(t), the following relation exists

between the time–frequency distributions of these signals:

Hxa(t, f +∆ψa) = Hya(t, f) . (5.9)

Hence, time–frequency distribution slice of Hya(t, f) which lies on the spine ψa(t) shown in

Fig. 5.4(b) is the same as the time–frequency distribution slice of Hxa(t, f) which lies on the
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Figure 5.6: (a) The warped version y(−0.75,ζ)(t) of the signal y(−0.75)(t) = x(−0.75)(t)e
2π∆ψt

where x(t) is the same synthetic signal used in Fig. 5.5 and (b) the corresponding smoothed
WD slice Hy(−0.75,ζ)

(t, fψ) of y(−0.75,ζ)(t). TFCA uses this smoothed WD slice to compute the
time–frequency slice Hx(−0.75)

(t, f) of x(−0.75,ζ)(t) which lies on the translated spine shown in
Fig. 5.4(b).

translated spine shown in the same figure:

Hxa(t, ψa(t) + ∆ψa) = Hya(t, ψa(t)) . (5.10)

Therefore, by using (5.10) and the relation given in (5.8) with x(t) replaced by y(t), the time–

frequency distribution slice of Hxa(t, f), which lies on the translated spine shown in Fig. 5.4(b)

is given as the smoothed WD slice of the warped signal ya,ζ(t) on the line segment (λ, fψa),

t1 ≤ λ ≤ tN :

Hxa(ζ(λ), ψa(ζ(λ)) + ∆ψa) = Hya(ζ(λ), ψa(ζ(λ)))

= SWya,ζ(λ, fψa) , t1 ≤ λ ≤ tN . (5.11)

For instance, for the particular value of ∆ψa shown in Fig. 5.4(b), the warped signal ya,ζ(t) and

its Wigner distribution slice computed by using the fast computation algorithm given in [49]

are shown in Fig. 5.6(a)-(b), respectively.

In practice, the warped form of the signal ya(t) is straightforward to compute, since

ya,ζ(t) = xa,ζ(t)e
2π∆ψaζ(t). Thus in the digital implementation, interpolation of the samples

xa(ζ(kT )) from the uniformly spaced samples xa(kT ) should be done only once. For any

value of ∆ψa the above relation between the warped signals xa,ζ(t) and ya,ζ(t) should be used.
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In TFCA, the relation given in (5.11) is used to compute the time–frequency distribution

slice of Hxa(t, f) on a curve which is parameterized as (t(λ), f(λ)) = (ζ(λ), ψa(ζ(λ))+∆ψa).

Hence, for each value of ∆ψa the algorithm derived above gives the samples of a different slice

of the time–frequency distribution of xa(t). Thus, by using different values for ∆ψa , the TFCA

can compute the TFD xa(t) on a desired region of the time–frequency plane. In the simulated

example, by using the mapping rule (5.11) for a set of ∆ψa values, TFCA provided a very

sharp t–f description of the signal xa(t) as shown in Fig. 5.7(a).

Finally, to remove the rotation effect induced by the fractional Fourier transformation,

computed slices of Hxa(t, f) are rotated back by aπ/2 radians in the counter clock wise

direction. The rotated slices of the time–frequency distribution Hx(t, f) of x(t) are obtained

as

Hx(tr(λ), fr(λ)) = Hxa(ζ(λ), ψa(ζ(λ)) + ∆ψa) , t1 ≤ λ ≤ tN , (5.12)

where tr(λ) and fr(λ) are given by:

tr(λ) = ζ(λ) cos(aπ/2)− (ψa(ζ(λ)) + ∆ψa) sin(aπ/2)

fr(λ) = ζ(λ) sin(aπ/2) + (ψa(ζ(λ)) + ∆ψa) cos(aπ/2) , t1 ≤ λ ≤ tN . (5.13)

The resultant TFD of x(t) obtained by rotating the TFD of xa(t) given in Fig. 5.7(a) is shown

in Fig. 5.7(b).

5.4 Conclusions

A simplified version of the TFCA is developed to obtain very high resolution distribution of

mono–component signals with convex or non–convex time–frequency supports. By utilizing

a novel fractional domain warping concept and the algorithms given in Chapters 3–4, the

simplified version of the TFCA significantly suppresses the inner interference terms of the

signal components and produces a very good time–frequency description of them. The

performance of the new time–frequency distribution is illustrated on a simulation example.
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Figure 5.7: (a)–(b) The time–frequency distributions of x(−0.75)(t) and x(t), respectively,
which are obtained by using the TFCA. Note that after computing the time–frequency
distribution Hx(−0.75)

(t, f) of x(−0.75)(t), the TFCA provides the time–frequency distribution
Hx(t, f) of x(t) by rotating Hx(−0.75)

(t, f) by an amount proportional to the order, a = −0.75,
of the fractional Fourier transformation.
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Chapter 6

The Full Version of the TFCA

6.1 Introduction

In the previous chapters, we presented the limited versions of the TFCA for some special class

of signals. The proposed fast computation algorithms efficiently remove the inner and outer

interference terms of that limited class of signals in the time–frequency plane. In this chapter,

we present the full version of the TFCA.

In the full version of TFCA, the analysis of a multi–component signal x(t) =
∑m

i=1 s
i(t)

with m components si(t) starts by identification of the supports of the individual components.

To this purpose, we propose to use an image segmentation algorithm on the short–time Fourier

transform of the composite signal. Then, by using the support information on one of these

components, for instance s1(t), the TFCA maps the composite signal x(t) into an appropriate

warped fractional domain, where the chosen component s1(t) with a possibly complicated

cross–term structure in the original time–frequency plane has an approximately convex time–

frequency support in the warped domain. In the second stage of the processing, the TFCA

uses a practical and highly efficient time–frequency domain incision algorithm to extract

the analyzed signal component s1(t) in the warped fractional domain. Then by efficiently

smoothing WD slices of the extracted signal component, the TFCA provides the distribution

of the extracted component in the warped fractional domain. Finally by mapping the computed

distribution back into the original time–frequency plane, the TFCA provides a high resolution
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distribution for that component with significantly reduced interference terms.

After completing its analysis on a chosen signal component, the TFCA proceeds by

subtracting the estimated component s1(t) from the composite signal x(t). Since the

utilized incision algorithm provides highly accurate estimates, the computed residual signal

is composed of essentially m − 1 components si(t), 2 ≤ i ≤ m. Thus by iterating the time–

frequency analysis and incision stages each time on a reduced complexity residual signal, the

TFCA provides the time–frequency distributions of the individual signal components. In the

final stage of processing, the TFCA computes the time–frequency distribution of the composite

signal by fusing the computed distributions of the individual signal components.

The use of a component extraction algorithm as part of the TFCA brings the following

benefits:

• Computational efficiency increases, since usually extracted components have shorter

time supports.

• The quality of the resultant distribution improves, since by incision large amount of

noise can be removed.

• The identification of the supports of the remaining components simplifies, because the

extraction of a component si in an N–component signal also removes the N − 1 cross–

terms of the form 2Re{Wsisj(t, f)}, i < j, in the time–frequency domain.

Since these expected benefits are dependent on the performance of the component extraction

algorithm, we propose to use an efficient but highly accurate fractional domain incision

technique developed in this chapter.

The organization of this chapter is as follows. In Section 6.2 we give the mathematical

details of the FDI algorithm. Then, in Section 6.3 we present the full version of TFCA on a

simulated example and compare the performance of TFCA with some well known methods on

synthetic and real data sets.
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6.2 Fractional Domain Incision Algorithm: An Efficient

Algorithm for Extraction of Signal Components with

Convex Time–Frequency Supports

Time–frequency based extraction of the individual signal components of a given multi–

component signal can be conducted in two stages. In the first stage detection and identification

of the individual signal components is performed on the time–frequency plane. Then, the

signal components are estimated based on the obtained time–frequency information on them.

In the following subsections both stages of the component extraction problem are fully

analyzed on a simulated example. To convey the ideas clearly, noise–free signals are used in

the simulation example. The effect of noise to the performance of TFCA will be investigated

in Section 6.3.

6.2.1 Detection and Identification of Signal Supports In the Time–

Frequency Plane

The search for signal components which have compact time–frequency supports typically

starts with the careful examination of the time–frequency distribution of the composite

signal. The Wigner distribution is the most commonly used time–frequency analysis tool

which provides the highest resolution time–frequency characterization of chirp–like signals.

However, because of its bilinear nature, the supports of the actual signal components may not

be visible in the presence of cross–terms of the Wigner distribution. For instance, if the signal

s(t) is composed of m signal components, si(t), 1 ≤ i ≤ m, then by using (2.2) and (2.3) the

corresponding Wigner distribution can be written as:

Ws(t, f) =

∫
s(t+ t′/2)s∗(t− t′/2)e−2πft′ dt′

=

∫ ∑
i

si(t+ t′/2)s∗i (t− t′/2)e−2πft′ dt′

=
∑

i

Wsi(t, f) + 2
∑
i<k

Re{Wsisk(t, f)} , (6.1)
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where the auto–Wigner distributions corresponding to m individual signal components are

accompanied by m(m − 1)/2 cross–Wigner distributions [6]. As shown in Fig. 6.1 (b), the

cross–Wigner terms may partially or totally overlap with the auto–Wigner terms making it very

difficult if not impossible to detect and identify the time–frequency supports of the individual

signal components.
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Figure 6.1: Illustration of support identification in time–frequency plane: (a) The time domain
representation of a multi–component signal s(t), which is composed of 5 linear FM signals,
(b) and (c) the Wigner distribution and short–time Fourier transform of s(t), respectively,
(d) time–frequency supports of components computed by using the watershed segmentation
algorithm on the STFT of s(t).
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In this thesis, STFT is used to identify the time–frequency supports of individual

components. Although it has a lower resolution than the WD as shown in Fig. 6.1(c), being

a linear distribution, it doesn’t contain troublesome interference terms. In other words, the

STFT of a composite signal is the sum of the STFTs of the individual components of the

composite signal. In this thesis, we propose to detect the time–frequency supports of the

signal components automatically, by using a segmentation algorithm on the computed STFT.

In Fig. 6.1(d), the result obtained by using the watershed segmentation algorithm [3] on the

computed STFT is given. As shown in this figure, the supports of the individual components

can be detected well enough by using the watershed segmentation algorithm.

6.2.2 Component Estimation by Fractional Domain Incision

In the second stage of processing, the obtained information on the supports of the individual

signal components is used to design proper time–frequency incision techniques to extract the

components directly from the signal. To demonstrate the required processing for the signal

component extraction, consider the supports of auto–terms of the Wigner distribution of a

composite signal as shown in Fig. 6.2 . In order to extract the signal component which is

localized at the center of the time–frequency plane, a time–frequency incision around this

component should be performed. Among many alternatives, the simplest incision can be

performed by first applying a frequency domain mask H1(f) to S(f) whose support is the same

as the frequency axis projection of the signal component. Then, to the result a time–domain

mask h2(t), whose support is the projection of the signal component on the time–axis, can be

applied to approximate the signal component. This way, the estimated signal component will

have its time–frequency support approximately limited into the dashed–box around the desired

signal component. Formally, the component estimate is obtained by:

ŝi(t) = h2(t)[h1(t) ∗ s(t)] ≈ si(t) . (6.2)

In a more general case, if the supports of the auto–components in the time–frequency

plane are as shown in Fig. 6.3, then it is not possible to extract si(t) from s(t), by successive

maskings in frequency and time domains. Because in this case there does not exist a

rectangular region in the time–frequency plane, which contains only the support of the ith

60



f

t

Figure 6.2: The extraction of the component centered at the origin of the time–frequency plane
by using frequency and time domain masks.

auto–component but not the others. However, a viable solution in this case is first to translate

the origin of the time–frequency plane to approximate center (ti, fi) of the ith auto–component

as shown in Fig. 6.3. The required translation can be performed as:

s̃(t) = s(t+ ti)e
−2πtfi . (6.3)

Note that the ith component of the signal s̃(t) is s̃i(t) = si(t + ti)e
−2πtfi . Then the fractional

Fourier transform [99] of this signal is

s̃ai(t) ≡ {Fai s̃}(t) �
∫

Kai(t, t
′)s̃(t′) dt′ , (6.4)

where ai = 2φ/π is the order of the FrFT and Kai(t, t
′) is the kernel of the transformation

given in (2.8). Since the WD of the ath
i order FrFT of a signal is the same as the WD of

the original signal rotated by angle of aiπ/2 in the clock–wise direction [88], [99], the WD

of s̃ai(t) is aligned with one of the axis as shown in Fig. 6.3 (c). Thus after the elementary

operations of translation and rotation in the time–frequency plane, the WD of s̃i,ai(t) fits into a

compact rectangular region as shown in Fig. 6.3(c). Therefore, as in Fig. 6.2, the ith component

of s(t) can be extracted in the transform domain by successive maskings as:

ˆ̃si,ai(t) = h2(t)[h1(t) ∗ s̃ai(t)] , (6.5)

where h2(t) is the time–domain mask and h1(t) is the inverse Fourier transform of the

frequency domain mask H1(f). After obtaining an estimate for s̃i,ai(t), an estimate of si(t)
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can be easily computed by reversing the operations of translation and rotation in the time–

frequency plane:

ˆ̃si(t) = F−ai [ˆ̃si,ai(t)] (6.6)

ŝi(t) = ˆ̃si(t− ti)e
2π(t−ti)fi . (6.7)

In practice the required fractional Fourier transform can be directly carried on the given

(a) f

t

(b) f

t

(c) f

t

(d) f

t

Figure 6.3: An illustration showing the steps of fractional domain incision algorithm: (a)
shows the supports of the auto–terms in the WD of s(t), (b) shows the corresponding supports
for the time and frequency translated signal s̃(t) = s(t + ti)e

−2πfit. After computing the
fractional Fourier transformation of s̃(t), the support of the middle component in s̃ai(t) =
Fai [s̃(t)] is aligned with the time–axis as shown in (c). Thus, as discussed in Section 6.2.2, this
component can be extracted by frequency and time domain masking operations, respectively.
After extraction of the component, the steps of fractional Fourier transformation, time and
frequency translation operations are reverted to obtain the time–domain representation of the
extracted component. The time–frequency support of the extracted component after these
operations is shown in (d).
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Nyquist rate samples of the composite signal s(t) by using the algorithm given in [85] and

summarized in Appendix B.1. As shown in [85], the complexity of the fractional Fourier

transform is the same as FFT. Therefore, the overall complexity of the proposed signal

component extraction algorithm is O(N logN) for a component whose time domain support

is of approximately N samples in duration.

The required incision in the more general case shown in Fig. 6.3 can also be performed

by using fractional Fourier domain filtering techniques given in [57], [100], [101]. However,

the proposed techniques in [57], [100], [101] are for noise suppression. Therefore, there is

a need for improvement in these techniques to suppress both the noise and the other signal

components.

6.2.3 Simulation of the Fractional Domain Incision Algorithm

In this section we investigate the performance of the fractional domain incision algorithm

by conducting computer simulations on the synthetic signal given in Fig. 6.1 (a). The

corresponding Wigner distribution shown in Fig. 6.1(b) is very much cluttered with the cross–

terms. Because of the significant overlaps between the cross and auto terms, it is rather difficult

to identify supports of auto–terms given in Fig. 6.1(b). However, as shown in Fig. 6.1(c)–(d),

by using the first stage of the processing supports of the individual signal components can be

identified accurately.

To illustrate the performance of the second stage of processing, we present results on

extracting two of the chirp components of the composite signal shown in Fig. 6.1. The estimate

of the long chirp component which is located at the center of the t–f plane in Fig. 6.1 is given

in Fig. 6.4 (a). This result is obtained by performing time–frequency domain incision on a

rotated time–frequency plane obtained by using fractional Fourier transformation of order 0.5

corresponding to π/4 radians of rotation. The error in the estimated signal component is

shown in Fig. 6.4(b). As seen from this figure, the extracted signal component is a very close

approximation of the original signal component with a normalized error of Ei = 1.3 × 10−3

which is defined as:

Ei =
||x i − x̂ i||

||x i|| (6.8)
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where x i and x̂ i are the actual and estimated signal components in vector notation.
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Figure 6.4: Performance of the fractional domain incision algorithm: (a) The estimate of the
long chirp component in Fig. 6.1(b) which is located about the origin of the time–frequency
plane and (b) the difference of the estimate from the actual signal component.
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Figure 6.5: Performance of the fractional domain incision algorithm: (a) The estimate of the
short chirp component in Fig. 6.1(b) whose time-frequency center lies to the right of the origin
and (b) the difference of the estimate from the actual signal component.

The estimate of the shorter chirp component which is located just to the right of the longest

chirp component in Fig. 6.1 is shown in Fig. 6.5(a). This result is obtained by first translating

the origin of the time–frequency plane to the center of the chirp component. Then the time–

frequency domain incision over the estimated support of the signal component is performed

on a rotated time–frequency plane obtained by using fractional Fourier transformation of order

0.5 corresponding to π/4 radians of rotation. The difference plot of the estimated and actual
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signal component is shown in Fig. 6.5(b) to illustrate the accuracy of the algorithm. As seen

from this figure, the extracted signal component is a very close approximation of the original

signal component with a normalized error of Ei = 2.5× 10−3.

6.3 Analysis of Multi–Component Signals by TFCA

In this section, the full version of TFCA is presented. To clearly present this technique, steps of

the TFCA is shown on a three–component signal s(t), which is obtained by adding two more

components to the mono–component signal analyzed in Section 5.3. To illustrate the effect

of noise on TFCA, noise corrupted signal x(t) = s(t) + w(t) is used in the analysis, where

samples of w(t) are independent identically distributed circular Gaussian noise. The mean

signal energy to noise power spectral density ratio is chosen as 5 dB. The noisy signal x(t)

and its Wigner distribution Wx(t, f) are shown in Fig. 6.6(a) and (b), respectively. The WD

plot clearly show significant problems of cross–terms. In Fig. 6.7 (a) the short time Fourier

transform, STFTx(t, f) of the multi–component signal x(t) is shown. Although STFT has

lower resolution then the WD, supports of all components can be detected well enough on

computed STFT by using the watershed segmentation algorithm [3] as shown in Fig. 6.7(b).

The first component to be analyzed by TFCA is manually chosen as one of the peripheral

components. In the presented example, the component which is located at the top right in

Fig. 6.7(b) is chosen as the first component, s1(t), to be analyzed by TFCA. The appropriate

FrFT order a1 and the spine ψa1(t) of the first component s1
a1
(t) in fractional Fourier transform

domain are estimated as in mono–component case. However instead of the short–time Fourier

transforms of x(t) and xa1(t), their masked versions STFTM
x (t, f) � STFTx(t, f)M(t, f)

and STFT
Ma1
x (t, f) � STFTxa1

(t, f)Ma1(t, f) are used, where the masks M(t, f) and

Ma1(t, f) are indicator functions of the supports of s1(t) and s1
a1
(t) which are obtained

automatically by using watershed segmentation algorithm [3]. In the presented example, a1

is estimated as −0.75 and the estimate of the spine ψa1(t) computed by using the indicator

function Ma1(t, f) given in Fig. 6.8(a) is plotted in Fig. 6.8(b) overlaid with the actual spine.

The corresponding root mean square estimation error for the spine is 0.102 Hz in this example.

Then, the warped FrFT xa1,ζ1(t) is computed, which is shown in Fig. 6.9 (a). To obtain the
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support of the first warped component, the short time Fourier transform STFT(xa1,ζ1 )(t, f) of

the warped signal, which is shown in Fig. 6.9 (b), is computed. The STFT component with

convex support corresponds to the first warped component. Note that in the computation of

the STFT, a Gaussian window, h(t) = e−πt2/4, is used.

In the second stage of processing, the warped signal component will be extracted. For

this purpose various time–frequency processing techniques such as [55], [56], [58–61] can be

used. In the following, we will present results based on the time–frequency domain incision

technique [56]. The warped signal component can be extracted by using a simple incision

technique by first applying a frequency domain mask H1(f) to S(f) and then applying a time

domain mask h2(t) to the result. The supports of the frequency domain mask and time domain

masks are chosen to enclose the support of the first component in STFT(xa1,ζ1 )(t, f) into a

rectangular region as shown with horizontal and vertical dashed lines in Fig. 6.9(b). This way,

the estimated signal component will have its time–frequency support approximately limited

into the dashed–box around the desired signal component. Formally, the warped component

estimate is obtained by:

ŝ1
a1,ζ(t) = h2(t)[h1(t) ∗ xa1,ζ(t)] , (6.9)

where h2(t) is the time–domain mask and h1(t) is the inverse Fourier transform of the

frequency domain mask H1(f). After obtaining an estimate for s1
a1,ζ(t), an estimate of s1(t)

can be easily computed by inverse warping, and inverse fractional Fourier transformation

operations, respectively:

ŝ1
a1
(t) := ŝ1

a1,ζ1
(ζ−1

1 (t)) (6.10a)

ŝ1(t) := {F (−a1) ŝ1
a1
}(t) . (6.10b)

In the presented example, the FrFT order is a1 = −0.75. The resultant signal obtained after

these operations is shown in Fig. 6.10 (a) overlaid with the actual component s1(t). The

corresponding estimation error shown in Fig. 6.10 (b) indicates the accuracy of the time–

frequency domain incision algorithm despite excessive noise. In the signal extraction stage

of TFCA, more sophisticated time–varying filtering techniques can be used to extract the

warped signal components. If there are no overlapping signal components, the extraction can

be performed by using any of the well known techniques. On the other hand, at the incision

stage where overlapping components are to be extracted, we propose to use time–frequency
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domain signal synthesis techniques such as [59],[60]. A comparative study of using alternative

techniques will be presented in a future work.

In practice the required fractional Fourier transform can be directly carried on the given

Nyquist rate samples of the composite signal x(t) by using the algorithm given in [85] and

summarized in Algorithm 2. As shown in [85], the complexity of the fractional Fourier

transform is the same as the FFT. Therefore, the overall complexity of the utilized signal

component extraction algorithm is O(N logN) for a component whose time domain support

is of approximately N samples in duration.

After extraction of the first component, the same analysis is repeated on the residual signal

r1(t) = x(t)− ŝ1(t) to estimate the second component and its corresponding TFD. Continuing

in this manner, all components of the composite signal are estimated. In Fig. 6.11 and

Fig. 6.12 the estimates of the remaining signal components and the corresponding estimation

errors are plotted. The estimation errors ei(t) = si(t) − ŝi(t) given in these figures show the

accuracy of the fractional domain incision technique used in TFCA.

At the end of these iterations we have obtained estimates for all three signal components.

The final residual, r3(t) = x(t) − ∑3
i=1 ŝ

i(t), given in Fig. 6.13 (a) shows that after

the extraction of the identified signal components, the residual is noise–like. Once the

TFCA isolates the individual signal components, their corresponding high resolution time–

frequency representations can be obtained as described in Section 5.3 for mono–component

signals. Then, the TFCA computes the time–frequency distribution of the composite signal by

summing the computed time–frequency distributions of the individual components as shown

in Fig. 6.13(b). The computed distribution has a very sharp resolution and has negligible outer

or inner interference terms as this figure clearly shows.

Before comparing the performance of TFCA with some well know time–frequency

analysis techniques, we note that if the identified support of the warped signal component

is free of outer interference terms, then the TFCA can provide a time–frequency distribution

of that component without the use of signal extraction. Otherwise, the signal components that

has outer interference terms can only be analyzed reliably after the extraction of those signal

components causing the interference. Hence, the extraction of signal components is a must in

this case. However, TFCA aims not only to provide a time-frequency distribution, but also, to
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extract the identified signal components. Therefore, we always make use of signal extraction

as part of TFCA.

To assess the performance of TFCA, we compared its performance with some fixed kernel

time–frequency distributions and two well known data adaptive techniques: The reassignment

method [46] and the optimal radially–gaussian kernel TFD technique [35]. In Fig. 6.14 (a),

Fig. 6.15(a) and Fig. 6.16(a), the pseudo Wigner distribution (PWD), the smoothed pseudo

Wigner distribution (SPWD) and the spectrogram are shown, respectively. The corresponding

reassigned distributions, i.e., reassigned PWD, reassigned SPWD and reassigned spectrogram

are given in Fig. 6.14 (b), Fig. 6.15 (b) and Fig. 6.16 (b), respectively. These plots show

that when the smoothing of the WD is not enough to suppress the cross–terms sufficiently,

the reassigned TFD obtained from the corresponding smoothed distribution also includes

cross–terms. When the cross–terms are sufficiently suppressed as shown in Fig. 6.16 (a),

the windowed chirp signal at the bottom left part of the t–f plane has a line segment like

distribution after reassignment as shown in Fig. 6.16 (b), which violates the uncertainty

principle. In Fig. 6.17(a)–(b), the results for ORGK time–frequency distribution are given for

volume parameter α = 3 and α = 5, respectively. Although ORGK is able to resolve all three

components, there is significant cross–term interference in the obtained TFD. Furthermore,

there is a distortion in the auto–term of the component with non–convex t–f support.

To compare the performance of computed time–frequency distributions numerically, we

define a normalized fit error associated with any TFD Υ(t, f) as

eΥ = ||WA(t, f)−MWA
(t, f)Υ(t, f)||/||WA(t, f)|| , (6.11)

and a normalized interference energy defined by

EΥ = ||(1−MWA
(t, f))Υ(t, f)||/||WA(t, f)|| , (6.12)

where WA(t, f) is the auto–term WD which is obtained by removing any noise and artifacts

including the inner and outer interference terms from the WD, MWA
(t, f) is the indicator

function describing the support of the auto–term WD and || · || is the Frobenius norm.

Thus, (6.11) gives the fit error between the distribution Υ(t, f) and the auto–term WD

WA(t, f) in the support of the auto–term WD. On the other hand, (6.12) gives the amount

of interference energy left in the computed distribution which lies outside the support of the

68



Distribution Normalized Fit Error Normalized Interference Energy
WD 1.064 1.406
TFCA 0.535 0.044
PWD 0.561 13.208
reassigned PWD 1.202 21.965
SPWD 0.736 3.538
reassigned SPWD 1.291 3.734
spectrogram 0.951 7.529
reassigned spectrogram 1.919 24.781
ORGK (α = 3) 1.002 0.712
ORGK (α = 5) 1.039 0.804

Table 6.1: The normalized fit errors and interference energies associated with the distributions
computed in this thesis to obtain the TFD of the three–component signal given in Fig. 6.6(a).
The table shows that the TFCA provides the minimum fit error and the interference energy
among the computed distributions.

auto–term WD. Although the auto–term WD is a desirable distribution, in general it is not

computable. However for the synthetic test signal considered here, since the component si(t)

constituting the composite signal x(t) are known beforehand, auto–term WD can be computed

as WA(t, f) =
∑3

i=1 Wi(t, f)MWi
(t, f), where Wi(t, f) is the WD of si(t) and MWi

(t, f)

is the indicator function describing the support of the ith auto–term obtained by using the

watershed segmentation algorithm [3]. Under this performance criterion, the fit errors and

interference energy associated with the distributions given by WD, TFCA, PWD, reassigned

PWD, SPWD, reassigned SPWD, spectrogram, reassigned spectrogram and ORGK techniques

are given in Table 6.1. The tabulated values show that, TFCA performs significantly better than

the other distributions studied in this simulation example.

69



−5 0 5

−2

−1

0

1

2

time

re
al

 p
ar

t

(a)

−5

0 

5 

10

time

fr
eq

ue
nc

y

(b)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 6.6: (a) The time domain representation of a multi–component signal x(t) and (b) its
Wigner distribution Wx(t, f). While the signal component with non–convex t–f support in (b)
suffers from inner interference terms, the middle signal component is completely immersed
under outer interference terms.

70



0.2

0.4

0.6

0.8

1  

time

fr
eq

ue
nc

y

(a)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

time

fr
eq

ue
nc

y

(b)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 6.7: (a) The short time Fourier transform of x(t) given in Fig. 6.6 (a) computed by
using the window function h(t) = e−πt2 , (b) supports of the components in STFT computed
by using the watershed segmentation algorithm [3]
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Figure 6.8: (a) The indicator function Ma1(t, f), a1 = −0.75, designating the support of
the component s1(t) in the ath

1 fractional domain, (b) the computed spine and the actual
instantaneous frequency of the component s1(t) in the ath

1 fractional domain.
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Figure 6.9: (a) the warped FrFT xa1,ζ1(t) of the signal given in Fig. 6.6(a), and (b) its short
time Fourier transform STFT(xa1,ζ1 )(t, f) . The horizontal and vertical lines in (b) designate
the supports of the frequency and time domain incision masks, respectively, which are utilized
by TFCA to extract the signal component located inside the dashed rectangular box.
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Figure 6.10: (a) The overlay plot of component s1(t) and its estimate ŝ1(t) computed by
TFCA, and (b) the corresponding estimation error. Although the composite signal shown in
Fig. 6.6(a) is very much corrupted with noise, the TFCA provides fairly good estimate of the
analyzed signal component.
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Figure 6.11: (a) The overlay plot of component s2(t) and its estimate ŝ2(t) computed by
TFCA, and (b) the corresponding estimation error. Although the composite signal shown in
Fig. 6.6(a) is very much corrupted with noise, the TFCA provides fairly good estimate of the
analyzed signal component.
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Figure 6.12: (a) The overlay plot of component s3(t) and its estimate ŝ3(t) computed by
TFCA, and (b) the corresponding estimation error. Although the composite signal shown in
Fig. 6.6(a) is very much corrupted with noise, the TFCA provides fairly good estimate of the
analyzed signal component.
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Figure 6.13: (a) The residual signal r3(t) = x(t) − ŝ1(t) − ŝ2(t) − ŝ3(t), and (b) the time–
frequency distribution of the signal given in Fig. 6.6(a) computed by TFCA. In TFCA, the TFD
of the composite signal x(t) is computed by first extracting the individual signal components,
and then summing the TFDs of the extracted components which are computed by using
fractional domain warping algorithm.
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Figure 6.14: (a)–(b) The TFD of the signal given in Fig. 6.6(a) obtained by using the PWD
and reassigned PWD techniques, respectively.
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Figure 6.15: (a)–(b) The TFD of the signal given in Fig. 6.6(a) obtained by using the SPWD
and reassigned SPWD techniques, respectively.
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Figure 6.16: (a)–(b) The TFD of the signal given in Fig. 6.6 (a) obtained by using the
spectrogram and reassigned spectrogram techniques, respectively.
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Figure 6.17: (a)–(b) The TFDs of the signal given in Fig. 6.6(a) obtained by using the optimal
radially Gaussian kernel technique. In (a) and (b) the volume parameter used in ORGK was
chosen as α = 3 and α = 5, respectively.
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6.3.1 Analysis of a recorded bat echolocation signal by TFCA

Since the components of the synthetic test example are known, it served well in assessing the

accuracies of the estimated signal components by TFCA. In the rest of this section, to illustrate

the performance of TFCA on real signals, a recorded bat sound is analyzed. Also, a comparison

of the TFCA and some other well known time–frequency representations is given. The

recorded signal is a digitized 2.5 ms echolocation pulse emitted by a large brown bat, eptesicus

fuscus, which is plotted in Fig. 6.18(a) and can be downloaded at [4]. As shown in the WD

plot given in Fig. 6.18(b), the analyzed signal is composed of several components with non–

convex time–frequency supports. Therefore, the WD contains both inner and outer interference

terms. The result of TFCA on this signal are given in Fig. 6.19– 6.22, where Fig. 6.19– 6.21

show the estimates of the signal components provided by TFCA which is a distinctive benefit

compared with conventional TFDs. The TFD of bat signal computed by TFCA provides

well localized supports for the analyzed signal components as shown in Fig. 6.22. Since the

TFCA first extracts signal components and then computes the time–frequency distributions of

extracted signal components, the time–frequency distribution obtained for the weakest signal

component is as good as the time–frequency distribution of the strongest signal component.

The results of PWD, SPWD, spectrogram and the corresponding reassignment methods on the

same bat echolocation signal are given in Fig. 6.23– 6.25, respectively. For this simulation,

the reassigned smoothed pseudo WD and reassigned spectrogram provides a visually clearer

picture than the reassigned PWD. However these figures also show that, after the reassignment

operation, the relative strength of the weakest component is considerably reduced relative to

the stronger components. This is a problem arising from mapping energy at different points in

t–f plane to the same location. Fig. 6.26(a)–(b) shows the ORGK time–frequency distribution

of the same signal, for the corresponding volume parameters of α = 3 and α = 5, respectively.

Although ORGK suppresses the outer interference terms very effectively, the TFCA provides

a better localization of the chirping components. This observation is more evident for the

chirp component which is located at the lower part of the time–frequency plane, especially

between the time intervals of 0 and 0.5 ms. Furthermore, there is a decrease of time–frequency

resolution compared with the WD and TFCA. For instance, the support of the weak chirp

component which is located at the top part of the time–frequency plane is dispersed in the

ORGK time–frequency distribution as shown in Fig. 6.26.
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Figure 6.18: (a) Digitized 2.5 microsecond echolocation pulse emitted by the large brown bat,
Eptesicus Fuscus [4] and (b) its Wigner distribution.
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Figure 6.19: The TFCA estimate of chirping component located in the bottom part of the t–f
plane in Fig. 6.18(b).
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Figure 6.20: The TFCA estimate of chirping component located in the middle part of the t–f
plane in Fig. 6.18(b).
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Figure 6.21: The TFCA estimate of chirping component located in the top part of the t–f plane
in Fig. 6.18(b).
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Figure 6.22: The TFD of the bat echo given in Fig. 6.18(a) provided by the TFCA.
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Figure 6.23: The TFDs of the bat signal shown in Fig. 6.18(a) computed by using (a) PWD
and (b) reassigned PWD techniques, respectively.
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Figure 6.24: The TFDs of the bat signal shown in Fig. 6.18(a) computed by using (a) SPWD
and (b) reassigned SPWD techniques, respectively.
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Figure 6.25: The TFDs of the bat signal shown in Fig. 6.18 (a) computed by using (a)
spectrogram and (b) reassigned spectrogram techniques, respectively.
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Figure 6.26: The TFDs of the bat signal shown in Fig. 6.18(a) computed by using the optimal
radially Gaussian kernel technique. In (a) and (b) the volume parameter used in ORGK was
chosen as α = 3 and α = 5, respectively.
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6.3.2 Analysis of a recorded ERP signal by TFCA

In this section we investigate the performance of the proposed algorithm on the real data set

shown in Fig. 6.27(a). This 2–sec long data is the average of 28 measurements recorded at

a sampling rate of 512 Hz in the Laboratory of Hacettepe Üniversitesi Uygulamalı Psikoloji

Anabilim Dalı headed by Prof. Sirel Karakaş. Each recording is generated by the same human

brain in response to an excitation given at the mid point of the observation interval (t = 0 in

Fig. 6.27(a)). The prestimulus response is called as the electroencephalogram (EEG), and the

poststimulus response as the Event Related Potential (ERP). EEG and ERP, together are called

as recorded frame in this study [5]. The Wigner distribution of this signal given in Fig. 6.27(b)

is very much contaminated with cross–terms and noise. Thus, the WD does not provide very

useful results, in this example. The results of TFCA on this signal are given in Fig. 6.28 –

6.30, where Fig. 6.28 and Fig. 6.29 show the estimates of the signal components provided

by TFCA and their corresponding high resolution time–frequency distributions. Since, TFCA

based analysis enables the extraction of the identified components from the composite signals,

it allows detailed post processing of the extracted signal components and their corresponding

time–frequency distributions, as well. For instance, TFCA enables computation of the time

and frequency centers and the corresponding time and frequency spreads of the identified

components, which may have potential application in classification of data recorded under

different experiments and from different subjects. The potential advantages of using TFCA in

analysis of ERP signals is under investigation at Hacettepe Üniversitesi Uygulamalı Psikoloji

Anabilim Dalı.

The results of PWD, SPWD, spectrogram, the corresponding reassignment methods and

ORGK technique on the same recorded frame are given in Fig. 6.31 – 6.24, respectively.

Although these methods are very well known and widely used in time–frequency signal

processing, the TFCA provides significantly better distribution for the analyzed signal, in this

simulation example.
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Figure 6.27: (a) The average of 28 measurements recorded from a human brain in response to a
stimulus applied at t = 0 sec. The prestimulus response is called as the electroencephalogram
(EEG), and the poststimulus response as the Event Related Potential (ERP). EEG and ERP,
together are called as recorded frame [5]. The Wigner distribution of the averaged frame
shown in (a) is contaminated by the existence of cross terms as seen in (b).
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Figure 6.28: (a) The estimate of the first component in Fig. 6.27(a) and (b) its corresponding
time-frequency distribution computed by TFCA. Time center of this component is 0.39 sec
with a 0.22 msec spread, and its frequency center is 1.84 Hz with a 0.88 Hz spread.
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Figure 6.29: (a) The estimate of the second component in Fig. 6.27(a) and (b) its corresponding
time–frequency distribution computed by TFCA. Time center of this component is 0.12 sec
with a 0.074 sec spread, and its frequency center is 9.07 Hz with a 1.63 Hz spread.
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Figure 6.30: (a) The sum of the extracted components shown in Fig. 6.28(a) and Fig. 6.29(a)
provides a very clear representation for the signal term in the recorded frame given in
Fig. 6.27 (a). The high resolution cross–term free time–frequency distribution of this signal
computed by using TFCA is given in (b). The distribution of the composite signal is
obtained by summing the distributions of the individual components given in Fig. 6.28 (b)
and Fig. 6.29(b).

94



−10

−5 

0  

5  

10 

15 

time (sec)

fr
eq

ue
nc

y 
(H

z)

(a)

−1 −0.5 0 0.5 1
0

5

10

15

−40

−20

0  

20 

40 

60 

80 

time (sec)

fr
eq

ue
nc

y 
(H

z)

(b)

−1 −0.5 0 0.5 1
0

5

10

15

Figure 6.31: The TFDs of the recorded frame shown in Fig. 6.27(a) computed by using (a)
PWD and (b) reassigned PWD techniques, respectively.
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Figure 6.32: The TFDs of the recorded frame shown in Fig. 6.27(a) computed by using (a)
SPWD and (b) reassigned SPWD techniques, respectively.
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Figure 6.33: The TFDs of the recorded frame shown in Fig. 6.27(a) computed by using (a)
spectrogram and (b) reassigned spectrogram techniques, respectively.
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Figure 6.34: The TFDs of the recorded frame shown in Fig. 6.27(a) computed by using the
optimal radially Gaussian kernel technique. In (a) and (b) the volume parameter used in ORGK
was chosen as α = 3 and α = 5, respectively.
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Chapter 7

Conclusions and Future Work

In this thesis, the TFCA is introduced to conduct the time–frequency analysis of multi–

component signals with localized time–frequency supports. The TFCA is an almost automated

algorithm and it provides signal–dependent time–frequency representation of the individual

signal components of a composite signal. In addition, it performs the extraction of the

identified components from the composite signal, as well. The TFCA is based on important

theoretical results which are derived in this thesis and partially published in a series of

papers [47–52]. The fast Wigner slice and ambiguity slice computation algorithms derived

in Chapter 3, the fast directional filtering algorithm derived in Chapter 4, the fast warping

based analysis algorithm derived in Chapter 5 and the fast fractional domain incision algorithm

presented in Chapter 6 play key roles in the success of the TFCA. Based on a synthetic data

simulation, the superiority of the proposed method to some well known and widely used

techniques is shown both qualitatively and quantitatively. Based on real data simulations,

it is shown that the proposed iterative algorithm provides significantly better estimates of

the time–frequency representations for the individual signal components and the composite

signal, compared to some well–known techniques. In conclusion, the TFCA is a powerful

and flexible new time–frequency analysis technique which is very useful in the analysis of

multi–component signals.

Future work on the TFCA can be focused on analyzing multi–component signals with

overlapping components in the time–frequency plane.
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Appendix A

Relation Between the Radon–Ambiguity

Function Transformation and the

Fractional Fourier Transformation

The relationship of the RWT to the FrFT is well known in the literature. In this section,

we show that a similar relationship exists between the RAFT and FrFT. We start with the

substitution of (2.4b) into (3.18) resulting in the following expression for the radial slice of the

RAFT:

RDN [Ay](r, φ) =

∫∫
y(t+ τ/2)y∗(t− τ/2)e2πνt

∣∣∣∣ν=r cos φ−s sin φ
τ=r sin φ+s cos φ

dt ds (A.1a)

=

∫∫
y(t+

r sinφ+ s cosφ

2
)y∗(t− r sinφ+ s cosφ

2
)

× e2π(r cos φ−s sin φ)t dt ds . (A.1b)

By making the following change in the integration variables:

 t1

t2


 =


1 +1

2
cosφ

1 −1
2
cosφ





 t

s


 +

1

2
r sinφ


 1

−1


 (A.2)

dt1 dt2 = | cosφ| dt ds , (A.3)

the integral in (A.1b) can be written as in the following separable form:

RDN [Ay](r, φ) =

∫∫
y(t1)y

∗(t2)eπ[−(t21−t22) tan φ+(t1+t2)r sec φ] 1

| cosφ| dt1 dt2 . (A.4)
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By using the definition of Aφ given in (2.9), it follows that 1/| cosφ| = |Aφ−π/2e
−π(r/2)2 tan φ|2.

After substituting this identity into (A.4), the separated terms can be written in the form of

FrFT:

RDN [A]y(r, φ) =

[∫
Aφ−π/2e

π(−(r/2)2 tan φ+rt1 sec φ−t21 tan φ)y(t1) dt1

]
[∫

Aφ−π/2e
−π((r/2)2 tan φ+rt2 sec φ+t22 tan φ)y(t2) dt2

]∗
(A.5a)

=
[
{F (a−1) y}(r/2)

] [
{F (a−1) y}(−r/2)

]∗
(A.5b)

= y(a−1)(r/2)y
∗
(a−1)(−r/2) , (A.5c)

where (a− 1) = (2/π)φ− 1 is the FrFT order.

Thus we have found a simple closed form expression for the Radon transformation of the

ambiguity function Ay(ν, τ) in terms of the FrFT of the signal y(t). When the signal y(t) given

in (A.5) is the translated version of a signal x(t) in time and frequency as in (4.2), the RAFT

of y(t) can be also expressed in terms of the input signal x(t). To derive this result, first we

obtain the FrFT of y(t) by using the basic properties of the FrFT [99]:

y(a−1)(t) = Ceϕ(t)x(a−1)(t+ to sinφ− fo cosφ) , (A.6)

where ϕ(t) = −2πt(fo sinφ + to cosφ) is the linear phase factor and C =

exp(π cosφ(f 2
o sinφ + t2o cosφ + foto sinφ)) is a unit magnitude complex constant.

Since we have the freedom to choose (to, fo) as any point which lies on the line LWx shown

in Fig. 4.2, we use this freedom to simplify the expression for the FrFT of y(t). By choosing

(to, fo) � (d sinφ,−d cosφ) as the closest point on LWx to the origin (see Fig. 4.2 ) we

simplify (A.6) as

y(a−1)(t) = Cx(a−1)(t+ d) . (A.7)

Finally by substituting this relation into (A.5), we obtain the desired expression for the RAFT

of y(t):

RDN [Ay](r, φ) = x(a−1)(
r

2
+ d)x∗

(a−1)(−
r

2
+ d) . (A.8)
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Appendix B

Fast Algorithms

In this appendix, the tabulated steps of the algorithms used or developed in this proposal are

given for ease in their implementation. In Appendix B.1 the fast fractional Fourier transform

algorithm given in [85], in Appendix B.2 and Appendix B.3 the algorithms used for fast

computation of the cross–ambiguity function and the cross Wigner distribution on arbitrary

line segments developed in [49], [50] and Chapter 3, in Appendix B.4 a modified version of

the algorithm given in [85] and finally in Appendix B.5 the full version of the Time–Frequency

Component Analyzer algorithm developed in this thesis and in [47], [48] are summarized.
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B.1 The Fast Fractional Fourier Transform Algorithm

Algorithm 2 The Fast Fractional Fourier Transform Algorithm proposed in [85]

Object of the algorithm:
Given f(n/∆x), −N/2 ≤ n ≤ N/2 − 1, to compute fa(m/2∆x), −N ≤ m ≤ N − 1,
under the assumption that the WD of f(t) is confined into a circle with diameter ∆x ≤ √

N .
Steps of the algorithm:

Interpolate the input samples by 2: f(n/∆x) → f(n/2∆x)
a′ := (a+ 2 mod 4)− 2 % After the modulo operation, a′ ∈ [−2, 2)
% The cases of |a′| ∈ [0.5, 1.5] and a′ ∈ {[−2, − 0.5)U(0.5, 2)} have to be treated
separately.
if |a′| ∈ [0.5, 1.5] then

a′′ := a′

else
a′′ := (a′ + 1 mod 4)− 2 % After the modulo operation, a′′ ∈ (0.5, 1.5)

end if
φ′′ := π

2
a′′

α′′ := cotφ′′

β′′ := cscφ′′

Aφ′′ := exp(−jπ sgn(sin φ′′)/4+jφ′′/2)

| sin φ′′|1/2
% Compute the following sequences:
c1[m] := eπ 1

4
(α′′/∆2

x−β′′/N)m2
for −N ≤ m ≤ N − 1

c2[m] := eπβ′′(m/2
√

N)2 for −2N ≤ m ≤ 2N − 1

c3[m] := eπ
∆2
x

4N
(α′′/N−β′′/∆2

x)m
2

for −N ≤ m ≤ N − 1
g[m] := c1[m]f(m/2∆x) for −N ≤ m ≤ N − 1

ha′′(m/2∆x) :=
Aφ′′
2∆x

c3[m](c2 ∗ g)[m] for −N ≤ m ≤ N − 1

%In the last step FFT is used to compute the convolution in O(N logN) flops.
if |a′| ∈ [0.5, 1.5] then

fa(m/2∆x) := ha′′(m/2∆x)
else

% Compute samples of the ordinary FT using FFT.
fa(m/2∆x) := {F1 ha′′}(m/2∆x)

end if
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B.2 The Fast Computation of the Cross–Ambiguity Func-

tion on Arbitrary Line Segments

Algorithm 3 The Fast Ambiguity–slice Computation Algorithm

Object of the algorithm:
Given y(n/∆x) and z(n/∆x), −N/2 ≤ n ≤ N/2− 1, to compute N ′ samples of the cross
AF of y(t) and z(t) along the line segment LA as shown in Fig. 3.3.

Steps of the algorithm:
if a radial slice then

ya[n] := {Fa y}(n/2∆x) for −N ≤ n ≤ N − 1 by using Algorithm 2.
za[n] := {Fa z}(n/2∆x) for −N ≤ n ≤ N − 1 by using Algorithm 2.
pa[n] := ya[n]z

∗
a[n] for −N ≤ n ≤ N − 1

else
ỹ[n] := y(n/∆x + τo/2)e

πνo(n/∆x) for −N/2 ≤ n ≤ N/2− 1
z̃[n] := z(n/∆x − τo/2)e

−πνo(n/∆x) for −N/2 ≤ n ≤ N/2− 1
ỹa[n] := {Fa ỹ}(n/2∆x) for −N ≤ n ≤ N − 1 by using Algorithm 2.
z̃a[n] := {Fa z̃}(n/2∆x) for −N ≤ n ≤ N − 1 by using Algorithm 2.
pa[n] := ya[n]z

∗
a[n] for −N ≤ n ≤ N − 1

end if

Ayz(νk, τk) :=
1

2∆x

N−1∑
n=−N

pa[n]e
 π
∆x

λkn for 0 ≤ k ≤ N ′ − 1 by using the CZT Algorithm.

where (νk, τk) � (νo + λk cosφ, τo + λk sinφ) and λk � λi + k
λf−λi
N ′−1

.
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B.3 The Fast Computation of the Cross–Wigner Distribu-

tion on Arbitrary Line Segments

Algorithm 4 The Fast Wigner–Slice Computation Algorithm

Object of the algorithm:
Given y(n/∆x) and z(n/∆x), −N/2 ≤ n ≤ N/2− 1, to compute N ′ samples of the cross
WD of y(t) and z(t) along the line segment LW as parameterized in (3.21).

Steps of the algorithm:
if a radial slice then

y(a−1)[n] := {F (a−1) y}(n/2∆x) for −N ≤ n ≤ N − 1 by using Algorithm 2.
z(a−1)[n] := {F (a−1) z}(n/2∆x) for −N ≤ n ≤ N − 1 by using Algorithm 2.
q(a−1)[n] := y(a−1)[n]z

∗
(a−1)[−n] for −N ≤ n ≤ N − 1

else
ỹ[n] := y(n/∆x + to)e

−2πfo(n/∆x)

z̃[n] := z(n/∆x + to)e
−2πfo(n/∆x)

ỹ(a−1)[n] := {F (a−1) ỹ}(n/2∆x) for −N ≤ n ≤ N − 1 by using Algorithm 2.
z̃(a−1)[n] := {F (a−1) z̃}(n/2∆x) for −N ≤ n ≤ N − 1 by using Algorithm 2.
q(a−1)[n] := ỹ(a−1)[n]z̃

∗
(a−1)[−n] for −N ≤ n ≤ N − 1

end if

Wyz(tk, fk) :=
1

∆x

N−1∑
n=−N

qa−1[n]e
− 2π

∆x
λkn for 0 ≤ k ≤ N ′ − 1 by using the CZT Algorithm.

where (tk, fk) � (to + λk cosφ, fo + λk sinφ) and λk � λi + k
λf−λi
N ′−1

.
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B.4 The Modified Fast Fractional Fourier Transform Algo-

rithm

Algorithm 5 The Modified Fast Fractional Fourier Transform Algorithm

Object of the algorithm:
Given x(n/∆x), −N/2 ≤ n ≤ N/2−1, to compute xa(m∆x/(2N)+d), −N ≤ m ≤ N−1.
It is assumed that x(t) is scaled before obtaining its samples so that its WD is confined into a
circle with diameter ∆x ≤ √

N [85]. This algorithm is obtained by modifying the algorithm
in [85] to incorporate the delay term d, and removing the condition that the time–bandwidth
product of x(t) be integer.

Steps of the algorithm:
Interpolate the input samples by 2:
a′ := (a+ 2 mod 4)− 2 % After the modulo operation, a′ ∈ [−2, 2)
if |a′| ∈ [0.5, 1.5] then

a′′ := a′

else
a′′ := (a′ + 1 mod 4)− 2 % After the modulo operation, a′ ∈ (0.5, 1.5)

end if
φ′′ := π

2
a′′

α′′ := cotφ′′

β′′ := cscφ′′

Aφ′′ := exp(−jπ sgn(sin φ′′)/4+jφ′′/2)

| sin φ′′|1/2
% Compute the following sequences:

c1[m] := e
π[( α

4∆2
x
− β

4N
)m2− βd

∆x
m]

for −N ≤ m ≤ N − 1

c2[m] := eπ β
4N

m2
for −2N ≤ m ≤ 2N − 1

c3[m] := eπ[α(∆x
2N

m+d)2− β
4N

m2] for −N ≤ m ≤ N − 1
g[m] := c1[m]x(m/2∆x) for −N ≤ m ≤ N − 1

ha′′(m∆x/(2N)) := Aφ
2∆x

c3[m] (c2 ∗ g)[m] for −N ≤ m ≤ N − 1

%In the last step FFT is used to compute the convolution in O(N logN) flops.
if |a′| ∈ [0.5, 1.5] then

xa(m∆x/(2N) + d) := ha′′(m∆x/(2N))
else

% Compute samples of the ordinary FT using FFT.
xa(m∆x/2N + d) := {F1 ha′′}(m∆x/(2N) + d)

end if
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B.5 The Time–Frequency Component Analyzer

Algorithm 6 The Time–Frequency Component Analyzer

Object of the algorithm:
Given a multi–component x(n/∆x), −N/2 ≤ n ≤ N/2− 1, to extract its components and
compute its time–frequency distribution. It is assumed that x(t) is scaled before obtaining
its samples so that its WD is confined into a circle with diameter ∆x ≤ √

N [85].

Steps of the algorithm:
1. Initialize the residual signal and iteration number as r0(t) := x(t), i := 1, respectively.
2. Identify the time–frequency support of the component si(t) by using the watershed

segmentation algorithm [3], appropriate rotation angle φi, fractional domain ai = 2φi/π, the
spine ψi,ai(t) of the fractional Fourier transformed signal xai(t) by using an instantaneous
frequency estimation algorithm, and the amount of required frequency shift δfi on the spine
ψi,ai(t).

3. Compute FrFT samples ri−1
ai

(kT ), ai = 2φi/π, from the samples of ri−1(kT ) by using the
Algorithm 2.

4. Define the warping function ζi(t) = Γ−1
i (fψi(t − t1)), where Γi(t) =

∫ t

t1
[ψai(t

′) + δfi ] dt
′

and fψi = Γi(tN)/(tN − t1). Compute the time samples ζi(kT ) of the warping function.
5. Compute the samples ri−1

ai,ζi
(kT ) of the warped signal as

r
i−1,δfi
ai (kT ) := e2πδfikT ri−1

ai
(kT )

r
i−1,δfi
ai,ζi

(kT ) := e−2πδfikT r
i−1,δfi
ai (ζi(kT )) .

6. Estimate the ith component by time–frequency domain incision as

ŝ
i,δfi
ai,ζ

(t) = h2(t)[h1(t) ∗ r
i−1,δfi
ai,ζi

(t)] ,

where h2(t) is a time–domain mask and h1(t) is the inverse Fourier transform of a frequency
domain mask H1(f).
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for Each TFD slice of si(t) to be computed, after choosing the slice offset ∆ψ do

7. Compute yai,ζi(kT ) = ŝ
i,δfi
ai,ζi

(kT )e2π∆ψζ(kT ) .
8. Compute the samples of the TFD Hyai,ζi

(mT̄ , fψi), t1/T̄ ≤ m ≤ tN/T̄ of yai,ζi(t)
by using the directional smoothing algorithm fully presented in [51] and summarized in
Algorithm 1, where T̄ is the sampling interval of the TFD slice.

9. The TFD slice of si(t) is given by

Hsi(tr(mT̄ ), fr(mT̄ )) = Hya,ζ(mT̄ , fψ) ,

where (tr(mT̄ ), fr(mT̄ )) defines a curve in the time–frequency plane parameterized with
the variable mT̄ :

tr(mT̄ ) = ζ(mT̄ ) cos(
aπ

2
)− (ψ(ζ(mT̄ )) + ∆ψ) sin(

aπ

2
)

fr(mT̄ ) = ζ(mT̄ ) sin(
aπ

2
) + (ψ(ζ(mT̄ )) + ∆ψ) cos(

aπ

2
) ,

and t1/T̄ ≤ m ≤ tN/T̄ .
end for

10. Estimate samples si(t) by inverting the warping, frequency modulation and the fractional
Fourier transformation operations on samples of ŝ

δf
ai,ζ

(t):

ŝ
i,δfi
a (kT ) := e2πδfiζ

−1
i (kT ) ŝ

i,δfi
ai,ζi

(ζ−1
i (kT ))

ŝi
ai
(kT ) := e−2πδfikT ŝ

1,δfi
ai (kT )

ŝi(kT ) := {F (−ai) ŝi
ai
}(kT ) .

11. Compute the residual signal ri(kT ) = ri−1 − ŝi(t) .
if any signal component is left in residual signal ri(kT ) then

Set i = i+ 1, and GOTO step 2,
else

Compute the t–f distribution of the composite signal by summing the t–f distributions of
individual signal components.

end if
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