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ABSTRACT

CODE CONSTRUCTION ON MODULAR CURVES

Orhun Kara

Ph.D. in Mathematics

Supervisor: Prof. Dr. Alexander Klyachko

August, 2003

In this thesis, we have introduced two approaches on code construction on

modular curves and stated the problems step by step. Moreover, we have given

solutions of some problems in road map of code construction.

One of the approaches uses mostly geometric and algebraic tools. This ap-

proach studies local invariants of the plane model Z0(`) of the modular curve

Y0(`) given by the modular equation Φ` in affine coordinates. The approach is

based on describing the hyperplane of regular differentials of Z0(`) vanishing at

a given Fp2 rational point. As constructing a basis for the regular differentials

of Z0(`), we need to investigate its singularities. We have described the singu-

larities of Z0(`) for prime ` in both characteristic 0 and positive characteristic.

We have shown that all singularities of of the affine part, Z0(`), are self inter-

sections. These self intersections are all simple nodes in characteristic 0 whereas

the order of contact of any two smooth branches passing though a singular point

may be arbitrarily large in characteristic p > 3 where p 6= `. Moreover the self

intersections in characteristic zero are double.

Indeed, structure of singularities of the affine curve Z0(`) essentially depends

on two types of elliptic curves: The singularities corresponding to ordinary el-

liptic curves and the singularities corresponding to supersingular elliptic curves.

The singularities corresponding to ordinary elliptic curves are all double points

even though they are not necessarily simple nodes as in the case of character-

istic 0. The singularities corresponding to supersingular elliptic curves are the

most complicated ones and it may happen that there are more then two smooth

branches passing though such kind of a singular point. We have computed the

order of contact of any two smooth branches passing though a singular point both

for ordinary case and for supersingular case.

iv



v

We have also proved that two points of Z0(`) at ∞ are cusps for odd prime `

which are analytically equivalent to the cusp of 0, given by the equation x` = y`−1.

These two cusps are permuted by Atkin-Lehner involution. The multiplicity of

singularity of each cusp is (`−1)(`−2)
2

. This result is valid in any characteristic

p 6= 2, 3.

The second approach is based on describing the Goppa codes on modular curve

Y (`) as PSL2(F`) module. The main problem in this approach is investigating the

structure of a group code as PSL2(F`) module. We propose a way of computing

the characters of representations of a group code by using the localization formula.

Moreover, we give an example of computing the characters of the code which

associated to a canonical divisor on Y (`).

Keywords: Modular curve, elliptic curve, Goppa codes, isogeny, endomorphism

ring, singularity, self intersection, supersingular elliptic curve, reduction, lifting,

cusp, representations, characters.



ÖZET

MODÜLER EĞRİLER ÜZERİNDE KOD İNŞASI

Orhun Kara

Matematik Bölümü, Doktora

Tez Yöneticisi: Prof. Dr. Alexander Klyachko

Ağustos, 2003

Bu tezde, modüler eğriler üzerinde hata düzeltme kodlarının inşası hakkında

iki yaklaşım sunduk ve problemleri ifade ettik. Ayrıca bu problemlerden

bazılarının çözümlerini verdik.

Yaklaşımlardan birisi çoğunlukla cebirsel ve geometrik araçları kullanmak-

tadır. Bu yaklaşım, Y0(`) modüler eğrisinin düzlemdeki modeli olan Z0(`)’in

bölgesel değişmezleri üzerinde aritmetik yapmaya dayanır. Z0(`)’in herhangi bir

Fp2 rasyonel noktasında sıfırlanan diferansiyellerin betimlenmesi temel alınmıştır.

Bu differansiyellerin kümesini oluşturabilmek için, Z0(`)’nin tekilliklerini betim-

lemek gerekmektedir. Z0(`)’nin tekilliklerini, Z0(`) hem karekteristiği 0 olan

cisimdeyken hem de karekteristiği p > 3 olan cisimdeyken ayrı ayrı betimledik.

Tekillikleri analiz ederken `’in p’den farklı bir asal sayı olduğunu kabül ettik.

Ayrıca kaç tane tekillik olduğunu hesapladık.

Z0(`)’in tekilliklerin yapısı iki tür eliptik eğriye bağlıdır: Sıradan eliptik

eğrilerden gelen tekillikler ve süpertekil eliptik eğrilerden gelen tekillikler. Sıradan

eliptik eğrilerden gelen tekilliklerin hepsi de çift noktadırlar. Süpertekil eliptik

eğrilerden gelen tekillikler ise en karmaşık olanlardır ve bu şekilde bir tekil-

likten geçen ikiden fazla düzenli dallanma olabilir. Biz hem sıradan eliptik

eğrilerden gelen tekillikler için ve hem de süpertekil eliptik eğrilerden gelen tekil-

likler için bu tekilliklerden gecen herhangi iki düzenli dallanmanın kontak mer-

tebesini hesapladık.

Ayrıca Z`’in sonsuzda bulunan iki noktasının da kasp türü tekillikler olduğunu

ve bu tekilliklerin x` = y`−1 eğrisinin 0’daki tekilliğine analitik olarak denk

olduğunu ispatladık.
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Diğer yaklaşım modüler eğriler üzerinde hata düzeltme kodlarını PS2(F`)

modülü olarak betimlemeye dayanmaktadır. Bu yaklaşımda ana problem

grup kodlarının yapılarını PS2(F`) modül olarak ifade etmektir. Biz modüler

eğriler üzerindeki grup kodlarının karakterlerini hesaplamak için yöreselleştirme

formülünü kullanan bir metod önerdik. Ayrıca kanonik diferansiyele denk gelen

grup kodunun karakterlerini hesapladık.

Anahtar sözcükler : Modüler eğri, elliptik eğri, Goppa kodları, isogeni, endo-

morfizma halkası, tekillik, kendiyle kesişme, süpertekil elliptik eğri, indirgeme,

kaydırma, kasp, temsiller, karakterler.
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Chapter 1

Introduction

1.1 Motivation

A linear code C over a finite field Fq is a linear subspace of the vector space

Fn
q = Fq × · · · × Fq. The Hamming weight of a vector x ∈ Fn

q is the number of

nonzero coordinates of x. Then, the minimum distance d of a code C is defined as

the minimum of Hamming weights of the nonzero vectors of C. The parameters

of C is given as [n, k, d]q where n is the block length and k is the dimension of

C. Moreover, an [n, k, d]q code has two more parameters, its information rate

and its relative minimum distance. The former is R = k
n

and indicates how much

information a code vector carries. The latter one is δ = d
n

and measures the error

correction ability of the code. Roughly speaking, a good [n, k, d]q code should

have large relative minimum distance δ = d/n and information rate R = k/n.

Let us define the set

Vq = {(δ, R) ∈ [0, 1]× [0, 1] : ∃ an [n, k, d]q code with
d

n
= δ,

k

n
= R}

and denote the limit points of Vq as Uq. The function αq(δ) defined as

αq(δ) = sup{R : (δ, R) ∈ Uq}

indicates the maximum possible information rate among those of all very long

codes with relative minimum distance δ. However, αq(δ) is unknown. Even,

1



CHAPTER 1. INTRODUCTION 2

there is only few information derived about it so far. It is one of the main prob-

lems of coding theory to discover αq(δ). A very common approach for providing

information about αq(δ) is constructing upper and lower bounds for it. One of

the most important lower bounds is Gilbert-Varshamov bound, given as

αq(δ) ≥ 1−Hq(δ) (1.1)

where Hq is the q-ary entropy function

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x), H(0) := 0.

The Gilbert-Varshamov bound could not been improved until the algebraic-

geometric codes were introduced. Goppa has proposed a brilliant way of code

construction on algebraic curves in [GO 1]. It turns out that some Goppa codes on

curves with a lot of rational points have pretty nice parameters. More explicitly,

when a family X of curves Xα over Fq attains the Drinfeld-Vladuţ bound given

as

lim sup
gXα→∞

|Xα(Fq)|
gXα

≤ √q − 1

where gXα is genus of the curve Xα and |Xα(Fq)| is the cardinality of Fq rational

points of Xα, then the parameters of the corresponding Goppa codes lie on the

line R = 1 − δ − 1/(
√

(q) − 1). This line is obviously better than the Gilbert

Varshamov bound in the interval (δ1, δ2) where δ1 and δ2 are intersection points

of 1 − Hq(δ) and 1 − δ − 1/(
√

(q) − 1). Due to this crucial development, the

algebraic geometric codes attaining the Drinfeld - Vladuţ bound have attracted

the attention of coding theory world. It is known at least three constructions of

such curves: Classical modular curves, Drinfeld modular curves (see [TS-VLA]

for these two curves) and Garcia-Stichtenoth tower of Artin-Schreier extensions

(see [GA-STI]).

In this work, we are interested in classical modular curves. The modular curve

X0(N) is the moduli space of elliptic curves E with cyclic subgroup of order N .

Equivalently, X0(N) is moduli space of triples (E,E ′, φ) where φ : E 7−→ E ′ is

a cyclic isogeny of degree N between elliptic curves E and E ′. Similarly, the

modular curve X(N) is moduli space of the pairs (E,αN), E is an elliptic curve
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and αN is a structure of level N with determinant detαN = 1. In [DE-RA],

Deligne and Rapoport have proved that the projective closures Y0(N) and Y (N)

of modular curves X0(N) and X(N) respectively have good (smooth) reduction

over any prime ideal not dividing N . In particular, the modular curve Y0(N) is

defined over Q. That is, for any prime p not dividing N , there exists a good reduc-

tion of Y0(N) modulo p. So, we can still consider the modular curves in positive

characteristics as moduli spaces of elliptic curves with some special structures.

If E is a supersingular elliptic curve, an elliptic curve with noncommutative en-

domorphism ring, then its j invariant, j(E), is in Fp2 and the point represented

by the pair (E,N) is an Fp2 rational point of X0(N). Similarly, the the point

(E,αN) is an Fp2 rational point of X(N). The number of supersingular elliptic

curves is enough large so that the curves Y0(N) and Y (N) over Fp2 reach the

Drinfeld-Vladuţ bound for (N, p) = 1.

It has been pointed out that the Goppa codes on modular curves have the best

known asymptotic parameters so far. However, it is difficult to construct codes

on modular curves efficiently. The modular curves have nice analytic description

as a quotient space of the action of some specific subgroups of PSL2(Z) on upper

half plane, H, of the complex numbers C for characteristic 0. Unfortunately,

these curves have no known such beautiful description as algebraic objects which

causes difficulties in code construction.

1.2 What is Done in This Thesis

We have introduced two approaches on code construction on modular curves and

stated the progress in one of them. One of the approaches is geometric approach.

It is due to Klyachko (cf. [KLY]) and the other one is called group theoretic

approach. This approach is due to Vladuţ and Tsfasman (cf. [TS-VLA]). We

consider the modular curves Y0(`) and Y (`) over a finite field of characteristic p

where ` is also a prime different then p. We give a brief introduction to both

approaches in chapter 4. The group theoretical approach considers the codes

on modular curves Y (`) as group modules and tries to describe them not as
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vector spaces but as group modules or in special cases, as group ideals. The

group PSL(2,Z/`Z) acts on the Goppa codes constructed on Y (`). The action is

permuting the coordinates of vectors of the code. So, the codes can be considered

as group codes.

1.2.1 Geometric Approach

The geometric approach studies local invariants of the plane model Z0(`) of the

modular curve Y0(`) given by the modular equation Φ`. The approach is based

on describing the hyperplane of regular differentials of Z0(`) vanishing at a given

Fp2 rational point. Unfortunately the plane model Z0(`) is highly singular curve.

So, the elements of the hyperplane must vanish at singular points also.

We embed Y0(`) into P(Ω) where Ω = Ω[Y0(`)] is the space of regular dif-

ferentials of Y0(`). It is really an embedding of Y0(`) for ` ≥ 71 since it is not

hyperelliptic for the case ` ≥ 71 (see [OGG]). Then Goppa codes are configu-

rations of rational points on P(Ω). The code construction can be viewed in two

steps: First step is finding a basis for the space Ω[Y0(`)] and last step is describing

the hyperplanes of Ω[Y0(`)] whose elements vanish at rational points. Let Ω∗ be

the dual space of Ω. Consider

Y0(`) −→ P(Ω∗)

x 7→ Ωx = {w ∈ Ω : w(x) = 0}.

Any configuration of the points Ωx in P(Ω∗) which does not lie in a hyperplane

in P(Ω∗) gives a Goppa code on the modular curve Y0(`) for a set of Fq rational

points x. So, we should find a description of regular differentials that vanish at a

given rational point x ∈ Y0(`)(Fq).

We make use of a singular plane model of Y0(`) to construct its regular differ-

entials. The curve Y0(`) has singular plane model Z0(`) coming from projection

π : Y0(`) → P2 (1.2)

given in affine coordinates by ρ 7→ (j(E), j(E ′)) where ρ : E → E ′ is a cyclic

isogeny of degree ` between elliptic curves E and E ′ . One can define the affine



CHAPTER 1. INTRODUCTION 5

part, Z0(`), explicitly by classical modular equation

Z0(`) : Φ`(X, Y ) = 0. (1.3)

Let X ⊂ P2 be a curve given by F (x, y, z) = 0 of degree d. If X is smooth

then the regular differentials are of the form

ω = P
xdy − ydx

Fz

= P
xdz − zdx

Fy

= P
zdy − ydz

Fx

(1.4)

where P = P (x, y, z) is a homogeneous polynomial of degree d − 3. We follow

this approach to construct regular differentials. However, the projective plane

model Z0(`) is a singular curve. But the differentials on a singular plane curve

are still of the form given in equation 1.4. We should impose some additional local

conditions on the polynomial P at singular points. So, constructing the regular

differentials on Z0(`) as in the form 1.4, we should first describe the singularities

of Z0(`).

1.2.2 Singularities of Modular Curve

We have described the singularities of Z0(`) for prime ` in both characteristic 0

and positive characteristic in one section in chapter 5. We have shown that both

in positive characteristic p > 3 for (p, `) = 1 and in characteristic 0, the map

π : X0(`) 7−→ A2

(E,E ′, φ) 7−→ (j(E), j(E ′)) (1.5)

is immersion. That is, the differential, dπ, is injective. So, π is local embedding

of nonsingular branches. Hence, all singularities of Z0(`) are self intersections.

We have also proved that two points of Z0(`) at ∞ in projective space are cusps

for odd prime ` which are analytically equivalent to the cusp of 0, given by the

equation x` = y`−1 (see Proposition 5.2.2). These two cusps are permuted by

Atkin-Lehner involution. The multiplicity of singularity of each cusp is (`−1)(`−2)
2

.

This result is valid in any characteristic p 6= 2, 3 (see [KLY-KA]) .
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1.2.2.1 The Case of Characteristic 0

The modular curve X0(`) has a useful analytic interpretation as the quotient

space H/Γ0(`) where H is upper half plane, {z ∈ C : imz > 0} and

Γ0(`) =


 a b

c d

 ∈ PSL2(Z) : c ≡ 0 mod `

 .
We have used this interpretation to calculate the genus of projective closure Y0(`)

of X0(`) by using Hurwitz genus formula:

g(Y0(`)) =
`+ 1

12
− 1

4

(
1 +

(
−1

`

))
− 1

3

(
1 +

(
−3

`

))
(1.6)

where Legendre symbols are given by

(
−1

`

)
=


0 if ` = 2,

1 if ` ≡ 1 mod 4,

−1 if ` ≡ 3 mod 4

and (
−3

`

)
=


0 if ` = 3,

1 if ` ≡ 1 mod 3,

−1 if ` ≡ 2 mo d 3.

We have described the singularities of the plane projective curve Z0(`). First,

we have investigated that all singularities of the affine part, Z0(`), are double

points. Such self intersection comes from existence of two cyclic isogenies σ, ρ :

E 7−→ E ′ of degree `, which are not equivalent modulo automorphism of E and

E ′. That is, σ 6= ε′ρε where ε ∈ Aut(E) and ε′ ∈ Aut(E ′). Then, the triples

(E,E ′, σ) and (E,E ′, ρ) represent two different points on X0(`) whereas their

projections, (j(E), j(E ′)) is a single point on Z0(`) which is a singularity. It

turns out that there exists at most two such nonequivalent isogenies of degree `

and hence all self intersections are double (see theorem 5.2.4).

We have described self intersections explicitly. In two different parameteriza-

tion in a neighborhood of a point of Z0(`) we get two different tangent vectors.
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That is, singularities of Z0(`) in characteristic 0 are not just double self inter-

sections, they are exactly simple nodes (normal self intersections, see proposition

5.2.3).

The following theorem describes the singularities of Z0(`) in characteristic 0.

This theorem is combination of theorem 5.2.4 and proposition 5.2.3.

Theorem 1.2.1 There exists a one to one correspondence between self intersec-

tions of the curve Z0(`) over C and the elliptic curves E having complex multi-

plication α : E 7−→ E such that

i) N(α) = αα = `2 and

ii) α
`

is not root of unity.

Moreover, all self intersections are simple nodes.

Using the theorem above, we can relate number of singularities of Z0(`) with

Hurwitz class number

H(−D) =
∑ 2

|AutQ|
where summation is over equivalence classes of binary integer quadratic forms

Q = ax2 + bxy + cy2, a, b, c ∈ Z, of discriminant −D = b2 − 4ac. The quadratic

form x2 + y2 is counted with weight 1
2

and the quadratic form x2 + xy + y2 is

counted with weight 1
3
. All other quadratic forms in other equivalent classes are

counted with weight 1. Then, number of nodes is given as:

Theorem 1.2.2 Number of simple nodes of Z0(`) is

∑
0<t<2`,t6=`

H(t2 − 4`2).

As explained above the projective closure, Z0(`), has additional two singular

points at ∞, which are cusps analytically equivalent to that of x` = y`−1 (see

proposition 5.2.2). The multiplicity of this cusp is (`−1)(`−2)
2

. As a corollary, we
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get an independent proof of Hurwitz class number formula by comparing two

genus formulas for Y0(`). One of them is calculated by Hurwitz genus formula,

given in 1.6 independent from the projective plane model , Z0(`), and the other

one is calculated from the projective plane model, Z0(`), by Plücker genus formula

including singularities of Z0(`). The independent proof of Hurwitz class number

formula confirms all the statements for the characteristic 0 case:

Corollary 1.2.1
2∑̀

t=−2`

H(`2 − 4t2) = 2`2 + `

where we define H(0) = −1
12

.

1.2.2.2 The Case of Positive Characteristic

First of all, since the canonical projection π : X0(`) 7−→ A2 is immersion in any

characteristic p 6= 2, 3; we get

Proposition 1.2.1 The singularities of Z0(`) in positive characteristic p > 3 are

just multiple self intersections.

In positive characteristic also, the singularities of Z0(`) are the points

(j(E), j(E ′)) where there exists at least two cyclic isogenies σ, ρ : E 7−→ E ′ of

degree ` and those two isogenies σ, ρ are not equivalent modulo automorphisms

of E and E ′.

The new results for positive characteristic case can be viewed in two parts:

i) The singularities corresponding to ordinary elliptic curves in positive char-

acteristic. An ordinary elliptic curve defined over a finite field is an elliptic curve

whose endomorphism ring is an order in an imaginary quadratic field.

ii) The singularities corresponding to supersingular elliptic curves. Recall that

a supersingular elliptic curve is an elliptic curve in positive characteristic p, which
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has no element of order p. In difference with ordinary elliptic curves, endomor-

phism ring of a supersingular curve is an order in quaternion algebra. In addition,

there are finitely many supersingular elliptic curves in positive characteristic p

and all of them are defined over Fp2 .

Structure of singularities of the affine curve Z0(`) essentially depends on these

two types of elliptic curves.

It turns out that in the ordinary case, the multiplicity of a self intersection is

a power of characteristic p, which is given by the following:

Theorem 1.2.3 Let Z0(`) be the plane model of X0(`) in characteristic p > 3,

(p, `) = 1. Let (j(E), j(E ′)) ∈ Z0(`) be an intersection of two branches corre-

sponding to the pair of nonequivalent cyclic isogenies σ, ρ ∈ Hom(E,E ′) of

degree `. Let α = ρ̂σ ∈ End(E) where ρ̂ is the dual of ρ. Assume p splits

in Q(α). Then the singularity at (j(E), j(E ′)) has multiplicity pr where pr is p

part of the conductor of Z[α]. That is, if f = prc0 where c0 6≡ 0 mod p then

multiplicity is pr.

As in characteristic 0 the number of self intersections of multiplicity pr can

be calculated via Hurwitz class function:

Corollary 1.2.2 The number of self intersections of multiplicity pr correspond-

ing to ordinary elliptic curves is

′∑
0<t<2`,t6=`

H(t2 − 4`2)

where summation is taken over those t for which t2 − 4`2 = −p2rD;
(
−D
p

)
= 1.

If we sum number of all self intersections with multiplicities corresponding to

ordinary elliptic curves, we get:
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Corollary 1.2.3 Sum of the multiplicities of all self intersections of Z0(`) cor-

responding to ordinary elliptic curves is

∑
t2−4`2=p−adic square,0<t<2`,t6=`

H(t2 − 4`2).

We know that also in positive characteristic two cusps of Z0(`) at ∞ are singular

with multiplicities (`−1)(`−2)
2

. The modular curve Y0(`) has the same genus given

in 1.6 in positive characteristic also since it has a good reduction. Therefore, we

compare two genus formulas for Y0(`) and as a corollary we get:

Corollary 1.2.4 Sum of the multiplicities of all self intersections corresponding

to supersingular elliptic curves is

∑
t2−4`2 6=p−adic square,0<t<2`,t6=`

H(t2 − 4`2).

The second part is about the singularities corresponding to supersingular el-

liptic curve. The statement of this part describes those singularities:

Theorem 1.2.4 Let (j(E), j(E ′)) ∈ Z0(`) be an intersection of two branches

corresponding to the pair of nonequivalent cyclic isogenies ρ, σ ∈ Hom(E,E ′), of

degree `. Assume E is supersingular. Let α = ρ̂σ ∈ End(E) where ρ̂ is the dual

isogeny of ρ. If pr is the p part of the conductor of Z[α] then the multiplicity of

intersection of these two branches is

i) 2 + 2p+ · · ·+ 2pr−1 + pr if p is prime in Q(α), and

ii) 2 + 2p+ · · ·+ 2pr−1 + 2pr if p is ramified in Q(α).

1.2.3 Algebraic Geometric Codes with Automorphisms

Let X be a smooth projective algebraic curve over a finite field Fq and G be an

arbitrary subgroup of the automorphism group of X. Assume D is a G invariant
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Fq rational divisor. Then the vector spaces H0(X,LD) = L(D) and H1(X,LD) =

Ω(D) are G modules where LD is the line bundle associated to the divisor D. The

Goppa code on X associated to D is the realization of the space H0(Y (`),LD) in

a coordinate system of a vector space over Fq defined by Fq rational points of X.

This construction corresponds to L(D) construction of functions. Similarly, the

space H1(X,LD) corresponds to Ω(D) construction of differential forms (we refer

to first chapter for both Ω and L constructions). The Goppa codes corresponding

to H0(X,LD) = L(D) and H1(X,LD) = Ω(D) are G modules as group codes

over Fq. The notion of group codes is given in section 4.3. The main problem in

this approach is investigating the structure of a group code on X as G module.

Problem: Evaluate the action of G on the Goppa code C = L(D) over Fq.

This problem is introduced in [TS-VLA] for the case of modular curves. Let

the characteristic of the field Fq be p. We assume that p is coprime to the order

of the group G. In this case, we can consider the representations of codes in char-

acteristic 0. Because, the reduction modulo p of an irreducible G representation

over a number field remains irreducible if p is coprime to the order of the group G.

In this thesis, we propose a way of computing the characters of representations

of a group code by using the localization formula for the modular curve Y (`).

The localization formula has several forms associated to several applications.

We refer to [HEJ] for extended applications. However, the most convenient form

for our use can be found in [TH]. In general, the formula is as follows. Let V

be a smooth projective algebraic variety and g : V → V be an automorphism

of V having isolated fixed points, V g. Let E be a g bundle on V with action

g : E → E compatible with the action g : V → V . Let E be the sheaf of local

sections of E. Then we have the formula (cf. [TH])

Theorem 1.2.5

tr(g : H∗(V, E)) :=
dimV∑
d=0

(−1)dtr(g : Hd(V, E)) =
∑

x∈V g

tr(g : Ex)

det(1− g−1 : Tx)
(1.7)

where Tx is the tangent space at x and Ex is the fiber of vector bundle over x.

We apply the localization formula to calculate the characters of group codes
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on the modular curve Y (`). Let us assume that g ∈ PSL2(F`) has isolated fixed

points and Y (`)g is the set of these fixed points. Let D be a g invariant divisor

and LD be the line bundle associated with D. The quantity tr(g : Lx) is the

trace of g on the linear space Lx, fiber of the linear bundle over x, and tr(g : T ∗x )

is the trace of g on the dual of the tangent space Tx. The action of g on both

spaces Lx and T ∗x is multiplication by some root of unity since these spaces are of

dimension 1. The action of g on Lx is multiplication by a complex number, say

ζx and the action of g on the dual space T ∗x is also multiplication by a complex

number say ηx. In our case, the localization formula can be given as

tr(g : H0(Y (`),LD))− tr(g : H1(Y (`),LD)) =
∑

x∈Y (`)g

tr(g : Lx)

1− tr(g : T ∗x )

=
∑

x∈Y (`)g

ζx
1− ηx

. (1.8)

Moreover, we give an example by considering the canonical divisor and we

have described the characters of the corresponding modular code. It turns out

that the multiplicities of irreducible components of code C depends on the class

number h(−`) of the imaginary quadratic field Q(
√
−`). The characters of group

elements having nontrivial fixed points on the regular differentials Ω are given.

Let s, h and e+1 be the generators of the stabilizers of the elliptic points of order 2,

3 and the point ∞ of Y (1) respectively. e+ω is an element of the group generated

by e+1 in PSL2(F`) and not conjugate to e+1 in PSL2(F`). Then the traces of

these elements are given as

Theorem 1.2.6

tr(s : Ω) = 1− 1

4
(`−

(
−1

`

)
),

tr(h : Ω) = 1− 1

3
(`−

(
−3

`

)
),

tr(e+1 : Ω) =

 1− (`−1)
4
, if ` ≡ 1 mod 4,

√
−`h(−`)

2
+ 1− (`−1)

4
, if ` ≡ 3 mod 4

(1.9)

and

tr(e+ε : Ω) =

 1− (`−1)
4
, if ` ≡ 1 mod 4,

−
√
−`h(−`)

2
+ 1− (`−1)

4
, if ` ≡ 3 mod 4

(1.10)
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where ` > 3 is a prime, h(−`) is the class number of the quadratic field Q(
√
−`)

and
(
∗
`

)
is the Legendre symbol.

All the other group elements which are not conjugate any of h, s, e+1 and e+ε

have trace equal to 1.

We calculated the multiplicities of the irreducible representations in Ω. The

multiplicities are given in the following:

Theorem 1.2.7 Let χ = χρ be the character of a nontrivial irreducible represen-

tation ρ of SL2(`) which is trivial at −1. The multiplicity mχ of ρ in Ω is given

as

mχ =
`− 6

12`
χ(1)− 1

4
χ̄(s)− 1

3
χ̄(h) +

1− `

4`
[χ̄(e+1 ) + χ̄(e+ε )] (1.11)

when ` ≡ 1 mod 4 and

mχ =
`− 6

12`
χ(1)− 1

4
χ̄(s)− 1

3
χ̄(h)

+
1− `

4`
[χ̄(e+1 ) + χ̄(e+ε )] +

1

2`
h(−`)

√
(− `)[χ̄(e+1 )− χ̄(e+ε )] (1.12)

when ` ≡ 3 mod 4. Here χ̄ is the complex conjugation of χ and h(−`) is the class

number of the imaginary quadratic field Q(
√
−`).

The multiplicity is 0 for trivial representation.

We further make a discussion on how to calculate the characters of the code

space associated to arbitrary PSL2(F`) invariant divisor.
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1.3 List of Notation:

X0(N) : The affine modular curve which is moduli space of triples (E,E ′, φ)

where φ : E 7−→ E ′ is a cyclic isogeny of degree N between elliptic curves E and

E ′

Y0(N) : Projective Closure of X0(N)

Z0(N) = π(X0(N)) : Affine plane model of X0(N)

Z0(N) : Projective closure of Z0(N)

X(N) : The modular curve which is moduli space of the pairs (E,αN), E is

an elliptic curve and αN is a structure of level N with determinant detαN = 1

Y (N) : Projective closure of X(N)

ΦN(X, Y ): Modular polynomial of level N .

Fq: Finite field of order q.

SL(2,Z/NZ): The set of 2 by 2 matrices of determinant 1, whose entries are

elements of the ring Z/NZ

SL2(F`): The set of 2 by 2 matrices of determinant 1, whose entries are

elements of the finite field F`.

PSL(2,Z/NZ): The quotient group of SL(2,Z/NZ) by its center

GL(2,Z/NZ): The set of 2 by 2 nonsingular matrices whose entries are ele-

ments of the ring Z/NZ

C: Complex numbers

H: Upper half plane of complex numbers

R: Real numbers
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Z: Rational integers

Q: Rational numbers

[n, k, d]q: Code over Fq with parameters n, k, d

(X,P , D)Ω: Goppa code on the curve X with parameters P , D associated to

Ω construction.

(X,P , D)L: Goppa code on the curve X with parameters P , D associated to

L construction.

[G : S]: Index of subgroup S in G

Hq: Entropy function



Chapter 2

Algebraic Geometric Codes

In this chapter, we have explained the importance of curves with many rational

points in coding theory. Under some conditions, the asymptotic parameters of

Goppa codes constructed on curves with maximum number of rational points are

known to be the best so far. We have introduced the linear codes and explained

about their parameters. By a code, we always mean a linear code. In the second

section, we give an example of Goppa construction on curves and evaluate the

performance of the parameters of Geometric Goppa codes in the last section.

2.1 Linear Codes, Parameters

A linear error correcting block code or simply a linear code C over a finite field

Fq is a linear subspace of the vector space Fn
q = Fq×· · ·×Fq. Any element x ∈ C

is called a code word. By abuse of terminology, we always mean linear code by

code. Let us introduce a metric on Fn
q as

d(x, y) = #{i : xi 6= yi}

where x = (x1, ..., xn) and y = (y1, ...yn) ∈ Fn
q . This metric is called as Hamming

Distance. The Hamming Weight of a vector x ∈ Fn
q is its Hamming distance to

the origin and denoted by ||x||.

16
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Let us define the minimum Hamming weight of nonzero code words:

d = min
x∈C,x 6=0

||x||.

The parameter d is called the minimum distance of the code C. Then the pa-

rameters of a code C is given as [n, k, d]q where n is the block length and k is the

dimension of C.

An [n, k, d]q code has two more parameters, its information rate and its relative

minimum distance. The former is R = k
n

and indicates how much information

a code word carries. The latter one is δ = d
n

and measures the error correction

ability of the code.

Any matrix whose rows form a basis for an [n, k, d]q linear code C is called a

generator matrix of C. The encoding process is an injective linear transformation

φ : Fk −→ Fn
q

whose image is C. If G is a generator matrix then

φ : Fk −→ Fn
q

x 7→ x ·G

is an example of encoding process. Then, each vector in Fk
q is encoded to a code

word in Fn
q . Let us assume that these code words are transmitted via a noisy

channel where some of the coordinates of code words may be changed. On the

other edge of the channel, we may receive some distorted vectors x′ ∈ Fn
q . If the

number of distorted coordinates of a code word x is not more than the integer

part of d−1
2

then we can recover x from x′ by searching the closest code word of C

to x′ which is uniquely given as x. This process is called decoding and explains

the role of notion of minimum distance of a code. If there are more than d−1
2

distorted coordinates then the closest code word to the distorted vector x′ will

not be x. In this case the decoding process fails and this case is called as incorrect

decoding.
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2.1.1 Asymptotically Good Codes

Roughly interpreting, a good [n, k, d]q code should have large relative minimum

distance δ = d/n and information rate R = k/n. Let us define the set

Vq = {(δ, R) ∈ [0, 1]× [0, 1] : ∃ an [n, k, d]q code with
d

n
= δ,

k

n
= R}.

It is well known by Shannon’s channel coding theorem that (see [SHA]) for

any noisy channel there exist codes for which the probability of incorrect decoding

of a received code word is as small as we want. Such good codes have very large

block lengths. Therefore, we should be interested in relative minimum distances

and information rates of codes of large block lengths. So, let us take the limit

points of Vq and denote Uq as the set of these limit points. That is, (δ, R) ∈ Uq

if and only if there exists an infinite sequence of distinct [ni, ki, di]q codes with

δi = di

ni
, different from δ ∀i, Ri = ki

ni
, different from R ∀i such that

lim
i→∞

(δi, Ri) = (δ, R).

For (δ, R) ∈ Uq, if both δ and R are nonzero then the family of codes having

parameters (δi, Ri) tending to (δ, R) are called asymptotically good codes. Let

αq(δ) = sup{R : (δ, R) ∈ Uq}.

That is, αq(δ) is the maximum possible information rate among those of all very

long codes with relative minimum distance δ.

The function αq(δ) is unknown. Even, there is only few information derived

about it so far. It is one of the main problems of coding theory to discover αq(δ).

A powerful result by Aoaltonen (see [AAL]) states that αq(δ) is a continuous

decreasing function which vanishes on the interval ( q−1
q
, 1). A very common

approach for providing information about αq(δ) is to find upper and lower bounds

for it. The lower bounds are all constructive and obtained by introducing an

example of family of codes. one of the most important lower bound is Gilbert-

Varshamov bound which is given as

αq(δ) ≥ 1−Hq(δ) (2.1)
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where Hq is the q-ary entropy function

Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x), H(0) := 0.

This bound was not improved until the algebraic-geometric codes were intro-

duced. Tsfasman, Vladuţ and Zink have been given an example of codes con-

structed on classical modular curves whose parameters lie on the line R =

1 − δ − 1/(
√

(q) − 1) when q ≥ 49 is a square of a prime (cf. [TS-VLA-ZI]).

This line is obviously better than the Gilbert Varshamov bound in the interval

(δ1, δ2) where δ1 and δ2 are intersection points of 1−Hq(δ) and 1−δ−1/(
√

(q)−1).

Due to this crucial development, the algebraic geometric codes have attracted the

attention of coding theory world.

2.2 Goppa Codes on Curves

Let X be a projective smooth curve of genus g defined over Fq and P =

{P1, ..., Pn} ⊆ X(Fq), |P| = n, D ∈ Div(X) is a Fq rational divisor. Let

suppD ∩ P = ∅ and Do = P1 + · · ·+ Pn ∈ Div(X). Assume degD = a > 2g − 2.

Consider the space of rational differential forms

Ω(Do −D) = {ω ∈ Ω(X)∗ : div(ω) +D0 −D ≥ 0} ∪ {0}.

If ω is defined over Fq then for a point P ∈ X(Fq) we have the residue ResP (ω) ∈
Fq. The map

ResP : Ω(Do −D) −→ Fn
q

ResP : ω 7→ (ResP1(ω), ..., ResPn(ω))

defines a code C = ResP(Ω(Do−D)). We call this algebraic geometric construc-

tion a Geometric Goppa construction, or simply a Goppa construction on curves

(see [GO 1] or [GO 2]). We denote C = (X,P , D)Ω. The following statement

explains the parameters of such construction:

Proposition 2.2.1 Let X be a smooth projective curve of genus g defined over

Fq and C be a (X,P , D)Ω construction. Assume suppD∩P = ∅ and degD = a >
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2g − 2. Then parameters of C are given as

k ≥ n− a+ g − 1

d ≥ a− 2g + 2

Proof: Let us define the divisor Do = P1 + · · · + Pn ∈ Div(X). Let K

be a canonical divisor on X. Then the space Ω(Do − D) = {ω ∈ Ω(X)∗ :

div(ω)+D0−D ≥ 0}∪{0} is isomorphic to the space of functions L(Do+K−D) =

{f ∈ Fq(X)∗ : div(f) + Do + K − D ≥ 0} ∪ {0}. By Riemann Roch theorem

the dimension of L(Do + K − D) is at least n − a + g − 1. On the other hand

degD = a > 2g− 2 and hence any nonzero ω ∈ Ω(Do−D) has overall more than

2g−2 zeros counted with multiplicities outside the support of the divisor Do. So,

ω must have some simple poles on some points P1, ..., Pn. Therefore the residue

map

ResP : Ω(Do −D) −→ Fn
q

ResP : ω 7→ (ResP1(ω), ..., ResPn(ω))

is embedding. Hence the dimension of C is at least n− a+ g − 1. Similarly any

nonzero ω ∈ Ω(Do −D) must have at least a− 2g + 2 poles outside the support

of D. So, the minimum distance d is at least a− 2g + 2

QED

The construction above is known as the Ω construction. It is based on some

space of differentials. There is another type of construction, L construction, which

is essentially equivalent to Ω construction. This one is based on some spaces of

rational functions of curves. Let X be a projective smooth curve of genus g

defined over Fq and P = {P1, ..., Pn} ⊆ X(Fq), |P| = n, D ∈ Div(X) is a Fq

rational divisor. Let suppD ∩ P = ∅.

The L construction is as follows. Consider the map

EvP : L(D) −→ Fn
q ,

EvP : f 7→ (f(P1), ..., f(Pn))
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where the space L(D) is given as

L(D) = {f ∈ F̄q(X)∗ : div(f) +D ≥ 0} ∪ {0}.

Then, we get a code C = EvP(L(D)). This construction is known as L construc-

tion and the code C is denoted as C = (X,P , D)L.

2.2.0.1 Linear codes as projective systems

A linear [n, k, d]q nondegenerate code C is a configuration P of points of a pro-

jective space P(V ) where V is a vector space of dimension k over Fq. A config-

uration is a finite unordered family in a projective space. Then, |P| = n and

d = n−max |P ∩H| where the maximum being taken over all projective hyper-

planes H ⊂ P(V ). Let V ∗ be the dual space of V . Consider the map ϕ : V ∗ → Fn
q

defined by ϕ(f) = (f(P1), ..., f(Pn)) where f ∈ V ∗ and Pi’s are points of P . Then

the code C is, as a linear space, the image of ϕ in Fn
q .

Geometric Goppa codes have a natural interpretation as a configuration in a

projective space. Let X be a variety. Assume that there is an embedding X ⊆ Pk.

Let P be a configuration whose points are in X(Fq) such that |P| > k. Assume

that P does not lie in a hyperplane. Then the configuration P is a Goppa [n, k, d]q

code on X.

2.3 Drinfeld-Vladuţ Bound

In the previous section, we have seen an example of code construction on curves.

If X is a smooth projective curve of genus g defined over Fq then any Goppa

code on X will have dimension greater then or equal to n − a + g − 1 and and

minimum distance greater then or equal to a−2g+2 where a is an integer bigger

then the dimension of regular differential forms on X and n is the number of Fq

rational points of X. The critical bounds n− a+ g− 1 and a− 2g + 2 are called

the designed dimension and the designed minimum distance respectively. If we

have the family of curves of same genus, say g and the family of Goppa codes
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constructed on this family of curves, it is evident that the designed dimension

increases when the number of rational points of curves in the family increases

whereas the designed minimum distance remains unchanged. So, the best Goppa

code on curves of same genus g is the code constructed on a curve having maximal

number of Fq rational points. The crucial question is whether such best Goppa

codes have parameters lying above the Gilbert-Varshamov bound. The answer is

yes. So, there exists Goppa codes having better parameters than the codes lying

on Gilbert-Varshamov bound.

So, curves over a field Fq that have big number of rational points have great

importance in coding theory. For a given family of the curves Xα over Fq we have

the Drinfeld-Vladuţ bound:

Theorem 2.3.1 [VLA-DR] Let Xα be smooth curves of genus gXα over the finite

field Fq. Then

lim sup
gXα→∞

|Xα(Fq)|
gXα

≤ √q − 1.

It is one of the main research area in coding theory to search for the family

of curves Xα over a finite field Fq such that |Xα(Fq)|
gXα

is very close to the Drinfeld-

Vladuţ bound for very large genus gXα since the Goppa codes on such family of

curves having plenty of rational points over Fq, have nice parameters. Indeed,

the best family of curves are those which achieves the Drinfeld-Vladuţ bound.

It has been a difficult problem to construct such family of curves. For a square

order q, the bound is sharp. It is known three constructions of such family of

curves attaining Drinfeld - Vladuţ bound: Classical modular curves, Drinfeld

modular curves (see [TS-VLA] for these two curves) and the tower of Artin-

Schreier extensions (see [GA-STI]). It is still unknown whether Drinfeld - Vladuţ

bound is sharp for nonsquare order q.

Corollary 2.3.1 Let Xα be smooth curves of genus gXα over the finite field Fq

attaining the Drinfeld-Vladuţ bound. Let Cα be a (Xα,Pα, Dα)Ω construction

where Pα is the set of Fq rational points of Xα . Then the parameters of the

family of codes Cα lies on the line R = 1− δ − 1/(
√

(q)− 1).
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Proof: The parameters of the codes Cα are given as nα − aα + gα − 1 and

aα−2gα−2 as designed dimensions and designed minimum distances respectively.

So, their designed relative distances are

δα =
aα

nα

− 2
gα

nα

− 2

nα

(2.2)

and similarly, designed information rates are

Rα = 1− aα

nα

+
gα

nα

− 1

nα

. (2.3)

So, if we combine these two equations by replacing aα’s we get the equation

Rα = 1 +
1

nα

− gα

nα

− δα. (2.4)

When gα tends to infinity, the ratio gα

nα
will tend to the inverse of the Drinfeld-

Vladuţ bound, 1√
q−1

by the assumption. Therefore the parameters (Rα, δα) of the

Goppa codes Cα will tend to the point (R, δ) satisfying R = 1− δ−1/(
√

(q)−1).

QED

This important corollary of the Drinfeld- Vladuţ theorem shows that the codes

on the family of curves having maximum number rational points have parameters

better than the parameters of the codes lying on Gilbert-Varshamov bound. So,

if there exists maximal curves then, there exists better codes than the codes on

Gilbert Varshamov bound. Actually, there exist codes attaining Drinfeld-Vladuţ

bound over the field of order q where q is a square.



Chapter 3

Elliptic Curves and Modular

Curves

In this chapter, we have introduced fundamental properties of elliptic curves and

modular curves. The scope of the subject is extremely wide but we have generally

selected the facts we have used in our statements.

3.1 Elliptic Curves

Definition 1 An elliptic curve defined over a field k is a pair (E,O), where E is

a nonsingular curve over k of genus 1 and O ∈ E(k).

Given an elliptic curve E (we write just E, always remembering O) over

algebraical closed field k, we can induce a group operation on E as follows: By

Riemann-Roch theorem the map φ : E → Pic0(E) (Picard group of E) given by

φ(x) = (x)− (O) is a bijection. Pic0(E) is a group, hence E is also a group with

identity element O, and one can define the group operation as

x1 + x2 = x3 if the divisor (x1) + (x2) − (x3) ∼ (O) (that is, the divisors

(x1) + (x2)− (x3) and (O) are in the same class) for x1, x2, x3 ∈ E.

24
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Again, by Riemann-Roch theorem dimL(nO) :=dim{f ∈ k(E) : div(f) +

n(O) ≥ 0} = n, n ≥ 1. Hence ∃x ∈ L(2O) \ L(O), y ∈ L(3O) \ L(2O).

1, x, y, xy, x2, x3, y2 ∈ L(6O) and hence linearly dependent since dimL(6O) = 6.

So

y2 +a1xy+a2y = x3 +b1x
2 +b2x+b3 where ai, bj ∈ k. We can take coefficients

of y2 and x3 to be 1 since y2, x3 ∈ L(6O)\L(5O). If chark 6= 2, 3 with appropriate

linear change of variable we get cubic equation

y2 = 4x3 − g2x− g3; g2, g3 ∈ k

which is called Weierstrass form of elliptic curve. Also, any cubic equation in

Weierstrass form in characteristic not 2 or 3 is an elliptic curve, taking ∞, which

corresponds to the point [x : y : z] = [0 : 1 : 0] satisfying the Weierstrass equation

y2z = 4x3− g2xz
2− g3z

3 in the projective space, as identity element. Then, sum

of three points satisfying the given cubic equation is zero if and only if they are

collinear (By Bezout Theorem, a curve given by cubic equation intersects a line

at three points).

3.1.1 j Invariant of Elliptic Curves

Let E: y2 = 4x3 − g2x − g3 be an elliptic curve over a field k. Then, E is

nonsingular, hence the polynomial 4x3 − g2x − g3 has distinct roots in k. That

is, the discriminant,

4 := g3
2 − 27g2

3 6= 0

Define j(E) := 1728
g3
2

4 . Let E : y2 = 4x3 − g2x− g3 and E ′ : y2 = 4x3 − g′2x− g′3

be two elliptic curves over a field k. Then E and E ′ are said to be isomorphic

over k if ∃ a nonzero c ∈ k such that g′2 = c4g2 and g′3 = c6g3 and such a c ∈ k

is said to be isomorphism. If k is algebraical closed then it is easy to check that

E ' E ′ (E is isomorphic to E ′) means exactly j(E) = j(E ′).

Let E : y2 = 4x3 − g2x − g3 be an elliptic curve over C. Then the solutions

g2 = c4g2 and g3 = c6g3 for c ∈ C (automorphisms of E) is {±1} for g2 6= 0

and g2 6= 0. If g2 = 0 then the solution set for c is {±1,±ω,±ω2} where ω is
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the cubic root of unity, ω = −1
2

+
√

3
2
i, and if g3 = 0 then the solution set for

c is {±1,±i}. Hence, for E with j(E) = 1728, Aut(E) = {±1,±i}; for E with

j(E) = 0, Aut(E) = {±1,±ω,±ω2}. For any other elliptic curve E over C whose

j-invariant different from 0 or 1728, Aut(E) = {±1}.

3.1.2 Isogenies

An isogeny between two elliptic curves is on one hand a morphism of varieties

and on the other hand group homomorphism. Here is the formal definition:

Definition 2 Let E and E ′ be elliptic curves over a field k with identity elements

O and O′ respectively. Then, an isogeny between E and E ′ is a morphism

φ : E −→ E ′

satisfying φ(O) = O′. Also, E and E ′ are said to be isogenous if there exists a

non constant isogeny between them.

Since an isogeny is a morphism between curves, if it is not constant then it

is a finite map (ie, onto map and inverse image of any point is a finite set). As

usual, trivial isogeny, [0](P ) = O′ ∀P ∈ E, has degree

deg[0] := 0

and any other isogeny φ : E → E ′ different than [0] has degree

degφ := [k(E) : φ∗k(E ′)] =
∑

φ(P )=O′

e(P )

where

φ∗ : k(E ′) −→ k(E)

f −→ f ◦ φ

and e(P ) is ramification index of P ∈ E.
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We say that φ is separable, inseparable or purely inseparable if the exten-

sion k(E) over φ∗k(E ′) is separable, inseparable or purely inseparable extension

respectively.

The most important property of isogenies is that they are group homomor-

phisms:

Theorem 3.1.1 Let φ : E → E ′ be an isogeny. Then,

φ(P +Q) = φ(P ) + φ(Q), ∀P,Q ∈ E

Proof: Trivially, φ = [0] is a group homomorphism. So, let’s assume φ is a

finite map. Let’s define

φ∗ : Pic0(E) −→ Pic0(E ′)

φ∗(
∑

ni(Pi)) =
∑

ni(φ(Pi)).

Obviously, φ∗ is a group homomorphism. But, Pic0(E) is isomorphic to E and

Pic0(E ′) is isomorphic to E ′ as group isomorphism.

Let

κ : E −→ Pic0(E),

P −→ (P )− (O)

and

κ,−1 : Pic0(E ′) −→ E ′

∑
ni(Pi) −→

∑
niPi

be isomorphisms. Then

φ = κ,−1 ◦ φ∗ ◦ κ

and hence

φ(P +Q) = κ,−1 ◦ φ∗ ◦ κ(P +Q) = κ,−1 ◦ φ∗ ◦ κ(P ) + κ,−1 ◦ φ∗ ◦ κ(Q)

since κ,−1, φ∗ and κ are group homomorphisms.



CHAPTER 3. ELLIPTIC CURVES AND MODULAR CURVES 28

QED

Let Hom(E,E ′) = {isogenies φ : E → E ′}. Then Hom(E,E ′) is a group under

addition law. If E = E ′ then, End(E) = Hom(E,E) is a ring with multiplication

given by composition. Automorphisms of E, denoted by Aut(E), are invertible

elements of EndE. Recall that, for an elliptic curve E over C we have

Aut(E) =


{±1,±i} if j(E) = 1728,

{±1,±ω,±ω2} if j(E) = 0,

{±1} otherwise.

For any m ∈ Z, we can define multiplication by m:

[m] : E −→ E

[m](P ) = P + · · ·+ P (m terms), for m > 0

and

[m](P ) = [−m](−P ) for m < 0.

It is easy to check by induction that multiplication by m ∈ Z is an isogeny.

For m 6= 0, [m] is a non constant map. Here is the precise statement:

Proposition 3.1.1 [SIL 1, pp 72] Let E and E ′ be elliptic curves over a field k,

and m ∈ Z, m 6= 0. Then

a) [m] : E → E is a finite map.

b) Hom(E,E ′) is a torsion free Z - module.

c) End(E) is an integral domain of characteristic 0.

Given elliptic curves E and E ′ over a field k, the sets Hom(E,E ′) and

Hom(E ′, E) are related by the following theorem:
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Theorem 3.1.2 [SIL 1, pp 84] Let φ : E → E ′ be a non constant isogeny of

degree m. Then, there exists a unique isogeny

φ̂ : E −→ E ′

satisfying φ̂ ◦ φ = [m] ∈ End(E) and φ ◦ φ̂ = [m] ∈ End(E ′)

Definition 3 φ̂ in the above theorem is called the dual isogeny of φ.

Proposition 3.1.2 [SIL 1, pp 87] Let φ ∈ End(E,E ′) be a non constant isogeny.

Then duality of isogenies has the following properties:

i) degφ̂ =degφ

ii)
̂̂
φ = φ

iii) Let ϕ ∈ (E ′, E ′′) be another non constant isogeny. Then

ϕ̂ ◦ φ = φ̂ ◦ ϕ̂

iv [̂m] = [m] and deg[m] = m2 ∀m ∈ Z

Let φ ∈ Hom(E,E ′), φ 6= [0]. Then kerφ is a finite subgroup of E. It is finite

since φ is a finite map and it is a subgroup since φ is a group homomorphism.

For a given elliptic curve E, there is a one to one correspondence between finite

subgroups of E and elliptic curves E ′, isogenous to E. That is:

Proposition 3.1.3 [SIL 1, pp 78] Let E be an elliptic curve and Φ be a finite

subgroup of E. Then there is a unique elliptic curve E ′ and a separable isogeny

φ : E → E ′ such that

kerφ = Φ
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3.1.3 Elliptic Curves Over Complex Field and Lattices:

Let H = {z : imz > 0}. A lattice L in C is a subgroup of C under addition law

which is free Z - Module of dimension 2 and generates C over reals. We write

L = [ω1, ω2] if ω1, ω2 is a basis of the lattice L. We always assume that ω1

ω2
∈ H.

Because, otherwise ω2

ω1
∈ H and we can write L = [ω2, ω1].

Let L = [ω1, ω2] be a lattice. Then the quotient space C/L is homeomorphic

to a torus and elements of C/L are uniquely represented in the fundamental

parallelogram

u := {αω1 + βω2 : 0 ≤ α, β < 1}.

Define the Weierstrass function

℘(z) :=
1

z2
+

∑
ω∈L−{0}

(
1

(z − ω)2
− 1

ω2

)

Then,

℘′(z) = −2
∑
ω∈L

1

(z − ω)3
.

The Weierstrass function and its derivative ℘ and ℘′ are rational functions of

C/L. That is:

Proposition 3.1.4 [KO] ℘(z), ℘′(z) ∈ k(C/L) and the map ψ : u → E ∪ ∞
given by

ψ(z) = [℘(z) : ℘′(z) : 1] for z 6= 0 and ψ(0) = [0 : 1 : 0].

is analytic bijection, where u is fundamental parallelogram of L and E : y2 =

4x3 − g2x− g3, g2 = 60
∑

ω∈L−{0}
1

ω4 , g3 = 140
∑

ω∈L−{0}
1

ω6 .

So, a lattice corresponds to an elliptic curve over C. Converse is also true:
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Proposition 3.1.5 [LA 2, pp 39] Let E : y2 = 4x3−g2x−g3 be an elliptic curve.

Then, ∃ a lattice L such that g2 = 60
∑

ω∈L−{0}
1

ω4 and g3 = 140
∑

ω∈L−{0}
1

ω6 .

Let L be a lattice and g2 = 60
∑

ω∈L−{0}
1

ω4 , g3 = 140
∑

ω∈L−{0}
1

ω6 . The

torus represented by the quotient space C/L is a group and for z1, z2, z3 ∈ u,

fundamental domain of C/L , we have z1 +z2 +z3 = 0 if and only if z1 +z2 +z3 ∈
L. Hopefully, this is also equivalent to saying that the points (℘(z1), ℘

′(z1)),

(℘(z2), ℘
′(z2)) and (℘(z3), ℘

′(z3)) on the elliptic curve E : y2 = 4x3− g2x− g3 are

collinear. For more detail and the proof, one can refer to, for instance, Koblitz’s

book on Elliptic curves and Modular forms [KO].

Now, we know that there is a one to one correspondence between elliptic curves

over C and lattices. We define two lattices L,L′ to be proportional if L = λL′

for some λ ∈ C∗. Then, the elliptic curves over C determined by proportional

lattices are isomorphic. Precisely

Proposition 3.1.6 [CO, pp 207] Let E : y2 = 4x3 − g2x − g3 and E ′ : y2 =

4x3 − g′2x − g′3 be two elliptic curves over C and L,L′ be corresponding lattices.

Then, E ' E ′ if and only if L = λL′, λ ∈ C∗.

Then, for a lattice L we can define j(L) := j(E) where E ∪∞ ' C/L (from

now on, I will skip the point of E at ∞). Let L = [ω1, ω2]. Then 1
ω2
L = [ω1

ω2
, 1]

is proportional to L. Let’s denote τ = ω1

ω2
and then j(L) = j( 1

ω2
L) = j([τ, 1]).

Besides considering j as a function of lattices, we may suppose also j as a function

on upper half plane, defined as

j(τ) := j([τ, 1]).

Here is an important property of j function:

Proposition 3.1.7 [KO] j : H→ C, j(τ) = j([τ, 1]) is an analytic function and

it has a simple pole at ∞.

And the following lemma is about zeros of derivative of j function:
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Lemma 3.1.1 [CO, pp 221] For z ∈ H, j′(z) 6= 0 except the following cases

a) z = ai+b
ci+d

for some

 a b

c d

 ∈ SL2(Z) and j′(z) = 0, but j′′(z) 6= 0.

b) z = aω+b
cω+d

for some

 a b

c d

 ∈ SL2(Z), j′(z) = 0 and j′′(z) = 0 but

j′′′(z) 6= 0.

Let j(z) = j(z′) z, z′ ∈ H. Then ∃λ ∈ C∗ satisfying λ[z′, 1] = [z, 1]. Hence

∃σ =

 a b

c d

 ∈ SL2(Z) =


 a b

c d

 : a, b, c, d ∈ Z; ad− bc = 1

 such that.

λz′ = az + b and λ = cz + d.

Because both {z, 1} and {λz, λ} are the basis for the lattice L = [z, 1]. Then, we

get z′ = az+b
cz+d

Conversely, let z′ = az+b
cz+d

for some

 a b

c d

 ∈ SL2(Z). Then, let λ = cz + d.

So,

λz′ = az + b and λ = cz + d.

Hence λ[z′, 1] = [z, 1] which implies that j(z) = j(z′). In conclusion, we get that

j(z) = j(z′) means z′ = az+b
cz+d

where

 a b

c d

 ∈ SL2(Z).

An isogeny between two elliptic curves E,E ′ over C is an analytic isomorphism

of corresponding toruses. Because, for φ ∈ Hom(E,E ′) ∃λ such that the following

diagram is commutative:

C/L λ−→ C/L′y y
E

φ−→ E ′

where L and L′ are the lattices corresponding to E and E ′ respectively and

the vertical maps are isomorphisms. Converse is also true. Hence Hom(E,E ′)

is set of analytic homomorphisms from C/L onto C/L′. Indeed, those analytic

homomorphisms can be represented as multiplication by complex numbers:
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Theorem 3.1.3 Let L,L′ be two lattices in C and λ : C/L→ C/L′ be an analytic

homomorphism. Then ∃α ∈ C such that the following diagram commutative

C α−→ Cy y
C/L λ−→ C/L′

where the map α is multiplication by α and the vertical maps are canonical ho-

momorphism.

Proof: λ is a homomorphism of fundamental parallelograms of L and L′.

That is

λ(z1 + z2) ≡ λ(z1) + λ(z2) (modL′), z1, z2 ∈ C.

For z1, z2 very close to 0, we have

λ(z1 + z2) = λ(z1) + λ(z2).

Since λ is analytic, it must be of the form λ(z) = αz, for z very close to 0. For

arbitrary z ∈ C, we can write λ( z
n
) = α z

n
for enough large n ∈ Z. Therefore,

λ(z) ≡ αz mod L′, z ∈ C. Since λ(L) ⊂ L′ we get αL ⊂ L′. Conversely, for any

α ∈ C satisfying αL ⊂ L′, the map λ(z) ≡ αz mod L′ is obviously an analytic

homomorphism.

QED

For elliptic curves E ' C/L and E ′ ' C/L′ we have Hom(E,E ′) = {α ∈
C : αL ⊂ L′}. Observe that for α ∈ Hom(E,E ′), if α−1 ∈ Hom(E ′, E), that is,

α−1L′ ∈ L then α is an isomorphism and the lattices L,L′ are proportional since

αL = L′.

3.1.3.1 Complex Multiplication

Let E be an elliptic curve over C. We know that for any m ∈ Z the isogeny

[m], induced by multiplication by m, is in End(E). Hence, we always have Z ⊆
End(E). For some elliptic curves we have End(E) = Z, on the other hand, for
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some other elliptic curves we have proper inclusion, Z  End(E). For an elliptic

curve E over C if End(E) is strictly larger than Z then E is said to have complex

multiplication. Let L = [τ, 1] be a lattice in C and E ' C/L. Assume E has

CM (standing for complex multiplication). Then ∃α ∈ End(E) where α ∈ C \Z.

α ∈ End(E) ⇒ αL ⊂ L. So

ατ = aτ + b and α = cτ + d, where

 a b

c d

 ∈ SL2(Z)

Then τ = b
α−a

and since τ ∈ H, α is not real. Also, τ satisfies the equation

cx2 + (d− a)x− b = 0. Hence τ is algebraic number of order 2 and α = cτ + d ∈
Q(τ). So, End(E) is a ring in the imaginary quadratic field Q(τ).

In fact, for an elliptic curve E over C, having CM, End(E) is nothing but

an order in an imaginary quadratic field. So, first let me introduce some general

facts about orders;

An order O in an imaginary quadratic field K = Q(
√
−d), d ∈ Z+, is a subring

of K which is a free Z - module of rank 2. It follows that ring of integers OK

of K is an order. In fact, it is the maximal order in K (see [CO, pp 133]). Let

dK be the discriminant of K. It is well known fact in algebraic number theory

that OK = [1, ωK ], where ωK = dK+
√

dK

2
. Any order O in K has a finite index

in OK since both O and OK are free Z - Modules of rank 2. Let f := [OK :O]

for an order O in K. We have Z + fOK⊂O since fOK⊂O. But Z + fOK also

has index f in OK . Hence O= Z + fOK = [1, fωK ]. The index f := [OK :O] is

called the conductor of the order O and D = f 2dK is called the discriminant of

O. Then, D determines O uniquely and any negative integer D ≡ 0, 1(mod 4) is

the discriminant of an order in an imaginary quadratic field.

For an ideal I in an order O in imaginary quadratic field K we have O⊂ {α ∈
K : αI⊂I} A fractional ideal J= βI, β ∈ K∗, is said to be a proper fractional

ideal if we have the equality O= {α ∈ K : αJ⊂J }. A fractional ideal J is

invertible if there exists another fractional ideal J ′ satisfying JJ ′ = O. Then

Proposition 3.1.8 [CO, pp 135] Let O be an order in an imaginary quadratic
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field K and let J be a fractional O - ideal. Then J is invertible if and only if J
is proper.

So, set of proper ideals of an order O in K is a group under multiplication of

ideals, denoted by I(O). Then, the set of principal O ideals (ideals of the form

αO, α ∈ K∗) is a subgroup of I(O), denoted by P (O). Then the quotient group

C(O) = I(O)/P (O) is a finite group (see [CO]) and called the ideal class group

of the order O. The order of C(O) is called the class number of O and denoted

as h(O). We sometimes write h(D) instead of h(O), where D is the discriminant

of O.

Let J be a proper fractional O ideal. Then we can regard J as a lattice in C.

That is, we can write J= [α, β] where α, β ∈ C and α
β
6∈ R (see [CO, pp 151]).

Conversely, let L = [τ, 1] be a lattice and there exists α ∈ C\Z such that αL ⊂ L.

Then K = Q(τ) is an imaginary quadratic field and O= {β ∈ K : βL ⊂ L} is an

order in K, α ∈O. Remark that L is a proper fractional ideal of O.

In conclusion, we get that any proper fractional ideal of an order O in an

imaginary quadratic field K is a lattice whose ring of endomorphism is the order

O. Converse is also true. Two lattices L,L′ with endomorphism rings O, are

proportional if and only if they are in the same class in I(O). Therefore, number

of lattices up to proportionality whose ring of endomorphisms are O is nothing

but the class number of O, h(O).

The following theorem gives a nice formula for the class number, h(O):

Theorem 3.1.4 [CO, pp 146] Let O be an order of conductor f in an imaginary

quadratic field K. Then

h(O) =
h(OK)f

[O∗
k : O∗]

∏
p/f

1−

 dK

p

 1

p


where p’s are primes dividing f . Furthermore, h(OK) divides h(O).

The symbol

 dK

p

 in the above theorem is the Kronecker Symbol for p = 2

which is defined as
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 dK

2

 =


0 if 2/dK

1 if dK ≡ 1 mod 8

−1 if dK ≡ 5 mod 8

and for odd prime p,

 dK

p

 is the Legendre Symbol defined as

 dK

p

 =


0 if p/dK

−1 if dK isn’t divisible by p,dK is quadratic nonresidue modulo p

1 if dK isn’t divisible by p,dK is quadratic residue modulo p

Let K be an imaginary quadratic field and p be a prime number. Then, p is

either prime or square of a prime or product of two primes in K. More explicitly

Proposition 3.1.9 [BO-SHA, pp 236] In a quadratic field with discriminant D

the prime number p has the decomposition

p = P2, where P is a prime in K, if and only if p divides D.

If p is odd and does not divide D then p = PP ′, P 6= P ′, for
(

D
p

)
= 1 and

p = P for
(

D
p

)
= −1. If 2 does not divide D then 2 = PP ′, P 6= P ′, for

D ≡ 1 mod 8 and 2 = P for D ≡ 5 mod 8.

3.1.4 Elliptic Curves in Positive Characteristic

An elliptic curve E over a field of characteristic p > 3 can be written in Weierstrass

form

E : y2 = 4x3 − g2x− g3

In characteristic 0, the set of elements of an elliptic curve of order N is isomor-

phic to Z/NZ×Z/NZ. The situation is slightly different in positive characteristic:
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Proposition 3.1.10 [LA 2, pp 171] Let E be an elliptic curve defined over a

field of positive characteristic p. Then, either E has no point of order p or the

set of elements of E of order p is isomorphic to Z/pZ.

Definition 4 Let E be an elliptic curve defined over a field of positive charac-

teristic p. If E has no point of order p then E is said to be supersingular elliptic

curve. If the set of elements of E of order p is isomorphic to Z/pZ then E is said

to be ordinary elliptic curve.

The situation for endomorphism rings of elliptic curves over a field of posi-

tive characteristic is more complicated then the case in characteristic 0. Endo-

morphism ring of an elliptic curve E determines whether E is supersingular or

ordinary:

Theorem 3.1.5 [SIL 1, pp 137] Let E be an elliptic curve over a field K of

characteristic p. Then

i) End(E) = EndK(E) = Z if j(E) is transcendental over Fp.

ii) Assume j(E) is algebraic over Fp. Then End(E) = EndK(E) is an order in

an imaginary quadratic field if and only if E is ordinary and End(E) = EndK(E)

is an order in a quaternion algebra if and only if E is supersingular.

3.1.4.1 Supersingular Elliptic Curves

Supersingular elliptic curves are important points of the modular curveX0(`) over

Fp2 , (`, p) = 1, as being rational points. Supersingular elliptic curves have great

importance also in examining the singularities of plane model Z0(`) in positive

characteristic. The singular points of Z0(`) in positive characteristic, correspond-

ing to supersingular elliptic curves have the most complicated singularities of

Z0(`) which we are going to examine in chapter 5.

We know that endomorphism ring of a supersingular elliptic curve is an order

in a quaternion algebra. More explicitly, if E is a supersingular elliptic curve in
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characteristic p then End(E) is a maximal order in the quaternion algebra over

Q ramified only at ∞ and at p. A quaternion algebra Hp is ramified at p if

Hp ⊗Qp is a division algebra and Hp is ramified at ∞ if Hp ⊗R is the Hamilton

quaternions. Hp is not ramified at other primes ` 6= p. That is, Hp ⊗Q` is 2× 2

matrix algebra in Q` (see [EIC]).

Let O be a maximal order in the quaternion algebra Hp ramified only at p

and at ∞. Let I be a left ideal of O. If I−1I = {a ∈ Hp : Ia ⊂ I} is equal to O
then we say that I is two sided ideal. Two sided ideals of O form a group (see

[PI]). Let HO denote the ideal class group of two sided O ideals. That is, the

group of all two sided O ideals modulo principal two sided O ideals. Then HO is

either trivial or cyclic group of order 2. More explicitly

Proposition 3.1.11 [EIC] Let E be a supersingular curve in characteristic p.

Then, End(E) = O is a maximal order in a quaternion algebra Hp over Q ramified

only at ∞ and p. Let HO be the two sided ideal class group. Then HO is trivial

⇐⇒ j(E) ∈ Fp ⇐⇒ ∃ an element of norm p in O. HO is cyclic of order 2

⇐⇒ j(E) /∈ Fp

A significant property of a supersingular elliptic curve E over a field of char-

acteristic p is that E is defined over Fp2 :

Theorem 3.1.6 [SIL 1, pp 137] Let E be a supersingular elliptic curve over a

field of characteristic p. Then j(E) ∈ Fp2.

Let E and E(p) be elliptic curves in characteristic p > 3 given as

E : y2 = 4x3 − g2x− g3

E(p) : y2 = 4x3 − g
(p)
2 x− g

(p)
3 .

Then the Frobenious isogeny Fr is defined as

Fr : E −→ E(p)
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(x, y) 7−→ (xp, yp).

F r has degree p and is inseparable isogeny (see [SIL 1, pp 30]). We have

4(E(p)) = 4(E)p and hence j(E(p)) = j(E)p. Let φ : E −→ E(p) be another

isogeny of degree p. Assume E is supersingular. Then E(p) is also supersingular

since it is isogenous to E. We have φ̂φ = [p] ∈ End(E) where φ̂ is the dual of

φ. But E is supersingular and hence has no element of order p and the separable

degree of [p] is number of elements of E of order p together with identity element

(see [SIL 1, pp 76]). So, [p] is inseparable. Hence φ is also inseparable. φ has the

same degree as Fr. Thus, φ differs from Fr by automorphisms of E and E(p).

That is, φ = ε′Frε where ε is an automorphism of E and ε′ is an automorphism

of E(p). Let’s summarize the paragraph:

Proposition 3.1.12 Let E and E ′ be supersingular elliptic curves over a field of

characteristic p. If the Frobenious isogeny Fr ∈ Hom(E,E ′) then j(E) = j(E ′)

where j(E ′) is conjugate of j(E ′) in Fp2. In addition, assume σ ∈ Hom(E,E ′)

is an isogeny of degree pr. Then σ = Frr modulo automorphisms of E and E ′.

3.1.4.2 Reduction and Lifting

The basic idea of reduction is considering an elliptic curve, which is defined over

a number field K, in the finite field OK/P where OK is the ring of integers of K

and P is a prime ideal in OK . More explicitly, let K be number field and E be

an elliptic curve given by

y2 = 4x3 − g2x− g3, g2, g3 ∈ K.

Let OK be the ring of integers of K and let’s take a prime ideal P such that g2

and g3 can be written as α
β

where α, β ∈ OK and β 6∈ P so that we can define

the cosets of g2 and g3, [g2] and [g3] in OK/P . Also, assume that

4 = [g2]
3 − 27[g3]

2 6= 0 in OK/P .

Then we say that E has good (smooth) reduction modulo P and the curve

E : y2 = 4x3 − [g2]x− [g3]
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in OK/P is reduction of E modulo P . If characteristic of OK/P is p then we also

say that E is reduction of E modulo p.

In general, let O be a local ring with no divisor of zero, K be a field containing

O and M be the maximal ideal of O. Let

ω 7−→ ω

denote a place which extends the canonical homomorphism O 7−→ O/M, to an

algebraic extension L of K.

Let E be an elliptic curve given in Weierstrass equation

y2 = 4x3 − g2x− g3, g2, g3 ∈ O.

Assume that characteristic of O/M is not 2 or 3 and 4 is a unit in O (4 6∈ M).

Then we have a good reduction E of E modulo M. Let E ′ be also an elliptic

curve with good reduction over O. If λ : E −→ E ′ is an isogeny then λ is defined

over L and has a good reduction λ : E −→ E ′ and the map

λ 7−→ λ

is injective homomorphism. λ is also an isogeny of the same degree as λ (for proof

and more explanation, see [LA 2]). Deuring has described the endomorphism ring

of reduction of an elliptic curve:

Theorem 3.1.7 (Deuring) [LA 2, pp 182] Let E be an elliptic curve over a

number field. Assume End(E) is an order O in an imaginary quadratic field K.

Let B be a place of algebraic closure of Q over a prime number p where E has

a good reduction E. The curve E is supersingular if and only if p is prime or

ramified (square of a prime) in K. Suppose that p splits completely (p is product

of two primes) in K. Let c be the conductor of O and write c = prc0 where

(p, c0) = 1. Then

i) End(E) = Z+ c0OK is an order in K with conductor c0.

ii) If (p, c) = 1 then the reduction map λ 7−→ λ is an isomorphism of End(E)

onto End(E).
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Also, Deuring has proved that for any elliptic curve E over a positive char-

acteristic, we can find an elliptic curve over a number field whose reduction is

isomorphic to E:

Theorem 3.1.8 (Deuring) [LA 2, pp 184] Let E0 be an elliptic curve in char-

acteristic p with nontrivial isogeny α0 ∈ End(E0). Then there exists an elliptic

curve E defined over a number field with an isogeny α of E and a good reduc-

tion E of E at a place B lying above p such that E0 is isomorphic to E and α0

corresponds to α under isomorphism.

From these Deuring’s theorems, for a given prime p we have a bijection of j

invariants

j(z) 7−→ j(z)

where j(z) is the j invariant of the lattice [z, 1] whose ring of endomorphism is

an order O in an imaginary quadratic field K where p splits completely in K and

conductor of O is not divisible by p. j(z) is j invariant of an ordinary elliptic

curve over a field of characteristic p. More explicitly

Theorem 3.1.9 (Deuring’s Lifting Theorem) [LA 2, pp 187] Let E0 be an

ordinary elliptic curve in positive characteristic p with ring of endomorphism

End(E0) = O. Then there exists a unique elliptic curve E in characteristic 0

with End(E) = O such that reduction of E modulo p is isomorphic to E0.

3.2 Modular Curves

A modular curve, analytically, is a quotient space of the action of some specific

subgroups of SL2(Z) on upper half plane, H. For σ =

 a b

c d

 ∈ SL2(Z), let’s

define the action as

σ(z) =
az + b

cz + d
, z ∈ H.
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Then σ is map from H to H since

im(
az + b

cz + d
) =

im(z)

|cz + d|2
> 0 for z ∈ H.

Hence, az+b
cz+d

∈ H. Observe that σ and −σ induces the same action on H and

hence let’s take

Γ := SL2(Z)/± 1

and introduce discrete topology on Γ. Γ is called the full modular group. As

usual, H has complex topology generated by open disks. Let’s define

Γ(N) =

σ =

 a b

c d

 ∈ Γ :

 a b

c d

 ≡
 1 0

0 1

 mod N

 .

Γ(N) is called the principal congruence subgroup of level N . Any subgroup

G of Γ which contains Γ(N) for some N ∈ Z+ is called congruence subgroup. For

such a congruence subgroup G we have also discrete topology. Then, it is easy

to check that, as a topological group, G is an action on H where, similarly, the

action is defined as

(σ, z) = σz =
az + b

cz + d
, σ =

 a b

c d

 ∈ G and z ∈ H.

For a point z ∈ H, we call the set Gz = {gz : g ∈ G} as the orbit of z under G.

Then, the quotient space H/G is the set of all G - orbits of points on H. Any two

points z1, z2 which are in the same orbit with respect to G are called G equivalent

and we denote this fact as z1 ∼G z2. Now, let’s introduce the quotient topology

on H/G. That is, if φ : H −→ H/G is the natural projection defined as φ(z) = Gz,

then a subset A of H/G is open if it’s inverse image, φ−1(A) is open in H.

Theorem 3.2.1 [SH, ch I] With the above construction, H/G is a Riemann Sur-

face.

As in the case of torus, we can represent elements of the quotient space H/G

in a fundamental domain. A fundamental domain D for a congruence subgroup
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G is a connected subset of H such that every orbit of G has an element in D and

any two elements in interior of D are in different orbits.

For a congruence subgroup G, the set Gz = {g ∈ G : gz = z} is called the

isotropy group (stabilizer) of the point z ∈ H. If, for z ∈ H, the isotropy group,

Gz, is nontrivial then the point z is called elliptic point and |Gz| is called the

order of z.

Let Γ = SL2(Z)/± 1 and G be a congruence subgroup of Γ. Then [Γ : G] =

n <∞. Let αiG be cosets of G in Γ, αi ∈ Γ, i = 1, · · · , n. Then Γ =
⋃n

i=1 αiG. If

DΓ is a fundamental domain for Γ then DG =
⋃n

i=1 α
−1
i DΓ will be a fundamental

domain for G. Indeed, if z ∈ H then ∃z′ ∈ DΓ which is in the same orbit as

z’s. That is, ∃α ∈ Γ such that αz = z′. For some i, α = αiσ σ ∈ Γ. Then

αiσz = z′ ⇒ σz = α−1
i z′ ∈ DG. That is, for any element z ∈ H, its orbit

contains an element in DG. Now, let’s assume two elements of DG, say α−1
i z and

α−1
j z′ for some z and z′ in DG are in the same orbit. That is, ∃σ ∈ G such that

σα−1
i z = α1

jz
′. Then αjσα

−1
i z = z′. But z and z′ are in the fundamental domain

of Γ and hence they are not interior points of DΓ. Therefore, the points α−1
i z and

α−1
j z′ are not interior points of DG. We see that DG is actually a fundamental

domain for the subgroup G. We can choose αi’s in the coset decomposition so

that DG is connected.

The next theorem describes fundamental domain of the full modular group Γ

and also states stabilizers of points:

Theorem 3.2.2 [LA 3, ch III §1]

i) The set DΓ = {z ∈ H : −1
2
≤ Rez ≤ 1

2
and |z| ≥ 1} serves as a fundamental

domain for Γ. Furthermore the elements

T =

 1 1

0 1

 and S =

 0 −1

1 0


generates Γ.

ii) Γz = {I} for z ∈ H, z 6∼Γ i, ω (recall that ω is third root of unity) and

Γi =< S >= {I, S}, Γω =< ST >= {I, ST, (ST )2}
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where I is the 2 by 2 identity matrix.

In the fundamental domain DΓ, described in the above theorem, the vertical

lines Rez = −1
2

and Rez = 1
2

are identical since the point z with Rez = −1
2

is

in the same orbit as the point Tz = z + 1 whose real part is, Re(z + 1) = 1
2
.

Also, on the arc |z| = 1 of DΓ, the points z and Sz = −1
z

are in the same

orbit. Therefore, the Riemann Surface H/Γ is obtained by gluing the vertical

lines Rez = −1
2

and Rez = 1
2

of the fundamental domain DΓ such that the points

in the same orbit coincide and also by gluing the left part of the arc of DΓ (that

is, the set {z ∈ DΓ : |z| = 1,Rez ≤ 0}) with the right part of the arc of DΓ (that

is, the set {z ∈ DΓ : |z| = 1,Rez ≥ 0}) such that the points in the same orbit

coincide.

Unfortunately, the Riemann Surface H/Γ is not compact and hence, for any

congruence subgroup G, the the Riemann Surface H/G is also not compact since a

fundamental domain DG for G is nothing but a union of images of a fundamental

domain DΓ of Γ under some finitely many elements of Γ. To compactify H/Γ, we

should add the point ∞. But, this Riemann Surface is defined by an action and

hence we should enlarge this action on ∞. For this, let H∗ = H ∪Q ∪∞ since Γ

(and any subgroup of Γ) acts on Q ∪∞. For a congruence subgroup G of Γ the

quotient space Q ∪∞/G is finite. That is, there exists finitely many orbits of G

for the space Q ∪∞. Any orbit which is represented by an element is said to be

a cusp. For instance, Γ has just one cusp, ∞, since any rational number r ∈ Q
is Γ equivalent to ∞. If r = a

c
, a, c ∈ Z are relatively prime, then ∃b, d ∈ Z such

that ad− bc = 1. Let σ =

 a b

c d

. Then σ(∞) = r, which explains that only

cusp of Γ is ∞.

The topology of H∗ is generated by the neighborhoods of the points z ∈ H∗

where for z ∈ H neighborhoods of z is as usual, for z = ∞, neighborhoods of ∞
are the sets

NC = {z ∈ H : imz > C}
⋃
{∞} for C ∈ R+.

Finally, for a point r ∈ Q, neighborhoods of r are open disks in H which are

tangent to the real axis at r. Then, the charts of the Riemann Surface H∗/Γ are
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z near z 6∼Γ i, ω,∞(
z−i
iz−1

)2
near z ∼Γ i

(
z−ω
ωz−1

)3
near z ∼Γ ω

q = e2πiz near z ∼Γ ∞

For more detailed information about the charts above, one can refer to Silver-

man’s second book on arithmetic of elliptic curves, [SIL 2].

H∗/Γ is compact. Because, any open covering of the fundamental domain

D∗
Γ contains a neighborhood NC = {z : −1

2
≤ Rez ≤ 1

2
, imz > C} of ∞ and

DΓ − NC is compact. Then, for any congruence subgroup G of Γ the Riemann

Surface H∗/G is compact.

Now, we are ready to introduce main definition of this chapter:

Definition 5 Let G be a congruence subgroup of Γ. The Riemann Surfaces

H∗/G and H/G are called modular curves.

3.2.1 Genus of Modular Curve

We know that the function j : H→ C is analytic on H and has a simple pole at∞.

In addition j(z) = j(z′) if and only if z and z′ are in the same orbit with respect

to full modular group Γ. Hence, the j function is an analytic bijection between

H∗/Γ and P1(C). That is, the modular curve H∗/Γ is nothing but a projective

line. Hence its genus is g(H∗/Γ) = 0. In general we have:

Theorem 3.2.3 Let G be a congruence subgroup of Γ and let

[Γ : G] = n

ν2 = number of G - inequivalent elliptic points of order 2
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ν3 = number of G - inequivalent elliptic points of order 3

ν∞ = number of G - inequivalent cusps

Then, the genus of H∗/G is given by

g = 1 +
n

12
− ν2

4
− ν3

3
− ν∞

2
.

Proof: Consider the natural projection

π : H∗/G 7−→ H∗/Γ

taking the point z in the fundamental domain of G to z′ in the fundamental

domain of Γ where z′ is in the same orbit as z with respect to Γ. Then the point

z has ramification index ez = [Γz : Gz]. For z, not an elliptic point of Γ, i.e.

Γz = id, we have [Γ : G] = n points in the fundamental domain of G which are

Γ equivalent to z, and all their ramification indices are 1. Hence, the degree of

π is nothing but the index [Γ : G] = n. Now, let ν ′2 (ν ′3) be the number of

points in H∗/G which are Γ equivalent to i (ω), but are not elliptic points with

respect to G. Then, n = ν2 + 2ν ′2 = ν3 + 3ν ′3, since, for a nonelliptic point z of

H∗/G which is Γ equivalent to i, it is ramification index is ez = [Γz : Gz] = 2

and for a nonelliptic point z of H∗/G which is Γ equivalent to ω, it is ramification

index is ez = [Γz : Gz] = 3. For the cusps r ∈ Q⋃∞ we have
∑
er = n. Hence∑

(er−1) =
∑
er−ν∞ = n−ν∞. The ramified points are exactly those nonelliptic

points which are Γ equivalent to i or ω and some of the cusps. By Hurwitz genus

formula, we have

2g(H∗/G)− 2 = n(2g(H∗/Γ)− 2) +
∑

z∈H∗/G

(ez − 1)

The genus of H∗/Γ is zero. Hence

2g(H∗/G)− 2 = −2n+
∑

z∈H∗/G

(ez − 1)

= −2n+ 2ν ′3 + ν ′2 + n− ν∞

= −2n+ 2
n− ν3

3
+
n− ν2

2
+ n− ν∞
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Then we get the result

g = g(H∗/G) = 1 +
n

12
− ν2

4
− ν3

3
− ν∞

2

QED

In this thesis, we are interested in the genera of modular curves H∗/Γ0(`)

where Γ0(`) =


 a b

c d

 ∈ Γ : c ≡ 0 mod `

 for prime `’s. Let’s denote the

modular curves as

X0(`) = H/Γ0(`) and Y0(`) = H∗/Γ0(`).

First let’s calculate the genus of the curve Y0(`):

Theorem 3.2.4 The genus g = g(Y0(`)) of the modular curve for prime ` is

g =
`+ 1

12
− 1

4

(
1 +

(
−1

`

))
− 1

3

(
1 +

(
−3

`

))

where (
−1

`

)
=


0 if ` = 2,

1 if ` ≡ 1 mod 4,

−1 if ` ≡ 3 mod 4

and (
−3

`

)
=


0 if ` = 3,

1 if ` ≡ 1 mod 3,

−1 if ` ≡ 2 mod 3

Proof: Let C(`) =


 a b

0 d

 : ad = `, a > 0, 0 ≤ b < d, gcd(a, b, d) = 1


and let σ0 =

 ` 0

0 1

 ∈ C(`). Then for σ ∈ C(`) the set σ−1
0 Γσ ∩ Γ is a right

coset of Γ0(`). To see this, first let’s show σ−1
0 Γσ0 ∩ Γ = Γ0(`). For the element

σ−1
0 γσ0 ∈ σ−1

0 Γσ0∩Γ where γ =

 a b

c d

 ∈ Γ we have σ−1
0 γσ0 =

 a b/`

c` d

 ∈
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Γ0(`). Conversely, for α =

 a b

c d

 ∈ Γ0(`) let γ =

 a b`

c/` d

 ∈ Γ since

c ≡ 0 mod `. Then σ−1
0 γσ0 = α. Therefore σ−1

0 Γσ0 ∩ Γ = Γ0(`).

Now, for σ ∈ C(`), let’s see σ−1
0 Γσ∩Γ is a right coset of Γ0(`). Let α1 = σ−1

0 γ1σ

and α2 = σ−1
0 γ2σ be two elements of σ−1

0 Γσ∩Γ. Then α1α
−1
2 = σ−1

0 γ1σσ
−1γ−1

2 σ0 =

σ−1
0 γ1γ

−1
2 σ0 ∈ σ−1

0 Γσ0 ∩ Γ and hence α1α
−1
2 ∈ Γ0(`). That is, all elements of

σ−1
0 Γσ ∩ Γ are in the same coset. For an element σ−1

0 γσ ∈ σ−1
0 Γσ ∩ Γ we have

σ−1
0 Γσ ∩ Γ ⊆ Γ0(`)σ

−1
0 γσ. Let ασ−1

0 γσ ∈ Γ0(`)σ
−1
0 γσ, since σ−1

0 Γσ0 ∩ Γ = Γ0(`)

we can write α as α = σ−1
0 γ′σ0. Then ασ−1

0 γσ = σ−1
0 γ′σ0σ

−1
0 γσ = σ−1

0 γ′γσ ∈
σ−1

0 Γσ∩Γ. Hence, σ−1
0 Γσ∩Γ = Γ0(`)σ

−1
0 γσ. For different elements σ1, σ2 ∈ C(`),

the cosets σ−1
0 Γσ1 ∩ Γ and σ−1

0 Γσ2 ∩ Γ are also different since σ1σ
−1
2 6∈ Γ for

different σ1 and σ2 ∈ C(`). Now, for any γ =

 a b

c d

 ∈ Γ− Γ0(`) let’s choose

σ =

 1 x

0 `

 ∈ C(`) so that d− cx ≡ 0 mod `. Recall that c 6≡ 0 mod `. Then

for γ′ =

 a` −ax+ b

c −cx+d
`

 ∈ Γ we have σ−1
0 γ′σ = γ.

So, we have proved that elements of C(`) are in one to one correspondence

with the cosets of Γ0(`). Hence [Γ : Γ0(`)] = |C(`)|. But, elements of C(`)

are σ0 and

 1 j

0 `

 where j = 0, ..., ` − 1. Hence |C(`)| = ` + 1. That is,

[Γ : Γ0(`)] = `+ 1.

Now, let’s prove that the only cusps of Γ0(`) are 0 and ∞. Well, S∞ = 0

and S 6∈ Γ0(`). So 0 6∼Γ0(`) ∞. Now, let’s prove that any other rational number

is Γ0(`) equivalent to 0 or ∞. Let r = a
c
, (a, c) = 1. Assume r 6∼Γ0(`) ∞, then

c 6≡ 0 mod `. Hence (a`, c) = 1. There exists b, d ∈ Z such that cd− a`b = 1. Let

γ =

 d a

`b c

 ∈ Γ0(`). Then γ(0) = r. Hence, r ∼Γ0(`) 0. Therefore there are

just two cusps of Γ0(`), 0 and ∞.
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Elliptic points of Γ0(`) of order 2 are Γ equivalent to i. Let z = γi, γ = a b

c d

 ∈ Γ. z is elliptic point if and only if γSγ−1 ∈ Γ0(`). Because γSγ−1 ∈

Γz. We have γSγ−1 =

 bd+ ac −b2 − a2

d2 + c2 −bd− ca

. Hence, z is elliptic point if and

only if c2 + d2 ≡ 0 mod `. Number of elliptic points of order 2 is number of

solutions for c (or d) in c2 + d2 ≡ 0 mod ` and it is nothing but 1 +
(
−1
`

)
.

Similarly, elliptic points of Γ0(`) of order 3 are Γ equivalent to ω. Let z = γω,

γ =

 a b

c d

 ∈ Γ. Then z is an elliptic point if and only if γSTγ−1 ∈ Γ0(`) and

γSTγ−1 ∈ Γ0(`) means c2 − cd+ d2 ≡ 0 mod `. Number of solutions for c (or d)

in c2 − cd+ d2 ≡ 0 mod ` is 1 +
(
−3
`

)
.

So we have index n = `+ 1, ν∞ = 2, ν2 = 1 +
(
−1
`

)
and ν3 = 1 +

(
−3
`

)
. Hence,

genus of the curve Y0(`) is

g = 1 +
`+ 1

12
− 1

4

(
1 +

(
−1

`

))
− 1

3

(
1 +

(
−3

`

))
− 1

=
`+ 1

12
− 1

4

(
1 +

(
−1

`

))
− 1

3

(
1 +

(
−3

`

))

QED

We know that the elliptic curves E1 ' C/Zτ1 + Z and E2 ' C/Zτ2 + Z over

C are isomorphic if and only if τ1 is Γ equivalent to τ2. That is, the points

of the modular curve H/Γ are in one to one correspondence with the elliptic

curves up to isomorphism. Hence, H/Γ is moduli space for the moduli problem of

determining isomorphism classes of elliptic curves over C. Similarly, for γ ∈ Γ0(`)

and τ ∈ H/Γ0(`), the cyclic subgroup {1
`
, 2

`
, · · · , `−1

`
} of the elliptic curve C/Zτ+Z

remains invariant under the action of γ. Hence, H/Γ0(`) is a moduli space for

the problem of determining equivalence classes of pairs (E,C) where E is an

elliptic curve and C ⊂ E is a cyclic subgroup of order `. Then, the points

(E,C) ∈ X0(`) and (E ′, C ′) ∈ X0(`) are the same point if and only if there

exists an isomorphism µ : E 7−→ E ′ such that µ(C) = C ′. We know that there

is a one to one correspondence between subgroups Φ of an elliptic curve E and
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isogenies φ : E 7−→ E ′ given by the association Φ = kerφ. Therefore, we can view

the points of the modular curve X0(`) as equivalence classes of triples (E,E ′, φ)

where φ : E 7−→ E ′ is a cyclic isogeny (isogeny, whose kernel is cyclic) of order `.

3.2.2 Modular Equation

Definition 6 An analytic function f : H 7−→ C on the upper half plane, is said

to be holomorphic modular function with respect to the full modular group Γ if

i) f is Γ invariant. i.e., f(γz) = f(z) ∀γ ∈ Γ

ii) f is meromorphic at ∞. That is, in a neighborhood of ∞, f has the q

expansion

f(z) =
∑
k≥m

akq
k, q = e2πiz, m ∈ Z.

Then, we have the following lemma:

Lemma 3.2.1 [CO, pp 226] A holomorphic modular function with respect to Γ

is a polynomial in j(τ).

Now, let the right cosets of Γ0(`) be Γ0(`)γi; i = 1, ..., `+1. Then considering

the function

Φ`(X, j(τ)) =
`+1∏
i=1

(X − j(`γiτ))

it is clear that Φ` is a polynomial in X. Let’s see that it is also a polynomial in

j(τ). The coefficients of X in Φ`(X, j(τ)) are symmetric polynomials in j(`γiτ).

Hence, they are holomorphic. Also, because of symmetry, for γ ∈ Γ in a coefficient

of X, j(`γiγτ)’s are a permutation of the j(`γiτ)’s. Hence coefficients are Γ

invariant. On the other hand, we know that the right cosets of Γ0(`) are σ−1
0 Γσ

⋂
Γ

where recall that σ0 =

 ` 0

0 1

 and σ ∈ C(`). Hence, any γi can be written

as σ−1
0 γσ = γi for some σ ∈ C(`) and γ ∈ Γ. So, σ0γi = γσ. Then j(`γiτ) =
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j(σ0γiτ) = j(γσz) = j(σz) for some σ ∈ C(`). On the other hand, the j function

has a simple pole at ∞ and hence, has the q expansion

j(τ) =
c

q
+

∞∑
n=1

cnq
n

where c and cn’s are constants, q = e2πiz. Then

j(στ) =
c

e2πi aτ+b
d

+
∞∑

n=1

cne
2πi aτ+b

d for σ =

 a b

0 d

 ,
=

c · e−2πiab
`(

e
2πiz

`

)a2 +
∞∑

n=1

cne
2πiabn

`

(
e

2πiz
`

)a2n

and hence q expansion of j(mγiτ) has only finitely many negative exponents

and the coefficients of X in Φ` are meromorphic at ∞ since those coefficients

are polynomials in the j(mγiτ)’s. Therefore, the coefficients of Φ`(X, j(τ)) are

holomorphic modular functions and thus by the previous lemma, they are poly-

nomials in j(τ). So, we have seen that Φ`(X, j(τ)) is also a polynomial in j(τ).

This means that there exists a polynomial Φ`(X, Y ) ∈ C[X, Y ] satisfying

Φ`(X, j(τ)) =
`+1∏
i=1

(X − j(`γiτ)).

The equation Φ`(X, Y ) = 0 is called the modular equation. By the way, since

j(`γiτ) can be written as j(στ) for a unique σ ∈ C(`), we can also write

Φ`(X, j(τ)) =
∏

σ∈C(`)

(X − j(στ)).

Observe that for σ0 ∈ C(`), Φ`(j(σ0τ), j(τ)) = Φ`(j(`τ), j(τ)) = 0. Note that the

degree of Φ` in X is `+ 1 and its total degree is 2`.

The polynomial Φ`(X, Y ) ∈ C[X, Y ] satisfying the modular equation has gi-

gantic coefficients and hence to compute Φ` is somehow very complicated, par-

ticularly for big ` and for the numbers ` which have a lot of divisors. Hermann

computed Φ` for ` = 5 and ` = 7 (see [HER]). E. Kaltofen and N. Yui have

computed Φ` for ` = 11 (see [KA-YU]). Nowadays, powerful computer systems

are in use and can manipulate very complex algorithms which enable to compute

Φ` for non prime and big `’s.
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The following proposition describes the solutions of the modular equation:

Proposition 3.2.1 [CO, pp 235] For u, v ∈ C, Φ`(u, v) = 0 if and only if there

is a lattice L and a cyclic sublattice L′ ⊂ L of index ` such that j(L′) = u and

j(L) = v.



Chapter 4

Code Construction on Modular

Curves

In this chapter, we give a brief introduction to two approaches on code construc-

tion over modular curves. The first one is called geometric approach. It is due

to Klyachko (cf. [KLY]) and the other one is called group theoretic approach.

This approach is due to Vladuţ and Tsfasman (cf. [TS-VLA]). The geometric

approach studies local invariants of the plane model Z0(N) of the modular curve

Y0(N) given by the modular equation ΦN . The approach is based on describing

the hyperplane of regular differentials of Z0(N) vanishing at a given Fp2 rational

point. Unfortunately the plane model Z0(N) is highly singular curve. So, the

elements of the hyperplane must vanish at singular points also.

The group theoretical approach considers the codes on modular curves Y (N)

as group modules and tries to describe them not as vector spaces but as group

modules or in special cases, as group ideals. The group PSL(2,Z/NZ) acts on

curves Y (N) fixing the set of cusp points and inverse image of j invariant of a

supersingular elliptic curve E in P1 under the natural projection

ψN : Y (N) −→ P1.

So, the group PSL(2,Z/NZ) acts on the Goppa codes constructed on Y (N). The

action is permuting the coordinates of code words of the code. So, the codes can

53
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be considered as group codes.

4.1 Codes on Modular Curves

In this section. we give a proof that the number of rational points on modular

curves attains the Drinfeld-Vladuţ bound. The results are from [TS-VLA-ZI]. It

follows that the Goppa codes constructed on modular curves have asymptotically

the best known parameters.

Deligne and Rapoport have proved that the modular curves Y0(N) and Y (N)

have good (smooth) reduction over any prime ideal not dividing N (see [DE-RA]).

In particular, the modular curve Y0(N) is defined over Q. So, for any prime p not

dividing N , there exists a good reduction of Y0(N) modulo p. We consider the

modular curves in positive characteristics as moduli spaces of elliptic curves with

some special structures. The modular curve Y0(N) is the moduli space of elliptic

curves E with cyclic subgroup of order N . Similarly, the modular curve Y (N) is

moduli space of the pairs (E,αN), E is an elliptic curve and αN is a structure of

level N with determinant detαN = 1. That is, αN is an isomorphism

αN : EN −→ (Z/NZ)2

such that the inverse image of e2πi/N by Weil pairing in the Nth torsion group EN ,

is mapped to 1. The following theorem makes use of the result by Deligne and

Rapoport and shows that the modular curves have maximum possible number of

rational points:

Theorem 4.1.1 Let Y (N) be family of modular curves over Fp2 with genus g =

g(Y (N)). Then

lim
N→∞

|Y (N)(Fp2)|
g(Y (N))

= p− 1.

Proof: Recall that the modular curve Y (N) is moduli space of the pairs

(E,αN), E is an elliptic curve and αN is a structure of level N with determinant
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detαN = 1. Assume that E is a supersingular elliptic curve. We will show that

the point (E,αN) is an Fp2 rational point of Y (N). It is enough to prove that the

point is fixed by the Frobenious endomorphism Fr2 of degree p2 since it generates

the Galois group, Gal(Fp/Fp2). But, E is supersingular. So, Fr2 is equivalent to

multiplication by p up to automorphisms of E. If AutE = ±1 then Fr2 = ±p
and Fr2 preserves αN). If |AutE| 6= 2 then consider the representative (E,α′N)

where α′N is obtained by the action of a nontrivial automorphism of E. For this

representative (E,α′N), we have again Fr2 = ±p. So, in all cases (E,αN) remains

fixed by the action of Frobenious map Fr2. Hence (E,αN) is Fp2 rational point

of Y (N).

Let

ψN : Y (N) −→ P1

be the projection map where P1 = Y (1). The map ψN has degree µN =

[Γ(N) : Γ(1)] = N3

2

∏
`|N(1− `−2) where product is taken over primes. The group

PSL(2,Z/NZ) of order µN acts on the inverse image of the point j(E) ∈ P1 in

a way that the order of the isotropy group of j(E) equals to |AutE|/2. Because

isomorphic elliptic curves give the same point of Y (N). Hence, the inverse image

of j(E) contains 2µN

|AutE| points. Then, summing up the number of points (E,αN)

where E is supersingular, we get

∑
E

2µN

|AutE|
=
µN(p− 1)

12
. (4.1)

where the summation is taken over isomorphism classes of supersingular elliptic

curves. Recall that the above equality comes from the mass formula for automor-

phisms of supersingular elliptic curves. So, the number of Fp2 rational points of

Y (N) is bounded below by the quantity, µN (p−1)
12

.

The modular curve over complex field has no elliptic points. On the other

hand, number of its cusp points is µN/N . So, the genus of the curve Y (N) will

be

g(Y (N)) = 1− µN

12
− µN

2N
= 1 +

(N − 6)µN

12N
. (4.2)

The number of Fp2 rational points of Y (N) divided by genus is bounded belove
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by
µNN(p− 1)

12N + µN(n− 6)
.

Sending N to infinity, the limit (if exists) of

|Y (N)(Fp2)|
g(Y (N))

is bounded below by p − 1. But, this is the Drinfeld-Vladuţ bound and so the

limit is also bounded above by the same bound. Hence, the limit really exits and

equals to p− 1.

QED

We have proved that the family of modular curves Y (N) attains the Drinfeld-

Vladuţ bound. So, the codes constructed over Y (N) have the best known asymp-

totic parameters. One can prove similarly that the number of rational points of

another family of modular curves, Y0(N), defined over Fp also attains the Drinfeld

-Vladuţ bound. The argument in the proof of the previous theorem still works in

this case. But, we can get the result for Y0(N) by a simple corollary:

Corollary 4.1.1 Let Y0(N) be the modular curve defined over Fp with genus

g = g(Y0(N)). Then

lim
N→∞

|Y0(N)(Fp2)|
g(Y0(N))

= p− 1.

Proof: We have the projection

Y (N) −→ Y0(N) −→ P1 (4.3)

coming from Γ(N) ⊂ Γ0(N) ⊂ Γ(1). Let us denote the first projection as λN and

the second as ΘN . Then ΘN has degree deg ΘN = [Γ0(N) : Γ(1)] = N
∏

`|N(1 +

`−1) where product is taken over primes dividing N . The projection

Y (N) −→ P1

has degree [Γ(N) : Γ(1)] = N3

2

∏
`|N(1− `−2). So, the degree of the projection

λN : Y (N) −→ Y0(N)
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is deg λN = N2

2

∏
`|N(1− `). So, we have

|Y0(N)(Fp2)| ≥ |Y (N)(Fp2)|
deg λN

. (4.4)

As a conclusion, we have the lower bound

|Y0(N)(Fp2)|
g(Y0(N))

≥ |Y (N)(Fp2)|
g(Y (N))

. (4.5)

But, we have already proved that the number
|Y (N)(Fp2 )|

g(Y (N))
tends to the Drinfeld -

Vladuţ bound, p − 1, when N tends to infinity. So, the family of curves Y0(N)

also attains the Drinfeld - Vladuţ bound.

QED

4.2 Geometric Approach

In this approach, we are interested in classical modular curves Y0(`) which is a

moduli space of triples (E,E ′, φ) where φ : E 7−→ E ′ is a cyclic isogeny of order

` between the elliptic curves E and E ′. We assume that ` is a prime different

than characteristic, p. The family of curves Y0(`) attains the Drinfeld-Vladuţ

bound over Fp2 where (`, p) = 1 . Deligne and Rapoport have proved that Y0(`)

is defined over Z and has good (smooth) reduction modulo prime p for (`, p) = 1

(see [DE-RA]). So, in positive characteristic p where (`, p) = 1, the modular

curve is still a moduli space of triples (E,E ′, φ). Recall that there are two types

of elliptic curves in positive characteristic. The first type is an elliptic curve

whose endomorphism ring is abelian. Let us call it ordinary elliptic curve. The

second type of elliptic curves is that whose endomorphism ring is nonabelian. Let

us call it supersingular elliptic curve. If E is a supersingular elliptic curve then

its j invariant, j(E), is in Fp2 and the point represented by the triple (E,E ′, φ)

is a rational point of Y0(`) over Fp2 and number of supersingular elliptic curves

is enough big so that the curves Y0(`) over Fp2 for (`, p) = 1, reach the Drinfeld-

Vladuţ bound. For more explanation and proofs, one can refer to the book of

Tsfasman and Vladuţ on algebraic geometric codes [TS-VLA] .
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The modular curve Y0(`) has great significance in coding theory. They have

maximum number of rational points asymptotically. So, the Goppa codes con-

structed on modular curves will have best asymptotic parameters on the segment

where the algebraic geometric bound is lying above the Gilbert Varshamov bound.

But, the difficulty arises in describing Y0(`) in an algebraic equation. Because of

this, constructing Goppa codes on modular curves is one of the research problems

in coding theory.

Our main problem is to find a way of constructing Goppa codes on modular

curves Y0(`). We embed Y0(`) into P(Ω) where Ω = Ω[Y0(`)] is the space of

regular differentials of Y0(`). It is really an embedding of Y0(`) for ` ≥ 71 since

it is not hyperelliptic for the case ` ≥ 71 (see [OGG]). Then Goppa codes are

configurations of rational points on P(Ω). We can divide the problem into two

problems. One is finding a basis for the space Ω[Y0(`)] and the other one is

describing the hyperplanes of Ω[Y0(`)] whose elements vanish at rational points.

Consider

Y0(`) −→ P(Ω∗)

x 7→ Ωx = {w ∈ Ω : w(x) = 0}.

Any configuration of the points Ωx in P(Ω∗) which does not lie in a hyperplane

in P(Ω∗), where Ω∗ is the dual space of Ω, gives a Goppa code on the modular

space Y0(`) for a set of Fq rational points x. So, we should find a description of

regular differentials that vanish at a given rational point x ∈ Y0(`)(Fq).

4.3 Group Theoretical Approach

The group PSL(2,Z/NZ) acts on the modular curve Y (N). Also, the action

preserves inverse images of the natural projection

Y (N) −→ P1.

In particular, it preserves the inverse image of a supersingular point. The image

of a cusp point under the action is also a cusp point. So, naturally the Goppa

codes on modular curves Y (N) are group codes.



CHAPTER 4. CODE CONSTRUCTION ON MODULAR CURVES 59

4.3.1 Group Codes

Group codes are the generalization of cyclic codes. Let G be a finite group.

Consider the group algebra over the field Fq

Fq[G] = {f : G −→ Fq}

where the addition is inherited from Fq and the multiplication is defined as con-

volution:

(f1 · f2)(g) =
∑
h∈G

f1(h) · f2(h
−1 · g).

The action of G on Fq[G] is defined as

(fg)(h) = f(gh).

For a subgroup H ⊂ G, the invariant space is defined as

Fq[G/H] = {f : G −→ Fq, f(gh) = f(g) ∀g ∈ G ∀h ∈ H}.

Both Fq[G] and Fq[G/H] are vector spaces over Fq of dimension order of G and

index of H respectively. The group G itself forms a basis for the space Fq[G]

whose elements are considered as functions sending themselves to the identity and

vanishing on the other group elements. Similarly, we can form a basis {f1, ..., fk}
for the space Fq[G/H] where each function fi is nonzero constant function on

ith coset of H and vanishing on the other cosets. Then, any subspace C of

Fq[G/H] is a linear code. In general, any G submodules of the G module M =

Fq[G/H1] ⊕ · · · ⊕ Fq[G/Hm] are linear codes for arbitrary subgroups H1, ..., Hm

of G.

In contrast, let C be a linear code in Fn
q . Let G ⊂ Sn ∩ AutC be a subgroup

of automorphism group of C acting by permutation of coordinates. Let B =

{e1, ..., en} be a basis for Fn
q . The group G acts on B. Write B as disjoint union

of G orbits, B = O1 ∪ ... ∪ Om where each Oi is an orbit of a subset of B. Let

Hi be stabilizer of any point in Oi. Then, Oi is G isomorphic to G/Hi. We can

identify Fn
q as a G module:

Fn
q ' Fq[G/H1]⊕ · · · ⊕ Fq[G/Hm] (4.6)
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and the code C will be a G submodule in this G module.

So, we have seen that it is possible to consider the linear codes as group

modules, in particular as group ideals. Also, group modules are linear codes. We

can carry this notion on Goppa codes on curves. Let X be a smooth projective

curve over Fq. Let C be a (X,P,D)Ω construction on X. Let G ⊂ AutFq
(X) be

a subgroup of Fq automorphisms of X such that both the set P and the divisor

D are left invariant under the action of G. In this case, g∗(w) ∈ Ω(D0 −D)∀ω ∈
Ω(D0 − D),∀g ∈ G, where D0 is the divisor defined by P . So, g∗ will permute

the coordinates of any code word of C. So, G ⊂ Sn ∩ AutC. In conclusion, we

have C is a group code lying in the G module Fq[G/H1]⊕ · · · ⊕ Fq[G/Hm] where

Hi’s are stabilizers of points in P . If we summarize this discussion, we have

Proposition 4.3.1 [TS-VLA, pp 283] Let G ⊂ AutFq
(X), let P be a G invariant

subset of Fq rational points of X and D be a G invariant Fq divisor on X. SuppD∩
P = ∅. Then the Goppa code C = (X,P,D)Ω is a group code: C ⊂ Fq[G/H1] ⊕
· · · ⊕ Fq[G/Hm] where Hi’s are stabilizers of Oi ∈ P , {Q1, ...Qm} being a set of

orbit representatives of the action of G on P .

We can consider the Goppa codes on Y (N), defined over a field of character-

istic p not dividing N , as group codes. Let D be a PSL(2,Z/NZ) invariant Fp2

rational divisor of the modular curve Y (N) and P be a set of Fp2 rational points

which is also invariant under the action of PSL(2,Z/NZ). Then the Goppa code

C = (Y (N),P , D)Ω has a natural action of the group PSL(2,Z/NZ).

An example of group codes is proposed by taking D as the divisor of cusp

points and P the set of supersingular points in [TS-VLA]. Recall that the group

PSL(2,Z/NZ) acts on the modular curve Y (N) preserving the inverse images of

the projection

ψN : Y (N) −→ P1. (4.7)

So, we can consider the Goppa codes on Y (N) as group codes. P be the set

of inverse images of supersingular elliptic curves under the projection map ψ.

Let S∞ be the set of cusp points of Y (N). Then, the action of PSL(2,Z/NZ)
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permutes the elements of S∞. Recall that |S∞| = µN/N where µN = [Γ(N) :

Γ(1)] = N3

2

∏
`|N(1 − `−2).As usual, the product is taken over primes. The only

cusp point of P1, ∞, is an Fp2 rational point. So, the divisor D =
∑

Q∈S∞ n ·Q is

defined over Fp2 . Consider the code C = (Y (N),P , D)Ω over Fp2 . Then we have,

Proposition 4.3.2 [TS-VLA, pp 433] The code C = (Y (N),P , D)Ω over Fp2

has a natural action of the group PSL(2,Z/NZ). The number of the orbits of

this action equals the number of s(p) of supersingular values of j invariant in

characteristic p. Also, the code C can be realized as a PSL(2,Z/NZ) submodule

in the algebra Fp2 [PSL(2,Z/NZ)]s(p).

We will restrict ourselves to the prime values ` different from p such that p does

not divide `2 − 1. In this case, the algebra Fp2 [PSL(2,Z/`Z)]s(p) is semisimple

since the order of the group PSL(2,Z/`Z) is not divisible by p. Then, the problem

of code construction is reduced to the description of the code as PSL(2,Z/`Z)

submodule of Fp2 [PSL(2,Z/`Z)]s(p).

The main problem is investigating the structure of a group code C =

(Y (`),P , D)Ω as PS2(F`) module. We propose a way of computing the char-

acters of representations of a group code by using localization formula. This

approach, including an application, is explained in detail in chapter 6.



Chapter 5

Geometric Approach

We have seen that the family of classical modular curves over a finite field Fq

where q is a square, attains the Drinfeld-Vladuţ bound. So, the Goppa codes

on modular curves have parameters lying on the algebraic geometric bound, R =

1−δ−(
√

(q)−1−1). So, it is known that the modular codes have good parameters.

The problem is to find a feasible way to construct codes on modular curves. In this

chapter we have explained the geometric approach on modular code construction

in detail. There are still several open questions in the approach. Also, we have

stated our developments in this approach (see [KLY-KA]).

5.1 General View

In this section we give a general overview of the geometric approach of code

construction and state both the improvements and the unsolved problems.

We would like to have a canonical embedding of the curve Y0(`) in P(Ω). So,

the first problem is finding a basis for the space P(Ω). That is:

Describe the space of regular differentials Ω = Ω[Y0(`)].

One can use the analytic interpretation of modular curves over C. There is a

62
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one to one correspondence between cusp forms of weight 2 and regular differential.

Recall that a cusp form is a modular form that vanishes at each cusp (one can see

the books by Shimura [SH] or by Lang [LA 1] for detailed information). So, the

problem of finding a basis for the regular differential forms of the modular curve

Y0(`) is equivalent to finding a basis for the cusp forms for the modular curves

over the complex plane, C.

We introduce two approaches on finding a basis for regular differentials. The

first one is analytic and based on forming a basis for the space of cusp forms of

weight 2 on Y0(`) in characteristic 0 (see [HE]). The second one uses the plane

model Z0(`) of the modular curve Y0(`). The singular plane curve Z0(`) is given

by the modular equation Φ` defined as

Φ`(X, j(τ)) =
∏
γi

(X − j(`γiτ))

where Γ0(`)γi’s are the right cosets of Γ0(`) in the full modular group Γ. So, the

regular differentials are of the form

ω = P
xdy − ydx

Φz

= P
xdz − zdx

Φy

= P
zdy − ydz

Φx

(5.1)

where P = P (x, y, z) is a homogeneous polynomial of degree 2` − 3, satisfying

some extra conditions on singular points and Φ is homogeneous the modular

polynomial Φ`. We should be careful that the plane model Z0(`) is a singular

curve. So, the polynomial should satisfy some extra conditions on singular points

so that the differential form ω = P xdy−ydx
Φz

has no pole. Naturally, the first step

is describing those singularities. Then, we should impose local condition on the

polynomial P at singular points. For instance, if a singular point is only an

intersection of two smooth branches with the order of contact, say m, then P

must have a zero of order at least m − 1 on any branch at the corresponding

singular point. Then the differential form ω = P xdy−ydx
Φz

will be regular at that

singular point. We should have similar conditions on the polynomial P at any

singular point if the singularity is intersection of smooth branches. It seems it

is difficult to determine the local conditions that P must satisfy at a cuspidal

singularity.

Any configuration P of Fp2 rational points of Y0(`) is a Goppa code. That
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code has a generator matrix whose columns are coordinates of the points of P in

the space P(Ω∗), dual of the projective space of regular differentials. A generator

matrix for a code C is a matrix whose rows form a basis for C. So, first of all we

should find out a basis for the space of regular differentials on Y0(`). Then, the

image of a point x ∈ Y0(`) in P(Ω∗) is the hyperplane in Ω consisting of ω ∈ Ω

such that ω(x) = 0. So, we should describe the hyperspace of regular differentials

vanishing at a given rational point.

The first step on code construction is describing the space of regular differen-

tials. We introduce two approaches. The first one is an old and classical problem,

based on describing the space of cusp forms. See [HE] for general information.

The second one is by Klyachko ([KLY]).

5.1.1 First Approach

Recall that there is a nice analytic interpretation of modular curves over C. A

modular curve is a quotient space of the action of some specific subgroups of

SL2(Z) on upper half plane, H. For σ =

 a b

c d

 ∈ SL2(Z), the action was

defined as

σ(z) =
az + b

cz + d
, z ∈ H.

Then σ is map from H to H since

im(
az + b

cz + d
) =

im(z)

|cz + d|2
> 0 for z ∈ H.

As usual, H has complex topology generated by open disks.

Any subgroup G of Γ which contains the principal congruence subgroup of

level `,

Γ(`) =

σ =

 a b

c d

 ∈ Γ :

 a b

c d

 ≡
 1 0

0 1

 mod `

 .
for some ` ∈ Z+ is called congruence subgroup. For such a congruence subgroup

G we have also discrete topology. Then, as a topological group, G is an action
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on H which is defined as

(σ, z) = σz =
az + b

cz + d
, σ =

 a b

c d

 ∈ G and z ∈ H.

For a point z ∈ H, recall that the set Gz = {gz : g ∈ G} as the orbit of z under G.

Then, the quotient space H/G is the set of all G - orbits of points on H. Any two

points z1, z2 which are in the same orbit with respect to G are called G equivalent

and we denote this fact as z1 ∼G z2. Now, let’s introduce the quotient topology

on H/G.

To compactify H/Γ, we should add the point ∞. For this, let H∗ = H∪Q∪∞
since Γ (and any subgroup of Γ) acts on Q∪∞. For a congruence subgroup G of

Γ the quotient space Q∪∞/G is finite. That is, there exists finitely many orbits

of G for the space Q ∪∞.

Recall that the modular curve Y0(`) is the quotient space H∗/Γ0(`) where

Γ0(`) =


 a b

c d

 ∈ Γ : c ≡ 0 mod `

.

Constructing a basis for the space of regular differential forms on Y0(`) in

characteristic 0 is one of the famous problems of the field of modular forms and

elliptic functions. The space of cusp forms of weight 2 is isomorphic to the

space of regular differential forms on a modular curve. Hecke has claimed that a

certain explicit set of Θ series coming from quaternion algebras form a basis for

the space of cusp forms of weight 2 on Y0(`) where ` is a prime (see [HE], p 884).

Unfortunately, Hecke’s conjecture did not hold in general. However, Hecke’s idea

led Pizer and he conjectured that a slightly modified version of the set of theta

series proposed by Hecke can be a basis set for cusp forms (see [PI]). Then, taking

reduction of cusp forms modulo a prime p, we get differential forms of Y0(`) in

characteristic p.

5.1.2 Second Approach

Constructing a basis of differentials via cusp forms is one approach. Another

approach makes use of a singular plane model of Y0(`). The curve Y0(`) has
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singular plane model Z0(`) coming from projection

π : Y0(`) → P2 (5.2)

given in affine coordinates by ρ 7→ (j(E), j(E ′)) where ρ : E → E ′ is a cyclic

isogeny of degree ` between elliptic curves E and E ′ . One can define the curve

Z0(`) explicitly by classical modular equation

Z0(`) : Φ`(X,Y ) = 0 (5.3)

We make use the plane model Z0(`) to construct a basis for the space Ω of

Y0(`). For this, first let us introduce how the regular differentials are formed for

plane curves:

5.1.2.1 Differentials of a Plane Curve

Let X ⊂ P2 be a curve given by F (x, y, z) = 0 of degree d. If X is smooth then

the regular differentials are of the form

ω = P
xdy − ydx

Fz

= P
xdz − zdx

Fy

= P
zdy − ydz

Fx

(5.4)

where P = P (x, y, z) is a homogeneous polynomial of degree d − 3. We follow

this approach to construct regular differentials. However, the projective plane

model Z0(`) is a singular curve. But the differentials on a singular plane curve

are still of the form given in equation 5.4. We should impose some additional

local conditions on the polynomial P at singular points. Let us now assume that

X is singular. If X has a normal self intersection of m smooth branches at a point

x ∈ X then P should have vanishing derivatives on each branch up to order m−2

at the point x to supply that the differential ω in 5.4 is regular at x. We should

impose some other local conditions on the polynomial P at a general singular

point.

So, constructing the regular differentials on Z0(`) as in the form 5.4, we should

first describe the singularities of Z0(`). After then, next problem is to determine

the local conditions on the polynomials P given in 5.4 at singular points. So, first

let us examine the singularities of Z0(`).
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5.2 Singularities of Modular Curve

One of the model of affine part X0(`) of Y0(`) is plane model, Z0(`), given by the

projection map

π : X0(`) −→ A2

(E,E ′, φ) 7−→ (j(E), j(E ′)).

Well, the points (j(E), j(E ′)) of Z0(`), where there is a cyclic isogeny φ : E 7−→ E ′

of degree `, are exactly roots of the modular equation Φ`(X, Y ) = 0, where

Φ`(X, Y ) ∈ C[X, Y ] is a minimal polynomial such that Φ`(j(z), j(`z)) = 0 .

One can find singularities of Z0(`) via the modular equation Φ`(X, Y ) = 0. But

calculating Φ` is somehow very difficult problem even for small `’s (see [CO]).

The aim of this section is to describe the singularities of Z0(`) for prime `

in both characteristic 0 and positive characteristic. We have shown that both in

positive characteristic p > 3 for (p, `) = 1 and in characteristic 0, the map

π : X0(`) 7−→ A2

(E,E ′, φ) 7−→ (j(E), j(E ′)) (5.5)

is immersion. That is, the differential, dπ, is injective. So, π is local embedding

of nonsingular branches. Hence, all singularities of Z0(`) are self intersections.

We have also proved that two points of Z0(`) at ∞ in projective space are cusps

for odd prime ` which are analytically equivalent to the cusp of 0, given by the

equation x` = y`−1 (see Proposition 5.2.2). These two cusps are permuted by

Atkin-Lehner involution. The multiplicity of singularity of each cusp is (`−1)(`−2)
2

.

This result is valid in any characteristic p 6= 2, 3.

In the first part of the section we have found singularities of plane model

Z0(`) of Y0(`) for prime `. What is new in this part is the description of the

singularities of the plane projective curve Z0(`). First, we have investigated that

all singularities of Z0(`) are double points. Such self intersection comes from

existence of two cyclic isogenies σ, ρ : E 7−→ E ′ of degree `, which are not

equivalent modulo automorphisms of E and E ′. That is, σ 6= ε′ρε where ε ∈
Aut(E) and ε′ ∈ Aut(E ′). Then, the triples (E,E ′, σ) and (E,E ′, ρ) represent
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two different points on X0(`) whereas their projections, (j(E), j(E ′)) is a single

point on Z0(`) which is a singularity. It turns out that there exists at most two

such nonequivalent isogenies of degree ` and hence all self intersections are double

(see theorem 5.2.4).

We have described self intersections explicitly. In two different parameteriza-

tion in a neighborhood of a point of Z0(`) we get two different tangent vectors.

That is, singularities of Z0(`) in characteristic 0 are not just double self intersec-

tions but they are exactly simple nodes (normal self intersections) (see proposition

5.2.3).

The following theorem describes the singularities of Z0(`) in characteristic 0.

That theorem is combination of theorem 5.2.4 and proposition 5.2.3.

Theorem 5.2.1 There exists a one to one correspondence between self intersec-

tions of the curve Z0(`) over C and the elliptic curves E having complex multi-

plication α : E 7−→ E such that

i) N(α) = αα = `2 and

ii) α
`

is not root of unity.

Moreover, all self intersections are simple nodes.

Using the theorem above, we can relate number of singularities of Z0(`) with

Hurwitz class number

H(−D) =
∑ 2

|AutQ|
where summation is over equivalence classes of binary integer quadratic forms

Q = ax2 + bxy + cy2, a, b, c ∈ Z, of discriminant −D = b2 − 4ac. The quadratic

form x2 + y2 is counted with weight 1
2

and the quadratic form x2 + xy + y2 is

counted with weight 1
3
. All other quadratic forms in other equivalent classes are

counted with weight 1. Then, number of nodes is given as:
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Theorem 5.2.2 Number of simple nodes of Z0(`) is

∑
0<t<2`,t6=`

H(t2 − 4`2).

As explained above the projective closure, Z0(`), has additional two singular

points at ∞, which are cusps analytically equivalent to x` = y`−1 (see proposition

5.2.2). The multiplicity of this cusp is (`−1)(`−2)
2

. As a corollary, we get an

independent proof of Hurwitz class number formula by comparing two genus

formulas for Y0(`). One of them is calculated by Hurwitz genus formula, given

in 1.6 independent from the projective plane model , Z0(`), and the other one

is calculated from the projective plane model, Z0(`), by Plücker genus formula

including singularities of Z0(`). That independent proof of Hurwitz class number

formula confirms all the statements in characteristic 0:

Corollary 5.2.1
2∑̀

t=−2`

H(`2 − 4t2) = 2`2 + `

where H(0) = −1
12

.

In the latter part, we have described the singularities of the projective plane

model, Z0(`) in positive characteristic p > 3.

First of all, since the canonical projection π : X0(`) 7−→ A2 is immersion in

any characteristic p 6= 2, 3; we get

Proposition 5.2.1 The singularities of Z0(`) in positive characteristic p > 3 are

just multiple self intersections.

In positive characteristic also, the singularities of Z0(`) are the points

(j(E), j(E ′)) where there exists at least two cyclic isogenies σ, ρ : E 7−→ E ′ of

degree ` and those two isogenies σ, ρ are not equivalent modulo automorphisms

of E and E ′.

The results can be viewed in two parts:



CHAPTER 5. GEOMETRIC APPROACH 70

i) The singularities corresponding to ordinary elliptic curves in positive char-

acteristic. An ordinary elliptic curve defined over a finite field is an elliptic curve

whose endomorphism ring is an order in an imaginary quadratic field.

ii) The singularities corresponding to supersingular elliptic curves. Recall that

a supersingular elliptic curve is an elliptic curve in positive characteristic p, which

has no element of order p. In difference with ordinary elliptic curves, endomor-

phism ring of a supersingular curve is an order in quaternion algebra. In addition,

there are finitely many supersingular elliptic curves in positive characteristic p

and all of them are defined over Fp2 .

Structure of singularities of the affine curve Z0(`) essentially depends on these

two types of elliptic curves.

It turns out that , the multiplicity of a self intersection is a power of charac-

teristic p for ordinary case whereas it is more complicated for supersingular case.

The following statement describes the multiplicities:

Theorem 5.2.3 Let (j(E), j(E ′)) ∈ Z0(`) be an intersection of two branches

corresponding to the pair of nonequivalent cyclic isogenies ρ, σ ∈ Hom(E,E ′), of

degree `. Let α = ρ̂σ ∈ End(E) where ρ̂ is the dual isogeny of ρ. If pr is the

p part of the conductor of Z[α] then the multiplicity of intersection of these two

branches is

i) pr if p splits in Q(α),

i) 2 + 2p+ · · ·+ 2pr−1 + pr if p is prime in Q(α), and

ii) 2 + 2p+ · · ·+ 2pr−1 + 2pr if p is ramified in Q(α).

5.2.1 Singularities in Characteristic 0

Let Z0(`) be the curve given by the modular equation Φ`(X, Y ) = 0. For a lat-

tice L = [z, 1], all its sublattices L′ ⊂ L of index ` has j invariant j(`γz) where

Γ0(`)γ is a coset of Γ0(`) for γ ∈ Γ. We have Φ`(j(L), j(L′)) = 0. For the fixed
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L = [z, 1], solutions of Φ`(j(L), j(L′)) = 0 are (j(γiz), j(`γiz)) = (j(z), j(`γiz))

where Γ0(`)γi, i = 1, · · · , ` + 1, are all cosets of Γ0(`). Hence, the point

(j(z), j(`z)) is generic point of the curve Z0(`). So, the curve Z0(`) has the

local parameterization z 7−→ (j(z), j(`z)). Let

π : X0(`) −→ Z0(`)

be a projection map taking the point (E,E ′, φ), where φ is a cyclic isogeny of

degree ` between elliptic curves E and E ′, to (j(E), j(E ′)) = (j(z), j(`z)). Now,

we are going to investigate singularities of projective closure Z0(`) of Z0(`). First,

Z0(`) can have only self intersections as singularity. For z ∈ H such that one of

the elliptic curves C/[z, 1] or C/[`z, 1] has only trivial automorphisms then the

tangent vector (j′(z), `j′(`z)) is not zero. Hence, locally there exists a tangent

vector. If both of the curves E and E ′ have nontrivial isomorphisms then either

both of the elliptic curves are E = E ′ = C/Zi + Z or E = E ′ = C/Zω + Z.

Because the curves C/Zi+ Z and C/Zω + Z are not isogenous.

For the case E = E ′ = C/Zi + Z or E = E ′ = C/Zω + Z, the point

(j(E), j(E ′)) ∈ Z0(`) has also tangent vector. Let (j(E), j(E ′)) = (j(z), j(`z)) ∈
Z0(`) where Aut(E) = Aut(E ′) = {±1,±i}. Then, at the point (j(E), j(E ′)) our

local parameter is t =
(

z−i
iz−1

)2
. Hence tangent vector is

d

dt
(j(z), j(`z)) = (

d

dt
j(z),

d

dt
j(`z))

=

 dj(z)
dz
dt
dz

,
dj(`z)

dz
dt
dz


Both numerators and denumerators vanish as z tends to i. Hence, taking limit

we get

d

dt
(j(z), j(`z)) =

 d2j(z)
dz2

d2t
dz2

,
d2j(`z)

dz2

d2t
dz2


which is nonzero since j′′(i) 6= 0. Similarly, let (j(E), j(E ′)) = (j(z), j(`z)) ∈
Z0(`) where Aut(E) = Aut(E ′) = {±1,±ω,±ω2}. In this case our local parame-

ter is t =
(

z−ω
ωz−1

)3
and tangent vector is

d

dt
(j(z), j(`z)) = (

d

dt
j(z),

d

dt
j(`z)) =

 dj(z)
dz
dt
dz

,
dj(`z)

dz
dt
dz
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again both numerators and denumerators vanish at z = ω and hence taking limit

as z tends to ω we get

d

dt
(j(z), j(`z)) =

 d2j(z)
dz2

d2t
dz2

,
d2j(`z)

dz2

d2t
dz2

 .
Again both numerators and denumerators vanish at z = ω. So, taking limit again

as z → ω we get

d

dt
(j(z), j(`z)) =

 d3j(z)
dz3

d3t
dz3

,
d3j(`z)

dz3

d3t
dz3


which is nonzero at z = ω since j′′′(ω) 6= 0.

Therefore, we have seen that the curve Z0(`) can have just self intersections

as singularities. Well, actually there exists self intersections. Recall that Y0(`)

has two points at ∞ represented by the cusps ∞ and 0. So, the plane model

Z0(`) of Y0(`) has two points at ∞. For odd prime `, those points are cusps as

singularity. Precisely:

Proposition 5.2.2 Z0(`) has two cusps as singularity at ∞ for odd prime `.

Each of the singularity has multiplicity (`−1)(`−2)
2

.

Proof: At the point ∞ of Y0(`) we have the parameterization z 7−→ q = e2πiz.

So, Z0(`) has parameterization

(j(q) : j(q`) : 1) at ∞.

We have j(q) = c
q

+
∑

n≥0 cnq
n where c and cn’s are constants. Hence

(j(q) : j(q`) : 1) = (q`−1 +
∑
n≥0

cn
c
qn+` : 1 +

∑
n≥0

cn
c
qn(`+1) : q`).

Let x = q`−1 and z = q`. Then the point (j(q) : j(q`) : 1) of Z0(`) is analytically

isomorphic to (x : 1 : z). Let X be the curve given by f(x, z) = x` − z`−1 = 0.

We have the inclusion k[t`, t`−1] ⊂ k[t] and the multiplicity of the singularity

of the curve X at (0, 0) is, by definition, the dimension of k[t]/k[t`, t`−1]. But,

that dimension is nothing but the number of monomials of k[t] which are not

in k[t`, t`−1]. Those monomials are exactly tn where n = b` − a(` − 1), ` − 1 >
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b ≥ a ≥ 0. We have (`−1)(`−2)
2

choice of such a and b. Hence, multiplicity of the

singularity at (j(q) : j(q`) : 1) is (`−1)(`−2)
2

.

The other point of Y0(`) at ∞ is represented by the cusp 0. Let w = 0 −1

` 0

. Then wΓ0(`)w
−1 = Γ0(`). By Atkin - Lehner involution

w : z 7−→ − 1

`z

0 is transformed to ∞. Therefore, projection of 0 to Z0(`) also has singularity

of multiplicity (`−1)(`−2)
2

. Remark that, for ` = 2 we have no singularity on the

points of Z0(`) at ∞.

QED

Now, let’s describe the self intersections of Z0(`) in affine space:

Theorem 5.2.4 There exists a one to one correspondence between self intersec-

tions of the curve Z0(`) over C and the elliptic curves E having complex multi-

plication such that ∃α ∈ End(E) satisfying

i) N(α) = αα = `2 and

ii) α
`

is not root of unity.

Moreover, all self intersections are double.

Proof: Assume we have two different points (E,E ′, σ) and (E,E ′, ρ) in X0(`).

Difference comes from the isogenies σ, ρ ∈ Hom(E,E ′). Then, there is a self

intersection on the point (j(E), j(E ′)) ∈ Z0(`). Since those two triples (E,E ′, σ)

and (E,E ′, ρ) represent two different points on X0(`), σ is not equivalent to ρ

modulo automorphisms of E and E ′. That is, σ 6= ε′ρε for any ε ∈ Aut(E)

and ε′ ∈ Aut(E ′). Because, otherwise we would have ε(kerρ) = kerσ for some

ε ∈ Aut(E) which means the triples represent the same point on the curve X0(`).

The isogeny ρ̂σ ∈ End(E), where ρ̂ is the dual isogeny of ρ, has degree `2 and
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ρ̂σ is not multiplication by ` since otherwise ρ = σ. Hence E has CM. Similarly

σ̂ρ ∈ End(E ′) and σ̂ρ 6= [`]. Hence, E ′ has also CM.

Now, let α = ρ̂σ End(E). Then N(α) = deg(ρ̂σ) = degρ̂ degσ = `2 and

α = ρ̂σ 6= ρ̂ε′ρε = ε′ε` and hence α
`

is not root of unity.

Conversely, for an elliptic curve E = C/[z, 1] assume ∃α ∈ End(E) satisfying

i) N(α) = αα = `2 and

ii) α
`

is not root of unity.

Let kerα = C and C ′ ⊂ C be a cyclic subgroup of C of order `. Then, there

exists an elliptic curve E ′ and an isogeny σ ∈ Hom(E,E ′) such that kerσ = C ′.

Then let’s define ρ′ ∈ Hom(E ′, E), ρ′(z′) = α(z) where σ(z) = z′. Then ρ′ is

cyclic of order ` and ρ̂′ ∈ Hom(E,E ′) is, cyclic isogeny of degree `, not equivalent

to σ modulo isomorphisms of E and E ′. Assume, on the contrary that, σ = ε′ρ̂′ε.

Then α = ρ′ε′ρ̂′ε = ε′ε` and hence α
`

would be root of unity, contradiction.

Therefore σ and ρ̂′ are not equivalent. That is, the point (j(E), j(E ′)) is singular.

Now, let’s assume ∃σ, ρ ∈ Hom(E ′, E), σ 6= ερε for any ε ∈ End(E) and

ε′ ∈ End(E ′) and α = ρ̂σ. Let E = C/[z, 1], E ′ = C/[`z, 1]. There are three

possibilities for the decomposition of the ideal (`) in the ring of integers OK of

the imaginary quadratic field Q(z):

i) (`) is a prime ideal: In that case (α)(α) = (`)2. So, (α) = (`) which means
α
`

is a root of unity.

ii) (`) = P2, where P is a prime ideal. Then, (α)(α) = P4 which implies that

(α) = P2 and hence, again, α
`

is a root of unity.

iii) (`) = PP ′ where P and P ′ are prime ideals. Then (α)(α) = P2P ′2. If

(α) = PP ′ then again (α) = (`) which means α
`

is a root of unity. So, for elliptic

curves E = C/[z, 1] such that ∃α ∈ End(E) with N(α) = `2 and α
`

is not a root

of unity, we must have (`) = PP ′ in the ring of integers OK of Q(z) and (α) = P2.

Then (α) = P ′2 and α correspondence to the isogeny σ̂ρ whereas α = ρ̂σ. Hence,
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all self intersections are double.

QED

Well, self intersections of the curve Z0(`) are indeed simple nodes (normal self

intersections). Let’s prove this fact in the following proposition:

Proposition 5.2.3 All self intersections of the curve Z0(`) are simple nodes.

Before proving the proposition, let’s introduce a lemma:

Lemma 5.2.1 Let (j(E), j(E ′)) ∈ Z0(`). Assume (j(E), j(E ′)) is a self inter-

section. Then Aut(E) = Aut(E ′).

Proof of lemma: Assume (j(E), j(E ′)) ∈ Z0(`) is a self intersection. Then

∃ρ, σ ∈ Hom(E,E ′), cyclic isogenies of degree ` and σ is not equivalent to ρ

modulo automorphisms of E and E ′. Then, α = ρ̂σ ∈ End(E) and αα = `2.

If Aut(E) = {±1,±i}, then ` ≡ 1 mod 4 and ∃λ ∈ Z[i], λλ = `, λ 6= λ. So,

α = λ2, σ = λ, ρ = λ and λ̄
λ
/∈ Z[i]. Similarly, if Aut(E) = {±1,±ω,±ω2} then

∃λ ∈ Z[ω] such that α = λ2 and σ = λ, ρ = λ. Hence, in both cases Aut(E) =

Aut(E ′), which is enough to prove the lemma. Because, if Aut(E) = {±1} and

{±1} Aut(E ′) we can manipulate the same process as above for E ′ and get

{±1} Aut(E) which is contradiction.

QED

Proof of proposition: Assume (j(E), j(E ′)) is self intersection. Then ∃α ∈
End(E) such that αα = `2 and α

`
is not root of unity. Let σ and ρ be two

nonequivalent cyclic isogenies of degree ` in Hom(E,E ′). We have three steps:

Step I: Assume Aut(E) = {±1}. Then by the lemma Aut(E ′) = {±1}. Let

E = C/L. Then kerσ = L′

L
, kerρ = L′′

L
and α

`
L′ = L′′. Let

L = [ω1, ω2], L′ = [
ω1

`
, ω2] and L′′ = [ω1,

ω2

`
].
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Then, α
`

ω1

`
= aω1 + bω2

`
and α

`
ω2 = cω1 + dω2

`
where

 a b

c d

 ∈ SL2(Z). We

have ω1

ω2
= z, local parameter. Then (j(z), j(`z)) is a self intersection. On the

other hand z
`

= a`z+b
c`z+d

=⇒ (j(z), j(a`z+b
c`z+d

)) is another parameterization of the self

intersection. Since Aut(E) = Aut(E ′) = {±1}, j′(z) and j′( z
`
) are nonzero.

Then, tangent vectors for those two parameterizations are

(j′(z),
1

`
j′(
z

`
)) and (j′(z),

`

(c`z + d)2
j′(
a`z + b

c`z + d
)).

If, assume on the contrary, those two tangent vectors are equal then we would

get
1

`
=

`

(c`z + d)2
.

But, c`z + d = α. Hence, α2 = `2. Contradiction since α
`

is not a root of

unity. Hence, we have different tangent vectors and so the self intersection is a

simple node.

Step II: Assume Aut(E) = {±1,±i}. Same construction as in Step I for

L,L′, L′′ =⇒ α = c`z + d, ω1

ω2
= z. But, in this case, our local parameter is

t =
(

z−i
iz−1

)2
. Hence tangent vectors are

d

dt
(j(z), j(z/`)) = (

d

dt
j(z),

d

dt
j(z/`))

=

 dj(z)
dz
dt
dz

,
dj(z/`)

dz
dt
dz


Both numerators and denumerators vanish as z tends to i. Hence, taking limit

we get

d

dt
(j(z), j(z/`)) =

 d2j(z)
dz2

d2t
dz2

,
d2j(z/`)

dz2

d2t
dz2


which is nonzero since j′′(i) 6= 0 and d2t

dz2 6= 0 at z = i. Let
d2j(z)

dz2

d2t
dz2

= A 6= 0. Then

d2j(z/`)

dz2

d2t
dz2

= 1
`2
A and

lim
z−→i

dj(a`z+b
c`z+d

)

dz
dt
dz

=

d2j(a`z+b
c`z+d

)

dz2

d2t
dz2
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=

d
dz

( `
(c`z+d)2

j′(a`z+b
c`z+d

))

d2t
dz2

=
`2

(c`z + d)4
A

If these two tangent vectors were equal then we get

1

`2
A =

`2

(c`z + d)4
A =

`2

α4
A =⇒ α4 = `4.

Contradiction. Hence, tangent vectors are different. So, again we have a simple

node.

Step III: In this last step, let’s assume Aut(E) = {±1,±ω± ω2}. Then, this

time our parameter is t =
(

z−ω
ωz−1

)3
and tangent vectors are

(
dj(z)

dt
,
dj(z/`)

dt

)
=

 d3j(z)
dz3

d3t
dz3

,
d3j(z/`)

dz3

d3t
dz3


since j′(z) = j′′(z) = 0 but j′′′(z) 6= 0 for z ∼Γ ω and dt

dz
= d2t

dz2 = 0 but d3t
dz3 6= 0 at

z = ω. The other tangent vector is

(
dj(z)

dt
,
dj(a`z+d

c`z+d
)

dt

)
=

 d3j(z)
dz3

d3t
dz3

,

d3j(a`z+b
c`z+d

)

dz3

d3t
dz3

 .
Let, again, dj(z)

dt
at z = ω be A. Then,

dj(z/`)

dt
=

d3j(z/`)
dz3

d3t
dz3

=
1

`3
A and

dj(a`z+d
c`z+d

)

dt
=

d3j(a`z+b
c`z+d

)

dz3

d3t
dz3

=
`3

(c`z + d)6
A.

Hence, again, if the tangent vectors were equal then 1
`3
A = `3

(c`z+d)6
A =⇒ α6 =

`6. Contradiction. So, tangent vectors are different. Therefore, in all cases, we

have seen that self intersections of Z0(`) are simple nodes.

QED
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We have described the nodes of the curve Z0(`). Now, let’s count them.

Before, let me introduce Hurwitz class number. Hurwitz class number is defined

as

H(−D) =
∑ 2

|AutQ|
where summation is over equivalence classes of binary integer quadratic forms

Q = ax2 + bxy + cy2, a, b, c ∈ Z, of discriminant −D = b2 − 4ac. The quadratic

form x2 + y2 is counted with weight 1
2

and the quadratic form x2 + xy + y2 is

counted with weight 1
3
. All other quadratic forms in other equivalent classes are

counted with weight 1. Another interpretation of Hurwitz class number is that if

O is an order with discriminant −D in an imaginary quadratic field K then

H(−D) = H(O) =
∑

O⊂O′⊂OK

2

|O′∗|
h(O′)

Where OK is the ring of integers of K (see [CO]). Now, we are ready to state the

theorem:

Theorem 5.2.5 Number of nodes of Z0(`) is

∑
0<t<2`,t6=`

H(t2 − 4`2).

Proof: There is a one to one correspondence between nodes of Z0(`) and

elliptic curves E such that ∃α ∈ End(E);αα = `2 and α
`

is not root of unity.

Let K be an imaginary quadratic field with discriminant −dK , dK ∈ Z+. Then,

let α = a+b
√
−dk

2
∈ OK . αα = `2 =⇒ b2dK = 4`2 − a2. Hence, α is in the

order O ∈ OK with the conductor b and also in any order O′, O ⊂ O′ ⊂ OK .

Number of elliptic curves, up to isomorphism, whose endomorphism rings are O is

h(O) = h(−b2dK). By the way, for a = ` we have α = ±`+`
√
−3

2
and α

`
= ±1

2
+
√
−3
2

,

which is a root of unity and if a = 0 then dK = 4 and α = ±`i. Hence, again
α
`

= ±i, which is also a root of unity.

If (j(z), j(`z)) ∈ Z0(`) is a node and AutC/[z, 1] = {±1,±i} then,

Γz = {id , S} and hence, (j(Sz), j(`Sz)) ∈ Z0(`) is also a node. Sim-

ilarly, for a node (j(z), j(`z)) ∈ Z0(`) , if AutC/[z, 1] = {±1,±ω,±ω2}
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then, Γz = {id , ST, (ST )2}. Hence (j(STz), j(`STz)) ∈ Z0(`) and

(j((ST )2z), j(`(ST )2z)) ∈ Z0(`) are also nodes of Z0(`). Therefore number of

nodes of Z0(`) is ∑
0<t<2`,t6=`

H(t2 − 4`2).

QED

As a corollary of the theorem we get an independent proof of the Hurwitz

class number formula:

Corollary 5.2.2
2∑̀

t=−2`

H(`2 − 4t2) = 2`2 + `.

Proof: The projective closure Z0(`) has two singular points at ∞, which

are permuted by Atkin-Lehner involution. They are analytically isomorphic to

x` = z`−1 with multiplicity of singularity (`−1)(`−2)
2

.

Genus of Y0(`) is

g =
(d− 1)(d− 2)

2
− number of singularities

where d is the degree of the modular equation. Then

g =
(2`− 1)(2`− 2)

2
− 2

(`− 1)(`− 2)

2
−

∑
0<t<2`,t6=`

H(t2 − 4`2)

= (`2 − 1)−
∑

0<t<2`,t6=`

H(t2 − 4`2).

On the other hand

g =
`+ 1

12
− 1

4

(
1 +

(
−1

`

))
− 1

3

(
1 +

(
−3

`

))

=
`− 6

12
− 1

4

(
−1

`

)
− 1

3

(
−3

`

)
.

We have for dK = 3, h(−dK) = 1 since there is only one elliptic curve E with

AutE = {±1,±ω,±ω2}. Then, for the order O ⊂ Q(ω) with conductor `, we
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have h(−3`2) = 1·`
3

(
1−

(
−3
`

)
1
`

)
. Then, H(−3`2) = 1·`

3

(
1−

(
−3
`

)
1
`

)
+ 1

3
. Because,

the only orders including O are O itself and OK .

With a similar argument h(−4`2) = 1 since there is only one elliptic

curve E with AutE = {±1,±i}. Let O be an order in Q(i) with conductor

`. Then, h(−4`2) = 1·`
2

(
1−

(
−4
`

)
1
`

)
= `

2

(
1−

(
−1
`

)
1
`

)
and hence H(−4`2) =

`
2

(
1−

(
−1
`

)
1
`

)
+ 1

2
since the orders including O are O itself and OK = Z+Zi. By

definition, H(0) := − 1
12

. Then

(`2 − 1)−
∑

0<t<2`,t6=`

H(t2 − 4`2) =
`− 6

12
− 1

4

(
−1

`

)
− 1

3

(
−3

`

)
=⇒

∑
0<t<2l,t6=`

H(t2 − 4`2) = `2 − 1 +
6− `

12
+

1

4

(
−1

`

)
+

1

3

(
−3

`

)
=⇒

2
∑

0<t≤2`,

H(t2 − 4`2) +H(4`2) = 2`2 − 2 +
6− `

6
+

1

2

(
−1

`

)
+

2

3

(
−3

`

)

+
2

3
`

(
1−

(
−3

`

)
1

`

)
+

`

2

(
1−

(
−1

`

)
1

`

)
+ 1

= 2`2 − `.

QED

5.2.2 Singularities in Characteristic p > 3

In this section, we describe singularities of Z0(`) in characteristic p > 3 where `

is also prime not equal to p. In this section we always assume that ` is prime.

Recall that two cusps of Z0(`) in positive characteristic are equivalent to

x` = y`−1. Since x` = y`−1 has good reduction modulo any prime p, we have

again two cusps of Z0(`) for prime ` in positive characteristic with multiplicities
(`−1)(`−2)

2
(see proposition 5.2.2).

A very powerful result of Deligne and Rapoport enables us to characterize the

points of the modular curve X0(`) in positive characteristic:
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Theorem 5.2.6 (Deligne and Rapoport) [DE-RA] X0(`) is defined over

Z[1
`
] and has good (smooth) reduction modulo prime p > 3 where (`, p) = 1 and

X0(`) mod p parameterize isogenies ψ : E −→ E ′ with cyclic kernel kerψ = Z/`Z.

Hence, also in positive characteristic p > 3, X0(`) for (`, p) = 1, is a moduli

space for the problem of determining equivalence classes of triples (E,E ′, ψ) where

ψ : E −→ E ′ is a cyclic isogeny of order `. Hence, in this case, we have again the

projection:

π : X0(`) −→ Z0(`)

(E,E ′, ψ) 7−→ (j(E), j(E ′)).

In positive characteristic p 6= 2, 3, π is also immersion as in the case characteristic

0. Let’s prove this statement in the following lemma:

Proposition 5.2.4 The singularities of Z0(`) in a field k of characteristic not

equal to 2 or 3 are just self intersections.

Proof: Let k be a field of characteristic not equal to 2 or 3. Consider the

projection

X0(`) −→ Z0(`) −→ A1(k)

(E,E ′, φ) 7−→ (j(E), j(E ′)) 7−→ j(E)

where A1(k) is the affine space. Recall that under the projection map

H/Γ0(`) −→ H/Γ

if the point z in H/Γ0(`) is ramified then the isotropy group Γz = {g ∈ Γ :

gz = z} is not trivial and j(z) = 0 or j(z) = 123. For that ramified point z,

the ramification index is either 2 or 3 (see proof of the theorem 3.2.3). Let me

remind that j invariant is bijection between the curves given as

H/Γ −→ C

z 7−→ j(z).
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So, let X0(`) be the modular curve over a field k of characteristic not equal to 2

or 3. If the projection given as

X0(`) −→ A1(k)

(E,E ′, φ) 7−→ j(E)

is ramified at the point (E,E ′, φ) then j(E) = 0 or j(E ′) = 123. The characteristic

of k is not 2 or 3. So, 0 and 123 are not equal in k. Hence, ramification index

of (E,E ′, φ) is either 2 or 3. The curves X0(`) and A1(k) are smooth curves. If

(E,E ′, φ) is not ramified with respect to the projection

X0(`) −→ A1(k)

(E,E ′, φ) 7−→ j(E)

then (E,E ′, φ) is not ramified with respect to the projection

X0(`) −→ Z0(`)

(E,E ′, φ) 7−→ (j(E), j(E ′)).

Hence, Z0(`) has locally smooth parameterization at (j(E), j(E ′)). Now, let us

assume that the point (E,E ′, φ) is ramified with ramification index 2 (or 3) with

respect to the projection

X0(`) −→ A1(k)

(E,E ′, φ) 7−→ j(E).

Then either (E,E ′, φ) is not ramified with respect to the projection

X0(`) −→ Z0(`)

(E,E ′, φ) 7−→ (j(E), j(E ′))

or (j(E), j(E ′)) is not ramified with respect to the projection

Z0(`) −→ A1(k)

(j(E), j(E ′)) 7−→ j(E)

since 2 (or 3) is a prime number. Therefore, for any point (j(E), j(E ′)) ∈ Z0(`)

we have locally isomorphism either between curves Z0(`) and X0(`) or between
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the curves Z0(`) and A1(k) at the point (j(E), j(E ′)). Since the curves X0(`)

and A1(k) are smooth curves, the only possibility for singularities of Z0(`) is self

intersections.

QED

Those self intersections of Z0(`) corresponds to the points (j(E), j(E ′)) ∈
Z0(`) where there exists at least two cyclic isogenies of degree `, σ ∈ Hom(E,E ′)

and ρ ∈ Hom(E,E ′) such that σ is not equivalent to ρ modulo automorphisms

of E and E ′. Let ρ̂ be dual isogeny of ρ. Then, α = ρ̂σ ∈ End(E). αα = `2 and
α
`

is not root of unity.

When studying such α ∈ End(E) with αα = `2 and α
`

is not root of unity, we

treat the singularities of Z0(`) in two cases: Singular points (j(E), j(E ′)) where

End(E) (same as saying End(E ′) since E and E ′ are isogenous) is an order in

an imaginary quadratic field. Let us call those singularities as singularities at

ordinary points. The other singular points (j(E), j(E ′)) are those where End(E)

(same as saying End(E ′)) is an order in a quaternion algebra. Let’s call them as

singularities at supersingular points.

5.2.2.1 The Singularities at Ordinary Points

Let (j(E), j(E ′)) ∈ Z0(`) be a singular point corresponding to pair of isogenies

σ ∈ Hom(E,E ′) where E is ordinary elliptic curve. That is, End(E) is an order

in imaginary quadratic field. Then the self intersection is double since there is

just one α = ρ̂σ ∈ End(E) with αα = `2 and α
`

is not root of unity, up to

conjugacy.

We know from proposition 5.2.4 that all singularities of Z0(`) are self inter-

sections. The following proposition describes those self intersections which are

simple nodes of Z0(`) in positive characteristic and gives the number of those

nodes:

Proposition 5.2.5 Let Z0(`) be the plane model of X0(`) in characteristic p > 3,
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(p, `) = 1. Let (j(E), j(E ′)) ∈ Z0(`) be an intersection of two branches cor-

responding to the pair of nonequivalent cyclic isogenies σ, ρ ∈ Hom(E,E ′) of

degree `. Let α = ρ̂σ ∈ End(E) where ρ̂ is the dual of ρ. Assume p splits in Q(α)

and the conductor of Z[α] is coprime to p. Then the singularity at (j(E), j(E ′))

is a simple node. The number of such nodes is

∑
0 < t < 2`, t 6= `(

t2−4`2

p

)
= 1

H(t2 − 4`2).

Proof: Assume (j(E), j(E ′)) ∈ Z0(`) is a singular point of Z0(`) corresponding

to the pair of nonequivalent cyclic isogenies σ, ρ ∈ Hom(E,E ′) of degree `. Let

α = ρ̂σ ∈ End(E). The self intersection is double. In characteristic 0, the

singularities are nodes. Since we have a good reduction, reduction of tangent

vectors are tangent vectors of reduction. Hence, the self intersection is a simple

node if α2 6≡ `2 mod p. That is, α 6≡ α mod p. Let α = a+b
√
−D

2
where −D is

the discriminant of the field Q(α). Then, αα = `2 = a2+b2D
4

=⇒ b2D = 4`2 − a2.

α 6≡ α mod p⇐⇒ b 6≡ 0 mod p. Anyway, b is the conductor of Z[α] and coprime

to p. Hence (j(E), j(E ′)) is a simple node.

Now, we should count the elliptic curves E in characteristic p, whose order O
includes α with αα = `2 and α

`
is not root of unity. For α = a+b

√
−D

2
, the order

O has conductor b which is coprime to p. Also p must split in k. Hence, the

discriminant −D of k is also coprime to p. So, the discriminant −b2D of O is

coprime to p and p splits in k. That is
(
−b2D

p

)
=
(

t2−4`2

p

)
= 1. Therefore, number

of nodes is ∑
0 < t < 2`, t 6= `(

t2−4`2

p

)
= 1

H(t2 − 4`2).

QED

In general, self intersection points Z0(`) are not simple nodes. We are going

to calculate multiplicity of intersection of a singularity both in ordinary case and

in supersingular case by perturbation method.



CHAPTER 5. GEOMETRIC APPROACH 85

We need the following lemma in calculating number of contacts of a self in-

tersection:

Lemma 5.2.2 Let k be an imaginary quadratic field of discriminant −D and p

be a prime. Then the Hurwitz class number satisfies the following relation:

H(−p2rD) =


prH(−D) If p splits in k,

(2 + 2p+ · · ·+ 2pr−1 + pr)H(−D) If p is prime in k,

(1 + p+ · · ·+ pr)H(−D) If p is ramified in k.

Proof: Let us introduce the weighted class number h∗ given as h∗(−D) = h(−D)
|O∗|

where O is the order with discriminant −D. Then, for positive integer r > 0 we

have

h∗(−p2rD) = h∗(−D)pr

(
1−

(
−D
p

)
1

p

)
by the theorem 3.1.4. we have by definition

H(−D) =
∑
f2|D

h∗(
−D
f 2

).

Then

H(−p2rD) =
∑

0≤α≤r

h∗(−p2αD) = h∗(−D) +
∑

0<α≤r

h∗(−D)pα

(
1−

(
−D
p

)
1

p

)

= H(−D)

1 +
∑

0<α≤r

pα

(
1−

(
−D
p

)
1

p

)

=


prH(−D) If p splits in k,

(2 + 2p+ · · ·+ 2pr−1 + pr)H(−D) If p is prime in k,

(1 + p+ · · ·+ pr)H(−D) If p is ramified in k.

QED

For given curves X and Y over a field k, the multiplicity of intersection of

the curves X and Y at a point P0 is equal to the number of simple intersection

points close to P0 of perturbed curves X̃ and Ỹ .
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More explicitly, let X̃(ε) and Ỹ (ε) be the family of curves over the ring k[ε]

depending on small parameter ε. Then, multiplicity of intersection of the curves

X and Y at a point P0 is equal to number of intersections with multiplicities of

X̃(ε) and Ỹ (ε) at points which project to the point P0 for ε = 0.

Assume that the curves X and Y are over a field of positive characteristic

p and X̃, Ỹ are liftings into characteristic 0. Let X̃ and Ỹ be defined over Z
and their coordinate rings have no element of finite order. Then, multiplicity of

intersection of the curves X, Y at a point P0 is equal to multiplicity of intersection

of the liftings X̃ and Ỹ at the points which project into P0.

By Deligne Rapoport theorem the modular curve Z0(`) is defined over Z[1
`
].

For (`, p) = 1 we can view the curve Z0(`) as defined over Z while taking reduc-

tion modulo p. Therefore, multiplicity of intersection of pair of branches of Z0(`)

in positive characteristic p corresponding to pair of nonequivalent cyclic isogenies

σ, ρ : E 7−→ E ′ of degree ` is nothing but number of liftings of the pair (σ, ρ) in

characteristic 0. So, to calculate the multiplicity we should count number of lift-

ings. The following theorem describes multiplicity of singularities corresponding

to ordinary elliptic curves:

Theorem 5.2.7 Let Z0(`) be the plane model of X0(`) in characteristic p > 3,

(p, `) = 1. Let (j(E), j(E ′)) ∈ Z0(`) be an intersection of two branches cor-

responding to the pair of nonequivalent cyclic isogenies σ, ρ ∈ Hom(E,E ′) of

degree `. Let α = ρ̂σ ∈ End(E) where ρ̂ is the dual of ρ. Assume p splits in Q(α).

Then the singularity at (j(E), j(E ′)) has multiplicity pr where pr is p part of the

conductor of Z[α]. That is, if f = prc0 where c0 6≡ 0 mod p then multiplicity is

pr.

Proof: Assume (j(E), j(E ′)) ∈ Z0(`) is a singular point of Z0(`) corresponding

to pair of nonequivalent cyclic isogenies σ, ρ ∈ Hom(E,E ′) of degree `. Let

α = ρ̂σ ∈ End(E). Then αα = `2 and α
`

is not root of unity. Let the conductor

of Z[α] be f = prc0, c0 6≡ 0 mod p and the discriminant of Q(α) be −D. By

Deuring’s lifting theorem there is a unique elliptic curve E0 in characteristic 0
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whose endomorphism ring EndE0 = O0 with conductor c0 such that reduction of

E0 modulo p is isomorphic to E.

Consider the points (j(A), j(A′)) ∈ Z0(`) over characteristic 0 such that

Z[α] ⊂ End(A) ⊂ O0. Then α ∈ End(A) and number of such elliptic curves

is H(−f 2D) (see proof of theorem 5.2.5). On the other hand, the number of

points (j(A0), j(A
′
0)) ∈ Z0(`) with α ∈ End(A0) in characteristic p is H(−c20D).

Hence, there exists H(−f2D)
H(−c20D)

liftings of two branches corresponding to α at the

point (j(E), j(E ′)). Since p splits in k we have H(−f2D)
H(−c20D)

= pr (see lemma 5.2.2).

Therefore multiplicity of singularity of the point (j(E), j(E ′)) is pr.

QED

Corollary 5.2.3 The number of self intersections of multiplicity pr correspond-

ing to ordinary elliptic curves is

∑
0 < t < 2`, t 6= `( t2−4`2

p2r
p

)
= 1

H

(
t2 − 4`2

p2r

)
=

1

pr

∑
0 < t < 2`, t 6= `

t2 − 4`2 = −p2rD,
(−D

p

)
= 1

H(t2 − 4`2).

Proof: Let k be an imaginary quadratic field with discriminant −D and p

split in k. Let O be an order in k with conductor prc0, c0 6≡ 0 mod p. Let α ∈ k
such that αα = `2 and α

`
is not root of unity. For α = a+b

√
−D

2
, αα = `2 =⇒

4`2 = a2 + b2D. So, b2D = 4`2 − a2. If the order O has discriminant −b2D then

b = prc0. Hence c20D = 4`2−a2

p2r . So, now we should count the elliptic curves in

an order of discriminant −c20D. Anyway, we have counted those kind of elliptic

curves in proposition 5.2.5 and their number is

∑
0 < t < 2`, t 6= `( t2−4`2

p2r
p

)
= 1

H

(
t2 − 4`2

p2r

)
.

From the identity H(−p2rD) = prH(−D) we have the equality

∑
0 < t < 2`, t 6= `( t2−4`2

p2r
p

)
= 1

H

(
t2 − 4`2

p2r

)
=

1

pr

∑
0 < t < 2`, t 6= `( t2−4`2

p2r
p

)
= 1

H(t2 − 4`2).



CHAPTER 5. GEOMETRIC APPROACH 88

QED

Endomorphism ring of an ordinary elliptic curve has discriminant which is p-

adic square. So, to find number of all self intersections corresponding to ordinary

elliptic curves let me introduce the following

Lemma 5.2.3 [KI, pp 51] For a ∈ Z∗p, a = x2 for x ∈ Q∗p if and only if a ≡
1 mod 8 when p = 2, and a ≡ y2 mod p for y ∈ Z with (y, p) = 1 when p 6= 2.

Then, number of self intersections of ordinary points is given as:

Corollary 5.2.4 Sum of the multiplicities of all self intersections corresponding

to ordinary elliptic curves is ∑
0 < t < 2`, t 6= `

t2 − 4`2 = p− adic square

H(t2 − 4`2).

Proof: We know that number of self intersections of multiplicity pr corre-

sponding to ordinary elliptic curves is

1

pr

∑
0 < t < 2`, t 6= `( t2−4`2

p2r
p

)
= 1

H(t2 − 4`2).

So, if we count those singularities with multiplicity, we get∑
0 < t < 2`, t 6= `( t2−4`2

p2r
p

)
= 1

H(t2 − 4`2).

The prime number p splits in an imaginary quadratic field k with discriminant

t2 − 4`2 if and only if t2 − 4`2 is a square in the p-adic field Qp (see the lemma

5.2.3). So, if we count all the singularities with multiplicity corresponding to

ordinary elliptic curves, we get ∑
0 < t < 2`, t 6= `

t2 − 4`2 = p− adic square

H(t2 − 4`2).
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QED

Corollary 5.2.5 Sum of the multiplicities of all self intersections corresponding

to supersingular elliptic curves is

∑
0 < t < 2`, t 6= `

t2 − 4`2 6= p− adic square

H(t2 − 4`2).

Proof: The genus of the curve Y0(`) is not changed in positive characteristics

also since Y0(`) has good reduction. So, in characteristic 0, the genus was

g =
(2`− 1)(2`− 2)

2
− 2

(`− 1)(`− 2)

2
−

∑
0<t<2`,t6=`

H(t2 − 4`2)

= (`2 − 1)−
∑

0<t<2`,t6=`

H(t2 − 4`2).

In positive characteristic, the singularities of cusps of Z0(`) are same as in char-

acteristic 0. Hence, to get the same genus as in positive characteristic, we should

have number of all singularities, counted with multiplicities, of Z0(`) in positive

characteristic must be ∑
0<t<2`,t6=`

H(t2 − 4`2).

But, number of singularities of Z0(`) with multiplicities corresponding to ordinary

elliptic curves is ∑
0 < t < 2`, t 6= `

t2 − 4`2 = p− adic square

H(t2 − 4`2).

Hence, number of singularities of Z0(`) with multiplicities corresponding to su-

persingular elliptic curves is

∑
0 < t < 2`, t 6= `

t2 − 4`2 6= p− adic square

H(t2 − 4`2).

QED



CHAPTER 5. GEOMETRIC APPROACH 90

5.2.2.2 The Singularities at Supersingular Points

The singularities of Z0(`) corresponding to supersingular elliptic curves in positive

characteristic are the most complicated ones. Those singularities may not be just

double self intersections. Also, counting number of liftings of two branches is

more difficult than in the case of ordinary elliptic curves.

Proposition 5.2.6 Let E be an elliptic curve whose endomorphism ring O is an

order in imaginary quadratic field k. Assume a given prime number p is ramified

in k and E has complex multiplication α ∈ O. Then the reduction E of E modulo

p has j invariant j(E) ∈ Fp.

Proof: Let E be an elliptic curve whose endomorphism ring O is an order in

an imaginary quadratic field k. Let k have discriminant −D and E has complex

multiplication α ∈ O. Then

α =
a+ b

√
−D

2
=⇒ N(2α− a) = (2α− a)(2α− a) = b2D.

Let us define νP : Z −→ Z as νP (n) = r where n = prc0, c0 6≡ 0 mod p. p is

ramified in k. So, νp(D) ≡ 1 mod 2. Hence

νp(N(2α− a)) = 2νp(b) + νp(D) ≡ 1 mod 2.

Let νp(N(2α − a)) = 2m + 1, m ∈ Z. Let’s denote E as reduction of E modulo

p and let End(E) be a maximal order OE in the quaternion algebra ramified

only at ∞ and at p. Then, two sided ideal class group HO
E

is either trivial or

cyclic group of order 2. The reduction of the isogeny 2α − a in OE has order

also N(2α − a) = (2α − a)(2α− a) with νp(N(2α − a)) ≡ 1 mod 2. p has norm

p2 in OE. So, the element β = 2α−a
pm has norm p. That is, N(β) = p. Hence, by

proposition 3.1.11, j(E) ∈ Fp.

QED

In ordinary case, we have used Deuring’s lifting theorem to count the number

of liftings. Unfortunately, there is no statement about canonical liftings of super-

singular elliptic curves. But, we follow a similar procedure as Deuring’s lifting
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theorem while counting the liftings of a supersingular curve via orders. However,

with this mechanism we may not get all the liftings and there may be some extra

liftings.

We are going to use following statement, known as Gauss genus theory, to

count some special liftings:

Lemma 5.2.4 [BO-SHA, pp 247] Let k be an imaginary quadratic field with

discriminant −D. Let H2 be elements of order 2 of the ideal class group of ring

of integers of k. Then H2 = {P | (−D) : O is prime ideal and u P ' 1} and

|H2| = 2t−1 where t is the number of distinct prime numbers which divide D.

Furthermore, class number of the ring of integers of k is odd if and only if D is

divisible by only one prime.

A special type of liftings of a supersingular elliptic curve over a finite field Fp,

where p ≡ −1 mod 4, is described in the following proposition:

Proposition 5.2.7 Let E0 be a supersingular curve with j(E0) ∈ Fp and p ≡
−1 mod 4. Let E = C/L be a complex elliptic curve where L is a fractional ideal

in Z[
√
−p]. Assume reduction of E modulo p is isomorphic to E0. Then the

reduction of the curve E ′ = C/L−1 modulo p is also isomorphic to E0.

Proof: Let E0 be a supersingular curve with j(E0) ∈ Fp. Assume p ≡
−1 mod 4. Then the class number h(−p) is odd by the lemma 5.2.4. Let E = C/L
be a complex elliptic curve where L is a fractional ideal in Z[

√
−p].

Complex conjugation acts on j invariant as follows:

j(L) = j(L−1).

On the other hand, complex conjugation acts on prime ideals P , where P divides

the ideal (p), generated by p, of the class field K ⊃ Q(
√
−p). We have [K :

Q(
√
−p)] = h(−p) which is odd. So, there are odd number of primes P dividing

(p). Hence, ∃P such that P = P . Then j(L) mod P = j(L) mod P since
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j(L) ∈ Fp and P = P . But j(L) = j(L−1). Hence, the curves E = C/L and

E ′ = C/L−1 have same reduction modulo p.

QED

In general, the multiplicity of two branches of a singular point of Z0(`) corre-

sponding to supersingular elliptic curve in positive characteristic is explained in

the following:

Theorem 5.2.8 Let (j(E), j(E ′)) ∈ Z0(`) be an intersection of two branches

corresponding to the pair of nonequivalent cyclic isogenies ρ, σ ∈ Hom(E,E ′),

of degree `. Assume E is supersingular. Let α = ρ̂σ ∈ End(E). If pr is the

p part of the conductor of Z[α] then the multiplicity of intersection of these two

branches is

i) 2 + 2p+ · · ·+ 2pr−1 + pr if p is prime in Q(α), and

ii) 2 + 2p+ · · ·+ 2pr−1 + 2pr if p is ramified in Q(α).

Proof: Assume E is a supersingular curve and (j(E), j(E ′)) ∈ Z0(`) is an

intersection of two branches corresponding to the pair of nonequivalent cyclic

isogenies ρ, σ ∈ Hom(E,E ′), of degree `. Let α = ρ̂σ. Assume Z[α] has the

conductor f = prc0, c0 6≡ 0 mod p in the imaginary quadratic field Q(α) with

discriminant −D. p is either prime or ramified in k since E is supersingular.

Let L and L′ be two lattices in Z[α] such that O0L = O0L
′ where O0 is the

order in Q(α) with conductor c0. Then, O0L and O0L
′ are lattices in O0 and L ⊂

O0L, L′ ⊂ O0L
′. We have [O0 : O] = pr. Hence [O0L : OL] = [O0L

′ : OL′] = pr.

So, the natural projection maps

ϕ : C/L −→ C/O0L and ψ : C/L′ −→ C/O0L
′

have degree pr. C/O0L and C/O0L
′ are isomorphic. Reduction of C/L (C/L′)

and C/O0L (C/O0L
′) modulo p are supersingular. Hence, reductions of ϕ and ψ

is Frr (see proposition 3.1.12). Let C/L,C/L′,C/O0L and C/O0L′ denote the



CHAPTER 5. GEOMETRIC APPROACH 93

reductions of C/L,C/L′,C/O0L and C/O0L
′ respectively. Then we have

Frr : C/L −→ C/O0L and Frr : C/L′ −→ C/O0L′.

C/O0L and C/O0L′ are isomorphic. Hence, C/L and C/L′ are also isomorphic.

That is, C/L and C/L′ have same reduction. We have H(−c20D) number of

lattices in O0 whereas H(−p2rc20D) number of lattices in orders O′ where Z[α] ⊂
O′ ⊂ O0. Hence, by the above argument we get

H(−p2rc20D)

H(−c20D)
number of liftings of

the curve E. Recall that

H(−p2c20D)

H(−c20D)
=

 2 + 2p+ · · ·+ 2pr−1 + pr If p is prime in k,

1 + p+ · · ·+ pr If p is ramified in k.

In supersingular case there may be some extra liftings. Let p be ramified

in Q(α) and (p) = P2 where (p) is the principal ideal generated by p and P is

prime ideal. Let O0L = M . Then we have [M : MP ] = p and hence the natural

projection map

ϑ : C/MP −→ C/M

has degree p. So, reduction of ϑ is Fr by the proposition 3.1.12. Let AMP and AM

denote the reduction of elliptic curves C/MP and C/M modulo p respectively.

Then j(AMP) = j(AM) since AMP and AM are supersingular elliptic curves and

Fr ∈ Hom(AMP , AM). But j(AM) ∈ Fp by proposition 5.2.6. Hence, j(AMP) =

j(AM). That is, C/MP and C/M have the same reduction modulo p. For the

lattice MP we have 1+p+ · · ·+pr liftings also. If P is not principal then C/MP
and C/M are different curves. So we get 2(1+p+· · ·+pr) liftings. If P is principal

then let H2 be set of elements of order 2 of ideal class group of ring of integers

of Q(α). P | (−D) where (−D) is the ideal of ring of integers of Q(α) generated

by −D. Then H2 is trivial by lemma 5.2.4. Hence, Q(α) has discriminant −p by

again the lemma 5.2.4. So, p ≡ −1 mod 4. Then by the proposition 5.2.7 again

we have two liftings . Hence, when p is ramified in k we have 2 extra liftings. In

conclusion we have at least 2 + 2p+ · · ·+ 2pr−1 + pr lifting when p is prime in k

and 2(1 + p+ · · ·+ pr) lifting when p is ramified.
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Well, number of liftings are exactly 2+2p+ · · ·+2pr−1 +pr when p is prime in

k and 2(1 + p+ · · ·+ pr) when p is ramified. Because, number of all singularities

with multiplicities corresponding to supersingular elliptic curve is, by the corollary

5.2.5

∑
t2 − 4`2 6= p− adic square

0 < t < 2`, t 6= `

H(t2 − 4`2) =
∑

t2 − 4`2 = −p2rD,
(−D

p

)
= 1

0 < t < 2`, t 6= `

H(t2 − 4`2) +

∑
t2 − 4`2 = −p2rD, p | D

0 < t < 2`, t 6= `

H(t2 − 4`2) (5.6)

On the other hand, we have seen that there is a one to one correspondence

with self intersections represented by (E,α) and lattices in O0 when p is prime

and there is a one to two correspondence with self intersections represented by

(E,α) and lattices in O0 when p is ramified. So, number of self intersections

represented by (E,α), when p prime is,

∑
0 < t < 2`, t 6= `( t2−4`2

p2r
p

)
= −1

H

(
t2 − 4`2

p2r

)
=

1

2 + 2p+ · · ·+ 2pr−1 + pr

∑
t2 − 4`2 = −p2rD,

(−D
p

)
= 1

0 < t < 2`, t 6= `

H(t2 − 4`2),

and number of self intersections represented by (E,α), when p is ramified, is

1

2

∑
0 < t < 2`, t 6= `( t2−4`2

p2r
p

)
= 0

H

(
t2 − 4`2

p2r

)
=

1

2 + 2p+ · · ·+ 2pr−1 + 2pr

∑
t2 − 4`2 = −p2rD,

(−D
p

)
= 1

0 < t < 2`, t 6= `

H(t2 − 4`2)
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The multiplicity is at least 2 + 2p + · · · + 2pr−1 + pr when p is prime in k

and 2(1 + p + · · · + pr) when p is ramified. But, we get 5.6 exactly when the

multiplicities are 2+2p+ · · ·+2pr−1 + pr if p is prime in k and 2(1+ p+ · · ·+ pr)

if p is ramified.

QED

5.3 Geometric Codes on Modular Curves

Assume we can solve the problem of finding a basis for the space of differential

forms Ω on X0(`). Let {ω1, ..., ωg} be a basis for Ω. Then we have the canonical

embedding

Y0(`) ↪→ P(Ω)

x 7→ (ω1(x) : ... : ωg(x)) ∈ P(Ω)

For convenience, consider the dual space Ω∗. Then, any configuration P of

Fp2 rational points of Y0(`) is a Goppa code. That code has a generator matrix

whose columns are coordinates of the points of P in the space P(Ω∗). A generator

matrix for a code C is a matrix whose rows form a basis for C. So, first of all

we should find out a basis for the space of regular differentials on Y0(`). Then,

the image of a point x ∈ Y0(`) in P(Ω∗) is the hyperplane in Ω consisting of

ω ∈ Ω such that ω(x) = 0. For a given set {x1, ..., xn} of rational points of

Y0(`), let their images in P(Ω∗) be hyperplanes σ(x1), ..., σ(xn). Then the matrix

[σ(x1) : ... : σ(xn)] is a generator matrix for the corresponding Goppa code. So,

the last and main problem is constructing the generator matrix for Goppa codes

on Y0(`). More explicitly we can state this problem as follows:

Consider

Y0(`)(Fp2) −→ P(Ω∗)

x 7→ Ωx

where Ωx = {w ∈ Ω : w(x) = 0}. Describe the space Ωx
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Asymptotically, we know that almost all Fp2 rational points of Y0(`) are su-

persingular elliptic curves. So, we can take the point x mentioned in the problem

as a supersingular point.

The problem above is really much more difficult than the previous problems.

The extra condition on differentials in the last problem is very hard to analyze.

We don’t have to know something about modular equations for the problem of

determining the differential forms of Y0(`). But, probably we need the modular

equations in order to describe the spaces Ωx. We impose some local conditions

on differential forms ω of Y0(`) for most of the problems. Indeed, if we consider

a differential ω as in the form given in 5.4 then the local conditions on the

differential ω are exactly the local conditions on the polynomial P . The last

problem, which may be seen as the main problem, states that the polynomial P

must vanish at supersingular points. So, we must know local parametrizations of

Z0(`) at both singular points and at supersingular points in order to describe the

the space of regular differential forms of Y0(`) and also to describe hyperspaces

of differential forms vanishing at supersingular points . So, these problems lead

us to try to find local parametrization of Z0(`) for each branch through both

singular points and supersingular points of Z0(`).



Chapter 6

Representations of Modular

Codes

Let X be a smooth projective algebraic curve over a finite field Fq and G be an

arbitrary subgroup of the automorphism group of X. Assume D is a G invariant

Fq rational divisor. Then the vector spaces H0(X,LD) = L(D) and H1(X,LD) =

Ω(D) are G modules where LD is the line bundle associated to the divisor D. The

Goppa code on X associated to D is the realization of the space H0(X,LD) in a

coordinate system of a vector space over Fq defined by Fq rational points of X.

This construction corresponds to L(D) construction of functions. Similarly, the

space H1(X,LD) corresponds to Ω(D) construction of differential forms (we refer

to first chapter for both Ω and L constructions). The Goppa codes corresponding

to H0(X,LD) = L(D) and H1(X,LD) = Ω(D) are G modules as group codes

over Fq. The notion of group codes is given in section 4.3. The main problem in

this approach is investigating the structure of a group code on X as G module.

Problem: Evaluate the action of G on the Goppa code C = L(D) over Fq.

This problem is introduced in [TS-VLA] for the case of modular curves. Let

the characteristic of the field Fq be p. We assume that p is coprime to the or-

der of the group G. In this case, we can consider the representations of codes

97
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in characteristic 0. Because, the reduction modulo p of an irreducible G repre-

sentation over a number field remains irreducible if p is coprime to the order of

the group G. In this chapter, we propose a way of computing the characters of

representations of a group code by using the localization formula when X is the

modular curve Y (`). The localization formula has several forms associated to

several applications. We refer to [HEJ] for extended applications. However, the

most convenient form for our use can be found in [TH].

Recall from chapter 4 that we can consider the Goppa codes on Y (`), defined

over a field of characteristic p 6= `, as group codes. Let D be a PSL2(F`) invariant

Fp2 rational divisor of the modular curve Y (`) and P be a set of Fp2 rational

points which is also invariant under the action of PSL2(F`). Then the Goppa

code C = L(D) has a natural action of the group PSL2(F`). In this chapter we

also assume that ` > 3 is a prime.

For a PSL2(F`) invariant divisor D, the space H0(Y (`),LD) corresponds to

L(D) construction of functions. Similarly, the space H1(Y (`),LD) corresponds

to Ω(D) construction of differential forms. We make use of the localization for-

mula which describes the characters of the action of PSL2(F`) on the difference of

H0(Y (`),LD) andH1(Y (`),LD) in terms of action of the group PSL2(F`) in fibers

Ωx and LD(x) over fixed points of group elements (This is known as the localiza-

tion principle). The formula reduces the problem of computing the characters to

a local problem each fixed point. Moreover, we give an example by considering

the canonical divisor and we have described the characters of the correspond-

ing modular code. It turns out that the multiplicities of irreducible components

of code C depends on the class number h(−`) of the imaginary quadratic field

Q(
√
−`).

The last two sections can be considered as appendices of the chapter which

give fundamental facts and definitions about representations of finite groups and

in particular representations of SL2(F`).
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6.1 Description of Group Codes by Trace For-

mula

Let X be a smooth projective algebraic variety and g : X → X be an automor-

phism of X having isolated fixed points, Xg. Let E be a g bundle on X with

action g : E → E compatible with the action g : X → X. Let E be the sheaf of

local sections of E. Then we have the localization formula given as (cf. [TH])

Theorem 6.1.1

tr(g : H∗(X, E)) :=
dimX∑
d=0

(−1)dtr(g : Hd(X, E)) =
∑

x∈Xg

tr(g : Ex)

det(1− g−1 : Tx)
(6.1)

where Tx is the tangent space at x and Ex is the fiber of vector bundle over x.

Let X be a smooth projective curve over Fq. Let G be a subgroup of the

automorphism group of X. Let D be a G invariant Fq rational divisor of X.

The associated Goppa code on X for the divisor D is the realization of the space

H0(X,LD) in a coordinate system defined by rational points where LD is the line

bundle associated with the divisor D. This construction corresponds to L(D)

construction of functions. Similarly, the space H1(X,LD) corresponds to Ω(D)

construction of differential forms (cf. chapter 2). Both constructions H0(X,LD)

and H1(X,LD) are group codes as G modules (cf. chapter 4).

The action of any element g of G on LD is compatible with its action on X

since D is G invariant. Let us assume that g has isolated fixed points and Xg

is the set of these fixed points. The quantity tr(g : Lx) is the trace of g on the

linear space Lx, the fiber of the linear bundle over x, and tr(g : T ∗x ) is the trace of

g on the dual of the tangent space Tx. The action of g on both spaces Lx and T ∗x

is multiplication by some root of unity since these spaces are of dimension 1. The

action of g on Lx is multiplication by a complex number, say ζx and the action

of g on the dual space T ∗x is also multiplication by a complex number say ηx. In

this case, the localization formula can be given as
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Theorem 6.1.2

tr(g : H0(X,LD))− tr(g : H1(Y (`),LD)) =
∑

x∈Xg

tr(g : Lx)

1− tr(g : T ∗x )

=
∑

x∈Xg

ζx
1− ηx

. (6.2)

The formula reduces the problem of computing the characters to a local prob-

lem each fixed point. If D is a non-special divisor of degree bigger then the degree

of a canonical divisor then H1(X,LD) is trivial. This restriction simplifies the

problem further. In this case, we have the formula

tr(g : H0(X,LD)) =
∑

x∈Xg

tr(g : Lx)

1− tr(g : T ∗x )
. (6.3)

Let D =
∑

xmx · x be g invariant. Then ζx = ηmx
x . The localization formula

for this form is:

Theorem 6.1.3 For D =
∑

xmx · x, the localization formula is given as

tr(g : H∗(X,LD)) =
∑

x∈Xg

ηmx
x

1− ηx

.

Similarly, we can write down the localization formula for Ω = Ω(D) construc-

tion of differential forms for the divisorD =
∑

xmx ·x. The action of g on the fiber

Ωx is multiplication by ηmx+1
x if the action of g on the fiber Lx is multiplication

by ηmx+
x since Ω(D) = Ω⊗ L(D). So,

Theorem 6.1.4 For D =
∑

xmx · x, the localization formula for differentials is

given as

tr(g : H∗(X,ΩD)) =
∑

x∈Xg

ηmx+1
x

1− ηx

.

If we take the multiplicities of points of D as equal, we have simpler formula:

Theorem 6.1.5 Let D =
∑

xm · x. Then ζx = ηm
x . As a conclusion, the local-

ization formula is of the form

tr(g : H∗(X,LD)) =
∑

x∈Xg

ηm
x

1− ηx

.



CHAPTER 6. REPRESENTATIONS OF MODULAR CODES 101

6.1.1 Application to Modular Curves

As we have pointed out, the group PSL2(F`) acts on the modular curve Y (`). Let

D be a PSL2(F`) invariant Fp2 rational divisor and P be a PSL2(F`) invariant

set of Fp2 rational points. Then, PSL2(F`) acts also the corresponding Goppa

code constructed by D and P on Y (`). In this section, we propose a way of

finding the characters of this action and we have computed the characters of

representation of the code C = L(K) corresponding to a canonical divisor K over

the modular curve Y (`), which is isomorphic to the space of regular differentials.

Then, H1(Y (`),LK) ' C and H0(Y (`),LK) ' Ω, the space of holomorphic

differentials on Y (`). By Riemann Roch theorem, we have

dimH0(Y (`),LK) = g(Y (`))

where g(Y (`)) = 1 + (`−6)(`2−1)
24

is the genus for prime `.

The localization formula for this case is given as

tr(g : H0(Y (`),LK)) = 1 +
∑

x∈Y (`)g

tr(g : T ∗x )

1− tr(g : T ∗x )
. (6.4)

where 1 in the formula corresponds to the trace of g on C and T ∗x is the dual of

the tangent space at x.

It is clear that the only possible fixed points for any g ∈ PSL2(F`) are ramified

points of the natural projection

Y (`) −→ Y (1) ' P1.

Recall that the set of points of ramification index 2 is the inverse image of i, the

set of points of ramification index 3 is the inverse image of ω, third root of unity,

and the set of points of ramification index ` is the set of cusp points. All the

remaining points are not ramified. So, the only group elements of PSL2(F`) which

may have fixed points are those having a conjugate lying in one of the subgroups

< s >, < h > or < e+1 > where s =

 0 1

−1 0

 is the generator of stabilizer of

i, h =

 0 −1

1 1

 is the generator of stabilizer of ω and e+1 =

 1 1

0 1

 is the
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generator of the stabilizer of ∞. Remark that all the elements of the group < s >

are conjugate. Similarly, all the elements of the group < h > are conjugate. But

the elements of < e+1 > are conjugate to either e+1 =

 1 1

0 1

 or e+ε =

 1 ε

0 1


where ε denotes a quadratic nonresidue in F`. Then, there are only four conjugacy

classes on which the trace is nontrivial. These classes are defined by s, h, e+1 , e
+
ε .

So, we should calculate the traces of these four elements on Ω. We give the traces

in a statement and prove it one by one:

Theorem 6.1.6

tr(s : Ω) = 1− 1

4
(`−

(
−1

`

)
),

tr(h : Ω) = 1− 1

3
(`−

(
−3

`

)
),

tr(e+1 : Ω) =

 1− (`−1)
4
, if ` ≡ 1 mod 4,

√
−`h(−`)

2
+ 1− (`−1)

4
, if ` ≡ 3 mod 4

(6.5)

and

tr(e+ε : Ω) =

 1− (`−1)
4
, if ` ≡ 1 mod 4,

−
√
−`h(−`)

2
+ 1− (`−1)

4
, if ` ≡ 3 mod 4

(6.6)

where ` > 3 is a prime, h(−`) is the class number of the quadratic field Q(
√
−`)

and
(
∗
`

)
is the Legendre symbol.

All the other group elements which are not conjugate any of h, s, e+1 and e+ε have

trace equal to 1.

We prove the theorem as a sequence of following lemmas.

Lemma 6.1.1 tr(s : Ω) = 1− 1
4
(`−

(
−1
`

)
)

Proof: The centralizer

Z(< s >) = {g : gs = sg} = {

 x y

−y x

 : x2 + y2 = 1}
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in SL2(F`). At the same time, the normalizer of < s >, N(< s >) = {g :

gSg−1 ∈< s >} is equal to Z(< s >). The number of fixed points of s in SL2(F`)

is the order of the normalizer. But normalizer is equal the centralizer and hence

its order is the number of the solutions of x2 + y2 = 1 in F` which is ` −
(
−1
`

)
where

(
−1
`

)
is the Legendre symbol. Also, s has order 2 and hence trace of s on

one dimensional space T ∗x is second root of unity, -1. But we should take care

that the centralizer of s in PSL2(F`) is Z(< s >)/± 1. Hence

tr(s : Ω) = 1− 1

4
(`−

(
−1

`

)
).

QED

Lemma 6.1.2 tr(h : Ω) = 1− 1
3
(`−

(
−3
`

)
)

Proof: The number of fixed points is the order of normalizer

N(< h >) = {g : g < h > g−1 =< h >}

in SL2(F`). We have the centralizer

Z(< s >) = {g : gs = sg} = {

 x −y
y x+ y

 : x2 + xy + y2 = 1}

and hence |Z(< s >)| = `−
(
−3
`

)
. Then

tr(h : Ω) = 1 + [z(h) :< h >](
ω

1− ω
+

ω−1

1− ω−1
)

where ω is the third root of unity. An easy calculation shows that ω
1−ω

+ ω−1

1−ω−1 =

−1. So

tr(h : Ω) = 1− 1

3
(`−

(
−3

`

)
)

QED

For computing traces of e+1 : Ω and e+ε : Ω we need the following lemma:
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Lemma 6.1.3 [SHI, Lemma 3]

∑
a

(
a

`

)
1

1− ξa
=

 0, if ` ≡ 1 mod 4,
√
−`h(−`), if ` ≡ 3 mod 4

(6.7)

where h(−`) is the class number of the imaginary quadratic field Q(
√
−`).

Lemma 6.1.4

tr(e+1 : Ω) =

 1− (`−1)
4
, if ` ≡ 1 mod 4,

√
−`h(−`)

2
+ 1− (`−1)

4
, if ` ≡ 3 mod 4

(6.8)

and

tr(e+ε : Ω) =

 1− (`−1)
4
, if ` ≡ 1 mod 4,

−
√
−`h(−`)

2
+ 1− (`−1)

4
, if ` ≡ 3 mod 4

(6.9)

where h(−`) is the class number of the quadratic field Q(
√
−`).

Proof: Centralizer of both e+1 and e+ε is

{

 1 x

0 1

 : x ∈ F`}

in SL2(F`), and the normalizer of e+1 is

N(e+1 ) = {g : ge+1 g
−1 =

 1 x

0 1

 , x quadratic residue}.

Hence, [N(e+1 ) : Z(e+1 )] is the number of quadratic residues, `−1
2

.

So,

tr(e+1 : Ω) = 1 +
∑

a q.residue

ξa

1− ξa

where ξ is an `th root of unity. Similarly

tr(e+ε : Ω) = 1 +
∑

n q.nonresidue

ξn

1− ξn
.
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Then, we have

tr(e+1 : Ω)− tr(e+ε : Ω) =
∑
a

(
a

`

)
ξa

1− ξa
(6.10)

=
∑
a

(
a

`

)
1

1− ξa
. (6.11)

The quantity ∑
a

(
a

`

)
1

1− ξa

is equal to  0, if ` ≡ 1 mod 4,
√
−`h(−`), if ` ≡ 3 mod 4

(6.12)

by previous lemma where h(−`) is the class number of the imaginary quadratic

field Q(
√
−`).

On the other hand,

tr(e+1 : Ω) + tr(e+ε : Ω) = 2 +
∑
a

ξa

1− ξa
(6.13)

= 2 + tr(
ξ

1− ξ
) (6.14)

= 2− (`− 1) + tr(
1

1− ξ
). (6.15)

For calculating tr( 1
1−ξ

), consider∏
1<a<`

(x− ξa) = x`−1 + x`−2 + · · ·+ 1.

Taking logarithmic derivatives of both sides:∑
1<a<`

1

x− ξa
=

1 + 2x+ · · ·+ (`− 1)x`−2

1 + · · ·+ x`−1
.

Letting x = 1 we get

tr(
1

1− ξ
) =

∑
1<a<`

1

1− ξa
=
`− 1

2
.

Inserting the last quantity to the equation 6.15, we get the summation of the

traces:

tr(e+1 : Ω) + tr(e+ε : Ω) = 2− `− 1

2
. (6.16)



CHAPTER 6. REPRESENTATIONS OF MODULAR CODES 106

We have already computed the difference of the traces. By combining these two

linear equations, we get the formulas 6.9 and 6.8.

QED

The multiplicities of the irreducible representations in the decomposition of

the representation on Ω is given in the following theorem. The irreducible rep-

resentations of SL2(`) are given in section 6.3.2. We follow the notations of this

section.

Theorem 6.1.7 Let χ = χρ be the character of a nontrivial irreducible represen-

tation ρ of SL2(`) which is trivial at −1. The multiplicity mχ of ρ in Ω is given

as

mχ =
`− 6

12`
χ(1)− 1

4
χ̄(s)− 1

3
χ̄(h) +

1− `

4`
[χ̄(e+1 ) + χ̄(e+ε )] (6.17)

when ` ≡ 1 mod 4 and

mχ =
`− 6

12`
χ(1)− 1

4
χ̄(s)− 1

3
χ̄(h)

+
1− `

4`
[χ̄(e+1 ) + χ̄(e+ε )] +

1

2`
h(−`)

√
(− `)[χ̄(e+1 )− χ̄(e+ε )] (6.18)

when ` ≡ 3 mod 4. Here χ̄ is the complex conjugation of χ and h(−`) is the class

number of the imaginary quadratic field Q(
√
−`).

The multiplicity is 0 for trivial representation.

Proof: Let mχ be the multiplicity of an irreducible character of SL2(`) in Ω.

Then we have the formula

mχ =
1

|SL2(`)|
∑

g∈SL2(`)

χ̄(g)tr(g : Ω)

where χ̄ is the complex conjugation of χ. For simplicity we can write to formula

as

mχ =
1

|SL2(`)|
∑

g∈SL2(`)

χ̄(g) +
1

|SL2(`)|
∑

g∈SL2(`)

χ̄(g)(tr(g : Ω)− 1).

The quantity
∑

g∈SL2(`) χ̄(g) is zero except χ is identity representation and it is 1

otherwise. We follow the notations in 6.3.3. Let cg be the number elements in the
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conjugacy class of g. The dimension of Ω is the genus g(Y (`)) = 1 + (`−6)(`2−1)
24

.

Then, the multiplicity of a nontrivial χ is given as

mχ =
1

`(`2 − 1)
[csχ̄(s)(tr(s : Ω)− 1) + chχ̄(h)(tr(h : Ω)− 1)

+ ce+
1
χ̄(e+1 )(tr(e+1 : Ω)− 1) + ce−1

χ̄(e−1 )(tr(e−1 : Ω)− 1)

+ ce+
ε
χ̄(e+ε )(tr(e+ε : Ω)− 1) + ce−ε χ̄(e−ε )(tr(e−ε : Ω)− 1)

+ 2(g(Y (`))− 1)χ(1)]. (6.19)

where the quantity (g(Y (`)) − 1) dimχ is entered in the summation twice since

we add it both for identity and for minus identity. We have the equality for the

traces

tr(e+ε : Ω) = tr(e−ε : Ω)

and

tr(e+1 : Ω) = tr(e−1 : Ω)

since e+ε (respectively e+1 ) is equivalent to e−ε (respectively e−1 ) modulo ±1. Then

the multiplicity is equal to

mχ =
1

`(`2 − 1)
[csχ̄(s)(tr(s : Ω)− 1) + chχ̄(h)(tr(h : Ω)− 1)

+ (ce+
1
χ̄(e+1 ) + ce−1

χ̄(e−1 ))(tr(e+1 : Ω)− 1)

+ (ce+
ε
χ̄(e+ε ) + ce+

ε
χ̄(e+ε ))(tr(e+ε : Ω)− 1)

+
(`− 6)(`2 − 1)

12
dimχ]. (6.20)

The numbers of elements in concugacy classes are given in section 6.3.3. They

are:

ce+
ε

= ce−ε = ce+
1

= ce−1
=
`2 − 1

2

and cs = `(`+ 1) when ` ≡ 1 mod 4, cs = `(`− 1) when ` ≡ 3 mod 4. Similarly,

ch = `(`+ 1) when ` ≡ 1 mod 3, ch = `(`− 1) when ` ≡ 2 mod 3.

The characters of irreducible representations are given in the characters tables

in section 6.3.3. In the table observe that

χ̄(e+ε ) = χ̄(e−ε )
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for any irreducible character χ which is trivial on −1. Similarly,

χ̄(e+1 ) = χ̄(e−1 ).

So, substitution of the quantities in equation 6.19 we get

mχ =
`− 6

12`
χ(1)− 1

4
χ̄(s)− 1

3
χ̄(h) +

1− `

4`
[χ̄(e+1 ) + χ̄(e+ε )] (6.21)

when ` ≡ 1 mod 4 and

mχ =
`− 6

12`
χ(1)− 1

4
χ̄(s)− 1

3
χ̄(h)

+
1− `

4`
[χ̄(e+1 ) + χ̄(e+ε )] +

1

2`
h(−`)

√
(− `)[χ̄(e+1 )− χ̄(e+ε )] (6.22)

when ` ≡ 3 mod 4.

For the identity representation, the multiplicity is

mid = 1 +
1

`(`2 − 1)
[−`(`

2 − 1)

3
− `(`2 − 1)

4

− (`− 1)(`2 − 1)

2
+

(`− 6)(`2 − 1)

12
]

which is equal to 0.

QED

6.2 Appendix A: Introduction to Representa-

tion Theory

As an appendix to this chapter, we introduce the remaining two section. This

section covers the fundamental definitions and facts about representations of finite

groups and the next section is about representations and characters of the group

SL2(F`).

In this part, let us recall some fundamental definitions and facts of represen-

tation theory. We will not give the proofs of the statements. For the proofs, one
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can refer to most of the intensive algebra books, for instance the algebra book

[LA 4], by Lang.

Let V be a finite dimensional vector space over a finite field Fq and G be a

finite group. In this text, we will always assume that the order of the group G is

not divisible by the character of the field Fq. A linear representation, or simply

a representation of G on V is a group homomorphism ρ of G into AutFq
(V ). We

sometimes write Vρ instead of V to indicate the representation ρ. The dimension

of ρ is defined to be the dimension of the space V = Vρ also. We call a repre-

sentation of G of dimension 1 as a character of G. Two representations ρ and ρ′

with representation spaces V and V ′ are said to be isomorphic representations if

there exists a vector space isomorphism θ

θ : V −→ V ′,

such that θρ(g) = ρ′(g)θ for all g ∈ G.

Let ρ be a representation of G and H be a subgroup of G. Suppose that µ is

a character of H. If there exists a nonzero vector v ∈ Vρ such that ρ(h)v = µ(h)v

for all h ∈ H then µ is said to be an eigenvalue of H with respect to ρ and v is

said to be an eigenvector of H that belongs to µ.

Let V be a G space with representation ρ and V ′ ⊂ V be a subspace of V . If

ρ(g)V ′ = V ′ ∀g ∈ G then V ′ is called a G subspace of V . In this way, we obtain

a new representation on V ′. Let us denote it as ρ′. By Maschke’s semisimplicity

theorem, there is another G subspace V ′′ such that V = V ′ ⊕ V ′′. Let ρ′′ be the

corresponding representation over V ′′. Then ρ is said to be the direct sum of ρ′

and ρ′′ and it is written as ρ = ρ′ ⊕ ρ′′. The direct sum of n representations of

G, all isomorphic to ρ, is denoted by nρ. A representation ρ on V is said to be

irreducible if it does not have a nontrivial subrepresentation of smaller dimension.

By Maschke’s theorem, every representation ρ of G can be decomposed as a direct

sum of multiples of distinct irreducible representations

ρ =
k⊕

i=1

niρi (6.23)

in a unique way (cf. [LA 4] pp 666).
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There are only finitely many irreducible representations ρ1, ..., ρh of G. Their

number h is equal to the number of conjugacy classes of G. Their dimension

satisfies the formula

h∑
i=1

(dim ρi)
2 = |G|. (6.24)

Let G′ be the commutator subgroup of G. Then the number of characters of

G is equal to the index of G′ in G, [G : G′].

Let ρ be a representation of G over the space Vρ. Remark that Vρ is a module

over the group ring Fq[G]. If ρ′ is another representation over another space Vρ′ ,

then we define a form

(ρ, ρ′)G = dimHomFq [G]
(Vρ, Vρ′). (6.25)

The form (ρ, ρ′) is symmetric and bilinear with respect to direct sum. If both ρ

and ρ′ are irreducible then by a lemma of Schur, (ρ, ρ′) = 1 if and only if ρ = ρ′

and (ρ, ρ′) = 0 if and only if ρ 6= ρ′ (cf [LA 4], pp 643).

6.2.1 Induced Representation

Let G be a finite group. Let H be a subgroup of G and τ be a representation

of H over a Fq space W . Define a vector space V to be the set of all functions

f : G → W such that f(hg) = τ(h)f(g) for all h ∈ H and for all g ∈ G, and

define an action of G on V as

(sf)(g) = f(gs) for s, g ∈ G and f ∈ V.

The Fq[G] module V is called the induced module of W from H to G and is

denoted by IndG
Hτ . W can be embedded into V by mapping each w ∈ W to the

function fw ∈ V defined by fw(g) = τ(g)w if g ∈ H and fw(g) = 0 if g ∈ G \H.

The dimension of V is, dimV = [G : H] dimW .

Induced representations have the following properties:
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Transitivity: If J is a subgroup of H and τ : J → AutU is a representation of

J , then we have

IndG
J U = IndG

H(IndH
J U).

Frobenious reciprocity theorem: Let E be an Fq[G] module and denote ResG
HE

as the Fq[H] module obtained from E by considering only the action of H. Then

we have the following canonical isomorphism:

HomFq [G]
(IndG

HW,E) ∼= HomFq [H]
(W,ResG

HE). (6.26)

As a corollary we have

dimHomFq [G]
(IndG

HW,E) = dimHomFq [H]
(W,ResG

HE). (6.27)

If τ and σ are representations of H and G that correspond to W and E respec-

tively then we can rewrite the last equality as

(IndG
Hτ, σ)G = (τ, ResG

Hσ)H . (6.28)

6.2.2 Characters of Representations

Let us remark that a one dimensional representation is also called a character.

We will enlarge the definition of character for higher dimensional representations

as follows. Given any representation ρ of a group G, its character is defined as

χ(g) = trρ(g), g ∈ G

where tr denotes the trace of matrix ρ(g). For example, any representation of

dimension 1 is its own character. Some basic properties of characters can be listed

as

Proposition 6.2.1 [LA 4] The character of a representation is independent of

choice of basis. Equivalent representations have the same character. The converse

is also true for complex representations. Moreover, each character is a class

function on G. That is, it is constant on conjugacy classes:

χ(hgh−1) = χ(g), g, h ∈ G.
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The degree of χ is χ(1) and for any element g in G of order n, χ(g) is a sum of

nth roots of unity.

If ρ1 and ρ2 are representations with characters χ1 and χ2 respectively then

the characters of ρ1 ⊕ ρ2 and ρ1 ⊗ ρ2 are χ1 + χ2 and χ1χ2 respectively.

6.3 Appendix B: Representations of SL2(F`)

In this section we present the irreducible complex representations and their char-

acters of the group SL2(F`). The results of this section are covered in [NA-ŠT].

Essentially the group PSL2(F`) is acting on the modular curve Y (`). But the

representations of PSL2(F`) are also representations of SL2(F`). Indeed they are

those of SL2(F`) which are trivial at -1.

6.3.1 Conjugacy Classes

There are ` + 4 conjugacy classes in SL2(F`). Let us classify these classes as

follows:

Let e be the identity matrix. Then, the conjugacy classes {e} and {−e}.

The conjugacy classes denoted by Aλ and defined by the element gλ = λ 0

0 λ−1

 where λ2 6= 1.

The conjugacy classes defined by the elements

e+1 =

 1 1

0 1

 , e−1 =

 −1 1

0 −1

 , e+ε =

 1 ε

0 1

 , e−ε =

 −1 ε

0 −1


where ε ∈ F` is a quadratic nonresidue.

And the conjugacy classes denoted by Cσ and defined by the element gσ = σ ν

εν σ

 where σ2 − εν2 = 1.
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As a summary we have

Proposition 6.3.1 [NA-ŠT] There are `+ 4 conjugacy classes of SL2(F`). (`−
1)/2 of them are defined by Cσ and (` − 3)/2 of them are defined by Aλ. Each

conjugacy class Cσ contains `(`− 1) elements. Each conjugacy class Aλ contains

`(`+ 1) elements. The remaining classes are {±e} and the classes defined by e±1 ,

e±ε , each of them containing `2−1
2

elements.

6.3.2 Irreducible Representations

Let π be a character of F×` . Let Hπ be the space of all complex valued functions

f(x, y) defined for nonzero vector (x, y) ∈ F` × F` and satisfying the condition

f(λx, λy) = π(λ)f(x, y). (6.29)

Define a representation Tπ on Hπ by the formula

(Tπ(g)f)(x, y) = f(ax+ cy, bx+ dy), g =

 a b

c d

 . (6.30)

It is clear that Tπ is a representation of SL2(F`) of dimension `+ 1. Moreover

Proposition 6.3.2 [NA-ŠT] Tπ is an irreducible representation of SL2(F`) for

π2 6= 1 and two representations Tπ1, Tπ2 are equivalent if and only if π1 = π2 or

π1 = π−1
2 .

The space of constant functions, f(x, y) = c, lies in H1 and the identity

representation operates on this space. The complementary space of functions

f ∈ H1 such that
∑
f(x, y) = 0 is also invariant under T1. So, there exists a

subrepresentation T̃1 of T1 which operates on this space of dimension `. The

representation T̃1 is irreducible (cf. [NA-ŠT]).

Let π0 6= 1 be a character of F×` assuming only the values 1 and -1. Then,

consider the representation Tπ0 . It has two irreducible components of equal di-

mensions, `+1
2

, which are denoted by T+
π0

and T−π0
.
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Let U = {t ∈ F`2 : N(t) = tt̄ = 1} and ρ be a character of F`2 such that

ρ(t) 6= 1 on U . Consider the vector space H of all functions f on F×` and define

the representation Sρ of SL(2,F`) on H by

(Sρ(g)f)(u) =
∑

ν∈F×`
Kρ(u, ν; g)f(ν) (6.31)

where g =

 a b

c d

 and

Kρ(u, ν; g) =


−1
`
χ(du+aν

b
)
∑

tt̄=u−1ν χ(−ut+νt−1

b
)ρ(t), if b 6= 0,

ρ(d)χ(dcu)δ(d2u− ν), if b = 0.
(6.32)

Here, δ is the Kronecker symbol and χ is a fixed nontrivial additive character of

F`. Then Sρ is a representation of dimension `− 1 (cf. [NA-ŠT]).

Let π be a restriction of ρ to U . Let Sπ denote the representation Sρ. Then

Proposition 6.3.3 [NA-ŠT] The representations Sπ1 and Sπ2 are equivalent if

and only if π1 = π2 or π1 = π−1
2 . If π2 6= 1 then Sπ is irreducible.

Let π2
1 = 1 and π1 6= 1. Then Sπ1 has two irreducible components of equal

dimensions, denoted by S+
π1

and S−π1
. S+

π1
is acting on the space H+ consisting of

functions vanishing on F×`2 \F
×
` whereas S−π1

is acting on the space H− consisting

of functions vanishing on F×` (cf. [NA-ŠT]).

If we collect all the information of this section, we have

Theorem 6.3.1 [NA-ŠT] The set of `+4 irreducible representations of SL(2,F`)

are Tπ (π2 6= 1), T̃1, T
+
π0

, T−π0
, Sπ (π2 6= 1), S+

π1
, S−π1

.

6.3.3 Character Table

We give the table of values of characters of irreducible representations of

SL(2,F`). For convenience in typing, we present two tables.
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e −e e+1 e+ε

Tπ `+ 1 (`+ 1)π(−1) 1 1

T̃1 ` ` 0 0

T+
π0

`+1
2

(`+1)
2
π0(−1) Γ(π0)+1

2
−Γ(π0)+1

2

T−π0

`+1
2

(`+1)
2
π0(−1) −Γ(π0)+1

2
Γ(π0)+1

2

Sπ `− 1 (`− 1)π(−1) -1 -1

S+
π1

`−1
2

( `−1
2

)π1(−1) Γ(π0)−1
2

−Γ(π0)+1
2

S−π1

`−1
2

( `−1
2

)π1(−1) −Γ(π0)+1
2

Γ(π0)−1
2

The table above gives the values of the characters on the conjugacy classes

represented by e,−e, e+
1 and e+ε whereas the table below gives the values of the

characters on the conjugacy classes represented by e−1 , e
−
ε , gλ and gσ.

e−1 e−ε gλ gσ

Tπ π(−1) π(−1) π(λ) + π(λ−1) 0

T̃1 0 0 1 -1

T+
π0

Γ(π0)+1
2

π0(−1) −Γ(π0)+1
2

π0(−1) π0(λ) 0

T−π0

−Γ(π0)+1
2

π0(−1) Γ(π0)+1
2

π0(−1) π0(λ) 0

Sπ −π(−1) −π(−1) 0 −π(t0)− π(t−1
0 )

S+
π1

π1(−1)Γ(π0)−1
2

−π1(−1)Γ(π0)+1
2

0 −π1(t0)

S−π1
−π1(−1)Γ(π0)+1

2
π1(−1)Γ(π0)−1

2
0 −π1(t0)

Here t0 is the element of F`2 with N(t0) = 1, tr(t0) = 2σ and Γ(π0) =

√(
−1
`

)
`.
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Conclusion

It has been pointed out that the Goppa codes on modular curves can have the

best known asymptotic parameters so far. The modular curves Y0(N) and Y (N)

over Fp2 reach the Drinfeld-Vladuţ bound for (N, p) = 1. So the Goppa codes

on modular curves have asypmtotic parameters lying on the line R = 1 − δ −
1/(

√
(q) − 1) which is above the Gilbert Varshamov bound in some interval.

However, it is difficult to construct codes on modular curves efficiently. We have

introduced two approaches on code construction on modular curves and stated

the problems step by step. Moreover, we have given solutions of some problems

in roadmap of code construction. But, there are still several unsolved problems

in both approaches.

One of the approaches uses mostly geometric and algebraic tools. This ap-

proach studies local invariants of the plane model Z0(`) of the modular curve

Y0(`) given by the modular equation Φ`. We assume that ` is a prime different

than the characteristic, p. The approach is based on describing the hyperplane

of regular differentials of Z0(`) vanishing at a given Fp2 rational point. Unfor-

tunately the plane model Z0(`) is highly singular curve. So, the elements of the

hyperplane must vanish at singular points also.

As constructing a basis for the regular differentials of Z0(`), we need to inves-

tigate its singularities. We have described the singularities of Z0(`) for prime ` in

116
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both characteristic 0 and positive characteristic (see [KLY-KA]). We have shown

that both in positive characteristic p > 3 for (p, `) = 1 and in characteristic 0,

the map

π : X0(`) 7−→ A2

(E,E ′, φ) 7−→ (j(E), j(E ′)) (7.1)

is immersion. That is, the differential, dπ, is injective. So, π is local embedding of

nonsingular branches. This concludes that all singularities of Z0(`) are self inter-

sections. These self intersections are all simple nodes in characteristic 0 whereas

the order of contact of any two smooth branches passing though a singular point

may be arbitrarily large in characteristic p > 3 where p 6= `. Moreover the self

intersections in characteristic zero ar double (see theorem 5.2.1). Their number

can be given by the Hurwitz class function:∑
0<t<2`,t6=`

H(t2 − 4`2).

The self intersections in positive characteristic may not be double. Indeed, struc-

ture of singularities of the affine curve Z0(`) essentially depends on two types of

elliptic curves: The singularities corresponding to ordinary elliptic curves and the

singularities corresponding to supersingular elliptic curves. The singularities cor-

responding to ordinary elliptic curves are all double points even though they are

not necessarily simple nodes as in the case of characteristic 0. The singularities

corresponding to supersingular elliptic curves are the most complicated ones and

it may happen that there are more then two smooth branches passing though

such kind of a singular point. We have computed the order of contact of any two

smooth branches passing though a singular point both for ordinary case and for

supersingular case (see theorem 5.2.3).

We have also proved that two points of Z0(`) at ∞ in projective space are

cusps for odd prime ` which are analytically equivalent to the cusp of 0, given by

the equation x` = y`−1 (see proposition 5.2.2). These two cusps are permuted by

Atkin-Lehner involution. The multiplicity of singularity of each cusp is (`−1)(`−2)
2

.

This result is valid in any characteristic p 6= 2, 3.

Any configuration P of Fp2 rational points of Y0(`) is a Goppa code. That

code has a generator matrix whose columns are coordinates of the points of P
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in the space P(Ω∗), dual of the projective space of regular differentials. So, first

of all we should find out a basis for the space of regular differentials on Y0(`).

Then, the image of a point x ∈ Y0(`) in P(Ω∗) is the hyperplane in Ω consisting

of ω ∈ Ω such that ω(x) = 0. So, we should describe the hyperspace of regular

differentials vanishing at a given rational point.

We need the singularity structure of Z0(`) for describing its regular differen-

tials. Let X ⊂ P2 be a smooth curve given by F (x, y, z) = 0 of degree d. The

regular differentials of X are of the form

ω = P
xdy − ydx

Fz

= P
xdz − zdx

Fy

= P
zdy − ydz

Fx

(7.2)

where P = P (x, y, z) is a homogeneous polynomial of degree d − 3. We follow

this approach to construct regular differentials. However, the projective plane

model Z0(`) is a singular curve. But the differentials on a singular plane curve

are still of the form given in equation 7.2. We should impose some additional local

conditions on the polynomial P at singular points. As a corollary, the problem

of finding a basis for the regular differentials of the modular curves Y0(`) is still

open.

For a given set {x1, ..., xn} of rational points of Y0(`), let their images in

P(Ω∗) be hyperplanes σ(x1), ..., σ(xn). Then the matrix [σ(x1) : ... : σ(xn)] is

a generator matrix for the corresponding Goppa code. So, the last and main

problem is constructing the generator matrix for Goppa codes on Y0(`). More

explicitly we can state this problem as follows:

Consider

Y0(`)(Fp2) −→ P(Ω∗)

x 7→ Ωx

where Ωx = {w ∈ Ω : w(x) = 0}. The space Ωx is unknown.

Asymptotically, we know that almost all Fp2 rational points of Y0(`) are su-

persingular elliptic curves. So, we can take the point x mentioned in the problem

as a supersingular point.
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The problem above is really much more difficult than the previous problems.

The extra condition on differentials in the last problem is very hard to analyze.

We don’t have to know something about modular equations for the problem of

determining the differential forms of Y0(`). But, probably we need the modular

equations in order to describe the spaces Ωx. We impose some local conditions

on differential forms ω of Y0(`) for most of the problems. Indeed, if we consider

a differential ω as in the form given in 7.2 then the local conditions on the

differential ω are exactly the local conditions on the polynomial P . The last

problem, which may be seen as the main problem in code construction, states

that the polynomial P must vanish at supersingular points. So, we must know

local parametrizations of Z0(`) at both singular points and at supersingular points

in order to describe the the space of regular differential forms of Y0(`) and also

to describe hyperspaces of differential forms vanishing at supersingular points .

So, these problems lead us to try to find local parametrization of Z0(`) for each

branch through both singular points and supersingular points of Z0(`).

The second approach is based on describing the Goppa codes on Y (`) as

PSL2(F`) module. The group PSL2(F`) acts on the Goppa codes constructed

on Y (`). The action is permuting the coordinates of vectors of the code. So,

the codes can be considered as group codes. The main problem is describing the

codes as group modules.

Let D be a PSL2(F`) invariant Fp2 rational divisor of the modular curve

Y (`) and P be a set of Fp2 rational points which is also invariant under the

action of PSL2(F`). Then the Goppa code C = (Y (`),P , D)Ω has a natural

action of the group PSL2(F`). The main problem is investigating the structure

of a group code C = (Y (`),P , D)Ω as PSL2(F`) module. In this thesis, we

propose a way of computing the characters of representations of a group code

by using the localization formula and we applied this formula for calculating the

traces of representations of the space of regular differentials. Remark that this

space corresponds to a group code also. We further make a discussion on how

to calculate the characters of the code space associated to arbitrary PSL2(F`)

invariant divisor.
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As a corollary, we have introduced two essentially different approaches and

listed the problems in both approaches. Moreover, we have stated the progress

particularly in one of the approaches. However, most of the problems remains

still unsolved and they are pretty challenging.
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