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ABSTRACT  

AUTOMATIC PERFORMANCE EVALUATION OF 
INFORMATION RETRIEVAL SYSTEMS USING DATA 

FUSION  
 

Rabia Nuray 
M.S. in Computer Engineering  

Supervisor: Prof. Dr. H. Altay Güvenir 
August, 2003 

 

The empirical investigation of the effectiveness of information retrieval systems (search 

engines) requires a test collection composed of a set of documents, a set of query topics 

and a set of relevance judgments indicating which documents are relevant to which 

topics.  The human relevance judgments are expensive and subjective.  In addition to 

this databases and user interests change quickly. Hence there is a great need of automatic 

way of evaluating the performance of search engines. Furthermore, recent studies show 

that differences in human relevance assessments do not affect the relative performance 

of information retrieval systems.  Based on these observations, in this thesis, we propose 

and use data fusion to replace human relevance judgments and introduce an automatic 

evaluation method and provide its comprehensive statistical assessment with several 

Text Retrieval Conference (TREC) systems which shows that the method results 

correlates positively and significantly with the actual human based evaluations.  The 

major contributions of this thesis are: (1) an automatic information retrieval performance 

evaluation method that uses data fusion algorithms for the first time in the literature, (2) 

system selection methods for data fusion aiming even higher correlation among 

automatic and human-based results, (3) several practical implications stemming from the 

fact that the automatic precision values are strongly correlated with those of actual 

information retrieval systems.  

 

Keywords: automatic performance evaluation, data fusion, information retrieval system, 

social welfare functions, system performance prediction, TREC. 
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ÖZET 

 

VERİ BİRLEŞTİRME YÖNTEMLERİ KULLANARAK BİLGİ 
ERİŞİM SİSTEMLERİNİN PERFORMANSININ OTOMATİK 

OLARAK DEĞERLENDİRİLMESİ 
 

Rabia Nuray 
Bilgisayar Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. H. Altay Güvenir 
Ağustos, 2003  

 

Deneysel olarak bir bilgi erişim sisteminin (arama motorunun) etkinliğinin ölçümü 

belgeler, bir sorgu kümesi ve her sorguya ilişkin bir küme belgeden oluşan bir test 

koleksiyonu gerektirir.  İnsanlar tarafından yapılan değerlendirmeleri pahalı ve özneldir.  

Buna ek olarak veri tabanları ve kullanıcıların ilgi alanları çok çabuk değişmektedir.  Bu 

nedenle arama motorlarının performansını otomatik olarak değerlendirecek bir yönteme 

büyük gereksinim duyulmaktadır. Ayrıca son çalışmalar insan değerlendirmelerindeki 

faklılığın sistemlerin bağıl performansını etkilemediğini göstermiştir.   Bu gözlemlere 

dayanarak, bu tezde veri birleştirme yöntemlerini kullanarak insan değerlendirmelerini 

otomatik değerlendirmeler ile değiştirmeyi öneriyor, kullanıyor, ve yeni bir yöntem 

sunuyoruz ve bu yöntemin birçok Text Retrieval Conference (TREC)’ de uygulamasının 

sonuçlarını gerçek insan değerlendirmeleri ile anlamlı ve pozitif uyuşumunu ayrıntılı 

gösteren istatistiksel değerlendirmelerini gösteriyoruz. Bu tezin önemli katkıları 

şunlardır: (1) veri birleştirme algoritmalarını literatürde ilk defa kullana bir otomatik 

değerlendirme yöntemi  (2) özdevinimli yöntem ile insan değerlendirmeleri arasında 

yüksek uyuşum amaçlayan sistem seçme yöntemleri (3) önerilen bu yöntemin bulduğu 

duyarlık değerlerinin gerçek duyarlık değerlerine güçlü uyuşumunun olduğu 

gerçeğinden kaynaklanan birkaç farklı pratik faydalar ve yeniliklerdir. 

 

Anahtar Sözcükler: otomatik performans değerlendirme, veri birleştirme, bilgi erişim 

sistemleri, sosyal refahlık fonksiyonları, sistem performans tahmini, TREC. 
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Chapter 1   

Introduction 

1.1 Motivation 
 

Information retrieval is the study of developing techniques for finding documents that 

are likely to satisfy the information needs of users [SAL1983].  Evaluation, which is a 

major force in research and development in information retrieval (IR), means assessing 

the performance of a system.  Information retrieval system evaluation is performed at 

different levels; however, most of the experiments are performed at the processing level 

[SAR1995].  At this level, comparison of performance of different algorithms and 

techniques is performed, and their effectiveness is measured.  The majority of the 

experiments on information retrieval effectiveness require a test collection, a set of 

query topic, and relevance information about each document with respect to each query.  

Information retrieval systems use a matching algorithm to estimate documents that are 

possibly relevant to the query and present them to the user.  Then users examine the 

1 
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documents to find answers to their information needs.  This process is called relevance 

judgment. Figure 1.1 shows the principles of the information retrieval process.  The 

effectiveness of information retrieval systems is measured using thee relevance 

judgments.  The traditional performance measures in information retrieval are precision 

and recall, where precision is the fraction of number of relevant documents to the 

number of retrieved documents and recall is the fraction of the number of relevant 

documents to the number of all relevant documents 

 
 In this study, we used the retrieval runs (systems) submitted to the Text Retrieval 

Conference (TREC), which is a yearly conference dedicated to experimentation with 

large databases.  TREC is managed by National Institute of Standards and Technology 

(NIST).  For each TREC conference a set of reference experiments is designed.  Each 

participating group in TREC conferences uses reference experiments for benchmark 

purposes.  The effectiveness of these retrieval runs is evaluated by TREC using the 

human-based relevance judgments.  

 
 For very large databases creating relevance judgment is difficult, since several 

documents need to be judged for relevance to each query.  This difficulty can be 

overcome through the use of pooling.  Pooling is the selection of a fraction of documents 

for assessment; if the selected documents are a representative of the whole collection 

than the pooling method closely approximates the performance of each system.  For 

example, in TREC, each participating group is asked to return the top 1000 documents 

and then the top 100 of these documents from each participant are pooled to generate the 

document collection for assessment.   

 
 
     query(input)                             querying 

 
 

                                    result set  documents  

 

Information 
Retrieval 
System 

Document 
Collection 

Figure 1.1: Information retrieval process 
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  Some recent retrospective studies examined the effect of pooling method on the 

effectiveness of retrieval systems in very large databases.  For example, Zobel 

[ZOB1998] performed some experiments using different sizes of pools and concluded 

that the results obtained using the method in TREC are reliable given a pool depth of 

100.  Cormack and his co-workers [COR1999] proposed some new pooling algorithms 

and compared to the standard pooling method.  They found that it is possible to build an 

effective pool with fewer judgments to reduce the manual effort.  

 
 Another difficulty in creating relevance judgments is that people usually disagree 

about the relevance judgments and human judgment is expensive, subjective, and noisy.  

Some recent studies examined the issue of assessor disagreement.  Harter [HRT1996] 

examined the variations in relevance assessments and the measurement of retrieval 

effectiveness using small databases.  He found that the disagreement of assessors has a 

little influence on the relative effectiveness of information retrieval systems.   

 
 Another work on the variations in relevance judgments is the study of Voorhees 

[VOO2000b].  Her study uses TREC databases to see the effect of assessor disagreement 

in measuring the relative effectiveness of information retrieval systems in large 

databases.  She found that with a little overlap in the relevance judgments, the relative 

effectiveness of retrieval systems are very close to each other for different assessors.  

Her results showed that differences in human relevance judgments do not affect the 

relative performance of the retrieval systems.  The cost and subjectiveness of human-

based methods necessitates automatic evaluation techniques that predict the ranking of 

systems correctly.   

1.2 Overview of the Thesis 
  
 In this thesis, we propose and describe the results of an automatic evaluation 

methodology, which replaces the human relevance judgments with a set of documents 

determined by various data fusion methods.  Data fusion is the process of combining the 

results of a number of retrieval systems working on the same database. It aims to 

improve the retrieval performance.  Current data fusion algorithms can be categorized by 

the data they require: whether they need relevance scores or only ranks [ASL2001].  
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Since the relevance scores are not always available, we used the algorithms that exploit 

the rank information.  In this study, three different data fusion algorithms are used.  Two 

of them, Borda Count and Condorcet’s Algorithm, are based on the democratic election 

strategies [ROB1976].  The other one is the simplest merging algorithm among the 

three, which uses the plain rank position information of documents.   

  
 Data fusion is based on four different components: database (system) selection, 

document selection, query dispatching, and result merging [MNG2002].  In our 

experiments, we used different system selection methods and different result merging 

algorithms.  In the document selection process, we select the top documents of the 

systems to be fused.  We do nothing for the query dispatching part of data fusion 

method, because the query results (i.e., ranked documents) of the retrieval runs 

submitted to TREC for a set of topics is used.  

 
 The correlations of our method for each data fusion algorithm to the actual (human-

based) TREC rankings are measured over a variety of pool depths and various numbers 

of relevant documents.  We report only the results of pooling top 20 documents; the 

correlations using other pool depths are given in Appendix A, B, and C, to show that 

using larger pools improves the effectiveness of automatic evaluation methods based on 

the data fusion.  As we increase the pool depth the results (i.e., the correlations between 

human-based and automatic results) tend to increase yet we prefer to report the results of 

top 20 documents for a simpler presentation and also due to the fact that the search 

engine users are generally look at the top 10 or 20 documents of the resulting list 

[SPI2002]; it also provides a more efficient experimental environment.  Furthermore, we 

explore the success of using different data fusion methods for the automatic performance 

evaluation of retrieval systems and try to find the most appropriate method.  

 
 Our new evaluation methodology uses the merging algorithms that take only the 

ranking of documents into account and do not consider the content of them.  Using such 

an approach makes the evaluation process more efficient.  The experimental results 

show that the use of data fusion algorithms not only improves the prediction of ranking 

of information retrieval systems, but it also improves the prediction of the actual mean 
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average precision values of each system with respect to previous studies.  Similar to our 

study Soboroff and his co-workers [SOB2001] proposed an automatic ranking 

methodology, which replaces the human relevance judgments.  However, their study 

uses a random sampling technique and open to random variations.  In this study, we also 

compare the effectiveness of the proposed method with different data fusion algorithms 

and conclude that the best performing variant of evaluation methodology is the one 

based on the Condorcet’s Algorithm.  This method gives better performance for most of 

the cases using different system selection algorithms.  The system selection algorithms 

determine the systems to be fused for data fusion purposes. 

 
Our previous studies [CAN2003; NUR2003a; NUR2003b] also propose a new 

automatic evaluation methodology to replace the human relevance judgments, but in that 

study we use the content of documents to rank them, therefore it is an expensive 

approach.  The ranking of retrieval systems with those studies are also consistent with 

the human based evaluations. 

 
The major contributions of this thesis are the following:  

• an automatic information retrieval performance evaluation method that uses data 

fusion algorithms for the first time in the literature (the thesis includes its 

comprehensive statistical assessment with several TREC systems which shows 

that method results correlates positively and significantly with the actual human-

based results), 

• system selection methods (using the concept of system bias, defined later, and 

iterative fusion) for data fusion aiming even higher correlations among 

automatic and human-based results, 

• several practical implications stemming from the fact that the automatic 

precision values are strongly correlated with those of actual information 

retrieval systems.  

 
This thesis is organized as follows.  We first review the related works in Chapter 2.  

The used data fusion methods and some observations related to the data fusion 

algorithms are presented in Chapter 3.  We then detail the system selection methods in 

 
 



CHAPTER 1. INTRODUCTION                                                                                       6 
 

Chapter 4.  Experimental results are presented in Chapter 5. Chapter 6 provides further 

experiments on the automatic performance evaluation with data fusion.  Chapter 7 

concludes the thesis and provides promising future research directions based on the 

thesis work.  

 
 



 

 

 

 

Chapter 2   

Related Work on Automatic Evaluation 
 

The evaluation of text retrieval performance in static document collections is a well-

known research problem in the field of information retrieval [SAL1983].  In this study 

our concern is the automatic performance evaluation of information retrieval systems.  

Classical performance evaluation of information retrieval systems requires a set of 

relevance judgments, made by human assessors, for each query.  In the automatic 

evaluation, these relevance judgments generally are replaced with a set of relevant 

documents determined automatically.  In the following sections, we give an overview of 

the automatic evaluation methodologies proposed so far.   

2.1 Ranking Retrieval Systems without Relevance Judgments  
 
The study of [SOB2001] involves ranking retrieval systems without relevance 

judgments.  Their methodology replaces human relevance judgments with a number of 

randomly selected documents from a pool generated in the TREC environment.  The 

random selection approach provides a generic retrieval system that reflects the average 

behavior of all search engines.  At first, the number of relevant documents is taken as the 

average number of relevant documents appearing in the TREC pool per topic for each 

year.  The consistency of random selection method with human relevance judgment is 

measured by experimenting on some factors such as the pool depth, number of relevant 

documents, and allowing/disallowing duplicated documents in the pool.  

 

7 
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 In official TREC evaluations the top 100 documents from each participant are 

gathered to form a pool.  The study looked at the effect of using a smaller pool depth.  

For this purpose, they used the top 10 documents from each retrieval run and they 

assumed that top systems perform well, since they find rare and unique relevant 

documents that other systems either do not find or do not rank highly.  Use of shallow 

pools improves the consistency of random selection method with human-based 

evaluations in some TREC years.  

 
 Another factor that affects the consistency of human-based evaluations with the 

random selection process is allowing duplicated documents in the pool.  In the 

construction of official TREC pools duplicated documents are not allowed, since it 

makes no sense for a TREC assessor to judge the relevance of the same document more 

than once.  However, for random selection process, it is important to use duplicated 

documents in the pool, since the documents retrieved highly by more than one retrieval 

system are more likely to be relevant.  Furthermore, their occurrences more than once in 

the pool improve their chance to be selected randomly.  The study showed that allowing 

duplicated documents improves the correlation of human-based evaluations with random 

selection process.  

 
 The last factor that they take into account is the number of relevant documents for 

each query.  At first, they used the average number of relevant documents for each 

TREC year.  They used different number of relevant documents for each topic using the 

exact percentage of relevant document for that topic.  This process is called exact 

fraction sampling.  Using exact fraction sampling has two advantages over using the 

same number of documents for every topic.  1) Every topic has an exact number of 

relevant documents, so some topics have large number of relevant documents and some 

have very few. Using the exact number of relevant documents improves the mean 

average precision of each system. 2) A very large number of documents for a topic are 

not selected that has few relevant documents in reality, or vice versa.  The study assumes 

that use of exact fraction sampling will have the highest improvement in the correlation; 

however, it improved the correlation of both methods for only some TREC years.  Use 

of exact fraction sampling is an unrealistic approach, since we would never know these 
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values in an actual case.  In fact exact percentage approach reflects the real values to the 

experimental environment due to the two points stated above.   

 
 Ranking of retrieval systems using this methodology correlates positively and 

significantly with official TREC rankings, although the performance of top performing 

systems is not predicted well.  Furthermore, it is unable to predict the real system 

effectiveness. 

2.2 Automatic Evaluation of Web Search Services 
 
The [CHO2002] study, presents a method for comparing search engine performance 

automatically based on how they rank the known item search result.  The method uses 

known-item searching; comparing the relative ranks of the items in the search engines’ 

rankings.  Known-item searching is as its name implies the searching of known 

documents in the results of search engines.  

 
 In the study, query-document pairs were constructed automatically using query logs 

and documents from Open Directory Project (ODP).  Three random samples of query-

document pairs were constructed (500, 1000, and 2000), and then the queries are issued 

to the search engines and the results are collected.  The rank of each search engine for 

each query is found by computing the mean reciprocal rank of the document paired with 

that query.  The overall score for a search engine is the mean reciprocal rank over all 

query-document pairs.  

 
 If query-document pairs are reasonable and unbiased then this method could be 

valuable.  Although the document must be the most relevant for a query, it is not easy to 

determine.  However, if the matches are reasonably good, then the better engines will be 

those that rank the documents higher.  If the documents are biased then results will not 

be fair.  For example, if we use a document from the search engine results we can 

choose the first document in the result set or we can choose a document randomly.  If 

the selection is performed as in the former example the results will not be fair.  The 

search engine whose first document is selected will be biased.  To avoid bias in the 

evaluation we can ignore the search engine whose document is selected; however, the 
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other search engines using a similar algorithm or the same database will also be biased, 

if there are any. 

2.3 Methods for Measuring Search Engine Performance over 
Time 
 

The study of [BAR2002] describes methods for measuring performance of search 

engines over time.  Several measures to describe the search engine functionality over a 

time period are defined.  The study argues that, it is not sufficient to use traditional 

evaluation criteria: coverage, recall, precision, response time, user effort and form of 

output, as defined by [CLE1970].  Therefore a set of new evaluation measures is 

introduced for the evaluation of search engine performance over time.  They are: (a) 

technical precision; (b) relative coverage; (c) new and totally new URLs; (d) forgotten, 

recovered, lost; (e) well-handled and mishandled URLs; (f) self overlap of a search 

engine; and (g) persistent URLs.   

 

 The study introduces the notion of technically relevant documents.  A document is 

technically relevant if it satisfies all the conditions posed by the query; query terms and 

phrases that are supposed to be in the document are in the document and the terms that 

are supposed to be missing from the document are not in the document.  If a document 

matches the Boolean query than it is relevant to that query.  Although relevance 

evaluation is not as simple as the technical relevance defined here, the study is 

interesting because it introduces a set of new automatic evaluation criteria for retrieval 

systems.  

 

 The study illustrates the use of the proposed measures by a small example.  The 

experiments involve the six major search engines, using a single term query. The 

searches are performed for a year for several times, and results are presented using the 

measures defined in the study.   
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2.4 Evaluating Topic-Driven Web Crawlers 
 
The [MEN2001] study proposes three approaches for assessing and comparing the 

performance of topic driven crawlers.  These approaches are; (a) assessment via 

classifiers, (b) assessment via a retrieval system, and (c) assessment via mean topic 

similarity.  These approaches are applied to assess three different crawlers; bestFirst, 

pageRank, and infoSpiders.  The evaluations are performed automatically and are 

defined as follows.   

 
Assessment via classifiers: a classifier for a set of 100 topics was built.  These classifiers 

are used to assess the newly crawled Web pages.  A positively classified Web page is 

assumed to be good, or relevant page for that the topic that classifier defines.  The 

measurement is performed using content-based relevance decided by the classifier.  

 
Assessment via a retrieval system: an independent retrieval system is used to rank the 

crawled pages against a topic.  The crawlers are assessed by looking at the time when 

they fetched the good pages.  A good crawler retrieves the high ranked pages earlier than 

the lower ranked pages.  The temporal position of the URLs, the position related to their 

fetch time, is used in this evaluation, but if the URLs used in an index, their temporal 

positions are not important, since they will be evaluated using a different retrieval 

algorithm.  Although they use the temporal positions of each URL in the crawling, it is 

fair since it equally treats all of the tested crawlers.   

 
Assessment via mean topic similarity:  the average cosine similarity between the tf*idf 

vector of the topic and the tf*idf vector of each page visited up to certain point in the 

crawl is measured in this assessment method.  The intuition is that a good crawler should 

remain in the neighborhood of the topic in vector space.  This measure assesses the 

consistency of the retrieved set with the topic as the core.  The similarity calculation is 

performed as the size of visited pages increases.   
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2.6 Automatic Performance Evaluation of Web Search 
Engines (AWSEEM) 
 
In our previous works [CAN2003; NUR2003a; NUR2003b], we proposed a new 

methodology to replace human-based relevance judgments with a set of automatically 

generated relevance judgments.  Our methodology works as follows.  For each query, 

top b documents from each search engine are collected to form a pool of documents. 

Then we index and rank these documents using the vector space model [SAL1983].  The 

stop words in the documents and queries are eliminated.  We also use stemming.  The 

similarity between query and documents are evaluated using the cosine similarity 

function.  The documents are sorted in descending order with their similarity to the 

query and a constant number of top documents in this ordering are treated as relevant.  

Then using these automatic or pseudo relevance judgments, we evaluate the 

performance of each system in terms of average precision at different document cut off 

values.   

 
We tested our methodology in two different test environments and observed that our 

method correlates positively and significantly with the human based evaluations.  We 

first tested our method on the performance evaluation of Web search engines.  In this 

experiment, we used eight different search engines and 25 queries [CAN2003]. The 

ranking of these search engines with human-based evaluations is compared with the 

ranking by our automatic method.  The results showed that our method predicts the best 

and worst performing search engines in terms of precision at different cut-off values and 

the ranking of search engines with this methodology is strongly correlated with that of 

human-based evaluations.  

 
We then tested our methodology in the TREC environment [NUR2003a; 

NUR2003b].  We tested our method with the retrieval systems submitted to the ad hoc 

task of TREC-5.  In our experiments we assumed a Web-like imperfect environment; 

i.e., the indexing information of all documents are available, but some of the documents 

are not reachable because of document deletions or network conditions.  Our method 

presented consistent results with the actual TREC rankings; however, the methodology 
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ranks the best performing search engines with the poor systems. The systems in the 

middle and the worst systems are predicted well. These two experiments showed that 

our method evaluating the retrieval systems automatically can be used to evaluate rank 

the Web search engines.  

 
In this chapter, we reviewed the automatic evaluation and ranking methods proposed 

so far.  Most of the methods are designed and experimented on the effectiveness of Web 

search engines.  However, these methods can also be used in the performance evaluation 

of information retrieval systems in TREC.  Knowing the most effective retrieval systems 

is important; however, the methodologies proposed so far cannot predict the most 

effective search engines. They use different techniques and support the hypothesis that it 

is possible to evaluate the effectiveness of information retrieval systems automatically.  

Our aim is to find a good automatic evaluation approach that estimates the actual 

performance of systems.  The existence of automatic evaluation methods encourages us 

to propose such an evaluation methodology, because their results reveal that we can 

evaluate the performance of systems without human relevance judgments.  

 
 



 

 

 

 

Chapter 3   

Data Fusion Techniques for Automatic 
Evaluation 
 

“Two hands are better than one” is an old saying applied to the information retrieval 

problem since 1972 Fisher and Elchesen [FIS1972] showed that document retrieval 

results were improved by combining the results of two Boolean searches.  Data fusion is 

the merging of final results from a number of retrieval systems to improve the retrieval 

effectiveness [MNG2002].  The central thesis in the fusion is that by combining the 

results of different retrieval systems we can outperform the best system.  Data fusion 

process takes as input n ranked lists output by each retrieval system in response to a 

query.  It then computes a single ranked list as output.  

 
The work of Fisher and Elchesen [FIS1972] has been followed by several studies.  

For an excellent survey of combining approaches see [CRO2000; MNG2002].  Fox and 

Shaw [FOX1994] designed the CombSum and CombMNZ algorithms.  Lee [LEE1995; 

LEE1997] performed experiments on these Comb algorithms and they have become the 

standard by which newly developed result combinations are judged.  Aslam and 

Montague [ASL2001; MON2002] developed two different merging algorithms based on 

the social welfare functions, Borda Fuse and Condocet’s Fuse, and showed that their 

algorithms outperform the CombMNZ algorithm.  

 

14 
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 Recent studies on data fusion showed that the use of social welfare functions as the 

merging algorithms in data fusion presents better results than the existing data fusion 

methods [ASL2001; MON2002].  In the following sections, we describe three different 

data fusion methods; Rank Position (reciprocal rank), Borda Count (Fuse), and 

Condorcet’s Algorithm (Fuse) and their usage in the automatic performance evaluation.  

Some observations related to the effect of the number of unique relevant documents and 

document popularity in the data fusion is also presented.  

 
 Meng and his co-workers [MNG2002] reported that metasearch (data fusion) 

software is composed with a list of sub components. The following list details these 

components.  

1. Database/Search Engine Selector: the search engines (databases) to be fused 

selected using some system selection methods.  

2. Query Dispatcher: the queries are issued to the underlying search engines using 

their query formats.  

3. Document Selector: documents selected from each search engine are determined. 

The simplest way is the use of top b documents.  

4. Result Merger: the results of search engines are merged using some merging 

techniques.  

 
 In our experiments, we deal with three of these components. We do not consider the 

query dispatcher component, because we have the results for each query.  In TREC the 

top 1000 documents are returned by each retrieval system for each query.  In this 

chapter, we will discuss the result merger component of the data fusion process, and we 

will use the phrase data fusion instead of result merging.  We also deal with the database 

(system) selection in Chapter 4.  For the document selection phase, we use the pooling 

method with a depth of 20 documents.  
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Figure 3.1: Automatic performance evaluation process; generalized description for information 
retrieval system IRSi 

Top b docs 

Top b docs 

 

 In our approach, automatic performance evaluation with data fusion works as 

follows.  At first using a system selection algorithm we first select k systems to be fused.  

The maximum number of selected systems is the number of systems (n) in the test 

environment (k ≤ n).  Then using one of the data fusion methods described in this 

chapter, we combine the top b documents from each selected system.  The final output 

of merging is used to determine the pseudo relevant documents.  Top s% of the merging 

result is selected and treated as relevant documents (Ds). We use a percentage of 
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documents instead of a constant number, because for some queries and pool depths the 

selected constant number may be higher than the number of documents returned as a 

response to that query from all of the systems.  The performance of each retrieval system 

is evaluated using these pseudo relevant documents.  The consistency of ranking of 

retrieval systems obtained using data fusion method with the actual TREC rankings is 

measured.  Figure 3.1 depicts the automatic performance evaluation process. 

3.1 Data Fusion with Rank Positions 
 
The simplest merging strategy, which takes only the rank positions of documents 

retrieved from each retrieval system to merge them into a unified list.  The rank position 

of each document is determined by the individual retrieval system.  When a duplicated 

document is found its rankings are summed up, since the documents returned by more 

than one retrieval system might be more likely to be relevant.  In our experiments, the 

rank position score (r) of a document is calculated by adding the inverse of rank 

positions of the document in different result sets.  

 
              1 
r ( di ) =            for all retrieval systems (j).  

 (Σ  1/position dij  )  
 

For each of the documents to be combined the rank position score is evaluated, then 

using these rank position scores documents are sorted in ascending order.  Since the top 

ranked documents are more likely to be relevant to the query, they are treated as relevant 

documents.  

 
Following example provides the working principle of Rank Position in automatic 

performance evaluation.  

 
Example: Suppose that we have four different information retrieval systems with a 

document collection composed of documents a, b, c, d, e, f, and g.  For a given query, 

their top four results for the search engines A, B, C, and D are as follows: 

 

 A = (a, b, c, d) 
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 B = (a, d, b, e) 

 C = (c, a, f, e) 

 D = (b, g, e, f) 

Now, we compute the rank position of each document in our document list, and the rank 

scores of documents are as follows.  

 
r (a) = 1 / (1 + 1 + 1/ 2 )       =   0. 4  

r (b) = 1 / (1/2 + 1/3 + 1 )     =  0. 52  

r (c) = 1 / ( 1/3 + 1 )             =  0. 75  

r (d) = 1 / (1/4 +1/2)             =  1. 33  

r (e) = 1 / (1/4 + 1/4 + 1/3 )  =  1. 2  

r (f) = 1 / (1/3 +1/4)              =  1. 71 and  

r (g) = 1 / ( 1/2)                    =   2.   

 
 After calculating rank scores of each document, we rank the documents with respect 

to their scores.  The top s= 3 documents of the ranked list assumed to be relevant for that 

query, (i. e. , a, b, and c).  The precision values are computed as follows:  

 
 A: Precision = 3/4 

 B: Precision = 1/2 

 C: Precision = 1/2 

 D: Precision = 1/4 

 
The ranking of the systems from best to the worst is as follows.  

A > B = C > D 

3.2 Data Fusion with Social Welfare Functions 
 
In social theory of voting, a group mainly decides the winner, but in many situations it is 

more useful to produce rankings of all of the candidates.  A rule for determining the 

group ranking is called social welfare functions [ROB1976].  Voting procedures can be 

considered as data fusion algorithms, since they combine the preferences of multiple 

“experts” [ASL2001].   
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In the social theory of voting, there is a lot of individuals and a set of candidates.  In 

data fusion problem, as an instance of voting problem, the documents correspond to the 

candidates and the input retrieval systems correspond to individuals.  Thus, in data 

fusion there is a lot of candidates and a set of individuals.  In our experiments, we use 

two different social welfare functions to assess the effectiveness of group decision-

making algorithms in terms of automatic ranking of retrieval systems.  In the following 

sections, we describe the social welfare functions used for data fusion.  

3.2.1 Borda Count 
 
This method is introduced by Jean-Charles de Borda in 1770.  Borda Count is a position 

based voting algorithm in which each voter gives a complete ranking of all possible 

individuals.  The highest ranked individual (in for example an n-way vote) gets n votes 

and each subsequent gets one vote less (so the number two gets n-1 and the number 

three gets n-2 and so on). Then, for each alternative, all the votes are added up and the 

alternative with the highest number of votes wins the election.  More technically, each 

individual i ranks a set of candidates in order of preference, Pi.  Let Bi (a) be the number 

of candidates, b ranked below candidate a in Pi.  For the top ranked candidate Bi (a) will 

be the number of candidates.  If there are candidates left unranked by the individual i, 

then the remaining score will be divided evenly among them.  The candidates are ranked 

in order of their total scores (i. e. , Σ Bi(a), for all individual i).  Ties in this election 

process are not solved.  

 
 In automatic performance evaluation, retrieval systems are individuals where 

documents are candidates.  We first merge the results of each retrieval system to obtain a 

full list of candidates for each query.  Then for each document in that list, we compute 

the total Borda Count score.  After that we rank the documents by their scores.  Top s% 

of the documents in that ranked list are treated to be relevant documents to that query.  If 

there is a tie of documents then documents are selected randomly.  

 
Example: Suppose that we will evaluate the performance of three search engines A, B, 

and C.  The search engines returned the following list of documents to a given query.   
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A = (a, c, b, d) 

B = (b, c, a, e) 

C = (c ,a, b, e) 

 
Five distinct URLs retrieved by search engines A, B, and C: (a, b, c, d, and e)  

Now, the Borda Count of each URL is computed as follows.  

 
B (a) = BA (a) + BB (a) + BC (a) = 5 + 3 + 4 = 12 

B (b) = BA (b) + BB (b) + BC (b) = 3 + 5 + 3 = 11 

B (c) = BA (c) + BB (c) + BC (c) = 4 + 4 + 5 = 13 

B (d) = BA (d) + BB (d) + BC (d) = 2 + 1 + 1 = 4 

B (e) = BA (e) + BB (e) + BC (e) = 1 + 2 + 2 = 5 

 
Finally, documents are ranked using their Borda Counts.  The final ranked list is as 

follows.   

 c > a > b > e > d 

 
 After that top s documents in this list are treated as relevant and the performance of 

each system can be evaluated using these relevance judgments.  Suppose that top four 

(s= 4) documents in the ranked list (c, a, b, and e) are relevant to query, then precision of 

each system will be:  

P (A) = 3/4, P (B) = 1, and P (C) = 1.  

3.2.2 Condorcet’s Algorithm   
 

Condorcet’s election method named after the French mathematician Marie Jean Antoine 

Nicolas de Caritat Condorcet who formulated it in 18th century.  The main idea is that 

each race is conceptually broken down into separate pair-wise races between each 

possible pairing of the candidates.  If candidate A is ranked above candidate B by a 

particular voter, that is interpreted as a vote for A over B.  If one candidate beats each of 

the other candidates in their one-on-one races, that candidate wins.  
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 In the Condorcet’s election method, voters rank the candidates in order of preference.  

The vote counting procedure then takes into account each preference of each voter for 

one candidate over another.  The Condorcet’s voting algorithm is a majoritarian method 

that specifies the winner as the candidate, which beats each of the other candidates in a 

pair-wise comparison.  The basics of Condorcet’s voting are best illustrated by an 

example.   

 
Example: Suppose that we have three candidates a, b, and c with five voters A, B, C, D, 

and E.  Within the context of information retrieval candidates are documents and voters 

are retrieval systems.  Each voter’s preferences are as follows.   

 
A: a > b > c 

B: a > c > b 

C: a > b = c 

D: b > a 

E: c > a  

 
 In the first stage, we will use a NxN matrix for the pair-wise comparison, where N is 

the number of candidates.  Each entry (i, j) of the matrix is showing the number of votes 

i over j (i.e., cell [a, b] is showing the number of wins, lose, and tie a over b, 

respectively).  

 
 a b c 

a - 4, 1, 0 4, 1, 0 
b 1, 4, 0 - 2, 2, 1 
c 1, 4, 0 2, 2, 1 - 

 

 

 

 
 
 After that, we will determine the pair-wise winners.  Each complimentary pair is 

compared, and the winner receives one point in its "win" column and the loser receives 

one point in its "lose" column.  If the simulated pair-wise election is a tie, both receive 

one point in the "tie" column. 

 

 

 
 



CHAPTER 3. DATA FUSION TECHNIQUES FOR AUTOMATIC EVALUATION        22 

 win lose tie 
a 2 0 0 
b 0 1 1 
c 0 1 1 

 

 To rank the documents we use their win, lose and tie values.  If the number of wins 

that a document has is higher than the other one, then that document wins.  Otherwise if 

their win property is equal we consider their lose scores, the document who has smaller 

lose score wins.  If both win and lose scores are equal then both documents are tied.  The 

final ranking of the candidates in the example is as follows.  

a > b = c.  

 
 If two of the candidates have same number of win, loss and tie, then they will be tied 

candidates.  For some voting profiles, instead of a single winner, the class of candidates 

is all winners.  This is called the voting paradox.  An example of profile that causes 

voting paradox is the following.  In this profile candidate a beats b twice, b beats c 

twice, and c beats a twice.  

 
A: a > b > c 

B: b > c > a 

C: c > a > b 
 
 In automatic evaluation of the information retrieval systems, the top s% of the ranked 

documents will be relevant documents to our queries, and performance of each system 

will be evaluated using this relevant document list.  If the documents merged using 

Condorcet’s Algorithm cause the voter’s paradox, the pseudo relevant documents are 

selected as a random sample in the evaluation.  
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3.3 Observations Related to Data Fusion  

3.3.1 Effects of Number of Unique Documents in the Relevant 
Documents Set  
 
Beitzel and his co-workers [BEI2003] experimentally showed that to improve the 

effectiveness of data fusion, fusion with multiple-evidence strategies is not enough.  The 

result sets being fused must contain a large number of unique relevant documents.  

These unique relevant documents must be highly ranked.  The study first analyzed Lee’s 

claim that the effectiveness of fusion is directly related to the relevant and non-relevant 

overlap of the fused systems [LEE1995; LEE1997].  According to Lee, the higher the 

difference in relevant and non-relevant overlap, the greater the effectiveness of fusion 

should be.  However, the experiments showed that the improvement in effectiveness of 

fusion is not related to the relevant and non-relevant overlap.  The next step of the study 

was on the claim that highly effective retrieval strategies tend to return different relevant 

documents.  They used highly effective retrieval strategies to show that the truth of this 

claim.  If a relatively large number of unique relevant documents were ranked highly in 

the result sets to be fused, it would raise the average precision of fusion.  Analysis of 

unique relevant documents for each TREC year and best three systems of that TREC 

year is done.  This analysis showed that the fusion of top three systems for any depth has 

a higher percentage of unique relevant documents.  Another interesting observation in 

this analysis is that the greatest percentage of unique relevant documents is near the top 

of the result sets.  It shows that the best systems return unique relevant documents at the 

top of the result sets, so that fusion of best systems improves the effectiveness.   

3.3.2 Effects of Document Popularity in the Relevant Documents Set 
 
Aslam and Savell [ASL2003b] proposed an explanation why evaluating the performance 

of systems without relevance judgments such as the one proposed in [SOB2001] 

correlates positively and significantly with the actual TREC rankings.  
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 They proposed a simple measure for the similarity of retrieval systems and showed 

that evaluating retrieval systems with the average similarity yields quite similar results 

to the methodology proposed in [SOB2001].  They also demonstrated that both of these 

methods are evaluating the retrieval systems by popularity as opposed to performance.  

 
 In the study of Soboroff, et al. [SOB2001] most of the systems classified correctly, 

however the best systems are ranked consistently with the poor performers.  Because the 

best performing systems return different relevant documents and they do something 

significantly different from the more generic systems in the competition.  Thus, the 

study hypothesized that Soboroff, et al. study evaluates systems by popularity.  

Experiments on the system similarity are performed, and the correlation of ranking with 

system similarity to the Soboroff, et al.’s results verified the hypothesis about the 

popularity.  

 
In this section, we review the studies that examine the number of unique relevant 

documents in the response set of a retrieval system for a query and the effect of popular 

documents in the automatic performance evaluation. As pointed out in [ASL2003b] the 

ranking of retrieval systems automatically performs well for the average systems 

because they return popular documents; however it does not perform well for best 

systems because they do not rank highly the popular documents; they rank the unique 

relevant documents highly.  In our study we use the results of these two observations to 

use different set of systems in the data fusion process for automatic performance 

evaluation.  In other words, their observations are a motivation tool for us to change the 

system selection component of data fusion in the automatic performance evaluation.   

 

 
 



 

 

 

 

Chapter 4   

System Selection for Data Fusion 
 

One of the important components in the data fusion is the selection of the systems to be 

fused to improve the effectiveness of the data fusion process.  Several researchers have 

used combinations of different retrieval strategies to varying degrees of success.  Lee 

studied the effect of using different weighting schemes to retrieve different sets of 

documents with a single query and document representation, and a single retrieval 

strategy [LEE1995].  In another study, Lee examined why the data fusion techniques 

improved the effectiveness and concluded that improvements in retrieval effectiveness 

due to data fusion is directly related to the level of overlap in the results from each 

approach being combined [LEE1997].  Lee hypothesized that for multiple-evidence 

techniques to improve the effectiveness, the result set being combined must have higher 

relevant document overlap than non-relevant overlap.  However, Beitzel, et al. 

[BEI1997] showed that this hypothesis is not true.  The improvements in the retrieval 

effectiveness due to data fusion are related something different than the relevant or non-

relevant overlap.  Specifically, Beitzel, et al. proposed that to improve the effectiveness, 

highly effective retrieval strategies must be combined.  They used the observations of 

Soboroff, et al. [SOB2001], which is the highly ranked retrieval systems find unique 

relevant documents that other retrieval systems either do not find or do not rank highly.  

Then they showed that the use of best systems in fusion improves the retrieval 

effectiveness and the best performing system returns the most unique relevant 
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documents. At the same time Aslam and Savell [ASL2003b] showed that the automatic 

ranking of retrieval systems with random sampling method ranks systems using the 

popularity of the documents returned in their response set. Based on these observations, 

we propose to use three different approaches to select systems to be combined to 

generate pseudo relevant documents.  

 
• Fusion via all retrieval systems,  

• Fusion via best retrieval systems,  

• Fusion via biased retrieval systems.   

 
 Firstly, every information retrieval system to be ranked is combined in the fusion via 

all retrieval systems.  The 25 % of the top performing retrieval systems are combined in 

the second approach.  Merging of the best retrieval systems to generate pseudo relevance 

judgments is a motivation to find a system selection algorithm that improves the 

automatic performance prediction of retrieval systems. The final approach is the fusion 

of biased systems, that is the retrieval systems that behave differently from the ideal 

retrieval system.  Bias is a candidate method that finds the systems different from the 

majority.  A detailed definition of bias is given in the following section.   

4.1 Using Bias for System Selection 
 
In this section, we deal with the bias in information retrieval systems.  Bias is the 

balance or a function of emphasis of a set of documents in response to a set of queries 

[MOW2002a].  A response set may display bias whether or not the documents are 

relevant to the user’s need.  However, bias in information retrieval is not concerned with 

individual documents, but rather with their distributions.  Since the bias exhibited by a 

set of document deals with the emphasis.  Bias of a retrieval system is measured by 

assessing the degree of deviation the document distribution from the ideal or norm.  A 

retrieval system is highly biased if the documents in response to a set of queries are very 

different from the norm.  Given a norm prescribing the frequency of items retrieved in 

response to a query, a set of documents exhibits bias, when some documents occur more 
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frequently with respect to the norm, while others occur less frequently with respect to 

the norm [MOW2002a; MOW2002b].  

 
 The distribution of items in the norm is obtained by computing the frequencies of 

occurrence of documents in the collection retrieved by several information retrieval 

systems for a given set of queries.  For a particular information retrieval system, the 

distribution of items is obtained in a similar fashion.  Distribution of items is a vector of 

real numbers.  To compute the bias of a particular system, we first calculate the 

similarity of the vectors of norm and a particular information retrieval system using a 

metric; such as their dot product is divided by the square root of the product of their 

lengths, i.e., the cosine similarity measure (other similarity measures can also be used).  

The bias value is obtained by subtracting this similarity value from 1.  i.e. , the similarity 

function for vectors v and w is: 

 
                      ∑vi .  wi 

s(v, w) =            
         (∑(vi)2 .  ∑(wi)2) ½   

 
and the bias between these two vectors is defined as follows : 
 

B(v,w) = 1- s(v,w) 
 
 Bias can be interpreted in two very different ways.  On the positive side, the results 

may mean that a retrieval system chooses relevant documents not found by the others; 

on the negative side, it may mean that the retrieval system simply fails to find the most 

relevant documents retrieved by the majority.   

 
 Two variant measures of bias, one that ignores the order of the documents in the 

retrieved result set, and one that takes account of order, are formulated in the study of 

Mowshowitz and Kawaguchi [MOW2002a; MOW2002b].  Frequency of occurrence of 

documents is incremented by 1 when bias is calculated by ignoring the position of 

documents.  To take the order of documents into account, we may increment the 

frequency count of a document with a value different from 1.  One possibility is to 

increment frequency of document by m/i where m is the number of positions and i is the 

position of document in the retrieved result set.  In our experiments, we pay attention to 
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the order of the documents in the response set of queries by incrementing the frequency 

of documents by m/i.   

 
 To illustrate the computation of bias, suppose that we use two hypothetical retrieval 

systems A and B to define the norm, and three queries processed by each retrieval 

system.  In this example, bias is calculated by ignoring the order of documents in the 

result sets.  The documents retrieved by A and B for three queries are as follows (first 

row corresponds to the first query, etc.).  

 

       a  b  c  d            b  f  c  e   

  A:     b  a  c  d         B:     b  c  f  g 

 a  b  c  e                 c  f  g  e 

 

 Then the (seven) distinct documents retrieved by either A or B are a, b, c, d, e, f, and 

g and the response vectors for A, B and the norm are: xA = (3, 3, 3, 2, 1, 0, 0), xB  = (0, 

2, 3, 0, 2, 3, 2) and X = (3, 5, 6, 2, 3, 3, 2), respectively.   

 
 The similarity of vector xA to X is 49/[(32)(96)] ½  = 0. 8841, where the similarity of 

vector xB to X is 47/[(30)(96)] ½  =0. 8758.  The bias values for each system are:   

Bias(A) =  1 - 0. 8841 = 0. 1159,  and Bias(B) = 1 - 0. 8758 = 0. 1242.  

 
 If we repeat the calculations by taking order of documents into account, the response 

vector for A, B and norm are: xA = (10, 8, 4, 2, 1, 0, 0), xB = (0, 8, 22/3, 0, 2, 8/3, 7/3), 

and X = (10, 16, 2, 34/3, 2, 3, 8/3, 7/3), respectively.  The similarity of xA to X is 

computed as 0. 8941 and the similarity of vector xB to X is 0. 8728.  The bias of A is 0. 

1059 and the bias of B is 0. 1272.  The bias of A is decreased, whereas the bias of B is 

increased.  This result shows that bias taking account of order may be larger or smaller 

than the bias with ignoring order.  There is only a slight difference between A and B, 

suggesting the possibility that they use the same basic retrieval strategy.  To interpret the 

difference between the bias values of systems, a different way of evaluation measure is 

proposed, which calculates the bias by excluding the retrieval system in concern.  
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 A high bias value, in general, means the collection of documents retrieved by the 

information retrieval system A deviates significantly from the norm.  If the ideal 

retrieval system (norm) is defined in terms of a set of retrieval systems that score highly 

on recall and precision, it is probable that the documents missed by A are indeed 

relevant and the ones found by A are not relevant.   

 
 In our experiments, we first evaluate the bias of all of the retrieval systems used in 

the TREC year of concern.  The retrieval systems are sorted in decreasing order of their 

bias values.  Then top 25% or 50% of the retrieval systems are used in the fusion 

process.  The relevant documents are obtained from the result list of this fusion. Our 

expectation is that if most of the documents used in the fusion are rare and unique 

relevant documents then they will be at the top of the fusion result.  Thus, automatic 

ranking of retrieval systems with these top documents (pseudo relevant) will have a 

strong correlation with the human based evaluations.  If our assumption is true, then the 

correlation values will be higher than the correlation values obtained using all of the 

systems in that TREC year.  

 
 



 

 

 

 

Chapter 5  

Experimental Design and Evaluation 
 

5.1 Data Sets 

 
In our experiments, we use the ad hoc tasks of TREC-3, 4, 5, 6, 7, and 8 with the Web 

track of TREC-9.  TREC is managed by NIST to support the large-scale text retrieval 

methodologies.  For each TREC, NIST generates a test collection composed of 

documents and topic queries.   

 
TREC conferences have centered on the two main tasks; the routing task and the ad 

hoc task.  Starting from TREC-4 some additional tracks and tasks have also been 

introduced.  The routing task investigates the performance of systems that use the 

standing queries to search new document streams. i.e, it is mostly related to the 

information filtering.  The performance of retrieval systems that search a static set of 

documents for new queries are assessed in the ad hoc task of TREC. 

 
 The ad hoc task has been at the heart of TREC evaluations since the beginning of 

TREC [VOO1999].  In this task of TREC there are a large number of participating groups 

and human relevance judgments to make comparison, therefore using TREC 

submissions is ideal for such an experiment.  Each participating group is given the same 

data and queries, and they return a ranked list of documents up to 1000 for each query.  
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Then for each query the top 100 documents from each participating group are pooled, 

that is merged to eliminate any connection between a document and retrieval method.  

The documents are then manually assessed for relevance in a binary fashion; the 

documents not in the pool are assumed to be irrelevant.  Then the performance of each 

participating group is evaluated using these relevance judgments.   

 
TREC evaluates systems using different variants of precision and recall.  One of these 

measures is mean average precision used often as a single summary statistics 

[BAE1999].  The average precision for a single topic is the average of the precision after 

each relevant document is retrieved, where the mean average precision is the mean of 

the average precision for multiple topics (queries). We use the mean average precision 

measure in our experiments.   

 
The data sets and their properties used in our experiments are as follows.   

 
• TREC-3 [HAR1994]: 

There were 40 retrieval runs (systems) submitted to the Category A of ad hoc task 

of TREC-3.  The ad hoc task of TREC-3 is composed of different categories; 

Category A means full participation, whereas Category B means full participation 

using a reduced data set, and Category C includes the runs submitted for 

evaluation only process.  The queries used in TREC-3 were the TREC topics 151-

200.   

• TREC-4 [HAR1995]: 

The TREC topics 201-250 were generated for the ad hoc task of TREC-4.  The 

runs submitted to the Category A of this year are used.  There were 33 runs.   

• TREC-5 [VOO1996]: 

In TREC-5, 61 runs submitted to the Category A of ad hoc task and the topics 

251-300 are used in our experiments.   

• TREC-6 [VOO1997]: 

The TREC-6 ad hoc task used the topics 301-350, we use the 74 runs submitted to 

the Category A of ad hoc task in TREC-6.   

• TREC-7 [VOO1998]: 
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In TREC-7, there were 103 submitted runs for the ad hoc task.  The topics 351-

400 were generated for TREC-7.  Thus, we use them in our experiments.   

• TREC-8 [VOO1999]: 

In TREC-8 we use the 124 of 129 runs submitted to the ad hoc task.  We 

overlooked the runs fub99a, fub99td, fub99tf, fu99tt, and ge8atdn2.  The topics 

used in this TREC are 401-451.   

• TREC-9 [VOO2000a]: 

In the Web track, the documents are collected from the Web.  The task in that 

track is the traditional ad hoc task.  The topics used in the Web track of TREC-9 

were the TREC topics 451-500.  Three way relevance judgments are performed 

for this task (non-relevant, relevant, and highly relevant) [VOO2000a].  The 

evaluation of systems is done using either relevant and highly relevant 

documents, or only highly relevant documents.  We used both relevant and highly 

relevant documents for the actual TREC evaluation of TREC-9 and treat both of 

them as relevant documents.  The number of retrieval runs submitted for this task 

was 105.   

5.2 Experimental Results and Evaluation  
 

As explained before, in our experiments, we use three different data fusion methods; two 

of them, Borda Count and Rank position, are position based, and the other one, 

Condorcet’s Algorithm, is comparison based.  These methods are used for the 

performance evaluation of retrieval systems in the absence of relevance judgments.  

Each data fusion method is used for generating pseudo relevant documents list.  At first, 

top b documents from each retrieval system are combined.  Then top s% of documents 

in the resulting list of the fusion are treated as pseudo relevant documents.  Finally, we 

evaluate the performance (mean average precision) of each retrieval run (system) using 

these pseudo relevant documents.   

 
 At first every selected retrieval system in the ad hoc task of that TREC year are used 

in the fusion, then the best 25% of the systems determined using human-based relevance 

judgments are merged.  Finally we combined the systems determined by the bias 
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method, which examines a percentage of the systems returning unique documents either 

relevant or irrelevant.   

 
In Soboroff, et al. [SOB2001] the performance of average retrieval systems is 

predicted well, whereas the best performing systems are ranked with poor systems.  A 

similar behavior is also observed in the automatic ranking of retrieval systems with data 

fusion methods used in our study.  Top performing systems are ranked with the average 

systems in our experiments.  To overcome the problem of ranking the best retrieval 

systems as lower than they are, we first show that if the fused systems are selected 

differently, better performance can be achieved and for this purpose we proposed to use 

a percentage of the best systems (i.e., systems that provide highest effectiveness among 

their peers) for fusion.  Beitzel and his co-workers [BEI2003] also showed that the best 

performing retrieval system returns highly ranked unique relevant documents and the 

use of best three systems improve the effectiveness of fusion process.  Based on this 

observation, we proposed to use a percentage of best performing systems within the 

context of our experiments.  Our expectation on fusing best systems is that if the 

automatic performance evaluation with the fusion of best retrieval systems gives better 

correlation with the actual TREC rankings then using different system selection 

algorithms can overcome the ranking problem of best systems automatically.   

 
In Chapter 4 we introduced a system selection algorithm based on the bias of 

information retrieval systems.  Since bias determines the systems that behave different 

from the norm of the retrieval systems in concern, we intuitively hope that the bias 

information can be used to solve the problem of ranking best performing systems poorly.  

As explained before, systems doing something different from the majority of the systems 

return unique documents.  If most of the documents returned are relevant or most of the 

biased systems are the best systems, then the performance of the best performing 

systems will be predicted more accurately.  The popular documents returned by the 

biased systems will force the average systems to be ranked as they are.  

 
 The success of automatic ranking of retrieval systems with data fusion is measured 

using mean average precision.  We also compute the consistency of the ranking with 
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data fusion to the actual TREC rankings.  We used Kendall’s tau correlation, a statistical 

measure showing the correlation of different rankings in our experiments.  (Kendall’s 

tau counts the number of pairwise disagreements between two lists to convert one list 

into another.) 

 
 We performed our experiments on different depth of pools; however, we only report 

the results for pool with depth 20, to simplify the presentation.  We choose reporting the 

results of top 20 documents to construct the pool, because users of search engines are 

generally look at only the top 10 or 20 of the resulting URLs [SPI2002].  

 
In the following section we will give the results of automatic performance evaluation 

with each data fusion method.  Different system selection approaches are used in each of 

the fusion method, so they are also described.  The comparative evaluation of each 

system selection approach in each variant of the automatic evaluation method using data 

fusion is given at the end of each section.   

5.2.1 Rank Position Method 
 

In this section, we present the use of the Rank Position method in the automatic 

performance evaluation of information retrieval systems with the fusion of different sets 

of retrieval systems.  We first examine the performance of the Rank Position method 

with the data fusion via all systems.  Then the performance of data fusion via best 25% 

of the systems is explored.  Finally the effect of using biased systems in the data fusion 

is discussed.  The comparative evaluation of using different sets of retrieval systems is 

also provided.  

 
Firstly, all systems in the test environment are merged using their rank scores in the 

retrieval runs list.  We treat the top s% of the documents from the merged document list 

as pseudo relevant documents.  The average precision value for each participating group 

is calculated using these documents.  The consistency of the ranking obtained by this 

method is compared to the actual (human-based) TREC rankings.  

 

 
 



CHAPTER 5. EXPERIMENTAL DESIGN AND EVALUATION                                     35 

 Table 5.1 shows the correlation of the rankings obtained using the Rank Position 

method with the fusion of all systems to the actual TREC rankings for all TRECs.  The 

correlations are all significant with 99% confidence.  The highest correlation is observed 

in TREC-9.  The correlation values obtained by using top 10% (s10) relevant documents 

in the evaluation are the best values in the majority of the TREC years. In fact, using 

different number of relevant documents does not affect the correlation highly. The 

highest difference among the correlation values for different number of relevant 

documents is observed in TREC-6 with the value 0.052.  

 
Table 5.1: Kendall’s tau correlation of the Rank Position method using all systems to the actual 

TREC rankings for various numbers of pseudo relevant documents 
 s10 s20 s30 s40 s50 

TREC-3 0.412 0.417 0.433 0.449 0.453 
TREC-4 0.452 0.478 0.487 0.497 0.487 
TREC-5 0.388 0.383 0.372 0.371 0.379 
TREC-6 0.464 0.431 0.425 0.417 0.412 
TREC-7 0.422 0.426 0.412 0.405 0.393 
TREC-8 0.506 0.511 0.503 0.495 0.495 
TREC-9 0.627 0.622 0.619 0.613 0.605 

 
 Figure 5.1 shows the mean average precision of retrieval systems by actual TREC 

evaluations with respect to the mean average precision by our automatic method using 

fusion of all systems via the Rank Position method with 10%(s10) relevant documents.  

In this figure retrieval systems are sorted according to their official mean average 

precision values.  Also note that the average precision values for human-based 

evaluations and the Rank Position method are shown in different scales to illustrate the 

strong association of ranks of retrieval systems according to their effectiveness on these 

two methods. 

 
 In the majority of the TRECs both methods display similar results in especially 

determining the ranking of the retrieval systems in the middle and ranking of poor 

systems.  The figure reveals that the best performing systems are generally ranked with 

the middle systems when systems are ranked automatically with rank position method.  

TREC years presenting highest correlation are good at ranking the most of the best 
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systems and their ranking for the middle systems are highly correlated with the actual 

TREC ranking of retrieval systems (see charts for TREC-3, 4, 6 and 9 in Figure 5.1).  

 

 

 

 

 
 

 

 

 
 

 

 

 

 
Figure 5.1: Mean average precision ranking of retrieval systems with actual TREC rankings and 

ranking with the Rank Position method applied to all systems to be ranked. 
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Since the best systems are ranked with middle systems using rank position fusion of 

all systems, we repeat the experiments using only the 25% of the most effective retrieval 

systems for fusion.  Since the results of using 25% of the best performing systems in the 

automatic evaluation method with Rank Position are promising we do not explore the 

effect of any other percentage of the systems selected in the fusion process with the top 

performing systems.  Pseudo relevance judgments are obtained from the resulting list of 

the data fusion via best systems.  Then mean average precision for all systems in the test 

environment -not only the ones used in the data fusion- is evaluated.  The consistency of 

the ranking obtained from the fusion of best systems with the Rank Position method to 

the actual TREC rankings is evaluated.  For every TREC year significant correlations 

with 99% confidence level are observed.  The correlations are provided in Table 5.2.  

Using a number of known best retrieval systems in the fusion process improves the 

correlation of the Rank Position method to the actual TREC rankings.  The highest 

correlation is observed in TREC-9.  The improvement in the correlations of our method 

using best systems and real TREC rankings reveals that if a good algorithm can be 

implemented that determines the systems ranking unique relevant documents highly then 

it is possible to use data fusion with rank position in the automatic performance 

evaluation of retrieval systems.  The highest correlation is observed when 50% of the 

documents are treated as relevant in the majority of TRECs.   

 
Table 5.2: Kendall’s tau correlation of the Rank Position method using best 25% of the systems 

to the actual TREC rankings for various numbers of relevant documents 
  s10 s20 s30 s40 s50 

TREC-3 0.620 0.664 0.677 0.680 0.680 
TREC-4 0.605 0.639 0.684 0.695 0.715 
TREC-5 0.581 0.609 0.616 0.629 0.644 
TREC-6 0.728 0.715 0.721 0.726 0.733 
TREC-7 0.621 0.672 0.695 0.714 0.721 
TREC-8 0.649 0.681 0.712 0.726 0.733 
TREC-9 0.789 0.786 0.788 0.783 0.781 

 
 The automatic performance evaluation of systems fails in some of the TRECs when 

predicting the performance of top performing systems again; however, data fusion via 

best systems ranked majority of the systems correctly.  Figure 5.2 displays that both 
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methods (automatic evaluation with Rank Position fusion of best systems and human-

based evaluation) are in agreement in determining the ranking of the most of the best 

retrieval systems in the majority of the TRECs (see charts for TREC 3, 4, 6 and 9 in 

Figure 5.2). 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
Figure 5.2: Mean average precision ranking of retrieval systems with actual TREC rankings and 

ranking with the Rank Position method applied to best 25% of the systems. 
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The results of data fusion via best systems showed that it is possible to use a system 

that finds the retrieval systems doing something different from the majority of the 

retrieval systems in the evaluation environment.  The system selection method based on 

the bias concept, described in section 4.1, finds the retrieval systems that deviate from 

the norm of them.  The norm of the retrieval systems is obtained using an overlap 

analysis.   

 
Fusion of biased systems performed better than or equal to the fusion of all systems 

in most of the TRECs; however, in some TRECs the performance of fusion of biased 

systems is not as good as the fusion of all systems.  Because the biased systems 

generally are the poor systems in the experiment for that TREC years, and the Rank 

Position method ranks the documents taken from poor systems highly.  Ranking unique 

irrelevant documents higher decreases the success of ranking with data fusion of systems 

through the use of the Rank Position method.  

 
 In the fusion via biased systems, it is important to estimate the number of systems to 

be fused.  We first examined the use of the top 25% of the biased systems, we then 

repeated the experiments for the top 50% of the biased systems.  The use of 50% of such 

systems improved the effectiveness of ranking of retrieval systems by the fusion via 

biased systems, so we report the results of fusion of 50% of the biased systems.  Table 

5.3 shows the correlation of ranking with fusion via biased top 50% of systems to the 

actual TREC rankings.  All of the correlations are positive and significant 99% 

confidence. In the majority of the TRECs the highest correlations are observed when top 

10% (s10) of the documents are used.   

 
The ranking of retrieval systems with human-based evaluations and the Rank Position 

method with biased systems is presented in Figure 5.3.  Ranking with the fusion of 

biased systems displays similar results with the actual TREC rankings.  In most of the 

TREC years, both rankings predict the best performing systems and the systems in the 

middle, but the performance of worst systems is not predicted well, they ranked with the 

average systems (see charts for TREC 3, 4, and 5 in Figure 5.3). 
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Table 5.3:  Kendall’s tau correlation of the Rank Position method using biased 50% of the 
systems to the actual TREC rankings for various numbers of pseudo relevant documents 

 s10 s20 s30 s40 s50 
TREC-3 0.309 0.370 0.316 0.387 0.380 
TREC-4 0.380 0.445 0.464 0.471 0.490 
TREC-5 0.413 0.420 0.405 0.412 0.422 
TREC-6 0.567 0.552 0.551 0.536 0.536 
TREC-7 0.334 0.330 0.334 0.327 0.329 
TREC-8 0.508 0.499 0.487 0.480 0.466 
TREC-9 0.464 0.456 0.461 0.453 0.459 

  
 As a summary, in this section, we show that the Rank Position method could be used 

in the performance evaluation of retrieval systems in the absence of relevance 

judgments.  Although our method cannot predict the performance of best performing 

systems, we show that it is possible to modify the rank position method using different 

sets of retrieval systems in the fusion to improve effectiveness of best performing 

systems.  Moreover, our method predicts the real average precision performance of 

retrieval systems.  For this purpose, for example, look at the scales for both automatic 

and TREC results (y-coordinates) in Figure 5.1   

  
 If we can determine the systems doing something different from the majority of the 

retrieval systems to be ranked, then the ranking of retrieval systems with data fusion will 

be closer to the actual TREC rankings.  Use of bias improves the effectiveness of rank 

position method in some of the TRECs (see charts for TREC-5, 6 and 8 in Figure 5.4).  

In Figure 5.4 series named normal represents the fusion of all systems, where best 

named series corresponds to fusion of the top 25% of the systems and the bias series 

stands for the biased 50% of the systems.  
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Figure 5.3: Mean average precision ranking of retrieval systems with actual TREC rankings and 
ranking with Rank Position method applied to biased 50% of the systems. 
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Figure 5.4: Correlation comparisons for different system selection methods in the Rank Position 
method with the actual TREC rankings. 
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5.2.2 Borda Count Method 
 

The Borda Count method is a data fusion method that takes the rank of the documents in 

the result sets of retrieval systems into account.  The Rank Position method gives 

desirable results in the ranking of retrieval systems with data fusion; however, it fails to 

predict the best performing retrieval systems when documents from all systems are 

merged.  Since we want to find a good approach that correctly predicts the performance 

of all retrieval systems, we looked for other alternatives.  We found that the social 

welfare functions can be used in the automatic performance evaluation of retrieval 

systems.  The [MON2002] study showed that use of social welfare functions performs 

well in data fusion. They tested that it is possible to improve the retrieval performance 

using one of these algorithms in the fusion process. Thus we anticipate that the choice of 

social welfare functions would be appropriate solutions for automatic performance 

evaluation. 

 
In this section, we present the results of using data fusion with the Borda Count 

method in the automatic performance evaluation. The results show that data fusion with 

Borda Count could be used in the ranking of retrieval systems with data fusion.  As in 

the Rank Position method, the Borda Count method also performed well, when we fuse 

the best performing systems.  Detailed discussion on fusion via different sets of retrieval 

systems is presented in the following.  

 
The first experiment on the automatic performance evaluation of retrieval systems 

with the Borda Count method is performed using all systems to be ranked in the fusion.  

Table 5.4 displays the correlation of ranking with Borda Count to the actual TREC 

rankings for different TREC years.  The correlations are all positive and significant with 

99% confidence.  The highest correlations are observed in TREC-9.  Although the 

correlations of both methods are all significant, the Borda Count method still fails to 

predict the best performing retrieval systems in some of the TRECs.  Use of top 

10%(s10) of the documents as relevant documents gives the highest correlation for the 

majority of the TRECs.  
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Table 5.4: Kendall’s tau correlation of the Borda Count method using all systems to the actual 

TREC rankings for various numbers of pseudo relevant documents 
 s10 s20 s30 s40 s50 

TREC-3 0.422 0.420 0.421 0.443 0.452 
TREC-4 0.483 0.464 0.479 0.502 0.489 
TREC-5 0.390 0.381 0.360 0.375 0.384 
TREC-6 0.458 0.443 0.434 0.428 0.413 
TREC-7 0.437 0.421 0.407 0.399 0.384 
TREC-8 0.522 0.510 0.504 0.495 0.489 
TREC-9 0.631 0.614 0.607 0.605 0.603 

 
Figure 5.5 contrasts the mean average precision of each run as officially scored with 

that calculated using the pseudo relevant documents generated by Borda Count.  In most 

of the TREC years, the top ranked retrieval systems are ranked much lower than they 

should be (see charts for TREC-5, 6, 7 and 8 in Figure 5.5).  Our system is very close to 

the actual TREC rankings in the ranking of average and poor retrieval systems.  

 
The ranking of retrieval systems using data fusion of all systems with Borda Count 

improved the effectiveness of the ranking with the Rank Position method a little.  

However, it presents good results in the ranking of retrieval systems and can be an 

alternative way of ranking retrieval systems automatically.  

 
Table 5.5:  Kendall’s tau correlation of the Borda Count method using best 25% systems to the 

actual TREC rankings for various numbers of pseudo relevant documents 
 s10 s20 s30 s40 s50 

TREC-3 0.653 0.637 0.664 0.671 0.677 
TREC-4 0.521 0.601 0.662 0.700 0.711 
TREC-5 0.522 0.554 0.605 0.628 0.656 
TREC-6 0.686 0.701 0.708 0.725 0.737 
TREC-7 0.611 0.647 0.693 0.711 0.720 
TREC-8 0.625 0.673 0.709 0.735 0.734 
TREC-9 0.777 0.781 0.777 0.777 0.779 
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Figure 5.5: Mean average precision ranking of retrieval systems with actual TREC rankings and 
ranking with the Borda Count method applied to all of the systems. 
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We then merged 25% of the top performing systems, to observe the effect of using 

best systems in the fusion with the Borda Count method.  The correlation of this variant 

of the method to the actual TREC rankings are all significant with 99% confidence.  The 

correlation values for different TREC years are provided in Table 5.5.  Like in the Rank 

Position method fusion of best systems gives the highest correlation when we use the top 

50% of the documents as relevant documents in the majority of the experiments.  For 

TREC-9 the difference among the correlation values obtained using different number of 

documents is 0.004. This shows that there is no difference between the uses of different 

number of relevant documents in TREC-9. 

 
Figure 5.6 contrasts the average precision of each official TREC runs with average 

precision of runs calculated using the pseudo relevant documents.  Although there are 

some deviants top performing systems are ranked very close to their actual rankings with 

the data fusion by this variant of the Borda Count method.   

 
The Borda Count method is more successful than the Rank Position method in 

determining the average and poor systems.  Moreover data fusion via the best systems 

using either the Rank Position method or Borda Count method predicts the performance 

of top systems more accurately.  

 
 Data fusion of biased systems with the Rank Position method is consistent with the 

real TREC rankings; however, its correlation values are lower than that of fusion of all 

systems with Rank Position in most of the TREC years.  The following questions come 

into mind. Is this the natural behavior of fusion with biased systems? What will happen 

if we used the biased systems in the fusion process with Borda Count? 

 
To find answers to these questions, we used biased systems in the fusion process with 

the Borda Count method.  The correlations are given in Table 5.6 and are all significant 

with 99% confidence.  In most of the TREC years, the correlations of fusion via biased 

systems are higher than or equal to the correlations of the fusion of all systems (see 

Table 5.4). 
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Figure 5.6: Mean average precision ranking of retrieval systems with actual TREC rankings and 

ranking with the Borda Count method applied to best 25% of the systems. 
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Figure 5.7: Mean average precision ranking of retrieval systems with actual TREC rankings and 

ranking with the Borda Count method applied to biased 50% of the systems. 
 

 

 
 



CHAPTER 5. EXPERIMENTAL DESIGN AND EVALUATION                                     49 

When we compare the correlations of rankings with the fusion of biased systems through 

the use of the Borda Count method and correlations of rankings with the data fusion via 

biased systems through the Rank Position method, we observed that the correlations of 

Rank Position are higher than the correlations of the Borda Count method in some of the 

TRECs (TREC-5, 6, 7, 8, and 9).   

 
Table 5.6: Kendall’s tau correlation of the Borda Count method using biased 50% of systems to 

the actual TREC rankings for various numbers of pseudo relevant documents 
 s10 s20 s30 s40 s50 

TREC-3 0.358 0.329 0.334 0.391 0.373 
TREC-4 0.437 0.424 0.479 0.489 0.487 
TREC-5 0.495 0.417 0.354 0.405 0.426 
TREC-6 0.549 0.553 0.553 0.532 0.538 
TREC-7 0.330 0.323 0.334 0.322 0.326 
TREC-8 0.557 0.495 0.485 0.476 0.466 
TREC-9 0.433 0.448 0.463 0.478 0.503 

 
Figure 5.7 displays the ranking of retrieval systems by actual TREC evaluations with 

the ranking obtained by the fusion of 50% of the biased systems with Borda Count 

method.  Both methods display similar results in determining the middle and poor 

systems.  In some TREC years the Borda Count method predicts the most of the top 

performing systems. The results reveal that it is possible to use Borda Count method 

when we merge the results of biased systems to determine the performance of retrieval 

systems in the absence of relevance judgments.  

 
In this section we presented the effectiveness of Borda Count method in the 

automatic performance evaluation with different system selection methods. The 

correlation values of the ranking by the Borda Count method using various system 

selection algorithms to the actual TREC ranking are compared in Figure 5.8.  As 

expected, the highest correlation values are observed when the pseudo relevance 

judgments are obtained from the fusion of best performing systems with Borda Count.  

For some of the TREC years, bias gives promising correlation.  For example in TREC-8, 

5, and 4 the correlation of automatic method (Borda Count) with biased systems gives 

correlations equal to the Borda Count method with all systems.  In TREC-6 the 
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correlation values of the ranking using biased systems lie between the correlations of the 

ranking using best systems and that of using all systems. 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 
Figure 5.8: Correlation comparisons for different system selection methods in the Borda Count 

method with the actual TREC rankings. 
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5.2.3 Condorcet’s Algorithm 
 
Two fusion methods presented so far are both positional.  They take only the position of 

documents into account.  They both display similar results in three cases of the fusion 

process.  Condorcet’s Algorithm is a comparison based ranking approach, which ranks a 

candidate first, if it defeats every other in pairwise simple majority voting. Montague 

and Aslam [MON2002] showed that the performance of Condorcet’s Algorithm is better 

than the performance of the Borda Count method in data fusion, and they also showed 

that in most of the cases Condorcet’s fuse outperforms best performing system.  Thus, 

we expect to see an increase in the correlation of ranking of retrieval systems with data 

fusion when Condorcet’s Algorithm is used as the merging technique.   

 
We analyze the performance of Condorcet’s Algorithm using three different sets of 

systems to be fused.  In this section, the results of using Condorcet’s Algorithm in the 

automatic performance evaluation of retrieval systems are presented.  The effect of using 

different sets of retrieval systems in fusion with Condorcet’s Algorithm is also 

discussed.  

 
We first examine the performance of the use of all systems in the fusion process.  The 

correlation values are all significant with 99% confidence and are given in Table 5.7.  

Ranking with Condorcet’s Algorithm has much stronger correlation with the actual 

TREC rankings than the Borda Count or Rank Position method.  The correlation values 

of ranking with the Condorcet’s Algorithm via all systems in all TRECs show that 

improvement in the automatic performance evaluation is also possible using other data 

fusion methods.  

 
Figure 5.9 contrasts the mean average precision of official TREC runs with the 

evaluated mean average precision using the pseudo relevance judgments.  The systems 

are sorted using their official scores.  Since the ranking of middle and poor systems are 

predicted better than the ranking of middle and poor systems with the Rank Position or 

Borda Count method, the correlation values are observed higher than the use of the Rank 

Position and Borda Count method for fusion in the majority of the TRECs.  In some of 
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the TREC years the rankings of the best performing systems are predicted well (see 

charts for TREC-3 and 5 in Figure 5.9).  

 
Table 5.7: Kendall’s tau correlation of the Condorcet’s Algorithm using all systems to the actual 

TREC rankings for various numbers of pseudo relevant documents 
 s10 s20 s30 s40 s50 

TREC-3 0.430 0.440 0.440 0.442 0.438 
TREC-4 0.521 0.471 0.464 0.481 0.489 
TREC-5 0.407 0.396 0.396 0.379 0.375 
TREC-6 0.446 0.427 0.434 0.446 0.436 
TREC-7 0.456 0.447 0.425 0.413 0.404 
TREC-8 0.530 0.531 0.517 0.512 0.499 
TREC-9 0.638 0.627 0.598 0.604 0.606 

 
The automatic performance evaluation of information retrieval systems with data 

fusion of best systems through the use of Condorcet’s algorithm has a higher correlation 

with the real TREC rankings than the other systems discussed so far.  There is strong 

correlation between ranking with Condorcet’s algorithm and actual TREC rankings in 

most of the TREC years (see Table 5.8).  

 
Table 5.8: Kendall’s tau correlation of the Condorcet’s Algorithm using best 25% systems to the 

actual TREC rankings for various numbers of pseudo relevant documents 
 s10 s20 s30 s40 s50 

TREC-3 0.684 0.687 0.692 0.690 0.681 
TREC-4 0.654 0.681 0.703 0.749 0.776 
TREC-5 0.529 0.548 0.558 0.597 0.619 
TREC-6 0.444 0.480 0.514 0.560 0.587 
TREC-7 0.607 0.650 0.681 0.700 0.724 
TREC-8 0.617 0.667 0.712 0.735 0.740 
TREC-9 0.749 0.749 0.745 0.745 0.737 

 

Figure 5.10 displays the official ranking of runs with the ranking with the 

Condorcet’s Algorithm using best 25% of the systems.  Although the correlation of 

automatic method using Condorcet’s algorithm with best systems to the real TREC 

rankings is higher than the use of other data fusion methods. Figure shows that the best 

performing systems are ranked with poor or middle performing systems.  The 

correlations are higher than using all systems (see Table 5.7) because we rank the 

systems in the middle more correctly than the others. Only in TREC-3, 4 and 5 the top 
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performing systems are ranked with the top performing systems of automatic evaluation 

(see Figure 5.10). 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
Figure 5.9: Mean average precision ranking of retrieval systems with actual TREC rankings and 

ranking with the Condorcet’s Algorithm applied to all of the systems. 
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Figure 5.10: Mean average precision ranking of retrieval systems with actual TREC rankings 

and ranking with the Condorcet’s Algorithm applied to best 25% of the systems. 
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The use of biased systems in the fusion with the Condorcet’s Algorithm to evaluate 

the performance of retrieval systems generally presents better results than the other data 

fusion methods using biased systems.  The correlation of ranking systems with data 

fusion by the use of biased systems with Condorcet’s Algorithm is lower than the 

ranking with data fusion by the use of best systems with the Condorcet’s Algorithm (see 

Table 5.9).  However, Figure 5.11 shows that ranking of best systems with the 

Condorcet’s Algorithm by the use of biased systems is very close to their actual 

rankings.  The Condorcet’s Algorithm generally fails when predicting the performance 

of systems in the middle.  The correlations shown in table 5.9 are all significant for with 

99% confidence. 

 
Table 5.9: Kendall’s tau correlation of the Condorcet’s Algorithm using biased 50% of systems 

to the actual TREC rankings for various numbers of pseudo relevant documents 
 s10 s20 s30 s40 s50 

TREC-3 0.685 0.690 0.692 0.728 0.684 
TREC-4 0.430 0.441 0.437 0.490 0.483 
TREC-5 0.515 0.498 0.379 0.347 0.375 
TREC-6 0.550 0.562 0.566 0.555 0.549 
TREC-7 0.333 0.327 0.337 0.331 0.339 
TREC-8 0.603 0.527 0.498 0.486 0.478 
TREC-9 0.459 0.372 0.407 0.416 0.437 

 
The correlations of ranking with the Condorcet’s Algorithm with actual TREC 

rankings for different sets of systems fused are compared graphically.  Figure 5.12 

depicts that it is possible to use biased systems with the Condorcet’s Algorithm in the 

automatic ranking of retrieval systems.  In some of the TRECs data fusion via biased 

systems gives better rankings than the fusion via best systems when we used the 

Condorcet’s algorithm as merging method.  
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Figure 5.11: Mean average precision ranking of retrieval systems with actual TREC rankings 

and ranking with the Condorcet’s Algorithm applied to biased 50% of the systems. 
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Figure 5.12: Correlation comparisons for different system selection methods in the Condorcet’s 

Algorithm with the actual TREC rankings. 
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5.3 Overall Evaluations 
 
In this chapter, we showed that using system selection algorithms with different data 

fusion methods affects the performance of our automatic performance evaluation 

method based on the use of data fusion algorithms.  We also examined the effect of three 

different data fusion algorithms.   

 
When we intuitively compare the merging algorithms we observe that the most 

appropriate method is the Condorcet’s algorithm.  Our intuitive comparison method is as 

follows.  First we count how many times a merging algorithm beats other algorithms for 

different system selection methods in various TREC years. Table 5.10 shows the results 

of this comparison. Each cell shows the number of wins for that system variant.  This 

number lies between 0 and 7, because seven different TREC competitions are used in 

our experiments.  Overall interpretation of the results reveals that the best performing 

merging algorithm is the Condorcet’s Algorithm.  

 
Table 5.10: Number of TREC years that each composition beats others 

Merging Algorithm Normal Best Bias 
Rank Position - 4 2 
Borda Count - - 2 

Condorcet‘s Algorithm 7 3 3 
 

We also list the TREC years in Table 5.11 for each method that it beats other 

algorithms. We see that Borda Count do its best for TREC-4 and 9 when we fused the 

biased systems, as the Rank Position method beats others when we fused the best 

systems in TREC-5, 6, 7 and 8 and the biased systems in TREC- 6 and 7. 

 
Table 5.11: TREC years that composition of merging and selection algorithms beats others  

Merging 
Algorithm 

Normal Best Bias 

Rank Position - TREC-5, 6, 7, and 8 TREC-6 and 7 
Borda Count - - TREC-4 and 9 
Condorcet‘s  
Algorithm 

All of them TREC-3, 4, and 9 TREC-3, 5 and 8  

 

 

 
 



 

 

 

 

Chapter 6   

Further Experiments 
 

In our experiments, we explored the use of three different fusion techniques (Rank 

Position, Borda Count, and Condorcet’s Algorithm) with three different sets of retrieval 

systems (normal, best, and biased) to be combined in the automatic performance 

evaluation.  The results reveal that data fusion can be used in the automatic performance 

evaluation of retrieval systems, but we need some modifications to predict the top 

performing systems more accurately.  In some cases, bias may be a solution for this; 

however, in general we need a new technique to improve the effectiveness of systems.  

Since our expectation is that iterative use of merging techniques can improve the 

effectiveness of ranking retrieval systems with data fusion. For this purpose, we 

performed an additional experiment to see how it affects the overall performance of the 

fusion process. In this experiment, we used the Rank Position method iteratively on 

TREC-6 data.  We used the runs (systems) submitted to the TREC-6, because it is 

middle competition and the number of systems submitted to TREC-6 is the median of 

the number of systems in all of the TRECs examined.  Iterative version of the Rank 

Position method is studied, because it is the simplest algorithm applied to automatic 

performance evaluation in this study. In this chapter a detailed discussion on this 

experiment is given.  
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We also report the results of using random sampling method in TREC-6 by choosing 

the number of relevant documents as in our experiments.  The effectiveness comparison 

of this method with the variants of the Rank Position method is also discussed. 

6.1 Iterative Rank Position Method  
 

As its name implies, we use the Rank Position method iteratively to measure the effect 

of using the Rank Position method in the system selection process.  In this method, we 

first combine all systems using the Rank Position method.  We then evaluate the 

performance of each retrieval system.  Various pool depth and for each pool various 

number of relevant documents are used in the evaluation process.  We select the top 

25% of the systems obtained using a pool of depth 100 with 50% (s50) relevant 

documents where the worst correlations are observed for TREC-6 (see Table 5.1).  Then 

we fused these selected systems with the Rank Position method, again.  In the iteration 

step the top s% documents of the fusion result are treated as relevant documents and 

they are used in the performance evaluation of each retrieval system of concern. We 

repeat the iteration two times.   

 
Figure 6.1 shows the scatter plot of the ranking for the worst correlation point in 

TREC-6 versus actual TREC rankings.  Each point is a system; x-coordinate of the 

figure shows the actual TREC mean average precisions and its y-coordinate shows the 

assessments by our method. 
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 The scatter plot of the iterative rank method with respect to actual TREC rankings is 

presented in Figure 6.2 for b= 100 and s= 50. The iterative rank method improves the 

correlation of both ranking in especially middle systems. The iterative rank method 

shows that it is a promising method for the automatic performance evaluation. 
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20 0.407 
30 0.431 
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systems when 20% or more relevant documents are used in the experiments.  However, 

it does not perform as good as the fusion with biased systems.   

 
 Note that in our iterative approach intentionally we have chosen a case that provides 

the worst initial condition.  Since we want to show that if it works for this case we have 

even more chance of having an improved performance with better initial conditions.  

 

 
Figure 6.3: Comparison of Correlations for variants of the Rank Position method.  

 

6.2 Random Sampling Method 
 

We performed the random sampling methodology proposed in Soboroff, et al. in TREC-

6 as an additional experiment.  In their experiments they showed that the random 

sampling method gives better performance when they use shallow pool (depth 10) with 

duplicated documents, therefore in our experiments a depth 10 pool including duplicated 

documents is used.  We assumed random s% of the documents for each query as pseudo 

relevant documents like in our experiments.  The mean average precision of each 

retrieval system is then evaluated.  The random sampling method correlates with the 

actual TREC rankings positively and significantly.   

 
After that we compare the performance of random sampling method with that of the 

variants of the Rank Position method with a pool of b= 20 documents.  Figure 6.4 shows 

that random sampling method is at least as good as the data fusion via all systems with 

the Rank Position method.  Different variations of Rank Position method and random 
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sampling method are presented in the figure.  The figure depicts that the greatest 

improvement is achieved when best 25% of the systems are fused with Rank Position.  

The random sampling method (random) is not distinguishable from the iterative Rank 

Position method (irank) and the Rank Position method applied to all systems (normal).  

The performance of fusion via biased systems lies between the fusion via every systems 

and fusion via highly effective retrieval systems.  The performances of iterative rank and 

random are not distinguishable from the fusion via all systems.  

 
 

 
Figure 6.4: Comparison of the random sampling method with different variants of the Rank 

Position method. 
 

Although we give the correlation of systems up to 50% relevant documents in our 

experiments, in figure 6.2 we give only the 10, 20 and 30% relevant documents.  

Because with a pool of top 10 documents allowing duplicated documents using 40-50% 

of the documents gives no significant correlation, since the number of unique 

documents, for most of the queries, is the 40 or 50% of the pool. Using 40% or 50% of 

the documents return all of the documents as relevant for some queries and the use of all 

of the documents as relevant documents can not distinguish the systems for that query. 

Accordingly, the correlation of ranking with random sampling method to the actual 

TREC rankings gets worse. As a result, when you use the Random sampling method, 

you should evaluate the percentage of unique documents in the pool, and then select a 

percentage of documents as relevant documents.  

 
 



 

 

 

 

Chapter 7   

Conclusions and Future Work 
 

In the experimental evaluation of effectiveness of information retrieval systems we need 

a set of relevance judgment for a set of queries.  Due to size of document collections 

creating relevance judgments is expensive and labor-intensive.  Consequently, there is a 

great need of an automatic a way for generating relevance judgments that shows the 

relative performance of retrieval systems.  In this thesis, we have focused on the 

problem of evaluating the performance of retrieval systems in the absence of human 

relevance judgments. Thus, we proposed an automatic approach that uses three data 

fusion methods to replace human judgments with pseudo relevance judgments.  In this 

study a document is defined to be a pseudo relevant document to a query if it is ranked 

at the top s% of the output of the data fusion.  To find these documents, we explored 

some data fusion methods.  They are Rank Position, Borda Count, and Condorcet’s 

Algorithm. 

 
In this study we extend the previous works in the ranking of retrieval systems in the 

absence of relevance judgments. The major contributions of this work are the following:  

• an automatic information retrieval performance evaluation method that uses data 

fusion algorithms for the first time in the literature (the thesis includes its 

comprehensive statistical assessment with several TREC systems which shows 

that method results correlates positively and significantly with the actual human-

based results), 
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• system selection methods using the concept of system bias and iterative fusion 

for data fusion aiming even higher correlations among automatic and human-

based results, 

• several practical implications stemming from the fact that the automatic  

precision values are strongly correlated with those of actual information 

retrieval systems.   

7.1 Novelty and Implications of this Study 
 

Our experiments show high level of statistically significant consistency between 

automatic and human-based approaches especially in terms of predicting the 

performance of middle and poor systems. The correlations of both automatic and 

human-based judgments are all statistically significant with 99% confidence. Unlike the 

random sampling method [SOB2001] our results are not open to unexpected variations: 

in all experiments any variant of the automatic performance evaluation method provided 

strong correlations with the TREC assessments.  

 
We also proposed system selection methods to improve the prediction of ranking of 

best systems with the automatic evaluation method.  The results of these methods 

(fusion via best systems and fusion via biased systems) showed that it is possible to 

improve the correlation of rankings and the prediction of best systems by changing the 

system selection algorithm.   

 
We used different pool depths and concluded that using larger pools improved the 

effectiveness of automatic evaluation methods based on the data fusion methods (see the 

Tables in Appendix A, B, and C).  This result reveals that use of different pooling 

methods probably causes the results of the automatic evaluation process to be higher 

than the use of standard pooling method with various depths.Unlike our previous studies 

[NUR2003a; NUR2003b; CAN2003], our new automatic method using data fusion 

methods based on the rank information doesn’t require the content of documents to 

perform information retrieval.   

 
Our method has several practical implications. It can be used to 
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• pre-test the queries that will be judged by humans: queries that cannot 

distinguish the systems from each other can be discarded from human based 

evaluations. Thus, our method can be used as a query selector, 

• determine the system parameters: which system parameter (matching 

function, indexing method) gives better results? Each variant of an 

information retrieval system using a different system parameter can be treated 

as a distinct system. Thus, the best parameter of a system can be determined 

automatically, 

• implement meta-search engines: using our method we can select the best 

search engines and can use the results of these search engines to obtain the 

merged list [CAN2003],  

• tune the parameters of search engines: to increase its effectiveness in 

answering certain type of queries/users without human-based relevance 

judgments.  This has commercial value, since Web search engines can be 

evaluated by benchmarks, 

• train users: we can try various types of users queries with a number of systems 

and determine which one works best with which system and use the proper 

way of querying for a given search engine, 

• test search engines in different subject areas: for subject areas of interest a set 

of queries can be pooled and the search performance of a particular search 

engine can be measured. The same approach can be used to compare the 

performance of different search engines in these subject areas with respect ot 

each other [CAN2003], 

• design search engine recommenders: a set of sample queries can be collected 

from an individual or from users with similar interests and the search engines 

with the best results can be determined and recommended to the users 

[CAN2003]. 
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7.2 Further Work Possibilities 
 

The research described in this thesis can be extended in many directions.   

• Methods other than bias can be used for system selection: 

We implemented iterative version of the Rank Position method, and results of 

using iterative Rank Position method implies that iterative Borda Count and 

Condorcet’s Algorithm may also be fruitful.   

• Weighted version of the Borda Count method and Condorcet’s Algorithm may 

be used in the automatic performance evaluation:   

In this case each retrieval system will be assigned with a weight.  This weight 

can be given using some background knowledge, one of this is the training on the 

same data set using a part of documents in the training phase and the other part in 

the testing phase [ASL2001; MON2002].  The odd numbered queries are used in 

the training phase.  That is, we fuse all of the systems for odd numbered queries 

and rank the retrieval systems using the results of fusion process as relevant 

documents.  Then give weights to the systems using their rankings obtained in 

the training phase.  The weights can be between 0 and 1.  The best performing 

engine found in the training phase may get the weight one and then decrease this 

value with a constant number (say for example 0.01) until reaching 0, then fuse 

every system for all of the queries (or only even numbered queries) and rank the 

documents.  Similarly repeat the experiments using the even-numbered queries in 

the training phase.  The final performance of the retrieval systems may be 

obtained using the average of these two experiments.  

 
Note that the systems in the experiments are similar to each other in terms of the set 

of relevant documents they found.  As Beitzel and his co-workers [BEI2003] pointed out 

fusion via effective information retrieval strategies improves the fusion effectiveness.  

Moreover, data fusion via effective retrieval systems also improves the automatic 

performance evaluation effectiveness.  Use of most effective data fusion algorithm or the 

use of a system selection algorithm improving the fusion effectiveness will also improve 
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the effectiveness of data fusion algorithms in the performance evaluation of retrieval 

systems in the absence of relevance judgments.  

• We can use a different system selection process eliminating the similar systems 

in the fusion process: 

Aslam and Montague [MON2002] proposed the concept of dependence filtering 

to select the systems to be fused for improving the retrieval effectiveness.  That 

is, examine each pair of systems S1 and S2 in S (set of systems) in order of 

descending set similarity.  If the similarity of S1 an S2 is above some threshold 

randomly drop one of them from S, resulting in a smaller set of input systems S’.  

Then fuse the systems in S’, and use the top s% of the merging results as relevant 

documents.  Evaluate the performance of each retrieval system in S.  Aslam and 

Montague [MON2002] showed that dependence filtering improves the fusion 

effectiveness.  The results of that study imply that it will also improve the 

performance of ranking of retrieval systems automatically. We think that using 

different system selection algorithms will greatly enhance the accuracy of the 

methods.  

• Bias can be calculated using different techniques: 

For example, instead of using a general norm we can derive the norms for each 

query, or we can use different similarity measures. Another example is that the 

exclusion of retrieval system from the norm whose bias will be evaluated 

[MOW2002a]. 

 
• Using different pooling methods may improve the performance of our system: 

We used standard pooling techniques and the pool with larger depths gives better 

results in the majority of the experiments. The use of different pooling 

techniques such as Hedge Algorithm proposed in [ASL2003a] may enhance the 

performance predictions of systems.  

 
• We can use different merging algorithms such as CombMNZ [FOX1994] in the 

automatic performance evaluation: 
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• [ASL2003b] showed that the random sampling method evaluates and ranks the 

systems by their ability to return the popular documents as opposed to the 

performance. Thus, another future work may be that showing if either the data 

fusion models rank the retrieval systems by popularity or by performance.   

 
• One last future work may be the use of the evaluation method in the performance 

predictions of Web search engines over time: 

At this point, we have a set of queries for two different topics and human based 

relevance judgments over a period of time. Documents and ranking of documents 

for each search engine is also available.  Testing same algorithms on Web search 

engines may show different results.  For example, our previous works show that 

the method based on vector space model predict the performance of best 

performing search engines when we used it in the Web environment [CAN2003]; 

however, when we tested it in TREC it can not predict the best performing 

engines [NUR2003a; NUR2003b].  A similar behavior may also be observed 

with these methods.  
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Appendix A 

Tables for Rank Position Method 
 

Table A.1: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using all systems for TREC-3 

normal s10 s20 s30 s40 s50 
b=10 0.450 0.402 0.386 0.407 0.409 
b=20 0.412 0.417 0.433 0.449 0.453 
b=30 0.411 0.440 0.468 0.466 0.435 
b=40 0.452 0.468 0.470 0.444 0.447 
b=50 0.450 0.474 0.467 0.438 0.450 

b=100 0.461 0.448 0.457 0.448 0.449 
 

Table A.2: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using all systems for TREC-4 

normal s10 s20 s30 s40 S50 
b=10 0.464 0.456 0.474 0.485 0.479 
b=20 0.452 0.478 0.487 0.497 0.487 
b=30 0.490 0.497 0.513 0.498 0.476 
b=40 0.506 0.510 0.520 0.490 0.475 
b=50 0.513 0.517 0.506 0.506 0.478 

b=100 0.536 0.513 0.471 0.468 0.460 
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Table A.3: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using all systems for TREC-5 

normal s10 s20 s30 s40 s50 
b=10 0.425 0.367 0.365 0.348 0.347 
b=20 0.388 0.383 0.372 0.371 0.379 
b=30 0.397 0.388 0.387 0.381 0.392 
b=40 0.409 0.396 0.388 0.387 0.391 
b=50 0.402 0.394 0.388 0.395 0.390 

b=100 0.407 0.394 0.384 0.381 0.379 
 

Table A.4: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using all systems for TREC-6 

normal s10 s20 s30 s40 s50 
b=10 0.462 0.450 0.430 0.431 0.433 
b=20 0.464 0.431 0.425 0.417 0.412 
b=30 0.456 0.433 0.427 0.420 0.420 
b=40 0.454 0.432 0.430 0.420 0.402 
b=50 0.443 0.431 0.419 0.407 0.398 

b=100 0.443 0.418 0.404 0.391 0.382 
 

Table A.5: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using all systems for TREC-7 

normal s10 s20 s30 s40 s50 
b=10 0.373 0.401 0.382 0.379 0.388 
b=20 0.422 0.426 0.412 0.405 0.393 
b=30 0.443 0.432 0.414 0.400 0.399 
b=40 0.450 0.427 0.409 0.402 0.393 
b=50 0.452 0.430 0.409 0.396 0.388 

b=100 0.449 0.414 0.400 0.389 0.385 
 

Table A.6: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using all systems for TREC-8 

normal s10 s20 s30 s40 s50 
b=10 0.508 0.511 0.489 0.475 0.474 
b=20 0.506 0.511 0.503 0.495 0.495 
b=30 0.521 0.519 0.510 0.502 0.493 
b=40 0.516 0.521 0.512 0.495 0.485 
b=50 0.527 0.526 0.505 0.493 0.485 

b=100 0.537 0.509 0.492 0.475 0.467 
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Table A.7: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using all systems for TREC-9 

normal s10 s20 s30 s40 s50 
b=10 0.625 0.617 0.616 0.61 0.612 
b=20 0.627 0.622 0.619 0.613 0.605 
b=30 0.624 0.625 0.619 0.612 0.603 
b=40 0.626 0.629 0.613 0.607 0.602 
b=50 0.629 0.626 0.614 0.606 0.605 

b=100 0.631 0.614 0.602 0.591 0.588 
 

Table A.8: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using best 25% of the systems for TREC-3 

best s10 S20 s30 s40 s50 
b=10 0.607 0.636 0.651 0.663 0.672 
b=20 0.620 0.664 0.677 0.680 0.680 
b=30 0.641 0.662 0.672 0.690 0.685 
b=40 0.671 0.674 0.690 0.695 0.682 
b=50 0.668 0.687 0.692 0.687 0.680 

b=100 0.672 0.703 0.695 0.692 0.674 
 

Table A.9: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using best 25% of the systems for TREC-4 

best s10 S20 s30 s40 s50 
b=10 0.529 0.624 0.631 0.646 0.669 
b=20 0.605 0.639 0.684 0.695 0.715 
b=30 0.624 0.684 0.707 0.715 0.726 
b=40 0.627 0.707 0.707 0.734 0.726 
b=50 0.643 0.711 0.730 0.719 0.726 

b=100 0.711 0.717 0.711 0.711 0.711 
 

Table A.10: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using best 25% of the systems for TREC-5 

best s10 s20 s30 s40 s50 
b=10 0.552 0.589 0.616 0.631 0.633 
b=20 0.581 0.609 0.616 0.629 0.644 
b=30 0.591 0.612 0.613 0.631 0.640 
b=40 0.601 0.615 0.616 0.631 0.643 
b=50 0.608 0.612 0.611 0.623 0.636 

b=100 0.614 0.608 0.597 0.598 0.606 
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Table A.11: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using best 25% of the systems for TREC-6 

best s20 s30 s40 s50 
b=10 0.736 0.734 0.748 0.747 
b=20 0.715 0.721 0.726 0.733 
b=30 

s10 
0.682 
0.728 
0.711 0.710 0.706 0.720 0.724 

b=40 0.708 0.705 0.711 0.719 
b=50 0.714 0.697 0.712 0.713 

b=100 0.698 0.696 0.692 0.700 
 

Table A.12: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using best 25% of the systems for TREC-7 

best 

0.712 
0.703 
0.696 

s10 S20 s30 s40 s50 
b=10 0.560 0.611 0.648 0.685 0.711 
b=20 0.621 0.672 0.695 0.714 0.721 
b=30 0.641 0.687 0.699 0.716 0.726 
b=40 0.665 0.690 0.701 0.714 
b=50 0.665 0.694 0.700 0.714 0.726 

b=100 0.684 0.689 0.687 0.696 0.702 

0.731 

 

Table A.13: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using best 25% of the systems for TREC-8 

best s10 S20 s30 s40 s50 
b=10 0.615 0.663 0.684 0.702 0.707 
b=20 0.649 0.681 0.712 0.726 0.733 
b=30 0.686 0.708 0.720 0.733 0.745 
b=40 0.689 0.710 0.723 0.732 0.740 
b=50 0.691 0.710 0.722 0.732 0.746 

b=100 0.706 0.705 0.724 0.736 0.740 
 

Table A.14: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using best 25% of the systems for TREC-9 

best s10 s20 s30 s40 s50 
b=10 0.775 0.789 0.797 0.793 0.795 
b=20 0.789 0.786 0.788 0.783 0.781 
b=30 0.787 0.784 0.781 0.776 0.772 
b=40 0.782 0.780 0.776 0.770 0.766 
b=50 0.780 0.779 0.768 0.766 0.763 

b=100 0.776 0.766 0.758 0.324 0.758 
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Table A.15: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 25% of the systems for TREC-3 

bias25% s10 s20 s30 s40 s50 
b=10 0.257 0.252 0.270 0.260 0.260 
b=20 0.245 0.257 0.282 0.292 0.291 
b=30 0.258 0.292 0.311 0.318 0.296 
b=40 0.282 0.318 0.324 0.318 0.326 
b=50 0.285 0.326 0.340 0.331 0.334 

b=100 0.322 0.358 0.371 0.363 0.353 
 

Table A.16: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 25% of the systems for TREC-4 

bias25% s10 s20 s30 s40 s50 
b=10 0.270 0.281 0.312 0.303 0.312 
b=20 0.304 0.346 0.354 0.348 0.346 
b=30 0.333 0.357 0.376 0.386 0.388 
b=40 0.338 0.386 0.392 0.403 0.394 
b=50 0.363 0.392 0.405 0.411 0.407 

b=100 0.418 0.426 0.452 0.433 0.430 
 

Table A.17: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 25% of the systems for TREC-5 

bias25% s10 S20 s30 s40 s50 
b=10 0.456 0.398 0.427 0.438 0.450 
b=20 0.396 0.472 0.478 0.478 0.489 
b=30 0.456 0.493 0.513 0.516 0.505 
b=40 0.491 0.526 0.534 0.529 0.520 
b=50 0.508 0.546 0.534 0.528 0.519 

b=100 0.561 0.553 0.558 0.548 0.538 
 

Table A.18: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 25% of the systems for TREC-6 

bias25% s10 s20 s30 s40 s50 
b=10 0.544 0.573 0.564 0.560 0.547 
b=20 0.575 0.561 0.543 0.546 0.520 
b=30 0.587 0.557 0.543 0.516 0.506 
b=40 0.568 0.558 0.526 0.512 0.517 
b=50 0.563 0.541 0.525 0.520 0.514 

b=100 0.552 0.531 0.530 0.520 0.506 
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Table A.19: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 25% of the systems for TREC-7 

bias25% s10 s20 s30 s40 s50 
b=10 0.544 0.477 0.454 0.444 0.412 
b=20 0.492 0.487 0.456 0.434 0.398 
b=30 0.505 0.491 0.436 0.423 0.403 
b=40 0.505 0.466 0.443 0.428 0.396 
b=50 0.505 0.451 0.443 0.410 0.389 

b=100 0.474 0.432 0.411 0.393 0.368 
 

Table A.20: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 25% of the systems for TREC-8 

bias25% s10 S20 s30 s40 s50 
b=10 0.344 0.375 0.415 0.388 0.400 
b=20 0.378 0.404 0.393 0.393 0.399 
b=30 0.404 0.397 0.399 0.385 0.376 
b=40 0.400 0.393 0.387 0.371 0.371 
b=50 0.391 0.387 0.375 0.357 0.349 

b=100 0.384 0.354 0.322 0.306 0.298 
 

Table A.21: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 25% of the systems for TREC-9 

bias25% s10 s20 s30 s40 s50 
b=10 0.136 0.146 0.148 0.179 0.203 
b=20 0.152 0.191 0.242 0.260 0.272 
b=30 0.163 0.257 0.279 0.301 0.323 
b=40 0.186 0.273 0.304 0.331 0.331 
b=50 0.235 0.295 0.317 0.334 0.333 

b=100 0.291 0.335 0.342 0.340 0.342 
 

Table A.22: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 50% of the systems for TREC-3 

bias50% s10 s20 s30 s40 s50 
b=10 0.252 0.296 0.278 0.304 0.286 
b=20 0.309 0.370 0.316 0.387 0.38 
b=30 0.370 0.385 0.404 0.432 0.394 
b=40 0.414 0.414 0.429 0.413 0.411 
b=50 0.409 0.446 0.433 0.421 0.434 

b=100 0.468 0.458 0.450 0.439 0.429 
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Table A.23: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 50% of the systems for TREC-4 

bias50% s10 S20 s30 s40 s50 
b=10 0.278 0.333 0.361 0.414 0.433 
b=20 0.380 0.445 0.464 0.471 0.490 
b=30 0.399 0.487 0.517 0.513 0.498 
b=40 0.449 0.532 0.529 0.529 0.525 
b=50 0.464 0.536 0.540 0.531 0.540 

b=100 0.567 0.559 0.559 0.544 0.532 
 

Table A.24: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 50% of the systems for TREC-5 

bias50% s10 S20 s30 s40 s50 
b=10 0.387 0.373 0.414 0.402 0.363 
b=20 0.413 0.420 0.405 0.412 0.422 
b=30 0.441 0.436 0.435 0.432 0.425 
b=40 0.472 0.447 0.436 0.422 0.409 
b=50 0.473 0.445 0.424 0.413 0.411 

b=100 0.468 0.430 0.422 0.409 0.401 
 

Table A.25: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 50% of the systems for TREC-6 

bias50% s10 S20 s30 s40 s50 
b=10 0.598 0.578 0.574 0.562 0.561 
b=20 0.567 0.552 0.551 0.536 0.536 
b=30 0.547 0.551 0.539 0.548 0.538 
b=40 0.555 0.551 0.547 0.547 0.541 
b=50 0.553 0.546 0.547 0.537 0.531 

b=100 0.548 0.538 0.522 0.511 0.497 
 

Table A.26: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 50% of the systems for TREC-7 

bias50% s10 S20 s30 s40 s50 
b=10 0.296 0.305 0.314 0.312 0.319 
b=20 0.334 0.330 0.334 0.327 0.329 
b=30 0.320 0.340 0.351 0.337 0.332 
b=40 0.345 0.348 0.339 0.331 0.329 
b=50 0.358 0.350 0.331 0.332 0.326 

b=100 0.352 0.330 0.322 0.321 0.314 
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Table A.27: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 50% of the systems for TREC-8 

bias50% s10 s20 s30 s40 s50 
b=10 0.493 0.504 0.490 0.482 0.464 
b=20 0.508 0.499 0.487 0.480 0.466 
b=30 0.521 0.492 0.487 0.473 0.469 
b=40 0.499 0.489 0.487 0.473 0.459 
b=50 0.503 0.498 0.475 0.466 0.454 

b=100 0.510 0.480 0.456 0.433 0.428 
 

Table A.28: The Kendall’s tau correlation of the Rank Position method to the actual TREC 
rankings using biased 50% of the systems for TREC-9 

bias50% s10 s20 s30 s40 s50 
b=10 0.384 0.419 0.431 0.457 0.473 
b=20 0.464 0.456 0.461 0.453 0.459 
b=30 0.451 0.472 0.460 0.455 0.467 
b=40 0.474 0.466 0.462 0.465 0.464 
b=50 0.483 0.468 0.456 0.459 0.464 

b=100 0.483 0.457 0.462 0.467 0.457 
 

 
 



  

 

 

 

 

Appendix B 

Tables for the Borda Count Method 
 

Table B.1: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using all of the systems for TREC-3 

normal s10 s20 s30 s40 s50 
b=10 0.427 0.381 0.394 0.404 0.420 
b=20 0.422 0.420 0.421 0.443 0.452 
b=30 0.456 0.450 0.456 0.443 0.438 
b=40 0.474 0.476 0.436 0.429 0.435 
b=50 0.503 0.445 0.434 0.436 0.449 

b=100 0.499 0.479 0.435 0.450 0.445 
 

Table B.2: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using all of the systems for TREC-4 

normal s10 s20 s30 s40 s50 
b=10 0.449 0.468 0.483 0.479 0.480 
b=20 0.483 0.464 0.479 0.502 0.489 
b=30 0.483 0.490 0.475 0.487 0.468 
b=40 0.506 0.498 0.490 0.471 0.464 
b=50 0.517 0.506 0.485 0.470 0.460 

b=100 0.521 0.479 0.445 0.466 0.464 
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Table B.3: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using all of the systems for TREC-5 

normal s10 s20 s30 s40 s50 
b=10 0.410 0.356 0.351 0.350 0.353 
b=20 0.390 0.381 0.360 0.375 0.384 
b=30 0.401 0.392 0.387 0.386 0.409 
b=40 0.409 0.401 0.383 0.389 0.387 
b=50 0.417 0.400 0.382 0.387 0.391 

b=100 0.409 0.393 0.383 0.383 0.378 
 

Table B.4: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using all of the systems for TREC-6 

normal s10 s20 s30 s40 s50 
b=10 0.466 0.453 0.439 0.433 0.425 
b=20 0.458 0.443 0.434 0.428 0.413 
b=30 0.452 0.436 0.439 0.430 0.421 
b=40 0.455 0.445 0.434 0.419 0.408 
b=50 0.450 0.442 0.422 0.412 0.402 

b=100 0.456 0.416 0.401 0.392 0.383 
 

Table B.5: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using all of the systems for TREC-7 

normal s10 s20 s30 s40 s50 
b=10 0.378 0.391 0.388 0.382 0.375 
b=20 0.437 0.421 0.407 0.399 0.384 
b=30 0.454 0.424 0.409 0.398 0.393 
b=40 0.462 0.427 0.407 0.396 0.391 
b=50 0.458 0.426 0.402 0.391 0.383 

b=100 0.456 0.410 0.397 0.382 0.380 
 

Table B.6: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using all of the systems for TREC-8 

normal s10 s20 s30 s40 s50 
b=10 0.509 0.503 0.484 0.482 0.474 
b=20 0.522 0.510 0.504 0.495 0.489 
b=30 0.529 0.522 0.509 0.496 0.489 
b=40 0.534 0.525 0.510 0.493 0.484 
b=50 0.545 0.526 0.502 0.489 0.481 

b=100 0.544 0.510 0.486 0.471 0.460 
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Table B.7: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using all of the systems for TREC-9 

normal s10 s20 s30 s40 s50 
b=10 0.626 0.605 0.611 0.606 0.610 
b=20 0.631 0.614 0.607 0.605 0.603 
b=30 0.633 0.616 0.616 0.609 0.596 
b=40 0.637 0.616 0.62 0.608 0.599 
b=50 0.639 0.617 0.613 0.602 0.596 

b=100 0.645 0.603 0.595 0.590 0.581 
 

Table B.8: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using best 25% of the systems for TREC-3 

best s10 s20 s30 s40 s50 
b=10 0.620 0.630 0.633 0.636 0.667 
b=20 0.653 0.637 0.664 0.671 0.677 
b=30 0.662 0.667 0.680 0.677 0.680 
b=40 0.685 0.684 0.682 0.674 0.677 
b=50 0.685 0.708 0.680 0.682 0.674 

b=100 0.717 0.690 0.695 0.685 0.674 
 

Table B.9: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using best 25% of the systems for TREC-4 

best s10 s20 s30 s40 s50 
b=10 0.493 0.548 0.593 0.627 0.677 
b=20 0.483 0.464 0.479 0.502 0.489 
b=30 0.567 0.643 0.677 0.719 0.722 
b=40 0.593 0.658 0.700 0.719 0.725 
b=50 0.624 0.669 0.700 0.711 0.730 

b=100 0.654 0.677 0.688 0.700 0.719 
 

Table B.10: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using best 25% of the systems for TREC-5 

best s10 s20 s30 s40 s50 
b=10 0.515 0.558 0.606 0.638 0.642 
b=20 0.522 0.554 0.605 0.628 0.656 
b=30 0.541 0.563 0.605 0.631 0.639 
b=40 0.542 0.564 0.599 0.630 0.645 
b=50 0.554 0.566 0.599 0.631 0.640 

b=100 0.550 0.557 0.581 0.597 0.612 
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Table B.11: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using best 25% of the systems for TREC-6 

best s10 s20 s30 s40 s50 
b=10 0.684 0.726 0.731 0.747 0.757 
b=20 0.686 0.701 0.708 0.725 0.737 
b=30 0.668 0.689 0.699 0.722 0.726 
b=40 0.674 0.679 0.705 0.712 0.719 
b=50 0.669 0.681 0.697 0.705 0.716 

b=100 0.665 0.670 0.682 0.698 0.698 
 

Table B.12: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using best 25% of the systems for TREC-7 

best s10 s20 s30 s40 s50 
b=10 0.532 0.614 0.607 0.686 0.708 
b=20 0.611 0.647 0.693 0.711 0.720 
b=30 0.611 0.660 0.689 0.717 0.728 
b=40 0.641 0.659 0.694 0.720 0.735 
b=50 0.639 0.665 0.697 0.718 0.730 

B=100 0.639 0.669 0.688 0.698 0.702 
 

Table B.13: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using best 25% of the systems for TREC-8 

best s10 s20 s30 s40 s50 
b=10 0.591 0.650 0.676 0.704 0.700 
b=20 0.625 0.673 0.709 0.735 0.734 
b=30 0.627 0.702 0.724 0.733 0.741 
b=40 0.646 0.702 0.729 0.736 0.740 
b=50 0.657 0.712 0.729 0.739 0.747 

b=100 0.681 0.704 0.726 0.741 0.744 
 

Table B.14: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using best 25% of the systems for TREC-9 

best s10 s20 s30 s40 s50 
b=10 0.774 0.779 0.790 0.794 0.787 
b=20 0.777 0.781 0.777 0.777 0.779 
b=30 0.780 0.777 0.771 0.769 0.77 
b=40 0.776 0.768 0.769 0.762 0.764 
b=50 0.770 0.767 0.763 0.760 0.763 

b=100 0.762 0.753 0.753 0.753 0.755 
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Table B.15: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 25% of the systems for TREC-3 

bias25% s10 s20 s30 S40 s50 
b=10 0.314 0.299 0.276 0.246 0.237 
b=20 0.361 0.349 0.324 0.297 0.288 
b=30 0.378 0.363 0.342 0.301 0.290 
b=40 0.394 0.363 0.352 0.329 0.319 
b=50 0.407 0.376 0.354 0.337 0.321 

b=100 0.452 0.409 0.377 0.360 0.344 
 

 

Table B.16: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 25% of the systems for TREC-4 

bias25% s10 s20 s30 s40 s50 
b=10 0.346 0.327 0.335 0.295 0.278 
b=20 0.399 0.414 0.384 0.327 0.335 
b=30 0.462 0.440 0.418 0.369 0.369 
b=40 0.483 0.471 0.421 0.395 0.376 
b=50 0.525 0.475 0.426 0.407 0.407 

b=100 0.555 0.494 0.459 0.422 0.433 
 

Table B.17: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 25% of the systems for TREC-5 

bias25% s10 s20 s30 S40 s50 
b=10 0.398 0.437 0.448 0.436 0.425 
b=20 0.489 0.493 0.482 0.469 0.471 
b=30 0.535 0.522 0.519 0.499 0.502 
b=40 0.559 0.526 0.512 0.526 0.518 
b=50 0.569 0.522 0.506 0.522 0.527 

b=100 0.574 0.519 0.520 0.542 0.531 
 

Table B.18: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 25% of the systems for TREC-6 

Bias25% s10 s20 s30 s40 s50 
b=10 0.626 0.593 0.586 0.554 0.533 
b=20 0.626 0.583 0.566 0.544 0.515 
b=30 0.619 0.574 0.544 0.515 0.497 
b=40 0.607 0.570 0.543 0.511 0.504 
b=50 0.603 0.571 0.528 0.513 0.501 

b=100 0.589 0.561 0.536 0.524 0.497 
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Table B.19: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 25% of the systems for TREC-7 

Bias25% s10 s20 s30 s40 s50 
b=10 0.541 0.524 0.475 0.442 0.403 
b=20 0.601 0.546 0.497 0.425 0.386 
b=30 0.593 0.551 0.471 0.416 0.380 
b=40 0.598 0.530 0.462 0.419 0.388 
b=50 0.586 0.517 0.457 0.403 0.373 

b=100 0.561 0.477 0.420 0.384 0.354 
 

Table B.20: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 25% of the systems for TREC-8 

Bias25% s10 s20 s30 s40 s50 
b=10 0.361 0.377 0.380 0.379 0.390 
b=20 0.383 0.370 0.380 0.392 0.400 
b=30 0.381 0.391 0.388 0.388 0.385 
b=40 0.397 0.375 0.370 0.374 0.376 
b=50 0.390 0.368 0.370 0.362 0.361 

b=100 0.362 0.330 0.312 0.309 0.305 
 

Table B.21: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 25% of the systems for TREC-9 

bias25% s10 s20 s30 s40 s50 
b=10 0.200 0.156 0.179 0.201 0.223 
b=20 0.187 0.226 0.245 0.252 0.279 
b=30 0.235 0.257 0.252 0.272 0.328 
b=40 0.275 0.260 0.280 0.313 0.333 
b=50 0.287 0.262 0.279 0.313 0.345 

b=100 0.316 0.272 0.289 0.324 0.350 
 

Table B.22: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 50% of the systems for TREC-3 

bias50% s10 s20 s30 s40 s50 
b=10 0.306 0.270 0.268 0.296 0.306 
b=20 0.358 0.329 0.334 0.391 0.373 
b=30 0.414 0.382 0.390 0.404 0.404 
b=40 0.461 0.407 0.420 0.404 0.406 
b=50 0.481 0.458 0.417 0.425 0.416 

b=100 0.538 0.483 0.453 0.432 0.43 
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Table B.23: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 50% of the systems for TREC-4 

bias50% s10 s20 S30 s40 s50 
b=10 0.312 0.371 0.377 0.426 0.445 
b=20 0.437 0.424 0.479 0.489 0.487 
b=30 0.441 0.513 0.525 0.502 0.507 
b=40 0.506 0.551 0.532 0.513 0.517 
b=50 0.523 0.559 0.529 0.536 0.536 

b=100 0.597 0.563 0.551 0.544 0.532 
 

Table B.24: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 50% of the systems for TREC-5 

bias50% s10 s20 s30 s40 s50 
b=10 0.395 0.418 0.392 0.395 0.381 
b=20 0.495 0.417 0.354 0.405 0.426 
b=30 0.498 0.442 0.434 0.425 0.416 
b=40 0.512 0.458 0.423 0.416 0.408 
b=50 0.498 0.437 0.427 0.417 0.408 

b=100 0.483 0.437 0.412 0.412 0.399 
 

Table B.25: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 50% of the systems for TREC-6 

bias50% s10 s20 s30 s40 s50 
b=10 0.592 0.590 0.574 0.569 0.558 
b=20 0.549 0.553 0.553 0.532 0.538 
b=30 0.549 0.551 0.553 0.548 0.527 
b=40 0.551 0.554 0.551 0.543 0.532 
b=50 0.553 0.561 0.553 0.538 0.527 

b=100 0.551 0.541 0.523 0.513 0.495 
 

Table B.26: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 50% of the systems for TREC-7 

bias50% s10 s20 S30 s40 s50 
b=10 0.249 0.323 0.307 0.316 0.316 
b=20 0.330 0.323 0.334 0.322 0.326 
b=30 0.346 0.342 0.340 0.342 0.334 
b=40 0.351 0.353 0.340 0.334 0.328 
b=50 0.350 0.345 0.334 0.333 0.328 

b=100 0.345 0.331 0.327 0.318 0.313 
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Table B.27: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 50% of the systems for TREC-8 

bias50% s10 s20 s30 s40 s50 
b=10 0.529 0.499 0.484 0.477 0.469 
b=20 0.557 0.495 0.485 0.476 0.466 
b=30 0.545 0.492 0.480 0.467 0.460 
b=40 0.547 0.500 0.479 0.472 0.455 
b=50 0.540 0.494 0.477 0.462 0.448 

b=100 0.520 0.476 0.451 0.436 0.425 
 

Table B.28: The Kendall’s tau correlation of the the Borda Count  method to the actual TREC 
rankings using biased 50% of the systems for TREC-9 

bias50% s10 s20 s30 s40 s50 
b=10 0.349 0.405 0.466 0.485 0.504 
b=20 0.433 0.448 0.463 0.478 0.503 
b=30 0.444 0.431 0.434 0.455 0.473 
b=40 0.475 0.473 0.479 0.50 0.512 
b=50 0.460 0.444 0.451 0.467 0.473 

b=100 0.489 0.480 0.497 0.497 0.498 
 

 

 
 



  

 

 

 

 

Appendix C* 

Tables for the Condorcet’s Algorithm 
 

Table C.1: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using all of the systems for TREC-3 

normal s10 S20 s30 s40 s50 
b=10 0.437 0.404 0.388 0.404 0.409 
b=20 0.430 0.440 0.440 0.442 0.438 
b=30 0.466 0.474 0.448 0.439 0.432 

 
Table C.2: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 

rankings using all of the systems for TREC-4 
normal s10 s20 s30 s40 s50 
b=10 0.452 0.456 0.475 0.481 0.483 
b=20 0.521 0.471 0.464 0.481 0.489 
b=30 0.532 0.494 0.483 0.475 0.490 

 

Table C.3: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using all of the systems for TREC-5 

normal s10 S20 s30 s40 s50 
b=10 0.421 0.389 0.366 0.334 0.347 
b=20 0.407 0.396 0.396 0.379 0.375 
b=30 0.405 0.405 0.391 0.377 0.380 
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Table C.4: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using all of the systems for TREC-6 

normal s10 s20 s30 s40 s50 
b=10 0.450 0.437 0.442 0.441 0.443 
b=20 0.446 0.427 0.434 0.446 0.436 
b=30 0.443 0.437 0.437 0.433 0.420 

 

Table C.5: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using all of the systems for TREC-7 

normal s10 s20 s30 s40 s50 
b=10 0.433 0.416 0.406 0.398 0.391 
b=20 0.456 0.447 0.425 0.413 0.404 
b=30 0.476 0.451 0.427 0.413 0.407 

 

Table C.6: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using all of the systems for TREC-8 

Normal s10 s20 s30 s40 s50 
b=10 0.520 0.515 0.494 0.482 0.482 
b=20 0.530 0.531 0.517 0.512 0.499 
b=30 0.530 0.538 0.522 0.507 0.499 

 

Table C.7: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using all of the systems for TREC-9 

Normal s10 s20 s30 s40 s50 
b=10 0.649 0.613 0.595 0.606 0.604 
b=20 0.638 0.627 0.598 0.604 0.606 
b=30 0.638 0.633 0.597 0.604 0.600 

 

Table C.8: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using best 25% of the systems for TREC-3 

Best s10 s20 s30 s40 S50 
b=10 0.677 0.700 0.699 0.680 0.687 
b=20 0.684 0.687 0.692 0.690 0.681 
b=30 0.710 0.700 0.718 0.702 0.698 

 

 
 
 
 
 

                                                                                                                                                
* In Appendix C, 21 tables are given. 
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Table C.9: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 

rankings using best 25% of the systems for TREC-4 
Best S10 s20 s30 s40 s50 
b=10 0.639 0.658 0.688 0.719 0.745 
b=20 0.654 0.681 0.703 0.749 0.776 
b=30 0.665 0.703 0.738 0.753 0.787 

 
Table C.10: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 

rankings using best 25% of the systems for TREC-5 
Best s10 s20 s30 s40 s50 
b=10 0.533 0.544 0.571 0.604 0.616 
b=20 0.529 0.548 0.558 0.597 0.619 
b=30 0.529 0.552 0.564 0.584 0.622 

 

Table C.11: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using best 25% of the systems for TREC-6 

Best s10 s20 s30 s40 s50 
b=10 0.440 0.487 0.522 0.559 0.596 
b=20 0.444 0.480 0.514 0.560 0.587 
b=30 0.422 0.468 0.51 0.551 0.580 

 

Table C.12: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using best 25% of the systems for TREC-7 

best s10 s20 s30 s40 s50 
b=10 0.563 0.612 0.641 0.693 0.719 
b=20 0.607 0.650 0.681 0.700 0.724 
b=30 0.631 0.655 0.668 0.704 0.730 

 

Table C.13: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using best 25% of the systems for TREC-8 

best s10 s20 s30 s40 s50 
b=10 0.596 0.639 0.683 0.700 0.714 
b=20 0.617 0.667 0.712 0.735 0.740 
b=30 0.622 0.671 0.723 0.736 0.745 

 

Table C.14: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using best 25% of the systems for TREC-9 

best s10 s20 s30 s40 s50 
b=10 0.759 0.755 0.757 0.759 0.756 
b=20 0.749 0.749 0.745 0.745 0.737 
b=30 0.754 0.745 0.594 0.602 0.600 
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Table C.15: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using biased 50% of the systems for TREC-3 

bias50% s10 s20 s30 s40 s50 
b=10 0.687 0.685 0.682 0.707 0.672 
b=20 0.685 0.690 0.692 0.728 0.684 
b=30 0.716 0.692 0.681 0.723 0.681 

 

Table C.16: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using biased 50% of the systems for TREC-4 

bias50% s10 s20 s30 s40 s50 
b=10 0.308 0.342 0.388 0.380 0.395 
b=20 0.430 0.441 0.437 0.490 0.483 
b=30 0.487 0.479 0.487 0.521 0.487 

 

Table C.17: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using biased 50% of the systems for TREC-5 

bias50% s10 s20 s30 s40 s50 
b=10 0.440 0.447 0.329 0.293 0.329 
b=20 0.515 0.498 0.379 0.347 0.375 
b=30 0.433 0.411 0.326 0.314 0.323 

 

Table C.18: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using biased 50% of the systems for TREC-6 

bias50% s10 s20 s30 s40 s50 
b=10 0.574 0.591 0.578 0.574 0.561 
b=20 0.550 0.562 0.566 0.555 0.549 
b=30 0.536 0.559 0.566 0.555 0.544 

 

Table C.19: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using biased 50% of the systems for TREC-7 

bias50% s10 s20 s30 s40 s50 
b=10 0.269 0.304 0.326 0.311 0.311 
b=20 0.333 0.327 0.337 0.331 0.339 
b=30 0.357 0.346 0.338 0.337 0.338 

 

Table C.20: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using biased 50% of the systems for TREC-8 

bias50% s10 s20 s30 s40 s50 
b=10 0.557 0.534 0.488 0.473 0.472 
b=20 0.603 0.527 0.498 0.486 0.478 
b=30 0.573 0.528 0.498 0.485 0.478 
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Table C.21: The Kendall’s tau correlation of the Condorcet’s Algorithm to the actual TREC 
rankings using biased 50% of the systems for TREC-9 

bias50% s10 s20 s30 s40 s50 
b=10 0.377 0.362 0.418 0.436 0.463 
b=20 0.459 0.372 0.407 0.416 0.437 
b=30 0.499 0.400 0.410 0.419 0.436 

 

 

 
 


