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Director



ABSTRACT

GRADUATE ADMISSION PROBLEM WITH QUOTA
AND BUDGET CONSTRAINTS

Mehmet Karakaya

M.A. in Economics

Supervisor: Prof. Dr. Semih Koray

September, 2003

In this thesis, we have studied the graduate admission problem with quota and

budget constraints as a two sided matching market. We constructed algorithms

which are extensions of the Gale - Shapley algorithm and showed that if the

algorithms stop then the resulting matchings are core stable (and thus Pareto

optimal). However the algorithms may not stop for some problems. Also it is

possible that the algorithms do not stop and there is a core stable matching.

Also there is no department optimal matching and no student optimal matching

under budget constraints. Hence straightforward extensions of the Gale - Shapley

algorithm do not work for the graduate admission problem with quota and budget

constraints. The presence of budget constraints play an important role in these

results.

Keywords: pairwise stable matching, core stable matching, Pareto optimal match-

ing, the Gale - Shapley algorithm, quota and budget constraints.
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ÖZET

KOTA VE BÜTÇE KISITLARI ALTINDA DOKTORA
KABUL PROBLEMİ

Mehmet Karakaya

Ekonomi, Yüksek Lisans

Tez Yöneticsi: Prof. Dr. Semih Koray

Eylül, 2003

Bu tez çalışmasında kota ve bütçe kısıtları altında doktora kabul problemi iki

taraflı eşleşme olarak incelenmiştir. Gale - Shapley algoritmasının uzantıları olan

çeşitli algoritmalar yazılmış ve bu algoritmalardan biri için algoritma durursa

oluşan eşleşmenin çekirdek kararlı (ve böylece Pareto en iyi) olduğu gösterilmiştir.

Fakat bu algoritmalar bazı problemler için durmadığı gibi, algoritmaların dur-

madığı ve çekirdek kararlı bir eşleşmenin bulunduğu durumlar da mevcuttur.

Ayrıca bütçe kısıtı altında bölüm optimal eşleşme ve öğrenci optimal eşleşme

yoktur. Bu yüzden Gale - Shapley algoritmasının uzantıları olan algoritmalar

kota ve bütçe kısıtları altında doktora kabul problemi için kendilerinden bekle-

nen işlevi yerine getirmemektedir. Bütçe kısıtının varlığı bu sonuçlarda önemli

bir rol oynamaktadır.

Anahtar sözcükler : ikili kararlı eşleşme, çekirdek kararlı eşleşme, Pareto en iyi

eşleşme, Gale - Shapley algoritması, kota ve bütçe kısıtları.
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Chapter 1

Introduction

A typical two-sided matching market consists of two disjoint finite sets, for ex-

ample a set of men and a set of women; colleges and students; firms and workers.

A matching is called a one-to-one matching if a member of one set is allowed to

match with at most one member of other set, for example a man (woman) can

match with only one woman (man). However, a firm hires many workers, but a

worker works for one firm only. This type of matching is called a many-to-one

matching.

There is a rich literature on matching theory (see Roth and Sotomayor (1990)

for an excellent survey for a period covering all classical results in the field) in-

cluding both theoretical and empirical studies. Even though there is an extensive

literature on matching theory, there is no study considering both quota and bud-

get constraints simultaneously. There are studies where colleges (or firms) have

either quota constraint or budget constraint but not both. In this thesis, we study

the graduate admission problem under quota and budget constraints. There is a

set of departments belonging to one university and a set of students (applicants)

who wish to enter these departments. Each department faces both quota and

budget constraints which are determined by the university.

Hall (1935) considered a marriage problem involving a group of men and
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women in a society where a man may marry a woman only if they have previ-

ously been introduced. Men have no preferences for women and women have no

preferences for men. The aim is to maximize the number of people that can be

matched. Hall showed that a complete set of marriages is possible if and only if

every subset of men has collectively been introduced to at least as many women

as the number of men in that subset, and vice versa.

Gale and Shapley (1962) described a model for college admissions problem. A

college admission problem consists of a finite set of students and a finite set of

colleges where each college faces a quota constraint. Each student has a linear

preference relation over colleges and each college has a linear preference relation

over sets of students. A student matches with a college or with herself (i.e., stays

unmatched) and a college matches with a group of students whose size does not

exceed its quota. A matching is blocked by a student iff she prefers to match

with herself to getting matched with the college that she is assigned under that

matching. A matching is blocked by a college iff it prefers a strict subset of

the group of students that it matched under the given matching. A matching

is blocked by a student - college pair iff the student prefers that college to her

match and the college prefers the union of a proper subset of its match with

the student to its present match. A matching is stable iff it is not blocked by

a student, by a college and by a student - college pair. From each given set

of students a college selects its most prefferred such set of students obeying the

quota constraint. This most preffered set of students is referred as the choice

of that college from among the group of students it faces. A stable matching is

student optimal iff each student likes this matching at least as well as any other

stable matching. A stable matching is college optimal iff each college likes this

matching at least as well as any other stable matching.

The following algorithm is referred as the Gale - Shapley student optimal

algorithm:

Step 1 : Each student proposes to her most preferred college. Each college rejects

all but those who comprise its choice among its proposers.

In general, at step k,

Step k : Each student who was rejected in the previous step proposes to her
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next prefferred college. Each college rejects all but those who comprise its choice

within the students it has been holding together with its new proposers.

The algorithm stops if there is no student such that her proposal is rejected. Then

each student is matched with a college that she proposed at the last step and was

not rejected by that college. The Gale - Shapley college optimal algorithm is

similarly defined with colleges proposing to group of students by obeying their

quota constraints.

A college has substitutable preferences if it regards students as substitutes

rather than as complements, i.e., the college prefers to enroll a student who is in its

choice set even if some of the other students in its choice set become unavailable.

When colleges have substitutable preferences the set of stable matchings is non-

empty. That is the Gale - Shapley student optimal algorithm produces a stable

student optimal matching (similarly the Gale - Shapley college optimal algorithm

produces a stable college optimal matching).

Note that the Gale-Shapley algorithm has been used since 1951 (before Gale

and Shapley’s paper) in the United States to match medical residents to hospitals

(for the analysis of the matching program see Roth (1984)).

Kelso and Crawford (1982) considered a model for labor markets as a many

to one matching market. There are a finite set of workers and a finite set of

firms. Firms do not face quota or budget constraints. Each worker has a utility

of working for a firm with a salary that is paid by that firm. It is assumed that all

workers are gross substitutes from the viewpoint of each firm. This assumption is

referred as gross substitutes condition. In order to define this condition formally,

we need some notation which is introduced below following Kelso and Crawford:

Let w denote a generic element of the set of workers and f a generic element of

the set of firms. Firm f ’s gross product (measured in terms of salaries) is denoted

by yf (Cf ), where Cf is the set of workers hired by firm f . The net profit of firm

f is defined by πf (Cf , sf ) = yf (Cf ) −
∑

w∈Cf swf , where sf = (s1f , . . . , smf ) is

the vector of salaries faced by firm f . When firm f faces a vector of salaries

sf = (s1f , . . . , smf ), firm f chooses a set Cf of workers which maximizes its net

profit. Let M f (sf ) denote the sets of workers that maximize net profit of firm f .
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Consider two vectors of salaries sf and s̃f faced by firm f . Let T f (Cf ) = {w |
w ∈ Cf and s̃wf = swf}. The gross substitutes condition is that

for all firms, if Cf ∈ M f (sf ) and s̃f = sf , then there exists C̃f ∈ M f (s̃f ) such

that T f (Cf ) ⊆ C̃f .

That is firms regard workers as substitutes rather than as complements. ”The

gross substitutes assumption states that all workers be (weak) gross substitutes

to each firm, in the sense that increases in other workers’ salaries can never cause

a firm to withdraw an offer from a worker whose salary has not risen.” Thus the

production technology is such that workers are not complements.

Kelso and Crawford (1982) showed the existence of a core allocation by an

extension of the Gale - Shapley algorithm. That is there is a matching such that

there is no subgroup consisting of firms and workers which blocks that matching.

They also showed that there is a firm optimal core allocation, i.e., there is a core

matching that each firm likes at least as well as any other core matching.

Mongell and Roth (1986) considered the model of Kelso and Crawford together

with budget constraints for firms. They showed by an example that the core of

the market may be empty. They also gave an example to show that if the set

of core allocations is non-empty, it is possible that there be no firm optimal core

matching.

In this thesis, we consider graduate admission problem as a two-sided matching

market. There are a set of students and a set of departments which belong to

one university. Each department faces quota and budget constraints which are

determined centrally by the university. Students apply to these departments for

their graduate studies and each student has a value added to each department.

If a student matches with a department she may be paid by the department or

she may pay to the department. If a student pays for her graduate study, that

payment is not added to the department’s budget for graduate admissions. That

payment goes to the university which gives some percentage of that payment to

the department for its office expenditures. Departments use their budgets for the

payments to graduate students, and if a department has some of its budget left

after these payments, the remaining part is used for office expenditures by the
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department. Each department gets a benefit from its accepted students and its

office expenditures. The total benefit of a department from its accepted students

is the sum of each accepted student’s value added to the department. Each

department wants to maximize its gross benefit which is sum of the benefits

from accepted students and from office expenditures. We assume that, for any

department, the largest benefit from office expenditures is less than any qualified

student’s benefit to the department no matter how large the office expenditures

are. Therefore, each department wants to maximize its gross benefit by accepting

more qualified students at a minimum cost. Each student wants to make graduate

study at her most preferred department.

Our model differs from the previous models in the sense that departments face

both quota and budget constraints. Here we construct some algorithms which are

extensions of the Gale - Shapley algorithm and show that, if the algorithms stop,

the resulting matchings are core stable (and thus Pareto optimal). However the

algorithms do not always stop and it turns out to be possible that the algorithms

do not stop while the set of core stable matchings is non-empty. Hence we can

say that for the model considered in this paper (two sided matching market with

quota and budget constraints) straightforward extensions of the Gale - Shapley

algorithm do not work in contrast to college admissions and labor market mod-

els without budget constraints. Moreover, the existence of either a department

optimal or a student optimal matching is not guaranteed in our setting. In sum-

mary, the presence of budget constraints seems to change the picture in a radical

fashion.

The rest of the thesis is organized as follows: We present the model and

definitions in chapter 2. Chapter 3 examines the relationships between different

notions introduced in chapter 2. Chapter 4 defines the algorithm and presents

the result that the final matching is core stable if the algorithm stops. Chapter

4 also presents two examples in the first of which the algorithm does not stop,

and there is no core stable matching. In the second one the algorithm again

does not stop but there is now a core stable matching. Chapter 5 considers a

modified model where students wish only to have their reservation prices and

defines another algorithm for this model. Chapter 6 starts with observations

5



regarding our algorithms and then concludes the thesis.
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Chapter 2

Basic Notions

We denote the finite nonempty set of departments of our university by

D = {d1, d2, . . . , dm}. A finite nonempty set of students denoted by S =

{s1, s2, . . . , sn}, is regarded as comprising the applicants to this university for

graduate programs offered by its departments.

Each department d ∈ D has a quota qd and a budget bd for its graduate

program; both of which are determined centrally by the university. A student

can enroll to at most one department, and each department accepts a group of

students obeying its quota and budget constraints.

We assume that each student s ∈ S has a qualification level for each depart-

ment d ∈ D. The qualification level of student s for department d is an integer

and denoted by as
d. The qualification levels of student s for the departments are

denoted by a vector as
D = (as

d1
, as

d2
, . . . , as

dm
). Also we assume that each depart-

ment has a minimal qualification level as a threshold for accepting students. The

minimal qualification level of department d is a positive integer and denoted by

ad.

Each student yields a benefit (or adds a value) to each department if accepted

to that department. These values are independent of who the other accepted
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students are, i.e., there are no externalities in this regard. The benefit of de-

partment d obtained from accepting a group of students Sd ⊆ S is denoted by

yd(Sd). We assume that department d’s benefit yd(Sd) is additive, i.e., it is the

sum of the accepted students’ benefits to the department. We assume that the

benefit student s provides to department d is equal to her qualification level for

department d, i.e., yd({s}) = as
d. Therefore the total benefit of department d

from accepting a group of students Sd ⊆ S is yd(Sd) =
∑

s∈Sd as
d.

If a student gets enrolled to a department for graduate study, she may be paid

by the department or she may pay to the department. The amount of payment

made by department d to student s is an integer msd. In other words, student

s is paid by department d the amount msd if msd > 0; there is no payment if

msd = 0; student s pays to department d the amount msd if msd < 0. If an

accepted student pays for her graduate study at department d, this payment is

not added to department d’s budget. That payment is taken by the university

and the university gives some fixed percentage of this payment to department d,

solely to be used, say, for its office expenditures.

We assume that each student s has a reservation price for each department

d (the lowest amount of money that student s will accept from department d)

which will be denoted by an integer σsd. We assume that for all s ∈ S and for all

d ∈ D, σsd ≤ bd. Student s’s reservation prices for departments will be denoted

by a vector σs = (σsd1 , . . . , σsdm). Note that a reservation price may also be

negative, representing the level of willingness on the part of the student to pay

to the department in question to get accepted.

If department d has some remaining budget after payments, the remaining

money is only used for office expenditures by the department. Let B be the

total budget of the university, and let student s be the least qualified student

for department d among all students who are qualified for department d, i.e.,

as
d ≥ ad and for all h ∈ S \ {s} with ah

d ≥ ad, we have as
d ≤ ah

d . Let εd
B be

the benefit of department d if it uses the university’s entire budget B for its

office expenditures. We assume that yd({s}) > εd
B. Therefore, the benefit which

is gained by spending B for the office expenditures is less than any qualified
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student’s benefit to department d. This means that one can take ad = 1 and

0 < εd
B < 1 for each d ∈ D.

The total benefit of department d is denoted by Y d and it is the sum of benefits

from accepted students and office expenditures. Therefore when Sd ⊆ S is the

accepted group of students by department d and εd is the benefit that department

d gets from office expenditures, we have that Y d(Sd, εd) = yd(Sd) + εd.

Definition 1 A graduate admission problem is a list (D, S, q, b, aS, σ) where

1. D is a finite nonempty set of departments,

2. S is a finite nonempty set of students,

3. q = (qd)d∈D is the departments’ quotas with qd ∈ N for each d ∈ D,

4. b = (bd)d∈D is the departments’ budgets with bd ∈ N0
1 for each d ∈ D,

5. aS = (as
D)s∈S is the students’ qualification levels for departments with as

d ∈
Z for each s ∈ S, d ∈ D,

6. σ = (σs)s∈S is the students’ reservation prices for departments with σsd ∈ Z
and σsd ≤ bd for each s ∈ S, d ∈ D.

The preferences of departments and students are implicitly contained in the

definition of a graduate admission problem and can be made explicit as follows:

The strict preference relation of department d is denoted by Pd. For all d ∈ D,

Pd is a linear order 2 on 2S × R.

Consider two group of students Sd and Śd. Let cd denote the cost of group of

students Sd to department d, i.e., cd =
∑

s∈S̄d msd with S̄d = {s ∈ Sd | msd > 0},
and ćd the cost of group of students Śd to department d, i.e., ćd =

∑
s∈ ¯́

S
d ḿsd

with
¯́
S

d
= {s ∈ Śd | ḿsd > 0}. Let εd denote the benefit of office expenditures

that department d obtains by accepting the group of students Sd at cost cd, and

1N0 = N
⋃
{0}

2A linear order on a set X is a complete, transitive and antisymmetric (binary) relation.
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έd the benefit of office expenditures that department d obtains by accepting the

group of students Śd at cost ćd.

Note that (Sd, cd) = (Śd, ćd) does not imply that Y d(Sd, εd) = Y d(Śd, έd). To

clarify this point consider the following example:

Let Sd = Śd = {s1, s2}, and ms1d = 50 = ms2d; ḿs1d = 100, ḿs2d = −100. Note

that cd = ms1d + ms2d = 50 + 50 = 100 and ćd = ḿs1d = 100. We have that

(Sd, cd) = (Śd, ćd). However Y d(Śd, έd) > Y d(Sd, εd), since έd > εd.

Now department d strictly prefers Sd to Śd if Y d(Sd, εd) > Y d(Śd, έd).

If Y d(Sd, εd) = Y d(Śd, έd) then department d considers the associated costs

of Sd and Śd. That is whenever Y d(Sd, εd) = Y d(Śd, έd) department d strictly

prefers Sd to Śd if cd < ćd.

If Y d(Sd, εd) = Y d(Śd, έd) and cd = ćd, then department d makes a lexico-

graphic comparison among Sd and Śd in the following way:

Let | Sd |= n1 and | Śd |= n2. Let f : {1, . . . , n1} → {i | si ∈ Sd} be a function

such that f(1) < f(2) < . . . < f(n1). Let g : {1, . . . , n2} → {j | sj ∈ Śd} be a

function such that g(1) < g(2) < . . . < g(n2).

We say that department d leximin prefers Sd to Śd if and only if f(1) < g(1)

or ∃k ∈ {1, . . . , n} where n < min{n1, n2} such that ∀t ∈ {1, . . . , k} f(t) = g(t)

but f(t + 1) < g(t + 1).

Now we can define Pd formally as follows:

∀(Sd, cd), (Śd, ćd) ∈ (2S × R) with (Sd, cd) 6= (Śd, ćd),

[(Sd, cd)Pd(Ś
d, ćd)] if and only if [Y d(Sd, εd) > Y d(Śd, έd)] or

[Y d(Sd, εd) = Y d(Śd, έd) and cd < ćd] or

[Y d(Sd, εd) = Y d(Śd, έd) and cd = ćd and Sd leximin preferred to Śd].

Rd is a preference relation of department d induced from Pd and defined as

follows:

∀(Sd, cd), (Śd, ćd) ∈ (2S × R),

[(Sd, cd)Rd(Ś
d, ćd)] if and only if ¬[(Śd, ćd)Pd(S

d, cd)].

Hence, for any (Sd, cd), (Śd, ćd) ∈ (2S × R) with (Sd, cd) 6= (Śd, ćd), we have
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either [(Sd, cd)Pd(Ś
d, ćd)] or [(Śd, ćd)Pd(S

d, cd)].

The strict preference relation of student s is denoted by Ps. For all s ∈ S, Ps

is a linear order on (D × R)
⋃
{(∅, 0)}.

We assume that, given any s ∈ S, σsd = σsd̃ if and only if d = d̃. We also

assume that (d, σsd)Ps(∅, 0) for all s ∈ S and all d ∈ D, where (∅, 0) stands for

the situation that student s is unmatched (or she is matched with herself).3

For all s ∈ S, Ps is defined as follows:

∀(d,msd), (d̃,msd̃) ∈ (D × R)
⋃
{(∅, 0)},

[(d,msd)Ps(d̃,msd̃)] if and only if [msd − σsd > msd̃ − σsd̃] or

[msd − σsd = msd̃ − σsd̃ and σsd < σsd̃].

Rs is a preference relation of student s induced from Ps and defined as follows:

∀(d,msd), (d̃,msd̃) ∈ (D × R)
⋃
{(∅, 0)},

[(d,msd)Rs(d̃,msd̃)] if and only if ¬[(d̃,msd̃Pd(d,msd)].

Note that whenever (d,msd) 6= (d̃,msd̃), we have either [(d,msd)Ps(d̃,msd̃)] or

[(d̃,msd̃Pd(d,msd)].

Note that being unmatched is not the worst situation for a student s ∈ S,

because for all s ∈ S, [(∅, 0)Ps(d,msd)] if [msd < σsd] for any d ∈ D.

Now we will define what we mean by a matching.

Definition 2 By a matching we mean a function µ : S −→ (D× R)
⋃
{(∅, 0)}

which matches each student s with a member µ1(s) of D
⋃
{∅} and also specifies

the amount of transfer µ2(s) made from µ1(s) to s such that the following are

satisfied:

1. For all d ∈ D, | Sd
µ |≤ qd (quota constraint),

where Sd
µ = {s ∈ S | µ1(s) = d},

2. For all d ∈ D, cd
µ ≤ bd (budget constraint),

3We assume that for all s ∈ S, σs∅ = 0.
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where cd
µ =

∑
s∈S̄d

µ
mµ

sd with mµ
sd = µ2(s) for µ1(s) = d and S̄d

µ={s ∈ Sd
µ |

mµ
sd > 0}.

3. For all d ∈ D, for all s ∈ Sd
µ, as

d ≥ ad (qualification level constraint).

Student s is matched with a department if µ1(s) ∈ D, she is unmatched if

µ1(s) = ∅ under µ.

Let Y d
µ denote the total benefit of department d under µ. Let yd

µ denote the

benefit of department d that it obtains by accepting the group of students Sd
µ and

εd
µ the benefit of department d that it gets from office expenditures under µ.

Department d’s preference relation Rd induces a preference relation Rµ
d over

matchings in a natural fashion as follows:

For any matchings µ̄ and µ̃,

[µ̄Rµ
d µ̃] if and only if [(Sd

µ̄, c
d
µ̄)Rd(S

d
µ̃, c

d
µ̃)]. We abuse notation and we use Rd for

Rµ
d .

Students s’s preference relation Rs similarly induces a preference relation Rµ
s

over matchings as follows:

For any matchings µ̄ and µ̃,

[µ̄Rµ
s µ̃] if and only if [(µ̄1(s), m

µ̄
sµ̄1(s))Rs(µ̃1(s), m

µ̃
sµ̃1(s))]. We abuse notation and

we use Rs for Rµ
s .

To present a matching µ, we will use a matrix consisting of three rows and

n columns, where n =| S |. The first row lists the set of students respecting

their original labeling; the second row specifies the departments the students are

assigned to and the third row consists of the associated money transfers. That is

µ =


s1 s2 . . . sn

µ1(s1) µ1(s2) . . . µ1(sn)

mµ
s1µ1(s1) mµ

s2µ1(s2) . . . mµ
snµ1(sn)


Definition 3 A matching µ is individually rational if and only if it satisfies

the following properties

12



1. For all s ∈ S, mµ
sµ1(s) ≥ σsµ1(s), and

2. For all d ∈ D, Y d
µ ≥ 0.

Definition 4 We say that a matching µ is blocked by a student - department

pair (s, d) ∈ S ×D with µ1(s) 6= d if and only if there exists a payment m̃sd such

that

1. (d, m̃sd)Ps(µ1(s), m
µ
sµ1(s)), and

2. [(Sd
µ \B)

⋃
{s}, ĉd]Pd[S

d
µ, c

d
µ],

for some B ⊆ Sd
µ, with

ĉd =

{ ∑
h∈(S̄d

µ\B) mµ
hd + m̃sd if m̃sd > 0∑

h∈(S̄d
µ\B) mµ

hd otherwise

such that [((Sd
µ \B)

⋃
{s}), ĉd] satisfies the quota and budget constraints of

department d, i.e., | (Sd
µ \B)

⋃
{s} |≤ qd and ĉd ≤ bd.

A pair (s, d) that satisfies above two conditions is called a blocking pair for

matching µ.

Definition 5 A matching µ is pairwise stable if and only if it is individually

rational and there is no pair (s, d) which blocks it.

Now we will define group blocking of a matching µ.

Definition 6 We say that a matching µ is blocked by a group (D̃, S̃) with D̃ ⊆ D

and S̃ ⊆ S if and only if the following two conditions are satisfied:

1. For all s ∈ Ŝd, [(d, m̃sd)Ps(µ1(s), m
µ
sµ1(s))],

where d ∈ D̃, and Ŝd ⊆ S̃ with for all s ∈ Ŝd, µ1(s) 6= d,

2. For all d ∈ D̃, [(Sd
µ \B)

⋃
Ŝd, ĉd]Pd[S

d
µ, c

d
µ],

for some B ⊆ Sd
µ with ĉd =

∑
h∈(S̄d

µ\B) mµ
hd +

∑
s∈ ¯̂

S
d m̃sd such that

¯̂
S

d
= {s ∈ Ŝd | m̃sd > 0} and [((Sd

µ \ B)
⋃

Ŝd), ĉd] satisfies the quota and

budget constraints of department d, i.e., | [(Sd
µ \B)

⋃
Ŝd] |≤ qd and ĉd ≤ bd.

13



Note that Ŝd ⊆ S̃ denote the group of students who matched with department

d ∈ D̃ by group blocking of µ, so for all s ∈ Ŝd, µ1(s) 6= d, and
⋃

d∈D̃ Ŝd = S̃.

The amount of money m̃sd denote the transfer between department d ∈ D̃ and a

student s ∈ Ŝd.

Definition 7 We say that a matching µ is core stable if and only if µ is indi-

vidually rational and there exists no group (D̃, S̃) which blocks µ.

Proposition 1 A matching µ is core stable if and only if µ is individually ratio-

nal and there exists no pair (consisting of a department d and a group of students

S̃ ⊆ S) (d, S̃) which blocks µ.4

Proof Take any core stable matching µ. By definition, µ is individually rational

and there exists no pair (d, S̃) which blocks µ.

For the other part of the proof, take any individually rational matching µ

such that there exists no pair (d, S̃) which blocks µ. Suppose that µ is not core

stable. Then there exists a group (consisting of a group of departments D̃ ⊆ D

and a group of students S̃) (D̃, S̃) which blocks µ. The cardinality of the group

of departments must be equal or greater than two, i.e., | D̃ |≥ 2. Otherwise we

have a contradiction with the absence of a pair (d, S̃) which blocks µ.

W.l.o.g. assume that D̃ = {d, d́}. A student can match with at most one

department, so a student s ∈ S̃ matches with either department d or department

d́. Let Ŝd ⊂ S̃ denote the group of students who matched with department d

and Ŝ d́ ⊂ S̃ denote the group of students who matched with department d́ in the

blocking matching. Now, the following two conditions are satisfied.

1. For all s ∈ Ŝd,(d, m̃sd)Ps(µ1(s), msµ1(s)), and

for d ∈ D̃, [(Sd
µ \B)

⋃
Ŝd, ĉd]Pd[S

d
µ, c

d
µ], where B ⊆ Sd

µ,

2. For all s ∈ Ŝ d́, (d́, m̃sd́)Ps(µ1(s), msµ1(s)), and

for d́ ∈ D̃, [(S d́
µ \ C)

⋃
Ŝ d́, ĉd́]Pd́[S

d́
µ, c

d́
µ], where C ⊆ S d́

µ.

4In other words, an essential coalition for group blocking consists of a department and a
group of students.
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However above two conditions mean that both (d, Ŝd) and (d́, Ŝ d́) block µ,

yielding the desired contradiction. Hence µ is core stable. �

Definition 8 We say that a matching µ is Pareto dominated by another match-

ing µ̃ if and only if

1. for all i ∈ (S
⋃

D), µ̃Riµ, and

2. for some i ∈ (S
⋃

D), µ̃Piµ.

Definition 9 A matching µ is Pareto optimal if and only if there exists no

matching µ̃ which Pareto dominates µ.

15



Chapter 3

Relationships Between Pairwise

Stability, Core Stability and

Pareto Optimality

In this chapter we examine the relationships between the notions of pairwise

stability, core stability and Pareto optimality.

Proposition 2 If a matching µ is core stable, then µ is pairwise stable.

Proof Obvious. �

However the converse of the above proposition is not true, i.e., a pairwise

stable matching may not be core stable.

Example 1 A pairwise stable but not core stable matching

Let D = {d1, d2} be the set of departments and S = {s1, s2, s3} the set of

students. The budgets and quotas of the departments are as follows: bd1 = 30,

bd2 = 50; qd1 = 2, qd2 = 2. The qualification levels and reservation prices of the

students are as given in table 3.1.

Consider the following matching µ:

16



as1
d1

=15 as1
d2

= 8
as2

d1
=12 as2

d2
=30

as3
d1

=20 as3
d2

=25
σs1d1=12 σs1d2=10
σs2d1=25 σs2d2=40
σs3d1=11 σs3d2=20

Table 3.1: Qualification levels and reservation prices of students for example 1

µ =


s1 s2 s3

∅ d2 d1

0 50 30


The matching µ is pairwise stable since there exists no pair (s, d) ∈ S × D

that blocks µ. Also note that µ is Pareto optimal. However µ is not core stable.

Since the group (d2, {s1, s3}) blocks µ with payments m̃s1d2 = 10 and m̃s3d2 =

40. Department d2 prefers the group of students {s1, s3} to student {s2}, i.e.,

[(s1, s3), 50]Pd2 [s2, 40], since as1
d2

+ as3
d2

= 33 > 30 = as2
d2

. Student {s1} prefers

to be matched with department d2 at payment m̃s1d2 = 10 to be unmatched,

i.e., (d2, 10)Ps1(∅, 0). Student {s3} prefers to be matched with department d2 at

payment m̃s3d2 = 40 to be matched with department d1 at payment mµ
s3d1

= 30,

i.e., (d2, 40)Ps3(d1, 30) since m̃s3d2 − σs3d2 = 40 − 20 = 20 > 19 = 30 − 11 =

mµ
s3d1

− σs3d1 .

Hence a pairwise stable matching need not be core stable. This example also

shows that a pairwise stable and Pareto optimal matching need not be core stable.

Example 2 A pairwise stable but not Pareto optimal matching

Let D = {d1, d2} be the set of departments and S = {s1, s2, s3, s4} the set of

students. The quotas and budgets of the departments are as follows: qd1 = 2,

qd2 = 2; bd1 = bd2 = 100. The qualification levels and reservation prices of the

students are as given in table 3.2.

17



as1
d1

= 0 as1
d2

=10
as2

d1
=20 as2

d2
=15

as3
d1

=10 as3
d2

= 0
as4

d1
=15 as4

d2
=20

σs1d1=40 σs1d2=25
σs2d1=80 σs2d2=70
σs3d1=25 σs3d2=40
σs4d1=70 σs4d2=80

Table 3.2: Qualification levels and reservation prices of students for example 2

Consider the following matching µ:

µ =


s1 s2 s3 s4

∅ d1 ∅ d2

0 80 0 80


The matching µ is pairwise stable since there is no pair (s, d) ∈ S ×D which

blocks µ.1 However µ is not Pareto optimal, i.e., there is another matching which

Pareto dominates µ.

Now consider the following matching µ̃:

µ̃ =


s1 s2 s3 s4

d2 d2 d1 d1

25 75 25 75


The matching µ̃ Pareto dominates the matching µ, see this:

(d2, 25)Ps1(∅, 0), (d2, 75)Ps2(d1, 80),

(d1, 25)Ps3(∅, 0), (d1, 75)Ps4(d2, 80),

(Sd1
µ̃ , cd1

µ̃ )Pd1(S
d1
µ , cd1

µ ), (Sd2
µ̃ , cd2

µ̃ )Pd2(S
d2
µ , cd2

µ ).

So we have that for all i ∈ (S
⋃

D), µ̃Piµ, i.e., µ̃ Pareto dominates µ.2

1However the matching µ is clearly not core stable as it will turn out not to be Pareto
optimal.

2The matching µ̃ is core stable.
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Hence a pairwise stable matching need not be Pareto optimal.

Example 3 A Pareto optimal but not pairwise stable matching

Let D = {d1, d2} be the set of departments, S = {s1, s2, s3} the set of students,

and the quotas and budgets of the departments are as follows: qd1 = 1, qd2 = 1;

bd1 = 30, bd2 = 50. The qualification levels and reservation prices of the students

are as given in table 3.3.

as1
d1

= 4 as1
d2

= 3
as2

d1
= 8 as2

d2
=10

as3
d1

=15 as3
d2

=15
σs1d1=10 σs1d2=15
σs2d1=20 σs2d2=30
σs3d1=30 σs3d2=40

Table 3.3: Qualification levels and reservation prices of students for example 3

Consider the following matching µ:

µ =


s1 s2 s3

∅ d2 d1

0 30 30


The matching µ is Pareto optimal since there is no other matching that Pareto

dominates µ. However µ is not pairwise stable because the pair (s3, d2) blocks

the matching µ with m̃s3d2 = 41. To see this, note that (d2, 41)Ps3(d1, 30) and

(s3, 41)Pd2(s2, 30).

Hence a Pareto optimal matching need not be pairwise stable.

It is obvious that if a matching µ is core stable then µ is Pareto optimal.
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Chapter 4

Graduate Admission Algorithm

In this section we define an algorithm, to which we will refer to as the graduate

admission algorithm (GAA) which is an extension of the Gale - Shapley algorithm

for the graduate admission problem. The algorithm GAA is a centralized algo-

rithm, i.e., the departments’ and students’ preferences are assumed to be known

to a planner (or to a computer program) who matches students with departments

according to the rule of GAA. Hence, there is no agent who behaves strategically

to manipulate the algorithm.

We will show that when the algorithm GAA stops then the resulting matching

is core stable (and thus Pareto optimal). However GAA does not always stop.

To clarify this situation, we will give two examples at one of which the algorithm

GAA does not stop and there is no core stable matching, while in the other

example the algorithm GAA does not stop, but there is a core stable matching.

Time is measured discretely in the algorithm. Let msd(t) denote the offer that

department d makes to student s at time t.

According to the scenario behind our algorithm, given bd, qd and what offers

are permitted, at each time t, department d will maximize its total benefit Y d
t =

yd(Sd
t )+εd

t when it makes a permitted offer to a group of students Sd
t such that the

quota and budget constraints are satisfied, i.e., | (Sd
t ) |≤ qd and

∑
s∈S̄d

t
msd(t) ≤
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bd.

Now we can give the details of how the algorithm GAA works.

Graduate Admission Algorithm

t = 1: a) Each department d determines the group of students Sd
1 that

maximizes its total benefit subject to its quota and budget constraints with

msd(1) = σsd for all s ∈ Sd
1 . That is, department d offers to students in Sd

1

first their reservation prices.

b) Students who have taken one or more offers accept at most one offer and

reject the others.

c) Department d tentatively accepts the group of students who accepted its

offers. Let T d
1 denote the group of students who accepted department d’s offers

at time t = 1, T d
1 ⊆ Sd

1 .
1

Now, at the end of time t = 1 we have a matching µ1 with Sd
µ1

= T d
1 .

t = 2: a) Again each department d determines the group of students Sd
2 that

maximizes its total benefit subject to its constraints where the offers now be of

the form:

msd(2) =

{
σsd + 1 if s ∈ Sd

1 \ T d
1

σsd otherwise

b) Students who have taken one or more offers accept at most one offer and

reject the others.

c) Department d tentatively accepts the group of students T d
2 ⊆ Sd

2 who

accepted its offers.

In general, at time k,

t = k: a) Consider a student s to whom department d made offers before

period k the last of which took place in period t̃s < k. In case this offer was

1Sd
1 \ T d

1 is now the group of students who took an offer from department d and rejected it
at time t = 1.
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rejected by s because she accepted department d̂’s offer with which she got again

matched at the end of period k−1, i.e., µk−1(s) = d̂, call such a student a rejector

of d prior to k. Let F d
k denote the group of all rejectors of d prior to k.2

Each department d determines the group of students Sd
k solving the same kind

of optimization problem as before, where the offers are now of the following form:

msd(k) =


σsd if s /∈

⋃t=k−1
t=1 Sd

t

msd(t̃s) + 1 if s ∈ F d
k

msd(t̃s) otherwise

Note that department d offers msd(k) to each student s ∈ Sd
k .

b) Students who have taken one or more offers accept at most one offer and

reject the others.

c) Department d tentatively accepts the group of students T d
k ⊆ Sd

k who

accepted its offers.

Stopping Rule

t = t?: The algorithm stops at time t? if each department d makes offers to

exactly the set of students who accepted its offers in the preceding period, i.e., if

we have for all d ∈ D, Sd
t? = T d

t?−1.

If the algorithm stops at t? the final matching µt? is regarded as the outcome

of the algorithm.

Proposition 3 If the algorithm GAA stops, then the final matching of the algo-

rithm is core stable (and thus Pareto optimal).

Proof Assume that the algorithm stops. Let the algorithm stop at time t? with

µt? denoting the final matching of the algorithm. So we have that, for all d ∈ D,

Sd
t? = T d

t?−1. We abuse notation that we use µ? for µt? .

2Note that at time t = 1, we have that for all d ∈ D, F d
1 = ∅, and at time t = 2, for all

d ∈ D, F d
2 = Sd

1 \ T d
1 .
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Clearly µ? is individually rational, since mµ?

sµ?
1(s) ≥ σsµ?

1(s) for all s ∈ S, and

Y d
µ? ≥ 0 for all d ∈ D.

Now suppose that µ? is not core stable. So there is a group (d, S̃) which blocks

µ?. So we have that

1. for all s ∈ S̃, µ?
1(s) 6= d,

2. for all s ∈ S̃, (d, m̃sd)Ps(µ
?
1(s), m

µ?

sµ?
1(s)),

3. [(Sd
µ? \B)

⋃
S̃, ĉd]Pd[S

d
µ? , cd

µ? ], for some B ⊆ Sd
µ? .

Note that the algorithm requires department d to make the offers m̃sd to each

student s ∈ S̃ at time t?. Now, there are three possible cases.

Case 1. If there is a student s ∈ S̃ such that s /∈
⋃t=t?−1

t=1 Sd
t , then we have

that m̃sd = σsd.

Case 2. Now assume that there is a student s ∈ S̃ such that s ∈ F d
t? , and

let t̃s denote the time that department d made an offer to student s the last time

before time t?. Now m̃sd = msd(t̃s) + 1.

Case 3. If there is a student s ∈ S̃ such that s /∈ F d
t? and department d made

an offer to student s at time t̃s the last time before time t?, then m̃sd = msd(t̃s).

Therefore department d would make the offers m̃sd to each student s ∈ S̃

(by 3), and each student in S̃ would accept the offer (by 2). So department d

and the group S̃ of students would match at the outcome of the algorithm, in

contradiction with (1). Hence µ? is core stable, (and thus also Pareto optimal).

�

However the algorithm does not always stop. The following example demon-

strates this situation. Also note that there is no core stable matching for the

following example.
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Example 4 3 The algorithm GAA does not stop and there is no core

stable matching

Let D = {d1, d2}, S = {s1, s2, s3}, qd1 = 1, qd2 = 2, bd1 = 440, bd2 = 1075,

and the qualification levels and reservation prices of the students are as given in

table 4.1.

as1
d1

= 7 as1
d2

= 6
as2

d1
= 0 as2

d2
= 15

as3
d1

= 8 as3
d2

= 11
σs1d1=400 σs1d2= 300
σs2d1=440 σs2d2=1000
σs3d1=400 σs3d2= 700

Table 4.1: Qualification levels and reservation prices of students for example 4

Now we apply the graduate admission algorithm:

t = 1: a) The solution set of department d1’s optimization is {s3} and the

optimizing set for department d2 is {s1, s3}, i.e., Sd1
1 = {s3}, Sd2

1 = {s1, s3}.

Department d1 offers σs3d1 = 400 to student s3, and

department d2 offers σs1d2 = 300 to student s1 and σs3d2 = 700 to student s3.

b) Student s1 accepts department d2’s offer σs1d2 = 300,

student s2 has no offer,

student s3 accepts department d1’s offer σs3d1 = 400 and rejects department d2’s

offer σs3d2 = 700.

c) Department d1 accepts {s3} and department d2 accepts {s1}, i.e., T d1
1 =

{s3}, T d2
1 = {s1}.

We have a matching

3This example is a modification of the example of Mongell and Roth (1986).
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µ1 =


s1 s2 s3

d2 ∅ d1

300 0 400



t = 2: a) Now Sd1
2 = {s3}, Sd2

2 = {s1, s3}.

Thus department d1 offers ms3d1(2) = σs3d1 = 400 to student s3,

department d2 offers ms1d2(2) = σs1d2 = 300 to student s1 and ms3d2(1) = σs3d2 +

1 = 701 to student s3.

b) Student s1 accepts department d2’s offer,

student s2 has no offer,

student s3 accepts department d2’s offer and rejects department d1’s offer.

c) Hence T d1
2 = ∅, T d2

2 = {s1, s3}.

So we have a new matching

µ2 =


s1 s2 s3

d2 ∅ d2

300 0 701


Note that, in further periods, department d1 and department d2 compete for

student s3 by increasing their offers. The maximal offer that department d1 makes

to student s3 is equal to its budget. Hence, eventually at some time t = l we have

following:

t = l: a) Now Sd1
l = {s3}, Sd2

l = {s1, s3}.

Department d1 offers ms3d1(l) = bd1 = 440 to student s3,

department d2 offers ms1d2(l) = 300 to student s1 and ms3d2(l) = 741 to student

s3.

b) Student s1 accepts department d2’s offer,
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student s2 has no offer,

student s3 accepts department d2’s offer and rejects department d1’s offer.

c) So, T d1
l = ∅, T d2

l = {s1, s3}.

At time l we have a matching

µl =


s1 s2 s3

d2 ∅ d2

300 0 741


t = l + 1: a) Sd1

l+1 = {s1}, Sd2
l+1 = {s1, s3}, implying that department d1 offers

ms1d1(l + 1) = σs1d1 = 400 to student s1,
4

department d2 offers ms1d2(l + 1) = 300 to student s1 and ms3d2(l + 1) = 741 to

student s3.

b) Student s1 accepts department d2’s offer and rejects department d1’s offer,

student s2 has no offer, and

student s3 accepts department d2’s offer.

c) So, T d1
l+1 = ∅, T d2

l+1 = {s1, s3}, yielding the matching

µl+1 =


s1 s2 s3

d2 ∅ d2

300 0 741


Now department d1 and department d2 compete for student s1. However

the maximal offer that department d2 makes to student s1 is equal to 334 =

1075− 741 = bd2 −ms3d2(l + 1). Hence at some time t̄ we have following:

t = t̄: a) Sd1

t̄ = {s1}, Sd2

t̄ = {s1, s3}, so that department d1 offers ms1d1(t̄) =

435 to student {s1},
department d2 offers ms1d2(t̄) = 334 to student s1 and ms3d2(t̄) = 741 to student

s3.

4Department d1 offers to student s1 as the first time at time l +1, so ms1d1(l +1) = σs1d1 =
400.

26



b) Student s1 accepts department d1’s offer and rejects department d2’s offer,

student s2 has no offer, while

student s3 accepts department d2’s offer.

c) Thus, T d1

t̄ = {s1}, T d2

t̄ = {s3}, and we have the matching

µt̄ =


s1 s2 s3

d1 ∅ d2

435 0 741


t = t̄ + 1: a) Now Sd1

t̄+1 = {s1}, Sd2

t̄+1 = {s2}.

In here, note that department d2’s preference relation violates the gross sub-

stitutes condition, since department d2 broke its tie with student s3 even though

the offer ms3d2(t̄ + 1) does not increase, i.e., ms3d2(t̄ + 1) = mµt̄
s3d2

but s3 /∈ Sd2

t̄+1.

Department d1 offers ms1d1(t̄ + 1) = 435 to student s1,

department d2 offers ms2d2(t̄ + 1) = σs2d2 = 1000 to student s2.

b) Student s1 accepts department d1’s offer,

student s2 accepts department d2’s offer, while

student s3 has no offer.

c) Hence T d1

t̄+1 = {s1}, T d2

t̄+1 = {s2}.

At time t̄ + 1 we obtain matching

µt̄+1 =


s1 s2 s3

d1 d2 ∅
435 1000 0


t = t̄ + 2: a) Here Sd1

t̄+2 = {s3}, Sd2

t̄+2 = {s2}, whence department d1 offers

ms3d1(t̄ + 2) = 440 = ms3d1(l) to student s3,
5

department d2 offers ms2d2(t̄ + 2) = 1000 to student s2.

5Department d1 is supposed to make this offer since student s3 is unmatched under µt̄+1.
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b) Student s1 has no offer,

student s2 accepts department d2’s offer,

student s3 accepts department d1’s offer.

c) So T d1

t̄+2 = {s3}, T d2

t̄+2 = {s2}.

At time t = t̄ + 2, this yields the matching

µt̄+2 =


s1 s2 s3

∅ d2 d1

0 1000 440


t = t̄ + 3: a) Now Sd1

t̄+3 = {s3}, Sd2

t̄+3 = {s1, s3}.

Department d1 offers ms3d1(t̄ + 3) = 440 to student s3,

department d2 offers ms1d2(t̄ + 3) = 334 = ms1d2(t̄) to student s1
6 and ms3d2(t̄ +

3) = 741 = ms3d2(t̄) to student s3.
7

b) Student s1 accepts department d2’s offer,

student s2 has no offer,

student s3 accepts department d2’s offer and rejects department d1’s offer.

c) Thus, T d1

t̄+3 = ∅, T d2

t̄+3 = {s1, s3}.

At time t̄ + 3 we have the matching

µt̄+3 =


s1 s2 s3

d2 ∅ d2

334 0 741


t = t̄ + 4: a) In this period, Sd1

t̄+4 = {s1}, Sd2

t̄+4 = {s1, s3}.

Department d1 offers ms1d1(t̄ + 4) = 435 to student s1,

department d2 offers ms1d2(t̄ + 4) = 334 to student s1 and ms3d2(t̄ + 4) = 741 to

6Department d2 makes this offer since student s1 is unmatched under µt̄+2.
7Department d2 makes this offer since it broke ties with student s3 at time t̄+1, so s3 /∈ F d2

t̄+3.
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student s3.

b) Student s1 accepts department d1’s offer, and rejects department d2’s offer,

student s2 has no offer,

student s3 accepts department d2’s offer.

c) Hence, T d1

t̄+4 = {s1}, T d2

t̄+4 = {s3}, yielding the matching

µt̄+4 =


s1 s2 s3

d1 ∅ d2

435 0 741


Note that µt̄+4=µt̄. If we continue to apply GAA we get following matchings

at further periods:

µt̄+5 = µt̄+1, µt̄+6 = µt̄+2, µt̄+7 = µt̄+3, µt̄+8 = µt̄+4=µt̄.

The finite tuple of matchings (µt̄, µt̄+1, µt̄+2, µt̄+3) repeats itself infinitely many

times in the algorithm. Hence the algorithm does not stop in this example.

Note that there is no core stable matching in this example, since there is

neither a core stable matching such that student s2 is matched with a department,

nor a core stable matching under which she is unmatched.

In the previous example, we see that the algorithm GAA does not stop because

a finite tuple of matchings repeats itself, that is a cycle occurs in GAA. So we

will define formally what we mean by a cycle.

Definition 10 We say that a cycle occurs in the algorithm if there is a finite

sequence of matchings (µt0 , µt0+1, . . . , µt̄−1) (t0 < t̄) such that, for every t > t0,

µt = µt0+r, where 0 ≤ r < t̄− t0 and t ≡ r (mod t̄− t0).

We have seen it is possible that the algorithm GAA does not stop. But is it

also possible that the algorithm GAA does not stop while no cycle occurs in the

algorithm? The following proposition answers this question.
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Proposition 4 The algorithm GAA stops if and only if no cycle occurs in the

algorithm.

Proof It is obvious that if the algorithm GAA stops, then no cycle occurs in the

algorithm.

For the other part of the proof, assume that the algorithm GAA does not stop.

Let M denote the set of all matchings that occur in the algorithm GAA. Note

that the set of all possible matchings for a given graduate admission problem is

finite, since D and S are finite, and the money transfers between matched agents

are integers. Therefore M is finite.

Let O denote the set of all pairs (s, d) ∈ S × D such that d makes an offer

to s in the algorithm GAA. In the algorithm, there is a time t̄ such that for

any (s, d) ∈ O, department d proposes its maximal transfer to student s in the

algorithm at any t < t̄ such that d makes an offer to s in period t.

Letting m̄sd denote the maximal transfer that department d offers to student

s in the algorithm GAA, we have, for any t > t̄, msd(t) = m̄sd, if d makes an offer

to s at t.

Since M is finite, there is a matching µ̄ such that it occurs infinitely many

times in the algorithm GAA. Let tk be a time such that tk > t̄ and µtk = µ̄.

Claim 1: It is impossible that for all times t > tk, µt = µ̄.

Proof of claim 1: Suppose not, i.e., suppose that for all times t > tk, µt = µ̄.

Since the algorithm GAA does not stop, at each time t there is at least one

department d such that Sd
t 6= T d

t−1.

Moreover, for all times t > tk, we have that, for any (s, d) ∈ O, msd(t) = m̄sd

if s gets an offer from d at t. But this fact together with the finiteness of D and

S implies that there is some time t? > tk such that for all d ∈ D, Sd
t? = T d

t?−1, in

contradiction with that GAA does not stop. Hence it is impossible for all times

t > tk to have µt = µ̄. This completes the proof of claim 1.
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Claim 1 implies that there is a matching µ̃ which is different than µ̄ such that

µtk+1 = µ̃.

Applying Claim 1 to µ̃, we can say that it is impossible for all times t > tk +1

to have µt = µ̃. So there is another matching µ̂ which is different than µ̃ such

that µtk+2 = µ̂.

As matching µ̄ occurs infinitely many times in the algorithm, at some further

time, again we have matching µ̄. That is there is a time tl > tk such that µtl = µ̄.

Hence we get a finite tuple of matchings (µ̄,µ̃,µ̂,. . .,µtl−1). Let C denotes this

finite tuple of matchings.

Claim 2: µtl+1 = µ̃.

Proof of claim 2: Note that µtk = µ̄ and µtk+1 = µ̃ such that µ̃ is different

than µ̄. So there is at least a department d and a student s such that µ̄1(s) 6= d

but µ̃1(s) = d. That is department d makes an offer to students s at period tk +1

and s accepts d’s offer. Hence s /∈ F d
tk+1.

We will show that s /∈ F d
tl+1, i.e., the algorithm requires that d makes an offer

to s at period tl + 1. We have two cases to consider that either µ̄1(s) = ∅ or

µ̄1(s) = d̂.

If µ̄1(s) = ∅, then we have that she is again unmatched at the end of period

tl, since µtk = µtl = µ̄. So s /∈ F d
tl+1.

Now assume that µ̄1(s) = d̂. Note that d makes an offer to s at period tk + 1

and s accepts d’s offer, and we have for all times t > t̄, msd(t) = m̄sd for any

(s, d) ∈ O if s gets an offer from d at period t. Hence we have (d, m̄sd)Ps(d̂, m̄sd̂).

That is s do not reject d’s offer because of d̂’s offer. So s /∈ F d
tl+1. Hence at time

tl + 1, again d makes an offer to s, and she accepts it, i.e., d and s again get

matched at the end of period tl +1. Note that this is true for all pairs (s, d) such

that µ̄1(s) 6= d but µ̃1(s) = d. So we have µtl+1 = µ̃, which completes the proof

of claim 2.

Applying claim 2 to µtl+1 = µ̃, we get the matching µ̂ at the end of period
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tl + 2.

Hence by applying claim 2 to each matching in C, we see that C repeats

itself infinitely many times in the algorithm GAA. This completes the proof of

proposition.

�

In the example 4 above the algorithm GAA does not stop and there is no

core stable matching. The following example shows that it is also possible that

the algorithm GAA does not stop while there is a core stable matching.

Example 5 The algorithm GAA does not stop and there is a core stable

matching

Let D = {d1, d2, d3, d4} be the set of departments, S = {s1, s2, s3, s4, s5, s6}
the set of students, where the quotas and budgets of the departments are as

follows: qd1 = 1, qd2 = 2, qd3 = 1, qd4 = 2; bd1 = 440, bd2 = 1075, bd3 = 440,

bd4 = 1075. The qualification levels and reservation prices of the students are as

given in table 4.2.

as1
d1

= 7 as1
d2

= 11 as1
d3

= 4 as1
d4

= 0
as2

d1
= 0 as2

d2
= 15 as2

d3
= 0 as2

d4
= 2

as3
d1

= 8 as3
d2

= 12 as3
d3

= 0 as3
d4

= 1
as4

d1
= 4 as4

d2
= 0 as4

d3
= 7 as4

d4
= 11

as5
d1

= 0 as5
d2

= 2 as5
d3

= 0 as5
d4

= 15
as6

d1
= 0 as6

d2
= 1 as6

d3
= 8 as6

d4
= 12

σs1d1= 400 σs1d2= 300 σs1d3=−500 σs1d4= 440
σs2d1= 440 σs2d2= 1075 σs2d3= 400 σs2d4=−500
σs3d1= 400 σs3d2= 700 σs3d3= 420 σs3d4=−500
σs4d1=−500 σs4d2= 450 σs4d3= 400 σs4d4= 300
σs5d1= 400 σs5d2=−500 σs5d3= 440 σs5d4= 1075
σs6d1= 420 σs6d2=−500 σs6d3= 400 σs6d4= 700

Table 4.2: Qualification levels and reservation prices of students for example 5

If we apply the algorithm GAA, then a cycle occurs consisting of the following

three matchings:
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µt̄ =


s1 s2 s3 s4 s5 s6

d1 ∅ d2 d3 ∅ d4

435 0 741 435 0 741



µt̄+1 =


s1 s2 s3 s4 s5 s6

d1 d4 ∅ d3 d2 ∅
435 −500 0 435 −500 0



µt̄+2 =


s1 s2 s3 s4 s5 s6

∅ d4 d2 ∅ d2 d4

0 −500 741 0 −500 741


However, there is a core stable matching.

Consider the matching

µ =


s1 s2 s3 s4 s5 s6

d3 d4 d4 d1 d2 d2

440 500 575 440 500 575


It is easy to see that the matching µ is core stable. Hence, it is possible that

the algorithm GAA does not stop, but there is a core stable matching. Therefore,

we cannot say that if the algorithm GAA does not stop, then the set of core stable

matchings is empty.

We say that a core stable matching is department optimal if every depart-

ment likes it at least as well as any other core stable matching. Similarly, we say

that a core stable matching is student optimal if every student likes it at least

as well as any other core stable matching.

For the college admissions problem with colleges having quota constraints

only, we know that there are a college optimal and a student optimal matching.
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However, the following examples show that there is neither a department optimal

nor a student optimal matching for the graduate admission problem with quota

and budget constraints.

Example 6 There is no department optimal matching

Let D = {d1, d2} be the set of departments, S = {s1, s2, s3} the set of students

with the quotas and budgets of the departments as follows: qd1 = qd2 = 2;

bd1 = bd2 = 100. The qualification levels and reservation prices of the students

are as given in table 4.3.

as1
d1

= 1 as1
d2

= 1
as2

d1
=10 as2

d2
= 0

as3
d1

= 0 as3
d2

=10
σs1d1=10 σs1d2=20
σs2d1=50 σs2d2=60
σs3d1=50 σs3d2=60

Table 4.3: Qualification levels and reservation prices of students for example 6

Consider the matching

µ =


s1 s2 s3

d1 d1 d2

30 50 60


which can easily be checked to be the outcome of GAA.

Now considering the matching

µ̃ =


s1 s2 s3

d2 d1 d2

20 100 80


we see that both µ and µ̃ are core stable, while µPd1µ̃ and µ̃Pd2µ. Moreover,

there is no other core stable matching such that both d1 and d2 like it at least as
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well as any other core stable matching. Therefore there is no department optimal

matching.

Example 7 There is no student optimal matching

Let D = {d1, d2} be the set of departments, S = {s1, s2, s3} the set of students,

where the quotas and budgets of the departments are as follows: qd1 = 2, qd2 = 1;

bd1 = bd2 = 100. The qualification levels and reservation prices of the students

are as given in table 4.4.

as1
d1

= 1 as1
d2

= 0
as2

d1
= 5 as2

d2
= 0

as3
d1

= 0 as3
d2

=10
σs1d1=50 σs1d2=60
σs2d1=50 σs2d2=60
σs3d1=50 σs3d2=60

Table 4.4: Qualification levels and reservation prices of students for example 7

Consider the matching

µ =


s1 s2 s3

d1 d1 d2

50 50 60


which turns out to be the outcome of GAA for this problem.

Now consider the matching

µ̃ =


s1 s2 s3

∅ d1 d2

0 100 100


Similarly as above, both µ and µ̃ are core stable, while µPs1µ̃ and µ̃Ps2µ.

Moreover, there is no other core stable matching such that both s1 and s2 like it
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at least as well as any other core stable matching. Therefore there is no student

optimal matching.

Note that µ1(s1) ∈ D but µ̃1(s1) = ∅. Therefore it is possible that there be

core stable matchings µ and µ̃ such that there is a student s ∈ S, µ1(s) ∈ D but

µ̃1(s) = ∅.
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Chapter 5

Graduate Admission Algorithm

with Reservation Prices

In this chapter, we will modify students’ preferences in such a way that stu-

dents now consider only reservation prices and do not derive further utility from

money transfer over and above their reservation prices. Then we construct an-

other graduate admission algorithm ( ˜GAA) by taking the reservation prices of

students equal to the money transfers from the department to which they are

accepted. The algorithm ˜GAA is another extension of the Gale - Shapley algo-

rithm. However, like GAA, ˜GAA does not always stop, and it is possible that

there exists a core stable matching although ˜GAA does not stop.

Students’ Preferences

Again we assume that (d, σsd)Ps(d̃, σsd̃) if and only if σsd < σsd̃.

Note that proposition 1 and 2 continue to be true if students consider only

reservation prices, and similar examples of chapter 3 can easily be constructed

for this model as well.

Now we will define how the algorithm ˜GAA works.
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The algorithm ˜GAA

The structure of ˜GAA is the same as that of GAA, the only difference being

that a department d which makes an offer to a student s is ready to pay σsd to

s no matter at what stage of the algorithm this offer is made. In other words,

msd(t) = σsd for all s ∈ S, d ∈ D and all times t at which d makes an offer to s.

At each time t in the algorithm ˜GAA, each department d chooses a group

of admissible students Sd
t satisfying its quota and budget constraints so as to

maximize its total benefit Y d
t .

t = 1: a) Each department d determines a group of students Sd
1 ⊆ S as

denoted above and offers to each student s ∈ Sd
1 .

b) Students who have taken one or more offers accept exactly one offer and

reject the others.

c) Department d accepts the group of students who accepted its offers. Let T d
1

denote the group of students who accepted department d’s offers at time t = 1,

where clearly T d
1 ⊆ Sd

1 .

Now, at the end of period t = 1 we have a matching µ1, and so Sd
µ1

= T d
1 .

t = 2: a) Each department d determines a group of students Sd
2 ⊆ S \(Sd

1 \T d
1 )

and makes an offer to each student s ∈ Sd
2 .

b) Students who have taken one or more offers accept exactly one offer and

reject the others.

c) Department d accepts the group of students who accepted its offers.

In general, at time k, the algorithm works as follows.

t = k: a) Now we will define in general what we mean by an admissible group

of students for department d, i.e, we will define the set F d
k ⊆ S for department d

at time k.
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Assume that t̃ < k was the last time that d made an offer to s before time k

when s rejected d’s offer because of another department d̂’s offer. Department d

cannot make an offer to student s at time k, if µk−1(s) = d̂. The set F d
k denotes

the group of all such students for department d at time k, i.e., the group of

students to whom department d cannot make offers at time k.1

Each department d chooses its group of students Sd
k from S \F d

k and offers to

each student s ∈ Sd
k .

b) Students who have taken one or more offers accept exactly one offer and

reject the others.

c) Department d accepts the group of students T d
k ⊆ Sd

k who accepted its

offers.

Stopping Rule

t = t?: The algorithm stops at time t? if each department d makes offers

exactly to the group of students who accepted its offers at t? − 1, i.e., if we have

Sd
t? = T d

t?−1 for all d ∈ D.

If the algorithm stops at time t?, the matching µt? is regarded as the outcome

of the algorithm.

Proposition 5 If the algorithm ˜GAA stops, then the final matching of the algo-

rithm is core stable (and thus Pareto optimal).

Proof Assume that the algorithm stops. Let the algorithm stop at time t?, and

let the matching µt? denote the outcome of the algorithm. So we have Sd
t? = T d

t?−1

for all d ∈ D. We abuse notation that we use µ? for µt? .

Clearly µ? is individually rational, since for all s ∈ S, mµ?

sµ?
1(s) = σsµ?

1(s), and

for all d ∈ D, Y d
µ? ≥ 0.

1At time t = 1, we have that for all d ∈ D, F d
1 = ∅, so each department d determines its

group of students Sd
1 over the set of all students S. At time t = 2, for all d ∈ D, F d

2 = Sd
1 \ T d

1 ,
so the admissible group for department d at time 2 is S \ (Sd

1 \ T d
1 ).
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Now suppose that µ? is not core stable. Then there is a group (d, S̃) which

blocks µ?. So we have that

1. for all s ∈ S̃, µ?
1(s) 6= d,

2. for all s ∈ S̃, (d, σsd)Ps(µ
?
1(s), σsµ?

1(s)),

3. [(Sd
µ? \B)

⋃
S̃, ĉd]Pd[S

d
µ? , cd

µ? ], for some B ⊆ Sd
µ? .

Claim: There is no student s ∈ S̃ such that s ∈ F d
t? .

2

Proof of claim: Suppose not, i.e., suppose there is a student s ∈ S̃ such that

s ∈ F d
t? . That is department d offered to student s ∈ S̃ at some time t̃ < t? as

the last time before time t? and student s rejected d’s offer because of another

department’s offer, say department d̂’s offer, and µt?−1(s) = d̂.3 So we have that

4. (d̂, σsd̂)Ps(d, σsd).

As µt?−1(s) = d̂ and the algorithm stops at time t?, we have that µ?
1(s) = d̂.

Now by (2), we have (d, σsd)Ps(d̂, σsd̂). This contradicts with (4). Hence there is

no student s ∈ S̃ such that s ∈ F d
t? .

The above claim implies that S̃ ⊆ (S \ F d
t?), i.e., the algorithm allows depart-

ment d to make offers to each s ∈ S̃. Therefore department d would offer to

each student s ∈ S̃ (by 3), and each student s ∈ S̃ would accept it (by 2), in

contradiction with that for all s ∈ S̃, µ?
1(s) 6= d. Hence µ? is core stable, and thus

Pareto optimal.

�
2Note that there is no student s ∈ (Sd

µ? \ B) such that s ∈ F d
t? , since for all s ∈ (Sd

µ? \ B),
µ?

1(s) = d.
3Note that in here we abuse the notation that µt?−1(s) denotes the department that s is

matched under µt?−1.
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The following example shows that there can be more than one core stable

matching in our model where only reservation prices of students are considered.

Example 8 There is more than one core stable matching

The set of departments is D = {d1, d2, d3}, the set of students is S =

{s1, s2, s3, s4,s5,s6,s7,s8}, and the quotas and budgets of departments are given

by qd1 = 3, qd2 = 3, qd3 = 2; bd1 = 45, bd2 = 50, bd3 = 25. The qualification levels

and reservation prices of the students are as given in table 5.1.

as1
d1

=15 as1
d2

= 0 as1
d3

= 0
as2

d1
=20 as2

d2
= 0 as2

d3
= 0

as3
d1

=10 as3
d2

= 0 as3
d3

=15
as4

d1
= 0 as4

d2
=11 as4

d3
= 0

as5
d1

=15 as5
d2

=15 as5
d3

= 0
as6

d1
= 0 as6

d2
=10 as6

d3
=12

as7
d1

= 0 as7
d2

= 0 as7
d3

=10
as8

d1
= 0 as8

d2
=10 as8

d3
= 0

σs1d1=10 σs1d2=20 σs1d3=25
σs2d1=10 σs2d2=20 σs2d3=25
σs3d1=15 σs3d2=20 σs3d3=25
σs4d1=28 σs4d2=20 σs4d3=25
σs5d1=25 σs5d2=21 σs5d3=22
σs6d1=30 σs6d2=20 σs6d3=10
σs7d1=25 σs7d2=40 σs7d3= 0
σs8d1=30 σs8d2=10 σs8d3=20

Table 5.1: Qualification levels and reservation prices of students for example 8

When writing a matching, we will not write the money transfers between

matched agents, since all money transfers between matched agents are the reser-

vation prices of the students. Consider the following matching

µ =

(
s1 s2 s3 s4 s5 s6 s7 s8

d1 d1 d1 d2 d2 d3 d3 ∅

)

Note that the matching µ is core stable. The best group for department d1
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is {s1, s2, s5}, and Sd1
µ = {s1, s2, s3}, and department d1 prefers student s5 to

student s3. However (d2, 21)Ps5(d1, 25), i.e., student s5 does not form a blocking

pair with department d1. Hence there is no group involving department d1 which

blocks µ.

The best group for department d2 is {s4, s6, s8}, and Sd2
µ = {s4, s5}. The

group (d2, {s6, s8}) cannot block µ, since (d3, 10)Ps6(d2, 20). The group (d2, s8)

cannot block µ, since σs4d2 + σs5d2 + σs8d2 = 20 + 21 + 10 = 51 > 50 = bd2 and

as4
d2

= 11 > 10 = as8
d2

, as5
d2

= 15 > 10 = as8
d2

. Hence there is no group involving

department d2 which blocks µ.

The best group for department d3 is {s3, s7}, and Sd3
µ = {s6, s7}. However

(d1, 15)Ps3(d3, 25), i.e., student s3 does not form a blocking pair with department

d3. Hence there is no group involving department d3 which blocks µ.

If we apply the algorithm ˜GAA, we get the matching

µ̃ =

(
s1 s2 s3 s4 s5 s6 s7 s8

d1 d1 d3 d2 d1 d2 d3 d2

)

Clearly µ̃ is core stable, and different than µ.

Hence it is possible that there be more than one core stable matching.

This example also shows that there is no student optimal matching for this

model. Since µPs2µ̃ but µ̃Ps8µ.

Also note that µ1(s8) = ∅, µ̃1(s8) = d2, so it is possible that there be two

core stable matchings µ and µ̃ such that there is a student s ∈ S with µ1(s) = ∅,
µ̃1(s) ∈ D.

Now we will give an example that the algorithm ˜GAA does not stop and there

is no core stable matching.
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Example 9 The algorithm ˜GAA does not stop and there is no core

stable matching

Let D = {d1, d2}, S = {s1, s2, s3}, qd1 = 1, qd2 = 2, bd1 = 50, bd2 = 70, and the

qualification levels and reservation prices of the students are as given in table 5.2.

as1
d1

=10 as1
d2

=10
as2

d1
= 1 as2

d2
=15

as3
d1

= 8 as3
d2

= 9
σs1d1=50 σs1d2=30
σs2d1=50 σs2d2=45
σs3d1=30 σs3d2=40

Table 5.2: Qualification levels and reservation prices of students for example 9

Now we apply the algorithm ˜GAA,

t = 1: a) Sd1
1 = {s1}, Sd2

1 = {s1, s3}; and department d1 offers to student s1,

department d2 offers to students {s1} and s3.

b) Student s1 accepts d2’s offer and rejects d1’s offer; student s2 has no offer;

student s3 accepts d2’s offer.

c) We obtain a matching

µ1 =

(
s1 s2 s3

d2 ∅ d2

)

t = 2: a) Sd1
2 = {s3}, Sd2

1 = {s1, s3}; and department d1 offers to student s2,

department d2 offers to students {s1} and s3.

b) Student s1 accepts d2’s offer; student s2 has no offer; student s3 accepts

d1’s offer and rejects d2’s offer.

c) We obtain a matching

µ2 =

(
s1 s2 s3

d2 ∅ d1

)
43



t = 3: a) Sd1
3 = {s3}, Sd2

3 = {s2};4 and department d1 offers to student s3,

department d2 offers to student s2.

b) Student s1 has no offer; student s2 accepts d2’s offer; student s3 accepts

d1’s offer.

c) We obtain a matching

µ3 =

(
s1 s2 s3

∅ d2 d1

)

t = 4: a) Sd1
4 = {s1}, Sd2

4 = {s2}; and department d1 offers to student s1,

department d2 offers to student s2.

b) Student s1 accepts d1’s offer; student s2 accepts d2’s offer; student s3 has

no offer.

c) We obtain a matching

µ4 =

(
s1 s2 s3

d1 d2 ∅

)

t = 5: a) Sd1
5 = {s1}, Sd2

5 = {s1, s3}; and department d1 offers to student s1,

department d2 offers to students s1 and s3.

b) Student s1 accepts d2’s offer and rejects d1’s offer; student s2 has no offer;

student s3 accepts d2’s offer.

c) We obtain a matching

µ5 =

(
s1 s2 s3

d2 ∅ d2

)

Note that µ5 = µ1, and if we continue we get that µ6 = µ2, µ7 = µ3, µ8 = µ4.

4Note that department d2’s preference relation violates the gross substitutes condition.
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That is (µ1, µ2, µ3, µ4) repeats itself infinitely many times in the algorithm ˜GAA.

Hence the algorithm ˜GAA does not stop.

Note that there is no core stable matching for this example, since there is

neither a core stable matching such that student s2 is matched with a department,

nor a core stable matching under which she is unmatched.

The following proposition shows that it is impossible that the algorithm ˜GAA

does not stop and no cycle occurs in the algorithm.

Proposition 6 The algorithm ˜GAA stops if and only if no cycle occurs in the

algorithm.

Proof The proof is similar to that of proposition 4. �

The following example shows that the algorithm ˜GAA may not stop even if

there is a core stable matching.

Example 10 The algorithm ˜GAA does not stop and there is a core stable

matching

Let D = {d1, d2, d3, d4} be the set of departments, S = {s1, s2, s3, s4, s5, s6}
the set of students and the quotas and budgets of the departments are given by

qd1 = 1, qd2 = 2, qd3 = 1, qd4 = 2; bd1 = 50, bd2 = 70, bd3 = 50, bd4 = 70. The

qualification levels and reservation prices of the students are as given in table 5.3.

If we apply the algorithm ˜GAA, we get the following matchings:

At the end of time t = 1, we have

µ1 =

(
s1 s2 s3 s4 s5 s6

d2 ∅ d2 d4 ∅ d4

)

At the end of time t = 2, we have

µ2 =

(
s1 s2 s3 s4 s5 s6

d2 ∅ d1 d4 ∅ d3

)
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as1
d1

=10 as1
d2

=10 as1
d3

= 5 as1
d4

= 0
as2

d1
= 1 as2

d2
=15 as2

d3
= 0 as2

d4
= 3

as3
d1

= 8 as3
d2

= 9 as3
d3

= 0 as3
d4

= 3
as4

d1
= 6 as4

d2
= 0 as4

d3
=10 as4

d4
=10

as5
d1

= 0 as5
d2

= 3 as5
d3

= 1 as5
d4

=15
as6

d1
= 0 as6

d2
= 3 as6

d3
= 8 as6

d4
= 9

σs1d1=50 σs1d2=30 σs1d3=20 σs1d4=40
σs2d1=50 σs2d2=45 σs2d3=40 σs2d4=30
σs3d1=30 σs3d2=40 σs3d3=45 σs3d4=28
σs4d1=20 σs4d2=40 σs4d3=50 σs4d4=30
σs5d1=40 σs5d2=30 σs5d3=50 σs5d4=45
σs6d1=45 σs6d2=28 σs6d3=30 σs6d4=40

Table 5.3: Qualification levels and reservation prices of students for example 10

At the end of time t = 3, we have

µ3 =

(
s1 s2 s3 s4 s5 s6

∅ d2 d1 ∅ d4 d3

)

At the end of time t = 4, we have

µ4 =

(
s1 s2 s3 s4 s5 s6

d1 d2 ∅ d3 d4 ∅

)

If we continue to apply our algorithm we obtain the result that µ5 = µ1,

µ6 = µ2, µ7 = µ3, µ8 = µ4. That is (µ1, µ2, µ3, µ4) repeats itself infinitely many

times in the algorithm ˜GAA. Hence the algorithm ˜GAA does not stop.

However there is a core stable matching for this example. Consider the match-

ing

µ =

(
s1 s2 s3 s4 s5 s6

d3 d4 d4 d1 d2 d2

)

The matching µ is core stable, since each student s ∈ S is matched with her

best department under µ. So there is no group of student who forms a blocking
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coalition with any department. Hence it is possible that the algorithm does not

stop and there is a core stable matching.

Example 11 There is no department optimal matching if students con-

sider only reservation prices

Let D = {d1, d2} be the set of departments, S = {s1, s2, s3, s4} the set of

students and the quotas and budgets of the departments are given by qd1 = 2,

qd2 = 2; bd1 = 102, bd2 = 100. The qualification levels and reservation prices of

the students are as given in table 5.4.

as1
d1

=20 as1
d2

=20
as2

d1
=15 as2

d2
=15

as3
d1

=12 as3
d2

=16
as4

d1
=13 as4

d2
=16

σs1d1=55 σs1d2=60
σs2d1=45 σs2d2=40
σs3d1=51 σs3d2=50
σs4d1=51 σs4d2=50

Table 5.4: Qualification levels and reservation prices of students for example 11

Consider the matching

µ =

(
s1 s2 s3 s4

d1 d1 d2 d2

)

Note that µ is core stable. Department d1 is matched with its best group under

µ, so there is no group including department d1 which forms a blocking coalition.

The best group for department d2 is {s1, s2}, while Sd2
µ = {s3, s4}. Student s1

does not form a blocking coalition with department d2 since (d1, 55)Ps1(d2, 60).

And department d2 does not form a blocking coalition only with student s2, since

as3
d2

= as4
d2

= 16 > 15 = as2
d2

. So there is no group consisting of department d2 and

some students which forms a blocking coalition. Hence µ is core stable.

Now consider the matching
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µ̃ =

(
s1 s2 s3 s4

d2 d2 d1 d1

)

Note that µ̃ is core stable. Department d2 is matched with its best group under

µ̃, so there is no group including department d2 which forms a blocking coalition.

The best group for department d1 is {s1, s2} and Sd1
µ̃ = {s3, s4}. Student s2 does

not form a blocking coalition with department d1 since (d2, 40)Ps2(d1, 45). And

department d1 cannot form a blocking coalition with student s3, since σs3d1 +

σs1d1 = 106 > 102 = bd1 . Similarly department d1 can not form a blocking

coalition with student s4, since σs4d1 + σs1d1 = 106 > 102 = bd1 . So there is no

group involving department d1 which forms a blocking coalition. Hence µ̃ is core

stable.

However we have that µPd1µ̃ and µ̃Pd2µ. Hence there is no department optimal

matching for the model where students consider only reservation prices.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

We start this section with some observations. If we go back to example 4 where

the algorithm GAA does not stop, we see that there is a pairwise stable and

Pareto optimal matching in the cycle that occurs there.

In that example, the matching µt̄+2 is both pairwise stable and Pareto optimal,

where

µt̄+2 =


s1 s2 s3

∅ d2 d1

0 1000 440


This observation motivated us to write another algorithm to find pairwise

stable matchings. We define a new graduate admission algorithm GAAref which

can be regarded as a refinement of the algorithm GAA.

The algorithm GAAref

The rules of the algorithm GAAref are the same as the rules of GAA with the

exception that, at each time t, each department d can now make only one new
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offer. That is, at each time t, each department d can make offers in addition to

the students in T d
t−1 to only one student s ∈ S with s /∈ T d

t−1. Hence we have that∣∣Sd
t

∣∣ ≤ ∣∣T d
t−1

∣∣+ 1.

Proposition 7 If the algorithm GAAref stops, then the final matching of the

algorithm is pairwise stable.

Proof Assume that the algorithm GAAref stops at time t?. Let µ? denote the

final matching of the algorithm. Clearly µ? is individually rational.

Now suppose that µ? is not pairwise stable. Then there is a pair (s, d) ∈
S × D with µ?

1(s) 6= d that blocks µ?. Let m̃sd denote the money transfer from

department d to student s .

However, as in the the proof of proposition 3, according to the algorithm

department d could have offered m̃sd to student s, and therefore would have

matched with student s, if that were the case.

Hence µ? is pairwise stable.

�

However, if the algorithm GAAref stops, this does not guarantee the Pareto

optimality of the final matching. For example, if we apply the algorithm GAAref

to the graduate admission problem of example 2, the algorithm stops and the

final matching is µ given in there. As noted in example 2, µ is pairwise stable

but not Pareto optimal.

We record the following statement that has not been either proven or disproven

as a conjecture.

Conjecture 1: The algorithm GAAref stops in a finite time.

Now consider examples 9 and 10 in which the algorithm ˜GAA does not stop,

but there is a pairwise stable and Pareto optimal matching that is a member of

the occurring cycle.
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In example 9 there is no core stable matching either. The matching µ4 is

however, both pairwise stable and Pareto optimal, where

µ4 =

(
s1 s2 s3

d1 d2 ∅

)

In example 10, the algorithm ˜GAA does not stop but there is a core stable

matching. The matching µ4 there,is both pairwise stable and Pareto optimal,

where

µ4 =

(
s1 s2 s3 s4 s5 s6

d1 d2 ∅ d3 d4 ∅

)

These observations motivated us to introduce yet another algorithm in an

attempt to find pairwise stable matchings when students care only about getting

their reservation prices. Here we define a new graduate admission algorithm

( ˜GAA
ref

) which can be regarded as a refinement of the algorithm ˜GAA.

The algorithm ˜GAA
ref

The rules of the algorithm ˜GAA
ref

are the same as the rules of ˜GAA with the

exception that, at each time t, each department d can now make only one new

offer. That is at each time t, each department d can make offers in addition to

the students in T d
t−1 to only one student s ∈ S with s /∈ T d

t−1. Hence we have that∣∣Sd
t

∣∣ ≤ ∣∣T d
t−1

∣∣+ 1.

Proposition 8 If the algorithm ˜GAA
ref

stops, then the final matching of the

algorithm is pairwise stable.

Proof Assume that the algorithm ˜GAA
ref

stops at time t?. Let µ? denote the

final matching of the algorithm. Clearly µ? is individually rational.

Now suppose that µ? is not pairwise stable. Then there is a pair (s, d) ∈
S ×D with µ?

1(s) 6= d that blocks µ?. Remember that the money transfer from

department d to student s is simply σsd if s accepts d’s offer.
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However, as in the proof of proposition 5, according to the algorithm, de-

partment d could have made the offer σsd to student s, i.e., s /∈ F d
t? . Therefore

department d and student s would have matched in the outcome of the algorithm,

a contradiction.

Hence µ? is pairwise stable.

�

However, even if the algorithm ˜GAA
ref

stops then the final matching need

not be Pareto optimal.

The following statement is neither proven nor disproven so far and is thus

recorded as a conjecture.

Conjecture 2: The algorithm ˜GAA
ref

stops in a finite time.

There are examples where ˜GAA does not stop, but ˜GAA
ref

does. For example,

consider example 9 in which the algorithm ˜GAA does not stop and there is no

core stable matching. The block of matchings (µ1,µ2,µ3,µ4) repeats itself infinitely

under ˜GAA. Now starting from time t = 5, if we apply the algorithm ˜GAA
ref

,

the algorithm ˜GAA
ref

stops at time t = 6, and µ6 = µ4 which is pairwise stable

and Pareto optimal.

6.2 Conclusion

In this thesis, we have studied the graduate admission problem with quota and

budget constraints as a two sided matching market. We have defined an algorithm

(GAA) which is an extension of the Gale - Shapley algorithm. We showed that if

the algorithm GAA stops then the final matching is core stable (and thus Pareto

optimal). However the algorithm GAA does not always stop, and it is possible

that the algorithm GAA does not stop while the set of core stable matchings is

nonempty. Also there is neither a department optimal matching nor a student

optimal matching under budget constraints.
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We have also studied the model that students only consider reservation prices.

We have defined another algorithm ( ˜GAA) that is again an extension of the Gale

- Shapley algorithm. We showed that if the algorithm ˜GAA stops then the final

matching is core stable (and thus Pareto optimal). However, the algorithm ˜GAA

does not always stop, and it is again possible that the algorithm ˜GAA does not

stop while the set of core stable matchings is nonempty. Also if students only care

about their reservation prices there are no department optimal matching and no

student optimal matching.

We obtain similar results under algorithms GAA and ˜GAA. Hence we can

say that in the model defined in this thesis (two sided matching market with

quota and budget constraints), straightforward extensions of the Gale - Shapley

algorithm do not function as well as it works for college admissions and labor

market models without budget constraints.

We also defined certain refinements of GAA and ˜GAA, called GAAref and

˜GAA
ref

which yield pairwise stable matchings if they stop. However, whether

these must stop or not, or whether there always exist pairwise stable matchings

in our framework with budget constraints or not stays as an open problem yet to

be explored.
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