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ABSTRACT

MECHANICAL AND ELECTRONIC PROPERTIES OF

METAL CHAIN NANOWIRES

Deniz Çakır

M.S. in Physics

Supervisor: Assist. Prof. Dr. Oğuz Gülseren

August, 2003

The fabrication of stable gold monoatomic chains suspended between two gold

electrodes is one of the milestones in nanoscience and technology, since miniatur-

ization of the electronic components is one of the great importance in development

and improvement of new devices in nanoelectronic. Monoatomic chain nanowires

show unusual mechanical and electronic properties such as quantized conductance

and much stiff bonds compare to the ones in bulk. Ohnishi et al. [1], has visu-

alized the monoatomic chains by using transmission electron microscopy (TEM).

At the same time, Yanson et al [2], have produced the monoatomic chains and

they measured its conductance. In the bond length measurement of monoatomic

chains, unusually long interatomic lengths have been observed compare to inter-

atomic distances in the bulk and dimer. In order to understand the nature of

bonding and unusual structural properties, in this thesis, mechanical and elec-

tronic properties of metal chain nanowires are investigated from first principles

by using pseudopotential plane wave calculations. Six different metals (Au, Ag,

Al, Cu, Pt and Na) are studied in detail. All metals under study show two wire

structure which are linear and zigzag structure. Au, Al and Pt show two different

zigzag structure. All the wires are metallic. Relative stabilities are investigated

by calculating the tension corresponding to apply force to keep the wire at a

specific length. Au and Pt have bigger breaking force at breaking point relative

to other metallic wires. In this thesis, effect of H, H2 and C impurities on me-

chanical and electronic properties of Au monoatomic chains are also studied. In

wires with H and C impurities, wire under tension break from Au-Au bond away

from the impurity. However, wire break from Au-H bond in H2 system. Except

from Au-H system, wire become insulator when it contain C or H2 impurities.

Before breaking, Au-impurity-Au bond length is in the range of long interatomic

distance observed in experiment. So, the presence of an impurity can explain

the observed long interatomic distances. However, changing of bond lengths and

iii



iv

breaking bond during the stretching of wire depends on the type of impurity.

If one stretch the Au-H system, all bond lengths increase in the same amount

before breaking. However in Au-C system, Au-Au bond length away from the C

impurity increase much more than other bonds. It is shown that absorption of

impurity atoms modify the stiffness of the bonds in the wire. This related to the

charge transfer from Au to impurity (for H and C). In H and C systems, wire

break from Au-Au bond away from the impurity. However in H2 system, wire

break from Au-H bond.

Keywords: Nanowire, metal monatomic chains, mechanical and electronic prop-

erties, quantum conductance, impurity.



ÖZET

ATOMİK TELLERİN ELEKTRONİK VE MEKANİK

ÖZELLİKLERİ

Deniz Çakır

Fizik , Yüksek Lisans

Tez Yöneticisi: Yar. Doç. Dr. Oğuz Gülseren

Ağustos, 2003

Boyutları küçültülmüş yeni aygıtların yapılmasına ve düşük boyutlardaki fiziksel

özelliklerin incelenmesine olanak sağladığından dolayı tek atomlu altın tellerin

yapılması nano-bilim ve teknoloji için çok önemli bir ilerlemedir. Nano teller ilk

defa Ohnishi et al. [1], grubu tarafından transmisyon elektron mikroskopu (TEM)

kullanılarak gözlendi. Aynı zamanlarda Yanson et al. [2], nano telleri yapmayı

başardı ve elektriksel iletkenlik ölçümleri yaptı. Bu deneylerde çok büyük atomlar

arası uzunluklar ölçüldü. Bu tezde ilk prensipler yöntemi kullanılarak metal nano

tellerin mekanik ve elektronik özellikleri altı element (Au, Ag, Al, Cu, Pt ve Na)

için incelendi. İncelenen elementler için dogrusal ve zigzag olmak üzere iki farklı

tel geometrisi bulundu. Çalışılan tüm tek atomlu zincirlerin iletken oldukları bu-

lundu. Ayrıca katkı atomlarının (H, C, H2) altın tellerin elektronik ve mekanik

özelliklerine olan etkileri incelendi. Au-H ve Au-C sistemlerinde tek atomlu zincir

katkı atomun uzağındaki Au-Au bağından kırılmaktadır. Kırılmadan önce elde

edilen Au-katkı atom-Au bağ uzunluğuna bakarsak deneylerde gözlenen büyük

atomlar arası bağ uzunluklarına çok yakın sonuçlar elde edildi. Atomik tel-

lerin çekilmesi sırasında bağ uzunluklarının değişimi ve kırılan bağ tellere eklenen

katkı atomuna bağlı olduğu bulundu. Tellerin kırılmadan önceki uzunluklarına

bakıldığında Au-H sisteminde bütün bağlar eşit oranda uzarken Au-C sisteminde

C atomunun uzağındaki bağın diğerlerine göre daha çok uzadığı tespit edildi.

Anahtar sözcükler : Nano tel, tek atomlu metal zincir, mekanik ve elektronik

özellikler, kuantum iletkenliği, katkı.
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support and encouragement.

I also would like to thank Sefa Dağ, Engin Durgun , Cem Sevik and Engin

Emlek for their help in improving my knowledge about vasp and others subjects

related to my thesis. But the important thing is their friendship.

vi



Contents

1 INTRODUCTION 1

2 THEORETICAL BACKGROUND 4

2.1 The problem of structure of matter . . . . . . . . . . . . . . . . . 4

2.2 Adiabatic approximation

(Born-Oppenheimer approximation) . . . . . . . . . . . . . . . . . 5

2.3 Classical nuclei approximation . . . . . . . . . . . . . . . . . . . . 6

2.4 Hartree and Hartree-Fock approximation . . . . . . . . . . . . . . 8

2.5 Thomas-Fermi theory . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . 11

2.6.1 The Hohenberg-Kohn Theory . . . . . . . . . . . . . . . . 12

2.6.2 The Hohenberg-Kohn variational principle . . . . . . . . . 13

2.6.3 The self-consistent Kohn-Sham equations . . . . . . . . . 13

2.7 Pseudopotential Approximation . . . . . . . . . . . . . . . . . . . 15

3 REVIEW OF THE FIELD 18

vii



CONTENTS viii

3.1 Experimental Results for gold nanowires . . . . . . . . . . . . . . 18

3.2 Computational calculations with pure gold atomic chain . . . . . 27

3.3 Computational calculations with impurities . . . . . . . . . . . . . 31

3.4 Origin of the chain formation of metal atoms . . . . . . . . . . . . 33

4 METAL NANOWIRES 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Computational Details . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Infinite linear and zigzag wires . . . . . . . . . . . . . . . . 37

4.3.2 Instabilities in linear wires . . . . . . . . . . . . . . . . . . 42

4.3.3 Electronic structures . . . . . . . . . . . . . . . . . . . . . 45

4.3.4 Charge density analysis . . . . . . . . . . . . . . . . . . . . 49

5 EFFECT OF IMPURITIES 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 CONCLUSIONS 63



List of Figures

2.1 Schematic illustration of all-electron (solid lines) and pseudoelec-

tron (dashed lines) potentials and their corresponding wave func-

tions. The radius at which all-electron and pseudopotential values

match is designated rc. . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 TEM images of a gold contact recorded while withdrawing the tip

from the surface. A gold bridge formed between the gold tip (top)

and the sample (bottom) thins down when going from (a) to (e),

where conductance drops to 2G0. The contact finally break at (f),

for which conductance drop to zero. Taken from [1]. . . . . . . . 19

3.2 TEM images of a gold atomic chain forming between two gold

banks. Taken from [1]. . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 The conductance as a function of the displacement of the two gold

electrodes with respect to each other in an MCBJ experiment at

4.2 K. The trace starts at the upper left, coming from higher con-

ductance values (thick) curve. A long plateou with a conductance

near 1 G0 is observed and after jump to tunnelling one needs to

return by a little more than the length of the long plateau to come

back into contact(thin curve) [2]. . . . . . . . . . . . . . . . . . 21

3.4 Distribution of plateau lengths for monoatomic chain [2]. . . . . 22

ix



LIST OF FIGURES x

3.5 Time sequence of atomic resolution images of the formation, elon-

gation and fracture of a suspended chain of gold atoms. Atomic

positions appear as dark lines or dots. A schematic representation

of the chain is shown in (e); the letters A and B indicate the apex

position in (c). The double arrows in (a) and (b) have indicated

that the movement of the lower apex. Taken from [14]. . . . . . 24

3.6 Simulation conductance (a) and force (b) measurements during

chain formation and breaking. The conductance on the last plateau

is shown on an expanded scale to illustrate small variation in the

conductance. The inset shows a schematic drawing of the experi-

mental setup. (c) Calculated force evolution obtained from molec-

ular dynamics simulations. The arrows indicate the point at which

a new atom pops into chain and snapshots of the structure at these

positions are shown. Taken from [23] . . . . . . . . . . . . . . . . 26

4.1 The calculated cohesive energy of infinite Au, Ag, Al, Cu, Pt and

Na with linear structure (open circles) and zigzag structure (solid

circles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Tension versus length per atom of Au, Ag, Al, Cu, Pt and Na

zigzag and linear wires. Open (closed) circles show linear (zigzag)

wire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Stress versus length per atom of Au, Ag, Al, Cu, Pt and Na zigzag

and linear wires. Open (closed) circles show linear (zigzag) wire. . 41

4.4 Cohesive energy per atom with respect to total lattice constant.

Open circles, triangle and square are used for equally space, dimer-

ized and breaking wires respectively. . . . . . . . . . . . . . . . . 42

4.5 Energy band structure of (a) equally space, (b) dimerized, (c) and

breaking structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 43



LIST OF FIGURES xi

4.6 Energy band structure of Au. (a) Linear structure L; (b) zigzag1,

z1; (c) zigzag2, z2. Bands of L structure are zone folded for the

sake of the comparison with zigzag structures. Zero of energy is

taken at Fermi level. . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7 Energy band structure of Cu. (a) Linear structure L; (b) zigzag

structure z. Bands of L structure are zone folded for the sake of

the comparison with zigzag structures. Zero of energy is taken at

Fermi level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.8 Energy band structure of Ag. (a) Linear structure L; (b) zigzag

structure, z. Bands of L structure are zone folded for the sake of

the comparison with zigzag structures. Zero of energy is taken at

Fermi level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9 Energy band structure of Pt. (a) Linear structure L; (b) zigzag1,

z1; (c) zigzag2, z2. Bands of L structure are zone folded for the

sake of the comparison with zigzag structures. Zero of energy is

taken at Fermi level. . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.10 Energy band structure of Al. (a) Linear structure L; (b) zigzag1,

z1; (c) zigzag2, z2. Bands of L structure are zone folded for the

sake of the comparison with zigzag structures. Zero of energy is

taken at Fermi level. . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.11 Energy band structure of Na.(a) Linear structure L; (b) zigzag

structure, z. Bands of L structure are zone folded for the sake of

the comparison with zigzag structures. Zero of energy is taken at

Fermi level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.12 Charge density contour plots of linear in (a) and z1 in (d) and z2

in (g) of Au, linear in (b) and z1 in (e) and z2 in (i) of Al, of linear

in (c) and z1 in (f) and z2 in (h) of Pt wires. . . . . . . . . . . . . 50



LIST OF FIGURES xii

4.13 Charge density contour plots of linear in (a) and zigzag structure

in (b) of Ag, linear in (c) and zigzag structure in (d) of Na and

linear in (e) and zigzag structure in (f) of Cu wires. . . . . . . . . 50

5.1 HOPT (contain H) and COPT (contain C) geometries in (a) and

HMAOPT (contain H2) geometry in (b). z is the lattice constant

along the chain direction. . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Total energy in (a), changing of bond lengths in (b), stress in (c)

and chemisorption energy in (d) with respect to lattice constant

(z) in HOPT structure. Open circle curve in (d) is drawn by taking

the d2 as a lattice parameter of pure gold chain in z-direction. . . 53

5.3 Total energy (a), stress (b), changing of bond lengths (c) and

chemisorption energy (d) with respect to lattice constant (z) in

COPT structure. Open circle curve in (d) is drawn by taking the

d2 as a lattice parameter of pure gold chain in z-direction. . . . . 54

5.4 Charge density contour plots of in HOPT (a,b), COPT (c,d) and

HMAOPT (e,f) structure. (b), (d) and (f) are the charge difference

contour plots for HOPT, COPT and HMAOPT respectively. In

HOPT and COPT configurations, there is a considerable charge

transfer from Au to H, C. Hence stability of Au-H-Au and . . . . 55

5.5 Total energy (a), stress (b), changing of bond lengths (c) and

chemisorption energy (d) with respect to lattice constant (z) in

HMAOPT structure. Open circle curve in (d) is drawn by taking

average of d1, d2 and d6 as a lattice parameter of pure gold chain

in z-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.6 Energy band structure of pure Au in (a), HOPT in (b), COPT in

(c) and HMAOPT in (d) wires. Zero of energy is taken at Fermi

level. In pure Au wire, four atom supercell is used for comparison. 59



LIST OF FIGURES xiii

5.7 Comparison of finite and infinite wires with H. Last figure is infinite

wire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.8 Comparison of finite and infinite wires with C. Last figure is infinite

wire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.9 Comparison of finite and infinite wires with H2. Last figure is

infinite wire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.10 Effect of tip on bond lengths and interaction energy. In (a) lattice

constant along the chain direction is 19.41 Å. In (b) tip atoms are
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Chapter 1

INTRODUCTION

In the last decade, there has been a great interest in both fabrication of nanowires

and their mechanical, electrical and geometrical properties. Nanowires are impor-

tant, since they show very interesting properties from a basic science viewpoint,

as well as great potential in applied fields such as nanoelectronics. Nanoscale

materials have peculiar properties different from crystalline structures due to the

quantum confinement of electrons. In Ohm’s law electrical resistance of a conduc-

tor is proportional to its length. However, this law breaks down at low dimensions.

The reason is that the distance an electron travels between two scattering events

(mean free path) is typically much larger than the atomic size. The electrons

travel in an atomic sized conductor ballistically, and the resistance becomes inde-

pendent of its length. In fact, the character of the resistance changes conceptually

and it will be necessary to invoke the wave nature of the electrons in the conduc-

tor for a proper description. The chemical nature of the metallic elements starts

to play an essential role as the size get smaller. As a consequence, while in the

macroscopic world gold is a better conductor than lead by an order of magni-

tude, for conduction through a single atom, lead is better than gold by a factor

of three. Metal nanowires display interesting quantum behavior, quantization

of conductance, even at room temperature due to large energy level separation

of the transport channels unlike in semiconductors. From a practical point of

view, nanowires can be easily generated by putting in contact two metal surfaces,

1



CHAPTER 1. INTRODUCTION 2

which are subsequently pulled apart. During nanowire elongation and just before

rupture, the conductance displays flat plateaus and abrupt jumps take a value of

approximately one quantum conductance G0 = 2e2

h̄
. The mechanical properties

are also quite unusual: plastic deformation in a macroscopic metal occurs with

dislocation motion. On the other hand, atomic size metal wires flow in response

to applied stresses with structural rearrangements and their yield strength is one

order of magnitude larger than bulk materials.

The invention and refinement of experimental techniques such as scanning

tunnelling microscope (STM), high resolution transmission electron microscope

(HRTEM) and mechanically controllable break junction (MCJB) have made the

fabrication of such wires possible [1], [2]. The fabrication of the stable gold

monatomic chains suspended between two electrodes is one of the milestones in

nanoscience. Ohnishi et al. [1], visualized nanometric gold wires by the first time

by transmission electron microscopy (TEM). Surprisingly, in a stable bridge of

four atoms connecting two gold tips, the atoms spaced by 3.5-4 Å have been

observed. These interatomic distances are much larger than interatomic distance

in gold dimer (Au2) and bulk Au. At the same time, gold monoatomic chain

with a length of four or more atoms have produced by Yanson et al. [2], by

using both STM and MCJB. They have used observed last conductance plateau

during stretching (close to quantum conductance 2e2

h̄
) to decide that it has been

a monoatomic chain. But they have not visualized the chains.

In this thesis, we have studied unusual mechanical and electronic properties

of metal chain nanowires from first principles. In the first part, six different

metals (Au, Ag, Al, Cu, Pt and Na) are studied in detail. All metals under

study show two wire structures which are linear and zigzag structures. Au, Al

and Pt show two different zigzag structures. All the wires are metallic. Relative

stabilities are investigated by calculating the tension corresponding to applied

force to keep the wire at a specific length. Au and Pt have bigger breaking force

at breaking point relative to other metallic wires. In the second part, effects of H,

H2 and C impurities on mechanical and electronic properties of Au monoatomic

chains are also studied. Except from Au-H system, i.e, when it contains C and

H2 impurities, wire becomes insulator. Before breaking, Au-impurity-Au bond
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length is in the range of long interatomic distance observed in experiment. So,

the presence of an impurity can explain the observed long interatomic distances.

However, changing of bond lengths and breaking bond during the stretching of

wire depends on the type of impurity. If one stretches the Au-H system, all bond

lengths increase in the same amount before breaking. However in Au-C system,

Au-Au bond length away from the C increases much more than other bonds. It

is shown that absorption of impurity atoms modify the stiffness of the bonds in

the wire. This is related to the charge transfer from Au to impurity (for H and

C). In H and C systems, wire breaks from Au-Au bond away from the impurity.

However in H2 system, wire breaks from Au-H bond.

The thesis is organized as follows: Chapter 2 summarizes the theoretical back-

ground of the methods used in this thesis. In Chapter 3, some literature review

is presented. In chapter 4 and 5 results are summarized. Finally, Chapter 6

concludes the thesis.



Chapter 2

THEORETICAL

BACKGROUND

2.1 The problem of structure of matter

The microscopic description of the physical and chemical properties of matter is a

complex problem. In general, we deal with a collection of interacting atoms, which

may also be affected by some external field. This ensemble of particles may be in

the gas phase (molecules and clusters), or in a condensed phase (solids, surfaces,

wires), they could be solids, liquids or amorphous, homogeneous or heteroge-

neous (molecules in solution, interfaces, adsorbates on surfaces). However, in all

cases we can certainly describe the system by a number of nuclei and electrons

interacting through columbic (electrostatic) forces. Formally, we can write the

Hamiltonian of such a system in the following general form:

H =
N∑

I=1

−→
P 2

I

2MI

+
Ne∑

i=1

−→
p2

i

2m
+

∑

i>j

e2

|−→ri −−→rj |
+

∑

I>J

ZIZJe2

| −→RI −−→
RJ |

−
∑

i,I

ZIe
2

|−→RI −−→ri |
(2.1)

where R = RN , N = 1...N , is a set of N nuclear coordinates, and r = rNe
, i =

1...Ne, is a set of Ne electronic coordinates. ZI and MI are the N nuclear charges

and masses, respectively. Electrons are fermions, so that the total electronic wave

4



CHAPTER 2. THEORETICAL BACKGROUND 5

function must be antisymmetric with respect to exchange of two electrons. Nuclei

can be fermions, bosons or distinguishable particles, according to the particular

problem under examination. All the ingredients are perfectly known and, in

principle, all the properties can be derived by solving the many-body Schrödinger

equation:

ĤΦ(x,
−→
R ) = EΦ(x,

−→
R ) (2.2)

where x ≡ (−→r , s) full set of electronic positions and spin variables. In prac-

tice, this problem is almost impossible to treat in a full quantum mechanical

framework. Only in a few cases a complete analytic solution is available, and

numerical solutions are also limited to a very small number of particles. There

are several features that contribute to this difficulty. First, this is a multicom-

ponent many-body system, where each component (each nuclear species and the

electrons) obeys a particular statistics. Second, the complete wave function can-

not be easily factorized because of coulombic correlations. In other words, the

full Schrödinger equation cannot be easily decoupled into a set of independent

equations so that, in general, we have to deal with (3N + 3Ne) coupled degrees

of freedom. The dynamics is an even more difficult problem, and very few and

limited numerical techniques have been proposed to solve it. The usual choice

is to find out some proper approximations. The majority of the calculations

presented in the literature are based on: (1) the adiabatic separation of nuclear

and electronic degrees of freedom (adiabatic approximation), and (2) the classical

treatment of the nuclei.

2.2 Adiabatic approximation

(Born-Oppenheimer approximation)

The first observation is that the time scale associated with the motion of the

nuclei is usually much slower than that associated with electrons. In fact, the

small mass of the electrons as compared to that of the protons is about 1 in 1836,

meaning that their velocity is much larger. In this case, it was proposed in the

early times of quantum mechanics that the electrons can be adequately described
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as following instantaneously the motion of the nuclei, staying always in the same

stationary state of the electronic Hamiltonian. This stationary state will vary in

time because of the coulombic coupling of the two sets of degrees of freedom but, if

the electrons were, e.g. in the ground state, they will remain there forever. This

means that as the nuclei follow their dynamics, the electrons instantaneously

adjust their wave function according to the nuclear wave function. Under the

above conditions, the full wave function factorizes in the following way:

Φ(x,
−→
R ) = Ψ(x,

−→
R )χ(

−→
R ) (2.3)

where Ψ(x,
−→
R ) is the electronic wave function, χ(

−→
R ) is the nuclear wave function.

Ψ(x,
−→
R ) is more localized than χ(

−→
R ). That is ∇Iχ(

−→
R ) � ∇IΨ(x,

−→
R ). Ψ(x,

−→
R )

is normalized for every R. So this separation of variables leads to

[Te + Vee(−→r ) + VeN(−→r ,
−→
R )]Ψn(x,

−→
R ) = εn(

−→
R )Ψn(x,

−→
R ) (2.4)

and

[TN + VNN(
−→
R ) + ε(

−→
R )]χ(

−→
R ) = E(

−→
R )χ(

−→
R ) (2.5)

Electronic eigenvalue εn(
−→
R ) depends parametrically on the ionic positions

−→
R .

In Adiabatic approximation, ions move on the potential-energy surface of the

electronic ground state only.

[Te + Vee(−→r ) + VeN(−→r ,
−→
R )]Ψ0(x,

−→
R ) = ε0(

−→
R )Ψ(x,

−→
R ) (2.6)

and

[TN + VNN(
−→
R ) + ε(

−→
R )]χ(

−→
R ) = ih̄

∂

∂t
χ(
−→
R, t) (2.7)

2.3 Classical nuclei approximation

Solving any of the two last equations 2.6 or 2.7 is a difficult task for two

reasons: First, it is a many-body equation in the 3N nuclear coordinates, the
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interaction potential being given in an implicit form. Second, the determination

of the potential energy surface εn(
−→
R ) for every possible nuclear configuration R

involves solving L3N times the electronic equation, where L is a typical number of

grid points. The largest size achieved up to date using non-stochastic methods is

six nuclear degrees of freedom. In a large variety of cases of interest, however, the

solution of the quantum nuclear equation is not necessary. This is based on two

observations: (1) The thermal wavelength for a particle of mass M is T = e2

MkBT
so

that regions of space separated by more than λT ' 0.1 Å do not exhibit quantum

phase coherence. The least favorable case is that of hydrogen, and even so, at

room temperature λT ' 0.1 Å , while inter-atomic distances are normally of the

order of 1 Å. (2) Potential energy surfaces in typical bonding environment are

normally stiff enough to localize the nuclear wave functions to a large extent. For

instance, a proton in a hydroxyl group has a width of about 0.25 Å. This does not

mean that quantum nuclear effects can be neglected altogether. In fact, there is

a variety of questions in condensed matter and molecular physics which require

a quantum mechanical treatment of the nuclei. Well-known examples are the

solid phases of hydrogen, hydrogen-bonded systems like water and ice, fluxional

molecules, and even active sites of enzymes. There is, however, an enormous

number of systems where the nuclear wave packets are sufficiently localized to be

replaced by Dirac’s δ-functions. The connection between quantum and classical

mechanics is achieved through Ehrenfest’s theorem for the mean values of the

position and momentum operators. The quantum-mechanical analog of Newton’s

equations is:
< ∂2−→PI >

∂t2
= − < ∇IE0(

−→
R ) > (2.8)

and

E0(
−→
R ) = ε0(

−→
R ) + VNN(

−→
R ) (2.9)

Force −∇IE0(
−→
R ) contains contributions from direct ion-ion interaction and from

the gradient of the electronic total energy.
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2.4 Hartree and Hartree-Fock approximation

Solving the Schrödinger equation of a system of Ne interaction electrons in the

external coulombic field created by a collection of atomic nuclei is a very difficult

task. The exact solution is known only in the case of uniformly electron gas, for

atoms with a small number of electrons, and for a few small molecules. These

exact solutions are always numerical. At the analytic level, approximations must

be used. The first approximation may be considered the one proposed by Hartree.

It consists of postulating that the many-electron wave function can be written

as a simple product of one-electron wave functions [3]. Each of these verifies a

one-particle Schrödinger equation in an effective potential that takes into account

the interaction with the other electrons in a mean field way:

Ψ(x,
−→
R ) =

∏

i

φi(−→ri ) (2.10)

and

(− h̄2

2m
∇2 − Ze2

r
+

∫ ∑
j 6=i |φj(

−→r, )|2
|−→r −−→r, | d3r,)φi(−→r ) = εiφi(−→r ) (2.11)

where third term in left hand side is the Hartree potential. Sum of the sec-

ond and the third term is the effective potential. Notice that charge density

nj = |φj|2 does not include the charge associated with particle i, so that the

Hartree approximation is (correctly) self-interaction free. In this approximation,

the energy of the many-body system is not just the sum of the eigenvalues of

equations( 2.11) because the formulation in terms of an effective potential makes

the electron-electron interaction counted twice. The correct expression for the

energy is:

EH =
Ne∑

i

εi −
1

2

∫ ∫ n(−→r )n(−→r, )

|−→r −−→r, | d3rd3r, =
< Ψ|H|Ψ >

< Ψ|Ψ >
(2.12)

The set of Ne coupled partial differential equations (2.11) can be solved by min-

imizing the energy with respect to a set of variational parameters in a trial wave

function

δ
< Ψ̃|H|Ψ̃ >

< Ψ̃|Ψ̃ >
= 0
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or, alternatively, by recalculating the electronic densities using the solutions of

eqn. 2.11, then calculating the potential, and solving again the Schrödinger equa-

tion. This procedure can be repeated several times, until self-consistency in the

initial and final wave function or potential is achieved. This procedure is called

self-consistent field (SCF) method. The Hartree approximation treats the elec-

trons as distinguishable particles. However, the wave function of a many electron

system must be antisymmetric under exchange of two electron because the elec-

trons are fermions. The antisymmetry of the wave function produces a spatial

separation between electrons that have the the same spin and thus reduces the

Coulomb energy of the electronic system. Slater determinant is the way to make

antisymmetrized many electron wave function by using Pauli exclusion principle

(Fermi statistics for electrons):

Ψi1...iNe
(q1...qNe

) =
1√
Ne




φi1(q1) . . . φiNe
(qNe

)
...

...

φi1(q1) . . . φiNe
(qNe

)


 (2.13)

=
1√
Ne

∑

P

(−1)P Pφi1(q1)...φiNe
(qNe

) (2.14)

This wave function allows particle exchange due to the antisymmetry of wave

function. The energy of the system is reduced by this exchange of particles (elec-

trons). The approximation is called Hartree-Fock approximation (HF) [3], and

has been the way of choice of chemists for calculating the electronic structure

of molecules for a long time. In fact, it provides a very reasonable picture for

atomic systems and, although many-body correlations (arising from the fact that,

due to the two-body Coulomb interactions, the total wave function cannot nec-

essarily be separated as a sum of products of single-particle wave functions) are

completely absent, it also provides a reasonably good description of inter-atomic

bonding. Hartree-Fock equations look the same as Hartree equations, except for

the fact that the exchange integrals introduce additional coupling terms in the

below equations:

(− h̄2

2m
∇2 − Ze2

r
+ e2

∑

i6=j

∫ |φj(
−→r, )|2

|−→r −−→r, |d
3r,)φi(−→r )
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− e2
∑

j 6=i

∫ φ?
j(
−→r, )φi(−→r )

|−→r −−→r, | d3r,φj(−→r )) = εiφi(−→r ) (2.15)

Notice that also in Hartree-Fock the self-interaction cancels exactly.

2.5 Thomas-Fermi theory

Thomas and Fermi proposed [3], at about the same time as Hartree (1927-1928),

that the full electronic density was the fundamental variable of the many-body

problem, and derived a differential equation for the density without using to one-

electron orbitals. The Thomas-Fermi approximation was actually too incomplete

because it did not include exchange and correlation effects, and was also unable

to sustain bound states because of the approximation used for the kinetic energy

of the electrons. However, it set up the basis for the later development of Density

Functional Theory (DFT), which has been the way of choice in electronic structure

calculations in condensed matter physics during the past twenty years.

Thomas and Fermi (1927) gave a way for constructing the total energy in terms

only of the electronic density. They used the expression for the kinetic, exchange

and correlation energies of the homogeneous electron gas to construct the same

quantities for the inhomogeneous system in the following way Ei =
∫

εi[n(−→r )]dr

where εi ∼ ε[n(−→r )] is the energy density (corresponding to the piece i), calculated

locally for the value of the density at that point in space. This was the first time

that the local density approximation, or LDA, was used. For the homogeneous

electron gas the density is related to the Fermi energy (εF ) by

n =
1

3π2
(
2m

h̄2 )3/2ε
3/2
F (2.16)

The kinetic energy density of the homogeneous gas is

T =
3nεF

5

so that the kinetic energy density is:

t[n] =
3

5

h̄2

2m
(3π2)3/2n3/2 (2.17)
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The kinetic energy is written,

T TF = CK

∫
n5/3(−→r )d3r (2.18)

with CK = 3(3π2)2/3/10. The inhomogeneous system is thought of as locally

homogenous. Neglecting exchange and correlation in total energy expression we

obtain Thomas - Fermi theory:

ETF [n] = CK

∫
n(5/3)dr +

∫
v(r)n(−→r )dr +

1

2

∫ ∫ n(−→r )n(r,)

|−→r −−→r, | d3rd3r, (2.19)

It can be seen that ETF depends only on the electronic density, it is a functional

of the density. By using variational principle, one can obtain the density n(r)

which minimizes ETF subjected to the constraint that the total integrated charge

be equal to the number of electrons. This can be put in terms of functional

derivatives:
δ

δn(−→r )
[ETF − µ

∫
n(−→r )d3r] = 0 (2.20)

with

µ =
5

3
CKn2/3(−→r ) + v(−→r ) +

∫ n(−→r ,)

|−→r −−→r, |d
3r (2.21)

where µ is the chemical potential.

Hartree equation describes the ground states better than Thomas-Fermi the-

ory. The differences between them lay in the different treatments of the kinetic

energy T .

2.6 Density Functional Theory

The density functional theory (DFT), developed by Hohenberg and Kohn [4], and

Kohn and Sham [5], has provided a way to treat the problem of describing the

effects of exchange and correlation in an electronic system. The Coulomb energy

of the electronic system can be reduced below its Hartree-Fock value if electrons

that have the opposite spins and are also spatially separated. In this case the

Coulomb energy of the electronic system is reduced at the cost of increasing the

kinetic energy of the electrons. The differences between the many body energy of
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an electronic system and the energy of the system calculated in the Hartre-Fock

approximation is called the correlation energy. Hohenberg and Kohn proved that

the total energy, including exchange and this correlation energy, of an electron gas

even under the influence of an external static potential, for our case the potential

due to ions, is a unique functional of the electron density. Further, the minimum

value of the total energy functional is the ground-state energy of the system,

and the density that yields this minimum value is the exact ground state energy.

In addition to this, Kohn and Sham showed how to replace the many-electron

problem by an exactly equivalent set of self-consistent single electron equations.

Self-consistent here means that the solutions determine the equations themselves.

The important distinction between Hartree-Fock approximation and the

Hohenberg-Kohn theory is the initial approach to the problem. Hartree-Fock

method initially approximates a set of single-electron wave functions, anti- sym-

metrized by the Slater determinant approach and minimizes the total energy in

terms of these functions. However, in the density functional theory, the total

energy is introduced as a functional of the charge density, which is introduced

ad-hoc to the system. The charge density later is definable as the sum of single-

electron densities, whence the derivation of total energy with respect to the charge

density yields the Kohn-Sham equations.

2.6.1 The Hohenberg-Kohn Theory

In 1964, P. Hohenberg and W. Kohn [4] formulated and proved a theorem on the

ground of Thomas-Fermi theory. The theorem divided into two parts:

1. The ground-state energy of a many body system is a unique functional of

the particle density, E0 = E[(−→r )]. There is no v(r) 6= v,(−→r )(external potential)

that corresponding to the same electronic density for the ground state.

2. The functional E[(−→r )] has its minimum relative to variations δn(r) of the

particle density at equilibrium density n0(−→r ).

E = E[n0(−→r )] = minE[(−→r )] (2.22)
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2.6.2 The Hohenberg-Kohn variational principle

The most important property of an electronic ground state is its energy. By wave

function methods E could be calculated by direct approximate solution of the

Schrödinger equation or the Rayleigh-Ritz minimal principle,

E = min
Ψ̃
(Ψ̃, HΨ̃) (2.23)

where Ψ̃ is a normalized trial wave function for the given number of electrons Ne.

The formulation of minimal principle in terms of trial densities n(r), rather

than trial wave function Ψ̃ was first presented by Hohenberg-Kohn [4].

Every trial function Ψ̃ corresponding to a trial density n(r) obtained by inte-

grating Ψ̃Ψ̃? over all variables expect the first and multiplying by Ne. One may

carry out the minimization in two stages. First fix trial density and denote Ψ̃i
n a

the class of trial functions with n. We define the constrained energy minimum,

with n fixed, as

Ev[ñ(−→r )] ≡ mini(Ψ̃i
ñ
, HΨ̃i

ñ
) =

∫
v(−→r )ñ(−→r )dr + F [n(−→r )] (2.24)

where

F [ñ(−→r )] = mini[Ψ̃i
ñ
, (T + U)Ψ̃i

ñ
] (2.25)

F [n(−→r )] requires no explicit knowledge of v(r). It is a universal functional of the

density ñ(r).

2.6.3 The self-consistent Kohn-Sham equations

E
v(
−→r )

(ñ(−→r )) ≡
∫

v(−→r )ñ(−→r )dr + T [ñ(−→r )] (2.26)

The Euler-Lagrange equations, embodying the fact the expression n(−→r ) =
∑Ne

i |ϕi(−→r )|2 is stationary with respect to variations of ñ(−→r ) which leave the

total number of electrons unchanged, is

δE
v(
−→r )

[ñ(−→r )] =
∫

δñ(−→r ){v(−→r ) +
δ

δñ(−→r )
T [ñ(−→r )]|ñ≡n − ε}dr (2.27)
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where ñ(−→r ) is the exact ground-state density for v(r). Here ε is a Lagrange

multiplayer to assure particle conservation. Now in this soluble, noninteracting

case, the ground state energy and density can be obtained by calculating the

eigenfunctions ϕi and eigenvalues εi of noninteracting single-particle equations

(− h̄2

2m
∇2 + v(−→r ) − εi)ϕi = 0 (2.28)

yielding

E =
Ne∑

i=1

εi (2.29)

and

n(−→r ) =
Ne∑

i

|ϕi(−→r )|2 (2.30)

Here i labels both orbital quantum numbers and spin.

The Kohn-Sham total energy functional for a set of doubly occupied electronic

state ϕi can be written

E[n(−→r )] =
∫

v(−→r )n(−→r )d3r + F [n(r)] (2.31)

where functional F [ñ(−→r )] is written in the form of

F [ñ(−→r )] = T [ñ(−→r )] +
1

2

∫ ∫ ñ(−→r )ñ(−→r ,)

|−→r −−→r ,| d3rd3r, + EXC [ñ(−→r )] (2.32)

T [ñ(−→r )] is the kinetic energy functional for noninteracting electrons and is in

form of

T [n(r)] = 2
∑

i

∫
ϕi[−

h̄2

2m
]∇2ϕid

3r (2.33)

The last term is the exchange-correlation energy functional. The correspond-

ing Euler-Lagrange equation, for a given total number of electrons, has the form

δE
v(
−→r )

[ñ(−→r )] =
∫

δñ(−→r ){veff (−→r ) +
δ

δn̂(−→r )
T [ñ(−→r )]|

ñ(
−→r )=n(

−→r )
− ε}d3r = 0

(2.34)

with

veff (−→r ) = v(−→r ) +
∫ n(−→r, )

|−→r −−→r, |d
3r, + vXC(−→r ) (2.35)

and

vXC ≡ δ

δñ(−→r )
EXC [ñ(−→r )]|

ñ(
−→r )=n(

−→r )
(2.36)
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The form of eqn. 2.31 is identical to eqn. 2.26 for noninteracting particles moving

in an effective external potential veff instead of v(−→r ) and the minimizing density

n(−→r ) is given by solving the single particle equation

(− h̄2

2m
∇2 + veff − εi)ϕi = 0 (2.37)

These self-consistent equations are called the Kohn-Sham (KS) equations and the

ground state energy is given by

E =
∑

i

εi + EXC [n(−→r )] −
∫

vXCn(−→r )d3r − 1

2

∫ n(−→r )n(−→r, ))

|−→r −→r, | d3rd3r, (2.38)

If EXC and vXC is neglected, the Kohn-sham equations reduce to self consistent

Hartree equations. With the exact EXC and vXC all many body effects are in

principle included. The Kohn-Sham equations must be solved self consistently so

that the occupied electronic states generate a charge density that produces the

electronic potential that was used to construct the equations.

2.7 Pseudopotential Approximation

Mathematically and numerically, a plane-wave-basis formalism is one of the sim-

plest and most natural formalism to implement for crystals. However, expanding

the core wave functions or the core oscillatory region of the valence wave func-

tions with plane waves is extremely inefficient. Therefore, plane-wave basis sets

are practically always used in conjunction with the pseudopotential approxima-

tion. The combination of pseudopotentials and plane waves has become one of the

most popular methods for electronic structure calculations. The physical reason-

ing behind the pseudopotential approximation is simple: since the core-electron

wave functions of an atom remain essentially unchanged when placed into differ-

ent chemical environments and since the only major contribution of core wave

functions to chemical bonding is to enforce the orthogonality of the valence wave

functions to the core states, the true atomic potential can be replaced by a pseu-

dopotential that effectively reproduces the effects of the core electrons. But with

only this physical constraint, i.e removing the core electrons but reproducing ex-

actly all electron properties after a certain cutoff radius, an infinite number of
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pseudopotentials can be generated.

It is well known that the most physical properties of solids are dependent on

the valence electrons to a much greater than core electrons. The pseudopoten-

tial approximation exploits this by removing the core electrons, which are highly

localized, and by replacing them and the strong ionic potential by a weaker pseu-

dopotential that acts on a set of pseudofunctions rather than the true valence

wave functions. The valence wave function oscillate rapidly in the region occu-

pied by the core electrons due to the strong ionic potential in this region. These

oscillations maintain the orthogonality between the core wave functions and the

valence wave functions due to exclusion principle. Since the kinetic energy of a

state is proportional to second derivative of the wave function the kinetic energy

Figure 2.1: Schematic illustration of all-electron (solid lines) and pseudoelectron
(dashed lines) potentials and their corresponding wave functions. The radius at
which all-electron and pseudopotential values match is designated rc.
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of the free electron state is increased in the vicinity of the core region. Most pseu-

dopotentials are then constructed such that they satisfy four general conditions.

The first is that the valence pseudowavefunctions generated from the pseudopo-

tential should contain no nodes. This stems from the fact that we would like

to construct smooth pseudowavefunctions. Second, the normalized atomic radial

pseudo-wave-function (PP) with angular momentum l is equal to the normalized

radial all-electron wave function (AE) beyond a chosen cutoff radius rcl

Rcl
l (r) = RAE

l (r) for rcl > r (2.39)

Third, the charge enclosed within rcl for the two wave functions must be equal

∫ rcl

0
|RPP

l (r)|2r2dr =
∫ rcl

0
|RAE

l (r)|2r2dr (2.40)

Last, almost redundantly, the valence all-electron and pseudopotential eigenvalues

must be equal,

εPP
l = εAE

l (2.41)

If a pseudopotential meets the conditions outlined above, it is commonly referred

to as a norm-conserving pseudopotential. Pseudopotential is angular momentum

dependent so each angular momentum component of the wave function see a

different potential. So its scattering properties for the pseudo wave function are

identical to scattering properties of the ion and the core electrons for the valence

wave functions.
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REVIEW OF THE FIELD

3.1 Experimental Results for gold nanowires

By high resolution transmission electron microscopy (HR-TEM), it is possi-

ble to resolve individual atoms for the heavier elements. Ohnishi, Kondo and

Takayanagi [1] used this capability by combining their ultra-high vacuum HR-

TEM setup with two different manipulation techniques to produce atomic wires.

First, they constructed a miniature STM that fits into the specimen space of the

TEM. It is fascinating to see the atomically-resolved video images they show that

a tip scanning a sample surface, and subsequently indenting it. When retracting

a gold tip from a gold sample the group observed that the connecting bridge

gradually thins down, as seen figure 3.1.

All experiments are performed at room temperature, giving the atoms enough

mobility to optimize the configuration, and as a result it is seen that the bridge

connecting the two electrodes, oriented along the [110] direction, often consists

of a straight wire section. As the number of atomic rows in the connecting

nanowire decreases the conductance is also seen to decrease in a step-wise fashion,

as expected. The conductance of a one atom strand in the images is close to 2e2

h̄
.

Evidence for this interpretation is obtained by analyzing the contrast profile in

the images.

18
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Figure 3.1: TEM images of a gold contact recorded while withdrawing the tip
from the surface. A gold bridge formed between the gold tip (top) and the sample
(bottom) thins down when going from (a) to (e), where conductance drops to 2G0.
The contact finally break at (f), for which conductance drop to zero. Taken from
[1].

In order to resolve the individual atoms in the chain a second technique was

employed. In this technique, the STM was replaced by a very thin gold film

specimen, where an intense electron beam current was used to melt two adjacent

holes in this film. For [110] oriented films a gold bridge along the [001] direction

between these two holes was seen to evolve into an atomic chain that survived

for about two minutes, see figure 3.2.

Note that in this configuration the conductance of the chain cannot be mea-

sured. Remarkably, the spacing between the atoms in the chain was found to be

0.35−0.4 nm, much larger than the nearest neighbor distance in bulk gold, 0.288

nm. This value is much larger than any theoretical calculation predicts, since

the overlap between the electron clouds of the gold atoms is too small to provide

sufficient stability for the atomic chain.
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Figure 3.2: TEM images of a gold atomic chain forming between two gold banks.
Taken from [1].

The second paper in the 1998 issue of Nature [2] used different techniques in

several important aspects. The atomic structure was not imaged directly, but

the formation of chains was deduced from the experimental observations of the

conductance as a function of stretching. The advantages, on the other hand, are

the low temperature (4.2 K) at which the experiment is performed. This allows for

a long-term stability of the gold atomic chains so that detailed spectroscopy can

be done. In addition, the cryogenic vacuum conditions avoid any contamination

on the nanowires.

By standard low-temperature STM and MCBJ techniques atomic-sized con-

tacts of gold were produced. In contrast to many other metals, for Au it was

found that the last conductance plateau, at a value of ∼ 1 G0, can often be

stretched far beyond a length corresponding to an atomic diameter. An example

is presented in figure 3.3, where a plateau of about 2 nm length is found. Since

it has been established that the conductance is predominantly determined by the
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narrowest cross section, and that a single-atom contact for Au has a conductance

near 1 G0, due to this observation Yanson et al. [2], speculate that a chain of

atoms was being formed. This is indeed very surprising, even more so than in

the case of the room temperature TEM experiments. For the latter, at an earlier

stage the atoms have enough mobility to produce a stable, straight nanowire sev-

eral atoms in cross section, and the atomic rows in the wire are removed one after

the other by thermal diffusion of the atoms on the surface. This leaves a single

atomic row standing before contact is finally lost. However, at low temperatures

the atomic structure is frozen into the configuration in which it lands after an

atomic rearrangement, forced by the stretching of the contact. When arriving

at a single atom contact one would expect the contact to break at this weakest

spot. Instead, atoms are apparently being pulled out of the banks to join in the

formation of a linear atomic arrangement. Clearly, it is important to critically

evaluate the interpretation of atomic chain formation.

Figure 3.3: The conductance as a function of the displacement of the two gold
electrodes with respect to each other in an MCBJ experiment at 4.2 K. The
trace starts at the upper left, coming from higher conductance values (thick)
curve. A long plateou with a conductance near 1 G0 is observed and after jump
to tunnelling one needs to return by a little more than the length of the long
plateau to come back into contact(thin curve) [2].

A simple test involves recording the distance required to bring the electrodes
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back into contact after the conductance has suddenly dropped to zero, as at the

end of the plateau in figure 3.3. We imagine that a chain has formed, which

finally ruptures at this moment. The atoms in the chain are then expected to fall

back onto the banks, which implies that the separation between the electrodes

should be approximately equal to the length of the chain, being approximately

the length of the plateau. Figure 3.3 illustrates that this is indeed the case for

this particular example, although one may anticipate variations in the return

length according to the actual arrangement of the atoms after the collapse. By

recording many curves similar to the one in figure 3.3, Yanson et al [2], obtained

an average return distance as a function of the length of the last plateau. They

observed a linear dependence of the return distance on the plateau length, with

a slope between 1.0 and 1.3 and an offset of about 0.5 nm. The latter can be

understood in terms of the elastic deformation of the banks: Even when no chain

is formed and the contact breaks at a single atom, the atomic structure relaxes

after rupture of the contact, giving rise to a finite return length.

Figure 3.4: Distribution of plateau lengths for monoatomic chain [2].

Further evidence for the chain structure comes from an analysis of the dis-

tribution of lengths of the last conductance plateaus for many cycles of contact

breaking. Figure 3.4 shows a histogram of plateau lengths. It is seen that the

probability for early breaking is very low, it then rises to a first peak at 2.5 Å
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length, after which it drops before rising to a second peak, which is usually higher

than the first.

After the second peak the distribution of lengths drops steeply, but shows

three additional peaks in the tail. The peak distance of 0.25−0.26 nm agrees with

the expected bond distance in a chain of gold atoms and the natural interpretation

of the peaks in the length histogram is in terms of a preferential breaking of the

chain at lengths corresponding to an integer number of atoms in the chain. The

peaks in the distribution are broadened by the variation in starting and end

configurations of the banks connecting the chain. In fact, a strict periodicity of

the peaks would not be expected to continue much further than the first few,

because the atoms making up the chain are removed from the banks, which then

become, shorter. Occasionally plateaus of up to 2 nm in length have been found,

which suggests that the system can self assemble chains of up to 7 − 8 atoms

long. It is often possible to obtain similar peak structure in a histogram of return

distances.

Several explanations have been proposed in order to explain large interatomic

distances observed in experiments. One proposal is based on the observation that

the calculated equilibrium structure for a Au monatomic chain appears to have

a zigzag geometry. Sanchez-Portal et al. [6, 7], proposed that every second atom

in the zigzag chain could be thermally excited into a spinning motion around the

chain axis, which would blur their image and TEM missed this image. On the

other hand, Koizumi et al. [8], show that spinning atom around the chain axis may

be seen by comparing the experimental images to simulations. They did not find

strong evidence for spinning gold atoms. Other explanations involve the presence

of ’impurity atoms’, such as C, O, S, or H [9, 10, 11, 12, 13]. The simulations [8]

suggest that adatoms of Si and S would be resolved, but the contrast for C (and

O) would not exceed the noise level. It is known that regular gold surface is not

very reactive, while the low-coordination gold atoms in the chain bind strongly

to different species, as shown by first-principles calculations [9], [10]. Despite

the high vacuum conditions of the experiment, there might be small amounts of

adsorbed molecules running over the surface, and these will stick preferentially

at the strong binding sites in the gold chain. Oxygen would be a good candidate,
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since it would not be resolved in the images and the calculations suggest that a

Au-O-Au-O chain would have Au-Au distance close to the observed values and

the chain would be conducting, with a single open channel [10].

Figure 3.5: Time sequence of atomic resolution images of the formation, elonga-
tion and fracture of a suspended chain of gold atoms. Atomic positions appear
as dark lines or dots. A schematic representation of the chain is shown in (e); the
letters A and B indicate the apex position in (c). The double arrows in (a) and
(b) have indicated that the movement of the lower apex. Taken from [14].

The experimental observation of the atomic chain formation and the long

interatomic distances have been confirmed in an independent experiment by Ro-

drigues and Ugarte [14], using the thin-film double-hole technique. Similarly,

their results [14] did not support rotating zigzag model of Sanchez-Portal [6].

They have claimed that the rotation of a high atomic number atom, such as
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gold, would generate ghost dots, which would easily be detected. The large and

irregular bond lengths observed suggest the presence of light interstitial atoms

that may stabilize the chains [11]. In high resolution images taken with a new

generation defocus-imaging modulation processing electron microscope by Takai

et al. [15], much smaller Au-Au distances of 0.25 − 0.29 nm were found.

A further study by Kizuka et al. [16], appears to be at variance with most

of the earlier results. Here, a miniature STM is operated inside a HR- TEM at

regular vacuum conditions. Again, for gold it is frequently observed that upon

separation of the contact between tip and sample it ends with the formation

of a chain of atoms. Similar to the results of Takai et al. [15], a distance of

only 0.27 ± 0.02 nm was obtained between the atoms in the chain, which can be

stretched to the break point (0.3± 0.02 nm). Surprisingly, the atomic wires were

found to be insulating. At the moment when the structure is seen to jump from

a multiatom cross section to a single atom chain the conductance drops to zero.

Moreover, the chains were found to be bent even under stretched conditions. Very

long atomic chains, up to 10 atoms in a row, were observed. They were stable for

longer times than reported before. Although the authors make a few suggestions

to explain these observations, the discrepancy with the other experiments was

not addressed. It can be proposed that these observations can be understood if

we assume the presence of specific adsorbates. As shown by Bahn et al. [10], CO

binds strongly to the gold chain, turns it into an insulator, introduces kinks in

the wire, and the CO bonded gold chain has the lowest energy among all the

structures investigated. This would suggest that CO, or another contaminant of

similar nature, is present in the vacuum space. At a typical pressure of 10−5 Pa

the probability of this mechanism is high.

In the Yanson’s experiment [2] the distance between the peaks was reported

to be large, 0.36 nm (±30). The larger value, and the rather large uncertainty,

later turned out to result from the presence of He thermal exchange gas in the

vacuum space. As was recently shown by Kolesnychenko et al. [17], adsorbed He

gas has an unexpectedly large influence on the work function of metal surfaces.

This introduces an error in the calibration of the displacement of the MCBJ

and STM, when using the exponential tunnelling dependence. More recently,
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Untiedt et al. [18] have combined several calibration techniques to obtain a more

reliable value for the inter-peak distance in the length histograms, and the value

obtained for Au, 0.26 ± 0.02 nm, is in excellent agreement with the calculated

Au-Au distance in the chain [6, 7, 19, 20, 21, 22, 23].

Figure 3.6: Simulation conductance (a) and force (b) measurements during chain
formation and breaking. The conductance on the last plateau is shown on an
expanded scale to illustrate small variation in the conductance. The inset shows
a schematic drawing of the experimental setup. (c) Calculated force evolution
obtained from molecular dynamics simulations. The arrows indicate the point
at which a new atom pops into chain and snapshots of the structure at these
positions are shown. Taken from [23]

Rubio-Bollinger et al. [23], measured the force evolution simultaneously with

the conductance while drawing out a chain of atoms at 4.2 K, see figure 3.6.

They employed an auxiliary STM at the back of a cantilever beam, on which

the sample was mounted, in order to detect the deflection, and there with the

force on the sample. An example of such a measurement is shown in figure 3.6,

where the contact is stretched at a constant speed of 0.5 nm/s. The force shows

a saw-tooth-like pattern corresponding to elastic deformation stages interrupted

by sudden force relaxations. The conductance on the last plateau remains nearly
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constant and just below 1 G0, but note that the force jumps are accompanied with

simultaneous jumps in the conductance with a magnitude of only a small fraction

of G0. In each measurement, the largest force on the last conductance plateau

is reached at the end, as expected. For a series of 200 experiments this final

breaking force shows a narrowly peaked distribution, centered at 1.5 nN, with a

standard deviation of only 0.2 nN. The break force was found to be independent

of the chain length. The force is considerably larger than the force required to

break individual bonds in bulk gold, which is estimated at only 0.8− 0.9 nN, and

this large force agrees very well with theory.

It was at first sight surprising to find that the slopes of the force as a function

of displacement are nearly constant in experiment. One would expect a smaller

force constant for longer chains. This observation is explained by the fact that

the chain is unusually stiff. The bonds are much stronger than bulk bonds, and

the largest elastic deformation takes place in the banks next to the chain. The

calculated deformation of the banks amounts to 0.5 − 1.0 nm, which agrees well

with the offset observed in the return distance.

3.2 Computational calculations with pure gold

atomic chain

Several molecular dynamics simulations have preceded those experiments which

suggested the formation of chains. However, the effective potentials employed

in these simulations were not regarded to be sufficiently reliable to be predic-

tive for such exceptional atomic configurations. Nevertheless, in many cases the

simulations agree with the observations, and they are very helpful in visualizing

the mechanism by which the chains unfold from the banks. Full DFT molecu-

lar dynamics modelling of this process is still too demanding. More recently da

Silva et al. [19], have used a method that forms a compromise between accuracy

and computational efficiency, involving tight-binding molecular dynamics. The

results for gold are generally consistent with the previously employed methods.
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First-principles DFT molecular dynamics was used by Häkkinen et al. [24], by

limiting the number of possible configurations. Taking a starting configuration

of two atomic gold tips connected by two parallel two-atom long strands, the

stretching of this double chain was seen to evolve into a four-atom long single

atom chain via a bent chain structure.

In order to investigate the equilibrium structure, bond length and breaking

force many model systems of moderate size have been considered, using first prin-

ciples calculations. The structures considered are infinite chains, using periodic

boundary conditions [21, 22, 25, 26], finite isolated chain sections [6, 21], or finite

wires connected to an atomic base on either side [6, 20]. Sanchez-Portal et al. [6],

have investigated all structures by various computational approximations and find

only minor quantitative and no qualitative differences. All calculations agree on

the equilibrium bond length, ranging only between 0.250 and 0.262 nm, and agree

on the maximum bond distance at which the chain breaks, 0.28 - 0.30 nm. The

break force is more sensitive to the type of approximations involved, ranging from

0.91 nN in Ref. [20] to 2.2 nN in Ref. [6]. Rubio-Bollinger et al. [23], made the

most extensive analysis of the breaking force and obtained a force between 1.55

and 1.68 nN, in good agreement with the experimental value of 1.5 ± 0.3 nN.

Takayanagi et al. [20], demonstrated that a single-row gold atomic chain is

modulated as it is stretched, like Peierls distortion [27, 28, 29]. A linear chain with

four atom has a maximum restoring force of 0.91 nN at an average interatomic

distance 0.31 nm. The interatomic distance of this chain reaches 0.345 nm but the

conductance is approximately 0.4 G0. The stretching chain changes its bonding

nature from an atomic coupling state to a dimer coupling state around average

interatomic distance 0.30 nm. Due to Peierls like distortion conductance decrease

with stretching. They calculated the cohesive energy of both equally spaced

chain and optimized chain. After d=0.29 nm dimerized structure is energetically

favorable.

Torres et al. [22], examined theoretically the spontaneous thinning process

of tip suspended nanowires and the structure and stability of monoatomic gold

wires. They used thermodynamics, classical many-body force simulations, LDA
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and GGA electronic calculations as well as ab initio simulations including the

two tips. They argued that the wire thinning was well explained in terms of a

thermodynamics tip suction driving migration of surface atoms from the wire to

the tips. The monatomic wire become progressively stretch for the same reason.

However, all calculations indicated that the stretched monatomic gold wire was

unstable against the breaking, contrary to experiments. They tested the longi-

tudinal stability by calculating the total energy changes when one interatomic

spacing was extended from d to d∗ fixing the total length of the wire. Wire was

stable just around equilibrium value. They proposed some explanation for sta-

bility of monatomic gold wire seen in experiments. First one was weak electron

correlations in bulk Au could became strong in stretched wires, due to poor co-

ordination and large interatomic distance. Second was van der Walls interactions

which are strong especially between blunt tip. Final one was heating or charging

of wire due to TEM electron beam.

Sanchez-Portal et al. [6], found for the optimized geometry a planar zigzag

structure with two atoms per unit cell. The zigzag deformation was even found

for free standing wire sections and the origin was proposed to be related to a

reduction in the transverse kinetic energy for the electrons due to the increased

effective wire width. The relative stability of zigzag chain can be understood in

comparison between the band structure of the linear chain and zigzag chain. In

the linear chain, the overlap between the filled d states broadens the d bands

until they reach the Fermi level, destabilizing the wire with their associated high

density of states. For the same wire length, the zigzag configuration allows a larger

bond distance; that brings back the d bands below the Fermi level and leaves the

a single s band crossing it. The chain is stretched to a linear configuration only

for bond lengths above about 0.275 nm, shortly before breaking. The zigzag

structure is confirmed in the work of Refs. [10, 21]. On the other hand, Häkkinen

et al. [24], find for a four atom chain between two tips that, before the chain

is fully stretched, it assumes a bent configuration, that appears to be lower in

energy than the zigzag conformation.

For a linear chain with a single half-filled conduction band a Peierls distortion

towards a string of dimers is generally expected to occur. The majority of the
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calculations suggest that this dimerization only sets in just before stretching to

the point of breaking. The variation in bond lengths observed for a four-atom

chain by Häkkinen et al. [9], that was argued to be related to a Peierls distortion

may also be due to end effects [20]. De Maria and Springborg [21], took into

account the relativistic effects on the band structure. But general picture was

not change. Moreover they demonstrated that finite chains was very similar

to infinite chains. They provided fairly general arguments that the half-filled

band for this chain system should lead to dimerization when the bond length

becomes larger than 0.29 nm. They argued that tendency towards dimerization

largely was determined by the size of electron phonon coupling. This implies

that strength of this tendency was independent of the unit cell length. Below

0.27 nm a second band was found to cross the Fermi level and the σ orbital

becomes partially depleted. Since the σ orbital is no longer half filled the driving

mechanism to dimerization is suppressed. A second band crossing the Fermi

level for short distances was also found for linear chains in Ref. [6]. However,

in their calculations it is removed by the zigzag deformation. The presence of

a second conduction band should be visible in the conductance. Calculations of

the conductance by other groups consistently find a conductance equal to 1 G0

or slightly below, in agreement with the experiments.

The atomic chain configuration is clearly a meta-stable structure. Bahn et

al. [10], calculated the time to break a chain for various temperatures by the

effective medium theory (EMT) molecular dynamics method. He found that the

chains would be unstable on a time scale of nanoseconds at room temperature.

The barrier to breaking is only about 0.03 eV, with an attempt frequency of

5.1011s−1. Only higher temperature break times could be obtained in the time

span accessible by these calculations. The mean time to breaking at 200 K is

found to be ∼ 0.1 ns, while extrapolation of the numbers obtained gives a lifetime

of hours or even days at 4.2 K. The lack of predicted long time stability poses a

second challenge to understanding of the room-temperature TEM results.
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3.3 Computational calculations with impurities

As mentioned before in experiments interatomic distance between gold atoms

were found in a range between 0.26 to 0.5 nm. In computational studies with

pure gold chain, the chain was unstable much before than unusual long inter-

atomic distance obtained in experiments. The presence of chemical species, such

as CO and O, C, H may resolve the problem. Bahn et al. [10], investigated the

chemical properties of single atomic gold chain by using DFT. The nanowire was

shown to be chemically active with strong chemisorption of oxygen atoms and

carbon monoxide. Due to low coordination number, quantum size effects and

strains, gold nanowires are chemically active, in contrast to surfaces and bulk

gold. The dependence on coordination number related to changes the energy of

metal d states. They argued that the chemisorption energy strongly depended

on the height of the unit cell. As the chain stretched chemisorption energy in-

creased significantly for CO. The chemisorption of CO leaded to opening a gap in

the electronic structure so conductance reduced. However, a chain with oxygen

atoms inserted between the Au atoms would, surprisingly, still be conducting,

with a single conductance channel. They argued that oxygen-gold chains were

conducting and stable towards breaking because of thermal fluctuations the pure

gold chain and they had gold-gold distance in the same range as the long chain

lengths observed in experiments.

A similar result was obtained by Häkkinen et al. [9], for the insertion of

methylthiol, SCH3, into a gold chain. They used a four atom nanowire with two

pyramidal tips both ends of the wire. They started equally distance nanowire

and relaxed it with fixing the some part of the tips. The dimerization occurred

in the middle part of wire. Energy gap increased near EF from 0.194 eV in the

equdistance wire to 0.216 eV in dimerized one. The calculated conductance of

dimerized wire was 0.58 G0. With binding of SCH3 in different place of dimerized

wire, the dimerization of the interior wire gold atom was removed. Both electrical

and structural properties changed. Conductivity of dimerized wire increased to

0.82 and 0.88 G0 for two different configuration. Increasing of conductance can

be explained with examination of potential profile governing the propagation of
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the electron through the wire. In the dimerized wire, unequal spacing between

atoms and reduced overlapping between the electronic states of the inner part of

wire and tips cause to reducing of conductance. They also argued that structure

and conductance of wire was sensitive to small variations in the spacing between

electrodes. So such sensitivity to small variations in the interelectrode distance, as

well as the variation of interatomic distance in the wire due to thermal effects, may

account for significant variations in the measured conductance at the final stage

of elongation and consequently may affect the correlation between conductance

and measured tip to tip distance.

Legoas et al. [11], experimentally observed the formation of stable linear gold

atom chains and get direct real space information on atomic position and bond

length. They obtained a length histogram. Bond length covered the whole range

from 0.288 to 0.48 nm. To explain the origin of large Au-Au interatomic distance,

they carried out the ab initio density functional theory geometrical optimization

calculations for gold clusters assuming the presence of C impurity. Their result

showed that existence of 0.40− 0.50 nm distance could be explained by presence

of C2 impurity. However, the bond-lengths above could be explained by a mixture

of clean stressed bonds and incorporating a single C atom.

Skorodumova et al. [12], studied the unusual structural stability of monatomic

gold wires by using first principles quantum mechanical calculations. They show

that undetected light atoms, in particular hydrogen, stabilize the experimentally

observed structures, which would be unstable in pure gold wires. They argued

that this enhanced cohesion was due to partial charge transfer from gold to hy-

drogen. The studied chain both with and without supported tip. They obtained

the very similar results. They also studied reactivity of gold surface and bulk

gold. They checked the stability of Au-H chain by increasing the temperature

from T=0 K up to T=300 K. Chain remained intact. They also studied the Au-O

and Au-C chain. C and O were also stabilized the chain. They calculated the

conductance by shifting the chemical potential at the one side and they found

that Au-H were conducting.

Novaes et al. [13], studied a realistic Au atomic chain nanowire contaminated
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by H, N, C, S, O and B. They argued previous studies about contaminated

nanowire were unrealistic. In [12], they not only used a quite unrealistic model

for nanowire but also they constructed a system with too H many system. But

in their study nanowires was under stress. In [11], authors used free clusters and

their clusters were not under tension. Experimental distance were taken under

stress, so their calculation could be meaningful under stress. Novaes et al. [13],

used a realistic model and small number of impurity. They argued that either

in completely pure or contaminated wire, the Au-Au bonds broke at distance of

0.30 and 0.31 nm. Distance 0.36±0.02 nm could be explained only by impurities

and their candidate was H. Distance ∼ 0.48 nm could be explained by S. In

contaminated wire, the overall effect of the impurities was to modify the stiffness

of the bonds. The Au-impurity-Au and their adjoint Au-Au bonds were much

stiffer than Au-Au bonds in pure wire.

3.4 Origin of the chain formation of metal atoms

As saying before nanowires of gold atoms spontaneously evolve into chains of

single atoms, which are surprisingly stable. They form metallic wires with a

nearly ideal quantum value of conductance G = 2e2

h̄
, and are able to sustain

enormous current density. Various numerical calculations on these chains have

been presented, in both regular and distorted configurations. All the experiments

and calculations explained above are done for Au. Au appears to be favorable

for chain formation while Ag and Cu do not. This leads to Bahn and Jacobsen

et al. [25] and Smit et al. [30], to investigated the mechanism behind this phe-

nomenon. Bahn et al. [25], by using molecular dynamics simulations investigated

the several metals (Ni, Pd, Pt, Cu, Ag and Au). They showed that tendency for

chain formation at low temperature is strongest for Au and Pt. They claimed

that this could be understood based on the fact that for these two metals the

bonds in low coordinated structures such as chain are very strong relative to

bulk bond as confirmed by DFT calculations. Smit et al. [30], proposed that the

higher stability of the linear monatomic gold wire suspended between electrodes,

over Ag and Cu which have a similar d band electronic structure, was attributed
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to s-d competition caused by relativistic effects. The contraction of s electron

distribution for a 5th row element is much more significant than that for 3rd and

4th row atoms. This contraction reduces the energy of s electron and increase its

occupation number at the expense of d electrons. Since the top of the d bands

consists of states with anti bonding character that are now partially depleted,

the d bonds becomes stronger. While the d electrons thus tend to compress the

lattice, the s electrons exert an opposing Fermi pressure. At low dimensions, the

spilling out of the s electron into vacuum relieves its expensive Fermi pressure

and leaves 5d contractive pressure uncompensated thereby allowing a contraction

of nearest-neighbor distance with a strengthened interatomic bonding.



Chapter 4

METAL NANOWIRES

4.1 Introduction

The miniaturization of the electronic components is of great importance in the

development and improvement of new devices. Although the laws of nature are

the same for macroscopic and mesoscopic systems, the miniaturization process is

approaching the limit where the quantum behavior of matter starts to play an

important role.

If the size of the system under consideration is only a few nanometers, the

atomic character of matter emerges and it cannot be considered as a continuum.

The regime of quantum behavior is also reached if one of the spatial dimensions of

the system is comparable to Fermi wavelength of the conducting electrons. Then,

the confinement splits the continuous electronic band in this direction into a set

of discrete levels. In both cases, the behavior of the system changes from what is

expected from the macroscopic case. In metallic nanowires the Fermi wavelength

is of the same order of magnitude as the atomic distance, and both atomic and

electronic discrete character compete and/or couple, determining the properties

of the nanowires.

35
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In this chapter, properties of one atom thick infinite nanowires are investi-

gated from first principles. Electronic structure calculations based on the density

functional theory are reported.

The organization of the chapter is as follows. In sec 4.2 computational details

are presented. In sec 4.3.1 results for zigzag and linear wires are presented and

six different metals (Au, Al, Ag, Cu, Pt and Na) are investigated. In sec 4.3.2

dimerization is discussed for these monatomic nanowires.

4.2 Computational Details

Pseudopotential plane wave [31] method is used in these DFT total energy calcu-

lations. The exchange-correlation effects are described by the generalized gradient

approximation (GGA) by using PERDEW-WANG 91 [32] formulation. The in-

teraction of the valence electrons with the ionic cores is modelled by ultrasoft

Vanderbilt [33] pseudopotentials. Because of the periodic boundary condition,

the supercell [34] approximation is used. The chain is placed in a large tetrago-

nal cell. The axis of the wire is taken along the z axis. In the linear chain 12 Å cell

dimension along x and y axis is sufficient to eliminate the interaction between

the wire and its periodic images. The zigzag chains are treated in a supercell

with the lattice constant of 14 Å perpendicular to chain axis. The Brillouin zone

(BZ) integration is performed within Monkhorst-Pack [35] scheme. In order to

describe the properties of nanowires correctly, the special k-points in the wire

direction have to be dense enough. Different k-meshes are used for different met-

als. Number of the k-points are increased until a total energy convergence better

than computational error range. The forces are given by the Hellmann-Feynmann

theorem. The wavefunctions are expanded in the plane waves up to a cutoff 400

eV. In order to treat the partial occupancy around the Fermi level of metallic

system, the Fermi smearing of 0.08 eV is used in the integrations. The conver-

gence with respect to energy cut off and k-points are tested for each elements to

obtain accurate energies and forces. Energies and forces along the one direction

have converged within 10−4 eV/atom and 10−3 eV/Å per atom respectively.
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4.3 Results

4.3.1 Infinite linear and zigzag wires

Chain nanowires of six different metals (Au, Al, Ag, Cu, Pt and Na) are inves-

tigated from first principles. The studied structures are constrained to be linear

and planar zigzag. Total energy per atom is obtained by fixing both the shape

and the dimension of the cell but optimizing the all atomic coordinates. For

several different fixed chain lengths, total energy is calculated. The linear chain

contains one atom per unit cell and zigzag chain contains two atoms. However,

linear structure with two atom per unit cell is used to compare with zigzag one in

energy band calculations. Figure 4.1 shows the cohesive energies of monatomic
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Figure 4.1: The calculated cohesive energy of infinite Au, Ag, Al, Cu, Pt and Na
with linear structure (open circles) and zigzag structure (solid circles)

wires with planar zigzag and linear structure, as a function of the wire length,
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for six different elements. The lengths are given as length per atom(s). It is the

half of the cell parameter in z-direction for chain containing two atom per unit

cell and it is equal to cell parameter in chains having one atom per unit cell in

chain direction. Hence, it corresponds to the interatomic bond distance for linear

chain containing one atom per unit cell. It is obvious that zigzag structure is

more energetically favorable than linear one. Zigzag structure of Au [36, 37], Al

and Pt have two minima. Structures of both minima are more stable than a lin-

ear structure, even before the linear structure reaches its optimum bond length.

Zigzag and linear structure energy curves of Al begin to join after an interatomic

distance of 3 Å. The situation is not different for other elements: zigzag struc-

ture is more stable than linear structure. Of course, relative stability of different

atomic chains is not the same. It depends on element. By investigation of cohe-

sive energy curves, energy band diagrams and charge density profiles of different

atomic chain, one can obtain origin of stability of zigzag structure over linear one,

and also explain why chain of some elements have high tendency to form chain.

If one investigates Figure 4.1, it can be seen that Pt has the high cohesive en-

ergy for both zigzag and linear structure. These energies, bond length and bond

angles are 3.40 eV, 2.35 Å and 180 for linear wire, 4.08 eV, 2.66 Å and 56.1 for

zigzag1 (z1) structure and 3.62 eV, 2.37 Å and 130.2 for zigzag2 (z2) structure.

Unlike Pt, both zigzag chain and linear chains of Na are only weakly binded.

This can be understood from the fact that Na is free electron like metal. Energy

differences between two zigzag minima and the barrier height of local minima

are 0.33 and 0.11 eV for Au, 0.72 and 0.05 eV for Al and 0.46 and 0.28 eV for

Pt. The system must over come this barrier to go to the most stable local zigzag

structure. Therefore, local minimum (second zigzag structure) of the Pt is the

most stable minimum. Cohesive energy curves of Au, Pt, Cu and Ag [38] have

similar shape expect second zigzag minima in Au and Pt. Notice that the angle

in global minima in zigzag structures are roughly similar to each other, slightly

less than 60o. Table 4.1 summarizes the information related to Figure 4.1.

In Figure 4.2, tension of the six studied system are shown. This is the deriva-

tive of the energy plot in Figure 4.1 and corresponds to applied force on the wire

to keep the wire at that specific length. The zeros of the tension correspond to
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Table 4.1: Comparison of calculated structural parameters and cohesive energy,
EC , for linear and zigzag structures of different elements. The nearest neighbor
distance, d, and binding energy, EC , are calculated for the optimized bulk crystals.
s and α are the half of the supercell containing two atoms and zigzag bond angle
respectively.

Atom Structure d (Å) s (Å) α(◦) EC (eV)

linear 2.615 2.615 180 1.67
Au zigzag1 2.75 1.35 58.8 2.20

zigzag2 2.57 2.335 130.6 1.87
bulk 2.95 3.21
dimer 2.53 1.29
linear 2.67 2.67 180 1.34

Ag zigzag 2.80 1.35 57.7 1.71
bulk 2.93 2.76
dimer 2.58 1.06
linear 2.41 2.41 180 1.87

Al zigzag1 2.68 1.22 54.2 2.64
zigzag2 2.52 2.37 140.3 1.92
bulk 2.8 3.77
dimer 2.66 0.86
linear 2.3 2.3 180 1.74

Cu zigzag 2.41 1.2 59.7 2.36
bulk 2.58 3.76
dimer 2.22 1.334
linear 2.35 2.35 180 3.23

Pt zigzag1 2.66 1.25 56.1 3.91
zigzag2 2.37 2.15 130.2 3.45
bulk 2.81 6.0
dimer 2.33 1.96
linear 3.3 3.3 180 0.70

Na zigzag 3.60 1.725 57.4 0.83
bulk 3.53 1.28
dimer 3.07 0.59
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Figure 4.2: Tension versus length per atom of Au, Ag, Al, Cu, Pt and Na zigzag
and linear wires. Open (closed) circles show linear (zigzag) wire.

minima or maxima of the energy, and positive (negative) slopes of the tension

corresponds to stable (unstable) configurations relative to changes in strain or lat-

tice constant. When a maximum of tension is reach with increasing strain, this

correspond to maximum tension that can be applied to a wire before it breaks.

The elongation force is defined as the force opposing the lengthening of the wire

due to a tension. When it is negative, the elongation force would like to shorten

the wire, whereas a positive elongation force without a counterbalancing force

(tension) lead to spontaneous elongation. Naturally, the force vanishes at the

minimum energy and is negative for larger distance. For very large distances,

force should approach to zero.

Figure 4.3 shows the stress along the chain axis. One can obtain the tendency

of chains to return equilibrium structure from this figure. As seen from this

Figure, Pt, Au and Al have greater stress value. This means that they have
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Figure 4.3: Stress versus length per atom of Au, Ag, Al, Cu, Pt and Na zigzag
and linear wires. Open (closed) circles show linear (zigzag) wire.

high tendency to return equilibrium structure of both linear and zigzag wires.

Obviously, since these chains are quasi one dimensional systems, tension and

stress have opposite sign.

Figure 4.2 gives clues about the stabilities [39] of wires. As seen from Fig-

ure 4.2, the force to break the wire is the highest in Pt. Au and Al also have the

greater breaking forces than Ag, Cu and Na. From the tension breaking plot, it

is seen that if one stretches the second stable Au zigzag (z2) it smoothly changes

to the stable linear chain. Except for Al and Pt, this property is observed in all

other studied wires. In Al wires, zigzag wire curve oscillates around linear curve.
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4.3.2 Instabilities in linear wires

The regular chain structure in one dimension with a partial filled band will never

be stable, since one always find a more suitable structure, such as a dimerized

structure. It is so called Peierls distortion [27, 28]. In these phenomena, a band

alternation occurs in the wire and wire changes from a conductor to an insulator.

Peierls distortion is investigated as stretching the wire. In Figure 4.1, bond

lengths between nearest neighbors are all the same in both linear and zigzag

structures. It can be asked whether this distortion occurs while stretching the

wire or not. Four atom unit cell is used for all linear structures to investigated

the dimerization. Figure 4.4 shows the cohesive energy with respect to lattice
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Figure 4.4: Cohesive energy per atom with respect to total lattice constant. Open
circles, triangle and square are used for equally space, dimerized and breaking
wires respectively.

constant in wire direction. Open circle, triangle and square are used for equally

spaced, dimerized and breaking wires respectively. In dimerized wire, there is
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a bond alternation. Two different bond length exist. One is the interatomic

distance in dimer and other is dimer-dimer distance. In breaking structure, one

of the bond is very large relative to others which are in range around equilibrium

distance of individual wire. Dimerized and breaking structures are obtained by

moving the second and third atom of wire in opposite direction in a small amount.

The systems are then allowed to relax. It is seen from Figure 4.4 that the equally

spaced structure is not favorable energetically after a certain lattice constant.

Energy gain upon in dimerized and breaking wire increase with lattice constant

after this lattice constant. Energy gain is highest in Au with increasing lattice

constant. In Al, dimerization is not occur [40, 41] until interatomic distances

are very large. However, breaking wire structure favorable at an interatomic

distance larger than 3 Å. In Pt linear wire, breaking wire is observed firstly.

Splitting in energy curve occurs when wire is stretched about 1 Å from equilibrium
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Figure 4.5: Energy band structure of (a) equally space, (b) dimerized, (c) and
breaking structures.



CHAPTER 4. METAL NANOWIRES 44

lattice constant (0.25 Å per bond). When dimerization occurs, wire becomes

an insulator. Figure 4.5 shows the energy band structure of Au linear chain

with a lattice constant 13.2 Å for equally space, dimerized and breaking wire.

As seen from the band diagram, there is a band crossing the Fermi level in

equally spaced structure and a band gap is observed in the dimerized and breaking

wire. Notice that d bands are flat structures. This shows that there are non-

interacting dimers in the dimerized wire. Dimerization begins to be observed

from the inflection point of energy curve. This inflection point can be seen from

Figure 4.4 if one investigates that curve at which wire begin to deviate from

the equally spaced structure. The bond lengths in dimers vary. It approaches

equilibrium dimer bond length when distance between the dimers are far enough

to eliminate interaction between them. Dimerized chain curve begins to become

flat after that distance and total energy of the system can be approximated by the

sum of the dimer energies. As pointed out before, one of the bond length is very

large relative the others in breaking wire. So it can be argued that wire break at

this bond. In this structure, the energy gain is larger than the energy loss due to

breaking of a bond. In dimerized structure, more bonds must be broken. So, the

energy gain is lower than breaking wire having the same lattice constant with the

dimerized wire. It can be estiminated that the energy of broken bond by taking

the differences of equilibrium structure energy and energy of lattice constant at

which flatting of energy curve begin from the breaking structure. Table 4.2 shows

Table 4.2: Comparison of calculated breaking point, breaking force, stress at
breaking point and broken bond energy in breaking wire.

Atom breaking point (Å) Breaking force (eV/Å) stress(kbar) Ebond (eV)

Au 2.9 1.11 -12.12 0.19
Ag 2.9 0.66 -6.85 0.13
Al 3.0 0.72 -8.77 0.36
Cu 2.625 0.95 -11.82 0.20
Pt 2.625 2.48 -33.5 0.52
Na 3.75 0.18 -1.59 0.07
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breaking point, breaking force, stress at breaking point and broken bond energy

in breaking wire. It is easily seen that breaking force at breaking point is the

highest in Pt linear wire. The calculated breaking force for Au is consistent with

the breaking force obtained in experiment [23]. Breaking force is the smallest in

Na linear wire.

4.3.3 Electronic structures

Figures 4.6 to 4.11 show the energy band structures of the studied structures.

A comparative analysis of these structures provides further insight into stability

and electronic properties of wires. First observation can be about metallicity of

wires. As seen from band structures, all the wires in both structure are metallic.

This means that at least one band crosses the Fermi level. Number of band
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Figure 4.6: Energy band structure of Au. (a) Linear structure L; (b) zigzag1,
z1; (c) zigzag2, z2. Bands of L structure are zone folded for the sake of the
comparison with zigzag structures. Zero of energy is taken at Fermi level.

crossing is one in Au, Ag, Na and Cu [42] linear wires, except in Pt linear wire
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which is four and in Al linear wire which is two. Number of bands which cross the
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Figure 4.7: Energy band structure of Cu. (a) Linear structure L; (b) zigzag
structure z. Bands of L structure are zone folded for the sake of the comparison
with zigzag structures. Zero of energy is taken at Fermi level.

Fermi level is critical for quantum ballistic conductance and stability of nanowires.

Under ideal conditions, the conductance is determined by the number of bands

crossing the Fermi level, being G0 per band. In Cu and Au linear wires, this

band has mainly s character. However, in these wires, d bands reach the Fermi

level close the Γ point. So s band has not purely s character. In Ag linear

wire, d bands are far below the Fermi level. So crossing band is predominately

s character. The transition from linear wire to zigzag one bring back d bands

below the Fermi level. This transition also increases the number of conducting

band. In Cu, Au, and Pt linear wires, the overlap between the filled d states

broadens the d bands until they reach the Fermi level, destabilizing the wire with

their high density of states. The transition from linear wire to zigzag one lowers

the density of states at the Fermi level and stabilizes the zigzag wire relative to

linear structure. In z1 structure of Au and Al and z structure of Na, Cu and

Ag, there are two bands crossing the Fermi level. Au, Ag and Cu have closed d

shell. This d charge distribution is nearly spherical. However, Pt has an open
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Figure 4.8: Energy band structure of Ag. (a) Linear structure L; (b) zigzag
structure, z. Bands of L structure are zone folded for the sake of the comparison
with zigzag structures. Zero of energy is taken at Fermi level.

d shell. d bands contribute both bonding and conduction. In linear Pt wire, d

bands are degenerate. So there are four bands crossing the Fermi level. When

linear Pt wire transforms to z1 structure, number of bands crossing the Fermi

level increase to six. In z2 structure number of bands crossing the Fermi level are

two. The overall shapes of the band structures of Au, Ag, Cu, and Pt wires are

almost the same. In Al linear wire, because of the linear geometry, 3px and 3py

are equivalent and give rise to doubly degenerate π band crossing the Fermi level.

When wire transform from linear to zigzag geometry, the symmetry between 3px

and 3py orbitals is broken and so the π band is split. This splitting can be seen

from Figure 4.10. In z2 and z1 structure, number of crossing bands (it is 2) do

not change upon linear-zigzag transformation.
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Figure 4.9: Energy band structure of Pt. (a) Linear structure L; (b) zigzag1,
z1; (c) zigzag2, z2. Bands of L structure are zone folded for the sake of the
comparison with zigzag structures. Zero of energy is taken at Fermi level.
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Figure 4.10: Energy band structure of Al. (a) Linear structure L; (b) zigzag1,
z1; (c) zigzag2, z2. Bands of L structure are zone folded for the sake of the
comparison with zigzag structures. Zero of energy is taken at Fermi level.
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Figure 4.11: Energy band structure of Na.(a) Linear structure L; (b) zigzag
structure, z. Bands of L structure are zone folded for the sake of the comparison
with zigzag structures. Zero of energy is taken at Fermi level.

4.3.4 Charge density analysis

Figure 4.12 and 4.13 show the charge density contour plots of linear and zigzag

structures of studied elements. The character of the bonding in wires is revealed

by the analysis of electronic charge density. It can be easily seen that bonding in

both linear and zigzag structure of the Au and Pt are not directional. Valence

charge is delocalized. Like Au, Ag has a closed d shell and s valence orbital. In

Ag wires, charge distribution is uniform. So bonding is not directional. Moreover

Cu wires have also non-directional bond. In contrast, Al has directional bonds in

both linear and zigzag structure. Al with valance states consisting 3s and 3px,y,z

orbitals form directional bond. In z1 structure of Au, Pt and Al, bonding between

second nearest neighbors become significant because they begin to close each

other and overlapping between atomic orbitals increases. In this structure, the

equilibrium configuration can be interpreted as two linear wires side by side but

dislocated from each other in the longitudinal direction by the half of interatomic
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distance. As seen from charge density plots, interaction between first nearest

neighbor is low relative to second nearest neighbor (second relative to linear and

z2 structure).

a) 
b) c) 

d) e) f) 

g) 
i) h) 

Figure 4.12: Charge density contour plots of linear in (a) and z1 in (d) and z2 in
(g) of Au, linear in (b) and z1 in (e) and z2 in (i) of Al, of linear in (c) and z1 in
(f) and z2 in (h) of Pt wires.

a) 

b) 

c) 

d) 

e) 
f) 

Figure 4.13: Charge density contour plots of linear in (a) and zigzag structure in
(b) of Ag, linear in (c) and zigzag structure in (d) of Na and linear in (e) and
zigzag structure in (f) of Cu wires.



Chapter 5

EFFECT OF IMPURITIES

5.1 Introduction

The atomic chains of gold atoms have been observed by an ultrahigh vacuum

(UHV) electron microscopy [1]. The conductance of the chain has been measured

during the withdrawal of the STM tip. That observation has demonstrated that

a single [110] atomic row chain has had a conductance of 1 G0. The single chain,

which has formed in a [100] orientation, has interatomic spacing of 0.35-0.4 nm. It

is a surprising observation, since normal nearest neighbor distance is 0.288 nm in

bulk gold and is 0.254 nm in dimer. The origin of this large interatomic distance

has been a serious and unresolved challenge for theoretical interpretation. In

chapter 4, it is pointed out that the wires rupture before reaching such a long

atomic distance.

It is known that gold is very noble, ”chemically” inert and its surface has low

reactivity. However, it has become clear over the last years that the situation

is very different for small particles of gold which can be chemically active, and

they are even considered catalytic materials. Several factors may play a role

for the increased reactivity of small gold clusters. Small clusters have a large

number of defects like steps and kinks which are more reactive than terrace atoms.

Furthermore the presence of tensile strain-which in the case of the gold clusters

51
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could come from the interface between the clusters and the supporting materials

are also known to increase the chemical activity. Finally, for very small particles

it is possible that direct quantum size effects could play a role for the reactivity.

All of these factors (low coordination, strain, and quantum size effect) can be

expected to be present to a large extent in gold wires: the coordination number

in a perfect monatomic wire is around two, the chains are produced by mechanical

stretching with significant strains, and the observed quantized conductance is a

clear demonstration of quantum size effect. Gold wires can be therefore expected

to have different chemical properties than bulk gold and its surface [10].

In this chapter, effects of H, H2, and C absorptions on mechanical stability

and electronic properties of gold monatomic wires are investigated.
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Figure 5.1: HOPT (contain H) and COPT (contain C) geometries in (a) and
HMAOPT (contain H2) geometry in (b). z is the lattice constant along the chain
direction.
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5.2 Results

In this chapter, supercells containing varying number of Au, H and C atom are

used. Starting geometries are shown in Figure 5.1. In HOPT and COPT con-

figurations H and C atoms are in chain and bond lengths are satisfy following

equalities; d1=d2=d5 and d3=d4. Distance of H and C atoms to Au is larger than

1.5 Å. Impurity is also placed very close the one of the Au atom and system is

allowed to relax. After relaxation, impurity atom goes to middle of the bond. In

H2 case, molecule atoms are separated from each other. After relaxation of this

system, H atoms form H2 molecule in the middle of the bond.
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Figure 5.2: Total energy in (a), changing of bond lengths in (b), stress in (c)
and chemisorption energy in (d) with respect to lattice constant (z) in HOPT
structure. Open circle curve in (d) is drawn by taking the d2 as a lattice parameter
of pure gold chain in z-direction.

Figure 5.2 and 5.3 show the cohesive energy, stress, chemisorption energy and
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changing of bond lengths with respect to lattice constant (z). These curves are

obtained by varying the lattice constant and relaxing the all atomic positions

until all forces vanishes. Equilibrium lattice constant and energies are 11.18 Å
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Figure 5.3: Total energy (a), stress (b), changing of bond lengths (c) and
chemisorption energy (d) with respect to lattice constant (z) in COPT struc-
ture. Open circle curve in (d) is drawn by taking the d2 as a lattice parameter of
pure gold chain in z-direction.

and 10.27 eV for HOPT and 11.49 Å and 12.86 eV for COPT configuration. As

seen from Figure 5.2 and 5.3 that when one stretch the HOPT wire, all bond

lengths increase. In contrast to HOPT, the bond away from the C atom stretches

much more than other bonds. C part is very rigid. In both configuration, breaking

bond is far from the H and C. This means that presence of H and C modify the

stiffness of the bonds. The Au-H-Au, Au-C-Au and their adjoint Au-Au bonds

are much stiffer than the Au-Au bonds in clean nanowires. As a consequence, the

wire tends to break in a pure Au-Au bond far from the H and C. This situation

can be seen from the total charge density contour plots as shown in (a), (c), (e)
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of Figure 5.4. In order to see charge transfer between the Au atom and impurity,

difference charge densities are also calculated as follows

ρdiff = ρAu+impurity − ρchain without impurity − ρimpurity (5.1)

Au-C-Au increase. In other words effective binding between the Au-Au atoms

nearing the impurity increases. In COPT case, it can be seen that C also affects

a) b) 

c) d) 

e) f) 

Figure 5.4: Charge density contour plots of in HOPT (a,b), COPT (c,d) and
HMAOPT (e,f) structure. (b), (d) and (f) are the charge difference contour plots
for HOPT, COPT and HMAOPT respectively. In HOPT and COPT configura-
tions, there is a considerable charge transfer from Au to H, C. Hence stability of
Au-H-Au and

the second nearest neighbor. So C part of the COPT is very rigid. This leads to



CHAPTER 5. EFFECT OF IMPURITIES 56

Table 5.1: Comparison of calculated breaking points, breaking forces, stressse at
breaking points and broken bonds energy in breaking wire. da is Au-Au bond
length nearing the impurity in equilibrium structure. db is the Au-impurity-Au
bond length in equilibrium structure. Ec

bond is the broken bond energy of Au-Au
bond away from the impurity. Ed

bond is the broken bond energy of Au-impurity
bond.

system da Å db Å breaking point Å Ec
bond (eV) Ed

bond (eV)

Au-H 2.61 3.32 3.1 0.87 1.34
Au-C 2.52 3.74 3.05 0.47 2.80
Au-H2 2.59 4.36 2.2 (Au-H2) 0.66 0.30

much more stretching of Au-Au bond far from the C under tension.

In total energy curve of HOPT, there is a small curve denoted by open circle.

This curve is obtained for HOPT structure by constraining a broken Au-H bond.

Comparison with HOPT having a broken Au-H bond shows that there is a energy

loss due to breaking of Au-H bond. The situation is the same for COPT structure.

If one breaks the Au-C, there is a energy loss. So breaking of Au-C do not

energetically favorable as in the case of breaking of Au-H bond. The maximum

Au-H and Au-C distances are around 1.78 Å and 1.9 Å respectively. As seen

from Figure 5.2 and 5.3, after a certain lattice constant, curves begin to flat.

This means that bond exactly disappears. Bond energies are calculated by using

the same method described in chapter 4. The broken bond energies are 0.87 eV

for HOPT and 0.47 eV for COPT. As seen from these calculated energies, broken

bond energy is small in COPT structure relative to HOPT structure. This can be

understood that C affect the second nearest neighbor. If one compares the broken

bond energy of pure Au wire which is 0.21 eV and HOPT and COPT broken bond

energy, absorption of H and C increase the stability of wire. Table 5.1 shows the

breaking point, broken bond energy for Au-Au bond away from the impurity,

broken bond energy for bond Au-impurity bond distance in Au-Au bond nearing

the impurity in equilibrium and bond distance in Au-impurity-Au bond.
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The situation is different in HMAOP structure. Wire breaks at Au-H2 bond.

If one investigate Figure 5.4, it is seen that the interaction between Au-H2 is

small due to binding in H2 molecule. So, charge transfer is very small relative to

HOPT and COPT structures. But, presence of H2 molecule modifies the stiffness

of bonds in chain. Energy of broken bond away from the H2 impurity increases

from 0.21 eV to 0.60 eV. It can be seen from Table 5.1 that Au-Au bond away

from the H2 impurity is much more stiff than Au-H2 bond.
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chemisorption energy (d) with respect to lattice constant (z) in HMAOPT struc-
ture. Open circle curve in (d) is drawn by taking average of d1, d2 and d6 as a
lattice parameter of pure gold chain in z-direction.

Comparison between these structures is also made by studying the chemisorp-

tion energies. Impurity chemisorption energy to the wire under tension is calcu-

lated by using following formula

Echem(z) = EAu+impurity(z) − Epure Au chain(z) − Eimpurity(z) (5.2)
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where EAu+impurity(z) is the total energy of Au-impurity system. Epure Au chain(z)

is the pure chain with length z, so that means it is under stress, and Eimpurity(z) is

the impurity atom energy. Echem(z) is meaningful until the pure Au chain breaks.

Interaction energy of Au-impurity system is also calculated by using following

formula

Eint(z) = EAu+impurity(z) − Echain without impurity(z) − Eimpurity(z) (5.3)

where EAu+impurity(z) is the total energy of Au-impurity system. Echain without impurity(z)

is calculated by removing the impurity atom. Resulting chain is not allowed to

relax. Eimpurity(z) is the impurity atom energy.

Binding energy of these Au-impurity system is calculated by using following

formula

Ebinding(z) = EAu+impurity(z) − Echain without impurity(z
∗) − Eimpurity(z) (5.4)

where EAu+impurity(z) is the total energy of Au-impurity system. z∗ is defined as

lattice constant along the chain axis, as using d1 (bond nearing the impurity) as

the interatomic distance in pure equally spaced Au chain for HOPT and COPT

geometries and average of the d1, d2 and d6 (These are shown in Figure 5.1)

for HMAOPT structures. So this Ebinding gives the binding energy of the im-

purity atom with respect to the optimum Au linear chain. In Figures 5.2, 5.3

and 5.5, chemisorption energy, interaction energy and binding energy are shown

by solid circles, open square and open circles, respectively. As easily seen that

chemisorption energy of C is the highest. In HMAOPT structure, there is a small

chemisorption and interaction energy. However, binding energy is negative. This

means that there is no binding, see figure 5.5. Maximum Echem is around 6.5 eV

for C, 3.5 eV for H.

Figure 5.6 shows the energy band structures of equally space pure Au, HOPT,

COPT and HMAOPT structures. In chapter 4, it is pointed out that in linear

pure Au wire, there is a single bond crossing the Fermi level. Due to d bands

locating near the Fermi level, there are high density of states at Fermi level. In

HOPT structures, these d bands are shifted down in energy away from the Fermi
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Figure 5.6: Energy band structure of pure Au in (a), HOPT in (b), COPT in (c)
and HMAOPT in (d) wires. Zero of energy is taken at Fermi level. In pure Au
wire, four atom supercell is used for comparison.

level, since the H state is pinned at Fermi level. A single band crossing the Fermi

level at a k value is around 0.25. In COPT wire, d bands are far from below the

Fermi level. But there is a small band gap ( 0.16 eV) near the Γ point. A band

gap is also observed in HMAOPT structure ( 0.3 eV).

Figures 5.7 to 5.10 show the whether there is a difference between finite and

infinite chains or not. It is seen that there is small differences in bond lengths

when one compare the finite and infinite equilibrium structures. Au-impurity

bond length is affected in a small amount when one increase the number of Au

atom in finite chains. Effect of tips on bond lengths and interaction are also

shown in Figure 5.10. It is seen that effect of tip on bond lengths is very small.

When tip atoms are removed and wire transform the infinite linear wire, bond

lengths in this infinite wire are very close the bond lengths in system having tip.

It is seen from Figure 5.10 that wire tends to break the bond away from the

impurity as in the case of infinite linear wire. Interaction energies are also very

similar to each other.
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Chapter 6

CONCLUSIONS

In the first part of the thesis, linear and zigzag structure of monatomic chains

are investigated for Au, Al, Ag, Cu, Pt and Na. Au, Pt and Al have two minima

in zigzag structure. All the global minima in zigzag structure have roughly the

same bond angle which is slightly less than 60o. Zigzag structure is energetically

more favorable than linear structure in all elements under study. Breaking of

linear chains are also studied. After a certain bond length is reached, breaking is

more favorable. Breaking force for each element having linear wire geometry is

calculated at breaking point. Au and Pt have the biggest breaking force. When

wire break, energy curve with respect to lattice constant begins to flat. Bond

energies of broken bond are calculated by using equilibrium energies and energies

at which energy curve begins to become break. All the chains in both linear

and zigzag structure are metallic and number of band crossing the Fermi level

depend on the valence electronic structure of metal atom. The investigation of

charge density contour plot gives the clue about stability of different chains of

atoms relative to each other. Au, Pt, Cu and Ag have non-directional bonding.

However Al and Na have directional bonding due to p orbital. In global minima of

Au, Pt and Al zigzag wires, bonding becomes significant between second nearest

neighbor.

In the second part of the thesis, effects of H, C and H2 impurities on mechanical

stability and electronic properties of Au wire are investigated. In a chain with C

63
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impurity, when one applies a tension, bond far away from the C stretches much

more than other two structures. C part is very rigid. However, in a chain with H,

bonds stretch together. In these two structures, origin of stability is the charge

transfer from Au to H and C. C affects also the second nearest neighbor. In

contrast to these chains, chains with H2 are not stable relative to others. When

C and H2 enter the chain, a gap opens around Fermi level. However, chains with

H impurity are still metallic.
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