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ABSTRACT 

 

 

COINCIDENCE OF MYERSON ALLOCATION RULE WITH SHAPLEY VALUE 

 
 

Kapan, Tümer 

M.A., Department of Economics 

Supervisor: Prof. Semih Koray             

 

September 2003 

 

 

This thesis studies the coincidence of the Myerson allocation rule in the context 

of networks with the Shapley value in the context of transferable utility games. We start 

with a value function defined on networks and derive a transferable utility game from 

that. We show that without any restrictions on the value function, Myerson allocation 

rule may not lead to the same payoff vector as the Shapley value of the derived TU game 

for any network. Under the assumption of monotonicity of the value function, we show 

the existence of such coincidence and examine the relation of the set of networks 

satisfying this coincidence to the set of pairwise stable and strongly stable networks. 

Next, we propose a new stability notion and examine the coincidence of the two vectors 

under this stability notion. Finally an alternative allocation rule is introduced whose 

payoff vector coincide with the Shapley value of the derived transferable utility game on 

the set of efficient networks which coincides with the set of strongly stable networks  

under this allocation rule.     

Key Words: Networks, Myerson allocation rule, Shapley Value, Stability, Coincidence. 
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ÖZET 

 

MYERSON DAĞITIM KURALI’NIN SHAPLEY DEĞERİ İLE ÖRTÜŞMESİ  

 
 

Kapan, Tümer 

Yüksek Lisans, Ekonomi Bölümü 

Tez Yöneticisi: Prof. Dr. Semih Koray             

 

Eylül 2003 

 
Bu çalışmamızda ağlar bağlamındaki Myerson Dağıtım Kuralı ile aktarılabilir 

yarar oyunları bağlamındaki Shapley Değeri’nin örtüşmesini inceledik. İlk olarak ağlar 

üzerinde tanımlanmış bir değer fonksiyonu alıp ondan bir aktarılabilir yarar oyunu 

türettik. Bu değer fonksiyonu üzerine herhangi bir kısıtlama konulmazsa hiç bir ağda, o 

ağ üzerinde Myerson Dağıtım Kuralı’nın belirlediği yarar vektorü ile türetilen 

aktarılabilir yarar oyununun Shapley Değeri’nin örtüşmeyebileceğini gösterdik. Değer 

fonksiyonunun tekdüze olduğu varsayımı altında bu örtüşmenin sağlandığı en az bir ağın 

varlığını gösterip bu örtüşmenin sağlandığı ağlar kümesi ile ikişerli kararlı ağlar 

kümesinin ve ayrıca kuvvetli kararlı ağlar kümesinin ilişkisini inceledik. Daha sonra 

yeni bir kararlılık tanımı önerip örtüşmeyi sağlayan ağlar kümesinin bu yeni tanıma göre 

kararlı olan ağlar kümesiyle ilişkisini inceledik. Son olarak Myerson Dağıtım Kuralı’na 

almaşık bir dağıtım kuralının verimli ağlar üzerindeki yarar vektörünün türetilen 

aktarılabilir yarar oyununun Shapley Değeri ile örtüştüğünü ve bu dağıtım kuralı altında 

kuvvetli kararlı olan ağlar kümesinin verimli ağlar kümesine eşit olduğunu gösterdik. 

  
 Anahtar Kelimeler:   Ağlar, Myerson Dağıtım Kuralı, Shapley Değeri, Kararlılık, 

Örtüşme 
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CHAPTER I 

 
INTRODUCTION 

 

In many economic settings agents establish relationships that can be represented by 

a network structure, which turns out to have a crucial role in determining the outcome of 

the interaction of the agents. For example, the buyers and sellers of a good or a service 

in a decentralized market form a network structure by establishing trade links, and the 

outcome depends on which links are established. A person seeking for job opportunities 

can gather information through personal relations he has formed before or may want to 

form new relationships for this purpose. Alliances among corporations, trade agreements 

among nations also can easily be modeled by using networks. It is important to note that 

in all these situations possibilities for cooperation among agents are reflected by the 

network structure, i.e. who is “connected” to whom. 

 

Modeling social and economic interaction by network structures has its roots in 

cooperative game theory. In his seminal work, Myerson (1977) starts with a transferable 

utility (henceforth, TU) game and a network that represents the communication structure 

among the players. To distribute the value generated through the given TU game and 

network pair among the players, he proposes an allocation rule characterized by some 

“fairness” axioms. This rule –called the Myerson allocation rule– can be extended to the 
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more general network games framework and in this framework it can be described as 

follows:  

        Yi
MV(g,v) = ∑

⊂ {i} \ N S
(v(gS∪  {i}) - v(gS)) (

!
)!1(!

n
SnS −−## )  

where v stands for a value function for networks and v(g|T) represents the value 

generated by the restriction of the graph g to coalition T. Note that this rule is based on 

Shapley-like calculations, and the value allocated to player i is a weighted sum of the 

marginal contributions of i to all possible coalitions.  

 

In this study, given a value function defined on networks, we derive a TU game 

by considering the maximal value each coalition can guarantee for itself without 

involving agents outside the coalition in the network formation. The basic question we 

ask is: “Does Myerson allocation rule lead to the same payoff vector as the Shapley 

value of the associated TU game on some set of networks? How is this set of networks 

on which such a coincidence occurs located relative to networks that are stable in 

various senses?” These are questions in the spirit of the “Nash Program” in the sense 

that they deal with the problem of achieving cooperative outcomes through 

noncooperative means. 

The Nash Program, as put by Trockel (2003: 153), “is a research agenda whose 

goal is to provide a non-cooperative equilibrium foundation for axiomatically defined 

solutions of cooperative games.” First, in 1951 Nash proposes the use of non-

cooperative games to study cooperative games in the following way: “ One proceeds by 
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constructing a model of the pre-play negotiation so that the steps of negotiation become 

moves in a larger non-cooperative game [which will have an infinity of pure strategies] 

describing the total situation.” (Nash, 1951: 295). In 1953, Nash attempted to base an 

axiomatically defined two-person cooperative solution concept on a noncooperative 

equilibrium by converting the steps of negotiation in the cooperative game into moves in 

the non-cooperative game. 

 

In the context of non-cooperative games, players cannot cooperate and form 

coalitions. They cannot vomit to joint actions or make binding threats or promises since 

no contracts are enforceable: Players can affect others and are affected by others solely 

through their choices of strategies. The common feature of all equilibrium notions can 

be stated as everyone doing her/his best given what others are doing under the given 

circumstances. Different behavioral and informational assumptions lead to different 

noncooperative equilibrium notions.  In the context of cooperative games, however the 

assumption is that “the players can and will cooperate” (Nash, 1951: 295), and 

commitment to a joint action on the part of a coalition is enforceable. Axiomatic 

approaches to cooperative solution concepts typically involve equity and efficiency 

considerations along with stability.  

 

Regarding Shapley value as a socially desirable cooperative solution concept for 

TU games, the question we deal with here is whether the payoff distribution prescribed 

by the Shapley value operator can be achieved under various stability notions in the 

context of networks if we employ the Myerson allocation rule. We introduce a new 
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stability notion –called componentwise stability– that turns out to lead to a superset of 

networks for which coincidence obtains. In case we do not impose any restrictions on 

the value functions for networks, it turns out that there exist value functions for which it 

is possible that the Myerson allocation rule’s payoff vector will not coincide with the 

Shapley value of the associated TU game on any of the networks. Thus the coincidence 

cannot be obtained on any set of stable networks whatever stability notion we use. 

Confining ourselves to monotonic value functions, however, we show that all strongly 

stable networks satisfy the desired coincidence. Pairwise stability, on the other hand, is 

shown to be incompatible with this coincidence. That is there exist pairwise stable 

networks which do not satisfy coincidence, while there are networks that satisfy 

coincidence but are not pairwise stable. Finally, we show that another allocation rule 

proposed by Jackson (2003b), which again is based on Shapley-like calculations, assures 

that the set of networks satisfying coincidence is equal to the set of strongly stable 

networks even without the monotonicity assumption for value functions.     
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CHAPTER II 

 
LITERATURE SURVEY 

 

The literature, which uses networks to model social and economic cooperation, 

starts with the seminal paper by Myerson (1977), which deals with TU games with 

communication structures. Together with a TU game (N,v) he considers a network g, 

which describes the possibilities of communication among the players. A network is, in 

fact, a graph with vertices being the players in N. The graph determines which pairs of 

individuals are “linked“ to each other. If individuals i and j are linked it means that they 

can communicate with each other. Note that a graph has components, that is connected 

subgraphs in which every vertex is either directly connected or indirectly connected 

through a sequence of edges to every other vertex, and these components induce a 

partition on the set of vertices (players) N. Myerson derives from the given TU game v 

and network g a graph-restricted game vg in which the value of each coalition S, is 

defined as the sum of the values of certain subcoalitions of S under the initial TU game v 

where the subcoalitions considered are the ones that consist of exactly the set of agents 

who form the set of vertices of a component of g. The interpretation is that a coalition 

can generate some value only if the players in that coalition can communicate, that is if 

they are somehow connected to each other in the network.     

Myerson uses the term “allocation rule” to define a way of distributing the value 

generated through the TU game-network pair v and g, among the agents in the society. 
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Similar to the axiomatic characterization of solution concepts for TU games, he 

characterizes an allocation rule through two “fairness” axioms he proposes. One is that, 

two individuals who can add a new link to the existing network should benefit equally 

from the addition of that link, and the other is that the value generated by a coalition 

should be distributed among the players in that coalition, that is transfer of value across 

coalitions should not occur. Myerson shows that, Shapley value of the graph-restricted 

game vg is the unique way of distributing the value that satisfies these two axioms. 

Myerson thereby brought a new perspective to cooperative game theory. Rather than just 

assuming that members of a coalition can simply “come together” and create a particular 

value, he allows different possible structures of “coming together” by the members of a 

coalition, thus a coalition can create possibly different values depending upon its 

communication structure. 

 

Note that the enrichment brought by Myerson is limited in the sense that it is 

assumed that coalitions can cooperate if they are connected somehow, and different 

forms of being connected are not distinguished. Jackson and Wolinsky (1996) introduce 

a different framework for studying social and economic networks. Rather than starting 

with TU games with communication structures, they start with a value function v which 

assigns a real number to every network that can be formed by the agents in the society 

N. In this framework “the value of a network can depend on exactly how agents are 

interconnected, not just who they are directly or indirectly connected to.” Here an 

allocation rule associates a payoff vector for every value function and network pair (v,g). 
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They assume that players have the right to form or break links and they define the notion 

of pairwise stability in this framework.  

 

First, they propose two specific models to study social and economic interaction, 

the connections and co-authorship models, and investigate the stability and efficiency 

properties of networks. In both models they find that stable networks may be inefficient  

(i.e. not maximizing the value generated). Then, they analyze the general model and find 

that there exists a value function such that no component additive and anonymous 

allocation rule can assure that at least one efficient network is pairwise stable. They also 

show that the two fairness axioms defined by Myerson characterizes an allocation rule 

that is again based on the Shapley value.1         

 

Using the framework introduced by Jackson and Wolinsky many authors have 

studied different social and economic situations using networks. For example 

Corominas-Bosch (1999) uses networks to model trade in a decentralized market. The 

players are divided into two sets as buyers and sellers. A buyer and seller must be 

connected to each other for a transaction between them to occur. In this model, no links 

can be formed among buyers or among sellers. Each seller has one unit of an indivisible 

good which has value for the buyers but not for himself. Corominas-Bosch models a 

bargaining game between buyers and sellers. In each period those pairs of buyers and 

sellers that realize a transaction drop from the market and this goes on until there 

                                                 
1 Note that the allocation rule here is not the same mathematical object as what is called an 

allocation rule in Myerson (1977). 
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remains no link between remaining buyers and sellers; that is no more transactions can 

occur. It is also assumed that the buyers and sellers discount the value of a transaction at 

each period. They provide some properties of the final payoffs to buyers and sellers 

according to different kinds of connections between them.  

 

Calvo-Armengol and Jackson (2001) examine a model of the transmission of job 

information through a network of social contacts. In each period, agents randomly 

receive information about new jobs and use it to obtain a job if they are unemployed or 

if the new job is more attractive than their current jobs. If not, they pass it to those whom 

they are directly connected. Also employed agents randomly lose their jobs in each 

period. They show that the possibility of receiving information about new jobs increases 

as one’s status in the network improves. They also obtain the result that the possibility of 

obtaining a job decreases as length of time that an agent has been unemployed increases, 

which supports the empirical findings in real life job markets. In fact, what matters are 

the network structure and the initial status of an agent in the network.  

 

Furusawa and Konishi (2002) examine the formation of free trade agreements as 

a network formation game. A free trade agreement is represented by a link in the 

network of countries; if two countries are not connected the trade between them includes 

a tariff. The incentives to sign an agreement depend on the characteristics of the 

countries like market size and the size of the industrial good industry. They show that if 

all countries are symmetric, a complete free trade network is pairwise stable. 
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Network formation itself has been of interest to many researchers. First Aumann 

and Myerson (1988) proposed an extensive form game to model this process in the 

context of TU games with cooperation structures.  They start with a TU game v and an 

exogenously given ranking of all possible pairs of players. In each stage of the game, a 

pair of players, observing the actions of the pairs preceding them, decides whether or not 

to connect to each other. After the final network g forms, the payoffs to the players are 

determined by the Shapley value of the graph-restricted game vg that is derived from v 

and g in the same way as Myerson (1977). They show that subgame perfect equilibria of 

this game may lead to inefficient networks. Dutta, van den Nouweland and Tijs (1998) 

study the formation of networks in the framework of TU games with cooperation 

structures using a normal form game. “In this game each player announces the set of 

players with whom he or she wants to form a link, and a link is formed if and only if 

both players want to form that link.” They consider a class of solutions for TU games 

with cooperation structures, which satisfies some fairness axioms. After the network, or 

the cooperation structure, is formed, the payoffs are determined by a solution in that 

class.  Their main finding is that, in the world of superadditive TU games, the 

undominated Nash equlibrium, coalition-proof Nash equilibrium and the strong Nash 

equlibrium of this game lead to the complete network or a network that is payoff 

equivalent to the complete network.  

 

Currarini and Morelli (2000) propose a network formation model where the 

payoff division is endogenous, that is there is no fixed allocation rule in their model. 

Given an exogenous ranking of players, players move sequentially, and each announces 



 
 
 
 

 
10 

with whom he or she wants to form a link and demands a payoff as a part of his or her 

action. A link is formed if both the players want to connect to each other. Also the sum 

of the demands of the players in a component of the final network should not exceed the 

value generated by that component, otherwise that component does not form and players 

in that component receive nothing. They show that this game always has a subgame 

perfect equilibrium and for the class of size monotonic value functions (defined on 

networks), all the subgame perfect Nash equilibria lead to efficient networks. Thus they 

provide a framework where the tension between stability and efficiency does not exist.  

 

Dutta and Mutuswami (1997) also model the formation of networks as a normal 

form game where a strategy of a player is to announce the set of players with whom he 

or she wants to form a link. An allocation rule and the resulting network determine the 

payoffs. But they use an implementation approach to resolve the tension between 

efficiency and stability in the sense that they design an allocation rule. Since one expects 

only the stable graphs to form, they argue that expecting the allocation rule to satisfy 

anonymity, again a fairness axiom, on all the graphs is “unnecessarily stringent” (1997: 

343). They show that with a mild assumption on the value function one can design an 

allocation rule, which will assure that the strong Nash equilibria of this game will lead to 

efficient graphs and which is anonymous on this set of graphs.  

 

Jackson (2003a) examines the stability, efficiency and the compatibility of these 

two in a more general setting. He defines three different notions of “efficiency” and 

examines the relations between these notions. He shows that there exists a value 
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function such that under any component balanced allocation rule satisfying equal 

treatment of equals we have that none of the constrained efficient (a weaker condition 

than being value maximizing) networks is pairwise stable. He also points to an important 

aspect of the tension between efficiency and stability. A network is said to have no loose 

ends if every player in the network is connected to at least two players. Under the 

assumption that the value function is anonymous, he shows that if there exists an 

efficient network with no loose ends then there is no tension, i.e. one can construct an 

anonymous and component balanced allocation rule such that some of the efficient 

networks will be pairwise stable.   

 

The studies dealing with stability and efficiency generally assume that agents are 

myopic, in the sense that when deciding on whether to add or break a link they do not 

consider how the other agents will react to their actions. Recently some authors started 

to develop models with farsighted agents. Watts (2002) models the formation of 

networks as an extensive form game. Here the agents are farsighted in the sense that 

when deciding to form or break a link at some stage, they consider possible networks 

that might form in the following stages and discount future benefits from those 

networks. The cost of forming a link is more than its benefits, but agents also benefit 

from indirect links. So when nobody is connected to each other, none of the agents 

would want to bear the cost of forming a link if he/she could not discount future 

benefits. Watts shows that when agents are non-myopic, it is possible that a network 

shaped like a circle, in which every agent gets a strictly positive payoff, can form as a 

subgame perfect equilibrium of this game.  
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CHAPTER III 

 

COINCIDENCE OF MYERSON ALLOCATION RULE WITH 

SHAPLEY VALUE 

 
 

3.1 Definitions And Notation 

 
Let N = {1,2,....., n} be the set of individuals in the society. We assume that 

individuals establish bilateral relations among themselves and form a network structure. 

We will use a non-directed graph to model these relations whose vertex set will be the 

set of individuals in the society.  

 

Let gN denote the set of all subsets of N of cardinality 2. Any subset g of gN will 

be called a network, and gN itself will be called the complete network. Note that a 

network g is a set of pairs of individuals of the form {i,j}. If {i,j} ∈ g then we say that 

individuals i and j are linked under the network g.  

 

Edges of a graph g will be called links hereafter and for ease of notation we will 

write ij to represent the link {i, j}. Note that {i, j} is not an ordered pair, so ij and ji 
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represent the same link. The network consisting of only the link ij will be denoted by 

{ij}.  

 

Let gS = {ij ∈ gN  i, j ∈ S}. gS denotes the complete network among the players 

in S. G = {g| g ⊂ gN }is the set of all possible networks on N. Given a network g ∈ G, let 

N(g) = {i ∈ N  ∃ j s.t. ij ∈ g}, that is the set of individuals who have at least one link in 

the network g. 

Definition: Let N = {1,......, n} be given, a function v : G → IR is called a value 

function. 

 

The value function represents the “value” created by the individuals in the 

society under different network structures. Note that it is different from a TU game since 

the same set of individuals may create different values depending on how they are 

connected. This formulation allows the value created to depend on exactly how the 

individuals in the society are connected. 

We assume that v(∅) = 0, that is without any connections at all a society cannot create 

any value.       

We will denote the set of all value functions, that is all functions of the form  

v : G → IR, by V. 

Definition: A network g ∈ G is said to be efficient with respect to a value 

function v if v(g) ≥ v(g’) for every g′ ∈ G. 
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Definition: A function Y : G × V → IRN  such that  ∑
i

Yi (g,v ) = v(g)  for all v ∈ 

V and g ∈ G , is called an allocation rule.  
 
 

An allocation rule determines the payoffs of the individuals forming a network. It 

is worth to note that an allocation rule depends both on g and v, thus takes into account 

how the individuals are connected and what the roles of individuals in the network are.  

 

In some contexts an allocation rule may represent the payoffs to individuals that 

are directly determined by their positions in the network. For example in the 

Connections Model by Jackson (1996), an individual i benefits directly from his links 

and indirectly from the links that can be reached by a sequence of links which starts 

from i; but bears only the cost of his direct links. In this setting the payoff of an 

individual is simply the sum of his benefits minus the sum of his costs. In some other 

contexts the allocation rules are given exogenously and some axioms are imposed on 

allocation rules for equity and efficiency considerations. These studies are similar to the 

axiomatic study of solution concepts for TU games.  

Definition: Given a network g ∈ G, a sequence of distinct individuals i1,...., iK  

such that iKiK+1 ∈ g  for each k ∈ {1,..., K-1}, with  i1 = i and iK = j, is called a path in g 

between individuals i and j. 

Definition: Given a network g ∈ G, any nonempty subnetwork g’ ⊂ g satisfying 

the following conditions is called a component of g: 

1) if i ∈ N(g’) and j ∈ N(g’) where i ≠ j, then there exists a path in g’ between i and j, 
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2) if i ∈ N(g’) and j ∉ N(g’) then there does not exist a path in g between i and j. 

The components of a network are its maximal connected subgraphs. We will denote the 

set of components of a network g by C(g).      

Example 1:  

Let N = {1, 2, 3, 4, 5, 6, 7} and g = {12, 23, 34, 56, 67,75}  

G has two components which are {12, 23, 34} and {56, 67, 75}. 

Definition: Let N = {1,...., n} be the set of individuals in the society. Let 2N 

denote the set of all subsets of N, i.e. the set of all possible coalitions in the society. A 

function f : 2N \ {∅} → IR  is called a transferable utility (TU) game. 

Definition: N = {1,...., n} be given. Denote these of all TU games with       
 

player set N by GN . A function ψ :   ∪     GN  →  ∪   IRn     which satisfies 

                                                                     n ∈ IN          n ∈ IN 

 
ψ(f) ∈ IRn and ∑

∈N  i

 ψi(f) = f(N)  for ∀ n ∈ IN  and ∀ f ∈ GN is called a value for TU 

games. 

Definition: Given a TU game f, the Shapley value ϕ (f) of  f is defined by 

ϕi (f) = ∑
⊂ {i} \ N  S

(f(S ∪ {i}) - f(S)) (
!

)!1(!
n

SnS −−## )  for each i∈N. 

 

Before defining some notions of stability of a network, it must be stated that the 

basic assumption is that players can form new links or break links at the existing 

network. According to a particular, but commonly used rights structure for a new link to 

form, both of the players involved in that link should give consent; but a player can 
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break an existing link he is involved in without the consent of the other party involved. 

The following two notions of “pairwise stability” and “strong stability” aim to describe 

stable networks at which players or groups of players would not benefit from deviating 

from the existing network. Both notions have their own assumptions on how players can 

possibly deviate from an existing network structure.  

Definition: A network g is said to be pairwise stable with respect to an  

allocation rule Y and a value function v if    

1) for all ij ∈ g, Yi (g,v ) ≥ Yi (g \ { ij},v ) and Yj (g,v ) ≥ Yj (g \ { ij},v ) and  

2) for all ij ∉ g, if Yi (g ∪{ ij},v ) > Yi (g,v ) then Yj (g ∪ { ij},v ) < Yj (g,v ). 

 

Note that pairwise stability assumes that players consider only deviations that 

include only one link. Coalitions including at most two agents can form and add a single 

link to the existing network to increase their payoffs, or a single player can break a link 

to increase his payoff. It is assumed that, if addition of a link ij makes one of i and j 

strictly better off and the other not worse off, i and j will want to add that link. 

Denote the set of pairwise stable networks with respect to some allocation rule Y and 

value function v by PS(Y,v).  

Definition: A network g’ is said to be obtainable from g via deviations by S if 

1)  ij ∈ g’ and ij ∉ g imply {i, j} ⊂ S and 

2)  ij ∈ g  and ij ∉ g’ imply {i, j} ∩ S ≠ ∅. 

 

A network g is said to be strongly stable with respect to an allocation rule Y and 

a value function v if for any S ⊂ N, for any g’ that is obtainable from g by deviations by 
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S, and for any i ∈ S with Yi (g’,v ) > Yi (g,v ), there exists j ∈ S such that Yi (g’,v ) < Yi 

(g,v ).   

 

Strong stability takes into account deviations by coalitions including possibly 

more than two players. Any subset of players can act together to change an existing 

network in order to increase their payoffs. Of course they can only achieve deviations 

that require no help from the players outside the coalition, i.e., they can form links 

among themselves and can break those links that involve at least one player from their 

coalition. Obviously a network that is strongly stable, with respect an allocation rule Y 

and a value function v, is pairwise stable with respect to that allocation rule and value 

function.      

Denote the set of strongly stable networks with respect to some allocation rule Y and 

value function v by SS(Y,v).  

 

Finally we will define some properties of value functions and allocation rules 

which are used in the characterization of Myerson allocation rule. 

 Definition: A value function v is said to be component additive if  

v(g) =  ∑
∈ )(h gC

v(h) for all g ∈ G. 

Note that component additivity requires that value generated by a component should not 

depend on the structure of the rest of the network.    

Definition: An allocation rule Y is said to be component balanced if for any component 

additive v, any g ∈ G, and any h ∈ C(g) 
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∑
∈ )( i hN

 Yi (h,v ) = v(h)        holds. 

Component balancedness requires that when the value generated by a component does 

not depend on the structure of the rest of the network, the value generated by a 

component should be distributed among the players in that component. Transfer of value 

among components is not allowed while distributing payoffs.    

 Definition: An allocation rule Y is said to satisfy equal bargaining power if, for 

any component additive v and any g ∈ G,   

Yi (g,v ) - Yi (g \ {ij},v ) = Yj (g,v ) – Yj (g \ {ij},v )   holds. 

 

3.2 The Problem  

 
When Myerson (1977) dealt with TU games with communication structures, his 

basic assumption was that a coalition could generate value only if the players in that 

coalition could communicate, that is, if they were somehow connected to each other in 

the communication network. So, in his framework, together with a TU game, a network 

g representing the communication structure is needed to be able to know the possibilities 

of value generation by each coalition. He derives a new TU game vg where the value of a 

coalition S is the sum of the values of those subcoalitions of S which make up 

components of g | S. Note that if the members in a coalition make up a component, that 

is if they are connected they can generate a certain amount of value independent of the 

particular way of connection; so there are no optimal and suboptimal ways of connection 

so long as there is some connection. In this setting Myerson shows that the only way to 
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distribute the value so as to satisfy equal bargaining power and component balancedness 

is using the Shapley value of the graph-restricted game vg, when the communication 

structure is given by g.   

 

In this study, we start with a set of players N = {1,..., n} and a real-valued 

function v which is defined on the set of all networks that can be formed by the agents in 

the society N, i.e., a value function for networks. The value generated by the players 

depends directly on the particular network structure they form, so there may exist 

optimal and suboptimal ways of connection by players. Jackson and Wolinsky (1996) 

extend Myerson’s result to this setting and show that whenever v is component additive, 

an allocation rule satisfies equal bargaining power and component balancedness if and 

only if it is of the following form: 

Yi
MV(g,v) = ∑

⊂ {i} \ N S
(v(gS ∪ {i}) - v(gS)) (

!
)!1(!

n
SnS −−## )  for each i∈N. 

where gS is called the restriction of g to the coalition S and is found by deleting all the 

links in g except the links which connect a player in S to another player in S, that is 

gS = {ij  ij ∈ g and i ∈ S, j ∈ S}. 

We will call this rule the Myerson allocation rule. 

 

Note that this rule is based on Shapley-like calculations and the payoff to a 

player is determined by his marginal contribution to all possible coalitions. But the value 

of a coalition is the value of the network found by restricting the original network to that 

coalition. So when evaluating the value of a coalition, Myerson allocation rule takes into 
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account only the network that is the restriction of the original network to that coalition 

and assumes that the players outside that coalition become totally isolated. Remember 

that restricting a network to a coalition means deleting all the links of that network 

except the links that connect a player in that coalition to another player in the same.           

 

Given any value function v we derive a TU game v* associated with v in the 

following way: 

For any S ⊂ N, v*(S) = max  v(g) 
                                      g ⊂ gS             
 

Given any value function v we will look for the coincidence of the payoff vector 

under Myerson allocation rule at some network g with the payoff vector of Shapley 

value of the TU game v*.  

 

Note that we find the value of S under v*, by assuming that the players outside S 

are totally isolated and the players in S are connected optimally among themselves. This 

definition is based on the assumption that each coalition has the right and possibility to 

separate itself from the rest of the society and act on its own in achieving the maximal 

total value for itself. There are some further reasons for the assumptions underlying the 

definition of v*.  Firstly, assuming that players outside S are isolated while finding v*(S) 

is compatible with the definition of Myerson allocation rule according to which the 

value of a coalition at g is found by restricting g to that coalition and thus leaving the 

players outside that coalition isolated. Secondly, the Shapley value of v* is based on 

calculating marginal contributions as if every coalition were connected optimally in 
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itself, since we are not only interested in the marginal contributions at the particular 

network but we also take into consideration what will be the marginal contributions if 

every coalition were connected optimally in itself. In the case of coincidence at some 

network g, these two calculations will yield the same outcome even if every coalition is 

not connected optimally at g.  

Proposition 1: There exists a society N and a value function v such that for any g 

∈ G we have YMV(g,v) ≠ ϕ (v*). 

 

Proof: Let N = {1, 2, 3} and let v(12) = 3, v(13) = v(23) = 2,  

and for all other networks g ∈ G, v(g) = 0. 

The TU game associated with v is as follows: v*(1) = v*(2) = v*(3) = 0, 

v*(1, 2) = 3, v*(1, 3) = v*(2, 3) = 2 and v*(1, 2, 3) = 3. 

The Shapley value of v* will be ϕ (v*) = (
6
7 , 

6
7 , 

6
4 )  

But the Myerson allocation rule’s distribution of payoffs will be as follows:  

For g1 = {12}, YMV(g1,v) = (
2
3 ,

2
3 , 0)   

for g2 = {13}, YMV(g2,v) = (1, 0, 1)  

for g3 = {23}, YMV(g3,v) = (0, 1, 1) 

for g4 = {12, 23}, YMV(g4,v) = (-
6
1 ,

6
5 , -

6
4 ) 

for g5 = {12, 13}, YMV(g5,v) = (
6
5 , -

6
1 ,  -

6
4 ) 

for g6 = {13, 23}, YMV(g6,v) = (-
6
2 , -

6
2 , 

6
4 ) 
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for g7 = {12, 23, 13}, YMV(g7,v) = (
6
1 ,

6
1 , -

6
2 ) 

So for this particular example, obtaining the payoff vector of the Shapley value of the 

TU game v*, under Myerson allocation rule at some network g is not possible at all. 

 

Note that in this case the network g = {12} is strongly stable. To see this  

consider any coalition S which may improve upon g by deviations in S. Note that at g 

Yi
MV(g,v) ≥ 0 for every i ∈ N that is ∑

∈S i 
 Yi

MV(g’,v) ≥ 0. Since improvement by S 

requires that at the new graph g’ all players in S should be at least as well off as at g, and 

at least one player in S should be strictly better off. So at the new graph g’, ∑
∈S i 

 

Yi
MV(g’,v) > 0 should hold. But only the networks {13} and {23} have value greater than 

zero except for the initial network {12}, so the above condition could possibly be 

satisfied only at these networks. Assume there exists an S ⊂ N which can alter the 

network g = {12} to g’ = {13} by deviations in itself and improve. Note that when 

passing from g to g’ the link 13 is added. This can only happen with the consent of 

player 1, that is S must include 1. But Y1
MV(g,v) =  

2
3  and Y1

MV(g’,v) = 1, so player 1 will 

not add that link. So no coalition can alter the network g to g’ and improve. Assume 

there exists a coalition S ⊂ N which can alter the network g = {12} to g’’ = {23} by 

deviations in itself and improve. Note that when passing from g to g’’ the link 23 is 

added. This can only happen with the consent of player 2, that is S must include 2. But 

Y2
MV(g,v) =  

2
3  and Y2

MV(g’’,v) = 1, so player 1 will not add that link. So no coalition can 
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alter the network g to g’’ and improve. So no coalition S ⊂ N can improve upon g. Thus 

g is strongly stable with respect to YMV and v. So SS(YMV, v   ) ≠ &. 

Note that in the above example only those networks with one link could generate 

a positive value. Adding a link to those networks leads to a decrease in the value.  

Definition: A value function v is said to be monotonic if g ⊂ g’ ⇒ v(g) ≤ v(g’) 

for any g, g’ ∈ G. 

Assuming that the value function is monotonic rules out the case where the set of 

networks satisfying coincidence is empty. We will show this result in a few steps. 

 Proposition 2: Assume that v is monotonic, then we have that a network g is 

pairwise stable, with respect to the Myerson allocation rule and value function v, if and 

only if ∀ S ⊂ N, ∀ ij ∈ {kl ∈ gN \ g  k, l ∈ S} we have v(({ij} ∪ g) S) ≤ v(gS)         (1).   

Condition (1) says that there should not exist a link ij which is not in g such that 

when added to g the value of this new graph’s restriction to some S ⊂ N, which contains 

both players i and j, is greater than the value of g’s restriction to S.  Proof: First note that 

when v is monotonic, at any network g, a player i cannot improve alone, that is without 

cooperating with other players. To see this, note a player i can unilaterally deviate from 

an existing network g by only breaking existing links he is involved in at g. Remember 

that for a new link to form, both of the parties involved in that link should give consent. 

Take any g ∈ G and any i ∈ N, consider any set of links { ij1,..., ijn }. Note that for any S 

⊂ N \ {i}, gS = (g \ { ij1,..., ijn }) S since restricting a network to a coalition S means 

deleting all the existing links at g except the ones that are between the players in S. So  



 
 
 
 

 
24 

v(gS) = v((g \ { ij1,..., ijn }) S). Also for any S ⊂ N \ {i}, v(gS ∪{i}) ≥ v((g \ { ij1,..., ijn 

}) S ∪{i}) since (g \ { ij1,..., ijn }) S ∪{i} ⊂  gS ∪{i} and v is monotonic. Subtracting 

the first equation from the second one we obtain v(gS ∪{i}) - v(gS)) ≥ (v((g \ { ij1,..., 

ijn })S ∪{i}) – v((g \ { ij1,..., ijn })S)) for any S ⊂ N \ {i}. Multiplying both sides by 

(
!

)!1(!
n

SnS −−## ) and summing these inequalities over all S ⊂ N \ {i}, we 

obtain ∑
⊂ {i} \ N S

(v(gS ∪{i})- v(gS)) (
!

)!1(!
n

SnS −−## ) ≥ ∑
⊂ {i} \ N S

(v((g \ { ij1,..., ijn })S 

∪{i}) - v((g \ { ij1,..., ijn })S)) (
!

)!1(!
n

SnS −−## ). That is, Yi
MV(g,v) ≥ Yi

MV(g \ { ij1,..., 

ijn },v), so i cannot improve by only breaking links he is involved . 

Turning back to our claim, assume that condition (1) holds but g is not pairwise stable. 

Then there must exist a player who can improve upon g by adding a new link to g or by 

breaking an existing link in g. We have seen that a player cannot improve by only 

breaking a link, so player i should be improving by adding a new link to g. So there 

exists j ∈ N \ {i} such that Yi
MV({ij} ∪ g,v) > Yi

MV(g ,v) holds. But by condition (1) we 

have v(({ij} ∪ g) S) ≤ v(gS) for ∀ S ⊂ N, ∀ ij ∈ {kl ∈ gN \ g  k, l ∈ S } and we know 

that, for any coalition T which does not include i, v(({ij} ∪ g)T) = v(gT) holds. So we 

have v(({ij} ∪ g) T ∪{i}) - v((ij ∪ g)T) ≤ v(gT ∪{i})- v(gT) for any coalition T 

which does not include i, implying that (
!

)!1(!
n

TnT −−## ) (v(({ij} ∪ g)T ∪{i}) - v((ij 
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∪ g)T)) ≤ (
!

)!1(!
n

TnT −−## ) (v(gT ∪{i})- v(gT)) for any coalition T which does 

not include i since (
!

)!1(!
n

TnT −−## )> 0 for every T ⊂ N \ {i}. Summing these 

inequalities over all such coalitions we obtain ∑
⊂ {i} \ N T

(v(({ij} ∪ g)T ∪{i})- v(gT)) 

(
!

)!1(!
n

TnT −−## ) ≤ ∑
⊂ {i} \ N T

(v(gT ∪{i})- v(gT)) (
!

)!1(!
n

TnT −−## ). That is, 

Yi
MV({ij} ∪ g,v) ≤ Yi

MV(g ,v) in contradiction with Yi
MV({ij} ∪ g,v) > Yi

MV(g ,v). 

So there cannot exist a player i who can improve upon g by adding a new link to g, so g 

must be pairwise stable.  

 

Conversely assume that, g is pairwise stable and assume that Condition (1) does 

not hold. That is ∃ S ⊂ N and ∃ ij ∈ {kl ∈ gN  kl ∉ g and k, l ∈ S } such that v(({ij} ∪ 

g)S) > v(gS). Note that  ({ij} ∪ g)S \ {i}= gS \ {i}, so v(({ij} ∪ g)S \ {i}) = v(gS \ 

{i)). Subtracting second equation from the first one we have v(({ij}∪ g)S) - v(({ij}∪ g) 

S \ {i}) > v(gS) - v(gS \ {i)), which in turn implies (
!

)!2()!1(
n

SnS −−#−# ) (v(({ij} 

∪ g) S) – v(({ij} ∪ g) S \ {i})) > (
!

)!2()!1(
n

SnS −−#−# ) (v(gS) - v(gS \ {i))) 

since (
!

)!2()!1(
n

SnS −−#−# ) > 0 for every S ⊂ N.  Also for every T ⊂ N with T ≠ S 
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we have v(({ij} ∪ g) T) ≥ v(gT) since v is monotonic, and v(({ij} ∪ g)T \{i}) = v(gT \ 

{i}) since ({ij} ∪ g) T \{i}= gT \ {i}. That is v(({ij} ∪ g) T) - v(({ij} ∪ g) T \ {i}) ≥ 

v(gT) – v(gT \ {i}) for every T ⊂ N with T ≠ S, which implies that 

(
!

)!2()!1(
n

TnT −−#−# ) (v(({ij} ∪ g) T) - v(({ij} ∪ g) T \{i})) ≥ 

(
!

)!2()!1(
n

TnT −−#−# ) (v(gT) - v(gT \ {i})) for every T ⊂ N with T ≠ S, since 

(
!

)!2()!1(
n

TnT −−#−# ) > 0 for every such T. Summing these inequalities, we obtain 

(
!

)!2()!1(
n

SnS −−#−# ) (v(({ij}∪ g) S) - v(({ij}∪ g) S \ {i})) + ∑
≠⊂ S T& N T

 (v(({ij} ∪ 

g) T) - v(({ij} ∪ g) T \{i})) > (
!

)!2()!1(
n

SnS −−#−# ) (v(gS) - v(gS \ {i))) + 

∑
≠⊂ S T& N T

 (v(gT) - v(gT \{i})). Rewriting this inequality, ∑
⊂ {i} \ N M

(v(({ij} ∪ g) M 

∪{i})- v(gM)) (
!

)!1(!
n

MnM −−## )  

> ∑
⊂ {i} \ N M

( v(gM ∪{i}) - v(gM)) (
!

)!1(!
n

MnM −−## ), that is Yi
MV({ij} ∪ g,v) >  

Yi
MV(g ,v). Now writing j instead of i and following the same arguments above we will 

have Yj
MV({ij} ∪ g,v) > Yj

MV(g ,v). That is by adding the link ij to the graph g both 
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players i and j become strictly better off, so g is not pairwise stable, yielding the desired 

contradiction.  
Proposition 3: Assume that v is monotonic, then we have that a network g is 

strongly stable with respect to the Myerson allocation rule and value function v only if  

∀ n ∈ IN, ∀ S ⊂ N, ∀ {irjr  r = 1,..., n} ⊂ {kl ∈ gN \ g  k, l ∈ S }, we have v(({i1j1,..., 

injn} ∪ g) S) ≤ v(gS)                                                                        (2).                                                      

Similar to Condition (1), Condition (2) says that there should not exist a 

sequence of links i1j1,..., injn which are not in g such that  when added to g, the value of 

this new graph’s restriction to some S ⊂ N, which contains all the players i1, j1, ..., in, jn 

(some of which may of course coincide with each other) is greater than the value of g’s 

restriction to S. 

Proof: Assume g is strongly stable but Condition (2) does not hold. Then ∃  

n ∈ IN and ∃ S ⊂ N and ∃ {irjr  r = 1,..., n} ⊂ {kl ∈ gN \ g  k, l ∈ S } such that we 

have v(({i1j1,..., injn} ∪ g) S) > v(gS). Of course there may exist more than one 

coalition T ⊂ N such that ∃ {irjr  r = 1,..., n} ⊂ {kl ∈ gN \ g  k, l ∈ T } such that we 

have v(({i1j1,..., injn} ∪ g) T) > v(gT). And for each such coalition they may exist more 

than one set of links {irjr  r = 1,..., n} ⊂ {kl ∈ gN \ g  k, l ∈ T } such that v(({i1j1,..., 

injn} ∪ g) T) > v(gT). For each such coalition find a minimal set of links (that is of 

minimum cardinality) such {irjr  r = 1,..., nT} ⊂ {kl ∈ gN \ g  k, l ∈ T } such that 

v(({i1j1,..., inT jnT } ∪ g) T) > v(g?T). Of course there may exist more than one such 

minimal set of links of every such coalition T, choose and fix one of those minimal set 

of links for every such set T. Let us denote those sets of links by {ir
Tjr

T  r = 1,..., nT } 
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for each such coalition T. Note that for any such T, {ir
Tjr

T  r = 1,..., nT }is the minimal 

set which satisfies v(({i1
Tj1

T,..., inT
TjnT

T } ∪ g) T) > v(gT) where {ir
Tjr

T  r = 1,...,nT} ⊂ 

{kl ∈ gN \ g  k, l ∈T}. That is, adding any proper subset {i1
Tj1

T,..., ip
Tjp

T } of {ir
Tjr

T,..., 

inT
TjnT

T } to g will result in v(({i1
Tj1

T,..., ip
Tjp

T } ∪ g) T) = v(gT). Now among all those 

minimal sets of links (each corresponding to a different such T) which increase value as 

described above, choose a minimal one. Let us call the coalition that this set of links 

corresponds to M. Now we have a coalition M ⊂ N, and a set of links {ir
Mjr

M  r = 

1,...,nM} such that v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g) M) > v(gM). Note that since {ir
Mjr

M  r 

= 1,...,nM} is a minimal set among the sets each of which is a minimal set that has the 

effect v(({i1
Tj1

T,..., inT
TjnT

T } ∪ g) T) > v(gT),  adding a proper subset of {i1
Mj1

M,..., ip
M  

jp
M } of {i1

Mj1
M,..., inM

MjnM
M } will result in v(({i1

Mj1
M,..., inM

MjnM
M } ∪ g) S) = v(gS) for 

any coalition S ⊂ N.  

 

We claim that the players i1
M,  j1

M ,..., in
M , jn

M (again some of which may 

coincide with each other) could improve upon g. Take any  k  ∈ {ir
Mjr

M  r = 1,...,nM}, 

consider  Yk
MV (({i1

Mj1
M,..., inM

MjnM
M } ∪ g) M ,v). Yk

MV (({i1
Mj1

M,..., inM
MjnM

M } ∪ g) M ,v) 

= ∑
⊂ {k} \ N S

(v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g) S ∪{k}) - v(gS)) (
!

)!1(!
n

SnS −−## ). Now we 

know that for that particular S ⊂ N \ {k} which satisfies S ∪{k} =  {ir
Mjr

M  r = 1,...,nM}, 

we have v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g)  S ∪{k}) > v(g S ∪{k}). Since k ∉ S, ({i1
Mj1

M,..., 

inM
MjnM

M } ∪ g)  S does not contain {i1
Mj1

M,..., inM
MjnM

M }, but contains only a proper 
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subset of it. But we know from the very choice of  {i1
Mj1

M,..., inM
MjnM

M } that adding a 

proper subset of this set to g will not increase value at any restriction. That is 

v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g) S) = v(g? S). So we have v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g) S 

∪{k}) - v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g)  S) > v(g S ∪{k}) - v(g S) which in turn implies 

(
!

)!1(!
n

SnS −−## ) (v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g)  S ∪{k}) - v(({i1
Mj1

M,..., inM
MjnM

M } ∪ 

g)  S)) > (
!

)!1(!
n

SnS −−## ) (v(g S ∪{k}) - v(g S)). Now consider the remaining 

coalitions, that is any T ⊂ N \ {k} such that T ≠ S. Since v  

is monotonic v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g)  T ∪{k}) ≥ v(g T ∪{k}). Again since k ∉ T, 

({i1
Mj1

M,..., inM
MjnM

M } ∪ g)  T does not contain {i1
Mj1

M,..., inM
MjnM

M }, but contains only a 

proper subset of it. Again we know that adding a proper subset of this set to g will not 

increase value at any restriction. That is v(({i1
Mj1

M,..., inM
MjnM

M} ∪ g)  T) = v(g? T) for 

every T ⊂ N \ {k} such that T ≠ S. So we have v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g)  T ∪{k}) - 

v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g) T) ≥ v(g T  ∪{k}) - v(gT) for every T ⊂ N \ {k} such that 

T ≠ S, which implies (
!

)!1(!
n

TnT −−## ) (v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g)  T ∪{k}) - 

v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g)  T)) ≥  (
!

)!1(!
n

TnT −−## ) (v(g T ∪{k}) - v(g T)) for 

every T ⊂ N \ {k} such that T ≠ S. Summing these inequalities, we obtain 

(
!

)!1(!
n

SnS −−## ) (v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g)  S ∪{k}) - v(({i1
Mj1

M,..., inM
MjnM

M } ∪ 
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g) S)) + ∑
≠⊂ S T& {k}\N T

(
!

)!1(!
n

TnT −−## ) (v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g)  T ∪{k}) - 

v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g)  T)) > (
!

)!1(!
n

SnS −−## ) (v(g S ∪{k}) - v(g S)) + 

∑
≠⊂ S T& {k}\N T

(
!

)!1(!
n

TnT −−## ) (v(gT ∪{k}) - v(gT)).  

Rewriting this inequality, ∑
⊂ {i} \ NK 

(v(({i1
Mj1

M,..., inM
MjnM

M } ∪ g) K ∪{k})- v(gK)) 

(
!

)!1(!
n

KnK −−## ) > ∑
⊂ {i} \ NK 

 (v(gK ∪{k})- v(gK)) (
!

)!1(!
n

KnK −−## ), that is 

Yk
MV({i1

Mj1
M,..., inM

MjnM
M } ∪ g,v) > Yk

MV(g ,v). Now instead of k, we can write any l 

∈{ir
Mjr

M  r = 1,...,nM} and follow the same argument and obtain Yl
MV({i1

Mj1
M,..., 

inM
MjnM

M} ∪ g,v) > Yl
MV(g ,v). Every player in the coalition {ir

Mjr
M  r = 1,...,nM} will be 

strictly better off by adding the links {i1
Mj1

M,..., inM
MjnM

M } to g, so there exists a coalition 

which can improve upon g , that is g is not strongly stable. But this contradicts with our 

initial assumption that g was strongly stable so Condition (2) must hold. 

Proposition 4: Assume that v is monotonic, then we have 

For any g ∈ gN, if Condition (2) holds for g then Myerson allocation rule’s payoff vector 

at g will coincide with the Shapley value of the associated TU game v*, that is YMV(g,v) 

= ϕ (v*). 

Proof: Assume that Condition (2) holds for some g, take any S ⊂ N, consider 

v(gS). Since v is monotonic v(gS) ≥ v(g’) for any g’ ⊂  gS, so in particular v(gS) ≥ v(gS). 
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Assume that v(gS) > v(gS), but then we will have v((gS \ (gS)) ∪ (gS)) = v(gS) > 

v(gS). Note that  ij ∈  gS \ (gS) implies ij ∉ g but i, j ∈ S. So v((gS \ (gS)) ∪ (gS)) > 

v(gS) implies that ∃ n ∈ IN , ∃ S ⊂ N  and ∃ {irjr  r = 1,..., n} ⊂ {kl ∈ gN \ g  k, l ∈ S 

} such that v(({i1j1,..., injn } ∪ g) S) > v(gS). But this contradicts with Condition (2), so 

our assumption was wrong, that is v(gS) ≤ v(gS) must hold. Together with v(gS) ≥ v(gS) 

this will imply  v(gS) = v(gS).  

So for any S ⊂ N we have v(gS) = v(gS) = max  v(g) = v*(S) .                    
                                                                                                 g ⊂ gS            

Now take any i ∈ N, since v(gS) = v*(S) for  every S ⊂ N, we have (
!

)!1(!
n

SnS −−## ) 

(v(gS ∪ {i}) - v(gS)) = (
!

)!1(!
n

SnS −−## ) (v*(S ∪ {i}) - v*(S)) for  every S ⊂ N. 

That is ∑
⊂ {i} \ N S

(v(gS ∪ i) - v(gS)) (
!

)!1(!
n

SnS −−## ) = ∑
⊂ {i} \ N S

(v*(S ∪ {i}) – v*(S)) 

(
!

)!1(!
n

SnS −−## ), that is Yi
MV(g,v) = ϕ (v*). 

 Corollary 1: Assume that v is monotonic, then we have that if g is strongly stable 

with respect to Myerson allocation rule and v then g satisfies YMV(g,v) = ϕ (v*). 

 Corollary 1 is directly implied by propositions 2 and 3.  

So under the assumption of monotonicity of the value function, strong stability of a 

network will assure the coincidence of Myerson allocation rule’s payoff vector with 

Shapley value of the associated TU game. Note that Myerson allocation rule’s payoff 

vector is the same on the set of strongly stable networks.   
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Corollary 2: Assume that v is monotonic, then there always exists a network g 

which satisfies YMV(g,v) = ϕ (v*).    

Proof:  Consider the complete network gN. Take any S ⊂ N, note that gN
S = gS. 

We know that v(gS) = v*(S) whenever v is monotonic, so we have v(gN
S) = v*(S) for 

every S ⊂ N. Take any i ∈ N,  for any T ⊂ N \ {i}, v(gN
T ∪ {i}) - v(gN

T )= v*(T ∪ {i}) 

– v*(T). Multiplying with the corresponding coefficients and summing over all T ⊂ N \ 

{i} we obtain ∑
⊂ {i} \ N T

(v(gT ∪ {i}) - v(gT)) (
!

)!1(!
n

TnT −−## ) = ∑
⊂ {i} \ N T

(v*(T ∪ {i}) 

– v*(T)) (
!

)!1(!
n

TnT −−## ), that is Yi
MV(gN,v) = ϕi (v*). Since this is true for every i ∈ 

N we have YMV(gN,v) = ϕ (v*). 

So whenever v is monotonic, the coincidence of Myerson allocation rule’s payoff vector 

with the Shapley value of v* is no longer impossible. 

 

It is worth noting that when v is monotonic the complete network gN is also 

pairwise stable. Since there exists no missing links, a pair of players cannot add a new 

link to gN. So the only strategic action a player can take to improve, is to break one link.  

But we have seen that when v is monotonic a player cannot improve by breaking a link. 

So the complete network is pairwise stable. Thus under the monotonicity of v, Shapley 

value of the associated TU game v* can be supported by at least one pairwise stable 

network under Myerson allocation rule. 
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We will give an example to further clarify the relationship of the set of pairwise stable 

networks and the set of networks satisfying coincidence under the monotonicity of v and 

Myerson allocation rule. We have seen above that the intersection of these two sets, both 

of which are nonemtpy, is nonempty. 

Example 2: Let N = {1, 2, 3, 4}, Let v : G → IR  be defined through:  

v(ij, jk, ki) = 4 for any i, j, k ∈ {1, 2, 3, 4} 

v(g) = 4 for any network which contains a network of the form  { ij, jk, ki } for any i, j, k 

∈ {1, 2, 3, 4}. 

 

v(12, 23, 34, 41) = 4  

  And v(g) = 0 for all other networks.  

 

Note that v is a monotonic value function. And the associated TU game v* is as 

follows:  

v*(1) = v*(2) = v*(3) = 0, v*(12) = v*(13) = v*(14) = v*(23) = v*(24) = v*(34) =0  

v*(1, 2, 3) = v*(1, 2, 4) = v*(2, 3, 4) = v*(1, 3, 4) = 4, and v*(1, 2 , 3, 4) = 4.  

The Shapley value of this game is ϕ (v*) = (1, 1, 1, 1). 

Consider the network g ={12, 23, 34, 41}, YMV(g,v) = (1, 1, 1, 1) = ϕ (v*), that is 

coincidence is satisfied on g.  

Let g’ = {12, 23, 34, 41, 24}= g ∪ {24}, YMV(g’,v) = (
3
1 ,

3
5 ,

3
1 ,

3
5 ). Note that Y2

MV (g ∪ 

{24},v) = 
3
5  > 1 = Y2

MV (g ,v), and  Y4
MV (g ∪ {24} ,v) = 

3
5  > 1 = Y4

MV (g ,v). So players 
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2 and 4 can improve upon g by adding the link 24 to g, thus g is not a pairwise stable 

network.  

Now consider the network g’’ = {12, 23, 31}. Note that YMV(g’’,v) = (
3
4 ,

3
4 ,

3
4 ,0)  so 

YMV(g’’,v) ≠ ϕ (v*). Let us check that g’’ is pairwise stable. Consider players 1 and 4, 

they can add the link 14 to g’’ trying to improve. But note that YMV(g’’ ∪ {14} ,v) = 

(
3
4 ,

3
4 ,

3
4 ,0) = YMV(g’’,v), so players 1 and 4 cannot improve upon g’’.  

Consider players 2 and 4, they can add the link 24 to g’’ trying to improve. But note that 

YMV(g’’ ∪ {24} ,v) = (
3
4 ,

3
4 ,

3
4 , 0) = YMV(g’’,v), so players 2 and 4 cannot improve upon 

g’’. Consider players 3 and 4, they can add the link 34 to g’’ trying to improve. But note 

that YMV(g’’ ∪ {34} ,v) = (
3
4 ,

3
4 ,

3
4 , 0) = YMV(g’’,v), so players 3 and 4 cannot improve 

upon g’’. Consider players 1 and 2. Since the link 12 ∈ g’’ and we know that a player i 

cannot improve by breaking an existing link ij, players 1 and 2 cannot improve upon g’’. 

For the same reason players 1 and 3, and players 2 and 3 cannot improve upon g’’. So 

there exists no pair of players i and j who can improve upon g’’, that is g’’ is pairwise 

stable. 

This example shows that there exists a monotonic value function v such that there exists 

a network g which is pairwise stable with respect to v and Myerson allocation rule but 

does not satisfy coincidence; and there exists a network g’ such that g’ satisfies 

coincidence but is not pairwise stable with respect to v and Myerson allocation rule.  
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While strongly stable networks, with respect to YMV and some monotonic v, 

satisfy coincidence of Myerson allocation rule’s payoff vector with the Shapley value of 

v*, the above example shows that there may exist networks satisfying this coincidence 

which are not even pairwise stable. 

 As a final note on this particular example, note that   YMV(gN,v) = (1, 1, 1, 1) and   

YMV({12, 23,31},v) = (
3
4 ,

3
4 ,

3
4 , 0) and the coalition {1, 2, 3} can deviate from gN to 

form the graph  {12, 23,31} by just deleting all links with player 4. With this deviation 

all players in the coalition {1, 2, 3} become strictly better off at the new network. So gN 

is not a strongly stable network, but we know that it is pairwise stable and it satisfies 

coincidence. 

 

3.3 A New Code of Rights 

 
In this study our aim was to investigate the possible coincidence of payoff vector 

under Myerson allocation rule, at a given value function v and some network g, with the 

payoff vector of Shapley value of the associated TU game v*. We tried to relate the set 

of networks satisfying this coincidence to the stability notions at hand (namely pairwise 

stability and strong stability. These notions had their own assumptions about the 

possibilities of forming coalitions with the aim of deviating from the existing network. 

As for pairwise stability, recall that, for a new link to form both of the players involved 

in that should give consent and that a player can break an existing link he is involved 

without the consent of the other party involved.  
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Note that, together with the particular value we use to find the solution of the TU 

game and the particular allocation rule to determine payoffs at the network setting the 

stability notions at hand played an important role for our purposes. The two stability 

notions differed on their assumptions of which coalitions can form. But in both cases, 

the rights structure to form and break a link was based on the ability and willingness of 

these coalitions. In a different context Sertel (2002) proposed that alteration of states, 

alteration of networks in our setting, should be examined together with a code of rights 

structure not only on the basis of ability and willingness of a coalition to alter a state. He 

proposed a list of coalitions, corresponding to every possible alteration by any coalition, 

whose approval is needed to alter that state. In what follows we propose a new code of 

rights for determining the “allowed” alterations of existing networks. 

 

Assume that the value function v is component additive. We know that Myerson 

value is a component balanced allocation rule. So when the value generated by a 

coalition does not depend on the structure of the rest of the network Myerson allocation 

rule distributes to each coalition exactly the value generated by that coalition. We 

assume that any coalition can form to deviate from an existing network to increase their 

payoffs. But now a coalition needs the consent of some other members of the society to 

alter the existing network even if they are going to form new links among themselves.  

 

Given a network g ∈ G, any S ⊂ N should need approval of “others” while 

making the usual actions of deviations, that is forming new links among the members of 

S and breaking those links that involve at least one player from S. Since under a 
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component additive value function the value generated by a component depends only on 

the structure of that component and since Myerson allocation rule distributes value 

without making any transfers among coalitions, when a player i wants to alter the 

existing situation, alone or in cooperation with others, it would be somewhat natural to 

require the approval of the other players in i’s component of the desired alteration by i. 

Think of an autarchic economy which makes absolutely no trade with the rest of the 

world, so they can consume only the goods and services that is produced in that country. 

When an individual from this country wants to import a product and sell it in this 

country to improve his situation, this trade can harm the local producers of that product. 

As long as the local producers do not give consent, the code of rights we propose 

prohibits that trade, even if the total societal welfare of that country would increase with 

that trade. The same holds for deviations in a component of course, if a member of a 

component becomes worse off due to alterations within that component, by some other 

members in that component, that member can “block” those alterations.                         

 

Formally given any g ∈ G, any S ⊂ N can form links among the members of S 

and can break those links that involve at least one player from S only if each agent i in S 

can get consent from all the players in his own component at g. That is, each i should get 

consent from Ai = {j ∈ N  {i, j} ⊂ N(h), where h ∈ C(g)}, which means that all the 

agents in the set AS = {i∈ N  ∃ j ∈ S such that {i, j} ⊂ N(h), where h ∈ C(g)} \ S}should 

approve the alteration intended by S. Under this new code of rights, if a player i belongs 

to the same component with some member j of the deviating coalition S (at g), that 

player i has the right to block that deviation. Note that for a deviation from g to g’ by S, 
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not to be blocked, the payoffs at the new network g’ to all the players whose consent is 

needed should be at least as high as the payoffs they receive at g’. That is Yi
MV(g’,v) ≥ 

Yi
MV(g,v) should hold for all i ∈ AS . This has the effect that when a coalition S wants to 

deviate, it has to consider payoffs not only to themselves but also to the players in AS \ S.  

 

Note that possibilities of deviation are now restricted when compared to strong 

stability. If a coalition S can deviate under this code of rights, it can deviate under strong 

stability also. After all, without hurting “others” S could guarantee that “ Yi
MV(g’,v) ≥ 

Yi
MV(g,v) for every i ∈ S and there exists some j ∈ S such that Yj

MV(g’,v) > Yj
MV(g,v)”, 

and this is enough under strong stability for S to deviate. Let us call the set of stable 

networks under this code of rights as componentwise stable networks and denote it by 

CS (YMV,v). Then we have SS (YMV,v) ⊂ CS (YMV,v).  

Proposition 5: Given any component additive value function v, if g ∈ G satisfies 

coincidence of Myerson allocation rule’s payoff vector with the Shapley value of  v*, 

then g is componentwise stable.  

Proof: Assume g satisfies coincidence, then g must be an efficient graph since 
Yi

MV(g,v) = ϕi(v*) for every i ∈ N, thus ∑
∈N i 

 Yi
MV(g,v) = ∑

∈N i 
ϕi(v*). But we know by 

definition of a value that ∑
∈N i 

ϕi(v*) = v*(N) = max  v(g’). 

                                                                             g’ ⊂ gS            

Since we also know v(g) =∑
∈N i 

 Yi
MV(g,v)  we have v(g) = max  v(g’). 

                                                                                                         g’ ⊂ gS              
Assume ∃ S ⊂ N which can improve upon g, by altering g to g’. Now AS ∪ S is the set of 

all agents who should be at least as well off at g’ as g. But we know that there exists i ∈ 

S such that Yi
MV(g’,v) > Yi

MV(g,v), and Yj
MV(g’,v) ≥ Yj

MV(g,v) for every j ∈ S. So we 
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have∑
∈S i 

Yi
MV(g’,v) > ∑

∈S i 
Yi

MV(g,v). Note that the players in B = N \ (AS ∪ S) are 

neither in S nor have the right to block the deviation. So there does not exist any link 

between any player k in B and a player l in AS ∪ S at the network g since otherwise k 

would be either in S or would be connected to a player in S in which case k should be in 

AS. So none of the components of g includes any two players m, n such that m ∈ B and n 

∈ AS ∪ S, thus we have g = (gB) ∪ (gAS ∪ S). With the same argument as above, there 

does not exist any link between any player k in B and a player l in AS ∪ S at the network 

g’ and we have g = (g’B) ∪ (g’ AS ∪ S). Since players in B are not in AS ∪ S they have 

not been effected by the deviation of S from g to g’ (that is no links with players in B are 

established or broken during these alterations) we have g’B = gB. Now v(g) = v(gB) + 

v(gAS ∪ S), and v(g’) = v(g’B) + v(g’AS ∪ S) since v is component additive. But we 

also know that g is an efficient network so we have v(g) ≥ v(g’) that is v(g B) + v(g AS 

∪ S) ≥ v(g’B) + v(g’AS ∪ S). Since g’B = gB we have v(gB) = v(g’B), so we have 

v(gAS ∪ S) ≥ v(g’AS ∪ S). That is, the total value generated by the players in AS ∪ S 

does not increase when passing from g to g’; since Myerson allocation rule is component 

balanced. This, in turn, implies that the total value to be distributed among the players in 

AS ∪ S does not increase when passing from g to g’. But we have seen that ∑
∈S i 

 

Yi
MV(g’,v) > ∑

∈S i 
 Yi

MV(g,v), so it must be the case that ∑
∈ SAi

 Yi
MV(g’,v) < ∑

∈ SAi
 

Yi
MV(g,v). This implies that there Yj

MV(g’,v) < Yj
MV(g,v). But that agent can block the 

alteration by S. Since our choice of improving S was arbitrary any such S ⊂ N which can 
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improve upon g, by altering g to some g’, will be blocked by a player j ∈ AS. So g is 

componentwise stable.   

 

Unfortunately the converse of the above statement is not true. To see this 

consider the following example: 

 Example 3: Let N ={1, 2, 3, 4} and let v : G → IR  be defined through:  

v(12) = v(23) = v(34) = v(41) = 1,  

v(g) = 1 for any g ∈G containing at least one of the links 12, 23, 34, 41 

and v(g) = 0 for all other networks. 

The associated TU game v* is as follows: 

v*(1) = v*(2) = v*(3) = v*(4) = 0, v*(1) = v*(1, 2) = v*(2, 3) = v*(3, 4) = v*(1, 4) = 1, 

v*(1, 3) = v*(2, 4) = 0, v*(1, 2, 3) = v*(1, 2, 4) = v*(1, 3, 4) = v*(2, 3, 4) = 1 and v*(1, 2, 

3, 4) = 1, and the Shapley value of this TU game is ϕ (v*) = (
4
1 ,

4
1 ,

4
1 ,

4
1 ). 

Consider the following network g = {12, 34, 41}. The Myerson allocation for this 

network is (
3
1 ,

6
1 ,

6
1 ,

3
1 ), so YMV(g,v) ≠ ϕ (v*), but g is componentwise stable. Note that 

at g, there is a single coalition that includes all the players in the society. So whenever a 

coalition S ⊂ N wants to alter the existing network g it has to get approval of all of the 

society N. Assume that there is a coalition S ⊂ N which can improve by altering g to g’. 

Then, we have ∑
∈S  i

 Yi
MV(g’,v) > ∑

∈S  i
 Yi

MV(g,v) by definition of an improvement by S. 

But note that g is an efficient network which implies v(g) ≥ v(g’). That is ∑
∈S  i

 Yi
MV(g,v) 



 
 
 
 

 
41 

+ ∑
∈ S \ N  i

 Yi
MV(g,v) ≥ ∑

∈S  i
 Yi

MV(g’,v) + ∑
∈ S \ N  i

 Yi
MV(g’,v), together with the above 

inequality this implies ∑
∈ S \ N  i

 Yi
MV(g’,v) < ∑

∈ S \ N  i
 Yi

MV(g,v). So there exists j ∈ N \ S such 

that Yj
MV(g’,v) <  Yj

MV(g,v). But that player has the right to block that alteration. So no S 

⊂ N can alter the network g, g is componentwise stable.  

In fact, players 2 and 3 can alter the network to g’ = {12, 23, 34, 41} by adding the link 

23, at this new graph g’ we have YMV(g,v) = (
4
1 ,

4
1 ,

4
1 ,

4
1 ) = ϕ (v*). Players 1 and 4 

receive more than what they should under the Shapley value  

of v*, and players 2 and 3 receive less than what they should under the Shapley value of 

v* but players 1 and 4 have the right to block the alteration of the network g to g’ under 

which the payoff vector of Myerson allocation rule coincides with the Shapley value of 

v*. 

  

3.4 An Alternative Allocation Rule    

 
When Myerson (1977) dealt with TU games with communication structures he 

proposed two fairness axioms that should be satisfied when distributing payoffs to 

players. What these axioms characterized was an extension of Shapley value to TU 

games with a communication structures setting. Again the payoff to a player is 

determined by his marginal contribution to coalitions but the value of a coalition is the 

value of the network found by restricting the original network to that coalition. So 

Myerson allocation rule takes into account only the restrictions of the given network to 
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coalitions but does not take into account alternative networks. Jackson (2003b) proposes 

an alternative approach which does not take the network structure as fixed but assumes 

that it can be changed. “Here, I take the view that the network is not a permanent fixture, 

but is something that is either being formed or might change in the future.” (Jackson 

2003c: 4). Thus he concludes that the allocation of value at a given network can and 

should depend on the value that might accrue to alternative potential networks. He 

criticizes equal bargaining power and component balancedness axioms and proposes an 

alternative allocation rule that is again based on Shapley-like calculations. 

 

Given a value function v, he defines its monotonic cover v^ by  

 v^(g) = max v(g’)            at any g ∈ G. 
               g’ ⊂ g 
 
and the allocation rule he proposes is:  

 Yi
PBFN(g,v) =  

(gN)v^
v(g)    ∑

⊂ {i} \ N S
( v^(gS U {i}) - v^(gS ))  (

!
)!1(!

n
SnS −−## ) 

 
It is assumed here that there exists at least one network that generates a positive 

value so that the value function is not completely trivial. Note that under this assumption 

we have v^(gN) > 0.                        

This rule is called the Player-Based Flexible Network allocation rule. 

 

Note that for each S ⊂ N, the monotonic cover v^ associates with the network gS 

the maximum value the players in S can generate assuming that the players in N \ S are 

totally isolated. Here, Jackson’s argument is similar to the argument we proposed for the 
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coincidence of payoff vector of Myerson allocation rule at some g with the Shapley 

value of v*, that is the allocation of value should depend on the value of efficient 

networks coalitions can form.  

 

Returning back to the problem of coincidence of the payoff vector of Myerson 

allocation rule at some g, with the Shapley value of the associated TU game we see that 

one can obtain another coincidence result if the Player-Based Flexible Network 

allocation rule is chosen instead of the Myerson allocation rule. 

Proposition 6: Given any v ∈ V such that there exists g’∈ G such that v(g’) > 0, 

and any g ∈ G, the following are equivalent: 

1) g is efficient relative to v, 

2) YPBFN(g,v) = ϕ (v*), 

3) g is strongly stable with respect to the Player-Based Flexible Network allocation 

rule and value function v. 

Proof: 1) ⇒ 2) 

Assume that g is efficient relative to v. Then 
(gN)v^

v(g) = 1 since v^(gN) = max 

v(g’), 
                                                                                                                 g’ ⊂ gN 

thus YPBFN(g,v) = ∑
⊂ {i} \ N S

( v^(gS U {i}) - v^(gS )) (
!

)!1(!
n

SnS −−## ) for every i ∈ N.  

Since v^(gS) = v*(S) for every S ⊂ N we have Yi
PBFN(g,v) = ϕi (v*) for every i 

∈N.  

2) ⇒ 3)  
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Assume YPBFN(g,v) = ϕ (v*). We know that Shapley value distributes the value  

 
v*(N) = max v(g’) so we have ∑

⊂ {i} \ N S
 Yi

PBFN(g,v) = max v(g’) that  is g is efficient.  

  g’ ⊂ gN                                                                         g’ ⊂ gN   

                                                                                                                                                                                               
Take any S ⊂ N and assume that S can alter the network g to another network g’. Note 

that ∑
⊂ {i} \ N S

( v^(gS U {i}) - v^(gS ))  (
!

)!1(!
n

SnS −−## ) part of the formula does not depend 

on the particular network g, these parts are equal for g and g’. But since g is efficient 

v(g) ≥ v(g’) and 
(gN)v^

v(g)  ≥ 
(gN)v^

)v(g' .  Thus we have 
(gN)v^

v(g)   ∑
⊂ {i} \ N S

( v^ (gS U {i}) - v^ 

(gS ))   (
!

)!1(!
n

SnS −−## ) ≥ 
(gN)v^

)v(g'    ∑
⊂ {i} \ N S

( v^ (gS U {i}) - v^ (gS ))  

(
!

)!1(!
n

SnS −−## ) for every i ∈ S. That is S cannot improve by altering the network g. 

Since our choice of S was arbitrary, no coalition can improve by altering the network g, 

that is g is strongly stable with respect to YPBFN(g,v) and v. 

3)⇒ 1)  

Assume that g is strongly stable with respect to the Player-Based Network allocation 

rule and value function v, but suppose that g is not efficient with respect to v. Then there 

exists a g’ ∈ G such that v(g’) > v(g), which implies that 
(gN)v^

)v(g'  > 
(gN)v^

v(g) . Now take 

any i ∈ N again since ∑
⊂ {i} \ N S

( v^(gS U {i}) - v^(gS))  (
!

)!1(!
n

SnS −−## ) part of the 
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calculation does not depend on the particular network g, these parts are equal for g and 

g’ for every i ∈ N . Then we have 
(gN)v^

)v(g'   ∑
⊂ {i} \ N S

( v^(gS U {i}) - v^(gS ))  

(
!

)!1(!
n

SnS −−## ) >    
(gN)v^

v(g) ∑
⊂ {i} \ N S

   ( v^ (gS U {i}) - v^ (gS ))  (
!

)!1(!
n

SnS −−## ) for 

every i ∈ N. Since the grand coalition N can alter the network g to g’ and since the 

above inequality holds for  

every i ∈ N, we have that N can improve upon g by deviations, which contradicts with 

the fact that g is strongly stable. So our assumption was wrong, that is g is efficient with 

respect to v.  
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CHAPTER IV 

 
CONCLUSION 

 

In his study on TU games with communication structures, Myerson (1977) 

proposed an allocation rule that was an extension of Shapley value to the TU games with 

a communication structures setting. Later it was shown that this rule has an extension to 

the more general networks setting we used in this study. Myerson allocation rule is 

based on Shapley-like calculations and the payoff  to a player is determined by his 

marginal contributions to all possible coalitions in the networks setting. So given a value 

function defined on networks we derived a TU game v* from v and we started with the 

question of whether Myerson allocation rule’s payoff vector coincide with the Shapley 

value of the associated TU game v* on some set of networks. Due to the particular way 

we derived v* from v, the coincidence of Myerson allocation rule’s payoff vector with 

the Shapley value of the associated TU game v* on some network g would imply the 

efficiency of that network.  

We have found that without any assumptions on the value function it is possible 

that the coincidence is satisfied on none of the networks a society can form. Under the 

assumption of monotonicity of the value function v, we have shown that the set of 

strongly stable networks lies within the set of networks satisfying the coincidence and 

there always exists a network satisfying the coincidence. The relation of pairwise 

stability to the networks satisfying coincidence is also examined under the assumption of 
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monotonicity of v. But still there are networks satisfying coincidence and which are not 

stable under the stability definitions at hand.  

 

Applying the “code of rights” idea of Sertel (2002) to the netwoks setting we 

proposed a new notion of stability. Under this new code of rights, a coalition cannot 

deviate without the consent of some other members of the society even if that coalition 

has the ability to deviate and will benefit from that deviation. We have shown that any 

network satisfying coincidence will be stable under componentwise stability. But the 

converse is not true. A line of research following this study would naturally be to find 

some “finer” notion of stability under which the set of coincidence will exactly coincide 

with the stable set of networks. 

Finally keeping the Shapley value and strong stability notions fixed, we used 

another allocation rule, which is again based on Shapley-like calculations, proposed by 

Jackson (2003c). We have shown that the set of networks satisfying the coincidence of 

the payoff vector of this new allocation rule with Shapley value of the associated TU 

game v* exactly coincides with the set of strongly stable networks with respect to this 

allocation rule and value function v, which is also the set of efficient networks.  

 

Using other values for TU games and searching for the proper stability concept, 

allocation rule pair that will satisfy the coincidence property, one can carry out another 

line of research following this study.        
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