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ABSTRACT 

WAVELENGTH ASSIGNMENT IN  

OPTICAL BURST SWITCHING NETWORKS USING  

NEURO-DYNAMIC PROGRAMMING 
 

 

Feyza KEÇELİ 

M.S. in Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Ezhan Karaşan 

September 2003 

 
All-optical networks are the most promising architecture for building large-size, huge-

bandwidth transport networks that are required for carrying the exponentially increasing 

Internet traffic. Among the existing switching paradigms in the literature, the optical burst 

switching is intended to leverage the attractive properties of optical communications, and at 

the same time, take into account its limitations. One of the major problems in optical burst 

switching is high blocking probability that results from one-way reservation protocol used. In 

this thesis, this problem is solved in wavelength domain by using smart wavelength 

assignment algorithms. Two heuristic wavelength assignment algorithms prioritizing available 

wavelengths according to reservation tables at the network nodes are proposed. The major 

contribution of the thesis is the formulation of the wavelength assignment problem as a 

continuous-time, average cost dynamic programming problem and its solution based on 

neuro-dynamic programming. Experiments are done over various traffic loads, burst lengths, 

and number of wavelength converters with a pool structure. The simulation results show that 

the wavelength assignment algorithms proposed for optical burst switching networks in the 

thesis perform better than the wavelength assignment algorithms in the literature that are 

developed for circuit-switched optical networks. 

 

Keywords: Optical Burst Switching (OBS), Just-Enough-Time (JET) Protocol, Wavelength 

Assignment Algorithms, Reinforcement Learning, Neuro-dynamic Programming   
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ÖZET 

 
OPTİK ÇOĞUŞMA ANAHTARLAMA AĞLARINDA  

SİNİRSEL DİNAMİK PROGRAMLAMA KULLANARAK 

DALGABOYU ATAMA 
 

 

Feyza KEÇELİ 

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Yrd. Doç. Dr. Ezhan Karaşan 

Eylül 2003 

 
Tam optik ağlar üstel artan internet trafiği taşıyan büyük ölçekli ve bant genişlikli taşıma 

ağları kurmak için en umut vadeden mimaridir. Yazında varolan anahtarlama örnekleri içinde 

optik çoğuşma anahtarlama optik iletişimin çekici özelliklerini arttırmaya en eğilimli olandır 

ve aynı zamanda sınırlarını da göz önüne alır. Optik çoğuşma anahtarlamanın belli başlı 

sorunlarından biri, kullanılan tek yönlü rezervasyon protokollerinden ileri gelen yüksek 

reddedilme olasılığıdır. Bu tezde dalgaboyu dağarcığında akıllı dalga boyu atama 

algoritmaları ile bu sorun çözülmüştür. Ağ düğümlerindeki rezervasyon tablolarına göre 

uygun dalgaboylarını önceliklendiren iki buluşsal dalgaboyu algoritması önerilmiştir. Bu tezin 

en büyük katkısı dalgaboyu atama sorununu ve sinirsel dinamik programlamaya dayanan 

çözümünü sürekli zaman ortalama ceza dinamik programlamaya dayanarak  formüle 

etmesidir. Değişken trafik yükleri, çoğuşma uzunlukları ve farklı sayıda havuz yapılı 

dalgaboyu çevirgeçleri üzerinden deneyler yapılmıştır. Benzetim sonuçları gösteriyor ki bu 

tezde optik çoğuşma anahtarlama ağları için önerilen dalgaboyu atama algoritmaları yazında 

devre anahtarlama optik ağları için geliştirilmiş dalgaboyu atama algoritmalarından daha iyi 

sonuç vermektedir. 

 
Anahtar Kelimeler: Optik Çoğuşma Anahtarlama, Tam Yeter Zaman Protokolü, Dalgaboyu 

Atama Algoritmaları, Takviyelendirerek Öğretme, Sinirsel Dinamik Programlama       
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Chapter 1 

 

Introduction 

 
Studies show that bandwidth usage in the Internet is doubling every six to twelve months [1]. 

Fiber is the most promising physical medium to meet such emerging transport requirements 

because fiber-optic cable carries information farther, faster, and more reliably than other types 

of cable. The enormous deliverable bandwidth of fibers can be used more effectively with the 

advances in DWDM (dense wavelength-division multiplexing) technology. This optical 

multiplexing technique allows better exploration of fiber capacity by simultaneously 

transmitting multiple high-speed channels on different frequencies (wavelengths) [2, 3]. 

However, still the bandwidth is wasted due to the requirement of optical-to-electrical (O/E) 

and electrical-to-optical (E/O) conversions at every node, and hence fails to take advantage of 

the wavelength routing capability provided by DWDM technology. What is needed to exploit 

the high speed of the fiber cables is then to have all-optical networks, where data is kept in the 

optical domain at all intermediate nodes.  

 

Today’s optical switching paradigms are circuit switching, packet switching and novel 

optical burst switching. Circuit switching ends up with low utilization of bandwidth due to its 

two-way reservation paradigm and long propagation delays between nodes since fiber cables 

are generally deployed over routes longer than 500km. On the other hand, packet switching is 

faster than circuit switching, and can efficiently use the bandwidth. However, due to the tight 

coupling in time between the payload and header as well as the store-and-forward nature of 

packet switching, each packet needs to be buffered at every intermediate node. At present, 
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using fiber delay lines (FDLs) is the most practical way to implement optical buffers. 

Nevertheless, FDLs are scarce and expensive resources, moreover they can generate only a 

limited delay to data. In the long term, optical packet switching seems to be a promising 

technology, but due to its complexity it is expected to remain a research topic for some years.  

  

In recent years, a novel paradigm, named optical burst switching (OBS), has been 

proposed to form an all-optical layer [4]. The incentive of this new idea is to retain advantages 

of the two approaches indicated above, while eliminating their shortcomings as much as 

possible. The first step is to change the basic block from a fixed-length packet to a burst that 

is a super packet with variable size. Unlike a packet, a burst is a pure payload. Each burst is 

associated with a control packet recording related control information of the burst, e.g., burst 

length and routing information. In this way, the control overhead is alleviated. A control 

packet goes through O/E/O conversion at each intermediate node for electronically 

processing, while a burst remains completely in the optical domain along the path without 

buffering. The bandwidth reservation is a one-way process [4]. Compared with wavelength 

routing, the burst starts transmission without waiting for an acknowledgement from 

destination and the problem of significant signaling delay can be eliminated. In addition, the 

separation between a control packet and its burst in both time and wavelength domain can 

avoid buffering as well as synchronization problem in optical packet switching [5]. 

 

According to signaling schemes, there can be various OBS protocols, e.g., Tell-n-Go 

(TAG) by reservation without an offset time, Just-In-Time (JIT) by open-ended reservation 

and Just-Enough-Time (JET) by close-ended reservation [4-6] etc. In all protocols, a burst is 

transmitted after its control packet without waiting for an acknowledgement. In TAG, control 

packet and burst is tightly coupled in time. At each intermediate node control packet is 

processed, and if available, bandwidth is instantaneously reserved for burst following the 

control packet without an offset time. In JIT, there are two types of control packets 

corresponding to a burst: a setup packet and a release packet. At each intermediate node, the 

desired bandwidth is reserved from the time at which the setup packet has been processed and 

freed after receiving the related release packet. On the other hand, bandwidth is reserved from 

the time at which the burst will arrive at the intermediate node in JET and just allocated for 

the burst duration indicated in the control packet. Since close-ended reservation gains best 

resource utilization of all, we focus on JET-based OBS paradigm in this thesis work. 
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1.1 Scope and Contributions of the Thesis 
 

Among various optical switching paradigms, OBS shows advantages in terms of switching 

efficiency for bursty IP traffic and optical hardware feasibility. However, the high blocking 

probability is one of the major problems in optical burst switching due to its inherent one-way 

reservation protocol. Since data bursts are sent out without waiting for the acknowledgement 

from the receiver, the control packet thus the burst could be blocked in an intermediate node 

due to the resource contention. In this case, the burst has to be dropped. Since each burst must 

be assigned a specific path and a wavelength on every link of the assigned path, the resource 

contention occurs when two or more bursts on the same wavelength are desired to be routed 

to the same link at the same time.  

 

In case of a reservation conflict, i.e., the wavelength on the output link is already 

reserved; there are three alternatives for contention resolution. First solution appears in the 

wavelength domain, where by means of wavelength conversion, a burst can be sent on a 

different available wavelength channel of the corresponding link. Second in time domain, by 

applying an FDL buffer, a burst can be delayed until the contention situation is resolved. 

Lastly in space domain, by deflection routing, a burst is sent to a different output link of the 

node and consequently on a different route towards its destination node.  

 

In this thesis, we address the reservation conflict problem in wavelength domain, by using 

smarter wavelength assignment algorithms than previously proposed. Well-known heuristic 

solutions for wavelength assignment problem in circuit-switched optical networks, e.g. first-

fit, random, most-used, least-loaded, min-sum etc., do not result with reasonable performance, 

when applied to OBS networks. Moreover, some of them cannot be implemented directly 

according to their definitions, unless a few adjustments are done. Interestingly, since 

wavelength assignment has to be done in a distributed manner in OBS networks, random 

wavelength assignment, usually the worst performing of all, results with lower average 

blocking probabilities than other conventional heuristics. Therefore, we propose two simple 

heuristic wavelength assignment algorithms that improve blocking probability beyond the 

random heuristic. The main contribution is to develop a dynamic algorithm for wavelength 

assignment in OBS networks based on neuro-dynamic programming (reinforcement learning). 
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Under the assumptions like memoryless interarrival and fixed holding times, wavelength 

assignment problem can be considered as a Semi-Markov Decision Process (MDP). 

Therefore, minimizing the average number of bursts blocked per unit time is formulated as a 

stochastic dynamic programming problem. However, for large problems, the exponential 

computational explosion with the problem dimension does not allow for an exact solution.  

 

Neuro-dynamic programming (NDP) is a simulation-based approximate dynamic 

programming methodology to produce near optimal solutions for large scale dynamic 

optimization problems. The main idea is to construct an approximate cost-to-go function by 

using some features extracted from the current state of the network, and optimize it by tuning 

the parameters associated with these features [7]. In this thesis, two kinds of features are 

extracted from the network and an appropriate feature vector is generated from the 

combination of these features. Namely, these features are availability of wavelength 

converters and local availability of wavelengths. Then, simulation-based methods are 

employed to tune these parameters.  

 

The main contribution of this thesis is that by using heuristic algorithms proposed and by 

using the neuro-dynamic programming method, together with the features defined in the spirit 

of proposed heuristics for the wavelength assignment problem in OBS networks, it is possible 

to obtain smaller average blocking probabilities than that of random wavelength assignment 

algorithm. Moreover, the effect of wavelength conversion and burst length to the blocking 

probability in OBS networks at varying traffic rates are also examined throughout the 

simulations. 

1.2 Outline of the Thesis  
 

This thesis is organized as follows: Chapter 2 reviews some background information about 

basic switching paradigms, especially optical burst switching. The used OBS protocol, JET 

(Just enough time), is described, together with reservation conflict solution methods. Chapter 

3 includes basics of reinforcement learning which constitutes basis of neuro-dynamic 

programming formulation. In Chapter 4, proposed wavelength assignment algorithms are 

given. Two heuristic wavelength assignment algorithms are first stated, and neuro-dynamic 

programming formulation of wavelength assignment for OBS networks is done. Chapter 5 

displays simulation environment and results for all proposed wavelength assignment methods 
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over varying network parameters. Finally, Chapter 6 contains conclusions and directions for 

future research. 
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Chapter 2 

 

Optical Burst Switching  

 
Wavelength-division multiplexing (WDM) has emerged as a core transmission technology for 

the next-generation Internet protocol (IP) backbone network with its ability to support a 

number of high-speed (gigabit) channels in a single fiber, which provides enormous 

bandwidth at the physical layer. Therefore, there is a need to develop framework and 

protocols at higher layers to efficiently use the raw bandwidth available at the optical (WDM) 

layer. Presently, WDM is mainly deployed in the backbone of major long distance carriers as 

point-to-point links with a synchronous optical network (SONET) as a standard interface to 

higher layers in the protocol stack. This necessitates optical-to-electrical (O/E) and electrical-

to-optical (E/O) conversions at every node, and hence fails to take advantage of the 

wavelength routing capability provided by WDM technology. Also, electronic multiplexing 

layers —IP, asynchronous transfer mode (ATM), and frame relay — introduce further 

bandwidth inefficiencies. Although there has been a dramatic increase in the speed of 

electronic devices in the recent past, it is not likely to catch up with the transmission speed 

available at the optical layer. This calls for a novel effort to minimize or eliminate electronic 

processing to fully benefit from the bandwidth potential provided by WDM technology. One 

possibility is to have an all-optical backbone using optical packet switching technology. 

However, this new technology needs to overcome a number of technological challenges. 

Besides, optical burst switching (OBS) is a viable transmission technology for the next-

generation optical backbone and may provide a framework to deploy IP over WDM. 
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2.1 Switching Technologies for WDM 
 

2.1.1 Circuit Switching 
 

Circuit switching has three distinct phases, circuit set-up, data transmission and circuit 

teardown. One of the main features of circuit switching is its two way reservation process in 

phase 1, where a source sends a request for setting up a circuit and then receives an 

acknowledgment back from the corresponding destination. In WDM networks, circuit 

switching takes the form of wavelength routing, where an all-optical wavelength path, 

consisting of a dedicated wavelength channel on every link, is established between two 

remote communicating nodes. The bandwidth, therefore, would not be efficiently utilized if 

the subsequent data transmission does not have a long duration relative to the set-up time of 

the lightpath. In addition, given that number of wavelengths available is limited, not every 

node can have a dedicated lightpath to every other node, and accordingly, some data may take 

a longer route and/or go through O/E and E/O conversions. Furthermore, the extremely high 

degree of transparency of the lightpaths limits the network management capabilities (e.g. 

monitoring and fast fault recovery) 

 

2.1.2 Packet Switching 
 
An alternative to optical circuit switching is optical or photonic packet/cell switching in which 

a packet is sent along with its header. While an intermediate node is processing the header, 

either all optically or electronically (after an O/E conversion), the packet is buffered at the 

node in the optical domain. However, high-speed optical logic, optical memory technology, 

and synchronization requirements are major problems with this approach. In particular, 

popular routing methods used in systems with electronic buffers, like worm-hole routing and 

virtual cut-through routing, cannot be deployed effectively in optical networks due to the 

limited buffering time of optical signals . 
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2.1.3 Optical Burst Switching (OBS) 
 

Optical burst switching is a new switching paradigm for optical networks proposed in [4]. The 

main motivation for considering OBS is that some traffic in broadband multimedia services is 

inherently bursty. More importantly, some studies have concluded that contrary to common 

assumption based on Poisson traffic, multiplexing a large number of self-similar traffic 

streams results in bursty traffic [8, 9].  

 

In order to provide high-bandwidth transport services at the optical layer for bursty traffic 

in a flexible, efficient as well as feasible way, what is needed then is a new switching 

paradigm that can leverage the attractive properties of optical communications, and at the 

same time, take into account its limitations. OBS is intended to accomplish exactly that. 

 

In OBS, a control packet is sent first to set up a connection, followed by a burst of data 

without waiting for an acknowledgement for the connection establishment. By definition, a 

burst of data means fixed or variable sized collection of packets. The control packet sets up 

the connection by reserving an appropriate amount of bandwidth and configuring the switches 

along a path. In other words, OBS uses one-way reservation protocols, and this distinguishes 

it from circuit switching which uses two-way reservation protocols.  

 

OBS also differs from optical or photonic packet/cell switching mainly in that the former 

can switch a burst whose length can range from one to several packets to a (short) session 

using one control packet, thus resulting in a lower control overhead per data unit. In addition, 

OBS uses out-of-band signaling, but more importantly, the control packet and the data burst 

are more loosely coupled in time than in packet/cell switching. In fact, they may be separated 

at the source as well as subsequent intermediate nodes by an offset time as in the 

Just-Enough-Time (JET) protocol to be described later. By choosing the offset time at the 

source to be larger than the total processing time of the control packet along the path [10, 11], 

one can eliminate the need for a data burst to be buffered at any subsequent intermediate node 

just to wait for the control packet to get processed. Alternatively, an OBS protocol may 

choose not to use any offset time at the source, but instead, require that the data burst go 

through, at each intermediate node, a fixed delay that is no shorter than the maximal time 

needed to process a control packet at the intermediate node. Such OBS protocols will be 
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collectively referred to as tell-n-go (TAG) based since their basic concepts are the same as 

that of TAG itself.  

 

In the WDM layer, a dedicated control wavelength is used to provide the “static/physical” 

links between IP entities. Specifically, it is used to support packet switching between 

physically adjacent IP entities, which maintain topology, and routing tables. To send data, a 

control packet is routed from a source to its destination based on the IP addresses it carries (or 

just a label if MPLS is supported) to set up a connection by configuring all optical switches 

along the path. Then, a burst (e.g. one or more data IP packets, or an entire message) is 

delivered without going through intermediate IP entities, thus reducing its latency as well as 

the processing load at the IP layer. Note that, due to the limited “opaqueness” of the control 

packet, OBS can achieve a high degree of adaptivity to congestions or faults (e.g., by using 

deflection routing), and support priority-based routing as in optical cell/packet switching. In 

OBS, the wavelength on a link used by the burst will be released as soon as the burst passes 

through the link, either automatically according to the reservation made (as in JET) or by an 

explicit release packet. In this way, bursts from different sources to different destinations can 

effectively utilize the bandwidth of the same wavelength on a link in a time-shared, statistical 

multiplexed fashion. Note that, in case the control packet fails to reserve the bandwidth at an 

intermediate node, the burst which is considered blocked at this time may have to be dropped. 

OBS can support either reliable or unreliable burst transmissions at the optical layer. In the 

former, a negative acknowledgment is sent back to the source node, which retransmits the 

control packet and the burst later. Such a retransmission may be necessary when OBS is to 

support some application protocols directly, but not when using an upper layer protocol such 

as Transmission Control Protocol (TCP), which eventually retransmits lost data. For the 

unreliable case, control packet thus its burst is simply dropped, and no retransmission occurs. 

 

In either case, a dropped burst wastes the bandwidth on the partially established path. 

However, since such bandwidth has been reserved exclusively for the burst, it would be 

wasted even if one does not send out the burst as in two-way reservation. Similar arguments 

apply to optical or photonic packet switching as well. In order to eliminate the possibility of 

such bandwidth waste, a blocked burst or an optical packet will have to be stored in an 

electronic buffer after going through O/E conversions, and later (after going through E/O 

conversions), relayed to its destination. Fiber delay lines (FDLs) providing limited delays at 

intermediate nodes, which are not mandatory in OBS when using the JET protocol, would 
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help reduce the bandwidth waste and improve performance in OBS. Note that, when using 

TAG-based OBS protocols or optical/photonic packet switching, FDLs or optical buffers are 

required to delay each optical burst when the control packet or the packet header is processed, 

but do not help improve performance.  

 

Summarizing the above discussions as illustrated in Table 2.1, switching optical bursts 

achieves, to certain extent, a balance between switching coarse-grained optical circuits and 

switching fine-grained optical packets/cells, and combines the best of both paradigms. 

 

Table 2.1: A comparison between three optical switching paradigms 

Switching 

Paradigm 

Bandwidth 

Utilization 

Latency  

(set-up) 

Optical 

Buffer 

Proc./Sync. 

Overhead 

Adaptivity 

(traffic& fault)

Circuit low high not required low low 

Packet/Cell high low required high high 

Burst high low not required low high 

 

2.2 The Just-Enough-Time (JET) Protocol and Its Variations  
 

The Just-Enough-Time (JET) protocol [4] for OBS has two unique features, namely, the use 

of delayed reservation (DR) and the capability of integrating DR with the use of FDL-based 

buffered burst multiplexers (BBMs), which are to be described in this section. These features 

make JET and JET-based variations especially suitable for OBS when compared to 

TAG-based OBS protocols and other one-way reservation based OBS protocols that lack 

either or both features.  

 

Figure 2.1 illustrates the basic concept of JET. As shown, a source node having a burst to 

transmit first sends a control packet on a signaling channel, which is a dedicated wavelength 

towards the destination node. The control packet is processed at each subsequent node in 

order to establish an all optical data path for the following burst. More specifically, based on 

the information carried in the control packet, each node chooses an appropriate wavelength on 

the outgoing link, reserves the bandwidth on it, and sets up the optical switch. Meanwhile, the 

burst waits at the source in the electronic domain. After an offset time, T, whose value is to be 

determined next, the burst is sent in optical signals on the chosen wavelength. 
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Figure 2.1: OBS using the JET protocol 

 

2.2.1 The Use of Offset Time  
 

For simplicity, it may be assumed that the time to process the control packet, reserve 

appropriate bandwidth and set up the switch is ∆ time units at each node, and the receiving 

and transmission time of the control packet is ignorable. In a TAG-based OBS protocol or 

optical/photonic packet switching, a burst is sent by the source along with the control packet 

without any offset time (i.e., T = 0 in Figure 2.1). In addition, at each subsequent intermediate 

node, the burst waits for the control packet to be processed, and the two are sent to the next 

node without any offset time either. In this way, both the control packet and the burst will be 

delayed for ∆ units, which will be referred to as the per node control latency. Accordingly, the 

minimum latency of the burst including the total propagation time, denoted by P, but 

excluding its transmission time, is P + ∆ * H, where H is the number of hops along the path 

(e.g., in Figure 2.1, H = 3).  

 

In JET, the offset time T can be chosen to be ∆* H, as shown in Figure 2.1, to ensure that 

there is enough headroom for each node to complete the processing of the control packet 

before the burst arrives. In this way, the burst will not encounter a longer latency than using 

TAG-based OBS protocols.  

 

It is important to note that the burst can be sent without having to wait for an 

acknowledgement from its destination. At 10 Gb/s, a burst of 500 Kbytes (or 4000 average 
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sized IP packets) can be transmitted in about 0.4 ms. However, an acknowledgement would 

take 1.7 ms just to propagate over a distance of merely 500km. This explains why one-way 

reservation protocols are generally better than their two-way counterparts for bursty traffic 

over a relatively long distance. Once a burst is sent, it passes through the intermediate nodes 

without going through any buffer, so the minimal latency it encounters would be the same as 

if the burst is sent along with the control packet as in optical packet switching. Of course, if a 

burst is extremely small, one may just as well send the data along with the control information 

using packet switching.  

 

2.2.2 Delayed Reservation (DR) for Efficient Bandwidth Utilization  
 

Figure 2.2 illustrates why delayed reservation (DR) of bandwidth is useful in achieving 

efficient bandwidth utilization. Using a TAG-based OBS protocol, the bandwidth on the 

outgoing link is reserved from t1’, the time node X finishes the processing of the first control 

packet. In JET, one may also reserve the bandwidth in the same way. However, it is natural to 

delay the bandwidth reservation till t1, the time the first burst arrives. Here, t1> t1’ and their 

difference is the value of the offset time between the burst and its corresponding control 

packet at node X.  

 

 
 

Figure 2.2: Delayed reservation (DR) and its usefulness without buffer 

 

Note that, a way to determine the arrival time of a burst, e.g. t1, when the processing time 

of a control packet may vary from one node to another, is to let the control packet carry the 

value of the offset time to be used at the next node. This value can be updated based on the 

x 
t2  t2’ 

  t1’ 

1st burst

 t1 t1+l1
  offset

case 2 case 1 

2nd control packet 2nd burst

1st control packet 
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processing time counted by the control packet at the current node. In the above example, 

immediately after the control packet succeeds in reserving the bandwidth, its transmission is 

scheduled, say, at t1”. The value of the offset time to be used at the next node is then obtained 

by subtracting t1” - t1’ from the current value. 

 

In addition to taking into account the arriving time of the burst, t1, what is more important 

is that in JET, the bandwidth may be reserved until t1+ l1, where l1 is the burst duration, 

instead of until infinity. This will increase the bandwidth utilization and reduce the probability 

of having to drop a burst. For example, in the case shown in Figure 2.2, namely t2 > t1+ l1 and 

t2 < t1, respectively, the second burst will be dropped at node X if X has no buffer for the burst 

when using TAG. However, when using JET, the second burst will not be dropped in case 1, 

nor in case 2, provided that its length is shorter than t1 – t2. 

 

Note that, DR goes hand in hand with the use of offset time. In addition, although burst 

length may vary, we may assume that the length of a burst is known before the corresponding 

control packet is sent. This assumption is natural in some applications such as file transfer or 

WWW (world wide web) downloading. However, if the burst length is unknown, one may 

delay the control packet until either the entire burst arrives (from an upper layer), or a certain 

length is reached. To take advantage of the use of an offset time in JET, thereby reducing the 

pre-transmission latency, an alternative is to send out the control packet as soon as possible by 

using an estimated value of the burst length. If it is an over-estimation, another control 

(release) packet may be sent to release the extra bandwidth reserved. If it is an 

under-estimation, then the remaining data will be sent as one or more additional bursts. JET 

may also support an entire session by reserving the bandwidth to infinity, and use an explicit 

release packet when the circuit is no longer needed (i.e. the session ends).  

 

2.2.3 FDL’s and Pool architecture 
 

As mentioned earlier, JET does not necessitate the use of buffer. Nevertheless, the dropping 

probability can be further reduced, and both bandwidth utilization and performance can be 

further improved, if a burst can be buffered (or delayed) at an intermediate node [4]. 
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FDLs are equivalent to RAMs in optical networks. Since in optical domain, there is no 

known way of storing data, a few kilometers of extra fiber can be used to provide a maximum 

of few tens of microseconds delay. Figure 2.3 shows the structure for two basic types of 

FDLs. In the figure, if each circle denotes a time unit of delay, either structure can provide 

discrete delays from minimum 0 to maximum B = 2n+1-1 time units. The difference between 

shared and dedicated BBM is that the latter is more complex and costly but more powerful. 

  

 
Figure 2.3: An example of (a). a shared BBM and (b). a dedicated BBM 

 

Figure 2.4: Model of an OBS node with a shared converter and a feedback FDL buffer 
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Both FDL buffers and wavelength converters can be shared among the switching nodes. 

Figure 2.4 illustrates model of an OBS node with a shared converter pool and a feedback FDL 

buffer. There are N links in the optical switch and M wavelengths on each fiber. Moreover, 

there exists a converter pool consisting of NC converters, and an FDL pool consisting of NF 

buffers.  

 

Both FDL-based buffers and wavelength converters are costly and scarce devices. Many 

studies show that the performance of a network with full wavelength conversion, i.e. NC=M*N 

for all switches, can be achieved with a network with a fewer number of wavelength 

converters. A similar discussion holds also for FDL-based buffers [12]. The value of NC and 

NF can be selected appropriately such that blocking probability vs. cost trade-off is 

considered. 

 

2.2.4 Adaptive Routing and Priority Schemes  
 

The dropping probability of a burst may also be improved by implementing adaptive routing 

and/or assigning it with a higher priority. As mentioned earlier, a TAG-based OBS protocol 

does not use any offset time. Instead, a data burst goes through a fixed delay (FDL) at each 

intermediate node to account for the processing delay counted by the corresponding control 

packet. This facilitates the use of a different path to a given destination each time a source 

sends a new burst or retransmits a dropped burst, as well as deflection routing at intermediate 

nodes when a burst is blocked.  

 

A JET-based OBS protocol can also support multi-path routing from a given source to a 

given destination as long as the number of hops along each path is known. To support 

deflection routing at an intermediate node when there is no bandwidth to reserve on the 

primary outgoing link, the control packet chooses an alternate outgoing link, and sets the 

switch accordingly so that the data burst will also follow the alternate path. If a minimal offset 

time based on the primary path was used, and the alternate path is longer in terms of number 

of hops, then the data burst needs to be delayed further in order to make up for the increase in 

the total processing delay counted by the control packet along the alternate path. This can be 

accomplished by letting the data burst go through some FDLs at one or more nodes before the 

offset time goes to zero, even if no blocking occurs at these nodes. We note that a JET-based 
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protocol can support limited adaptivity even without using FDLs. Specifically, one can use an 

extra offset time at the source to account for a possible increase in the total processing delay 

of the control packet due to deflection routing. In addition to being useful for deflection 

routing, having an additional offset time can increase the priority of a burst. This is because 

the corresponding control packet will likely to succeed in reserving the bandwidth into the 

future, given that very few other control packets arriving earlier (or around the same time) 

might have reserved (or want to reserve) the bandwidth that much in advance. This property 

of an additional offset time can be utilized to improve fairness by assigning a higher priority 

to bursts which must travel for a longer distance from their sources to destinations. This 

variation of JET, which implements such a priority scheme, is called as JET-FA (for fairness) 

[4]. 

 

In summary, among various optical switching paradigms, OBS shows advantages in terms 

of switching efficiency for bursty IP traffic and optical hardware feasibility. However, the 

high blocking probability is one of the major problems in optical burst switching due to its 

inherent one-way reservation paradigm. Data bursts are sent out without waiting for the 

acknowledgements from receivers to setup the path (no end-to-end resource reservation), 

therefore, the burst could be blocked in an intermediate node due to the resource contention, 

in which case, the burst has to be dropped. Since each burst must be assigned a specific path 

and a wavelength on every link of the assigned path, the resource contention occurs when two 

or more bursts on the same wavelength are routed to the same link at the same time.  

 

Accordingly, in case of a reservation conflict, i.e., the wavelength on this output line is 

already reserved, one or a combination of the following three major options for contention 

resolution can be applied. 

 

Wavelength domain: By means of wavelength conversion, a burst can be sent on a different 

wavelength channel of the designated output line. 

 

Time domain: By applying an FDL buffer, a burst can be delayed until the contention 

situation is resolved. In contrast to buffers in the electronic domain, FDL’s only provide a 

fixed delay and data leave the FDL in the same order in which they entered. 

 



 17

Space domain: In deflection routing, a burst is sent to different output line of the node and 

consequently on a different route towards its destination node.  

 

However, all optical converter technologies are still not applicable for full-range 

wavelength conversion, which is indispensable for the burst contention resolution intent in 

wavelength domain. Moreover, available converter technologies are expensive and scarce. 

Meanwhile, the lack of optical memory makes the optical buffering to be an impractical 

approach. Although fiber delay lines can be used to temporarily store data in optical domain 

for a few tens of µs, these are not sufficient for storing longer optical bursts. Deflection 

routing is another solution for reducing the blocking probability. Even though the effective 

utilization of idle links is an advantage, the increase of the number of links used per burst as a 

result of deflections is a disadvantage. Burst reordering at the destination and the fairness 

problem are also the potential disadvantage of deflection schemes.  

 

On the other hand, reservation conflict problem can also be attacked in the wavelength 

domain, by using smart wavelength assignment algorithms. When applied to OBS networks, 

well-known heuristic solutions for wavelength assignment problem do not perform as well as 

they do in networks using other switching paradigms. Interestingly, because of distributed 

wavelength assignment behavior of OBS, random wavelength assignment results with lower 

average blocking probabilities than other conventional heuristics. However, a little bit 

intelligence introduced to the wavelength assignment algorithm should improve blocking 

probability beyond the random heuristic. In this thesis work, wavelength assignment 

algorithm in OBS networks is considered under a dynamic traffic model. The aim is to 

minimize average blocking probability using neuro-dynamic programming (reinforcement 

learning). 

 

Next, reinforcement learning and its related implementations will be presented to give the 

necessary background and motivation behind its implementation to wavelength assignment 

problem in OBS networks. 
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Chapter 3 

 

Reinforcement Learning 

 
Reinforcement learning is a general framework for describing learning problems in which an 

agent learns strategies for interacting with its environment. As seen in Figure 3.1, the agent 

perceives something about the state of its environment and chooses what it thinks is an 

appropriate action. The world's state changes (not necessarily deterministically) and the agent 

receives a scalar “reward” or “cost” indicating the utility of the new state for the agent. The 

agent's goal is to find, based on its experience with the environment, a strategy or an optimal 

policy for choosing actions that will yield as much reward/min cost as possible. 

 

 

 

 

 

 

 

 

Figure 3.1: Reinforcement learning studies sequential decision problems faced by autonomous 

agents. Here, the agent seeks to learn an optimal policy that maximizes/minimizes the 

rewards/costs received over time 
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There are two major designs for a reinforcement learning agent. In the model-based 

approach, the agent learns a model of the dynamics of the world and of its rewards. Given the 

model, it tries to solve for the optimal control policy. In the model free approach, the agent 

tries to learn the optimal control policy directly, without first constructing a world model. In 

either approach, the agent seeks to learn a policy that maximizes/minimizes some cumulative 

measure of reinforcement received from the environment.  

 

3.1 Models of Optimal Behavior 
 
There are three models to specify how the agent should take the future into account in the 

decisions it makes about how to behave now.  

 

The finite-horizon model is the easiest to think about: at a given moment in time, the 

agent should optimize its expected reward for the next h steps, which is given by 
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h
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the agent should not worry about what will happen after that. In this and subsequent 

expressions, rt represents the scalar reward received t steps into the future. This model can be 

used in two ways. In the first, the agent will have a non-stationary policy; that is, one that 

changes over time. On its first step, it will take what is termed an h-step optimal action. This 

is defined to be the best action available given that it has h steps remaining in which to act and 

gain reinforcement. On the next step, it will take an (h–1)-step optimal action, and so on, until 

it finally takes a 1-step optimal action and terminates. In the second, the agent does receding-

horizon control, in which it always takes the h-step optimal action. The agent always acts 

according to the same policy, but the value of h limits how far ahead it looks in choosing its 

actions. The finite-horizon model is not always appropriate. In many cases, the precise length 

of the agent's life in advance may not be known.  

 

The infinite-horizon discounted model takes the long-run reward of the agent into 

account, but rewards that are received in the future are geometrically discounted according to 

discount factor γ, (where 0 ≤ γ < 1):  
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γ can be seen as an interest rate, a probability of living another step, or as a mathematical trick 

to bound the infinite sum. The model is conceptually similar to receding-horizon control, but 

the discounted model is more mathematically tractable than the finite-horizon model. This is a 

dominant reason for the wide attention this model has received. 

  

Another optimality criterion is the average-reward model, in which the agent is supposed 

to take actions that optimize its long-run average reward:  
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Such a policy is referred to as a gain optimal policy; it can be seen as the limiting case of the 

infinite-horizon discounted model as the discount factor approaches one [13]. One problem 

with this criterion is that there is no way to distinguish between two policies, one of which 

gains a large amount of reward in the initial phases and the other of which does not. Reward 

gained on any initial prefix of the agent's life is overshadowed by the long-run average 

performance. It is possible to generalize this model so that it takes into account both the long 

run average and the amount of initial reward than can be gained. In the generalized, bias 

optimal model, a policy is preferred if it maximizes the long-run average and ties are broken 

by the initial extra reward.  

 

3.2 Markov Decision Processes 
 

Problems with delayed reinforcement are well modeled as Markov decision processes 

(MDPs). An MDP consists of  

• a set of states S, 

• a set of actions A,  

• a reward function R : S x A →ℜ , and  

• a state transition function T : S x A → Π (S), where a member of Π (S) is a probability 

distribution over the set S (i.e. it maps states to probabilities). We write T (s, a, s’) for the 

probability of making a transition from state s to state s’ using action a.  
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The state transition function probabilistically specifies the next state of the environment as 

a function of its current state and the agent's action. The reward function specifies expected 

instantaneous reward as a function of the current state and action. The model is Markov if the 

state transitions are independent of any previous environment states or agent actions.  

 

3.4 Finding a Policy Given a Model  
 

Before looking at the algorithms for learning to behave in MDP environments, techniques for 

determining the optimal policy given a correct model will be explored. These dynamic 

programming techniques will serve as the foundation and inspiration for the learning 

algorithms to follow. Finding optimal policies for the infinite-horizon discounted model will 

be presented here, but most of these algorithms have analogs for the finite-horizon and 

average-case models as well. For the infinite-horizon discounted model, there exists an 

optimal deterministic stationary policy [14]. 

  

The optimal value of a state is defined as the expected infinite discounted sum of reward 

that the agent will gain if it starts in that state and executes the optimal policy. Using µ as a 

complete decision policy, it is written  

 

)(sV ∗  = .)(max
0

∑
∞

=t
t

t rE γ
µ

 

 
This optimal value function is unique and can be defined as the solution to the 

simultaneous equations  
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which assert that the value of a state s is the expected instantaneous reward plus the expected 

discounted value of the next state, using the best available action. Given the optimal value 

function, we can specify the optimal policy as  
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3.4.1 Value Iteration  
 
One way to find an optimal policy is to find the optimal value function. It can be determined 

by a simple iterative algorithm called value iteration that can be shown to converge to the 

correct ∗V  values [14, 15].  
 
initialize V (s) arbitrarily  
loop until policy good enough  
   loop for Ss ∈  
      loop for Aa ∈  
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   end loop  
end loop  
 

3.4.2 Policy Iteration  
 
The policy iteration algorithm manipulates the policy directly, rather than finding it indirectly 

via the optimal value function. It operates as follows:  

 
choose an arbitrary policy 'µ   
loop  
   ': µµ =  
   compute the value function of policy :µ   
       solve the linear equations  
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   improve the policy at each state:  
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end loop 
 

In practice, value iteration is much faster per iteration, but policy iteration takes fewer 

iterations.  

 

3.5 Learning an Optimal Policy: Model-free Methods  

 

In the previous subsection, methods for obtaining an optimal policy for an MDP assuming 

that there was a model, was presented. The model consists of knowledge of the state transition 

probability function T(s, a, s’) and the reinforcement function R(s, a). Reinforcement learning 

is primarily concerned with how to obtain the optimal policy when such a model is not known 
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in advance. The agent must interact with its environment directly to obtain information, 

which, by means of an appropriate algorithm, can be processed to produce an optimal policy.  

 

At this point, there are two ways to proceed.  

• Model-free: Learn a controller without learning a model.  

• Model-based: Learn a model, and use it to derive a controller.  

 

It is still debatable in the reinforcement-learning community whether model-free or 

model-based approach is better.  A number of algorithms have been proposed on both sides. 

Since model-free learning is highly related with this thesis study, only it will be examined. 

  

The biggest problem facing a reinforcement learning agent is temporal credit assignment. 

How can be known whether the action just taken is a good one, when it might have far-

reaching effects? One strategy is to wait until the “end” and reward the actions taken if the 

result was good and punish them if the result was bad. In ongoing tasks, it is difficult to know 

what the “end” is, and this might require a great deal of memory. Instead, insights from value 

iteration are used to adjust the estimated value of a state based on the immediate reward and 

the estimated value of the next state. This class of algorithms is known as temporal difference 

methods [16]. Two different temporal-difference learning strategies for the discounted 

infinite-horizon model will be presented next. 

 

3.5.1 Adaptive Heuristic Critic and TD (λ)  
 

The adaptive heuristic critic algorithm is an adaptive version of policy iteration [17] in which 

the value-function computation is no longer implemented by solving a set of linear equations, 

but is instead computed by an algorithm called TD(0). A block diagram for this approach is 

given in Figure 3.2. It consists of two components: a critic (labeled AHC), and a 

reinforcement-learning component (labeled RL). The reinforcement-learning component can 

be an instance of any of the k-armed bandit algorithms, modified to deal with multiple states 

and non-stationary rewards. But instead of acting to maximize instantaneous reward, it will be 

acting to maximize the heuristic value, v, that is computed by the critic. The critic uses the 

real external reinforcement signal to learn to map states to their expected discounted values 

given that the policy being executed is the one currently instantiated in the RL component. 
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The policy µ  implemented by RL is fixed and the critic learns the value function µV  for 

that policy. Here the critic is fixed and let RL component learns a new policy 'µ  that 

maximizes the new value function, and so on. In most implementations, however, both 

components operate simultaneously. Only the alternating implementation can be guaranteed 

to converge to the optimal policy, under appropriate conditions. Williams and Baird explored 

the convergence properties of a class of AHC-related algorithms they call “incremental 

variants of policy iteration” [18].  

 
Figure 3.2: Architecture for the adaptive heuristic critic. 

 

',,, sras  is defined to be an experience tuple summarizing a single transition in the 

environment. Here, s is the agent's state before the transition, a is its choice of action, r the 

instantaneous reward it receives, and 's  its resulting state. The value of a policy is learned 

using Sutton's TD(0) algorithm [16] which uses the update rule  
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Whenever a state s is visited, its estimated value is updated to be closer to )'(sVr γ+ , 

since r is the instantaneous reward received and V( 's ) is the estimated value of the actually 

occurring next state. This is analogous to the sample-backup rule [19] from value iteration -

the only difference is that the sample is drawn from the real world rather than by simulating a 

known model. The key idea is that )'(sVr γ+  is a sample of the value of V(s), and it is more 

likely to be correct because it incorporates the real r. If the learning rate α  is adjusted 

properly (it must be slowly decreased) and the policy is held fixed, TD(0) is guaranteed to 

converge to the optimal value function.  

 

The TD(0) rule as presented above is really an instance of a more general class of 

algorithms called TD(λ), with λ = 0. TD(0) looks only one step ahead when adjusting value 
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estimates; although it will eventually arrive at the correct answer, it can take quite a while to 

do so. The general TD(λ) rule is similar to the TD(0) rule given above,  
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but it is applied to every state according to its eligibility e(u), rather than just to the 

immediately previous state, s. one version of the eligibility trace is defined to be 
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The eligibility of a state s is the degree to which it has been visited in the recent past; 

when a reinforcement is received, it is used to update all the states that have been recently 

visited, according to their eligibility. When λ = 0, this is equivalent to TD(0). When λ = 1, it is 

roughly equivalent to updating all the states according to the number of times they were 

visited by the end of a run. Note that we can update the eligibility online as follows:  
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It is computationally more expensive to execute the general TD(λ), though it often 

converges considerably faster for large λ [20, 21].  

 

3.5.2 Q-learning  
 

The work of the two components of AHC can be accomplished in a unified manner by 

Watkins' Q-learning algorithm [22, 23]. Q-learning is typically easier to implement. Let   

Q*(s, a) be the expected discounted reinforcement of taking action a in state s, then continuing 

by choosing actions optimally. Note that V*(s) is the value of s assuming the best action is 

taken initially, and so ),'(max)( asQsV
a

∗∗ = . Q*(s, a) can hence be written recursively as  
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Note also that, since ),'(max)( asQsV
a

∗∗ = , we have ),(maxarg)( asQs
a

∗∗ =µ  as an 

optimal policy.  

 

Because the Q function makes the action explicit, the Q values can be estimated online 

using a method essentially the same as TD(0), but also can be used to define the policy, 

because an action can be chosen just by taking the one with the maximum Q value for the 

current state.  

 

The Q-learning rule is  

 
,)),()','(max(),(:),(

'
asQasQrasQasQ

a
−++= ∗γα  

 
where ',,, sras  is an experience tuple as described earlier. If each action is executed in each 

state an infinite number of times on an infinite run and α is decayed appropriately, the Q 

values will converge with probability 1 to Q* [22, 24, 25]. Q-learning can also be extended to 

update states that occurred more than one step previously, as in TD(λ) [26].  

 

When the Q values nearly converge to their optimal values, it is appropriate for the agent 

to act greedily, taking, in each situation, the action with the highest Q value. During learning, 

however, there is a difficult exploitation versus exploration trade-off to be made. There are no 

good, formally justified approaches to this problem in the general case. 

 

AHC architectures seem to be more difficult to work with than Q-learning on a practical 

level. It can be hard to get the relative learning rates right in AHC so that the two components 

converge together. In addition, Q-learning is exploration insensitive: that is, that the Q values 

will converge to the optimal values, independent of how the agent behaves while the data is 

being collected (as long as all state-action pairs are tried often enough). This means that, 

although the exploration-exploitation issue must be addressed in Q-learning, the details of the 

exploration strategy will not affect the convergence of the learning algorithm. For these 

reasons, Q-learning is the most popular and seems to be the most effective model-free 

algorithm for learning from delayed reinforcement. It does not, however, address any of the 

issues involved in generalizing over large state and/or action spaces. In addition, it may 

converge quite slowly to a good policy.  
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3.5.3 Model-free Learning with Average Reward  
 

As described, Q-learning can be applied to discounted infinite-horizon MDPs. It can also be 

applied to undiscounted problems as long as the optimal policy is guaranteed to reach a 

reward-free absorbing state and the state is periodically reset.  

 

Schwartz [27] examined the problem of adapting Q-learning to an average-reward 

framework. Although his R-learning algorithm seems to exhibit convergence problems for 

some MDPs, several researchers have found the average-reward criterion closer to the true 

problem they wish to solve than a discounted criterion and therefore prefer R-learning to Q-

learning [28]. 

  

With that in mind, researchers have studied the problem of learning optimal average-

reward policies. Mahadevan [29] surveyed model-based average-reward algorithms from a 

reinforcement learning perspective and found several difficulties with existing algorithms. In 

particular, he showed that existing reinforcement learning algorithms for average reward (and 

some dynamic programming algorithms) do not always produce bias-optimal policies. 

Jaakkola, Jordan and Singh [30] described an average-reward learning algorithm with 

guaranteed convergence properties. It uses a Monte-Carlo component to estimate the expected 

future reward for each state as the agent moves through the environment. In addition, 

Bertsekas presents a Q-learning-like algorithm for average-case reward in his textbook [13]. 

Although this recent work provides a much-needed theoretical foundation to this area of 

reinforcement learning, many important problems remain unsolved.  

 

In this thesis study, we deal with an average-reward model free approach with function 

approximation since other neuro-dynamic programming methods are computationally 

infeasible for such large scale / network wide problems, i.e. we are interested in the problems 

with a large number of states. Our approach to the wavelength assignment problem in OBS 

networks using reinforcement learning will be briefly explained in Chapter 4.  

  

In [31], the problem of call admission control and routing in an integrated services 

network that handles several classes of calls of different value and with different resource 

requirements is analyzed. The problem of maximizing the average value of admitted calls per 

unit time (or of revenue maximization) is naturally formulated as a dynamic programming 
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problem, but this is too complex to allow for an exact solution. Methods of neuro-dynamic 

programming (reinforcement learning) are based on the average reward TD(0) method of [32], 

together with a decomposition approach, to construct dynamic (state-dependent) call 

admission control and routing policies. This decomposition has the advantage that it allows 

for decentralized decision-making and decentralized training, which reduces significantly the 

training time. Experimental results for several example problems, of different sizes are 

presented. The case study involving a 16-node network shows that neuro dynamic 

programming can lead to sophisticated control policies involving strategic call rejections, and 

which are difficult to obtain through heuristics. Compared with the “Open-Shortest-Path-

First” (OSPF) heuristic, the neuro dynamic programming policy reduces the lost average 

reward by 50% (heavily loaded 4 node network), 52% (lightly loaded 16 node network), and 

(except for one out of twenty experiments) by 20-70% (16 node network under different 

loads). This illustrates that neuro dynamic programming has the potential to significantly 

improve performance over a broad range of network loads.  

 

The neuro dynamic programming method is also implemented to routing and wavelength 

assignment problem in WDM optical networks in [33]. In this work, a novel connection based 

decomposition approach for WDM optical networks is proposed. Although it does not provide 

as high improvements over heuristics as in global TD(0), it is observed that this method 

greatly reduces the training time when compared to global TD(0) method where all the 

parameters are updated together. The proposed decomposition approach allows obtaining 

distributed algorithms for each connection which only require the features associated with the 

specified connection. Therefore, once the parameters are obtained, in the implementation 

phase these distributed algorithms have the same computational complexity as used heuritics. 

It is presented that smaller average blocking probabilities than those of all conventional 

heuristic algorithms might be obtained by neuro dynamic programming method.  
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Chapter 4 

 

Proposed Wavelength Assignment 
Algorithms 

 
One of the major problems in optical burst switching is the high blocking probability that 

results from the one-way reservation protocol used. Data bursts are sent out without waiting 

for the acknowledgements from receivers to setup the path (no end-to-end resource 

reservation). Therefore, the burst could be blocked in an intermediate node due to the resource 

contention, in which case, the burst has to be dropped. Since each burst must be assigned a 

specific path and a wavelength on every link of the assigned path, the resource contention 

occurs when two or more bursts on the same wavelength are routed to the same link at the 

same time. 

 

Reservation conflict problem can be solved in the wavelength domain, by using smart 

wavelength assignment algorithms and wavelength converters. However, all optical converter 

technologies are still not applicable for full-range wavelength conversion, which is 

indispensable for the burst contention resolution intent in wavelength domain. Moreover, 

available converter technologies are expensive and scarce. That is why an efficient and 

intelligent placement of converters with an intelligent wavelength assignment algorithm is 

studied throughout this thesis. Two heuristic wavelength assignment algorithms and a 

dynamic wavelength assignment algorithm based on neuro-dynamic programming are 

presented. The aim is to minimize average blocking probability and optimize the number of 

wavelength converters used for proposed wavelength assignment methods. 
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4.1 Heuristic Wavelength Assignment Algorithms  
 

Several heuristic methods are defined for wavelength assignment in circuit-switched optical 

networks. Namely, random, first-fit, least-loaded, most-used etc. wavelength assignment 

algorithms result with acceptable blocking probability for most of the switching protocols. On 

the other hand, except random heuristic, most of these heuristics end up with unfair utilization 

of wavelengths in OBS networks. Interestingly, usually the worst performing of all, random 

wavelength selection algorithm, spreads the utilization of the wavelengths uniformly, and 

results with better performance than the others for the optical burst switching paradigm. 
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   (b)            (c) 
 

Figure 4.1: a) Blocking probability vs. traffic rate for first-fit and random wavelength 
assignment algorithms over NSFNET topology with no wavelength converters.  
b) Typical wavelength utilization of a link at first-fit wavelength assignment algorithm 
c) Typical wavelength utilization of a link at random wavelength assignment algorithm 
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In Figure 4.1, performance comparison of two heuristic wavelength assignment 

algorithms for optical burst switching is shown. The simulations are done over single fiber 

NSFNET topology of Figure 4.2. Switches do not have the capability of wavelength 

conversion nor optical buffering. From Figure 4.1.a, it can be observed that, there is a 

significant difference in the blocking probability in comparison between random and first-fit 

wavelength assignment algorithms. Moreover, as it can be seen from Figure 4.1.b, although 

there exists 8 available wavelengths per fiber, first-fit assignment uses just only 4 of them 

resulting with an unfair utilization. Oppositely, as expected, random wavelength assignment 

causes approximately uniform distribution of wavelength usage. Since least-loaded and most-

used heuristics are designed for multi-fiber networks, they are not included in this study.  

 

 

Figure 4.2: NSFNET topology 

 

Although random wavelength assignment algorithm happens to be best performing 

among existing heuristic algorithms, better algorithms can be devised compared to making 

random decisions. The only advantage of this heuristic is that wavelength utilization among 

the network is distributed fairly. Since it does not use any information about the state of the 

network or ongoing packet arrivals, an algorithm that takes this knowledge into account 

during assignment procedure may improve the blocking probability. 
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As a direct result of one-way reservation protocols used in OBS, the data burst is sent 

over a wavelength without an agreement with the destination. It is probable that heading 

control packet may not be able to reserve the wavelength at an intermediate node along the 

route because of a reservation conflict. There is no guarantee that the wavelength selected at 

the source node will be available throughout its way from source to destination. Therefore, it 

may decrease the blocking probability if the assignment algorithm operates also in the way to 

increase the utilization along the link. Many reservation conflicts can be prevented by 

selecting an available wavelength such that this increases the probability of the upcoming 

control packet’s finding an appropriate wavelength. If the assignment algorithm works in the 

same manner throughout the network in order to decrease the dropping probability of the 

succeeding control packet in the current link, burst blocking probability may be improved.  

 

At every node, there is a reservation table which basically stores the data supplied by 

preceding control packets. So the information that indicates the utilization of all links adjacent 

to that node is available. The rationale behind the proposed heuristic wavelength assignment 

algorithms is to use this information about the past and future events during wavelength 

assignment procedure. This approach decreases the blocking probability of succeeding control 

packets, thus bursts.  Proposed wavelength assignment algorithms designed according to this 

idea are named as most-fit-rand and most-fit-min wavelength assignment algorithms.   

 

For example, assume two available wavelengths for an arriving burst of the duration 

(ta,tb). Let dark bold lines over each reservation time line show the reservations done by 

control packets that have arrived up to now in Figure 4.3. If wavelength j is selected, then 

another arriving burst for duration (tc,td) will be dropped, but taking the duration into 

consideration during wavelength assignment procedure and selecting the one that leaves less 

free space in the reservation time line (fits most), there is a higher probability that upcoming 

control packets will find an available wavelength. In our example, if the former coming burst 

selects wavelength i for which the burst fits most, then the second can also be carried on 

wavelength j. Therefore, during wavelength assignment procedure using the reservation time 

line knowledge may help to improve blocking probability. 
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Figure 4.3: Reservation time line for WL i and WL j. Bold lines over each reservation time 
line show the reservations previously done Two bursts arrive at times ta and tc. 
 

4.1.1 Most-Fit-Rand Heuristic Wavelength Assignment Algorithm 

 

According to the most-fit-rand heuristic, all available wavelengths for the needed reservation 

period are assigned with one of low or high priorities. The reason for such an approach is to 

give priority to wavelengths where the reservation of the burst results with a denser timeline. 

Wavelength assignment is done randomly among equal priority wavelengths in order to 

provide fair wavelength utilization.  

 

Let a burst of length l arrive at time t. In order to assign priorities to available 

wavelengths, the reservation time line is examined for periods (t-l,t) and (t+l,t+2l). Low 

priority is assigned to the available wavelengths with total amount of 2l free reservation time. 

All other available wavelengths with total amount of free reservation time less than 2l, are 

labeled with high priority.  

 

The reason why the length of burst forms a criterion is that, if the duration between two 

reservations is smaller than the duration of a burst, it is sure that this duration is wasted 

because in order a control packet to make a reservation for the following burst, a continuous 

free duration of burst length is needed.  

 

time

time

reservation time line 
for WL i   

reservation time line 
for WL j   

 ta      tb
    tc           td
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4.1.2 Most-Fit-Min Heuristic Wavelength Assignment Algorithm 

 

The difference of most-fit-min from most-fit-rand wavelength assignment algorithm is that 

the wavelengths of high priority set are reassigned priorities according to their total amount of 

free reservation time for periods (t-l,t) and (t+l,t+2l). The larger the free time is, the lower the 

new priority assigned to that wavelength. As it is seen for most-fit-min the assignment among 

high priority set is done again for reassigned priorities, not randomly.  

 

When the network is not densely loaded, it is observed that most of the available 

wavelengths are assigned to the low priority set. Therefore, during wavelength assignment, 

priority ties are most probably to occur also for most-fit-min heuristic. Ties of priorities are 

resolved randomly under all circumstances for both proposed heuristics. 

 

4.2 Implementation of Reinforcement Learning to Wavelength Assignment 

Problem in OBS 

 

4.2.1 Dynamic Programming Formulation 

 

In this section, the problem of minimizing the average blocking rate in OBS networks is 

formulated as a continuous time, average cost dynamic programming problem. Let us 

consider a communication network where Ν = {1,2…N} represents the set of nodes, 

W={1,2…W} represents the set of wavelengths in an optical fiber, C={1,2,...C} represents the 

set of converters at each node, L={1,2…L} represents the set of unidirectional links. 

 

At time t, the state of the network is represented as xt and consists of a set of active bursts 

whose wavelength assignment problem has been solved. This finite set of all possible states 

will be referred to as the state space S. Although control packets arrive in time in continuous 

manner, it is sufficient to consider the state of the network at discrete instants when certain 

events take place. These events might be either a new control packet’s arrival or the release of 

reservation of an existing connection on a link. Let us represent this finite event space as Ω. 
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If the system is in state x and an event e takes place, then a proper decision u should be 

made. Let U(x, e) denote the set of all possible decisions. If e corresponds to a new control 

packet’s arrival then U(x, e) consists of reserving a possible wavelength and a wavelength 

converter, if necessary and available, for its following burst or simply rejecting the 

reservation. If e corresponds to a release of reservation of an existing connection on a link, 

then there is no need to make a decision since U(x, e) consists of only terminating the 

specified reservation. Assume that the current state of the network is x, an event e occurs and 

a proper decision u Є U(x, e) is made. Then the whole system moves to a next state which will 

be denoted as x& . 

 

Let us denote the immediate cost that occurs when rejecting the incoming reservation 

request as d and the immediate cost of using a wavelength converter as c. The value of d 

linearly increases according to the number of nodes that the control packet passes in order to 

give a virtual priority to control packets that have surveyed on longer routes using the 

available resources (When such a burst is dropped, the resources that may be available for 

other bursts are wasted for the dropped one, so cost of a such drop should be higher). Then the 

resulting cost will be shown as g(x, e, u) such that: if e corresponds to a new control packet’s 

arrival and u corresponds to rejecting that reservation request then g(x, e, u)=d, otherwise if u 

corresponds to assigning a proper wavelength and wavelength converter pair then g(x, e, u) =c 

and if u corresponds to assigning a proper wavelength without wavelength conversion then  

g(x, e, u) =0. If e corresponds to a reservation release, then g(x, e, u) =0. 

 

Given a current state of the network x, the set of decisions like rejecting reservation 

request or which wavelength should be assigned to a specified data burst will be referred as 

policy µ. Policy µ is simply a mapping which satisfies  

 
µ(x, e) Є U(x, e) 

 
and whose domain is S × Ω. 

 

Assuming memoryless interarrival and fixed holding times for calls and a fixed policy µ, 

xt evolves as a continuous time, finite state semi-Markov process. Let us represent the kth 

event as ek, the time of the kth event as tk, the state of the network just prior to time tk as 
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kt
x and the decision made at time tk as 

kt
u =µ(

kt
x , ek). Then the average blocking cost over 

the infinite time horizon associated with the policy µ can be given as follows: 
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The average blocking cost might be interpreted as the average cost per unit time for the 

system in steady state. Under the assumption of fixed finite call holding times, the whole 

system is modeled as an ergodic semi-Markov process. Reaching any state j from any state i is 

possible. Therefore the average blocking cost of state j is the same as that of state i since the 

costs incurred in the process of reaching state j from state i do not contribute to average 

blocking cost as N → ∞. Therefore, v(µ) is independent of the initial state. Additionally, in 

ergodic processes it is known that time averages converge to ensemble averages. Therefore, 

average blocking cost converges to a deterministic constant with probability 1. 

 

Let us define the differential cost-to-go of state 
kt

x under policy µ as: 
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where 

mt
u = µ(

mt
x , em). It might be interpreted as the expectation of the difference of total 

blocking costs under policy µ over the infinite time horizon for a system initialized at state 

kt
x compared to the system in steady state.  

 

A policy is said to be optimal if the average blocking cost of all other policies is greater 

than or equal to the average blocking cost of that policy. If the optimal policy is denoted as 

µ*, then the optimal policy is defined as: 
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where h*(x) represents the differential cost-to-go of state x associated with optimal policy µ*. 

In order to find the optimal policy, one should know the optimal differential cost-to-go of all 

possible states. 
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Optimal differential cost-to-go h*(x) values for each possible state x of the network can 

theoretically be computed as follows [7, 31]: 
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where v*= v(µ*) represents the average blocking cost associated with the optimal policy and 

τ represents the time until the next event occurs. E{τ | x} represents the expectation of the 

time required until the next event occurs and x&  represents the next state of the network. If the 

number of all possible states is denoted as | S |, then Equation 4.4 is a system of | S | + 1 

unknowns and | S | nonlinear equations for each possible state. The unknowns are | S | optimal 

differential cost-to-go values for each possible state and the value v*. Therefore, one more 

equation is needed to solve Equation 4.4.  

 

If the vector consisting of optimal differential cost-to-go values h*(x) for all possible 

states x is denoted as H*, then it is seen that if H* solves the Equation 4.4 then H* + re also 

solves that equation where r is a constant and e represents a vector of ones with length | S |. In 

other words, what is important is the difference values h*(x) - h*(y) for all possible states x and 

y. Therefore, if the empty system is taken as a reference state and denoted as x̂ , one can 

assume without loss of generalization that 

 
h*( x̂ ) = 0.                                                                       (4.5) 

 
Under this assumption Equation 4.4 together with the Equation 4.5 is known as Bellman 

equations and constitute a system with | S | + 1 unknowns and | S | + 1  nonlinear equations 

which is solvable. 

 

Policy iteration and value iteration are two well known approaches to solve a dynamic 

programming problem as presented in Chapter 3. We comment briefly on the policy iteration, 

in which, one starts with an arbitrary policy µ0 and generates a sequence of new policies µ1, 

µ2,... . Given a policy µk, first the v(µk) value is computed according to (4.1) and 

)(xh kµ values for all possible states x are computed according to (4.2). This process is also 

known as policy evaluation step. Then, the policy improvement step is performed to find the 

next policy µk+1 according to the following formula: 
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It is shown in [7, Proposition 2.4] that policy iteration algorithm generates an improving 

sequence of policies which terminates with the optimal policy µ*. 

 

Even for networks consisting of a few nodes and links, computation and storage of the 

optimal differential cost-to-go h*(x) values for every possible state x of the network by using 

Bellman equations might be impractical. For this reason, in the next section, the neuro-

dynamic programming approach, which is an approximate policy iteration method to find near 

optimal policies, will be presented. 

 

4.2.2 Neuro-Dynamic Programming Formulation 
 

In this section, the theoretical framework of the neuro-dynamic programming solution to 

wavelength assignment problem in OBS networks is presented. Neuro-dynamic programming 

(reinforcement learning) method is an approximate dynamic programming method based on 

simulations, which produces near-optimal solutions to large-scale dynamic programming 

problems. 

 

Neuro-dynamic programming starts with an arbitrary policy µk and approximates the cost-

to-go function of this policy )(⋅khµ  with an approximate cost-to-go function ),),((~
k

xfh µθ  

where f (x) represents a vector of features extracted from the network and 
kµθ represents a 

vector of tunable parameters associated with each used feature. Then, policy iteration on 

)),((~
k

xfh µθ  is performed to obtain better policy µk+1. This process is known as approximate 

policy iteration and can be summarized as follows: 

 

• Start with a fixed policy µk. 

• Approximate the values )(xh kµ and v(µk), which are hard to find, with an approximate 

function )),((~
k

xfh µθ  and a scalar quantity )(~
kv µ  respectively by using simulations. 

• Use policy iteration on approximate values )),((~
k

xfh µθ  and )(~
kv µ  to obtain a better 

policy µk+1. 

• Repeat this process by using µk+1 instead of µk, until obtained blocking probabilities do 

not change much with each iteration. 
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Approximations of optimal cost-to-go functions have been commonly used in the past [31, 

34-36]. Here, we are interested in the problems with a large number of states, and 

approximate cost-to-go functions ),(~ θ⋅h  that can be described with relatively few numbers   

(θ  of small dimension). The main idea in these problems is to use state evaluators to rank 

different states and make a decision that results in the state with maximum reward or 

minimum cost, minimum cost in our case. The state evaluator calculates a numerical value for 

each state using a heuristic formula, which includes weights for the various features of the 

state. In other words, state evaluator calculates the approximate cost-to-go function ),(~ θ⋅h , 

where the weights of the features correspond to the parameter vector θ. 

 

In Neuro-dynamic programming there are three steps to be considered  

• Determining the general form of the approximate function ),(~ θ⋅h . 

• Deciding on which features should be used in the approximate function ),(~ θ⋅h . 

• Selecting a proper method to tune the parameter vector θ and scalar quantity v~ . 

 

which will be presented in the following sub-sections. 

 

4.2.2.1 Approximation Architecture 
 

Selection of architecture means the choice of a parametric class of functions ),(~ θ⋅h  that suits 

best to the considered problem and is an important issue in function approximation. 

 

Approximation architectures can broadly be classified into two main groups as linear and 

nonlinear ones. A linear architecture is of the form 
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where θ(k), k = 0, 1,…, K, are the elements of a real parameter vector θ, and ℜ→Sfk :  are 

known functions extracted from the network state. These functions are preferred to be easily 

computable for the simplicity of the architecture. 
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Assume that some training data pairs (x, hµ(x)) obtained by simulations under a policy µ 

are wished to fit using linear architecture. This issue can be formulated as a least squares 

problem where the aim is to minimize the squared error  
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over all parameter vectors θ. (4.8) is a linear least squares problem even if the functions fk (x) 

are nonlinear and can be solved using linear algebra techniques. 

 

In nonlinear architecture, the dependence of ),(~ θxh  on θ is nonlinear and the least 

squares problem of minimizing the squared error 
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cannot be reduced to linear algebraic problem. Therefore, (4.9) should be solved by means of 

nonlinear programming methods. Multilayer Perceptron [7, 37] method is most commonly 

used nonlinear approximation architecture in the literature and has the power of 

approximating arbitrary functions of feature vector f (x). 

 

In this thesis, linear architecture is used as approximation architecture due to two main 

reasons. First, the linear dependence of the approximation architecture to the parameter vector 

θ enables us to use fast and well-tested linear algebra algorithms. Second reason is to 

determine the features that are most relevant to the decision making process since the 

parameters associated with the most relevant features in decision process will dominate that of 

irrelevant features in magnitude. 

 

4.2.2.2 Features 
 

The function h(x) that should be approximated is often a highly complicated nonlinear map as 

in the case of wavelength assignment problem in OBS networks. Therefore, it is sensible to 

break this complexity into smaller and less complex pieces by feature extraction. A feature is 

simply a mapping ℜ→Sfk :  where ℜ  represents the set of real numbers. Once the set of 

features f1,…,fK are determined, the feature vector is formed f (x)=(f1 (x),…,fK (x)). These 
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features are usually handcrafted based on available insight and prior experience on the 

problem. Then either using the extracted feature vector or both the feature vector and raw 

encoding of the state of network, h(x) is approximated with )),((~ θxfh  by the approximation 

map parameter θ. Throughout this thesis study, we use only feature-based approximation 

architecture. 

 

For the simulations, basically two kinds of features are extracted from network state.   

 

1) Availability of wavelength converters: The first defined feature, f1(x), is a one 

dimensional vector of length total node number, where each entry shows number of 

available wavelength converters at each node for the current state.  

2) Local availability of wavelengths: Second feature, f2(j,l), composes of entries such that 

each entry denotes available number of wavelength j along link l for the current state. 

 

4.2.2.3 Training Method 
 

There are several on-line and off-line methods to train the parameter vector θ [7]. Our main 

goal is to train the approximation architecture so as to identify θ, v~  in such a way that ),(~ θ⋅h  

and v~  are good estimates of hµ and v(µ) respectively. In this section, Sutton's [16] TD(0) 

(temporal differences) method which is a commonly used method in neuro-dynamic 

programming applications will be presented. This method is used in all simulations presented 

here. 

 

As presented in Chapter 3, TD(0) method has originally been proposed for discrete time, 

discounted cost problems. Since wavelength assignment in OBS networks can be considered 

as a continuous-time, average-cost problem, average cost TD(0) method [32] is used which is 

a modified version of a discounted cost TD(0) method [38]. It is shown that average cost 

TD(0) method has the same convergence properties with discounted cost TD(0) method [39]. 

 

One way to approximate v(µ) in (4.1) is to sum a large number of immediate costs 

observed in a long trajectory of the system and then normalize by dividing with the total 

elapsed time. However, one should wait till the last event happens in order to find the average 
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blocking cost v(µ) associated with policy µ. Another way is to use Robbins-Monro stochastic 

approximation algorithm, which can be defined as follows: 
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where kη  is a diminishing step size parameter with increasing k. This is an online algorithm 

and each kv~  value is updated after the k'th event ek. It has been shown in [32, Theorem 1] that 

kv~  converges to v(µ) as ∞→k . Temporal difference dk computed after k'th event is defined 

as follows: 
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Temporal difference dk represents the difference between an estimate of the cost-to-go 

based on the simulated outcome and the current estimate ),(~
ktk

xh θ . Therefore, the temporal 

difference provides an indication as to whether the current estimate should be raised or 

lowered. 

 

In order to minimize the squared error in (4.9), incremental gradient flow method is used 

which can be found in standard texts such as [7, Section 3.2.4]. By using this method the 

parameter vector θ is updated by 

 

[ ][ ][ ])(),(~)(),(~
0

1 mmmm tmt
m

tmtkkk xhxhxhxh µµ
θ θθγθθ −−∇−= ∑

∞

=
+ ,            (4.12) 

 
where γk is a diminishing step size parameter with increasing k and θ∇  represents the gradient 

with respect to parameter vector θ. When the definition of hµ(x) in (4.2) is substituted into 

(4.12), we get 
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Since it is known that kv~  converges to v(µ) as ∞→k , (4.13) can be rewritten in terms of 

temporal differences as 
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A more general update rule, known as TD(λ), where 0 ≤ λ ≤ 1, uses weighted sum of 

temporal differences and is defined as  
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To see the intuition behind (4.15), one can refer to [7, Section 6.3]. It is seen that (4.14) is 

a special form of (4.15) when λ is set to 1. Therefore (4.14) is known as TD(1) method. (4.15) 

is an off-line version of TD(λ) since parameter vector θ should be updated after all the 

trajectory i0, i1, i2, … is simulated. However, in the on-line version, parameter vector θ is 

updated as soon as temporal difference dk becomes available. More specifically, following the 

state transition ),(
1+kk tt ii  parameter vector θ is updated as follows: 
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On-line TD(0) method is obtained by setting λ = 0 in (4.16) and is given by the following 

Equation: 
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TD(0) does not evaluate previous gradients of ),(~

mtm
xh θθ∇  for 0 ≤ m ≤ k in order to 

update θk as in (4.16). Therefore on-line TD(0) update equation is very suitable for real-time 

implementations. This is the main reason that TD(0) method is used in simulations. It should 

be noted that when the linear approximation architecture is used, 

 
)(),(~ xfxh =∇ θθ                                                      (4.18) 

 
Under a fixed policy µ, let us assume that θk values are updated according to (4.17) (on-

line TD(0) method) and kv~  values are updated according to (4.10). Additionally, assume that 

γk and ηk are diminishing step size parameters such that: 

 

a) γk is positive, deterministic constant for  k and satisfies ∞=∑
∞

=0k
kγ  and ∞<∑

∞

=0

2

k
kγ . 

b) There exists a positive scalar n such that the sequence ηk satisfies ηk  = n γk for  k. 
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Then, it is proven in [32, Theorem 1] that kv~ converges to v(µ) and θk converges to a 

limiting vector θ such that the squared error between ),(~ θ⋅h  and )(⋅µh  is minimized with 

respect to θ under the given approximation architecture. 

 

4.2.2.4 Decomposition Approach 

 

To obtain distributed algorithms and faster convergence especially for networks with large 

number of nodes and links, the immediate cost of an incoming call might be associated with 

its connection. This method is known as decomposition approach and was found to perform 

well and lead to shorter training times in [31, 33]. On the other hand, OBS network protocols 

use one-way reservation paradigm, and global resource information is not available at any 

node. At a node, processing is only done according to the information obtained only from the 

links of that node. For example, during wavelength assignment procedure in OBS networks, 

along route information is not available at the node. Therefore, there is a need for link-based 

wavelength selection. This directly corresponds to decomposition approach at neuro-dynamic 

programming methodology. That is why we use this approach throughout all NDP simulation 

study. 

 

In this approach, local states xl, associated with each link Ll ∈  are considered although 

they are not real states in true sense. This is because of the fact that they are affected by the 

global state x and they do not evolve as a Markov process. Assuming that a new control 

packet arrives to link l and its reservation is done, then the immediate cost of that link 

becomes ),,(
kk tkt

l uexg  = ),,(
kk tkt uexg . For all other events, the immediate cost associated 

with link l is set equal to 0. 

 

Given a fixed policy µ, it can be shown that: 
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where vl(µ) represents the average blocking cost associated with link l under policy µ. For 

each link, it can be introduced a scalar lv~ as an estimate of vl(µ) and an approximation 

architecture ),(~ lll xh θ where θl represents a parameter vector that belongs to the features 
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associated with link l. In this approach each link l has its own policy µl. When a reservation 

request arrives to link l, local policy µl is defined as: 
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The main idea of decomposition approach is not to update global parameter vector θ after 

each event, but instead update the parameter vector θl which is local to each link. Under these 

definitions, if the incoming control packet wants to reserve the resources that belongs to link l, 

then local TD(0) algorithm for this link is given as: 
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where l

kγ  and l
kη  are small diminishing step size parameters explained in the previous 

section. Since decomposition approach ignores some dependencies, it should not be expected 

to obtain better average blocking probabilities when compared to global TD(0) algorithm. 

However, at the expense of introducing an additional modelling error and obtaining higher 

average blocking probabilities, one can obtain distributed algorithms and faster convergence 

rates. 

 

The method used in all simulations can be briefly explained as follows. First, we start 

with an arbitrary policy µ and apply TD(0) until the parameter vector and average cost value 

converge. Then the resulting limiting value of parameter vector θ is used to define a new 

policy by means of policy iteration. This process is repeated until it is observed that obtained 

blocking probabilities do not change much with each iteration. This approach is known as 

approximate policy iteration and has some weak theoretical guarantees that the policy 

iteration algorithm generates an improving sequence of policies [7, Proposition 2.4]. 

 

This policy iteration process might be interpreted as an actor-critic system. In this 

interpretation, the critic is responsible for the policy evaluation step and evaluates the 

performance of the current policy, in other words it calculates the estimate of khµ  by tuning 

the parameters. On the other hand, actor is responsible for the policy improvement step who 

takes into account the latest evaluation of the critic, khµ , to obtain the next policy µk+1 . 
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There is an alternative to the standard version of policy iteration in which policy update is 

performed after each update by the policy evaluation algorithm without waiting for the critic's 

computations to converge. Methods of this type are known as optimistic policy iteration in the 

literature and have been widely used in practice. Although this method has no theoretical 

convergence guarantees, it has been shown to perform well in some situations [35-37]. 

 



 47

 

 

 

Chapter 5 

 

Simulations and Results 

 
Many protocols and algorithms proposed for circuit-switched optical networks results with 

high burst blocking rates in OBS due to its one-way reservation property. Therefore, there is a 

need for smart routing and wavelength assignment algorithms in order to obtain lower 

blocking probabilities. We compute the performance of different proposed wavelength 

assignment algorithms for varying available resources and traffic rates throughout the 

network.  

 

Many studies in the literature assume full wavelength conversion and decreasing blocking 

probability is achieved by using deflection routing, FDLs etc. When resources such as 

wavelength converters and FDLs are fully available for each connection, it is expected to have 

a reasonably low blocking rate. However, these resources are scarce and expensive devices. 

The main motivation behind this thesis study is to achieve same blocking rate with lower cost 

network structure by using smarter wavelength assignment algorithms.  

 

Well-known wavelength assignment algorithms are proposed for networks using two-way 

reservation protocols, and these do not seem to be appropriate for optical burst switching 

networks. Interestingly, usually the worst performing of all, random wavelength assignment 

algorithm, results with better performance over optical burst switching networks using JET 

protocol. This is basically because of random wavelength assignment’s uniform link 

utilization property. This result shows the need for intelligent wavelength assignment 
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algorithms designed especially for optical burst switching paradigm. Moreover, intuitively it 

can be seen that with fewer number of wavelength converters shared from a converter pool, 

the same blocking rate range with full wavelength conversion can be achieved.  

 

Besides performance comparison for networks with varying number of converters at each 

node, we also try to match and examine the performance of proposed algorithms for varying 

traffic rates and burst lengths.  

 

5.1 OBS Simulator 

 

Optical burst switching is a new switching paradigm in optical networks. In OBS networks, a 

control packet is sent before transmitting the burst; and the burst is sent after an offset time 

depending on the OBS protocol. Since OBS uses one-way reservation, there is not a 

handshake between source and destination on the wavelength assignment before the 

transmission of the burst. This new structure is different than other switching paradigms, so 

well-known simulator programs are not capable of implementing optical burst switching 

networks. Therefore, an event-driven packet-based OBS simulator is written in Microsoft 

Visual C++ 6.0 environment. Due to its resilient structure, the written simulator has the 

following features: 

 

• Different OBS protocols can be implemented. 

• Any type of routing and wavelength assignment algorithms can be employed. 

• It has the capability of implementing neuro-dynamic programming.  

• Fiber Delay Lines (FDLs) and Wavelength converters can be used for reservation 

conflicts, and a shared pool structure for these resources is available. 

• It is capable of handling fixed or variable length of data bursts. 

• Offset values may be fixed or varying from source to source. 

• The traffic, thus the distributions for interarrival times of packets, is adjustable. 

• User defined source-destination pair matrix can be used. 

• It is also capable of processing approximately 48*106 packets/min with a 2.4 GHz 

processor. 
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5.2 Simulation Environment 

  

Throughout all simulations, as a network environment, NSFNET topology of Figure 4.2, is 

used with the following properties: 

 

• It is composed of 14 nodes, 42 unidirectional links 

• Length of the links is fixed to 500 km corresponding to 1700 microsecond as the 

propagation delay. 

• Each unidirectional link is composed of a single fiber with 8 wavelengths. 

• There is traffic between each pair of nodes (fully connected) and total traffic in the 

network is uniformly distributed among all node pairs. 

• Packet arrivals are Poisson distributed, and total packet arrival rate is varied from 1*106 

packets/sec to 2*106 packets/sec for each node. 

• JET is used as the OBS reservation protocol. 

• Routing of bursts is done according to Dijktra’s shortest path algorithm. 

• 4 different wavelength assignment algorithms’ performances in terms of blocking 

probability are analyzed. 

• All nodes have the converter pool structure and number of converters is varied throughout 

simulations. 

• Control packet’s processing time lasts 10 µsec at each node. 

• Each packet consists of 1500 bytes of data, and burst is formed from fixed number of 

packets. Throughout simulations, this fixed number is chosen as either 10 or 20 packets. 

• Switching rate at a node is 10 Gbits/sec, so burst switching time at each node is either 12 

or 24 µs according to the burst length. 

• Blocking probability is averaged over 1*107 packet arrivals to the system. For all 

simulations, the same random number generator is used to determine the packet 

interarrival times, so all results correspond to data traffic with exactly same 

characteristics.  
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5.2.1 Simulated Wavelength Assignment Algorithms 

 

Basically, performances of proposed heuristic and dynamic wavelength assignment (DWA) 

algorithms of Chapter 4 are compared with the random wavelength assignment (RWA) 

algorithm in terms of blocking probability for varying number of wavelength converters, 

traffic rates and burst lengths.  

 

As heuristics, proposed most-fit-min (MFM) and most-fit-rand (MFR) wavelength 

assignment algorithms are used. On the other hand, as many as feature vectors one extracts 

from the network, that many different dynamic wavelength assignment algorithms can be 

defined. As described in Section 4.2.2.2, among many, we define only two features; 

availability of wavelength converters (f1(x)), local availability of wavelengths (f2(j,l)). 

Combining these features, we form the feature vector such as F = {f1, f2}. 
 

For neuro-dynamic programming, parameter vector θ is trained by decomposition 

approach, since OBS network protocols use distributed algorithms. NDP method used in 

simulations is summarized in Figure 5.1.  

 

In all simulations, 2.5*106 event steps are used for policy evaluation. After 2.5*106 event 

steps, the policy is updated by adapting a new parameter vector θ and this process is repeated 

until a steady-state behavior in average blocking probabilities is obtained. Since connection 

based decomposition approach is not appropriate for OBS networks (along route information 

is not available at a node), we use link based decomposition approach. Moreover, connection 

based decomposition approach has weak theoretical convergence guarantee, and it is not 

expected for link based approach to show better convergence behavior. Furthermore, 

considering large sized network, thus long feature vector because of high number of states, a 

convergence to a fixed point can not be observed for NDP with link based decomposition 

approach. However, typical improving behavior of neuro-dynamic programming is better than 

expected and blocking rate remains in a small range after a number of policy iterations. 

Throughout simulations, it is observed that blocking probability typically reaches steady-state 

after an average of 300 iterations. A typical improving behavior of neuro dynamic 

programming is shown in Figure 5.2. While blocking probability can be observed up to 
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approximately 9*10-4 throughout heading iterations, it remains lower than 2*10-4 after 

sufficient number of iterations.  

 

Since not a rigid convergence to a fixed point throughout policy iterations is observed, we 

pick the best policy generated in the course of algorithm, not the last one. This is also the 

approach of Tsitsiklis [31] for a similar situation. 

 

Figure 5.1: Flowchart of the NDP method 
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Figure 5.2: Blocking probability evaluated over 2.5*106 event steps versus policy iteration 

 

5.3 Numerical Results 

 

In this section, simulation results of heuristic and neuro-dynamic programming algorithms on 

NSFNET topology are presented. The heuristic algorithms’ results are obtained for five 

network loads using 2 different burst lengths and varying the number of converters per node. 

A similar set of experiments is carried out also for neuro-dynamic programming. 

Additionally, all types of algorithms are compared with each other for performance 

evaluation. 

 

Figures 5.3-5.14 give the steady-state average blocking probability vs. traffic load for 

random, most-fit-min, and most-fit-rand heuristic wavelength assignment algorithms as well 

as by dynamic wavelength assignment algorithms using the specified features. Figures 5.15-

5.18 display same results for some specific traffic loads from a different perspective, average 

blocking probability vs. number of wavelength converters. 
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The simulations are done basically for two fixed burst lengths: 10 packet bursts (12 µsec) 

and 20 packet bursts (24 µsec). Although the burst dropping rate of 10 packet bursts is higher, 

a packet base approach to dropping rate shows that more packets are dropped for 20 packet 

burst case. This is because of one 20 packet burst drop corresponds to two 10 packet burst 

drops, and such a ratio is not observed at dropping rates of bursts. 

 

Throughout simulations, also converter numbers at network nodes are varied. It is 

important to mention that converter pool structure is implemented under all circumstances. 

What is meant by full conversion (fc) is that every wavelength on every link has its own 

converter at the nodes they are adjacent. Equivalently, at a node that is adjacent to l links with 

w wavelengths at each link, there exists l*w converters under full conversion assumption. 

Experiments are done for cases with fewer number of converters at each node such that for 

the same example given (fc/n) denotes l*w/n wavelength converters at each converter pool of 

each node. Moreover, the case of no wavelength conversion (nc), i.e., no wavelength 

converters throughout network, and sparse wavelength conversion (sc), i.e., full wavelength 

conversion only at some selected nodes, are also considered. For the simulations of sparse 

conversion, 7 network nodes of NSFNET topology, for which traffic is expected to be dense, 

are selected. Namely, these are nodes numbered with 0, 3, 4, 5, 7, 9 and 10 in Figure 4.2. 

 

One of the reasons to prefer linear approximation architecture in neuro-dynamic 

programming is to determine the most relevant features in decision making process. When all 

the extracted features are combined, the entries of parameter vector θ associated with the 

irrelevant feature happen to be very smaller in magnitude compared to ones associated with 

other feature sets. Moreover, neuro-dynamic programming has the freedom to set all the 

parameters to zero except of those associated with the feature set that gives the best result of 

all. For our case, no such entry of θ close to zero is observed. This shows that availability of 

the features based on wavelength converters (f1) and wavelengths (f2) are both dominant in 

wavelength assignment problem in optical burst switching networks, and it is sure that NDP 

with only feature vector f1 or f2 cannot perform beyond NDP with feature vector F = {f1,f2}. 

 

All the proposed assignment algorithms result with better blocking probabilities than 

conventional random wavelength assignment algorithm in most of the cases. When two 

proposed heuristics, most-fit-min and most-fit-rand, are compared, performance results are 

very close to each other, but most-fit-min always narrowly beats most-fit-rand. Also, when 
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NDP assignment algorithms are compared with proposed heuristics in terms of performance, 

it is observed that better results are obtained with feature vector F, composed of the features 

based on wavelength converters and wavelengths. Numerically, NDP with the feature F can 

improve the blocking probability with respect to best performing proposed heuristic, the most-

fit-min wavelength assignment algorithm, up to %10, and random wavelength assignment 

algorithm up to %63 among different network loads under full conversion for 10 packet 

bursts. This result approximately holds for 20 packet bursts. On average, NDP with the 

feature F improves the blocking probability with respect to most-fit-min wavelength 

assignment algorithm by % 7.5 and with respect to random wavelength assignment algorithm 

by % 60. 

 

What can be implied from simulation results of heuristic algorithms is that an equal 

performance of full conversion can be obtained under a situation with less number of 

converters throughout the network. It is directly seen that fc, fc/2 and fc/4 cases have 

approximately same blocking probabilities for all traffic rates and burst lengths over random, 

most-fit-min and most-fit-rand heuristics. For these cases, it is observed that the blocking of 

bursts at a node occurs because control packets cannot find an appropriate duration of 

bandwidth in any of the wavelengths, although there are available wavelength converters at 

the node. We see that although most-fit-min wavelength assignment algorithm is expected to 

give the best result under full conversion since it is created to utilize the wavelengths, it is not 

the case. This is due to the randomness in most-fit-min wavelength assignment algorithm 

when available wavelengths happened to have equal priorities. The system is usually not 

dense, and the priorities assigned to available wavelengths are usually the lowest available 

priority. Under such circumstances, the wavelength is selected randomly and this brings no 

intelligence to the assignment procedure. 

 

The situation differs when neuro-dynamic programming is considered. For this case, the 

lower the number of converters at each node is, the higher the blocking probability of bursts 

is. NDP tries to find out the best policy that reduces the blocking probability as much as 

possible by efficient use of available resources. That is why the blocking probability for bursts 

is lowest for full conversion assumption. Different than heuristics cases, as the number of 

wavelength converters decreases down to fc/2, fc/4 etc., i.e. the number of available resources 

decreases, the performance worsens. 
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An intuitive explanation may state that under full wavelength conversion assumption, 

effect of wavelength assignment algorithm to average blocking probability is negligible, 

because one can always solve resource contention problem with wavelength conversion. 

However, as seen in Figure 5.7 and 5.13, the result obtained throughout simulations show that 

this is not the case. All proposed wavelength assignment algorithms improve over random 

wavelength assignment algorithm for fc case over all traffic loads. Although, random 

wavelength assignment results with a fair utilization of wavelengths, reservation timeline for 

the wavelengths is not efficiently used because of this randomness. Therefore, an assignment 

algorithm considering temporal parameters during assignment has higher number of available 

wavelengths for a reservation request. If there are no available wavelengths, it is not 

important to have many available converters, and such situations can occur more frequently 

for random heuristic than proposed algorithms. 

 

When wavelength converter number at all nodes is decreased down to fc/8, performance 

of the proposed heuristic algorithms decreases significantly. However, this is not the case for 

NDP algorithms. This shows that while fc/4 converters can handle the assignment procedure 

efficiently and very closely to optimal full conversion case for heuristic wavelength 

assignment algorithms, a further decrease to fc/8 can not be endured. On the other hand, this 

is an expected result, since when converter number decreases the importance of wavelength 

assignment algorithm shows off. Under full wavelength conversion assumption, high number 

of available converters hinders the effect of dumb wavelength assignments. Therefore, when 

converter number is decreased below a threshold value, this effect cannot be efficiently 

removed, and this alters performance of the system. However, at the training phase, observing 

many network states, NDP dynamically learns about how to use the converters and 

wavelengths available at hand, therefore performance is better compared to heuristics 

especially for fc/8 and nc cases.  

 

Another interesting observation from simulation results is that for the case nc, random 

wavelength assignment algorithm shows a little bit improved performance than proposed 

most-fit-min and most-fit-rand heuristics. This is an expected result, when link-based poor 

performance of random wavelength assignment algorithm appears to be behaving similar to 

call admission control. Similar results are also observed at highly loaded networks. 
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Furthermore, sparse conversion performs further beyond the expected in terms of 

blocking probability. As seen in Figure 5.19 and 5.20, average blocking probability even for 

the fc/8 case with uniform conversion where a total number of 42 converters are placed at all 

nodes remains significantly lower than sparse conversion case where a total number of 184 

converters placed at densely loaded nodes are used. Moreover, sparse conversion results are 

very close to the nc case. This is due to the one way reservation paradigm used for OBS, and a 

wavelength conflict can occur at any node whether it is densely loaded or not. Therefore, 

there is a need for wavelength converters at every node for obtaining low blocking 

probabilities. It is more efficient to provide distributed less availability at all nodes rather than 

local full availability at some nodes throughout the route. 

 

 
Figure 5.3: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 10 packet bursts and no wavelength conversion (nc) assumption 
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Figure 5.4: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 10 packet bursts and (fc/8) assumption 
 

 
Figure 5.5: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 10 packet bursts and fc/4 assumption 
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Figure 5.6: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 10 packet bursts and fc/2 assumption 
 

 
Figure 5.7: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 10 packet bursts and full wavelength conversion (fc) assumption 
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Figure 5.8: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 10 packet bursts and sparse conversion (sc) assumption 
 

 
Figure 5.9: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 20 packet bursts and no wavelength conversion (nc) assumption 
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Figure 5.10: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 20 packet bursts and (fc/8) assumption 
 

 
Figure 5.11: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 20 packet bursts and (fc/4) assumption 
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Figure 5.12: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 20 packet bursts and (fc/2) assumption 
 

Figure 5.13: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 20 packet bursts and full wavelength conversion (fc) assumption 
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Figure 5.14: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 20 packet bursts and sparse conversion (sc) assumption 
 

  
Figure 5.15: Blocking probability of random and proposed wavelength assignment algorithms 
vs. number of converters uniformly distributed at all nodes. Traffic rate per node is 1*106 
packets/sec and a burst is composed of 10 packets 
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Figure 5.16: Blocking probability of random and proposed wavelength assignment algorithms 
vs. number of converters uniformly distributed at all nodes. Traffic rate per node is 1.5*106 
packets/sec and a burst is composed of 10 packets 
 

Figure 5.17: Blocking probability of random and proposed wavelength assignment algorithms 
vs. number of converters uniformly distributed at all nodes. Traffic rate per node is 1*106 
packets/sec and a burst is composed of 20 packets 
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Figure 5.18: Blocking probability of random and proposed wavelength assignment algorithms 
vs. number of converters uniformly distributed at all nodes. Traffic rate per node is 1.5*106 
packets/sec and a burst is composed of 20 packets 
 

 
Figure 5.19: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 10 packet bursts and both full sparse conversion (sc) and fc/8 uniform 
assumption 
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Figure 5.20: Blocking probability of random and proposed wavelength assignment algorithms 
vs. traffic rate for 20 packet bursts and both full sparse conversion (sc) and fc/8 uniform 
assumption 
 

Moreover, we also tested performance of the policy obtained at a specific traffic rate also 

over all other network loads. The simulation is carried out under fc/8 assumption, where we 

can observe the efficiency of wavelength assignment algorithm clearly than other assumptions 

with more wavelength converters. Moreover, the results are for 10 packet bursts and F feature 

vector. Table 5.1 displays average blocking probabilities of the selected policies over all 

traffic rates. It is obviously observed that policies obtained at high traffic loads improve the 

performance for lower traffic rates, actually more than their own policies. This is due to the 

reason that the policy obtained at high traffic loads trains itself for tougher cases, i.e. a better 

training environment. Conversely, policies trained at lower network loads do not perform well 

at high traffic rates. 

 
Table 5.1: Average blocking probability of policies obtained at a specific traffic rate 
simulated over all network loads. Results are for 10 packet bursts and F feature vector 
 

fc/8 (pac/sec): 1.00*106 1.25*106 1.50*106 1.75*106 2.00*106 
1.00*106  1,78E-05 1,06E-04 4,18E-04 1,26E-03 3,21E-03 
1.25*106 1,78E-05 9,76E-05 3,78E-04 1,18E-03 3,03E-03 
1.50*106 1,46E-05 8,37E-05 3,40E-04 1,06E-03 2,80E-03 
1.75*106 1,57E-05 9,43E-05 3,53E-04 1,08E-03 2,83E-03 
2.00*106 1,33E-05 8,80E-05 3,45E-04 1,07E-03 2,75E-03 



 66

 

 

 

Chapter 6 

 

Conclusions 

 
Several heuristic methods are defined for wavelength assignment algorithms in optical 

networks. However, most of these heuristics end up with unfair utilization of wavelengths in 

OBS networks, since they are not designed for link-based wavelength assignment approach of 

OBS protocols. Interestingly, usually the worst performing of all heuristics, random 

wavelength selection algorithm, spreads the utilization of the wavelengths uniformly, and 

results with better performance than the others for optical burst switching. Considering this 

observation, it is obvious that there is a need for designing intelligent wavelength assignment 

algorithms for OBS networks. Although many research communities tackle high blocking 

probability problem of OBS protocols in space and time domain, there is not so much 

significant study from a wavelength assignment point of view. 

 

At this thesis work, we propose two heuristic algorithms, especially designed for one-way 

reservation link-based wavelength assignment structure of OBS networks. Heuristic 

wavelength assignment algorithms significantly improve over conventional random 

wavelength assignment algorithm.  

 

Furthermore, under the assumptions like memoryless interarrival and fixed holding times, 

wavelength assignment problem is considered as a Semi-Markov Decision Process (MDP). 

Therefore, minimizing the average number of bursts blocked per unit time is formulated as a 

stochastic dynamic programming problem. Due to large size of the problem, neuro-dynamic 
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programming (reinforcement learning) implementation is done for wavelength assignment 

algorithms in optical burst switching networks. However, the nice picture suffers from a 

difficulty: introduction of link-based wavelength assignment approach. As a result, 

decomposition approach which has weak convergence guarantees is used to train the 

parameter vector θ. Nevertheless, obtained policies result with improved performances. 

 

Simulation results show that NDP techniques can be applied to wavelength assignment 

problem in OBS networks. It is seen that smaller average blocking probabilities than those of 

all heuristic algorithms can be obtained. On the other hand, under some circumstances for the 

extracted feature, NDP method cannot improve beyond proposed heuristics. This is mainly 

due to the fact that NDP can suffer from learning parameter selection, such as learning 

constants and cost values. The adjustment of learning parameters to optimal values, and many 

other relevant feature extractions from network state are promising research subjects. 

 

The performance of proposed wavelength assignment algorithms is investigated over 

varying converter numbers at network nodes using a pool structure, varying burst lengths and 

varying traffic load. It is observed that very approximate blocking probabilities of full 

wavelength conversion can be achieved with less number of converters for proposed heuristic 

wavelength assignment algorithms. Moreover, the results show that sparse conversion does 

not improve blocking probability very much, and it is not appropriate for OBS networks. 

When the dropping rate is taken into consideration over a packet based approach, it is seen 

that lower dropping rates are obtained for smaller burst lengths.  

 

Performance of the NDP policy obtained at a specific traffic rate is tested also over all 

other network loads. As expected, the policies obtained at high traffic loads improve the 

performance for lower traffic rates, actually more than their own policies. 

 

Another important contribution of the study is an event-driven packet-based OBS 

simulator written in Visual C++ environment. Well-known simulator programs are not 

capable to implement novel protocols of optical burst switching networks. Due to its resilient 

structure, the written simulator has many features that make it adjustable for implementation 

of various wavelength assignment algorithms over varying network conditions. 
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6.1 Some Interesting Future Directions 

 

The following aspects of the subject I believe are essential and worth exploring in the future: 

 

• Further research on neuro-dynamic programming, especially on feature extraction and on 

optimizing parameters such that learning constant, cost values, burst length, number of 

wavelength converters at each node etc. over different network topologies for different 

traffic characterizations 

• Further investigation of neuro-dynamic programming of wavelength assignment 

algorithms over networks with multi-fiber links, fiber delay lines, and multi/deflection 

routing capability 

• Further study on neuro-dynamic programming in order to introduce adaptive routing 

methods in wavelength assigment procedure 

• Further research on neuro-dynamic programming of routing and wavelength assignment 

algorithms which takes service differentiation (QoS) into account 
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