
PARALLEL TEXT RETRIEVAL ON PC
CLUSTERS

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

Aytül Çatal

September, 2003

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Cevdet Aykanat(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Prof. Dr. Özgür Ulusoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Uğur Doğrusöz

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii

ABSTRACT

PARALLEL TEXT RETRIEVAL ON PC CLUSTERS

Aytül Çatal

M.S. in Computer Engineering

Supervisor: Prof. Dr. Cevdet Aykanat

September, 2003

The inverted index partitioning problem is investigated for parallel text retrieval

systems. The objective is to perform efficient query processing on an inverted

index distributed across a PC cluster. Alternative strategies are considered and

evaluated for inverted index partitioning, where index entries are distributed ac-

cording to their document-ids or term-ids. The performance of both partitioning

schemes depend on the total number of disk accesses and the total volume of

communication in the system. In document-id partitioning, the total volume of

communication is naturally minimum, whereas the total number of disk accesses

may be larger compared to term-id partitioning. On the other hand, in term-id

partitioning the total number of disk accesses is already equivalent to the lower

bound achieved by the sequential algorithm, albeit the total communication vol-

ume may be quite large. The studies done so far perform these partitioning

schemes in a round-robin fashion and compare the performance of them by simu-

lation. In this work, a parallel text retrieval system is designed and implemented

on a PC cluster. We adopted hypergraph-theoretical partitioning models and

carried out performance comparison of round-robin and hypergraph-theoretical

partitioning schemes on our parallel text retrieval system. We also designed and

implemented a query interface and a user interface of our system.

Keywords: Parallel text retrieval, inverted index, parallel query processing, in-

verted index partitioning, system performance.

iii

ÖZET

PC KÜMELERİ ÜZERİNDE PARALEL METİN ERİŞİMİ

Aytül Çatal

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Cevdet Aykanat

Eylül, 2003

Ters dizin bölümleme problemi paralel metin erişim sistemleri için araştırıldı.

Hedef, bir PC kümesi üzerine dağıtılmış ters dizin üzerinde hızlı ve verimli

sorgulamayı başarmaktır. Dizin kayıtlarının belge numaraları veya kelime

numaralarına göre dağıtıldığı ters dizin bölümlemesi için alternatif stratejiler

düşünülmüş ve değerlendirilmiştir. Her iki bölümleme planının performansı

toplam disk erişim sayısına ve sistemdeki toplam iletişim hacmine bağlıdır. Belge

numarası bazlı bölümlemede, toplam disk erişim sayısı kelime numarası bazlı

bölümleme ile kıyaslandığında daha büyük olabilirken, toplam iletişim hacmi

doğal olarak en az miktardadır. Diger bir taraftan, kelime numarası bazlı

bölümlemede, toplam iletişim hacmi oldukça büyük olabilse de, toplam disk

erişim sayısı seri algoritma tarafından ulaşılan alt sınıra zaten eşittir. Şu ana

kadar yapılmış çalışmalar, bu bölümleme planlarını sıralı bir biçimde icra etmek-

tedirler ve performanslarını simulasyonla karşılaştırmaktadırlar. Bu çalışmada,

paralel metin erişim sistemi bir PC kümesi üzerinde tasarlandı ve programlan-

ması gerçekleştirildi. Hiperçizge kuramsal bölümleme modellerini seçtik ve sıralı

ve hiperçizge kuramsal bölümleme planlarının performans karşılaştırmasını par-

alel metin erişim sistemimiz üzerinde gerçekleştirdik. Bundan başka, sistemimizin

sorgulama arayüzünü ve kullanıcı arayüzünü tasarladık ve programlanmasını

gerçekleştirdik.

Anahtar sözcükler : Paralel metin erişimi, ters dizin, paralel sorgulama, ters dizin

bölümlemesi, sistem performansı.

iv

Acknowledgement

I would like express my gratitude to my supervisor Prof. Dr. Cevdet Aykanat

for his trust, invaluable guidance and help for my thesis.

Special thanks go to Berkant Barla Cambazoğlu. Throughout my thesis, he

has always been very helpful to me. His invaluable ideas, suggestions and help

have been essential to my thesis. I appreciate all the time that he has spent for

the development of my thesis.

I also would like to thank Prof. Dr. Cevdet Aykanat , Prof. Dr. Özgür

Ulusoy, Assist. Prof. Dr. Uğur Doğrusöz and Berkant Barla Cambazoğlu for

taking their time for reading my thesis and commenting on it.

I thank my housemate Sultan Erdoğan for her invaluable friendship and sup-

port. I would like to express my thanks to all of my friends for making life

enjoyable.

My parents, my sister and my brother have always been on my side. I love

them very much and I would like to express my gratitude to them for their endless

love and support.

v

Contents

1 Introduction 1

2 Sequential Text Retrieval 4

2.1 Indexing . 4

2.1.1 Index Structure . 4

2.1.2 Stop word elimination, case folding and stemming 7

2.2 Query Processing . 8

3 Parallel Text Retrieval 11

3.1 Inverted Index Partitioning for Parallel Query Processing 14

3.1.1 Inverted Index Partitioning 15

3.1.2 Parallel Query Processing 16

3.2 Inverted Index Partitioning Strategies for Parallel Query Processing 17

3.2.1 Document-Id Partitioning 17

3.2.2 Term-Id Partitioning . 20

3.3 Related Work . 23

vi

CONTENTS vii

4 Implementation 27

4.1 Preprocessing Modules . 27

4.1.1 Data Set Generation . 28

4.1.2 Query Set Generation . 30

4.2 Parallel Implementation . 30

4.2.1 Communication . 32

4.3 Data Structures . 33

4.3.1 The Trie Data Structure 33

4.3.2 Accumulators . 34

4.4 Simulation of the Disk . 34

4.5 Query Interface . 35

4.6 User Interface . 37

5 Experimental Results 40

5.1 Scalability . 40

5.1.1 Document-Id Partitioning 41

5.1.2 Term-Id Partitioning . 42

5.2 Skewness . 44

5.2.1 Document-Id Partitioning 44

5.2.2 Term-Id Partitioning . 47

5.3 Document-Id versus Term-Id Partitioning 49

CONTENTS viii

5.4 An Alternative System Structure 50

6 Conclusion 52

List of Figures

2.1 A sample collection. 6

2.2 The cosine of θ is adopted as sim(dj, q). 9

3.1 Types of memory organizations. 12

3.2 Inter-query Parallelism. 13

3.3 Intra-query Parallelism. 14

3.4 Query processing for document-id partitioning scheme. 16

3.5 2-way round-robin document-id partitioning of our sample collection. 18

3.6 2-way document-id partitioning of our sample collection. 19

3.7 2-way round-robin term-id partitioning of our sample collection. . 21

3.8 2-way term-id partitioning of our sample collection. 22

3.9 2-way, load balanced term-id partitioning of our sample collection. 23

4.1 An example on the trie data structure. 34

4.2 ABC website. 36

4.3 The query interface. 37

ix

LIST OF FIGURES x

4.4 A query is inserted. 38

4.5 The answer set returned for the query. 39

4.6 A document returned for the query. 39

5.1 18,000 distinct terms of the collection is sent in a query set. . . . 41

5.2 18,000 distinct terms of the collection is sent in a query set. . . . 42

5.3 A single document is sent as a query. 44

5.4 The effect of uniform term distribution in a query set. 45

5.5 Comparison between uniform and skewed query sets. 46

5.6 The effect of uniform term distribution in a query set. 47

5.7 Comparison between uniform and skewed query sets. 49

5.8 An alternative system structure. 50

List of Tables

3.1 A comparison of the previous works on inverted index partitioning 26

4.1 Values used for the cost components in the simulation 35

xi

Chapter 1

Introduction

In traditional text retrieval systems, terms are used to index and retrieve doc-

uments. An index is a structure that is common to all text retrieval systems,

and in general form, it identifies for each term a list of documents that the term

appears in. The users formulate their information needs through the queries,

which are basically composed of terms and submit their queries to the system.

For each submitted user query, the text retrieval system retrieves the documents

that are relevant to the query, rank them according to the degree of similarity to

the query, and returns them to the user for presentation.

In recent years, the internet has become very popular being an indispensable

resource for information. The number of the internet users increases, as the access

to the internet is getting easier and cheaper. The growing use of the internet has

a significant influence and importance on text retrieval systems. The size of the

text collection available online is growing at an astonishing rate. At the same

time, the number of users and the queries submitted to the text retrieval systems

are also increasing very rapidly [17, 1]. The staggering increase in the data volume

and query processing load create new challenges for text retrieval research.

In order to evaluate text retrieval systems, two basic criteria are used: Effec-

tiveness and efficiency. Effectiveness is commonly measured in terms of precision

and recall [8]. Precision is the quality of the documents presented to the user,

1

CHAPTER 1. INTRODUCTION 2

that is, how many of the retrieved documents are relevant. Recall is the measure

of how many relevant documents are retrieved over the whole collection. On the

other hand, efficiency measures how fast the results are obtained. This may be

computed using the standard empirical statistics measures such as the response

time and the throughput. The throughput refers to the number of queries an-

swered in a specific unit of time. So far, most research in text retrieval area has

centered around the effectiveness. However, most users have been satisfactory

with the accuracy of text retrieval systems, whereas they have become in favor of

the systems that respond in a short time [9]. In recent years, in order to increase

the efficiency of text retrieval systems, various attempts have been made to intro-

duce parallelism to the text retrieval systems [20]. In this thesis, our main focus

is on the inverted index organizations for efficient query processing in parallel

text retrieval systems.

For efficient query processing, an indexing mechanism has to be used in text

retrieval systems. There exists different indexing techniques in the literature.

Some important ones are suffix arrays, signature files and inverted indices [28].

Each of them have their own strong and weak points. Until the early 90’s signa-

ture files and suffix arrays were very popular, however along the years inverted

indices have been traditionally the most popular indexing technique due to its

simplicity, robustness and good performance. Therefore, in this work, we consider

inverted indices as our indexing mechanism.

In parallel systems, in order to index the collection using inverted indices, a

strategy on the distribution of the inverted indices has to be followed. The works

in [27, 11, 18] describe two basic partition strategies to organize the index. In the

first partitioning strategy, an inverted index is generated for the whole collection

and distributed among the processors according to the term-ids. In the second

one, distribution of the inverted index among the processors is performed based

on the document-ids (Ids are associated with the terms and the documents for

identification).

In query processing, many models have been proposed to determine the rele-

vance of the documents to the terms of the query. Among these, the vector-space

CHAPTER 1. INTRODUCTION 3

model is the most widely accepted model [28, 5], as its performance is superior

or almost as good as the known alternatives. In this work, we employed the

vector-space ranking model with cosine similarity measure by using tf-idf (term

frequency-inverse document frequency) weighting metric, which is one of the well-

known metrics that gives good retrieval effectiveness [28, 29].

In this thesis, we have designed and implemented a parallel text retrieval

system. For efficient query processing, we have worked on different inverted index

organizations. We have investigated how these index organizations affect the

system by determining the critical parameters that these organizations depend on.

Furthermore, in our implementation, we have adapted the data structures that

are efficient for the storage and time requirements of our text retrieval system. We

have also considered the effectiveness of our system by choosing the vector-space

model as our retrieving and ranking method for the documents in the collection

of the system.

The rest of the thesis is as follows. Chapter 2 briefly presents sequential text

retrieval systems. Chapter 3 overviews parallel text retrieval systems by giving

the related work on the inverted index partitioning and our objective in this

study. Chapter 4 describes the implementation in detail. Chapter 5 gives the

experimental results. Finally, we conclude and point at some future work.

Chapter 2

Sequential Text Retrieval

2.1 Indexing

2.1.1 Index Structure

A naive way to search a query on a set of documents is to scan the whole text

sequentially. This option is applicable for small document collections. However,

when the document collection is large, it is advisable to build an index to speed up

the search. Indexing is one of the most important parts for the process of making

the collection efficiently searchable. There are three main indexing techniques:

suffix arrays, signature files and inverted indices. We emphasize on inverted

indices. Suffix arrays and signature files were popular until the early 90’s to

index the collections. However, nowadays inverted indices outperform them, and

have become the best choice among indexing techniques [28]. Many commercial

and academic text retrieval systems use inverted indices [2]. For instance, many

web search engines and journal archives use them.

Suffix trees are an indexing mechanism, which treats the text as a one long

string. Each position in the whole collection is considered as a suffix of the

collection. That is, the string starting from that position to the end of the

4

CHAPTER 2. SEQUENTIAL TEXT RETRIEVAL 5

collection is identified as a suffix. So, two suffixes starting at different positions

are lexicographically distinct. It is important to note that not all the positions

in the collection need to be indexed. Therefore, in the collection index points are

determined such that only retrievable suffixes are indexed [2].

Signature files are a word-oriented method for indexing documents, which

means that the whole collection is taken as a sequence of words. A hash function is

used to map every term of the document, accordingly each document is associated

a signature, where the bits of the signature corresponding to those hash values

are set to one [2, 6].

An inverted index is typically composed of two elements: an index for each

term in the lexicon (vocabulary), where the set of distinct words in the whole

collection is referred as collection vocabulary and an inverted list for each index.

An inverted list entry is known as a posting and keeps a document-id, weight pair.

The index entry of a term is composed of the id of the term and a pointer to the

start of the inverted list of the term [2].

In general, an inverted index structure is based on a word-oriented mechanism

to index a collection. This assumption limits the types of queries to be answered

to some extent, for instance phrase search becomes costly to perform. Suffix

trees are efficient for phrase search. However, suffix trees have a high space

requirement. Suffix arrays are implemented to reduce space requirements of suffix

trees. The common shortcoming of suffix trees and suffix arrays is their costly

construction process. The construction of both signature files and inverted indices

is rather easy. On the other hand, signature files have a high search complexity

compared to other techniques. Therefore, this technique is not preferred for very

large texts.

Each of these indexing methods have their own strong and weak points. Gen-

erally, in applications where the queries are based on words and when the size of

the collection is large, inverted index outperforms other techniques considerably.

Also, due to its simplicity and good performance, inverted index mechanism has

been the best choice of indexing techniques along the years [2].

CHAPTER 2. SEQUENTIAL TEXT RETRIEVAL 6

T
= {
 t
0
,
t
1
,
t
2
,
t
3
,
t
4
,
t
5
,
t
6
,
t
7,
t
8
,
t
9
}

D
 = {
d
0
,
d
1
,
d
2
,
d
3
,
d
4
,
d
5
,
d
6
,
d
7
,
d
8
,
d
9
}

a) A sample document-term collection

c
) The inverted index structure
b) The document-term matrix

d
0
 = {
 t
0
,
t
1
,
t
3
,
t
6
}
 d
1
 = {
 t
1
,
t
4
,
t
5
,
t
6
}

d
2
= {
 t
0
,
t
3
,
t
5
,
t
6
}
 d
3
= {
 t
5
,
t
7,
t
8
}

d
4
 = {
 t
3
,
t
7
}
 d
5
 = {
 t
2
,
t
3
,
t
6
}

d
6
 = {
 t
1
,
t
3
,
t
4
,
t
5
,
t
9
}
 d
7
 = {
 t
0
,
t
5
}

d
8
 = {
 t
4
,
t
7,
t
8
}
 d
9
 = {
 t
4
,
t
5
,
t
9
}

 t
0

 t
1

 t
2

 t
3

 t
4

 t
5

 t
6

 t
7

 t
8

 t
9

d
0,
w
00
d
2,
w
20
 d
7,
w
70

d
0,
w
01
d
1,
w
11
 d
6,
w
61

d
5,
w
52

d
0,
w
03
 d
2,
w
23
 d
4,
w
43
 d
5,
w
53
 d
6,
w
63

d
1,
w
14
 d
6,
w
64
 d
8,
w
84
 d
9,
w
94

d
1,
w
15
 d
2,
w
25
 d
3,
w
35
 d
6,
w
65
 d
7,
w
75
 d
9,
w
95

d
0,
w
06
 d
1,
w
16
 d
2,
w
26
 d
5,
w
56

d
3,
w
37
 d
4,
w
47
 d
8,
w
87

d
3,
w
38
d
8,
w
88

d
6,
w
69
 d
9,
w
99

t
0
 t
1
 t
2
 t
3
 t
4
 t
5
 t
6
 t
7
 t
8
 t
9

d
0
 X
 X
 X
 X

d
1
 X
 X
 X
 X

d
2
 X
 X
 X
 X

d
3
 X
 X
 X

d
4
 X
 X

d
5
 X
 X
 X

d
6
 X
 X
 X
 X
 X

d
7
 X
 X

d
8
 X
 X
 X

d
9
 X
 X
 X

Figure 2.1: A sample collection.

Figure 2.1-a shows our sample document-term collection, which we will use

to describe our models and other inverted index models. The document set and

term set of the sample collection are called D and T , respectively. There are 10

documents, 10 terms and 33 posting entries in the collection. We use P to denote

the posting set. Figure 2.1-b shows the document-term matrix representation of

our collection. This is a sparse matrix, as documents do not include most of the

terms. Along with these, Figure 2.1-c demonstrates the inverted index structure

of our collection.

In general, as the collection grows larger, inverted lists reach to a size that

cannot be stored in main memory. The index part is usually small to fit into

main memory, and inverted lists are stored on the disk [28].

CHAPTER 2. SEQUENTIAL TEXT RETRIEVAL 7

2.1.2 Stop word elimination, case folding and stemming

In order to improve the effectiveness of the indexing techniques, there are three

important mechanisms that are widely used: Stop word elimination, case folding

and stemming. A stop word list is a list of most frequently used words of the

language such as “the”, “a”, “an”, “and” and etc... These words are eliminated

from the index. It is very advantageous to use a stop word list. Since this kind

of words appear in almost every document, their inverted lists are very long.

Therefore indexing of these common words increases storage cost, besides that

retrieving the postings of their inverted lists raises the search time considerably.

Furthermore, as they are common in many documents, indexing them does not

improve effectiveness. Consequently, most text retrieval systems eliminate stop

words before indexing.

The other process is case folding, which is simply replacing all uppercase

letters of a word with lowercase equivalents. For example, all combinations of a

word such as “mpi”, “MPI”, “Mpi” will be indexed and searched as “mpi”. This

process also makes the search easier and faster, and most of the users do not

differentiate between case sensitive and case insensitive queries. Also, it reduces

the indexing structure size by decreasing the number of distinct terms.

Stemming is reducing the word to its grammatical root by stripping one or

more suffixes off the word. For example, the word “stem” is the stem for the

variants stemmed, stemming and stems. Stemming is accepted as a factor that

enhances the retrieval performance, because it lessens the variants of a root word

to a common concept. Furthermore, it decreases the size of the indexing structure

as the number of distinct terms is reduced.

From these three mechanisms, we employed only stop word elimination and

case folding. Implementation of stemming process requires a detailed knowledge

of the language in question and a great deal of effort. There are many exceptions

of the rules of a language, and also one finds exceptions to exceptions and so

on. A stemmer used as an example in [28] is given with more than five hundreds

rules and exceptions. Therefore, we preferred not to incorporate stemming into

CHAPTER 2. SEQUENTIAL TEXT RETRIEVAL 8

our indexing mechanism.

2.2 Query Processing

In this section, we will examine two types of queries: Boolean and ranked queries.

Also, we will discuss shortly how to process them.

The oldest way to build a query is combining the terms with Boolean operators

like AND, OR and NOT. For example, consider the following query: (text OR data

OR image) AND retrieval, where the parenthesis indicate operation order. This

query returns the documents including the phrases text retrieval, data retrieval

and image retrieval. Note that, the words in the phrases need not be adjacent,

nor appear in any particular order.

With the classical Boolean text retrieval systems, ranking of the retrieved

documents is normally not provided. A document either matches the Boolean

query or not. Additionally, obtaining relevant results is not a matter of how

the query is constructed with Boolean operators. Because, connecting the query

terms with the AND operator would cause many documents, which are likely

to be relevant, not to appear in the result set. Using OR connectives would be

ineffective, since too many documents will match and very few of them are likely

to be relevant to the query.

The problems based on Boolean queries are solved with ranked queries. In

order to rank the queries, different methods are used in text retrieval systems.

Some of them are the vector-space model, probabilistic models, fuzzy-set models

and neural network models. Among them, the most popular one is the vector-

space model due to its performance and simplicity. For further information about

other models, one can check [2].

In the vector-space model, the degree of the similarity between the query and

each document in the collection is calculated. The relevance of the documents

matching the query is determined by sorting the retrieved documents of their

CHAPTER 2. SEQUENTIAL TEXT RETRIEVAL 9

d
j

Q

θ

Figure 2.2: The cosine of θ is adopted as sim(dj, q).

degree of similarity in decreasing order. In the vector-space model, both the

documents and the queries in the collection are represented as T dimensional

vectors as shown in Figure 2.2. T is the total number of index terms in the

collection. The vector-space model measures the degree of the similarity of the

document dj with respect to the query q by calculating the correlation between the

vectors
−→
dj and −→q . This correlation is given by the cosine similarity measure [21],

which is shown in Equation 2.1. In the equation, ‖−→q ‖ and ‖
−→
dj‖ are the norms

of the query and the document vectors respectively, and ‖.‖ denotes the inner

product operation. Since ‖−→q ‖ is the same for all the documents, it does not affect

the ranking, while ‖
−→
dj‖ provides a normalization in the space of documents [2].

sim(−→q ,
−→
dj) =

−→q ·
−→
dj

‖−→q ‖ × ‖
−→
dj‖

=

∑T
i=1 wi,j × wi,q

√

∑T
i=1 w2

i,j ×
∑T

i=1 w2
i,q

(2.1)

Index term weight wi,j, which is the weight of term ti in a particular document

dj, can be calculated in several ways [19]. Here, we only mention the most

effective one that tries to balance the intra-cluster similarity and the inter-cluster

dissimilarity, as most successful clustering algorithms try to do.

Intra-cluster similarity is measured by the frequency of term ti inside docu-

ment dj. This is called as the tf factor, which is a measure of how well that term

expresses the document content. Inter-cluster similarity considers the frequency

of term ti in the whole collection. It is meant that as the frequency of a term

increases in the whole collection, it becomes less important for the particular

document dj, since that term could not distinguish that document from other

documents in the collection. Therefore, this measure is referred to as inverse doc-

ument frequency, idf factor. This factor is calculated as shown in Equation 2.2,

CHAPTER 2. SEQUENTIAL TEXT RETRIEVAL 10

where N is the total number of documents in the collection and ni is the number

of documents in which term ti appears.

idfi = log
N

ni
(2.2)

The best known term-weighting metric, which is called tf − idf metric, uses

these factors. It is given in Equation 2.3, which is the multiplication of the term

frequency by the inverse document frequency. In our work, we also preferred to

use tf − idf metric with the vector-space model.

wi,j = fi,j × log
N

ni
(2.3)

Chapter 3

Parallel Text Retrieval

As the electronic text available online and query processing loads increase, text

retrieval systems are turning to distributed and parallel storage and searching. In

this chapter, we will briefly review parallel architectures and give some approaches

to parallel text retrieval.

Parallel computing is the simultaneous use of more than one computational

resource to solve a problem. The parallel formulation of a problem can be per-

formed with respect to the instructions and/or the data that is manipulated by

the instructions of the problem. Not all the problems have efficient parallel formu-

lations. It means that it may be more costly dividing the problem and assigning

it to multiple processors. However, as long as instruction and/or data require-

ments of the problem is large, and the problem is suitable for decomposition into

subproblems, it is more beneficial to solve the problem in parallel [14].

In parallel architectures, processors can be combined in various ways.

Flynn [7] describes a taxonomy for classifying parallel architectures. This taxon-

omy is based on concept of streams, which are a sequence items operated on by a

CPU. These streams can either be instructions to the CPU or data manipulated

by the instructions. Four broad classes are described for parallel architecture:

• SISD - Single Instruction Single Data Stream

11

CHAPTER 3. PARALLEL TEXT RETRIEVAL 12

CPU
1
 CPU
2
 CPU
x

Shared

Memory

Module

Network

a) Shared Memory

CPU
1
 CPU
2

Network

b) Distributed Memory

CPU
x

Memory
 Memory
 Memory

Figure 3.1: Types of memory organizations.

• SIMD - Single Instruction Multiple Data Stream

• MISD - Multiple Instruction Single Data Stream

• MIMD - Multiple Instruction Multiple Data Stream

The SISD class includes the traditional uniprocessor personal computers, run-

ning sequential programs. The SIMD class describes the architecture, where N

processors operate on N data streams by executing the same instruction at the

same time. MISD architecture is relatively rare. In this class, N processors oper-

ate on the same data stream, where each processor executes its own instruction

stream simultaneously on the same data item [13]. The MIMD class is the most

compelling and the most popular parallel architecture. In this architecture N

processors operate independently N different instruction streams on N different

data stream. The processors in this architecture may have their own memories

or share the same memory. These are called as shared memory or distributed

CHAPTER 3. PARALLEL TEXT RETRIEVAL 13

Central

Processor

Search

Engine

Search

Engine

Search

Engine

Search

Engine

Search

Engine

Search

Engine

User

Query

User

Query

Result
 Result

Figure 3.2: Inter-query Parallelism.

memory architectures that are illustrated in Figure 3.1.

When parallel text retrieval architectures are examined, it is seen that there

are basically two general categories: Inter-query parallelism and intra-query par-

allelism. Inter-query parallelism means parallelism among queries. In this type,

user queries are collected by a central processor. The central processor sends each

query to an available client query processor, and queries are served concurrently

by the client processors. This means that each client processor behaves like an

independent search engine. This is demonstrated in Figure 3.2, which can be also

found in [2]. Since each query is served by a single processor, this architecture is

called inter-query parallelism.

In intra-query parallel architectures, a single query is distributed among the

processors. In this case, a central processor collects and redirects an incoming

user query to all client query processors. Each processor processes the incoming

query, constitutes its own partial answer set and returns them to the central

processor, where all the partial answer sets are merged to a single final result and

returned for presentation to the user. This architecture is named as intra-query

parallelism as all the client query processors cooperate to evaluate the same query.

This is depicted in Figure 3.3, which is shown also in [2].

In this work, we focus on intra-query parallelism on a shared- nothing MIMD

parallel architecture. This means that communication between the processors is

through messages, and each processor has its own local disk and memory.

CHAPTER 3. PARALLEL TEXT RETRIEVAL 14

Central

Processor

Search

Process

User

Query

Result

Search

Process

Search

Process

Search

Process

Search

Process

Subquery
/

Results

Figure 3.3: Intra-query Parallelism.

3.1 Inverted Index Partitioning for Parallel

Query Processing

As mentioned earlier, in a traditional text retrieval system, the efficiency is mea-

sured by the response time and the throughput of the system. The response time

to a query is affected by many factors. Mainly, these are the query-dependent,

collection-dependent and system-dependent factors. The number of the terms

in a query and the query term frequencies are in the query-dependent factors.

The size of the collection and the frequencies of the terms in the collection are

included in the collection-dependent factors. Lastly, the query processing time

is affected by the system-dependent factors such as disk and CPU performance

parameters.

In parallel query processing, some additional factors are included that affect

the query processing time. Some important ones are the parallel architecture

used, the number of processors, the network performance parameters and the

index organization.

The main interest in this thesis is inverted index partitioning on a shared-

nothing architecture, as mentioned previously. Inverted index partitioning is a

preprocessing step for parallel query processing and its organization has a crucial

effect on the efficiency of the system [9]. As the organization of the inverted index

heavily determines the time elapsed on the network and disk access [27, 18, 11, 24].

CHAPTER 3. PARALLEL TEXT RETRIEVAL 15

Besides the efficient usage of the network and the disks, the balance of the

storage costs of the disks should be taken into consideration while partitioning

the inverted index [27, 18, 11]. Assume that the system has K processors and

there are |P | posting entries in the collection, so each storage site in S = {S0,

· · · , SK−1} should be assigned to approximately an equal number of posting

entries to balance the storage, as shown in Equation 3.1. SLoad(Si) shows the

posting storage of site Si.

SLoad(Si) '
|P |

K
, for 0 ≤ i ≤ K − 1 (3.1)

3.1.1 Inverted Index Partitioning

Several ways can be followed while partitioning the inverted index of a collection.

The posting entries of the inverted index can be distributed among the processors

in a random manner, or by following a specific methodology. There are basically

two main methods for partitioning of the inverted index in parallel systems.

In the first method, the document-ids in the collection are evenly distributed

across the processors. Each processor is responsible from a different set of doc-

uments. Considering that the documents are evenly distributed, each processor

has a posting list of size that is given in Equation 3.1. Since this partitioning

is based on the document-ids, this organization is called document-id partition-

ing. The second method is term-id partitioning. The inverted index of the whole

collection is distributed across the processors according to the term-ids. In this

case, each processor is responsible from its own set of terms.

The reason that document-id or term-id partitioning methods are mainly used

is that they have some advantages in terms of system parameters. Document-id

partitioning balances the storage costs of the disks and also uses the network effi-

ciently by minimizing the total volume of communication in the parallel system.

On the other hand, term-id partitioning uses disks efficiently by reducing the

total volume of disk accesses in the system. We will discuss this in more detail

in Section 3.2.

CHAPTER 3. PARALLEL TEXT RETRIEVAL 16

Central

Broker

Index
 Server
0

Index
 Server
K

Index
 Server
1
User
i

q
i

a
i

q
i

q
i

q
i

PAS
0

PAS
1

PAS
K

Figure 3.4: Query processing for document-id partitioning scheme.

3.1.2 Parallel Query Processing

In this section, we will describe the processing of the queries on a shared-nothing,

intra-query parallel architecture. Typically, in a shared-nothing parallel system,

there is a central processor, which we name as central broker and a set of client

processors, which we call index servers. The central broker collects the incoming

user queries, inserts them in a queue and redirects the queries to the related

index servers. The index servers retrieve the documents based on the degree

of the similarity of the documents to the query, which is calculated based on

the vector-space model. The index servers form their partial answer sets, which

are composed of the retrieved document-ids and their weights and send them to

the central broker. The partial answer sets obtained from the index servers are

collected and merged by the central broker. Finally, using a ranking-metric the

central broker orders the documents according to their relevance and returns to

the user. The query distribution among the index servers and processing steps

differ somewhat depending on the index partitioning schemes.

Figure 3.4 illustrates query processing for document-id partitioning. In this

scheme, the central broker takes a query (qi) out of the queue and sends it to all

index servers. Each index server reads its own posting lists corresponding to the

terms of the query and forms its partial answer set (PAS). Partial answer sets

returned from each index server is merged and sorted by the central broker and

CHAPTER 3. PARALLEL TEXT RETRIEVAL 17

sent to the user as the final answer set (ai) of the query.

In term-id partitioning, when the central broker takes the query out of the

queue, it checks which index servers hold inverted lists of the query terms. Ac-

cordingly, the central broker breaks the query into subqueries and send them to

the related index servers. These index servers form their partial answer sets and

send them to the central broker. The central broker collects and merges all the

partial answer sets returned and sends the final answer set to the user.

3.2 Inverted Index Partitioning Strategies for

Parallel Query Processing

As mentioned in Section 3.1.1, there are two main inverted index partitioning

methods: Document-id and term-id partitioning. Several strategies can be fol-

lowed on the partitioning of the inverted index according to these two methods.

In this section, we will discuss these strategies by considering the system parame-

ters. Especially, we focus on the efficiency of the network and disk usage in terms

of the total volume of communication and the total number of disk accesses.

3.2.1 Document-Id Partitioning

In this partitioning scheme, the inverted index is distributed across the index

servers according to the document-ids, so each index server has a distinct set

of documents. This simplifies the communication of the index servers with the

central broker in a remarkable way. Recall that, for a user query, the index

servers send their partial answer sets, which contain the document-ids and their

weights, to the central broker through the network. Since each index server has

a distinct set of documents, there is no overlapping in the partial answer sets.

So, this scheme naturally achieves the minimum total volume of communication

through the network. However, in this partitioning scheme, the total number of

disk accesses may be large, since each index server has its own local inverted index

CHAPTER 3. PARALLEL TEXT RETRIEVAL 18

Assignment of postings to processors by document-ids

t
0
 t
1
 t
2
 t
3
 t
4
 t
5
 t
6
 t
7
 t
8
 t
9

d
0
 S
0
 S
0
 S
0
 S
0

d
1
 S
1
 S
1
 S
1
 S
1

d
2
 S
0
 S
0
 S
0
 S
0
 S
0

d
3
 S
1
 S
1
 S
1
 S
1
 S
1

d
4
 S
0
 S
0
 S
0

d
5
 S
1
 S
1
 S
1
 S
1
 S
1

d
6
 S
0
 S
0
 S
0

d
7
 S
1
 S
1
 S
1
 S
1

d
8
 S
0
 S
0

d
9
 S
1
 S
1

a) Inverted Index at disk site 0
 b) Inverted Index at disk site 1

i) Round-robin document-id partitioning

d
0,
w
00
d
2,
w
20

d
0,
w
01
d
6,
w
61

d
0,
w
03
 d
2,
w
23
 d
4,
w
43
 d
6,
w
63

d
6,
w
64
 d
8,
w
84

d
2,
w
25
 d
6,
w
65

d
0,
w
06
 d
2,
w
26

d
4,
w
47
 d
8,
w
87

d
8,
w
88

d
6,
w
69

d
7,
w
70

d
1,
w
11

d
5,
w
52

d
5,
w
53

d
1,
w
14
 d
9,
w
94

d
1,
w
15
 d
3,
w
35
 d
7,
w
75
 d
9,
w
95

d
1,
w
16
 d
5,
w
56

d
3,
w
37

d
3,
w
38

d
9,
w
99

 t
0

 t
1

 t
2

 t
3

 t
4

 t
5

 t
6

 t
7

 t
8

 t
9

 t
0

 t
1

 t
2

 t
3

 t
4

 t
5

 t
6

 t
7

 t
8

 t
9

Figure 3.5: 2-way round-robin document-id partitioning of our sample collection.

and a term may have postings on several disks. For a user query, all the index

servers that have the terms of the query access their disks to read the postings

lists of the corresponding terms. So, the total number of disk accesses in the

system may be quite large.

In the literature, document-id partitioning is performed in a round-robin fash-

ion [27, 18, 11]. Namely, the document-ids are distributed across the processors

one-by-one. Figure 3.5 illustrates partitioning of the inverted index of our sample

collection among two processors according to the document-ids in a round-robin

fashion.

CHAPTER 3. PARALLEL TEXT RETRIEVAL 19

 Assignment of postings to processors in document-id partitioning

b) Inverted Index at disk site 1
a) Inverted Index at disk site 0

 t
0

 t
1

 t
2

 t
3

 t
4

 t
5

 t
6

 t
7

 t
8

 t
9

 t
0

 t
1

 t
2

 t
3

 t
4

 t
5

 t
6

 t
7

 t
8

 t
9

i) 2-way document-id partitioning

t
0
 t
1
 t
2
 t
3
 t
4
 t
5
 t
6
 t
7
 t
8
 t
9

d
0
 S
0
 S
0
 S
0
 S
0

d
1
 S
0
 S
0
 S
0
 S
0

d
2
 S
0
 S
0
 S
0
 S
0
 S
0

d
3
 S
1
 S
1
 S
1
 S
1
 S
1

d
4
 S
1
 S
1
 S
1

d
5
 S
0
 S
0
 S
0
 S
0
 S
0

d
6
 S
1
 S
1
 S
1

d
7
 S
0
 S
0
 S
0
 S
0

d
8
 S
1
 S
1

d
9
 S
1
 S
1

d
0,
w
00
d
2,
w
20
 d
7,
w
70

d
0,
w
01
d
1,
w
11

d
5,
w
52

d
0,
w
03
 d
2,
w
23
 d
5,
w
53

d
1,
w
14

d
1,
w
15
 d
2,
w
25
 d
7,
w
75

d
0,
w
06
 d
1,
w
16
 d
2,
w
26
 d
5,
w
56

d
6,
w
61

d
4,
w
43
 d
6,
w
63

d
6,
w
64
 d
8,
w
84
 d
9,
w
94

d
3,
w
35
 d
6,
w
65
 d
9,
w
95

d
3,
w
37
 d
4,
w
47
 d
8,
w
87

d
3,
w
38
d
8,
w
88

d
6,
w
69
 d
9,
w
99

Figure 3.6: 2-way document-id partitioning of our sample collection.

As in document-id partitioning the total volume of communication is mini-

mum, it is precious to decrease the number of disk accesses. When a strategy

is followed for the partitioning of the inverted index by the document-ids, the

objective should be to reduce the number of the terms that is indexed at sev-

eral disks. This can be accomplished by clustering more related documents on

the same disks. Namely, by allocating the documents that have more terms in

common, the number of the terms that has postings on several disks can be min-

imized. In this respect, no strategy is followed to improve the efficiency of the

system in round-robin partitioning scheme.

The above idea is explained in Figure 3.6. Our objective is to minimize the

CHAPTER 3. PARALLEL TEXT RETRIEVAL 20

number of the terms that are indexed for both disks. Assume that all the terms

of the collection are queried once. In this example with such a query set, the

total number of disk accesses is 14. This is the number of the distinct terms that

appear only on one site plus two times the number of the terms that appear on

both sites, as these terms are accessed by both index servers. On the other hand,

in round-robin partitioning shown in Figure 3.5, there are 19 disk accesses with

the same formulation. Only for t2 there is one disk access while the other terms

are accessed twice in round-robin partitioning. Hence, by gathering the related

documents together, the total number of disk accesses is reduced by 26.3% in this

example partitioning.

3.2.2 Term-Id Partitioning

In term-id partitioning scheme, the inverted index of the collection is distributed

across the index servers based on the term-ids, so each index server is responsible

for a distinct set of terms. This minimizes the total number of disk accesses in

the system as a whole. The total number of disk accesses is already equivalent

to the lower bound achieved by the sequential algorithm. Since for a query term,

only one disk access is done by the index server, which has the postings of this

term. However, in this partitioning scheme, while the number of disk accesses is

minimum, the total volume of communication may be large. Two terms indexed

at different index servers may have postings that share the same documents. So,

partial answers sets transmitted from different index servers may include the same

documents. Repetition of the documents at the network causes increase in the

total volume of communication.

Studies so far focus on term-id partitioning in a round-robin fashion [27, 18,

11]. In this partitioning scheme, the term-ids are distributed among the proces-

sors one-by-one. Figure 3.7 shows partitioning of the inverted index of our sample

collection among two processors according to the term-ids in a round-robin fash-

ion.

When the partitioning of the inverted index is by the term-ids, the total

CHAPTER 3. PARALLEL TEXT RETRIEVAL 21

b) Inverted Index at disk site 1
a) Inverted Index at disk site 0

 t
0

 t
1

 t
2

 t
3

 t
4

 t
5

 t
6

 t
7

 t
8

 t
9

 t
0

 t
1

 t
2

 t
3

 t
4

 t
5

 t
6

 t
7

 t
8

 t
9

d
0,
w
00
d
2,
w
20
 d
7,
w
70

d
5,
w
52

d
1,
w
14
 d
6,
w
64
 d
8,
w
84
 d
9,
w
94

d
0,
w
06
 d
1,
w
16
 d
2,
w
26
 d
5,
w
56

d
3,
w
38
d
8,
w
88

d
0,
w
01
d
1,
w
11
 d
6,
w
61

d
0,
w
03
 d
2,
w
23
 d
4,
w
43
 d
5,
w
53
 d
6,
w
63

d
1,
w
15
 d
2,
w
25
 d
3,
w
35
 d
6,
w
65
 d
7,
w
75
 d
9,
w
95

d
3,
w
37
 d
4,
w
47
 d
8,
w
87

d
6,
w
69
 d
9,
w
99

i) Round-robin term-id partitioning

 Assignment of postings to processors by term-ids

t
0
 t
1
 t
2
 t
3
 t
4
 t
5
 t
6
 t
7
 t
8
 t
9

d
0
 S
0
 S
1
 S
0
 S
0

d
1
 S
1
 S
0
 S
0
 S
1

d
2
 S
0
 S
0
 S
1
 S
1
 S
1

d
3
 S
0
 S
1
 S
1
 S
0
 S
0

d
4
 S
0
 S
1
 S
1

d
5
 S
0
 S
1
 S
0
 S
1
 S
0

d
6
 S
0
 S
0
 S
1

d
7
 S
0
 S
1
 S
1
 S
1

d
8
 S
1
 S
0

d
9
 S
1
 S
1

Figure 3.7: 2-way round-robin term-id partitioning of our sample collection.

volume of communication should be taken into consideration, as it may be quite

large. Repetition of the documents at the network can be reduced by assigning

a document to a minimum number of index servers. By clustering more related

terms on the same index servers, the number of the documents that belong to

several disks can be decreased. The terms are said to be more related in the

sense that they appear in more common documents. In round-robin partitioning

scheme, the distribution of the documents among the processors is not considered,

in view of that, the size of the total volume of communication is not considered.

CHAPTER 3. PARALLEL TEXT RETRIEVAL 22

b) Inverted Index at disk site 1
a) Inverted Index at disk site 0

 t
0

 t
1

 t
2

 t
3

 t
4

 t
5

 t
6

 t
7

 t
8

 t
9

 t
0

 t
1

 t
2

 t
3

 t
4

 t
5

 t
6

 t
7

 t
8

 t
9

d
0,
w
00
d
2,
w
20
 d
7,
w
70

d
0,
w
01
d
1,
w
11
 d
6,
w
61

d
5,
w
52

d
0,
w
03
 d
2,
w
23
 d
4,
w
43
 d
5,
w
53
 d
6,
w
63

d
0,
w
06
 d
1,
w
16
 d
2,
w
26
 d
5,
w
56

d
1,
w
14
 d
6,
w
64
 d
8,
w
84
 d
9,
w
94

d
1,
w
15
 d
2,
w
25
 d
3,
w
35
 d
6,
w
65
 d
7,
w
75
 d
9,
w
95

d
3,
w
37
 d
4,
w
47
 d
8,
w
87

d
3,
w
38
d
8,
w
88

d
6,
w
69
 d
9,
w
99

t
0
 t
1
 t
2
 t
3
 t
4
 t
5
 t
6
 t
7
 t
8
 t
9

d
0
 S
0
 S
0
 S
1
 S
1

d
1
 S
0
 S
0
 S
1
 S
1

d
2
 S
0
 S
0
 S
0
 S
1
 S
1

d
3
 S
0
 S
0
 S
0
 S
1
 S
0

d
4
 S
0
 S
0
 S
1

d
5
 S
0
 S
0
 S
1
 S
1
 S
0

d
6
 S
0
 S
0
 S
1

d
7
 S
0
 S
0
 S
1
 S
1

d
8
 S
0
 S
1

d
9
 S
1
 S
1

 Assignment of postings to processors in term-id partitioning

i) 2-way term-id partitioning

Figure 3.8: 2-way term-id partitioning of our sample collection.

Figure 3.8 exemplifies what we discuss above. Our objective in this partition-

ing example of our sample collection is to reduce the total volume of commu-

nication by decreasing the number of the documents that appear on both sites.

When all the documents of the collection are requested once, the total number

of posting entries to be transmitted by both index servers will be 15. This is the

number of the distinct documents that appear only on one site plus two times

the number of the documents that appear on both sites, as these documents are

sent by both index servers. In round-robin partitioning shown in Figure 3.7, the

number of posting entries to be transferred is 19 with the same formulation. So,

relative to the round-robin partitioning by employing the proposed objective, the

total volume of communication is decreased by 21% in this example.

CHAPTER 3. PARALLEL TEXT RETRIEVAL 23

 Load balanced term-id assignment of postings to processors

b) Inverted Index at disk site 1
a) Inverted Index at disk site 0

 t
0

 t
1

 t
2

 t
3

 t
4

 t
5

 t
6

 t
7

 t
8

 t
9

 t
0

 t
1

 t
2

 t
3

 t
4

 t
5

 t
6

 t
7

 t
8

 t
9

i) Load balanced term-id partitioning

t
0
 t
1
 t
2
 t
3
 t
4
 t
5
 t
6
 t
7
 t
8
 t
9

d
0
 S
0
 S
0
 S
0
 S
1

d
1
 S
0
 S
0
 S
0
 S
1

d
2
 S
0
 S
0
 S
0
 S
1
 S
1

d
3
 S
0
 S
0
 S
0
 S
0
 S
1

d
4
 S
0
 S
0
 S
1

d
5
 S
0
 S
0
 S
0
 S
1
 S
1

d
6
 S
0
 S
1
 S
1

d
7
 S
0
 S
0
 S
1
 S
1

d
8
 S
0
 S
1

d
9
 S
1
 S
1

d
0,
w
00
d
2,
w
20
 d
7,
w
70

d
0,
w
01
d
1,
w
11
 d
6,
w
61

d
5,
w
52

d
0,
w
03
 d
2,
w
23
 d
4,
w
43
 d
5,
w
53
 d
6,
w
63

d
1,
w
14
 d
6,
w
64
 d
8,
w
84
 d
9,
w
94

d
1,
w
15
 d
2,
w
25
 d
3,
w
35
 d
6,
w
65
 d
7,
w
75
 d
9,
w
95

d
0,
w
06
 d
1,
w
16
 d
2,
w
26
 d
5,
w
56

d
3,
w
37
 d
4,
w
47
 d
8,
w
87

d
3,
w
38
d
8,
w
88

d
6,
w
69
 d
9,
w
99

Figure 3.9: 2-way, load balanced term-id partitioning of our sample collection.

3.3 Related Work

There are a number of papers about parallel text retrieval systems [27, 11, 18, 3,

10, 23, 15] in the literature. In this section, we will focus on there papers [27, 11,

18] that put emphasis on the organization of the inverted index, as it strongly

affects the performance of parallel text retrieval systems.

Jeong and Omiecinski [11] investigate round-robin term-id and document-id

partitioning schemes on a shared everything multiprocessor system with multiple

disks. They examine the performance of these partitioning schemes by simulation,

using a synthetic data set that is created by following Zipf’s law [21]. They use

CHAPTER 3. PARALLEL TEXT RETRIEVAL 24

a Zipf-like probability distribution that is based on the correlation between the

rank and the frequency of the terms in the collection. They use the Boolean

model to process the queries.

In term-id partitioning, they propose two heuristics to balance the storage

costs: Partition by Term I and Partition by Term II. In Partition by Term I,

instead of terms, posting lists are distributed evenly across the disks. Under the

assumption that the query term frequencies are uniform, their heuristic provides

approximately equal number of disk accesses. Their approach is described on our

sample inverted index in Figure 3.9. As can be seen in the figure, the postings

of sites 0 and 1 are 16 and 17, respectively. Namely, load balance is achieved by

this heuristic.

In the case that the query term frequencies are not uniform, they assumed

that term frequencies of the terms in the query could be estimated. Their other

heuristic, Partition by Term II, takes the access frequencies of the terms also into

consideration. They formulated this heuristic as balancing the sum of the posting

size multiplied by the term access frequencies.

Although Jeong and Omiecinski [11] point out some problems associated with

term-id and document-id partitioning, they do not mention how to solve them.

They emphasize the importance of balancing the storage costs of the disks and

propose the heuristics for term-id partitioning that are stated above. In their

heuristics, they do not consider the minimization of the total volume of com-

munication, which may become a problem in term-id partitioning. For example,

when all documents are requested once, their load balanced heuristic given in Fig-

ure 3.9 transfers 19 postings, while the example that clusters the related terms

together, depicted in Figure 3.8, transfers 15 postings.

Tomasic and Garcia-Molina [27] examine four methods to partition the in-

verted index on a distributed shared nothing system. These methods comprise

Disk, I/O Bus, Host and System organizations. The Disk and System organi-

zations are the same as the round-robin document-id and term-id partitioning

schemes respectively. In I/O Bus organization, documents are partitioned to the

I/O buses, then for each bus an inverted list is built and distributed across the

CHAPTER 3. PARALLEL TEXT RETRIEVAL 25

disks. In the Host organization the documents are partitioned to the hosts, then

for each host an inverted list is built and distributed across the disks. Namely, the

I/O Bus and Host organization differ in that, whether document-id partitioning is

done across the I/O buses or hosts. In their example, these two organizations are

same, as each host has exactly one I/O bus. They experiment the performance

of their methods by simulation with synthetic data sets. Queries are answered

by an answer set model, without examining the text of the documents. Also, the

Boolean model is used to process the queries.

In their work, the main focus is on the comparison of the performance of these

four partitioning schemes. The simulation results show that the Host organiza-

tion perform well for full-text systems while the System organization (term-id

partitioning) is better on the abstracts of the texts. Their results are reason-

able, because Host organization is a hybrid scheme of term-id and document-id

partitioning, so with this organization they balance the drawbacks of these two

schemes. Hence, the Host organization performs better than the other schemes.

Also, it is meaningful that the System organization (term-id partitioning) is better

on the abstracts. When the collection is composed of the abstracts, the posting

lists will be very short compared to a full-text system, and this prevents the

problem that the total volume of communication becomes very costly in term-id

partitioning.

Yates and Ribeiro-Neto [18] also investigate two partitioning schemes on a

shared nothing system: Global index organization and local index organization,

which are equivalent to round-robin term-id (System organization) and document-

id (Disk organization) partitioning respectively. Instead of using the Boolean

model they use the vector-space model as their ranking strategy. They experiment

the performance by a simulator that is coupled with a simple analytical model.

They partition the global index among the machines in lexicographical order by

assigning each of them roughly an equal portion of the whole index. In that

sense, they do balancing in term-id partitioning. Their results show that the

global index organization performs better than the local index organization in

the presence of fast communication channels. Their results in general support

the trade-offs in system parameters. For example, it is expected that term-id

CHAPTER 3. PARALLEL TEXT RETRIEVAL 26

Table 3.1: A comparison of the previous works on inverted index partitioning

Tomasic and Jeong and Yates and

Garcia-Molina Omiecinski Riberio-Neto

Year 1993 1995 1999

Target architecture DMA multi-disk PC NOW

Index residence disk disk disk

Ranking model boolean boolean vector-space

Partitioning model round-robin load-balanced load-balanced

Datasets synthetic synthetic real

Experimental setup simulation simulation simulation

partitioning gains superiority over document-id partitioning in the presence of

fast communication channels, as this lessens the problem with the total volume

of communication in term-id partitioning.

The main focus of the works done so far is based on the organization of the

inverted index. In these works, the performance of different inverted index parti-

tioning schemes is compared by simulation under different parameters. Table 3.1

gives the major points of the previous works done on inverted index partitioning.

Chapter 4

Implementation

In this work, we have designed and implemented a parallel text retrieval system.

In our system, we have investigated different partitioning schemes based on the

document-ids and the term-ids. Besides round-robin partitioning, we have worked

on the partitioning schemes that try to solve the problems with document-id and

term-id partitioning in terms of the system parameters. Concisely, in document-

id partitioning scheme, our objective is to minimize the total number of disk

seeks by clustering more related documents on the same disks while in term-id

partitioning scheme, our goal is to reduce the total volume of communication

by allocating more related terms on the same disks. To achieve this, we use

the hypergraph-theoretical index partitioning model, which handles nicely both

load balancing and problems associated with index partitioning schemes. For

theoretical background of these models one can refer to [4]. In addition to these,

we also designed and implemented a query interface and a user interface of our

parallel text retrieval system.

4.1 Preprocessing Modules

In this section, we will describe the programming modules to generate the data

sets, their inverted indices and the query sets to submit to the system. By passing

27

CHAPTER 4. IMPLEMENTATION 28

through these modules, we prepare the inputs to our parallel text retrieval system.

Namely, the queries that the system evaluates and the data sets that the queries

are searched on are created by these modules.

4.1.1 Data Set Generation

4.1.1.1 Real-Life Data Set Generator

In this phase, real data sets are converted to inverted indices. We have worked

on the Radikal data set, which is a Turkish newspaper. This repository includes

a variety of news about politics, economics, sport, art, culture and daily life. It

is 11.2 MB in size.

Modules followed in this phase are corpus creation, document vector creation

and lastly inverted index creation. Firstly, from the Radikal data set a corpus

is created. Stop word elimination [28] is employed on the corpus. That is, the

most frequently words, like “the”, “a”, “an”, “and” and etc. are eliminated

from the corpus. Thereafter, from the created corpus all the needed data is

extracted. These are the number of distinct documents and terms in the corpus.

In our corpus there are 6,888 distinct documents (D) and 125,399 distinct terms

(T). Also, the number of distinct documents that each term appears in and

the total number of terms that a document includes are determined. With this

gathered data, the document vector is created. In the document vector, for

each document-id there is a row, which includes the total number of terms and

the term-ids with their frequencies. A document may not comprise most of the

terms. Therefore, the terms that do not appear in this document are not indexed

to prevent redundancy. Finally, inverted index is obtained from the document

vector. The index is inverted in the sense that the key values terms are used to

find the records documents, rather that the other way around.

CHAPTER 4. IMPLEMENTATION 29

4.1.1.2 Synthetic Data Set Generator

This phase includes the creation of the synthetic inverted indices with various

probability distributions. In the indexed file of the natural-language text or terms

(keywords), the distribution of postings per access term was shown in [11] to follow

Zipf’s law. Zipf’s law [21] states that there is an inverse relationship between the

frequency of the terms and their ranks in a corpus of natural language text.

Namely, the rank of a term decreases, as its frequency increases in the corpus.

The constant rank-frequency law of Zipf is stated as Equation 4.1 below:

Frequency x rank ' constant (4.1)

We have used Zipf-like probability distribution [12] to model the data skewness

of posting entries. Documents are created by W distinct terms, which follow the

probability distribution function Z(ti), given in Equation 4.2, with independent

and identicall trials.

Z(ti) = c/i(1−θ) where c = 1/
T

∑

i=1

(1/i(1−θ)), 1 ≤ i ≤ T (4.2)

By changing the value of θ, different data skewness can be obtained. θ is calcu-

lated as shown in Equation 4.3.

θ = log(Fraction of Posting Entries)/ log(Fraction of Terms) (4.3)

If we want to have a data skewness, where 20% of the terms comprise 80% of the

posting entries, we use the 80-20 rule to calculate θ. θ value for 80-20 data skew

is θ = log 0.8 / log 0.2 = 0.1386. The value of θ varies between 1 to 0. If θ equals

to 1, we have the uniform distribution, as θ decreases to 0, we get closer to the

pure Zipf distribution.

This programming module needs four inputs in order to generate the synthetic

data set. These are θ, D, T and W . By changing these parameters, we can obtain

a variety of data sets. The skewness of the data set, the total number of distinct

documents and terms in the data set and also the total number of terms that

a document contains can be changed by these parameters. As in real data set

generator, the following modules carry out document vector generation and the

creation of the inverted index.

CHAPTER 4. IMPLEMENTATION 30

4.1.2 Query Set Generation

4.1.2.1 Real-Life Query Set Generator

We assumed that query patterns are similar to patterns in the documents. That

is, the probability of a term occurring in a query is proportional to that term’s

frequency in the document collection as a whole. In the literature, [24] also models

their query sets under this assumption. Accordingly, we created our query sets

randomly by extracting the terms from the corpus, which we used as our data set.

Also, the number of the terms in a query can be changed with this programming

module.

4.1.2.2 Synthetic Query Set Generator

In our synthetic query set generator module, we used the term generating prob-

ability distribution Q(t), shown in Equation 4.4. In the work by [11], the query

sets are also generated by using this distribution.

Q(t) =







CxZ(ti) if 1 ≤ t ≤ uT

0 Otherwise
where 1 =

uT
∑

i=1

(CxZ(i)) (4.4)

The parameter value, u affects the probability that a term appears in a query.

As u decreases, the probability of choosing more frequent terms appearing in the

collection increases. Also, we can change the skewness of the query set by altering

the value of θ, which is a parameter of the Zipf-like probability distribution Z(ti),

given in Equation 4.2. For instance, to generate a uniform query set, we set θ

to 1, by determining the skewness of the query set as 50-50. In a uniform query

model, each term has the same access probability.

4.2 Parallel Implementation

We implemented the shared-nothing parallel text retrieval system in C language

using the Message Passing Interface (MPI) parallel language package. In this

CHAPTER 4. IMPLEMENTATION 31

section, we will see the details of the implementation of our parallel text retrieval

system.

There are three key components in the system. These are the user, the central

broker and index servers. Both the central broker and the index servers use a

queue while processing the user queries. As mentioned earlier, the system works

roughly as follows: the user inserts the queries into the system, the central broker

takes these queries into its queue and sends them to the related index servers.

The index servers process sent query terms, form their partial answer sets and

send them to the central broker. The central broker merges the partial answer

sets and returns the final answer set to the user.

Here, we will discuss our text retrieval system in view of the central broker

in more detail. Three basic steps are followed by the central broker repeatedly.

The first step is to check the incoming queries. If there is a query submitted by

a user, the central broker inserts the query into the queue. Secondly, it checks

whether there is a partial answer set sent by an index server at the network. If

so, it is inserted into the queue. Finally, the central broker checks the queue.

The queue of the central broker can contain both the queries coming from

the user and the partial answer sets coming from the index servers. If there is

a user query in the queue, the central broker prepares the subquery packet for

that query. In the subquery packet preparation, for term-id partitioning, the

index servers that have the postings of the terms in the query are determined.

The central broker records the number of partial answer sets needed for that

query, and sends the prepared subquery packet to all related index servers. If a

partial answer set is in the queue, the central broker examines whether a partial

answer set corresponding to the same query is sent before. If not, it allocates

an empty accumulator array for that query. An accumulator array has an entry

for each document-id in the collection. So, its size is D. The central broker uses

this array to store the weights of the document-ids returned in the partial answer

sets. At the beginning, the accumulator array is empty, i.e. the weights of all

the documents are set to zero. The next step is to merge the partial answer set

with the partial answer sets in the accumulator array of that query. Namely, the

CHAPTER 4. IMPLEMENTATION 32

central broker updates the weights of the document-ids sent in the partial answer

set. Also, the central broker checks whether all partial answer sets are sent for

that query. If all the partial answer sets are collected for that query, the central

broker sends the final answer set to the user of the query.

An index server has two main steps to follow continuously in the system.

The first one is to check whether there is a subquery packet sent by the central

broker at the network. If so, it is inserted into the queue. The second step is

to examine the queue. The queue of an index server contains subquery packets

sent by the central broker. If there is a packet in the queue of the index server,

an empty accumulator array of size D is allocated for the partial answer set

of the subquery. Then, the index server reads the posting lists of the terms

of the subquery and updates the weights of the document-ids retrieved for that

subquery in the accumulator array. When all terms of the subquery are processed,

the partial answer set is ready to be sent. So, the index server sends the partial

answer set of that subquery to the central broker.

4.2.1 Communication

The communication between the central broker and the index servers is per-

formed by the Message Passing Interface, MPI. Message passing is a program-

ming paradigm used widely on parallel computers with distributed memory. We

used basically MPI SEND and MPI RECEIVE to send and receive packets be-

tween the central broker and the index servers. As explained in Section 4.2, the

index servers send their partial answer sets, which are collected in the accumu-

lator arrays of size D, to the central broker. However, most accumulator arrays

are not full, since not all the documents are retrieved for each query. So to avoid

redundant data transmission through the network, we pack the data before send-

ing, and unpack after it is retrieved, by means of MPI PACK and MPI UNPACK

respectively.

CHAPTER 4. IMPLEMENTATION 33

4.3 Data Structures

While implementing the system, appropriate data structures tried to be selected

to reduce time and storage costs. In this section, we will remark some important

details about the system and its implementation.

4.3.1 The Trie Data Structure

A trie is basically a type of general tree, containing words and/or numbers. The

trie is an immensely useful data structure when storing strings in memory. In

text retrieval, the trie has been built to contain whole words of the collection

and maintain a count of how many times a word occurs. This data structure

enables the retrieval of a word in O(k) time, where k is the length of the indexed

word. By this way, this structure makes the search of the collection and the

weighting of the documents by the recurrence of a particular word quite simple

and fast [28, 16].

We used the trie data structure to index the terms in the collection and

incoming query terms. Figure 4.1 illustrates a simple example about how indexing

is done on our trie data structure. In this example, the first word to index is car,

so the characters of the car are inserted into the trie. For each new coming word,

the first level of the trie is searched, if there is a match to the first character of

the word, then one level down is checked whether there is a match to the second

character of the word. If there is a match, then one level down is checked, this

search is continued until no match is found. In the example, our second word

is cat. On the first level, there is a match for character c, then we go one level

down. The second level also matches to character a. On the third level, there is

no match for character t, so we insert t. Our third word is tea, since there is no

match on the first level, we go right and insert all characters of this word into

the trie. All incoming words are indexed by following this way.

CHAPTER 4. IMPLEMENTATION 34

c
 t

a

t
r

e

a

car

cat

tea

Figure 4.1: An example on the trie data structure.

4.3.2 Accumulators

A simple dynamic array of size D is used for accumulators, as mentioned in Section

4.2. A dynamic search structure such as a tree or a hash table is appropriate if

the accumulators are expected to have much fewer entries than the number of

documents. It is because in the tree or hash table implementation, space is

required to index documents’ ids, whereas in array implementation, by allocating

the array as the size of document number, we get rid of indexing the ids of the

documents. So, when many documents are retrieved for a query, a tree or a hash

table requires a great deal of space compared to the array implementation. In

large collections, where the number of the documents and the terms is very huge,

the number of nonzero elements is much fewer than the number of the documents.

So, it is advisable to use these dynamic structures for accumulators. However, in

our implementation, we deal with small collections, so using arrays is reasonable

in our case.

4.4 Simulation of the Disk

As stated in Section 4.1.1, our data set is small in size (11.2 MB). Consequently,

after processing a few queries, the operating system takes a large portion of

posting lists into the memory by paging, so there will be no disk accesses and

I/O after a point of the experimentation. As large data sets are used in real

systems, we simulated the disks to make the implementation more realistic.

CHAPTER 4. IMPLEMENTATION 35

Table 4.1: Values used for the cost components in the simulation

Cost type Symbol Cost

Seek time Tds 8.5 ms

Rotational latency Trl 4.2 ms

Reading a disk block TI/O 13 µs

There are three main parameters used to measure the time to read data from

the disk [22]. The first and the most costly one is the disk seek time. The seek

time is the time taken to move the arm to the correct cylinder.

The disk drive is constantly rotating. The head must be positioned on the

correct track of the cylinder. That is, once the arm is placed on the correct

cylinder, the head waits to position until the correct place on the track is just

reaching the head. This time is called the rotational latency.

The third parameter is the block reading time. It is the time to read a block.

In our simulation, our disk blocks size are 512-byte. The formula for calculating

the time to read posting list TR, for a term ti is given in Equation 4.5, where BF

stands for the blocking factor of the disk.

TR = Tds + Trl + d
PSize(ti)

BF
e × TI/O (4.5)

In Table 4.1 the cost parameters are given, which are the typical values for a

today’s PC cluster.

4.5 Query Interface

In order to model the query interface of our system, we have used CGI, which is

abbreviation for Common Gateway Interface. This is an interface standard that

provides a method of executing a server-side program (script) from a web site

to generate a web page with dynamic content. Any programming language that

produces an executable file can be used to write CGI scripts conforming to this

standard. Most often these scripts are written in Perl, Python, C, C++, or TCL.

CHAPTER 4. IMPLEMENTATION 36

Figure 4.2: ABC website.

We have used Perl due to its flexibility.

Figure 4.2 shows our web site [25], that provides an interface for the users who

wants to use our search engine. It runs on the Radikal data set. If a user submits

a query and clicks the Search button, our CGI script executes. This script will

execute the program, which is on the client side. It takes the query and directs

it to the central broker. Then, it begins waiting for the packet from the central

broker, which will process the query, produce the answer set and send it back to

the client.

In order to achieve interprocess communication between the client side and

the server side, we have used sockets. A socket is a generalized interprocess

communication channel. Like a pipe, a socket is represented as a file descriptor.

But, unlike pipes, sockets support communication between unrelated processes,

and even between processes running on different machines that communicate

over a network. In our case, processes run on the same machine, we maintain

communication channel between the processes via sockets.

CHAPTER 4. IMPLEMENTATION 37

User
1

User
2

User
n

CGI

Script

q
1

a
1

q
2

a
2

q
n

a
n

Client
1

Client
2

Client
n

Central

Broker

q
1
 q
1

a
1
 a
1

q
2
q
2

a
2

a
2

q
n

a
n
 a
n

q
n

Figure 4.3: The query interface.

Figure 4.3 illustrates how the system works, where q and a are abbreviations

for query and answer set respectively. Users send their queries through our web

site. For each inserted user query CGI script makes a system call to execute a

client program, through which user queries are sent to the central broker. As

explained in Section 4.2, one of the steps that central broker continuously pass

is to check the network for the user queries inserted to the system. Clients can

connect to the central broker while central broker checks the network for user

queries. The central broker takes the queries from the clients that request for

connection. After sending the queries, clients begin to wait for the final answer

set of the query from the central broker. The central broker closes the connection

with the client when it sends the answer set. Finally, the answer set of the query

is transmitted to the user again via CGI script for presentation.

4.6 User Interface

We designed a web site called ABC [25], which provides a user interface for our

parallel text retrieval system. Our design is based on the design of the web page

for Google [26].

In Figure 4.4, the query ankara sanat is inserted to ABC. When the user clicks

CHAPTER 4. IMPLEMENTATION 38

Figure 4.4: A query is inserted.

on the Search in ABC button, the answer set will return as the format seen in web

page shown in Figure 4.5. In this search the documents of the Radikal data set

is searched on the central broker1. We put the links to the documents returned,

the category names that the documents belongs to and the full address of the

document links on our web page. When the user clicks the link for a document,

the page of the document pops up. For example, when the user clicks on the

03anado.html link in Figure 4.5, then the page given in Figure 4.6 will return to

the user. In our design, we change the colors of the links related to whether the

page is visited or not. Also, we include the number of documents returned and

the time that search lasted on our web page.

1Borg: the parallel machine of Bilkent University Computer Science Department.

CHAPTER 4. IMPLEMENTATION 39

Figure 4.5: The answer set returned for the query.

Figure 4.6: A document returned for the query.

Chapter 5

Experimental Results

As the parallel text retrieval platform, a 24-node PC cluster is used. The central

broker contains an Intel Pentium III 500 Mhz processor and 2 GB of RAM. The

processing nodes of the cluster are the index servers of the system. The index

servers are equipped with 128 MB of RAM, and are interconnected by a 3COM

Superstack II 3900 Fast Ethernet switch. Each index server has an Intel Pentium

II 400 Mhz processor and runs the Debian GNU Linux operating system. Our

parallel text retrieval system is developed in the C language, using the MPI

library as the communication interface.

5.1 Scalability

In this section, we will discuss experimental results that we obtained by changing

the number of processors, the query count and the number of terms in the queries.

An excessive number of experiments are conducted on the Radikal data set. Here,

we only present some significant ones.

40

CHAPTER 5. EXPERIMENTAL RESULTS 41

Partition by Document-Id

110

160

210

260

310

360

410

460

2
 4
 8
 16

Number of processors

Th
ro

ug
hp

ut
 (q

ue
ri

es
/s

ec
on

d)

RR

HP

30

40

50

60

70

80

90

2
 4
 8
 16

Number of processors

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s

ec
on

ds
)
 RR

HP

Figure 5.1: 18,000 distinct terms of the collection is sent in a query set.

5.1.1 Document-Id Partitioning

As mentioned earlier, in document-id partitioning the essential problem is that the

number of disk accesses may be quite larger compared to term-id partitioning.

The performance difference between round-robin partitioning and hypergraph-

theoretical partitioning [4] can be observed best, when all the terms of the collec-

tion are sent to the system once in a query set. However, as our system capacity

does not allow to send all the terms of the collection, we generate a query set

formed by 18,000 distinct terms of the collection, where all queries have a sin-

gle term. Figure 5.1 shows that hypergraph-theoretical partitioning (HP) has

a better performance than round-robin partitioning (RR), with this query set.

Average response time is the time elapsed while answering a single query on the

average. In both partitioning models, the system performance improves with

the increase in the number of processors, when both the system throughput and

average response time are considered. Although the Radikal data set is not so

large, query processing in parallel improves the system performance. This can be

observed in the forthcoming figures as well.

CHAPTER 5. EXPERIMENTAL RESULTS 42

Partition by Term-Id

0

200

400

600

800

1000

1200

1400

2
 4
 8
 16

Number of processors

Th
ro

ug
hp

ut
 (q

ue
ri

es
/s

ec
on

d)

RR

HP

0

10

20

30

40

50

60

70

2
 4
 8
 16

Number of processors

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s

ec
on

ds
)

RR

HP

Figure 5.2: 18,000 distinct terms of the collection is sent in a query set.

5.1.2 Term-Id Partitioning

In term-id partitioning, there is no significant performance difference between

round-robin and hypergraph-theoretical partitioning schemes with the query set

that includes 18,000 distinct terms. The system throughput and average response

time is depicted in Figure 5.2 for both round-robin and hypergraph-theoretical

partitioning, as the number of processors increases. As previously stated, the to-

tal number of disk accesses is minimum in term-id partitioning, whereas the total

communication volume may be larger compared to the document-id partitioning.

In order to minimize the total communication cost, the hypergraph-theoretical

model tries to cluster more related terms on the same disks. In this experiment,

since all the queries are composed of a single term, the system could not com-

pletely make use of the hypergraph-theoretical distribution, where related terms

are allocated together on the same disks. That is, index servers sent their partial

answer sets to the central broker through the network and the size of the partial

answer sets for a single term could not be reduced in partitioning by term-id.

However, the balanced distribution of the postings may increase the system per-

formance.

In general, we could not observe the performance of hypergraph-theoretical

term-id partitioning very well in the experiments. The main reason for this is that

the data set is small in size. In term-id partitioning, the performance of the system

CHAPTER 5. EXPERIMENTAL RESULTS 43

is affected considerably by the size of the data set. As previously explained,

Figure 3.4 displays query processing in document-id partitioning. It is basically

the same for term-id partitioning when the general structure is considered. Index

servers process the subquery terms and send their partial answer sets through the

network to the central broker. When the data is small, reading the posting lists of

the terms does not take much time, i.e. the I/O time is not long. Also, as in term-

id partitioning the total number of disk seeks is minimum, index servers complete

the processing of the subqueries in a rather short time. Since the processing time

is short, as more and more queries are sent to the system, index servers will send

continuously their partial answer sets to the central broker. Although our central

broker has a higher capacity compared to index servers, it cannot handle all the

partial sets at the same time, so partial answer sets begin to accumulate in the

queues and network becomes a bottleneck. In term-id partitioning, the goal of

the hypergraph-theoretical model is to reduce the total volume of communication,

but as the network becomes a bottleneck, the performance of the model cannot

be observed well.

Another important point is that, as explained earlier, the queries are con-

structed in accordance with the patterns of the terms in the whole collection.

Also, we try to build a query with related terms, by choosing the terms from

the same document while constructing a query with more than one term. In real

systems, user queries consist of related terms. For example, the queries in the

form {Football, Network, Freud} are not too frequent. However, taking the terms

from the same document may not always work to construct a query with related

terms. In term-id partitioning, since hypergraph-theoretical partitioning allocates

more related terms on the same storage sites, the system performance could be

improved even more when real system queries are sent to the system. Concisely,

we expect better performance from hypergraph-theoretical partitioning in real

systems, as the collection size is much larger and queries are meaningful, i.e. the

terms in a query are closely related to each other.

In order to observe the performance difference between round-robin and

hypergraph-theoretical term-id partitioning, we submit a single document, which

has 227 terms, to the system as a query. This kind of queries are used in text

CHAPTER 5. EXPERIMENTAL RESULTS 44

Partition by Term-Id

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
 4
 8
 16

Number of processors

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

RR

HP

Figure 5.3: A single document is sent as a query.

categorization systems. Figure 5.3 shows the performance comparison of round-

robin and hypergraph-theoretical partitioning. Hypergraph-theoretical partition-

ing performs a little better than round-robin partitioning. The performance dif-

ference could be observed better when a document with more terms is questioned

in a larger collection.

5.2 Skewness

In this section, the experiments conducted with synthetic data sets and query sets

will be presented. We will investigate the effect of the skewness of the data sets

and the query sets on the performance of hypergraph-theoretical document-id

and term-id partitioning.

5.2.1 Document-Id Partitioning

Our data sets contain 200,000 distinct terms (T) and 100,000 distinct documents

(D). Each document consists of 100 terms (W). With these parameters we

generated four data sets, which are uniform (50-50), low skewed (60-40), medium

skewed (70-30) and high skewed (80-20). Recall that, 80-20 skewness means

that 20% of the terms comprise 80% of the posting entries, which is explained in

CHAPTER 5. EXPERIMENTAL RESULTS 45

Partition by Document-Id

a)
 N
 = 10000,
 n
 = 1
 b)
 N
 = 2000,
 n
 = 5

0

10

20

30

40

50

60

70

80

90

2
 4
 8
 16

Number of processors

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

Uniform

Low Skew

Medium Skew

High Skew

0

10

20

30

40

50

60

70

80

90

2
 4
 8
 16

Number of processors

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

)

Uniform

Low Skew

Medium Skew

High Skew

Figure 5.4: The effect of uniform term distribution in a query set.

Section 4.1.1.2.

Figure 5.4 shows the performance of document-id partitioning for two uniform

query sets. The first query set includes 10,000 queries (N=10000), each with a

single term (n=1), which is depicted in Figure 5.4-a. The second query set consists

of 2,000 queries, and each query has five terms in it, as shown in Figure 5.4-b. For

both uniform query sets, the performance of hypergraph-theoretical document-id

partitioning improves, as the skewness of the data sets increases. The reason

why partition by document-id has better performance on more skewed data sets

is based on the way that the hypergraph-theoretical model follows to partition a

data set. Recall that, the goal in this partitioning scheme is to minimize the num-

ber of terms that appear on several disks by clustering the related documents on

the same disks. By this way, the total number of disk accesses can be reduced. In

a skewed environment, while the documents include a small portion of the terms

of the collection very frequently, a large portion of the terms appear infrequently

in the documents. So, nearly all documents are related in the sense that most of

them include the same terms. Therefore, while the hypergraph-theoretical model

clusters the related documents together, the documents are differentiated by the

infrequent terms. With this partitioning scheme, the documents that include the

same infrequent terms are allocated on the same disks. In a uniform query set,

each term has the same access probability. When an infrequent term is queried

CHAPTER 5. EXPERIMENTAL RESULTS 46

Partition by Document-Id

0

5

10

15

20

25

30

2
 4
 8
 16

Number of processors

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

ec
on

d)

Uniform

Low Skew

Medium Skew

High Skew

0

5

10

15

20

25

30

2
 4
 8
 16

Number of processors

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

ec
on

d)

Uniform

Low Skew

Medium Skew

High Skew

a)Uniform query set (
 N
=2000,
 n
=5)
 b)Skewed query set (
 N
=2000,
 n
=5, Q=80, u=10%)

Figure 5.5: Comparison between uniform and skewed query sets.

in this partitioning scheme, the number of disk accesses can be reduced consider-

ably, since the postings of this term are clustered on the same disk. However, in

a uniform environment, all terms have the same frequency in the collection. So,

while clustering the related documents, a term may appear on several disks.

Also, when we compare Figure 5.4-a with Figure 5.4-b, we realize no significant

performance difference between them. In fact, instead of sending the terms one-

by-one in the queries, when we submit them together in a query, the total volume

of communication decreases, since the size of the partial answer sets sent through

the network decreases. However, in document-id partitioning the total volume of

communication is minimum. So, the network cost is less important with respect to

the disk cost in document-id partitioning. Therefore, a reduction in the network

cost does not affect the system performance considerably.

Lastly, we analyze the effect of skewed term distribution in a query set, and

compare it with a uniform query set. We generated a high skewed (80-20) query

set, where the parameter u is set to 10%. The generation of the skewed query set

is explained in Section 4.1.2.2. Our skewed query set consists of 2,000 queries,

where each query has five terms in it. As can be seen from Figure 5.5, the

throughput of the system is much less with the skewed query set than the one

with the uniform query set. Also, the performance of the system does not improve

as the number of processors increases with the skewed query set. Such a query

CHAPTER 5. EXPERIMENTAL RESULTS 47

Partition by Term-Id

a)
 N
 = 10000,
 n
 = 1
 b)
 N
 = 2000,
 n
 = 5

0

10

20

30

40

50

60

70

80

90

2
 4
 8
 16

Number of processors

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s

ec
on

ds
)

Uniform

Low Skew

Medium Skew

High Skew

0

10

20

30

40

50

60

70

80

90

2
 4
 8
 16

Number of processors

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(s

ec
on

ds
)

Uniform

Low Skew

Medium Skew

High Skew

Figure 5.6: The effect of uniform term distribution in a query set.

set includes only a small portion of the terms. So, only a few index servers, that

have the postings of these terms are active in query processing. Therefore, the

increase in the number of processors does not improve the system performance.

In addition, the performance degradation becomes much severe as the skewness of

the data set increases. Recall that, in a high skewed environment, a small portion

of the terms comprise a large portion of the posting lists. So, in more skewed

environments, the posting lists of the frequent terms grow larger in size. Since,

the skewed query model includes frequent terms heavily, the size of the posting

lists that are retrieved are much larger compared to the less skewed environments.

That is why we observe such a severe performance degradation.

5.2.2 Term-Id Partitioning

In the experiments that we performed with hypergraph-theoretical term-id par-

titioning, we used the same data sets and query sets that we generated for the

experiments of document-id partitioning.

Figure 5.6 shows the performance of term-id partitioning for two uniform

query sets. For both uniform query sets, the performance of term-id partitioning

decreases, as the skewness of the data sets increases. In more skewed environ-

ments, the size of the posting list varies a great deal, as the frequency of the

CHAPTER 5. EXPERIMENTAL RESULTS 48

terms in the collection differs to a large extent. So, when the partitioning is

based on the term-ids, to have balanced storage, the number of terms that the

disks include can change in amount. Since, in a uniform query set, each term has

the same access probability, the disks that contain more terms are utilized more.

The unbalanced disk utilization causes a decrease in the system performance.

Also, we observe a considerable performance difference between the experi-

ments depicted in Figure 5.6-a and 5.6-b. As discussed in the previous section,

the total volume of communication is less when we submit the terms together.

In term-id partitioning, the total volume of communication may be quite large in

the system. So, a reduction in the network cost improves the system performance

significantly.

Another important point to mention in Figure 5.6-a is that the performance

of the system does not improve, as the parallel system works with more than four

processors. As discussed previously, in our system, the network becomes a bottle-

neck, when too many queries are sent to the system. Compared to document-id

partitioning, term-id partitioning is affected more by the network congestion,

since the total volume of communication may be quite large in term-id partition-

ing scheme. As more processors are involved in the system, the number of partial

answer sets sent through the network increases. So, the rise in the number of pro-

cessors increases the network congestion more, after the point that the network

becomes a bottleneck. This can be observed in Figure 5.6-b, when the number

of processors increases from eight to sixteen. Since the size of the partial answer

sets sent in this experiment is less, the congestion at the network starts, when

more processors are involved in the system.

Finally, we analyze the effect of uniform and skewed query sets, shown in

Figure 5.7-a and 5.7-b. The performance of the system degrades with the skewed

query set, and the increase in the number of processors does not improve the

system performance. As we discussed for the experiments of document-id par-

titioning, with the skewed query set, the terms that appear most frequently in

the documents are queried, so only the index servers that have these terms are

involved in the processing of the queries. Also, in a skewed environment, since the

CHAPTER 5. EXPERIMENTAL RESULTS 49

Partition by Term-Id

a)Uniform query set (
 N
=2000,
 n
=5)
 b)Skewed query set (
 N
=2000,
 n
=5, Q=80, u=10%)

0

10

20

30

40

50

60

70

80

90

100

110

2
 4
 8
 16

Number of processors

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

ec
on

d)

Uniform

Low Skew

Medium Skew

High Skew

0

10

20

30

40

50

60

70

80

90

100

110

2
 4
 8
 16

Number of processors

Th
ro

ug
hp

ut
(q

ue
ri

es
/s

ec
on

d)

Uniform

Low Skew

Medium Skew

High Skew

Figure 5.7: Comparison between uniform and skewed query sets.

posting lists of these terms are larger, the performance of the system decreases

more.

5.3 Document-Id versus Term-Id Partitioning

All experiments that we conducted so far show that the performance of term-

id partitioning is considerably better than document-id partitioning. The main

reason is that the data size is small and consequently, the posting lists are short.

So, the partial answer sets transmitted through the network are small in size.

The total time elapsed at the network to transfer the partial answer sets becomes

much less important compared to the time that elapsed by the disks to access

and read the posting lists. Since network cost is less than disk cost in our system

architecture. Recall that, the disk seek time constitutes the highest cost while

reading a data from the disk, which is explained in Section 4.5. Also, the total

number of disk accesses is minimum in term-id partitioning, whereas in document-

id partitioning, the total volume of communication is minimum. Since the disk

cost dominates the network cost, the increase in the performance of the system

is higher by the minimization of the disk cost compared to the performance

improvement by the minimization of the network cost. However, note that the

main reason in this performance difference is based on the small size of the data

CHAPTER 5. EXPERIMENTAL RESULTS 50

Central

Broker

Index
 Server
0

Index
 Server
K

Index
 Server
1
User
i

q
i

a
i

q
i0
,
t
i1

q
i1
,
t
i1

Index
 Server
2

a
i

q
i2
,
t
i1

PAS
0

PAS
2

PAS
1

Figure 5.8: An alternative system structure.

that we use in our system.

Document-id partitioning could perform better in a system, where the network

cost dominates the disk cost. Since, in this case, the minimization of the total

volume of communication appears much more important in the improvement of

the system efficiency. Besides this, in a system, where the posting lists are kept

in the memory, the document-id partitioning could perform much better than

term-id partitioning.

5.4 An Alternative System Structure

In order to reduce the congestion in the network, a different system structure

can be designed for our text retrieval system. Figure 5.8 shows a possible system

structure demonstrated by a simple example to make the representation more

clear. In this system, index servers communicate with each other also. When a

user query is inserted into the system, the central broker determines which index

servers hold the corresponding posting lists and additionally, it also determines

which index server will be responsible to form the final answer set. Accordingly,

the central broker sends the subqueries to the related index servers (qi0 is the

subquery of qi corresponding to index server 0, and the tag ti1 means that index

server 1 will be responsible for the final answer set of qi). In this example, only

CHAPTER 5. EXPERIMENTAL RESULTS 51

index servers 0, 1 and 2 have the posting lists corresponding to the qi query

and the central broker assigns index server 1 to form the final answer set of the

query. So, when index servers 0 and 2 finish to process the subqueries, they send

their partial answer sets to index server 1. Index server 1 constructs the final

answer set by merging these partial answer sets with its own partial answer set

and transfers the final answer set to the central broker. By using this structure,

the congestion in the network can be reduced. In such a system, considerable

performance improvement can be observed in parallel query processing.

Chapter 6

Conclusion

In this thesis, we have designed and implemented a parallel text retrieval system

on a shared-nothing architecture. We have investigated the performance of query

processing in our parallel text retrieval system. In our system, we adapted the

inverted indices as our indexing mechanism and the vector-space model to rank

the relevance of the documents to a query. Our main focus was on the inverted

index organizations for efficient parallel query processing.

Two inverted index partitioning schemes are presented, which are mainly used

for parallel text retrieval systems: Document-id and term-id partitioning schemes.

The choice of these index partitioning schemes heavily depends on the advantages

that they bring. Document-id partitioning achieves naturally the minimum total

volume of communication in the system. On the other hand, in term-id parti-

tioning the total volume of disk accesses is already equivalent to the lower bound

achieved by the sequential algorithm. However, there are some weaknesses of

both partitioning schemes. In document-id partitioning scheme, the total num-

ber of disk accesses may be quite large, whereas in partitioning by term-id, the

total volume of communication of the system may increase a great deal. In the

literature, the partitioning based on these schemes is done in a round-robin fash-

ion. Round-robin partitioning schemes do not consider the problems associated

with document-id and term-id partitioning schemes. We have investigated the

52

CHAPTER 6. CONCLUSION 53

partitioning schemes that try to solve these problems. In document-id parti-

tioning, our objective was to minimize the number of documents that belong to

several disks in order to reduce the total number of disk accesses in the system.

In term-id partitioning scheme, our goal was to minimize the number of terms

that appear on several disks to reduce the total volume of communication in the

system. The hypergraph-theoretical partitioning model meets these objectives by

clustering more related documents on the same disks in document-id partitioning,

and by allocating more related terms on the same disks in term-id partitioning.

In addition, we have analyzed the performance of round-robin and

hypergraph-theoretical models through an implementation executed on a real-

life data set. We have also studied the effect of the skewness of the synthetic data

sets and query sets on the performance of hypergraph-theoretical document-id

and term-id partitioning schemes. The experimental results and the impact of

the parallel text retrieval system structure are discussed in Chapter 5. In that

chapter, we have also proposed an alternative system structure in order to de-

crease the congestion at the network that we have observed after a point of time

in our experimentations. As a further study of this thesis, this alternative sys-

tem can be implemented as the underlying structure of our parallel text retrieval

system.

Bibliography

[1] A. Arasu, J. Cho, H. Garcia-Molia, A. Paepcke, and S. Raghavan. Searching

the web. ACM Transactions on Internet Technology, 2001.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.

Addison-Wesley Publishing, Wokingham, UK, 1999.

[3] B. Cahoon and K. McKinley. Performance evaluation of a distributed archi-

tecture for information retrieval. In Proceedings of the 19th Annual Interna-

tional SIGIR on Research and Development in Information Retrieval, pages

110–118, August 1996.

[4] B. B. Cambazoglu. Ph.D. Thesis, in Preparation, 2003.

[5] P. Efraimidis, B. Mamalis, P. Spirakis, and B. Tampakas. Parallel text re-

trieval on a high performance supercomputer using the vector space model.

In ACM SIGIR conference on research and development in information re-

trieval, pages 58–66, 1995.

[6] C. Faloutsos and S. Christodoulakis. Signature files: An access method for

documents and its analytical performance evaluation. ACM Trans. on Office

Information Systems, 2(4):267–288, October 1984.

[7] M. J. Flynn. Very high-speed computing systems. In Proceedings IEEE,

volume 54, pages 1901–1909, 1966.

[8] W. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and

Algorithms. PrenticeHall, 1992.

54

BIBLIOGRAPHY 55

[9] O. Frieder, D. A. Crossman, A. Chowdhury, and G. Frieder. Efficiency con-

siderations for scalable information systems. Journal of Digital Information,

April 2000.

[10] D. Hawking. Padre-a parallel document retrieval engine. In Proceedings of

the Third Fujitsu Parallel Computing Workshop, 1994.

[11] B. S. Jeong and E. Omiecinski. Inverted file partitioning schemes in multi-

ple disk systems. IEEE Transactions on Parallel and Distributed Systems,

6(2):142–153, February 1995.

[12] D. E. Knuth. The Art of Computer Programming:Sorting and Searching.

Addison-Wesley, Massachussetts, 1973.

[13] V. Kumar, A. Grama, A. Gupta, and G. Karypris. Introdution to Parallel

Computing. The Benjamin/Cummings Publishing Company, Inc., Redwood

City, California, 1994.

[14] A. Macfarlane, S. Robertson, and J. Maccan. Parallel computing in informa-

tion retrieval an updated review. Journal of Documentation, 53(3):274–315,

1997.

[15] B. Mamalis, O. Spirakis, and Tampakas. Parallel techniques for efficient

searching over very large text collections. In Proceedings of the 5th Text

Retrieval Conference (TREC-5), 1996.

[16] S. Nilsson and M. Tikkanen. Implementing a dynamic comprossed trie. In

Proceedings WAE’98, pages 2–22, August 1998.

[17] L. Page and S. Brin. The anatomy of a large-scale hypertextual web search

engine. In Proceedings of the Seventh World-Wide Web Conference, 1998.

[18] B. A. Riberio-Neto and R. A. Barbosa. Query performance for tightly cou-

pled distributed digital libraries. In Proceedings of the 3rd ACM International

Conference on Digital Libraries, pages 182–190, June 1998.

[19] G. Salton. Information Retrieval: Data Structures and Algorithms. Addison-

Wesley, Massachussetts, 1989.

BIBLIOGRAPHY 56

[20] G. Salton and C. Buckley. Parallel text search methods. Communications

of the ACM, 31(2):202–215, February 1998.

[21] G. Salton and M. McGill. Introduction to Modern Information Retrieval:

Data Structures and Algorithms. McGraw Hill, New York, 1983.

[22] B. Salzberg. File Structures: An Analytic Approach. Prentice-Hall Interna-

tional, Inc., Englewood Cliffs, New Jersey, 1988.

[23] C. Stanfil. Partitioned posting files: A parallel inverted file structure for

information retrieval. In Proceedings of the 19th Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval,

pages 413–428, 1990.

[24] C. Stanfil, R. Tau, and D. Waltz. A parallel indexed algorithm for infor-

mation retrieval. In Proceedings of ACM-SIGIR Conference, pages 88–97,

1989.

[25] ABC Search Engine. http://borg.cs.bilkent.edu.tr/ pirs/.

[26] Google homepage. http://www.google.com/.

[27] A. Tomasic and H. G. Molina. Performance of inverted indices in shared-

nothing distributed text document information retrieval systems. In Proceed-

ings of the International Conference on Parallel and Distributed Information

Systems, 1993.

[28] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing

and Indexing Documents and Images. Morgan Kaufman Publ., San Fran-

cisco, 1999.

[29] W. Y. P. Wong and D. L. Lee. Implementations of partial document ranking

using inverted files. Information Processing and Management, 29(5):647–669,

October 1993.

