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ABSTRACT 
 

APPLICATION OF BiCONJUGATE 
GRADIENT STABILIZED METHOD 
WITH SPECTRAL ACCELERATION 

FOR PROPAGATION OVER TERRAIN 
PROFILES 

 
Barış Babaoğlu 

M.S. in Electrical and Electronics Engineering 

Supervisors: Prof. Ayhan Altıntaş, Asst. Prof. Vakur B. Ertürk  

October 2003 
 

Using the Method of Moments (MoM) for the computation of electromagnetic 

radiation / surface scattering problems is a very popular approach since 

obtained results are accurate and reliable. But the memory requirement in the 

MoM to solve discretized integral equations and the long computational time of 

O(N3) operation count (where N is the number of the surface unknowns) make 

the method less favorable when electrically large geometries are of interest. 

This limitation can be overcome by using BiConjugate Gradient Stabilized 

(BiCGSTAB) method, a non-stationary iterative technique that was developed 

to solve general asymmetric/non-Hermitian systems with an operational cost of 

O(N2) per iteration. Furthermore, the computational time can be improved by 

the spectral acceleration (SA) algorithm which can be applied in any iterative 

technique. In this thesis, Spectrally Accelerated BiCGSTAB (SA-BiCGSTAB) 

method is processed over systems that have huge number of unknowns 

resulting a computational cost and memory requirement of O(N) per iteration. 

Applications are presented on electrically large rough terrain profiles. The 

accuracy of the method is compared with MoM, conventional BiCGSTAB 

method and Spectrally Accelerated Forward-Backward Method (SA-FBM) 

where available. 
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ÖZET 
 

SPEKTRAL HIZLANDIRILMIŞ BiEŞLENİK 
GRADYAN STABİL YÖNTEMİ İLE ARAZİ 

KESİTLERİNDE DALGA YAYINIMI 
UYGULAMALARI 

 
Barış Babaoğlu 

Elektrik Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticileri: Prof. Ayhan Altıntaş, Yrd. Doç. Vakur B. Ertürk  

Ekim 2003 

 

Ulaşılan sonuçların doğruluğu ve güvenilirliğinden dolayı, Moment Metodunun 

(MoM)  elektromanyetik ışınım / yüzey saçınımı hesaplamalarında kullanılması 

oldukça popüler bir yaklaşımdır. Ancak ayrıklaştırılmış integral denklemlerinin 

çözülmesi için gerekli hafıza ihtiyacı ve O(N3)’lük uzun hesaplama süresi, bu 

metodu elektriksel olarak geniş geometriler söz konusu olduğunda gözden 

düşürmektedir. Bu limitasyon, BiEşlenik Gradyan Stabil (BiCGSTAB) yöntemi 

kullanarak üstesinden gelinebilir. BiCGSTAB yöntemi, genel asimetrik ve 

Hermisyon olmayan sistemleri, her iterasyonda O(N2)’lik işlem sayısı yaparak 

çözmek için geliştirilen durağan olmayan bir iteratif tekniktir. Bunun da 

ötesinde hesaplama süresi, herhangi bir iteratif yönteme uygulanabilen spektral 

hızlandırma (SA) algoritmasıyla geliştirilebilir. Bu tezde spektral hızlandırılmış 

BiCGSTAB (SA-BiCGSTAB) metodu çok fazla sayıda bilinmeyeni bulunan 

sistemlere tatbik edilmiş, sonuçta hesaplama süresi ve hafıza gereksinimi her 

iterasyonda O(N)’e düşürülmüştür. Uygulamalar elektriksel geniş pürüzlü arazi 

kesitleri üzerinde gösterilmiştir. Sonuçların doğruluğu MoM, olağan 

BiCGSTAB yöntemi ve de uygun yerlerde Spektral Hızlandırılmış İleri-Geri 

(SA-FBM) yöntemiyle karşılaştırılmıştır. 
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Chapter 1 

 

Introduction 
 

During the past years, the mobile radio communication industry has 

grown enormously, powered by digital RF fabrication improvements, large-

scale circuit integration and other technologies which make the mobile radio 

equipment smaller, cheaper but most important, reliable. Since then the study of 

coverage analysis and propagation losses for wireless communications has been 

of great interest. The radio spectrum allocation is the basis of RF 

communications, and it is closely tied to coverage analysis, computation of 

interference and propagation losses. 

 

In this regard, the accurate prediction of electromagnetic field strengths 

over large areas (i.e., terrain propagation) in different environments has great 

importance. Thus, the main problem is related to the computation of precise 

solution. A great number of solution techniques have been developed. The first 

class of these techniques is based on propagation prediction models. These are 

the automatic tools for radio coverage prediction over geographical databases. 

The second class is the integral equation based methods dealing directly with 

Maxwell’s equations for the computation of scattered field. 

 

1.1 Propagation Prediction Models 
 

These methods are focused on propagation loss and coverage analysis 

according to their nature. Also they are fast to apply for the investigation of 

scattered fields. There are three approaches for predicting field patterns, 

namely, empirical, heuristic and deterministic.  
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As the name suggests, the empirical method involves the experience of 

measurements. Okumura – Hata method [1] is a well known example of such 

approach. Empirical models interest on the geometrical data at the level of 

categorization. For instance, for urban, sub-urban and the rural areas, different 

formulae may be issued. The drawback of these methods is that they mainly 

focus on the field attenuation. The effects of diffraction and reflection due to 

obstacles in the region of interest are omitted.   

 

Heuristic methods usually depend on high frequency asymptotic 

principles for the diffraction losses. Well known examples for these methods 

are Spherical Earth Knife–Edge algorithm [2] based on knife–edge diffraction 

assumption, Geometrical Theory of Diffraction (GTD) [3] using wedge 

diffractions including finite conductivity and local roughness effects. Since 

these methods require more detailed information about the environment than 

the empirical models, complex geometries defining the number of Knife–Edges 

or wedges make the usage of the methods overwhelming.  

 

Deterministic models are issued for the simulation of radio wave 

propagation and are concerned with the computation of radio channel properties 

related with the description of geographical environment. Most of these 

approaches depend on ray tracing algorithms, whose computational complexity 

is prohibitive. Another variant of this kind of methods is a parabolic 

approximation to the Helmholtz equation, derived for both integral and 

differential forms [4]-[6]. Nevertheless parabolic approximation assumes that 

the propagation of the field is addressed through the forward direction. Thus, 

the backscattered field contribution is omitted.  

 

One should note that there is a trade-off between the accuracy of the 

prediction and the computational speed in propagation models. As the precision 
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of the technique is increased, the order of the complexity to define the 

geographical area of interest also enlarges which creates long CPU times.   

 

1.2 Integral Equation Methods Based On Terrain 

Propagation 
 

These are numerical methods dealing directly with the solution of 

Maxwell equations; therefore hesitation in the electromagnetic analysis would 

be prevented. Moreover, they can be used as a reference solution for the 

validation of prediction methods and to obtain the limits of these methods under 

certain circumstances. Many of the integral equations (IE) are based on Method 

of Moments (MoM) [7]. This method proceeds to find the value of each 

unknown (for example, current distribution on a rough surface), which is the 

solution of discretized problem. But when the total number of unknowns, N, is 

very large (dealing with electrically large surface geometries), the solution of 

such problem grows exponentially in terms of computational CPU time and 

storage requirements. Direct solution methods of the MoM, such as LU 

decomposition requires an operational cost of O(N3). This has led to the 

development of iterative schemes to reduce computational count to O(N2). 

 

The first application of IE based method to the terrain propagation 

problem can be found in [8] where an IE is applied over small terrain profiles. 

Nevertheless, due to computational cost associated with the number of 

unknowns, the application of the method on the electrically large profiles is 

unfeasible. A bit more improved method in terms of computational cost is 

proposed in [9] with some specific considerations, such as neglecting 

backscattering and deducing magnetic conductivity. The assumptions make the 

method less reliable and still time consuming. Later on, in [10] an IE 

formulation is used in conjunction with an iterative version of MoM known as 

Banded Matrix Iterative Approach (BMIA). Limited with some certain 
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problems, a parallel implementation of the method is applicable. However the 

method maintains the computation complexity.  

 

A more efficient solution is given in [11], in which Fast Far Field 

Approximation (FAFFA) was introduced and modified for an IE formulation. 

In this approach, method succeeds in massive computational savings when 

compared to the previous attempts to apply surface an IE to terrain propagation 

problem. Until FAFFA algorithm, all previous IE methods required O(N2) 

operations per iteration whereas FAFFA achieves O(N4/3) operations per 

iteration. 

 

1.3 Iterative Approaches On One-Dimensional Rough            

Surface Scattering  
 

When the problem is to evaluate the current distribution over rough 

surface by means of an iterative method, two different approaches have recently 

been followed depending on the updating estimates. In the first one, so called 

stationary technique, the current is updated by applying the surface boundary 

conditions to the scattered field with the previous iteration’s current. Forward – 

Backward Method (FBM) [12] is a well known technique. It sweeps the surface 

on the forward and backward directions to find the forward and backward 

contributions due to the current element located at a fixed observation point. 

FBM was proposed for calculating the electromagnetic current on ocean-like 

perfectly electric conducting (PEC) surfaces at low grazing angles. The method 

gives accurate results within very few iterations but the computational cost is 

still O(N2). Furthermore, due to its stationary nature, the method fails to 

converge when the surface of interest is not ordered (reentrant surface of a 

ship). The second class of iterative approaches is the non-stationary techniques. 

These are the extensions of Standard Conjugate Gradient method [13] that were 

developed to solve general asymmetric/non Hermition systems and therefore do 
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not attempt to solve the physical multiple scattering of electromagnetic energy 

directly. Examples of these are given in [14] where BiConjugate Gradient 

Method (BiCG) is used, Generalized Conjugate Gradient (GCG) used in [15], 

preconditioned multi-grid Generalized Conjugate Residual (GCR) approach 

used in [16] and Quasi-minimum Residual (QMR) employed in [17]. 

 

 All of the methods mentioned previously require an operation count of 

O(N2) (except the FAFFA algorithm). Thus when they are associated to solve 

very-large scale problems, the computational cost prohibits their applicability. 

However in 1996, Chou and Johnson [18] proposed a spectral acceleration (SA) 

algorithm to overcome the limitation on slightly rough large scale problems. 

 

 The algorithm accelerates the matrix-vector multiplies taking place in 

the iterative process and divides contributions between points in strong and 

weak regions. The algorithm is mainly based on a spectral representation of 

two-dimensional Green’s function.  

 

 This technique reduces the computational cost and memory 

requirements to O(N) and the Spectrally Accelerated Forward – Backward 

Method (SA-FBM) can be applied over electrically large surfaces. But one 

should note that the original implementation of spectral acceleration is utilized 

for slightly rough quasi-planar surfaces and may not be suitable for undulating 

rough geometries.  

 

 With the development of SA, the restriction on large-scale problem will 

no longer exist but to deal with terrain propagation with the large height 

deviations, a modified version of SA is proposed in [19]. This algorithm 

implements SA–FBM to very undulating rough surfaces and the computational 

cost still remains at O(N). Although the algorithm is utilized firstly for the 

conventional FBM, since it sweeps forward and backward directions on the 

surface of the scatterer, it can be used in any iterative method. 
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The SA algorithm was utilized in conjunction with a non-stationary 

technique BiCG method firstly by Valero [20] in order scattering from the strip 

gratings.  

 

 In this thesis, electrically large rough terrain profiles have been 

examined with Spectrally Accelerated Biconjugate Gradient Stabilized Method 

(SA-BiCGSTAB). It should be emphasized that, this sort of implementation of 

BiCGSTAB method has not existed in the literature yet. 

 

 One other novelty of this method is the analysis of multi-valued 

(reentrant) surface profiles (like a ship on the sea). The conventional stationary 

techniques can not solve this kind of problems. A generalized version of the 

FBM (GFBM) [21] was offered to deal with such problem. The method 

includes significant changes in the decomposition of the system interaction 

matrix. Because of this decomposition, the approach requires an additional 

work and more storage requirement at each operation, which can be 

overwhelming if the multi-valued section is too large. In this context, GFBM 

can not compete with SA-BiCGSTAB method. 

 

 In order to reach these goals, a large number of implementations of SA-

BiCGSTAB over various kinds of examples are presented. To show the ability 

of convergence, the results are compared with MoM, BiCGSTAB, GFBM and 

SA-FBM, respectively. 

 

 All fields and currents in this work are considered to have a time-

harmonic dependence of the form j ke ω  that is suppressed from the expressions. 

The angular frequency is ω and k  is the wave number of the medium, which is 

assumed to be free space, above the rough surface. 
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Chapter 2 

 

Scattering Problem for 1D Rough 

Surfaces and Method of Moments 

(MoM) 
 

2.1 Introduction 
 

 This chapter deals with the evaluation of the current distribution over a 

terrain profile on which an electromagnetic source is incident. To reduce the 

problem into two dimensions, the surface considered for such problem is 

assumed to have no variation along the transverse direction of the propagating 

field. The variation of the height at the surface along the displacement (x-axis) 

is characterized with the curve C and defined by z = f(x) as depicted in Figure 

2.1, yielding the roughness of the surface in one dimension. The 

electromagnetic fields characterized by Ei(ρ) and Hi(ρ), are incident upon the 

surface where ˆ ˆ =   +  x x z zρ . The terrain profile is modeled to be an imperfect 

conductor (with permeability µ, and permittivity є) and analyzed using an 

impedance boundary condition (IBC) [22]-[23]  to be able to investigate more 

general situations. 

 This chapter is devoted to the discussion of integral equations in order to 

find current distribution on the surface of the scatterer. The formulations of 

integral equations are described in Section 2.2. Corresponding matrix equations 

to solve these integral equations are determined in Section 2.3.  
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Figure 2.1.  A generic terrain profile. 

2.2 Electric and Magnetic Field Integral Equations  

 The main objective of the solution of such a scattering problem is 

determining the physical or equivalent current distribution behavior on the 

surface of the scatterer. Once they are known then, the scattered fields can be 

evaluated by using standard radiation integrals. The method used to solve the 

system should be capable of finding current densities over terrain profiles 

accurately. This task can be achieved by an integral equation (IE) method. 

 In general there are many forms of integral equations. Two of the most 

popular examples for the time-harmonic electromagnetic fields are known as 

electric field integral equation (EFIE) and magnetic field integral equation 

(MFIE). The EFIE enforces the boundary condition on the tangential electric 

field and the MFIE enforces the boundary condition on the tangential 

components of the magnetic field. EFIE will be employed for horizontal 

polarization, namely, transverse magnetic (TM) case, and MFIE discussion will 

be shown for vertical polarization, namely, transverse electric (TE) case. In 

each case an IBC approximation will be used. The IBC implies that only the 

electric and magnetic fields external to the scatterer are relevant and their 
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relationship is a function of the material constitution (i.e., surface impedance) 

or surface characteristics (i.e., roughness) of the scatterer. 

2.2.1 EFIE for Horizontal Polarization 

 Given that the IBC approximation is applied for a given scatterer shown 

in Figure 2.1, the total (incident plus scattered) electric field external to the 

surface, Et, is related as  

                                  sˆ ˆ ˆ- (  . )  = (  x )n n nηt t tE E H ,                        (2.1) 

and from the duality condition, total magnetic field Ht yields 

                                       
s

1ˆ ˆ ˆ- (  . )  = (  x ),
  

n n n
η
−t t tH H E                         (2.2) 

where sη is the surface impedance and n̂  is the unit surface normal of the 

terrain. The surface impedance is assumed to be constant throughout this paper 

but it can be easily modified if it varies along x-axis by replacing with ( )sη ρ . 

When the incident field has a horizontal polarization, (i.e.,  yˆ =  EyiE ), (2.1)  is 

reduced to  

                                               s ˆ= (  x )nηt tE H .                                         (2.3) 

The electric surface current density induced on the surface along y direction is 

defined as 

                                                ˆ( ) =  x s n tJ ρ H                                             (2.4) 

yielding (2.1)  
                                          s=   = ( )i s η+tE E E J ρ                                    (2.5) 

where Ei denotes the incident field and Es denotes scattered field above the 

scatterer. The scattered electric field is a superposition of A and F, the magnetic 

and electric auxiliary vector potentials, respectively [24]; 
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            ( )1 1   = . xj jω
ωµε ε

= + − − ∇ ∇ − ∇s
A FE E E A A F            (2.6) 

where A and F are shown to be 

                                          = ( ') '
4

jkR

S

e ds
R

µ
π

−

∫∫ sA J ρ                               (2.7) 

                                          = ( ') '
4

jkR

S

e ds
R

ε
π

−

∫∫ sF M ρ                              (2.8) 

where, the prime coordinates denote the source points, S is the surface of the 

scatterer at the source points, Ms is the equivalent magnetic current on the 

surface and R is the distance from the source point to observation point given 

by 

                                           2( ') ' .R y y= − + −ρ ρ                                   (2.9) 

 Since the incident electric field is only ŷ  directed, the scattered and total 

electric fields have only ŷ  directed components which are independent of y 

variations (two dimensional). Therefore, the scattered electric field can be 

found by assuming that A has only y component which has no variations along 

the y-axis. Consequently, (2.6) reduces to 

                                              
1= xjω
ε

− − ∇sE A F .                              (2.10) 

Substituting (2.7) and (2.8) into (2.10) and making the use of following relation 

hip between electric and magnetic currents given by 

                                           sˆ ˆ=   x  = (  x )s snη−tM E n J                   (2.11)         

which can be implied from (2.1) and (2.2), the scattered electric field is 

obtained as  

                  
s

S

 = ( ') ( , ') '  + 

ˆ                       x  ( 'x ( ')) ( , ') '
S

j G ds

n G ds

ωµ

η

−

∇

∫∫

∫∫

s
s

s

E J ρ r r

J ρ r r
              (2.12) 

where G(r , r’) is the three dimensional free space Green’s function given by 
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                                            ( , ')  .
4

jkReG
Rπ

−

=r r                                            (2.13) 

 To simplify the second integral at the right hand side of (2.12), we benefit from 

the vector identity 

                                    x( ) = x  xψ ψ ψ∇ ∇ − ∇V V V                              (2.14) 

Substituting (2.14) into (2.12) yields  

                        ˆ ˆ ˆx[( 'x ) ] = G x( 'x ) + x( 'x ).n G n G n∇ ∇ ∇s s sJ J J            (2.15) 

Furthermore, the following vector identity  

                               1 2 3 1 3 2 1 2 3x( x ) =( . )  ( . )−V V V V V V V V V                     (2.16) 

to expand the relationship at the first term of the right hand side of (2.14) results 

                          { }ˆ ˆ ˆG x( 'x ) = G ( . ) '  ( . ')  = 0n n n∇ ∇ − ∇s s sJ J J              (2.17) 

such that the divergence of the surface current and the divergence of unit vector 

related with the source coordinate is equal to zero. Consequently, the second 

term at the right hand side of (2.15) becomes 

                               
ˆ ˆ ˆGx( 'x ) = ( G. ) ' ( '. G)  

ˆ                   = ( '. G)
n n n

n
∇ ∇ − ∇

− ∇
s s s

s

J J J
J

                (2.18) 

since the gradient of the Green’s function and current vector are perpendicular 

to each other. Thus the final expression for (2.12) is simplified to: 

                       

s
C

 = ( ') ( , ') ' '  

ˆ                        ( ') '. ( , ') ' '

C

j G dy d

n G dy d

ωµ ρ

η ρ

+∞

−∞

+∞

−∞

− −

∇

∫ ∫

∫ ∫

s
s

s

E J ρ r r

J ρ r r
        (2.19) 

where C is the terrain contour. Using the fact that 

                                     
2 2 

(2)
02 2

= ( ).
 

j le dl j H
l

α β

π αβ
β

+∞ − +

−∞

−
+∫                     (2.20) 

where (2)
0H is the Hankel function of second kind and order zero, and 

expressing R as given in (2.9) , the scattered field expression in (2.19) becomes 
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(2)
0

(2)s
1

 = ( ') ( ' ) '  
4

ˆˆ           ( ') '.  ( ' ) '
4

C

C

H k d

kj n H k d

ωµ ρ

η ρ

− − −

−

∫

∫

s
s

s

E J ρ ρ ρ

J ρ ρ ρ ρ
            (2.21) 

where (2)
1H  is the Hankel function of second kind of order one. Substituting 

(2.21) into (2.5), one obtains 

    

(2)
0

(2)s
1

( | ) = ( | ) ( ') ( ' ) '
4

ˆˆ                        ( ') '.  ( ' ) '.
4

s s

i
y s y y

C

y
C

E J J H k d

kj J n H k d

ρ ρ ρ ρ
ωµη ρ

η ρ

= =− − − −

− −

∫

∫

ρ ρ ρ ρ ρ

ρ ρ ρ ρ
(2.22) 

Equation (2.22) is referred as the electric field integral equation (EFIE) that 

will be used for impedance surfaces. Note that, the corresponding EFIE for a 

perfectly electric conducting (PEC) scatterer case can be obtained from (2.22) 

replacing sη  by 0, which results 

                      (2)
0( | ) = ( ') ( ' ) '.

4s

i
y y

C

E J H k dρ ρ
ωµ ρ=− − −∫ρ ρ ρ ρ         (2.23) 

Equations (2.22) and (2.23) can be used to find the unknown current density 

( ')yJ ρ  at any point on the surface of the terrain profile. Then the scattered field 

can be computed via this current density. 

2.2.2 MFIE for TE Polarization 

For the transverse electric case, (i.e., yˆ=  HyiH ) since the incident magnetic 

field  is directed along the ŷ direction, the current induced on the surface has  

 
only a component which is tangential to C. That is, 

                                         ˆ ˆ ˆ ˆ=  ( ),     =  x .s tt J t y nJ ρ                                 (2.24) 
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On the surface of the terrain the current density, related to the incident and 

scattered fields for the geometry of Figure 2.1, can be written as: 

                                   
C C C

y C C

y C C

ˆ ˆ|  =  ( )|  =  x( + )|
ˆ ˆ ˆ       =  x   |    x |

ˆ ˆ       =   |  +  x | .

s tt J n

n y H n

t H n

+

−

i s

s

s

J ρ H H

H

H

                        (2.25) 

Since left and right sides of (2.25) have only tangential components, the second 

term at the right hand side of the (2.25) must have a tangential component. So 

(2.25) can be written as 

                                        C y C C
ˆ ˆ|  =  |  + .[  x | ].sJ H t n− sH                       (2.26) 

Similar to the scattered electric field, the scattered magnetic field can be written 

as a superposition of magnetic and the electric auxiliary vector potentials A and 

F, respectively 

                  ( )1 1   = x . .j jω
µ ωµε

= + ∇ − − ∇ ∇s
F AH H H A F F       (2.27) 

 Since the scattered magnetic field has only a y component, the scattered 

and total magnetic fields have y components which are independent of y 

variations (two dimensional). Therefore the scattered field can be found by 

expanding (2.27), assuming F has only a y component which does not have a y 

variation, (2.27) reduces to 

                                                 
1= x .jω
µ
∇ −sH A F                               (2.28) 

Expanding (2.28) in terms of induced surface currents, the scattered magnetic 

field is obtained as 

s
S

ˆ = x ( ' ( ')) ( , ') '   

ˆˆ                       +   [ '  x ( ' ( '))] ( , ') '.

t
S

t

t J G ds

j n t J G ds

ρ

ωεη ρ

∇ +∫∫

∫∫

sH r r

r r
(2.29) 

By the use of  (2.14), the first integral at the right hand side of (2.29) reduces to  
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ˆ ˆx ( ' ( ')) ( , ') ' = ( ' ( ')) x [ ( , ')] 't t
S S

t J G ds t J G ds∇ − ∇∫∫ ∫∫ρ r r ρ r r (2.30) 

where G(r , r’) is the Green’s function given by (2.13). To find the tangential 

component of the scattered field for the boundary condition in (2.26), the 

explicit expression is given by  

s
S

ˆ ˆ ˆˆ ˆ.[  x ] = ( ') .{  x[ 'x ' ( , ')]} '  

ˆ ˆˆ ˆ                       +   .{  x[ '  x ( ' ( '))]} G( , ') '.

t
S

t

t n J t n t G ds

j t n n t J dsωεη ρ

− ∇ +∫∫

∫∫

sH ρ r r

r r
 

(2.31) 

Substituting  ˆ ˆ ˆ'  = '  x t n y−  to evaluate dot and cross products of the first 

term of at the right hand side of (2.31), one obtains 

                 

ˆ ˆ ˆˆ ˆ ˆ ˆ .{  x [ 'x ]} = .{  x [( '  x ) x ]}
ˆ ˆ ˆ ˆ ˆ ˆ            = .{  x [ ( '  . ) '(  . )]}
ˆ ˆ ˆ ˆ             = .{  x [ ( '  . )]}
ˆ ˆ ˆ ˆ             = . ( '  . ) = '  . .

t n t G t n n y G
t n y n G n y G
t n y n G
t t n G n G

− ∇ − − ∇

− − ∇ + ∇

− − ∇

− ∇ − ∇

        (2.32) 

Note that the gradient of the Green’s function and the ŷ directed unit vector are 

perpendicular to each other. Furthermore, dot and cross products of the second 

term of at the right hand side of (2.31) are treated as follow; 

                         
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ.{  x[ '  x ']} = .{ '  ( . ')  '  ( . ')}

ˆ ˆ ˆ ˆ                         = .{  '  ( . ')} = -1.
t n n t t n n t t n n

t t n n
−

−
                 (2.33) 

Where C is the contour of the terrain, substituting results of (2.32) and (2.33) 

into (2.31) results in 

                     

s

ˆ ˆ ˆ.[  x ] = ( ') '. ( , ') ' '

                          ( ') ( , ') ' '.

t
C

t
C

t n J n G dy d

j J G dy d

ρ

ωεη ρ

+∞

−∞

+∞

−∞

− ∇ −∫ ∫

∫ ∫

sH ρ r r

ρ r r
          (2.34) 

Substituting R as given in (2.9) and using (2.20),  (2.34) will turn into: 
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(2)
1

(2)s
0

ˆ ˆˆ ˆ.[  x ] =  ( ') '.  ( ' ) '
4

                        ( ') ( ' ) '.
4

                      

t
C

t
C

kt n j J n H k d

J H k d

ρ

ωεη ρ

− − −

−

∫

∫

sH ρ ρ ρ ρ

ρ ρ ρ     (2.35) 

If we substitute (2.35) into (2.26) and rearrange it, we obtain 

(2)
1

(2)s
0

ˆˆ( | ) = ( | ) ( ') '. ( ' ) '
4

                        + ( ') ( ' ) ',
4

s s

i
y t t

c

t
c

kH J j J n H k d

J H k d

ρ ρ ρ ρρ ρ

ωεη ρ

= =− + −

−

∫

∫

ρ ρ ρ ρ ρ

ρ ρ ρ
(2.36) 

Equation (2.36) is referred as the magnetic field integral equation (MFIE) for 

impedance surfaces. Note that, the corresponding MFIE for a perfectly electric 

conducting (PEC) scatterer case can be obtained from (2.36) replacing sη  by 0, 

which results 

(2)
1ˆˆ( | ) = ( | ) ( ') '. ( ' ) '.

4s s

i
y t t

c

kH J j J n H k dρ ρ ρ ρρ ρ= =− + −∫ρ ρ ρ ρ ρ (2.37) 

Equations (2.36) and (2.37) can be used to find the unknown current density 

( ')yJ ρ  at any point on the surface of the terrain profile. Then the scattered field 

can be computed via this current density. 

Solution of the integral equations (2.22) and (2.36) to find unknown 

currents is not analytically possible. Therefore, a method of moments (MoM ) 

solution  has been developed for the investigation of the induced current, as 

explained  in the following chapter.  

2.3 Method of Moments (MoM) Formulation 

 Although the terrain C has an arbitrary extension, the incident field on the 

surface is considered to be finite so that the illuminated rough surface and, 

consequently the integration in equations (2.22) and (2.36) can be confined to a 

finite region of length L. Thus, these equations can be solved by using a 



 
 

 16

numerical technique called method of moments (MoM). In this thesis, MoM is 

used in conjunction with the point matching technique. The surface of the 

scatterer is divided into N segments. Then, unknown current distribution on the 

scatterer surface is expanded in N terms of basis functions, forming N unknown 

current coefficients. Each current coefficient is associated with a segment of the 

scatterer surface. Therefore, at a fixed observation point due to the incident 

field, one obtains a single equation with N unknowns. Then enforcing the field 

at each observation point on the surface, N linearly independent equations are 

found. Consequently, the integral equation is transformed into a linear system 

equation which is easier to be solved. 

2.3.1 Point Matching Method 

 The EFIE in (2.22) and the MFIE in (2.36) are solved for the unknown 

surface current density Js(ρ’) using MoM procedure. Namely, first the surface 

current density is expanded in terms of a finite series of the form of 

                                        
1

( ') = ( ')
N

s m m
m

J I g
=
∑ρ ρ                                        (2.38) 

where  gm(ρ’) represents each known basis (expansion) function and Im  is the 

unknown coefficients of this basis function to be determined at the end of MoM 

procedure  When (2.38) is substituted into (2.23) or (2.36) for a nth observation 

point on the scatterer surface; 

1 1

1

(2)
, 1 2 0

(2)
3 1

( ) ( ')

( ')

( )|  =  ( | |) '

ˆˆ                      '.  (| |) '

N N

m m m m
m m

N

m m
m

i
y T E H m

C

m
C

I g I g

I g

T c c H k d

c n H d

ρ

ρ

= =

=

=− + −

+ −

∑ ∑

∑

∫

∫

ρ ρ

ρ

ρ ρ ρ

ρ ρ ρ
(2.39) 

 
where 1 2 3,   / 4 and  / 4s sc c c jkη ωµ η= − = − = −  for the EFIE. And for the 

MFIE, 1 2 3,   / 4 and  / 4s sc c c jkη ωεη= = = . Expression given by (2.39) can 

be illustrated in general as  
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1

= ( )
N

m m
m

v I F g
=
∑                                          (2.40) 

where  

             
1 1

1

,

(2)
1 2 0

(2)
3 1

( ) ( ')

( ')

 = ( ) |

( ) =  ( | |) '

ˆˆ                      '.  (| |) '.

N N

m m
m m

N

m
m

i
y T E H

m m
C

m
C

g g

g

v T

F c c H k d

c n H d

ρ ρ

ρ

= =

=

=−

+ −

+ −

∑ ∑

∑

∫

∫

ρ ρ

ρ

ρ

ρ ρ

ρ ρ ρ

     (2.41) 

 In (2.41), F is called as the linear integral operator, gm is the response 

function and v is the excitation function. A numerical solution of (2.41) for a 

single observation point ρ = ρn leads to one equation with N unknowns. If we 

repeat this N time by choosing N observation points, we have a system of N 

linear equations with N unknowns. Since this linear system was derived by 

applying boundary conditions at N discrete points, the technique is called as the 

point matching method. To improve the point matching method solution, a 

vector inner product can be defined as: 

                                               *

S

,  = .  ,ds〈 〉 ∫∫w g w g                                   (2.42) 

where * is the conjugate of a vector, w is the weighting functions and S is the 

surface of the structure to be analyzed. This weighting factor of basis functions 

is a better approximation instead of single point matching method.  

 

2.3.2 Weighted Residuals for Point Matching 

 The point matching method enforces the electromagnetic boundary 

condition only at discrete points. Between these points the boundary conditions 

may not be satisfied so that a residual error may occur between the exact 

boundary condition and the one found by point matching method. To minimize 

this residual, the method of weighted residuals is utilized in conjunction with 

the inner product in (2.42). This technique is called the method of moments 
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(MoM). MoM forces the boundary conditions to be satisfied in average sense 

over the entire surface. To achieve this situation, we define a set of N weighting 

functions {wn}= w1, w2, …… wN  in the domain of the operator F. If we take the 

inner products between each side of (2.38), 

                         
1

,  = , ( )    1,2,.....
N

n m n m
m

w v I w F g n N
=

〈 〉 〈 〉 =∑                 (2.43) 

 In this thesis a set of Dirac delta weighting functions, i.e., ( )np pδ −  

where p is a position with respect to origin and pn is the point at which the 

boundary condition is enforced, is used to reduce number of required operations 

(integrals coming from vector inner product). When we utilize these weighting 

functions in (2.40) and use (2.42) as the inner product, (2.40) becomes 

 

1

1

1

( ),  = ( ) , ( )    1,2,.....

( )   = ( ) ( )   1,2,.....

|  ( ) |      1,2,..... .
n n

N

n m n m
m

N

n m n m
mS S

N

p p m m p p
m

p p v I p p F g n N

p p v ds I p p F g ds n N

v I F g n N

δ δ

δ δ

=

=

= =
=

〈 − 〉 〈 − 〉 =

− − =

= =

∑

∑∫∫ ∫∫

∑
 (2.44) 

So we deal with only the remaining integrations whose specified by F(gm) in 

equation (2.41). 

 

2.3.3 MoM Formulation for EFIE 
 

The set of N equations in (2.41) may be written in the matrix form of, 

                                                .   = Z I V                                                 (2.45) 

where Z  is the impedance matrix. V is the excitation vector due to 

electromagnetic source at the match points whose elements are given by 

                                             = ( ).i
n y nv E− ρ                                            (2.46) 
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For the linear integral operator F, if we use pulse basis function which can be 

denoted as: 

                             {1            '    
0             elsewhere( ') = 

thm segment
mg ∈ρρ                      (2.47) 

than the impedance matrix elements in (2.45), for nth receiving (observation) 

and mth source points pair, can be approximated as [19] 

 

m

(2) (2) 'm
0 1

2 1 ln              = 
4 4 2

ˆˆ ( | |)   ( | |) .     .
4 4

  
m

m

n m m m n m m nm

k xj x n m
e

nm
kH k x j x H k n n m

Z
γωµ η

π

ωµ η ρ

∆⎡ ⎤⎛ ⎞− − ∆ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

− − ∆ − ∆ − ≠

⎧
⎪⎪≅ ⎨
⎪
⎪⎩

ρ ρ ρ ρ

 (2.48) 

where 1.7811γ =  is the Euler constant , e is equal to  2.728, mx∆  is the distance 

between two consecutive source points (segment width) and mη  is the surface 

impedance at the point mρ . Off-diagonal matrix impedance entries can also be 

represented by the two dimensional Green’s function, i.e., 

                 m
( , ) ( , )  + n m

nm n m m m
m

GZ j G x x
n

ωµ η ∂
≅ − ∆ ∆

∂
ρ ρρ ρ           (2.49) 

where 

                             
(2)
0 ( )

( , )  
4

n m
n m

H k
G

j
−

=
ρ ρ

ρ ρ                                   (2.50) 

and the second term at the right hand side of (2.49) is partial derivative of the 

Green’s function due to the normal vector at the source point.  

 

 Consequently, we transform the EFIE in (2.22) into a linear system 

equation given in (2.45) by the help of MoM. 
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2.3.4 MoM Formulation for MFIE 
 

 If we follow the same procedure for the MFIE in (2.36), by enforcing the 

field at the N match points and expanding the current in terms basis functions, 

we transform (2.36) to a linear system equation as given in (2.45) where the 

elements of the excitation vector V are 

                                                = ( ).i
n y nv H− ρ                                       (2.51) 

By employing pulse basis function, the impedance matrix entries will be [19] 

m

(2) (2) 'm
0 1

2 11 ln  +           = 
4 4 2

ˆˆ( | |)   ( | |) .     .
4 4

  
m

m

n m m m n m m nm

k xj x n m
e

nm
kH k x j x H k n n m

Z
γωεη

π

ωεη ρ

∆⎡ ⎤⎛ ⎞− ∆⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

− ∆ + ∆ − ≠

⎧
⎪⎪≅ ⎨
⎪
⎪⎩

ρ ρ ρ ρ

 

                                                                                                                      (2.52) 

Alternatively, the off-diagonal entries of the impedance matrix can be 

represented by the two-dimensional Green’s function, 

                  m
( , ) ( , )   n m

nm n m m m
m

GZ j G x x
n

ωεη ∂
≅ ∆ − ∆

∂
ρ ρρ ρ               (2.52) 

 
2.3.5 Solution of MoM 
 
 Once the impedance matrices given with the entries (2.48) for TM 

polarization and (2.52) for TE polarization are formed, the linear system 

equation in (2.45) should be solved for unknown current coefficients I = {Im }. 

The direct solution methods like Gaussian elimination and LU decomposition 

requires a computational cost of O(N3) where N is the number of unknowns. 

Hence, as the dimension of the problem gets larger, computational requirements 

of the MoM increases very rapidly. Nevertheless, less time consuming 

alternative methods are available to solve these linear system equations. These 

methods are called iterative methods resulting an operation count of O(N2) per 
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iteration. One of the variants of iterative processes named Gradient type of 

methods, is explained in Chapter 3.  
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Chapter 3 

 

Gradient Type of Iterative Solvers 

and the Spectral Acceleration (SA) 

Algorithm 
 

3.1 Introduction 
 

 The primary factor limiting the use of MoM in the calculation of 

electromagnetic scattering from rough surfaces is that a linear system equation 

must be solved to obtain currents induced on the scatterer. Direct solution 

methods such as LU decomposition require O(N3) operations, where N is the 

number of unknowns in the discretized representation of the surface current. 

Electrically larger scattering surfaces (for very large N) increase the 

computational cost of the method and make it intractable especially at high 

frequencies. 

  

 Using iterative techniques, computational cost is reduced to O(N2) 

operations per iteration. The basic will of an iterative process is to reach to the 

exact solution by updating estimates at each iteration. Two different approaches 

can be applied as iterative schemes to solve this system equation formed by 

MoM. These are, namely, stationary and non-stationary iterative techniques. In 

each of the method, different update schemes are used for the estimates to find 

the exact solution.  
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 A method is called stationary if the rule to determine the estimates at 

each iteration does not change from iteration to iteration (i.e. the iteration 

matrix is stable during the process). In stationary iterative techniques, the 

surface current is approximated by physical optics approximation applied to the 

incident field [25]. The current is then updated by applying surface boundary 

condition. Kapp and Brown [26] and Holliday et al. [12] choose the ordering of 

the updates to follow multiple scattering paths on the surface. This led Kapp 

and Brown and Holliday et al. to name their approaches as method of ordered 

multiple interactions (MOMI) and forward backward method (FBM), 

respectively. Such two techniques have shown a very effective and rapid 

convergence activities to solve linear system equations constructed by MFIE  in 

vertical polarization case and EFIE in horizontal polarization case for the PEC 

and non-PEC surfaces which are single valued and rough in one dimension. But 

when the ordering of the scatterer is multi-valued (reentrant surfaces), 

divergence problem occur.  

 

 Non-stationary techniques are the second kind of iterative methods used 

to solve systems formed by MoM solution. These methods are extensions of 

standard conjugate gradient (CG) method [13] which converge to the exact 

solution assuming infinite precision by constructing orthogonal vector 

sequences. Examples are given by bi-conjugate gradient (BiCG) method used in 

[14] generalized conjugate gradient (GCG) method [15] and quasi-minimum 

residual (QMR) method [17] are some typical examples. These methods are 

developed to solve asymmetric/non-Hermitian complex linear systems and 

hence, their algorithms are different than those of stationary methods. In these 

kinds of methods, the rule to determine the estimates changes from iteration to 

iteration. The rule is based on orthogonality conditions in the space defining the 

linear system equation. Consequently, a new iteration matrix is generated at 

every iteration step to update the estimates. 
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 This chapter is devoted to the discussion of gradient type methods and 

an acceleration algorithm which can be applied on such methods. The 

properties of conjugate gradient type methods are presented in Section 3.2. 

Numerical results for BiCG Stabilized methods are given in Section 3.3. The 

acceleration algorithm’s assets are exhibited in Section 3.4.  

  

3.2 Conjugate Gradient Type Methods 

 

 All of these methods explained below are assumed to solve a linear 

system given by =Ax b . Here A  is a NxN interaction matrix, b is a response 

vector for the system and x is the unknown vector to be solved. 

 

3.2.1 Conjugate Gradient Method 

Being the oldest and best known nonstationary technique, the conjugate 

gradient method is an effective method for symmetric positive definite systems. 

The process, which stimulates the method is the generation of vector sequences 

of iterates (i.e., consecutive approximations to the solution), creating residuals 

that correspond to the iterates, and search directions that are used to update the 

iterates and residuals. Although the length of these sequences can become large, 

only a small number of vectors are needed to be kept in memory. In order to 

calculate update scalars that are defined to assure that the sequences fulfill 

certain orthogonality conditions, there are two inner products to be used at each 

iteration of the method. These conditions guarantee on a symmetric positive 

definite linear system that the distance to the true solution is minimized 

according to some standards. 

          The iterates x(i) are updated in each iteration by a multiple αi of the search 

direction vector p(i):  

 ( ) ( 1) ( )   i i i
iα

−= +x x p  (3.1) 
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Correspondingly the residuals ( ) ( )= -  i ir  b A x are updated as,                                           

  
( ) ( 1) ( )   i i i

iα
−= −r r q  (3.2) 

where 

 ( ) ( )  .i i=q Ap  (3.3) 

The choice ( 1) ( 1) ( ) ( )   /   
T Ti i i i

iα
− −= r r p Ap  minimizes  over all possible 

choices for α. The search directions are updated using the residuals 
                                           ( ) ( 1) ( 1)

1   i i i
iβ

− −
−= +p r p                                  (3.4) 

where the choice 

                                      ( ) ( 1) ( 1) ( 1)   /  
T Ti i i i

iβ
− − −= r r r r                                (3.5) 

ensures that ( ) ( ) and   i ip Ap (or equivalently r(i) and r(i-1)) are orthogonal. In 

fact, one can show that this choice of βi makes p(i) and r(i) orthogonal to all 

previous ( )jAp and r(j) respectively.  

As can be seen in the Figure 3.1, in the pseudo code [13] is given for the 

preconditioned conjugate gradient method, there is a preconditioner M . 

Preconditioners are very commonly used matrix forms which enhance the 

condition number of the original matrix A , thus generally reducing the number 

of iterations to converge to the  solution of the linear system. But to  construct a 

good preconditioner matrix which can improve the iterative technique by means 

of iteration, the effort in terms of computational cost is increased.  For =M I  

(where I is the identity matrix), one takes the unpreconditioned version of the 

conjugate gradient algorithm. In that case, by omitting the "solve" line and 

replacing z(i-1) by r(i-1) (and z(0) by r(0)), the algorithm may be further simplified. 

In this thesis, unpreconditioned versions of conjugate type methods are used 

because as it will be explained in Chapter 3.3, there is no need to store 

interaction matrix. Thus, it will be unnecessary to use a preconditioner matrix. 
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Figure 3.1 Pseudo code for the Conjugate Gradient method 

 

The unpreconditioned conjugate gradient method creates the ith iterate 

x(i) as an element of  

 (0) (0) ( 1) (0)  span { ,............,  }i−+x r A r  (3.6) 

so that 

 ( ) ( )(   ) (   )i T i
e e− −x x A x x  (3.7) 

is minimized, where xe is the exact solution of =Ax b . The existence of this 

minimum can be assured in general only if A  is symmetric positive definite. 

Since the interaction matrices formed by MoM solutions in Chapter 2 are not 

positive definite, CG method is ineffective for our problem type. There are 

many variants of iterative techniques, which can handle linear system equations 

formed by the method of moments solution. These methods come out from the 

same origin. They depend on constructing orthogonal vector sequences which 

will be used to update the  estimates for the next iteration.   
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3.2.2 BiConjugate Gradient Method 
 

The conjugate gradient method is not suitable for nonsymmetrical 

systems In this case, the biconjugate gradient method (BiCG) can be used. 

BiCG substitutes the orthogonal sequence of residuals by two mutually 

orthogonal sequences, at the price of no longer providing a minimization. 

Nevertheless, the positive definiteness condition does not affect this method. So 

the method becomes suitable for the solution of electromagnetic scattering 

problem.   

By using dual relations based on TA  instead of A , the update relations 

for residuals in the conjugate gradient method can be amplified in the 

biconjugate gradient method Thus, we update two sequences of residuals 

 ( ) ( 1) ( ) ( ) ( 1) ( )     and       ,i i i i i T i
i iα α− −= − = −r r Ap r r A p  (3.8) 

and two sequences of search directions  

 ( ) ( 1) ( ) ( ) ( 1) ( )
1 1     and       .i i i i i i

i iβ β− −
− −= − = −p r p p r p  (3.9) 

The choices: 

 
( 1) ( 1) ( ) ( )

( ) ( ) ( 1) ( 1)
   and    

T T T T

T T T

i i i i

i ii i i i
α β

− −

− −
= =

r r r r
p Ap r r

 (3.10) 

ensure the orthogonality conditions; 

 ( ) ( ) ( ) ( )   0 .
T T Ti j i j= =r r p Ap  (3.11) 

if i ≠ j.  The pseudo code is given in Figure 3.2 [13]. 

The BiCG method delivers the same results as the conjugate gradient 

method for symmetric positive definite systems, but at twice the cost per 

iteration. In case of nonsymmetrical matrices, it has been revealed that the 

BiCG method is more or less comparable to the full biconjugate stabilized 

(BiCGSTAB) method with regards to number of iterations in phases of the 

process where there is significant reduction of the norm of the residual. 
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Figure 3.2 Pseudo code for the Bi-Conjugate Gradient method 

 BiCG requires computing a matrix-vector product Ap(i) and a transpose 

product ( )T iA p . In some applications, the latter product may be impossible to 

perform; in cases such as if the matrix is not constructed. In a parallel 

environment the two matrix-vector products can theoretically be carried out at 

the same time; however, in a distributed-memory environment, there will be 

extra communication costs associated with one of the two matrix-vector 

products, depending on the storage scheme for A . To lessen this problem a 
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duplicate copy of the matrix can be used, which performs at the cost of 

doubling the storage requirements for the matrix.  

3.2.3 BiConjugate Gradient Stabilized Method 

There are numerous alternatives of BiCG that raise the efficiency of this 

group of methods in some confident situations. One of the alternatives is 

biconjugate gradient stabilized method. BiCGSTAB often converges twice as 

fast as the BiCG. At least locally, a residual vector is minimized which results 

in a considerably smoother convergence behavior. 

BiCGSTAB has two ending tests. The method may converge at the first 

test on the norm of s where s is a relation between the recent and preceding 

residual error vectors. Then the subsequent update would be numerically 

tentative. Ending on the first test avoids a few unnecessary operations as well. 

BiCGSTAB calls for two more inner products than those of biconjugate 

gradient method, i.e., two matrix-vector products versus four inner products. 

Since BiCGSTAB is the fastest one of all the other conjugate type methods in 

terms of iteration number, all of the numerical results in this thesis are 

evaluated by this algorithm.  

It should be noted that the convergence ability of the conjugate type 

methods strongly depends on the condition number of the interaction matrix, 

the number of iterations to reach desired level of error varies with the properties 

of the matrix. For instance diagonally dominant matrices is fast to solve with 

the BiCGSTAB method, But when we are dealing with reentrant surfaces 

yielding large off-diagonal elements interaction matrices, the algorithm requires 

more iterations. Also the condition number is a function of maximum and 

minimum eigen values of the matrix. Thus, as the number of unknowns to be 

solved increases the number of iterations required for a converged result 

increases. The pseudo code is given in Figure 3.3 [13].  



 30

(0) (0) (0)

(0)

( 1)
1

1

( )

:

Compute      for some initial guess .

Choose  (for example,    ).
for   1, 2, ...

            
     if   0, method fails
     if   1

          

T i
i

i

i

Pseudocode

i

i

ρ
ρ

−
−

−

= −

=
=

=

=

=

r b Ax x

r r r

r r

p ( 1)

1 1 2 1 1
( ) ( 1) ( 1) ( 1)

1 1

( )

( )

( )
1

( 1)

  
     else
            ( / ) / ( / )

              (   )
     endif

ˆ     solve   

ˆ       

       /  

           

i

i i i i i
i i i i

i i

i

i

T i
i i

i

β ρ ρ α ω

β ω

α ρ

α

−

− − − − −
− − −

− −

−
−

=

=

= + −

=

=

=

= −

r

p r p v

Mp p

v Ap

r v

s r ( )

( ) ( 1)

( ) ( 1)

( )

ˆ     check norm of ;if small enough: set       and stop
ˆ     solve   

ˆ       

       /

ˆ ˆ            

         
     check convergence; 

i
i

i i
i

T T
i
i i

i i
i

i

α

ω

α ω

ω

−

−

= +

=

=

=

= + +

= −

v

s x x p

Ms s
t As

t s t t

x x p s

r s t
continue if necessary

     for continuation it is necessary that   0
end
     

iω ≠

 

Figure 3.3 Pseudo code for the BiConjugate Gradient Stabilized method 

 

 

 
Table 3.1 Operation count per iteration for BiCG and BiCGSTAB methods 

Method Inner Product SS Matrix-Vector Prod. 

BiCG 2 5 2 

BiCGSTAB 4 6 2 
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Summary of operations per iteration for conventional BiCG and 

BiCGSTAB methods are given in Table 3.1. SS is the vector summations and 

subtractions number. 

 

The storage requirements for conventional BiCG and BiCGSTAB 

methods are given in Table 3.2. N is the number of unknowns. On the other 

hand, the matrix storage requirement can be avoided at the cost of reevaluating 

each matrix entry at each iteration. 

 

Method Storage Requirement 

BiCG Matrix + 10N 

BiCGSTAB Matrix + 11N 

 

Table 3.2 Storage requirements for BiCG and BiCGSTAB methods 

 

3.3 Numerical Results for the BiCGSTAB Method 
  

In this section, some numerical results are presented to validate the 

convergence and accuracy of the Biconjugate Stabilized method over one-

dimensional rough terrain profiles. Applying method of moments, a matrix 

equation is formed to obtain the unknown current coefficients 

 .   =Z I V  (3.12) 

where the elements of the impedance matrices are given by (2.48) for TM 

polarization and given by (2.52) for TE polarization, respectively. Results are 

obtained both for perfect and imperfect conductor surfaces. In order to check 

the accuracy of the method, results are compared with the method of moments. 

The pulse width in point matching technique is taken as ∆x = λ / 10. Residual 

error is employed as a stopping criterion of the iterative method. The residual 

error vector at the ith iteration step is defined as 
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    . i i= −r V Z I  (3.13) 

 and the corresponding residual error is given as, 

 
 

  = 
 

i

residual error
r
V

 (3.14) 

where || . || denotes the vector norm. The stopping criterion of   the BiCGSTAB 

method is limited by the residual error of 10-3 in this thesis. It has been seen that 

this error rate is sufficient to obtain accurate results. 

 

3.3.1 Source Incident on the Terrain Profile 

  

Three kinds of sources are considered in this thesis. The first one is 

finite end plane wave as shown in Figure 3.4(a). The elements of the excitation 

vector, the right hand side of (2.46), for the TM polarization than will be  

 { ( cos sin )-  , on the surface
 0                              , elsewhere  ( )  

jk x zn ni e
n nv E

θ θ− −
= =ρ  (3.15) 

 where the subscript n denotes the location of observation points on the terrain. 

For the TE polarization, the elements of the right hand side of (2.51) can be 

expressed as 

 { ( cos sin )-  , on the surface
 0                              , elsewhere

0

1 ( )   .
jk x zn ni e

n nv H
θ θ

η
− −

= − =ρ  (3.16) 

            The second source is an isotropic radiator located above the surface as 

shown in Figure 3.4(b). The elements of the of the excitation vector will be for 

TM and TE cases are 

 0  ( )  
njkd

i
n n

n

ev E E
d

−

= − = −ρ  (3.17) 

 
and  

 0

0

  ( )  ,
njkd

i
n n

n

E ev H
dη

−

= − = −ρ  (3.18) 
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respectively. The source distance dn is 

 2 2  (   )   (   )  .n n s n sd x x z z= − + −  (3.19) 

 

 
Figure 3.4 Sources incident on the terrain profile 
 

Using the radiation density integral in [27] to find the average transmitted 

power, we can evaluate the magnitude of the electric field as: 

 
22

0

=0 =0

  sin
2rad

E
P d d

π π

θ φ

θ θ φ
η

= ∫ ∫  (3.20) 

 
and 

 0  60  .radE P=  (3.21) 

The last source considered here is an infinitesimal dipole depicted in Figure 

3.4(c). For this type of source elements of the incident field vector for both 

vertical and horizontal polarizations are: 
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 0  ( )  sin
njkd

i
n n n

n

ev E E
d

θ
−

= − = −ρ  (3.22) 

and  

 0

0

  ( )  sin
njkd

i
n n n

n

E ev H
d

θ
η

−

= − = −ρ  (3.23) 

where  

 
 sin    .n s

n
n

x x
d

θ −
=  (3.24) 

The electric field magnitude will be:  

 0  90  .radE P=  (3.25) 

 
3.3.2 Applications of BiCGSTAB over Rough Surfaces 

 

 Operating frequency is chosen to be 300MHz, which yields to 1 meters 

wavelength for all of the results. Figure 3.5 shows a strip surface of width 50λ. 

 
Figure 3.5 Strip surface of width 50λ 

 

Plane wave incidence is considered for both TM and TE polarizations. 

Figure 3.6 shows results for oblique (θ  = π / 2) incidence.  To see the 

absorption effects of the terrain profile, both PEC ( 0sη = ) and imperfect 

conducting case are considered. For the non-PEC case the surface impedance is 

taken as 17.6 + 16.8s jη = . As can be seen in Figure 3.6(c), the TE polarized 

plane wave, induced on the strip for the PEC case, results a stable current on the 
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terrain profile. If we look at the interaction matrix entries in (2.45), we see that 

the self terms is equal to ½ since = 0mη and the mutual terms is equal to 0 

since the unit vector ˆmn is always perpendicular to surface of the strip. This 

shows us that the tangential current in the MFIE is found to be: 

 ( )  2 ( )i
tJ H= −ρ ρ  (3.26) 

 

 
Figure 3.6 Distributed current on a strip, oblique plane wave incidence 

 

This is a reliable result considering that the surface profile is extended to 

infinity, thus the induced current on an infinite strip is the physical optics 

current ˆ  2n x PO inc
s =J H . Hence, reaching accurate solution of the induced 

current over strip profiles for vertical polarization is not numerically possible. 

However, when the strip is imperfect conducting, the MFIE yields accurate 

results as shown in Figure 3.6(d). This is also true when we are dealing with 
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undulating geometries that the dot product term in (2.45), to find mutual 

elements interaction, does not vanish.  

 

Figure 3.7 illustrates the residual errors of Figure 3.6. It can be clearly 

seen in Figure 3.7(a) and Figure3.7 (b) that non-PEC case reaches at the desired 

level of error in a faster way. Also for the TE polarization case, the convergence 

ability is higher since the interaction matrix formed by MFIE is more 

diagonally dominant compared with one formed by EFIE for TM case. 

 

 
 Figure 3.7 Residual errors of Figure 3.6 

Figure 3.8 shows a rough surface of width 100λ illuminated by a plane 

wave for both polarization cases. Maximum height deviation is about 21λ.The 

incident angle is now  θ  = π / 20 (grazing incidence). Imperfect conducting 

case is considered with 17.6 + 16.8s jη = . Results show that the BiCGSTAB 
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converges successfully. Because of grazing angle condition, shadowing effects 

are seen after the hill of the terrain. The residual errors with respect to the 

iteration number are given in Figure 3.9. 

 

 
Figure 3.8 Distributed current on a 100λ rough surface, grazing plane wave 

 
Figure 3.9 Residual errors of Figure 3.8  
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The third example is again a 100λ width rough surface illuminated by a 

isotropic radiator placed at 25λ above at the left most point of the terrain. The 

radiated power is assumed to be 25 Watts. Both cases for TM and TE 

polarization are plotted for perfect conducting surface.  

 
Figure 3.10 Isotropic radiator on the rough surface 

 

 
Figure 3.11 Residual errors of Figure 3.10 
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The currents for both polarization cases decay to zero. This is normal for an 

isotropic source that the field strength is inversely proportional to the distance 

taken. 

 Figure 3.12 displays a rough surface of width 200λ. The results are 

again compared with MoM solution for validity. An infinitesimal dipole is 

placed above height 25λ at the center of the terrain. The surface impedance is 

given as 17.6 + 16.8s jη = . The radiated power is 25 Watts. 

 
Figure 3.12 Dipole antenna on the rough surface 

 
Figure 3.13 Residual errors of Figure 3.12 
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Because of the hill geometry, the current suddenly decreases between 20 

and 80 meters. This is the shadowing effect of the peak of the terrain preceding 

to where the dipole is located. The left lobe of the current is higher than the 

right one due to θn deviation. The residual error rates with respect to the number 

of iterations are given in Figure 3.13 for both polarization cases. 

 

Figure 3.14 is another surface profile of width 200λ. Imperfect 

conducting case is considered with  17.6  16.8s jη = + . Dipole antenna is 

located at the 40th meters on the displacement axis above 25λ of the surface. 

Average radiated power is now 40 Watts. The shadowing effects are clearly 

seen on the surface. 

 
 Figure 3.14 Dipole antenna on the rough surface 

 

N = 2000 is the upper limit for us to use MoM as a reference due to 

RAM requirement of the computer. Also the operation count of O(N3) to 

employ LU decomposition to invert the MoM matrix makes the process really 
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cumbersome after this number of unknowns. The numerical examples show that 

BiCGSTAB method is well suited for scattering problems. By applying this 

method, the operation count is reduced to O(N2). So BiCGSTAB method can be 

used as a reference solution for the analysis of the terrain profile. One other 

advantage is that the storage requirement can be kept at O(N) at the cost of 

reevaluating each of the matrix entries at every iteration.  

 
Figure 3.15 Residual errors of Figure 3.14 

 

The next example is an unordered surface profile. The target under test 

is a ship placed on a 400 meters sea surface. To generate random sea surface for 

a given wind speed, an infinite-depth Pierson-Moskowitz ocean spectrum [28] 

is used. Both PEC and imperfect conducting cases are considered. As we 

mentioned before since the surface of the scatter is multi-valued, stationary 

methods such as FBM can not solve this kind of problem. In order to show the 

validity of the BiCGSTAB the results are compared with generalized forward-

backward method (GFBM). To cope with divergence in a multi valued region, 

Pino et all. [21] have introduced a generalized version of this method. The 

method is based on same general concepts stated for FBM but includes 

significant changes in the decomposition of system interaction matrix. This 

decomposition is complicated fact for large-scale problems. This fact comes 

from dividing the surface area into three regions. The first and the last regions 

are reserved to single valued surface geometry and solved via conventional 

FBM. The second one called MoM region includes the reentrant surface 
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elements (i.e., ship) where the number of elements is given as NMoM   and solved 

by matrix vector production approximation. The computational cost is 
2( )MoMO N . Thus this approach requires an additional work and more storage 

requirement at each iteration, which can be very overwhelming if the multi-

valued section is too large. As a conclusion, the rapid convergence of FBM 

looses its attraction. Figure 3.16 displays the height and width properties of the 

ship under target with respect to λ. Frequency is 300MHz with number of 

unknowns N = 4500. 

 
 

Figure 3.16 The ship under target 

 

The results are evaluated for TM polarization both for PEC and non-

PEC case. For the imperfect conducting case, the sea is modeled with a surface 

impedance   76.4  65.1s jη = +  while the ship remains PEC. Plane wave 

incidence is considered with an angle θ  = π / 36. Current distributions on the 

surface of the sea and the ship due to 0 m/s (flat surface), 5m/s and 10m/s wind 

speed are plotted in Figure 3.17, Figure 3.18 and Figure 3.19, respectively. 

 

The results show that BiCGSTAB method yield accurate results without 

cumbersome operations like sectioning the area of target like GFBM does and 

storing the impedance matrix in the ship region. Nevertheless, since the off-

diagonal elements of interaction matrix are large owing to the multi-valued 

ordering at the ship surface, the number of iterations is increased to obtain a 
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residual error of 10-3. Figure 3.20 shows the error rates for perfect conductivity 

condition.

 
Figure 3.17 Current distribution on a ship (wind speed: 0m/s) 

 
Figure 3.18 Current distribution on a ship (wind speed: 5m/s) 
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Figure 3.19 Current distribution on a ship (wind speed: 10m/s) 

    
Figure 3.20 Residual error for PEC case 

 

And in Figure 3.21, residual error is plotted for imperfect conductor case. 

 
Figure 3.21 Residual error for non-PEC case 
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It’s clearly seen the residual error rates deceases slowly due to the reentrant 

surface of the ship. While iteration number for the PEC case is about 90 for 

three different wind speeds, this number is reduced to about 70 for imperfect 

conductor surface because of having better conditioning of impedance matrices.    

 

3.3.3 Computational Cost of BiCGSTAB 

 

 Investigations on rough surface profiles show that BiCGSTAB obtains 

numerically accurate results for both TM and TE polarization cases. 

BiCGSTAB reaches a residual error of 10-3 about 25 iterations for TM case and 

about 10 iterations for TE case (reentrant surfaces are exceptions). But it’s 

better not to define exact number to reach to desired level of error because, as 

stated earlier, the number of iterations is strongly dependent upon the number 

of unknowns to be solved. While MoM’s computational cost is related to the 

matrix fill time and LU inversion, BiCGSTAB has a computational cost due to 

matrix-vector multiplication and number of iterations. Table 3.3 shows this 

relation on the assumption that BiCGSTAB reaches residual error of 10-3. Since 

the data is not available for the MoM solution, Cpu-time values for matrix 

filling time found by using spline extrapolation after 2000 unknowns. 

 

 

N Mat-Fill (s) LU inversion (s) TM-BiSTAB (s) TE-BiSTAB (s)

500 

1000 

2000 

5000 

10000 

20000 

1.5 

5.5 

25.5 

172 

600 

2417 

55 

542 

5018.5 

NA 

NA 

NA 

9.5 

41.5 

199 

1312.5 

5057 

48232 

2 

9 

70 

360 

1281 

5372 

 

Table 3.3 Computational cost for BiCGSTAB method 
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From the table above, it is obvious that MoM requires O(N3) cpu-time 

while the BİCGSTAB requires O(N2) computational cost. The computational 

cost with respect to unknowns is plotted in Figure 3.22. 

 
Figure 3.22 Computational Cost 

 

The examinations and comparisons demonstrate that, the BiCGSTAB 

can be used as a reference solution instead of MoM for the study of scattering 

problems for both horizontal and vertical polarizations with a computational 

cost of O(N2). 

 

3.4 Spectral Acceleration Algorithm 

 

 As mentioned before, BiCG and BiCGSTAB require two matrix- vector 

multiplies at each iteration which means O(N2) operations per iteration. These 

methods provide accurate results and presents fast convergence. Nevertheless, 

for very large N (i.e., when the problem of interest is electrically large such as 

terrain profiles in the rural areas), the operation count per iteration increases 

drastically such that the use of method becomes inefficient. Keeping the 

impedance matrix, found by employing MoM solution, raises storage 

requirements. At a certain dimension of the problem, storing interaction matrix 
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becomes unfeasible. However, in 1996, Chou and Johnson [18] have come up 

with an alternative scheme. They have proposed an acceleration algorithm 

named spectral acceleration (SA) for faster computation of the interactions 

between widely separated points. SA was utilized firstly for the original 

forward-backward method and they have proved that this approach results in a 

solution with an operation count of O(N). The algorithm is mainly based on a 

spectral domain representation of two-dimensional Green’s function which is 

applicable to both for PEC and imperfect conducting cases. In SA, there is no 

need to store the impedance matrix at the cost of reevaluating only a very small 

portion of elements interaction. Therefore storage requirement is decreased 

significantly. Although SA algorithm is well suited for FBM that it precedes the 

forward and backward sweeps of the propagating fields, it can also be used in 

any standard iterative processes like BiCG or BiCGSTAB methods. Valero [29] 

utilized the SA algorithm in conjunction with BiCG firstly in order to make fast 

analysis of electromagnetic scattering from the strip gratings. However, 

analyzing electrically large terrain profiles has never been examined in the 

literature. 

 

3.4.1 SA Algorithm for Quasi-planar Surfaces 
 

In SA, radiating elements over a given receiving element are divided 

into two groups. The first one is the forward propagating field via preceding 

source elements and the second one is backward propagating field via the 

following source elements with respect to nth receiving point as illustrated in 

Figure 3.23 for a flat surface for the nth receiving element.  

 
Figure 3.23 Forward and backward propagating fields on a flat surface 
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The forward propagating field is also divided into two groups: strong 

interaction group and weak interaction group. The decisive factor defining 

these groups is the distance from the receiving element. Hence for a distance Ls, 

the strong group contains Ns = Ls /∆x (∆x is the unit pulse width) elements 

including the interaction of its self, and the rest of the source elements construct 

the weak group (Figure 3.24). Thus, the total field in the forward direction will 

be the sum of strong and weak group contributions. The same assumption holds 

for the backward propagation. 

 
Figure 3.24 Weak and strong regions for the nth receiving point at forward 

direction 

 

3.4.1.1 Spectral Acceleration for Horizontal Polarization  
 

 The algorithm procedure for the electric field integral equation for the 

TM polarization is given below. As mentioned, the fields are divided into two 

groups; the electric field formed by forward propagating field denoted as Ef and 

the one formed by backward propagating field denoted as Eb. As stated earlier, 

SA algorithm was originally derived for the FBM. FBM assumes that the lower 

triangular interaction matrix and the unknown current coefficient vector product 

create the forward propagating field. So the backward propagating field is left 

to be the multiplication of upper triangular interaction matrix with the unknown 

current coefficient vector. Due to this consideration, forward field can be 

illustrated as,  
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  1

( )  .    .
N

f
f n m nm

m

E I Z
=

= = ∑ρ Z I  (3.27) 

At the forward propagating field expression in (3.27), superscript f at the top of 

the impedance matrix denotes the sum of lower triangular and diagonal parts of 

the matrix. In fact, when SA is used for the FBM, the diagonal part is excluded 

from the algorithm (i.e., the upper summation limit at the right hand side of 

(3.27) is n-1). This is the main difference between accelerated versions of the 

FBM and the conjugate gradient type methods. The backward propagating field 

can be expressed as 

 
  1

( )  .    .
N

b
b n m nm

m n

E I Z
= +

= = ∑ρ Z I  (3.28) 

Similar to the forward propagation case, superscript b at the top of the 

impedance matrix denotes the upper triangular part. For simplicity, only the 

forward propagating field will be focused in here, the backward part can be 

treated in the same manner and is given in appendices. 

 

  The forward field is also divided into two groups; the contributions 

coming from the strong region and the contributions due to weak region, i.e., 

 , ,.   ( )  ( )  ( )f
f n f w n f s nE E E= = +Z I ρ ρ ρ  (3.29) 

where the strong and weak contributions can be written as 

 ,
  1

( ) 
s

N

f s n m nm
m n N

E I Z
= − +

= ∑ρ  (3.30) 

                                       ,
  1

( )  = 
sn N

f w n m nm
m

E I Z
−

=
∑ρ                                       (3.31) 

with the impedance matrix elements defined in (2.48). The radiations of the 

strong group contributions are found in the conventional matrix-vector 

multiplication by evaluating the exact impedance elements. However, weak 

group contribution is obtained by employing spectral representation of the two-

dimensional Green’s function. 
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− − + −−
= ∫  (3.32) 

where Cφ  is the contour of integration in the complex φ  space shown in Figure 

3.25. We also need the derivative of the Green’s function due to normal vector 

at the source point, which takes place within the off-diagonal entries of the 

impedance matrix defined in (2.49) 

 
[ ]

[ ]( ) cos ( )sin

( , )  cos cos   sin sin
4

                                           . n m n m

n m
m m

m C

jk x x z z

G k
n

e d
φ

φ φ

ρ ρ θ φ θ φ
π

φ− − + −

∂
= +

∂ ∫
 (3.33) 

where mθ  is the angle between the normal vector at the source point ˆmn  and the 

unit vector x̂ . 

 

 Substituting equations (3.32) and (3.33) into (3.31) and interchanging 

the summation and integration gives, 
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where 
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The integrand ( )nF φ  can be represented via recursive formulation: 

( )
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( ) ( ) 1 [cos cos sin sin ]

                                                  . 

n n

n ns ns

jk x x ns
n n ns ns ns ns

jk x x z

F F e I x

e

φ

φ φ

ηφ φ θ φ θ φ
η

− −
−

⎡ ⎤− − −⎣ ⎦

⎧ ⎫
= + ∆ − +⎨ ⎬

⎩ ⎭

                                                                                                                      (3.36) 

with ( ) = 0 for n sF n Nφ ≤ . The subscript ns is equal to n - Ns.  By employing 

this recursive procedure a great reduction of computational cost is obtained. 

Due to this formula, the integrand of nth element updates itself in terms of the 
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previous one, which keeps all of the weak interactions until that receiving 

element. Hence, operation count required for the weak region process is O(N). 

An analogous procedure can also be implemented for the backward case and is 

given in Appendix A.I. 

     

3.4.1.2 Spectral Acceleration for Vertical Polarization  
 

If we use MFIE formulation for TE polarization, the forward 

propagating magnetic field, is the sum of strong and weak contributions, 

 , ,( )  ( )  ( )f n f w n f s nH H H= +ρ ρ ρ  (3.37) 

with 
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and  
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H I Z
−

=

= ∑ρ  (3.39) 

where the elements of the impedance matrix are defined in (2.52). The 

radiations of the strong group contributions are found in the conventional 

matrix-vector multiplication by evaluating the exact impedance elements. 

However, weak group contribution is obtained by employing spectral 

representation of the two-dimensional Green’s function. Than by using (3.32) 

and (3.33), the forward propagating magnetic field is given by 
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The integrand ( )nF φ  can be evaluated via a recursive formulation given by 
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                                                                                                                      (3.42) 

with s( )  0 for n NnF φ = ≤ . The subscript ns is equal to n - Ns. By applying this 

recursive process on the integrand, we again provide an operation count of 

O(N). As a result, an equivalent procedure can be applied for the backward 

propagating field, which is divided also into two groups, strong and weak 

interactions and is given in Appendix A.II. 

. 

3.4.1.3 Integration Contour for Quasi-planar Surfaces  
  

Since the Hankel function is analytic in the complex angular plane for 

widely separated points, the integration path can be deformed to a steepest 

descent path (SDP). The SDP of a flat surface (i.e., zn - zm = 0) passing through 

the origin is shown in Figure 3.25 as SDP0. Due to asymptotic analysis, it is 

seen that most of the contribution of the integrand occurs on the SDP near a 

saddle point located on the real axis. As the distance increases from the saddle 

point along the SDP, the complex values on this path make the integrand in 

(3.34) and (3.40) decrease exponentially, hence, the contributions become 

negligible. Since the significant contributing region is much smaller than the 

original pathCφ , the deformation process is very advantageous numerically. 

This smaller integration path also reduces rapid oscillations of the integrand in 

(3.34) and (3.40) which would cause numerical instabilities due to limited 

precision of the computer. It is obvious that multi steepest descent paths occur 

for rough surfaces. In this case, each pair of source point (located at ρm) and the 

observation point (located at ρn), constructs a saddle point located on the real 

axis of the complex angular plane. Saddle points are given as, 
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 (3.43) 

As seen in Figure 3.25, the complex space is divided into regions to be 

related in the spatial domain. Regions, where significant contributions due to 

saddle points on the real axis take place, are lit regions (A and B). The lit region 

is similar to the geometric optic (GO) region defined in uniform theory of 

diffraction (UTD) [30] as shown in Figure 3.26. The width of the lit region 

depends on saddle points’ distribution. The parts of the real axis outside the lit 

region are denoted as shadow regions (C and D). The contributions coming 

from shadow regions are weak compared to those of lit regions. 

 

 
Figure 3.25 Integration paths of Hankel function 

 
Figure 3.26 Geometric interpretation of asymptotic lit region 
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 For rough geometries, since the lit regions A and B consist of many 

saddle points, there is no longer a unique SDP along which the attenuation of 

the integrand is obtained via a single saddle point. Also the shadow regions, C 

and D, will be combined with both SDP and steepest ascent paths (SAP) of the 

saddle points where the integrand at these regions may increase exponentially 

for large height deviations (i.e, the lit region is enlarged). This effect is 

illustrated in Figure 3.27 showing the behavior of the integrand along the SDP 

of a flat surface for different height (dz) and displacement (dx) deviations. 

 

In order to avoid numerical instabilities caused by the integrand, it is 

advantageous to choose an Ls such that the lit region remains small and to 

deform the contour of integrationCφ  to a shorter pathCδ . Cδ is defined to be a 

straight line with a slope tanδ through boundaries of regions A and B. δ = π / 4 

for a flat surface but it is chosen smaller to avoid extreme exponential growths 

in the regions C and D when undulating geometries are of interest.  This choice 

of δ, maintains contributions outside the lit regions to be trivial. 

 

 
Figure 3.27 Integrand along the SDP of a flat surface  
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 The value of δ for a quasi-planar surface is defined by limiting the 

maximum integrand value of the most critical point, which is the maximum 

saddle point defining the geometry. The integrand will have its maximum value 

on the deformed path Cδ  at the point where the SAP through ,maxsφ  crosses Cδ  

as shown in Figure 3.25. Through empirical tests, this maximum value is 

obtained as e20. But for more rough surfaces smaller values can be used. By 

doing this δ can be approximately given as: [18] 

 ,max1
,max  tan (1/ b)     b  max   1 , 1

20
s

s

kR
δ φ−

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦
 (3.44) 

with  

 2 2
,max max min   (   )s sR L z z= + −  (3.45) 

and 

 1 max min
,max   tans

s

z z
R

φ − ⎛ ⎞−
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⎝ ⎠
 (3.46) 

are used since Rs,max is the largest distance between source and observation 

points for the outermost saddle point at the shadow boundary. 

 

3.4.1.4 Integration Steps 
   

 The integrals of (3.34) and (3.40) can be discretized into 2Q+1 plane 

wave directions (where Q<<N). It is worth to mention that Q is independent of 

the unknowns, N. Then the integration is mapped to real axis by  

   je δφ φ∆ → ∆  (3.47) 

with 
  .jp e δφ φ→ ∆  (3.48) 

Exponentially decaying behavior of the integrand allows us to filter it. Thus, 

(3.34) and (3.40) can be illustrated as 
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respectively. pW( ) φ is the windowing function defined as 
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Here, βs is the geometrical optics lit region indicated in Figure (3.26). βs is 

selected according to the maximum roughness of the surface. The pragmatic 

tests have shown that a value of 10 /  with ( ) / 4s s s max minkL L z zβ = ≥ −  yield 

accurate results. These choices are evaluated by examining SDP of quasi-planar 

surfaces and may not hold for very rough surfaces. Using the windowing effect 

due to βs, reduces the number of plane waves and Q can be found as [18], 

  / 5sQ β φ= ∆ +  (3.52) 

 
with  

  5/(kR ) / 22 .sφ∆ =  (3.53) 

 
As a result, an equivalent procedure can be applied for the backward 

propagating field 

 
3.4.1.5 Operation Count for SA Algorithm for Quasi-planar  

            Surfaces 
 

 As we proposed before, the total operation count to determine the 

matrix-vector products in the gradient types of the iterative techniques is 

reduced to O(N).If we look at the forward propagating field evaluation, the 

number of operations involved in the computation of strong contribution for N 

receiving elements are NxNs ( )sN N<< . The operation count to compute 2Q+1 

plane waves in (3.36) and (3.42) is 4(2Q+1 )x((N-Ns) for each plane wave and 
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the operation count to evaluate the weak propagating field is 2(2Q+1)x((N-Ns). 

As a result, the total operation count is: 

 x   ( )x6(2 1)  ( )s sN N N N Q O N+ − + →  (3.54) 

It is noted that Ns is a constant and the number Q does not depend on the size N. 

That is why, (3.54) is valid when N increases. The total memory storage is 

estimated as 3N vectors for the total, forward and backward fields and (2Q+1) 

plane waves. 

  

3.4.2 SA Algorithm for Rough Surfaces 

The method proposed by [18] is a very effective technique giving very 

accurate results when dealing with quasi-planar surfaces (like ocean-waves). 

However, when the surface becomes very undulating (i.e. terrain profiles in 

nature are considered), the SA developed by [18] yields inaccurate results. To 

overcome this problem Lopez et all . [19] proposed a modified version of this 

acceleration algorithm. These are trivial modifications applied to parameters of 

complex integral contour Cδ  for the correction of integrand values. The critical 

point of this algorithm, different than the original SA algorithm is to introduce 

the term sinnjkze φ− into the equations (3.34) and (3.40). Because this term itself, 

would cause numerical difficulties considering the dimensions of the terrain 

profiles in the rural areas. In the meantime, when it is put inside (3.34) and 

(3.40) and recursive relations are derived, the expressions related to the height 

deviation usually presents less numerical instabilities. The modified SA 

algorithm in here will be performed for both EFIE for TM polarization and 

MFIE for TE polarization cases.  

 

3.4.2.1 Spectral Acceleration for Horizontal Polarization  
 

 As we stated earlier, SA presumes that the forward propagating field at 

the nth receiving element is the sum of contributions coming from two groups  
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named as forward strong field due to contributions in the vicinity of  Ns 

elements through the receiving point including itself. And the second group is 

denoted as forward weak field and expressed as 
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due to weak contributions between widely separated points. The strong field is 

evaluated directly through conventional matrix-vector products where the 

elements of the impedance matrix given in (2.48) is evalutaed directly, and the 

weak interactions are computed by spectral representation of Green’s funciton. 

By introducing  (3.32) and (3.33) into (3.57) the forward weak field will is 

expressed as 
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The integrand ( )nF φ  can be represented via recursive formulation: 
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with ( ) = 0 for n sF n Nφ ≤ . The subscript ns is equal to n - Ns. In (3.60), the term 

( )sinn nsjk z ze φ− − presents less numerical instability as mentioned before. An 

equivalent procedure can be applied for the backward propagating field as 

given in Appendix B.I. 

 

 3.4.2.2 Spectral Acceleration for Vertical Polarization  
 

            If we use MFIE formulation for the vertical polarization case, the 

forward propagating magnetic field will be the sum of strong and weak group 

contributions, namely. 

 , ,( )  ( )  ( )f n f w n f s nH H H= +ρ ρ ρ  (3.61) 
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The strong field is evaluated directly through conventional matrix-vector 

products where the elements of the impedance matrix given in (2.52) are 

evaluated directly. By substituting (3.32) and (3.33) into (3.63), the contribution 

of the weak field can be expressed as 
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The integrand ( )nF φ  can be represented via a recursive formulation 
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with ( ) = 0 for n sF n Nφ ≤ . The subscript ns is equal to n - Ns. In (3.66), the term 

( )sinn nsjk z ze φ− − presents less numerical instability as mentioned before. The 

backward propagating field can be found by splitting the magnetic field also 

into two groups; strong and weak contributions as given in Appendix B.II. 

 
 Once the integrands are determined, it is necessary to form the 

integration path along which the numerical integration will take place. The 

parameters used for recognition of the integration path will be defined next. 

 

3.4.2.3 Integration Path for Rough Surfaces 
 

 Since the Hankel function is analytic for widely separated points in the 

complex angular domain, the integral contour Cφ  can be deformed into a path 

Cδ  as shown in Figure 3.28 along which the integrands in (3.58) and (3.64) 

decays rapidly . This path is chosen to reduce to computational cost needed to 

evaluate the integral and to avoid numerical instabilities (possible exponential 

growths of the integrand, which may be very oscillatory along the real axis). 

 

As can be seen in Figure 3.28, the path related to Cδ  is composed by 

three stretches. The numerical integral is performed along these stretches. The 

main one labeled as C usually gives accurate results. However, when more 

rough terrain geometries are of interest, two more stretches; the left one labeled 

as L and the right one labeled as R, can be included into the integration path. 
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Other parameters illustrated in Figure 3.28 for defining the integral path are 

explained below. 

 

 
Figure 3.28 Integration path in the complex plane 

 

             Acquiring these parameters is based on the saddle point distribution in 

the complex φ  plane. Each pair of source point (located at ρm) and the 

observation point (located at ρn) corresponds to a saddle point located given by 

 1  tan n m
nm

n m

z z
x x

φ − ⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

 (3.67) 

where these saddle points are limited between the maximum and minimum 

slopes of the terrain (i.e., , ,,nm s min s maxφ φ φ⎡ ⎤∈ ⎣ ⎦ ).The saddle points are not 

distributed homogeneously along the real axis. For a downhill profile the saddle 

points are located on the negative real axis and for uphill profile, they are 

distributed on the positive real axis. medφ  gives a general idea of the terrain 

profile and it is evaluated as the medium value of other saddle points. The 
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integration path usually provides accurate results when medφ  is located at the 

middle of these three stretches.  

  

 In order to get a complete determination of the central stretch C, the 

inclination angle δ should be established. This is the angle between the real axis 

of the complex plane and C. The most critical saddle point defining the profile 

geometry determines the inclination angle. This is the point where the steepest 

ascent path (SAP) of the maximum saddle point crosses the central stretch. For 

a simple estimation we limit this contribution with e2. This number has been 

found through some empirical tests as a most favorable value. Nevertheless, 

smaller values can be optimized for different terrain geometries. Referring to 

this choice, the inclination angle will be given as [19], 

 1tan   
   1

2
s

nm med
kR

δ
φ φ

≤
− −

 (3.68) 

where sR  is defined as 

 2 2   (   )  (   ) .s n m n mR x x z z= − + −  (3.69) 

 As stated in (3.68), the inclination angle can be given as an inequality 

expression. Thus, we have to find the minimum value of this expression to get 

the worst case. This means the computation of the maximum value of 

| |s nm medR φ φ− . The computation of this value for all pairs of source/ 

observation points require an operation count of O(N2), which is an undesired 

result for our purpose. That’s why an approximation can be subjected via line 

segments to define the terrain profile. The length of these segments is 

proportional to the strong group length Ls. The endpoints of these segments can 

then be used to find the related saddle points. Consequently, the total amount 

operations will be lessened in order to compute the minimum value of 

inclination angle. 
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  As shown in the Figure 3.28, the central stretch is bounded by the 

steepest descent path of the minimum saddle point ,minsSDPφ  at 1φ  and with 

the steepest descent path of the maximum saddle point ,maxsSDPφ at 2φ . The 

integrand ( )nF φ  usually decays to zero at these limit points. However when 

more undulating geometries are of interest, the integrand may not reduce along 

the central stretch C. In this case, the contributions after points 1φ  and 2φ  

should be included for the integration path. So, two more stretches, L and R, are 

attached at the end points of C. These added stretches coincide with the steepest 

descent paths therefore they can be approximated by straight lines making 45o 

degrees with the real axis. By enlarging the integration path, our new limits are 

extended from 1φ  to 3φ  at the left hand side and from 2φ  to 4φ  at the right hand 

side shown in Figure 3.28. The integrand is assumed to fall at a reference value 

ζ  at these end points. To find the exact values of 3φ  and 4φ , we compute 

where the integrand of ,maxsφ and ,minsφ  reaches the value of ζ . The 

imaginary parts of  3φ  and 4φ  are evaluated as [19]  

 { } { }3 4
lnIm    Im   

skL
ζφ φ −

= − = −  (3.70) 

where Im{.} denotes the imaginary part of the complex number. In general, a 

value of 3 eζ −= provides accurate results in the complex integration. 

 

3.4.2.4 Integration Steps 
 

 After defining the integration path where the numerical integration takes 

place, we have to determine integration steps at each stretch. For the central 

stretch C, the integration step is defined as in [18],  

 s,max 5/(kR ) / 22Cφ∆ =  (3.71) 
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where Rs.max , being related with the maximum height deviation and the strong 

contribution length, can be  given as 

 2 2
,max max min   (   )s sR L z z= + −  (3.72) 

 This integration sampling rate can also be used for other two lateral 

stretches. Nevertheless, since the integrand values on the lateral stretches   

smoothly approach to zero when compared with highly oscillatory behaving at 

C, larger integration steps can be used. We now have to define new Rs.max 

values due to most critical contributions at L and R stretches. For the lateral 

stretch L, the ,s maxR is associated with the maximum distance between source / 

observation point pairs which have the same ,minsφ  value.  In the same manner 

for the lateral stretch R, ,s maxR  is associated with the maximum distance 

between source/observation point pairs, which have the same ,maxsφ  value. By 

substituting these maximum distance values, the new integration steps will be 

 
,max, 5/(kR ) / 22

s minL φφ∆ =  (3.73) 

for the left stretch L, and  

 
,max, 5/(kR ) / 22

s maxR φφ∆ =  (3.74) 

for the right stretch R. Then the integration step is mapped to real axis of the 

complex domain via 

 / 4

/ 4

  

  

  .

j
C C

j
L L

j
R R

e

e

e

δ

π

π

φ φ

φ φ

φ φ

∆ → ∆

∆ → ∆

∆ → ∆

 (3.75) 

 

As a conclusion, the weak field propagating in the forward direction for the nth 

receiving element is obtained as: 
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 (3.76) 

 
3.4.2.5 Operation Count for the SA Algorithm for Rough  

Surfaces                     
  

As we proposed before, the total operation count to determine the 

matrix-vector products in the gradient types of the iterative techniques is 

reduced to O(N). To prove this, let’s look at the forward propagating field 

evaluation. The operations to find the strong contributions are NxNs 

( )sN N<< . The process to estimate the weak contributions in (3.60) and (3.66) 

is (N-Ns)x 4(QL+ QC+ QR) (QL+ QC+ QR << N), where Q numbers are 

independent of  N, and hence, do not increase with the increasing N and treating 

Ns as a constant number, if we sum up these two operation numbers we have an 

operation count of 

 x   ( )x4( )  ( )s s L C RN N N N Q Q Q O N+ − + + →  (3.77) 

which remains to be O(N). The total memory storage is estimated as 3N vectors 

for the total, forward and backward fields and (QL+ QC+ QR) plane waves. 

 

3.5 Numerical Results for Quasi-planar Surfaces 
 

 In this section, we will present some numerical results for strip and 

slightly rough surfaces. The solutions constructed with BiCGSTAB method 

used in conjunction with SA algorithm. To show the accuracy of the method, 
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MoM solutions via Gauss elimination are employed and attached into the 

figures up to 2000 surface unknowns. For larger unknowns, the accuracy of the 

method is compared with the conventional BiCGSTAB method since it is not 

possible to store the interaction matrix and apply LU decomposition for the 

MoM. Both TM and TE polarization cases are investigated. The results are 

available for oblique and grazing incidence of plane waves, isotropic radiator 

and infinitesimal dipole antenna. To see the absorption effects of the terrain 

profile both PEC ( 0sη = ) and imperfect conducting surfaces are considered. 

The stopping criterion of the SA-BiCGSTAB method is limited by the residual 

error of 10-3. The lit region angle illustrated in Figure 3.26 is evaluated by 

max min = 10/  with ( ) / 4s s skL L z zβ = −  yielding the number of integral 

points fixed in (3.49) and (3.50) as 2Q+1 = 139 except the first example in 

Figure 3.29. 

 
Figure 3.29 Distributed current on a strip, oblique plane wave incidence 

 



 67

The first result is an example of oblique incidence of a plane wave on a 

strip of width 50λ given in Figure 3.5. The strong region length Ls is chosen as 

1λ which yields to Ns = 10. Q is computed to be 37, which means the number 

of the plane waves is 2Q+1 = 75.  

 

The results show us that SA-BiCGSTAB suits well with the reference 

MoM solutions. As mentioned before, for the TE case (Figure 3.29(c)), the 

induced current is the physical optics current ˆ2  x PO inc
s n=J H . Imperfect 

conducting cases are illustrated in Figure 3.29 (b) and (d) Due to material 

constitution, a little amount of the current is absorbed inside the profile. Also it 

is now possible to reach the numerically accurate results for the TE case. 

 
Figure 3.30 Isotropic radiator on a quasi-planar surface 

 

Figure 3.30 illustrates a slightly rough surface of width 100λ with a 

maximum height deviation 0.98λ. The source is an isotropic radiator at a height 

above 25λ of the center with and average radiated power Prad 18W. Non-PEC 



 68

case is considered with 17.6 + 16.8s jη = . The strong region length is taken as 

0.3λ. Because of the symmetrical property of the terrain profile, induced 

currents are also symmetrical. Residual errors are plotted in Figure 3.31 

 

 
Figure 3.31 Residual errors for Figure 3.30 

  

 
 Figure 3.32 Dipole antenna on a quasi-planar surface 
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Figure 3.32 displays a terrain profile of width 100λ, illuminated by a 

dipole antenna located at the 40th meters with a height of 10λ with Prad 15W. 

The surface impedance is taken as 15 20s jη = + . Error rates are given in 

Figure 3.33. 

 

 
Figure 3.33 Residual errors of Figure 3.32 

 

 
Figure 3.34 Plane wave on a quasi-planar surface with grazing incidence 
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Figure 3.34 is another example of 100λ width quasi-planar surface 

illuminated by a plane wave with a grazing incident angle θ = π / 20 . Non-PEC 

case is considered with 20 15s jη = + . Residual error rates for both polarizations 

are given in Figure 3.35.  

 

  
Figure 3.35 Residual errors for Figure 3.34 
 

It’s clear that SA-BiCGSTAB method’s convergence ability, by means 

of number of iterations, is higher for TE polarization case.  

 
Figure 3.36 Dipole antenna on quasi-planar surface 
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Figure 3.37 Residual errors for Figure 3.36 

 

Figure 3.36 illustrates a quasi-planar surface profile of width 200λ 

yielding 2000 unknowns. The surface is illuminated by a dipole located 

symmetrically with a height 25λ above at the center of the terrain. Average 

radiated power is Prad 25W.  Surface impedance is 17.6 16.8s jη = + . Residual 

error rates are plotted in Figure 3.37. 

 
Figure 3.38 Dipole antenna on quasi-planar surface 
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Figure 3.39 Residual errors for Figure 3.38 

 

Figure 3.38 illustrates a quasi-planar surface profile of width 200λ 

yielding 2000 unknowns. The surface is illuminated by a dipole located at a 

height above 25λ at the 40th meters of the terrain. Average radiated power is 

Prad 2.5W.  Surface impedance is 17.6 16.8s jη = + . Residual error rates are 

plotted in Figure 3.39. 

 

The next example is an unordered surface profile. The target under test 

is a ship placed on a 400 meters sea surface. The electrical length properties are 

illustrated in Figure 3.16. To generate random sea surface for a given wind 

speed, an infinite-depth Pierson-Moskowitz ocean spectrum [27] is used. 

Imperfect conducting case is considered. As we mentioned before since the 

surface of the scatter is multi-valued, stationary methods such as FBM can not 

solve this kind of problem. In order to show the validity of the SA-BiCGSTAB 

the results are compared with spectral accelerated generalized forward-

backward method (SA-GFBM). To cope with divergence in a multi valued 

region, Pino et all. [29] have introduced a generalized version of spectrally 

accelerated forward-backward  method.  

 

The results are evaluated for TM polarization both for PEC and non-

PEC cases. For the imperfect conducting case, the sea is modeled with an 
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surface impedance  = 76.4 65.1 s jη − while the ship remains PEC. Plane wave 

incidence is considered with an angle θ  = π / 36. Current distributions on the 

surface of the sea and the ship due to 0 m/s, 5m/s and 10m/s wind speed are 

plotted in Figure 3.40 Figure 3.41 and Figure 3.42, respectively. The frequency 

is 300MHz with N=4500. To use the competence of SA algorithm to study on 

this sea profile, some of the parameters at the original algorithm is modified. 

The first one is the lit region angle, βs, demonstrated in Figure 3.26. Since the 

maximum height deviation is increased, the lit region in the spatial domain 

must be enlarged. The second parameter, on which a modification is applied, is 

the limit value of the integrand of the maximum saddle point. Instead of 

restricting it to the original value of e20, e2 is chosen. As stated earlier, because 

of the reentrant surface sections due to the ship profile, the diagonally dominant 

property of the impedance matrices for both TM and TE polarization cases are 

no longer valid. Hence, the number of iterations to reach the desired level of 

residual error is about 72. Nevertheless, the total computational time is about 12 

minutes for each polarization, which seems really cost effective when compared 

with the solution of the problem by the conventional BiCGSTAB method.   

 

Figure 3.43 is an example of a quasi-planar rough surface of width 

1000λ with a maximum height deviation 1.7λ. Profile is illuminated with a 

infinitesimal dipole antenna located at 60th meters at the x axis above a height 

of 25λ. The average radiated power Prad given by the source is 25W. Imperfect 

conductivity property of the terrain is considered with the surface impedance 

 20 15s jη = + . Since the number of unknowns is 10000 (at 300MHz 

frequency), MoM result is not available. Thus the comparison to validate the 

accuracy of the method is made by the original BiCGSTAB method. The 

residual error rates are plotted in Figure 3.44 
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 Figure 3.40 Current distribution on a ship (wind speed: 0m/s)  

 
Figure 3.41 Current distribution on a ship (wind speed: 5m/s) 
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Figure 3.42 Current distribution on a ship (wind speed: 10m/s) 

 
Figure 3.43 Dipole on a quasi-planar surface of width 1000λ 
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 Figure 3.44 Residual errors of Figure 3.43 

 

Figure 3.45 shows an imperfect conductor rough surface (the maximum 

height deviation is a multiple of wavelength) of width 200λ. The source is a 

dipole located at the center with a height 25λ above. Prad is 25W. The strong 

region length is 12λ.  

 

 
Figure 3.45 Dipole antenna on a quasi-planar surface 
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 For the case seen in Figure 3.45 (b), differences occur between the 

MoM and SA-BiCGSTAB method. The original spectral acceleration algorithm 

is proposed for quasi-planar surfaces or slightly rough surfaces like sea profiles. 

When these kinds of surfaces are considered, the saddle points are distributed 

around the origin along the real axis of the complex φ  plane. However, when 

the height deviation is increased, the homogenous distribution around the origin 

will no longer exist.     

 
 As the number of the surface increases, huge number of saddle points 

will start to make groups around the outer most saddle point ,maxsφ . These 

saddle points’ steepest ascent paths will cross the deformed contour. Hence, the 

limit value e20 of the integrand in the weak contribution region will not be 

suitable. To avoid the weak field from exponential growth situation, limiting 

the integrand value to a smaller quantity will be appropriate. However, this 

suggestion does not overcome inability of the spectral acceleration when 

undulating geometries are under of interest. The reason for that is the location 

of the deformed contour. For a downhill profile, the location of the saddle 

points will not be distributed around origin but a negative value on the axis on 

the real axis and for an uphill terrain geometry, saddle points will be allocated 

about a positive value on the axis. Thus, the deformed contour should cross the 

real axis at these medium points depending on slope of the terrain geometry. 

 

 In order to overcome this limitation, the spectral acceleration algorithm 

is modified to handle rough terrain geometries. Applications of the modified 

spectral acceleration algorithm issued for rough terrain profiles are discussed in 

the next chapter with also evaluation of scattered field.    
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Chapter 4 

 

Computation of Scattered Field on 

the Rough Surface Profiles 

 

4.1 Introduction 
 

 Once the current distribution over the terrain profile has been evaluated 

by BiCGSTAB method in conjunction with spectral acceleration, the scattered 

field can be computed using this current distribution to find the coverage due to 

the source. If the region of interest is limited to a small portion of the surface, 

the numerical evaluation of the scattered field consists of a reduced number of 

operations but if the region under study is extended to the complete path of the 

terrain profile, the computation of the field strength requires an operation count 

of O(N2) similar to MoM discretization. This in an unsuitable situation for 

electrically large surface profiles. To overcome this fact, the spectral 

acceleration algorithm can be applied to scattered field calculations to reduce 

the computational cost to O(N). 

 

 This chapter is devoted to the discussion of evaluating the scattered field 

over electrically large rough terrain profiles. Section 4.2 discusses the 

computation of the scattered field by making use of the spectral acceleration 

algorithm, and Section 4.3 presents numerical examples of the scattered field 

due to the current distribution evaluated by SA-BiCGSTAB method. The 

results are compared with conventional BiCGSTAB method and spectral 

accelerated forward-backward method (SA-FBM) [31]. 
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4.2 Computation of Scattered Field with Spectral 

Acceleration  
  

 As explained in Chapter 2, the scattered field can be expressed as 
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for TM polarization, and 
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for TE polarization. In (4.1) and (4.2), mI  denotes the computed induced 

current on the source point mρ , and nρ is the observation point where the 

scattered field is evaluated. 

 

 Consider a terrain profile C depicted in Figure 4.1 and assume that the 

scattered field is to be computed at h meters above of the original path given 

with Cs in the same figure. To include the spectral acceleration algorithm to 

scattered field computations, radiations due to source points are divided into 

two groups; those coming from the forward region, and those coming from the 

backward region as illustrated in Figure 4.1. With this decomposition, the 

scattered field for the kth element can be given by 

 ( )  ( )  ( ).s s s
k f k b kSF SF SF= +ρ ρ ρ  (4.3) 

Here, SF denotes the scattered field given by (4.1) for TM polarization and by 

(4.2) for TE polarization, respectively. The subscript f at the right hand side of 
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(4.3) indicates the contribution due to forward region and subscript b 

symbolizes the contribution of backward region. Analogous to the original 

spectral acceleration algorithm, these two regions are treated separately. 

 

 
 

Figure 4.1 The scattering zone of a generic terrain profile 

 

For the forward region, due to typical spectral acceleration assumption, 

contributions are also divided into two clusters denoted as strong and weak, 

namely. The forward field at the kth element can be estimated from the 

preceding element by reevaluating the strong group radiation and updating the 

spectral representation of the weak group interaction like recursive formulations 

in (3.60) for TM polarization and (3.66) for TE polarization, respectively. 

Backward region can be treated in the same manner. As a result of these 

approximations, the scattered field can be computed with a computational cost 

of O(N).         

 
4.3 Numerical Results for Rough Surfaces 
 

 The numerical results for rough surfaces are obtained using BiCGSTAB 

method in conjunction with spectral acceleration algorithm. Plane wave, 
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isotropic radiator and infinitesimal dipole type sources, whose properties are 

explained in Section 3.3.1 are used. To show the validity of SA-BiCGSTAB 

method, scattered field computations are compared with conventional 

BiCGSTAB method and also the spectrally accelerated forward-backward 

method SA-FBM [31]. To validate the SA-BiCGSTAB method when 

comparing with the SA-FBM, the difference error is defined as  

 

 .  = SA BiCSGTAB SA FBM
s sdiff error E E− −−  (4.4) 

 

where | . | denotes the absolute value. Scattered fields are evaluated at a height h 

= 1.8λ above the terrain. The study parameters, which are used in conjunction 

with the modified spectral acceleration algorithm for the rough terrain profiles, 

are also included in study parameter tables. In these tables, medφ is the medium 

angle giving an idea about the slope of the terrain (downhill or uphill geometry) 

whereas, ,s minφ  and ,s maxφ are the minimum and maximum slopes of the 

terrain, respectively. δ  is the inclination angle of the central stretch of the 

deformed contour. Study tables also contain the number of the integral points 

taken on the deformed contour.  

 

 A non-PEC ( 20 15s jη = + ) rough surface profile of width 200λ is 

depicted in Figure 4.2(a). The surface is illuminated by a dipole antenna located 

at a 25λ height above the left-most point on the terrain. The average radiated 

power is considered to be 25 Watts. Scattered field is plotted for both 

polarizations. The parameters needed to implement the SA-BiCGSTAB to this 

geometry are included in Table 4.1. To show the accuracy of the method, the 

results are compared with SA-FBM method and the difference error with 

respect to the displacement is illustrated in Figure 4.3. It is possible to notice 

the good grade of accuracy between the results provided by SA-FBM and SA-

BiCGSTAB solutions. 
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Figure 4.2 Scattered fields from a 200λ width rough surface 

 

  

Figure No: 4.2 4.4 4.6 4.8 4.10 

Number of unknowns (N) 2000 5000 10000 10000 10000 

Frequency (MHz) 300 300 300 300 300 

medφ  (rad) -0.290 -0.075 0.143 -0.036 -0.057 

,s minφ  (rad) -0.572 -1.112 -1.012 -0.256 -0.700 

,s maxφ  (rad) 0.511 0.955 0.896 0.262 0.452 

sL  (λ ) 2 2 2 2 2 

Num. of integr. Points 312 700 814 260 425 

δ  (rad) 0.264 0.103 0.112 0.188 0.108 

 

Table 4.1 Study parameters  
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As can be seen in Figure 4.2 (a), since the terrain geometry is a downhill 

profile the medium saddle point (in Table 4.1) giving an idea about the slope of 

the terrain, is located on the negative real axis. The deformed contour of 

numerical integration is located nearly symmetrically around this saddle point, 

thus, the numerical integration yields good results. One other important detail 

about the modified SA algorithm is the limitation of strong region length Ls. 

The original acceleration technique for the quasi-planar surfaces usually 

generates accurate results when the neighborhood distance is chosen as  

( ) / 4s max minL z z= − . But since this region is evaluated through the 

conventional matrix-vector multiplication, the computational cost increases for 

rough geometries because of large height deviation. By forming robust integral 

paths along which the integrand decays rapidly, shrinking the strong region 

lengths therefore enlarging the weak contribution zones independent of height 

deviation or unknowns not only delivers precise results but also decreases the 

computational cost. 

 

 
Figure 4.3 Difference errors for scattered fields of Figure 4.2 

 

Figure 4.4 is an example of a 500λ with PEC terrain profile. The study 

parameters for spectral acceleration algorithm are included Table 4.1. Since the 

geometry is a downhill profile the medium saddle point is located on the 

negative real axis. The surface is considered to be illuminated by a dipole 
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antenna located at a 25λ height above the middle of the terrain. The average 

radiated power transmitted from the infinitesimal dipole is 40 Watts. The results 

are obtained for both horizontal and vertical polarizations and compared with 

SA-FBM. Scattered field is also determined by employing the spectral 

acceleration to reduce the operation count to O(N). Difference errors are 

depicted in Figure 4.5. Error plots show that SA-BiCGSTAB converges 

successfully to accurate results. Figure 4.6 is an example of a rough surface of 

width 1000λ. Imperfect conductivity case is considered with the surface 

impedance  15 20s jη = + . The parameters needed to implement the SA-

BiCGSTAB to this geometry are included into Table 4.1. Since the geometry is 

an uphill profile the medium saddle point is located on the positive real axis. 

 

 
Figure 4.4 Scattered fields from a 500λ width rough surface  
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Figure 4.5 Difference errors for scattered fields of Figure 4.4 

 

 
Figure 4.6 Scattered fields from a 1000λ width rough surface  
 

 This surface is considered to be illuminated by a dipole antenna located 

at 40λ height above the left-most point of the terrain. The average radiated 

power from the infinitesimal dipole is assumed to be 40 Watts. To guess the 

accuracy of the method, results are compared with SA-FBM. Scattered field 

results are also obtained by applying the spectral acceleration. As can be seen 
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from Figures 4.6 (b) and 4.6 (c), SA-BİCGSTAB successfully converges to the 

exact solution for both polarizations. The difference errors for this example are 

illustrated in Figure 4.7 

 

 
Figure 4.7 Difference errors for scattered fields of Figure 4.6 

 

 Figure 4.8 shows an example of a 1000λ width rough surface with the 

surface impedance  17.6 16.8s jη = + . The parameters needed to implement the 

SA-BiCGSTAB to this geometry are included into Table 4.1. Since the 

geometry is a downhill profile, the medium saddle point is located on the 

negative axis. This surface is considered to be illuminated by a plane wave with 

an incident angle of θ = π / 20 (grazing incidence). To show the accuracy of the 

method, results are compared with the original BiCGSTAB method. Difference 

errors are also depicted in Figure 4.9.  

 

Figure 4.10 is another 1000λ width rough surface illuminated by grazing 

incident plane wave with the same surface impedance given for the preceding 

the example. Parameters required to implement the SA-BiCGSTAB to this 

geometry is included into Table 4.1. Since the geometry is a downhill profile, 

the medium saddle point is located on the negative axis. Results are compared 

with conventional BiCGSTAB method. Difference errors as defined in (4.4) are 

illustrated in Figure 4.11. 
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Figure 4.8 Scattered fields from a 1000λ width rough surface  
 

 
Figure 4.9 Difference errors for scattered fields of Figure 4.8 

  

 Figure 4.12 shows a 2000λ width non-PEC rough surface profile 

(  20 20s jη = + ). The study parameters for the recognition of the integral path 

due to this geometry are included in Table 4.2. Since geometry is going 

downwards, the medium saddle point is located on the negative real axis. This 

surface is assumed to be illuminated by a dipole antenna located at a 25λ above 
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the left-most point of the terrain. The average transmitted power is considered 

to be 25 Watts. Difference errors are depicted in Figure 4.13. 

 

 
Figure 4.10 Scattered fields from a 1000λ width rough surface  
 
 

 
Figure 4.11 Difference errors for scattered fields of Figure 4.10 
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Figure No: 4.12 4.14 4.15 4.16 4.17 

Number of unknowns (N) 20000 100000 100000 100000 200000

Frequency (MHz) 300 300 300 300 300 

medφ  (rad) -0.015 0.045 -0.011 0.026 -0.015 

,s minφ  (rad) -0.229 -0.137 -0.236 -0.214 -0.232 

,s maxφ  (rad) 0.120 0.371 0.204 0.176 0.120 

sL  (λ ) 2 2 2 2 2 

Num. of integr. Points 743 468 594 483 538 

δ  (rad) 0.093 0.106 0.117 0.103 0.094 

 

Table 4.2 Study parameters  

 

 
Figure 4.12 Scattered fields from a 2000λ width rough surface  
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Figure 4.13 Difference errors for scattered fields of figure 4.12 

  

Figure 4.14 shows a non-PEC terrain profile of width 10000λ with the 

surface impedance  20 20s jη = + . The parameters needed to implement the 

geometry of the surface for the acceleration algorithm are included in Table 4.2. 

Since the geometry is an uphill profile, the medium saddle point is located on 

the positive real axis. Results are compared with SA-FBM. The surface is 

considered to be illuminated by a dipole antenna located at a 60λ height above 

in the middle point of the terrain. The average radiated power is 90 Watts. 

 

Figure 4.15 shows a non-PEC terrain profile of width 10000λ with the 

surface impedance  20 15s jη = + . The parameters defining the integration path 

for the weak contribution are included in Table 4.2. Since the geometry is a 

downhill profile, the medium saddle point is located on the negative real axis. 

The surface is considered to be illuminated by a dipole antenna located at a 50λ 

height above in the middle point of the terrain. The average radiated power is 

100 Watts. To validate the SA-BİCGSTAB method with this geometry, the 

scattered field results are compared to the solution given by SA-FBM.  
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Figure 4.14 Scattered fields from a 10000λ width rough surface  
 

 
Figure 4.15 Scattered fields from a 10000λ width rough surface  
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A non-PEC terrain profile of width 10000λ with the surface impedance 

 20 15s jη = +  is depicted in Figure 4.16. The parameters for SA-BiCGSTAB 

method are included in Table 4.2. Since the geometry is going upwards, the 

medium saddle point is located on the positive real axis. The surface is 

considered to be illuminated by a dipole antenna located at a 50λ height above 

in the middle point of the terrain. The average radiated power is now 100 Watts. 

 
Figure 4.16 Scattered fields from a 10000λ width rough surface  
 

Last example in Figure 4.17 is a rough surface of width 20000λ yielding 

200000 unknowns to be solved in order to evaluate the scattered field for both 

polarizations. Imperfect conducting case with the surface impedance 

 20 15s jη = +  is considered. The parameters for SA-BiCGSTAB method are 

included in Table 4.2. Since the geometry is going downwards, the medium 

saddle point is located on the negative real axis. The surface is considered to be 

illuminated by a dipole antenna located at a 90λ height above in the middle 
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point of the terrain. The average radiated power is 90 Watts. To show the 

convergence ability, the results are compared with the SA-FBM method. 

 

 
Figure 4.17 Scattered fields from a 20000λ width rough surface  

  

4.4 Computational Cost of SA-BiCGSTAB for Rough 

Surfaces 
 

 Investigations over rough surface profiles show that the SA-BiCGSTAB 

method obtains numerically accurate results for both horizontal and vertical 

polarization cases. In order to compute the computational cost of the method 

with MoM and the conventional BiCGSTAB method, the computation time 

versus the number of unknowns N are illustrated in Table 3.3. As mentioned 

before, convergence rate for conjugate gradient type methods strongly depend 

on the number of unknowns N. Nevertheless, our examinations on the terrain 

profiles have shown that BiCGSTAB converges to the exact solution within 20 
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to 40 iterations for TM polarization and within 8 to12 iterations for TE 

polarization up to 200000 unknowns when the residual error is considered to be 

10-3. 

 

 

N 

 

LU 

inversion(s) 

 

BiCGSTAB/iter  

(s) 

 

Number of 

integ. points

 

SA-

BiCGSTAB/iter 

(s) 

2000 

5000 

10000 

20000 

100000 

200000 

5018.5 

NA 

NA 

NA 

NA 

NA 

13.26 

81.47 

332.15 

NA 

NA 

NA 

312 

700 

425 

296 

458 

538 

1.69 

8.47 

8.91 

15.55 

97.16 

199.85 

 

Table 4.3 Computational cost for SA-BiCGSTAB method 

 

 Table 3.4 can be utilized for the investigation of the computational cost,. 

The CPU-time values are obtained on Intel PIII microprocessor having 1000 

MHz clock frequency. CPU-time results show that the computational cost 

depends on the number of integral points which vary based on the geometry of 

the terrain profiles. Nevertheless, it is clearly seen that when we increase the 

number of unknowns for a fixed number of integral points, the spectral 

acceleration algorithm yields an operation count of O(N). The situation can be 

proved by looking at the cases for N = 2000 and N = 20000. Also, since the 

number of integral points for N = 5000 are twice as much as for those for N = 

10000, the computation time for both cases are nearly the same. As depicted in 

Figure 3.22, the computational cost is really overwhelming for the MoM, since 

the operational cost is proportional with O(N3) because of the LU 

decomposition method. The enhanced operational cost (when compared with 

the MoM) of conventional BiCGSTAB method can not compete with SA-

BiCGSTAB that it still requires O(N2) operations per iteration.  
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 The comparisons reveal that SA-BiCGSTAB can be used as a 

numerically accurate solution technique instead of MoM or BiCGSTAB over 

terrain profiles in both horizontal and vertical polarization cases with minimal 

storage requirements and rapid convergence behavior. The total cost of 

operations are reduced to O(N). 

 

4.5 Limitations of the Spectral Acceleration Algorithm 

for the Terrain Profiles 
 

 Analysis on a number of numerical tests on spectral acceleration 

technique over terrain profiles show that, the algorithm works properly up to 4 

degrees of inclination angle which is an angle between the deformed contour of 

integration and the real axis in the complex angular space. For more complex 

geometries (very undulating), the inclination angle becomes too small so that 

the deformed contour may nearly overlap with the real axis where the integrand 

may exhibit a very oscillatory behavior. Because of these oscillations, the 

numerical integration is difficult. Also the treat of the exponential growth of the 

integrand due to the outermost saddle point could be formed. Thus, the 

contribution from the weak field may unexpectedly increase which will avoid 

the convergence ability of the method.  

 

 To overcome this limitation, the entire geometry can be split into several 

sections and the inclination angle of each section can be considered separately. 

After the analysis of each section, a new integration path can be formed to 

evaluate the weak group contributions. The partition process can be repeated 

several times along the profile of the terrain depending upon the geometry. The 

cost of this process is to recompute the integrand for each integration path, but 

it is carried out only few times and hence, the operation count is still O(N). 
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Chapter 5 

 

Conclusions and Future Work 
 

In this thesis, conventional BiCGSTAB and SA-BiCGSTAB methods 

over various kinds of terrain profiles rough in one dimension and multi valued 

surfaces have been implemented by a large number of examples. 

 

In order to compare the accuracy of BiCGSTAB method, results have 

been tested with reference MoM solutions for both TM and TE polarization 

cases up to N = 2000 unknowns. This limitation is due to storage requirement to 

keep interaction matrices of MoM and due to computational cost of the direct 

solution technique, LU decomposition which has an operation count of O(N3). 

Numerical examples have shown that BiCGSTAB methods yield precise 

current distributions with a computational cost of O(N2) per iteration. 

 

BiCGSTAB has also been tested on a reentrant target surface (a ship on 

the sea) and the accuracy of the results is compared with generalized FBM 

(GFBM). As stated earlier, GFBM has been developed to defeat divergence 

characteristics of FBM due to the multi valued portions of the surface leading 

large off-diagonal entries in the impedance matrices for TM and TE 

polarizations. But it should be noted that the number of iterations to reach the 

desired level of error is increased.  

 

Later on, spectrally accelerated BİCGSTAB method has been applied 

over slightly rough surfaces with a height deviation multiple of few 

wavelengths. Results of SA-BiCGSTAB method with respect to MoM and 

BiCGSTAB method have been investigated. Also a multi valued target surface 
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has been examined and its convergence capability is compared with spectrally 

accelerated generalized forward backward (SA-GFBM) method. 

 

This is an important case that, the non-stationary behavior of SA-

BiCGSTAB method is not affected by the reentrant surface and operational 

count compared with conventional BiCGSTAB method is reduced significantly. 

Numerical results for quasi-planar surfaces have shown that SA algorithm 

works properly with BiCGSTAB. 

 

After that, modified spectral acceleration in conjunction with 

BiCGSTAB method has been experimented for rough surfaces with a height 

deviation multiple of several wave lengths. Accuracy of the method has been 

tested with original BiCGSTAB method and SA-FBM. The evaluation of 

scattered field has also been addressed. The exact computation of the field 

requires computational cost of O(N2) which is really high since the problem is 

electrically large. Hence, an analogous procedure can be applied by means of 

spectral acceleration to fasten the matrix - vector multiplication. Consequently, 

the computation of scattered field yields to O(N). Lastly the limitations of 

spectral acceleration have been discovered.  

 

The main novelty of this work is to present electrically large rough 

surface scattering analyses with spectrally accelerated BiCGSTAB method up 

to 200000 unknowns. Another innovation is the examination of multi-valued 

surface profiles with a non-stationary technique without any computational 

complexity or high memory requirements. The variants of stationary techniques 

developed to treat such profiles can not compete with SA-BiCGSTAB method 

when the re-entrant surface is electrically large. Based on these results, we see 

that non-stationary iterative procedures be considered for the use with general 

scattering problems. The inherent robustness of these techniques allows their 

convergence speed to slow down through the geometry changes which 

transitioned the stationary techniques from very rapid convergence to 
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divergence. Their convergence ability is independent of the ordering used when 

forming the impedance matrix. The primary disadvantage of the non-stationary 

techniques is that they require more iteration to converge. One other drawback 

is that, the number of iteration varies with the increasing unknown number N. 

However, recent tests show that up to 200000 unknowns, iteration number 

varies within reasonable limits (between 20 and 40 for TM polarization and 

between 5 and 12 for TE polarization cases due to the better conditioning of  

TE impedance matrix over TM impedance matrix). 

 

Future work will focus on accelerating CPU processing time of SA-

BiCGSTAB method. Since it depends upon matrix – vector multiplies rather 

than forward – backward substitutions, it is well suited to parallel processing. 

Furthermore, some modifications corresponding to the spectral acceleration 

algorithm may be implemented to analyze very undulating terrain profiles in the 

rural areas. 
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Appendix A 

 

Spectral Acceleration for the Quasi-

planar Surfaces for the Backward 

Propagation 
 

A.I Horizontal Polarization 
 

The backward propagating field can be expressed as 

 
  1

( )  .    .
N

b
b n m nm

m n

E I Z
= +

= = ∑ρ Z I  (A.1) 

Similar to the forward propagation case, superscript b at the top of the 

impedance matrix denotes the upper triangular part. For simplicity, only the 

forward propagating field will be focused in here, the backward part can be 

treated in the same manner and is given in appendices. 

 

  The backward field is also divided into two groups; the contributions 

coming from the strong region and the contributions due to weak region, i.e., 

 , ,.   ( )  ( )  ( )b
f n f w n f s nE E E= = +Z I ρ ρ ρ  (A.2) 

where the strong and weak contributions can be written as 

 
1

,
  

( ) 
s

n

b s n m nm
m n N

E I Z
+

= +

= ∑ρ  (A.3) 

 
1

,
  

( ) 
sn N

b w n m nm
m N

E I Z
+ +

=

= ∑ρ  (A.4) 
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with the impedance matrix elements defined in (2.48). It should be noted that 

the indices at the right hand sides of (A.3) and (A.4) are in descending order. 

The radiations of the strong group contributions are found in the conventional 

matrix-vector multiplication by evaluating the exact impedance elements. 

However, weak group contribution is obtained by employing spectral 

representation of the two-dimensional Green’s function. 

 [ ]( ) cos ( )sin( , )  
4

n m n mjk x x z z
n m

C

jG e d
φ

φ φρ ρ φ
π

− − −−
= ∫  (A.5) 

where Cφ  is the contour of integration in the complex φ  space shown in Figure 

3.25. We also need the derivative of the Green’s function due to normal vector 

at the source point, which takes place within the off-diagonal entries of the 

impedance matrix defined in (2.49) 

 
[ ]

[ ]( )cos ( )sin

( , )  cos cos   sin sin
4

                                           . n m n m

n m
m m

m C

jk x x z z

G k
n

e d
φ

φ φ

ρ ρ θ φ θ φ
π

φ− − −

∂
= +

∂ ∫
 (A.6) 

where mθ  is the angle between the normal vector at the source point ˆmn  and the 

unit vector x̂− . 

 

 Substituting equations (A.5) and (A.6) into (A.4) and interchanging the 

summation and integration gives, 

                                    ( sin )
, ( )  ( )

4
njk z
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C

E F e d
φ

φωµ φ φ
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+ +
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⎩ ⎭
∑

 (A.8) 

The integrand ( )nF φ  can be represented via recursive formulation: 
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(A.9) 

with ( ) 0 for 1 n sF n N Nφ = > − − .The subscript ns is equal to n+Ns+1. By 

employing this recursive procedure a great reduction of computational cost is 

obtained. Due to this formula, the integrand of nth element updates itself in 

terms of the previous one, which keeps all of the weak interactions until that 

receiving element. Hence, operation count required for the weak region process 

is O(N).  

 

A.II Vertical Polarization 

 

If we use MFIE formulation for TE polarization, the backward 

propagating magnetic field, is the sum of strong and weak contributions, 

 , ,( )  ( )  ( )b n b w n b s nH H H= +ρ ρ ρ  (A.10) 

with 

 
1
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and  

 
1

, ( )  
sn N
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m N

H I Z
+ +

=

= ∑ρ  (A.12) 

where the elements of the impedance matrix is defined in (2.52). It should be 

noted that the indices at the right hand sides of (A.3) and (A.4) are in 

descending order. The radiations of the strong group contributions are found in 

the conventional matrix-vector multiplication by evaluating the exact 

impedance elements. However, weak group contribution is obtained by 

employing spectral representation of the two-dimensional Green’s function. 
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Than by using (A.5) and (A.6), the forward propagating magnetic field is given 

by 

 ( sin )
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The integrand ( )nF φ  can be evaluated via a recursive formulation given by 

( )

( )

cos
1

0

  cos sin

1( ) ( ) cos cos sin sin

                                                  . 

jk x x m
n n ns ns ns ns

jk x x z

n n

n ns n ns

F F e I I

e

φ

φ φ

ηφ φ θ φ θ φ
η

−
+

⎡ ⎤− +⎣ ⎦

+ ⎧ ⎫
= + ∆ + −⎨ ⎬

⎩ ⎭
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with ( ) 0 for 1 n sF n N Nφ = > − − . The subscript ns is equal to n+Ns+1. By 

applying this recursive process on the integrand, we again provide an operation 

count of O(N).  
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Appendix B 

 

Spectral Acceleration for the Rough 

Surfaces for the Backward 

Propagation 
 

B.I Horizontal Polarization 
 

The backward propagating field can be expressed as 

 
  1

( )  .    .
N

b
b n m nm

m n

E I Z
= +

= = ∑ρ Z I  (B.1) 

Similar to the forward propagation case, superscript b at the top of the 

impedance matrix denotes the upper triangular part. For simplicity, only the 

forward propagating field will be focused in here, the backward part can be 

treated in the same manner and is given in appendices. 

 

  The backward field is also divided into two groups; the contributions 

coming from the strong region and the contributions due to weak region, i.e., 

 , ,.   ( )  ( )  ( )b
f n f w n f s nE E E= = +Z I ρ ρ ρ  (B.2) 

where the strong and weak contributions can be written as 
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with the impedance matrix elements defined in (2.48). It should be noted that 

the indices at the right hand sides of (B.3) and (B.4) are in descending order. 

The radiations of the strong group contributions are found in the conventional 

matrix-vector multiplication by evaluating the exact impedance elements. 

However, weak group contribution is obtained by employing spectral 

representation of the two-dimensional Green’s function. 
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4
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n m
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φ φρ ρ φ
π
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= ∫  (B.5) 

where Cφ  is the contour of integration in the complex φ  space shown in Figure 

3.25. We also need the derivative of the Green’s function due to normal vector 

at the source point, which takes place within the off-diagonal entries of the 

impedance matrix defined in (2.49) 
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where mθ  is the angle between the normal vector at the source point ˆmn  and the 

unit vector x̂− . 

 

 Substituting equations (B.5) and (B.6) into (B.4) and interchanging the 

summation and integration gives, 
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 (B.8) 

The integrand ( )nF φ  can be represented via recursive formulation: 
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with ( ) 0 for 1 n sF n N Nφ = > − − .The subscript ns is equal to n+Ns+1. By 

employing this recursive procedure a great reduction of computational cost is 

obtained. Due to this formula, the integrand of nth element updates itself in 

terms of the previous one, which keeps all of the weak interactions until that 

receiving element. Hence, operation count required for the weak region process 

is O(N).  

 

B.II Vertical Polarization 

 

If we use MFIE formulation for TE polarization, the backward 

propagating magnetic field, is the sum of strong and weak contributions, 

 , ,( )  ( )  ( )b n b w n b s nH H H= +ρ ρ ρ  (B.10) 

with 
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and  
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where the elements of the impedance matrix is defined in (2.52). It should be 

noted that the indices at the right hand sides of (B.11) and (B.12) are in 

descending order. The radiations of the strong group contributions are found in 

the conventional matrix-vector multiplication by evaluating the exact 

impedance elements. However, weak group contribution is obtained by 

employing spectral representation of the two-dimensional Green’s function. 
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Than by using (B.5) and (B.6), the forward propagating magnetic field is given 

by 
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The integrand ( )nF φ  can be evaluated via a recursive formulation given by 
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with ( ) 0 for 1 n sF n N Nφ = > − − . The subscript ns is equal to n+Ns+1. By 

applying this recursive process on the integrand, we again provide an operation 

count of O(N).  
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