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ABSTRACT

HIGH FIELD TRANSPORT PHENOMENA IN WIDE
BANDGAP SEMICONDUCTORS

Cem Sevik

M.S. in Physics

Supervisor: Assist. Prof. Dr. Ceyhun Bulutay

September, 2003

The Ensemble Monte Carlo (EMC) method is widely used in the field of com-

putational electronics related to the simulation of the state of the art devices.

Using this technique our specific intention is to scrutinize the high-field transport

phenomena in wide bandgap semiconductors (Such as GaN, AlGaN and AlN).

For this purpose, we have developed an EMC-based computer code. After a brief

introduction to our methodology, we present detailed analysis of three different

types of devices, operating under high-field conditions, namely, unipolar n-type

structures, avalanche photodiodes (APD) and finally the Gunn diodes. As a test-

bed for understanding impact ionization and hot electron effects in sub-micron

sized GaN, AlN and their ternary alloys, an n+−n−n+ channel device is employed

having a 0.1 µm-thick n region. The time evolution of the electron density along

the device is seen to display oscillations in the unintentionally doped n-region, un-

til steady state is established. The fermionic degeneracy effects are observed to be

operational especially at high fields within the anode n+-region. For AlxGa1−xN-

based systems, it can be noted that due to alloy scattering, carriers cannot acquire

the velocities attained by the GaN and AlN counterparts. Next, multiplication

and temporal response characteristics under a picosecond pulsed optical illumi-

nation of p+-n-n+ GaN and n-type Schottky Al0.4Ga0.6N APDs are analyzed. For

the GaN APD, our simulations can reasonably reproduce the available measured

data without any fitting parameters. In the case of AlGaN, the choice of a Schot-

tky contact APD is seen to improve drastically the field confinement resulting in

satisfactory gain characteristics. Moreover, alloy scattering is seen to further slow

down the temporal response while displacing the gain threshold to higher fields.

Finally, the dynamics of large-amplitude Gunn domain oscillations from 120 GHz

to 650 GHz are studied in detail by means of extensive EMC simulations. The

basic operation is checked under both impressed single-tone sinusoidal bias and

external tank circuit conditions. The width of the doping-notch is observed to
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enhance higher harmonic efficiency at the expense of the fundamental frequency

up to a critical value, beyond which sustained Gunn oscillations are ceased. The

degeneracy effects due to the Pauli Exclusion principle and the impact ionization

are also considered but observed to have negligible effect within the realistic op-

erational bounds. Finally, the effects of lattice temperature, channel doping and

DC bias on the RF conversion efficiency are investigated.

Keywords: High field transport, Ensemble Monte Carlo technique, Avalanche

photodiodes, Gunn diodes, Unipolar devices.



ÖZET

GENİŞ BANT ARALIKLI YARIİLETKENLERDE

YÜKSEK ELEKTRİK ALANI ALTINDA İLETİM
OLAYLARI

Cem Sevik

Fizik, Yüksek Lisans

Tez Yöneticsi: Yard. Doç. Dr. Ceyhun Bulutay

Eylül, 2003

Toplu Monte Carlo (TMC) yöntemi en modern aygıtların benzetimi maksadıyla,

geniş bant aralıklı yarı iletkenlerde yüksek elektrik alanı altında iletkenliği in-

celemek için kullanılmaktadır. Bizim amacımız, bu yöntemi kullanarak geniş

bant aralıklı yarı iletkenlerde (GaN, AlGaN and AlN gibi) yüksek elektrik alanı

altında iletkenliği geniş bir şekilde incelemektir. Bu amaca uygun olarak, ilk

önce TMC-tabanlı bir bilgisayar yazılımı geliştirilmiştir. Yaklaşımımız hakkında

kısa bir girişten sonra yüksek elektrik alanı altında calışabilen üç farklı aygıt

incelenmiştir; tek kutuplu n-tipi yapı, çığ fotoalgılayıcıları ve Gunn diyot-

ları. Darbe iyonizasyonu ve ilgili sıcak-elektron etkilerini incelemek için 0.1 µm

genişliğinde n-katkılı bölge içeren (n+ − n − n+) yapısı kullanılmıştır. n-katkılı

bölge içerisinde elektron yoğunluğunun durağan-hale ulaşıncaya kadar zamana

göre salınım yaptığı görülmüştür. Ayrıca yüksek elektrik alanı altında fermiy-

onik çakışıklık etkilerinin özellikle n+-katkılı bölgede baskın olduğu gözlenmiştir.

AlGaN yapısında elektronların hızının GaN ve AlN yapılarındaki elektronların

hızlarının arasında bir değerde olmadığı ve bunun sebebinin de baskın alaşım

saçınımının olduğu saptanmıştır. Daha sonra, GaN ve n-tipi Schottky Al-

GaN çığ fotoalgılayıcılarının çarpma ve pico-saniyelik aydınlatma altında zamana

göre tepki karakteristiği analiz edilmiştir. GaN foto algılayıcıları konusunda,

bizim benzetimlerimiz, hiç bir oturtma parametresine gerek kalmadan mevcut

deneysel sonuçlarla makul bir uyum göstermektedir. AlGaN yapısında, yüksek

kazanç sağlayan bölgedeki elektrik alanını yükseltmek için Schottky bağlantılı

çığ fotoalgılayıcısı yapısının kullanılmasının uygun olduğu tesbit edilmiştir. Öte

yandan, AlGaN yapısında, alaşım saçınımının, aygıtın zamana göre tepkisini

yavaşlatığı ve kazanç eşiğini yüksek gerilimlere taşıdığı gözlenmiştir. Son olarak,

120 GHz´ten 650 GHz´e kadar geniş-genlikli Gunn salınımları TMC yöntemi ile
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detaylı bir şekilde incelenmiştir. Gunn diyotların özellikleri hem zorunlu uygu-

lanan tek-tonlu sinüs gerilimi altında hem de dış rezonans devresine bağlanarak

kontrol edilmiştir. Katkılama çentiğinin genişliğinin yüksek harmoniklerdeki ver-

imi, belirli bir kritik değere kadar olumlu etkilediği gözlenmiştir. Pauli dışarlama

etkisinden kaynaklanan çakışıklık etkilerinin ve darbe iyonizasyonunun Gunn diy-

otun çalışmasında çok etkili olmadığı görülmüştür. En son olarak, örgü sıcaklığı,

kanal katkılaması ve DC beslemesinin, RF dönüştürme verimi üzerindeki etkisi

incelenmiştir.

Anahtar sözcükler : Yüksek elektrik alanı altında iletim, Toplu Monte Carlo

yöntemi, Çığ fotoalgılayıcı, Gunn diyot, Tekkutuplu aygıtlar.
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Chapter 1

Introduction

The wide band gap semiconductors, especially GaN, AlN and their ternary al-

loys, are of increasing importance in various applications from high frequency,

high power amplifiers to blue and ultraviolet light emitters and detectors [1, 2].

Though these materials have much practical importance, they are still techno-

logically immature. As a result, their high-field transport properties and hence

the corresponding device potential are yet to be uncovered. Progress in assessing

the device potential of the wide band gap semiconductor materials is impeded

experimentally by the lack of sufficient device quality material which makes com-

putational approaches quite valuable in this respect.

The high-field transport, on the other hand, is in general a tough problem

[3], from both the mathematical and the physical points of view. In fact, the

integro-differential equation, the Boltzmann transport equation, that describes

the problem does not offer simple (or even complicated) analytical solutions ex-

cept for very few cases, and these cases usually are not applicable to real systems.

Furthermore, since transport quantities are derived from the averages over many

physical processes whose relative importance is not known a priori, the formula-

tion of reliable microscopic models for the physical system under investigation is

difficult. When one moves from linear to nonlinear response conditions, the diffi-

culties become even greater: the analytical solution of the Boltzmann transport

equation without linearization with respect to the external force is a formidable

1



CHAPTER 1. INTRODUCTION 2

mathematical problem, which has resisted many attacks in the last few decades.

In order to get any result, it is necessary to perform such drastic approximations

that it is no longer clear whether the features of interest in the results are due to

the microscopic model or to mathematical approximations.

From the foregoing it is understandable that, when two new numerical ap-

proaches to this problem, i.e., the Monte Carlo technique (Kurosawa, 1966) and

the iterative technique (Budd, 1966), were presented at the Kyoto Semiconduc-

tor Conference in 1966, hot-electron physicists received the new proposals with

great enthusiasm. It was in fact clear that, with the aid of modern large and fast

computers, it would become possible to obtain exact numerical solutions of the

Boltzmann equation for microscopic physical models of considerable complexity.

These two techniques were soon developed to a high degree of refinement by Price

(1968), Rees (1969), and Fawcett et al. (1970), and since then they have been

widely used to obtain results for various situations in practically all materials of

interest. The Monte Carlo method is by far the more popular of the two tech-

niques mentioned above, because it is easier to use and more directly interpretable

from the physical point of view.

The particular advantage of the Monte Carlo method is that it provides a

first principles transport formulation based on the exact solution of the Boltz-

mann equation, limited only by the extent to which the underlying physics of the

system is included. With these virtues, the ensemble Monte Carlo technique has

become our workhorse to tackle challenging high-field transport phenomena in

wide bandgap semiconductors, which are itemized in the following section.

1.1 This work

As a preliminary step in Chapter 3, we start with the high-field transport in

sub-micron sized, n-doped unipolar structures. Our analysis includes the alloy

scattering, impact ionization and degeneracy effects as well as the detailed tran-

sient time evolution of the electron density along the device. This part of the
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thesis work has been published in the IEE Proceedings: Optoelectronics [4].

Next in Chapter 4, gain and temporal response characteristics of the GaN

and Al0.4Ga0.6N APDs are investigated. Especially the latter has technological

importance for the solar-blind photodetection. Results for the Al0.4Ga0.6N APDs

are provided both with and without the alloy scattering. To the best of our

knowledge, these simulations published in Applied Physics Letters [5] constitute

the only available data in the literature for this device.

Finally in Chapter 5, GaN-based Gunn diodes which can be utilized as a solid-

state high power millimeter wave oscillator are analyzed in detail. Particularly, we

show that the doping-notch width can be adjusted to enhance more efficient RF

conversion at higher harmonics than the fundamental frequency. The degeneracy

and impact ionization effects are observed to be insignificant. The effects of

channel doping, lattice temperature and the DC bias level are thoroughly studied.

A part of this chapter has been presented in 13th International Conference on

Non-equilibrium Carrier Dynamics in Semiconductors (Modena/Italy) and will

be published in the journal, Semiconductor Science and Technology [8].



Chapter 2

Monte Carlo charge transport

simulation

Much of our understanding of high-field transport in bulk semiconductors and

in devices has been obtained through Monte Carlo (MC) simulation, so it is

important to understand the basics of the method. Because it directly mimics

the physics, an understanding of the technique is also useful for the insight it

affords. One can find excellent resources on the MC technique [3, 6, 7, 10]; here,

we only include a brief introduction for documentation purposes which can be

skipped by those who feel familiar with the subject. Some details about the

Bilkent EMC code is also provided at the end of this chapter.

2.1 A typical MC program

For the sake of simplicity we shall refer to the case of electrons in a simple

semiconductor subject to an external electric field E1. The simulation starts with

electrons in given initial conditions with wave vector k0; then, the duration of

the first free flight is chosen with a probability distribution determined by the

scattering probabilities. During the free flight the external forces are made to act

1The contents of this section are not original and has been adopted from Lundstrom [6].

4



CHAPTER 2. MONTE CARLO CHARGE TRANSPORT SIMULATION 5

DEFINITION OF THE PHYSICAL SYSTEM
INPUT OF PHYSICAL AND SIMULATION PARAMETERS

INITIAL CONDITIONS OF MOTIONS

STOCHASTIC DETERMINATIONS OF FLIGHT DURATION

DETERMINATION OF ELECTRON STATE
JUST BEFORE THE SCATTERING

COLLECTION OF DATA FOR ESTIMATORS

IS
THE SIMULATION

SUFFICIENTLY LONG FOR
THE DESIRED

PRECISION
?

FINAL
EVALUATIONS

OF ESTIMATORS

STOCHASTIC
DETERMINATION
OF SCATTERING

MECHANISM

STOCHASTIC
DETERMINATION OF

ELECTRON STATE
JUST AFTER
SCATTERING

PRINT RESULTS

STOP

YESNO

Figure 2.1: Flowchart of the typical MC Program.

according to the relation

h̄k̇ = eE, (2.1)

where k is the carrier wave vector, e its charge with its sign (e < 0 for electrons

and e > 0 for holes), and h̄ the Planck constant divided by 2π. In this part of

the simulation all quantities of interest, velocity, energy, etc., are recorded. Then

a scattering mechanism is chosen as responsible for the end of the free flight, ac-

cording to the relative probabilities of all possible scattering mechanisms. From

the differential cross section of this mechanism a new k state after scattering is

determined which acts as the initial state of the new free flight, and the entire

process is iteratively repeated. The results of the calculation become more and

more precise as the simulation goes on, and the simulation ends when the quanti-

ties of interests are known with the desired precision. A simple way to determine

the precision, that is, the statistical uncertainty, of transport quantities consists

of dividing the entire history into a number of successive sub histories of equal

time duration, and making a determination of a quantity of interest for each of

them. We then determine the average value of each quantity and take its stan-

dard deviation as an estimate of its statistical uncertainty. Figure. 2.1 shows a
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ky

kx

Momentum Space
y

x

Real Space

(a) (b)

Figure 2.2: (a)The path of the particle in wave-vector space. (b) The path of the
particle in real space.

flowchart of a simple MC program suited for the simulation of a stationary, ho-

mogeneous transport process. Figure. 2.2 illustrates the principles of the method

by showing the simulation in momentum k space and real space.

2.1.1 Definition of the physical system and simulation pa-

rameters

The starting point of the program is the definition of the physical system of inter-

est, including the parameters of the material and the values of physical quantities,

such as lattice temperature T0 and electric field. It is worth noting that, among

the parameters that characterize the material, the least known, usually taken as

adjustable parameters, are the coupling strengths describing the interactions of

the electron with the lattice and/or extrinsic defects inside the crystal. At this

level we also define the parameters that control the simulation, such as the dura-

tion of each sub history, the desired precision of the results, and so on. The next

step in the program is tabulation of each scattering rate as a function of elec-

tron energy. This step will provide information on the maximum value of these

functions, which will be useful for optimizing the efficiency of the simulation.
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2.1.2 Initialization

Finally, all cumulative quantities must be put at zero in this preliminary part

of the program. In the particular case of a very high electric field, if an energy

of the order of kBT0 (kB being the Boltzmann constant) is initially given to the

electron, this energy will be much lower than the average energy in steady-state

conditions, and during the transient it will increase towards its steady-state value.

The longer the simulation time, the less influence the initial conditions will

have on the average results; however, in order to avoid the undesirable effects of

an inappropriate initial choice and to obtain a better convergence, the elimination

of the first part of the simulation from the statistics may be advantageous. The

simulation start with charge density which cancel the background impurity dop-

ing.

2.1.3 Free flight

After moving for a time, t, under the influence of a x̂-directed electric field, the

electron’s momentum and position are obtained from Eqs. 2.1.

r(t) = r(0) +
∫ t

0
υ(t

′

)dt
′

. (2.2)

We assume that the field, Ex, is nearly constant for the duration of the free flight.

The first question to consider is: how long should the free flight continue - or what

is the time of the next collision? The duration of the free flight is directly related

to the scattering rate - the higher the scattering rate the shorter the average free

flight.

Within our approximations, we may simulate the actual transport by intro-

ducing a probability density P (t), where P (t)dt is the joint probability that a

carrier will both arrive at time t without scattering (after its last scattering event

at t = 0), and then will actually suffer a scattering event at this time (i.e., within

a time interval dt centered at t). The probability of actually scattering within this

small time interval at time t may be written as Γ[k(t)]dt, where Γ[k(t)] is the total
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scattering rate of a carrier of wave vector k(t). This scattering rate represents the

sum of the contributions of each scattering process that can occur for a carrier of

this wave vector (and energy). The explicit time dependence indicated is a result

of the evolution of the wave vector under any accelerating electric (and magnetic)

field. In terms of this total scattering rate, the probability that a carrier has not

suffered a collision after time t is given by

exp
(

−
∫ t

0
Γ[k(t

′

)]dt
′

)

. (2.3)

Thus, the probability of scattering within the time interval dt after a free flight

time t, measured since the last scattering event, may be written as the joint

probability

P (t)dt = Γ[k(t)] exp
(

−
∫ t

0
Γ[k(t

′

)]dt
′

)

dt, (2.4)

Random flight times may now be generated according to the probability density

P (t) by using, for example, the pseudo-random number generator available on

nearly all modern computers and which yields random numbers in the range [0,1].

Using a simple, direct methodology, the random flight time is sampled from P (t)

according to the random number r as

r =
∫ t

0
P (t

′

)dt
′

. (2.5)

For this approach, it is essential that r is uniformly distributed through the unit

interval, and the result t is the desired flight time. Using Eq. (2.4) in Eq. (2.5)

yields

r = 1 − exp
(

−
∫ t

0
Γ[k(t

′

)]dt
′

)

. (2.6)

Since 1 - r is statistically the same as r, this latter expression may be simplified

as

− ln(r) =
∫ t

0
Γ[k(t

′

)]dt
′

. (2.7)

The set of Eqs. (2.6) and (2.7) are the fundamental equations used to generate

the random free flight for each carrier in the ensemble. If there is no accelerating

field, the time dependence of the wave vector vanishes, and the integral is trivially

evaluated. In the general case, however, this simplification is not possible, and it is

expedient to resort to another trick. Here, one introduces a fictitious scattering

process that has no effect on the carrier. This process is called self-scattering
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Figure 2.3: Total scattering rate versus energy for electrons in a model semicon-
ductor.

(Fig. 2.3), and the energy and momentum of the carrier are unchanged under

this process (Rees, 1969). However, we will assign an energy dependence to this

process in just such a manner that the total scattering rate is a constant, as

Γself [k(t)] = Γ0 − Γ[k(t)] = Γ0 −
∑

i

Γi[k(t)], (2.8)

and the summation runs over all real scattering processes. Its introduction eases

the evaluation of the free flight times, as now

tc = −
1

Γ0

ln(r). (2.9)

With the addition of self-scattering, the total scattering rate is constant, so

Eq. (2.9) now applies, but we must be certain that the fictitious scattering mech-

anism introduced does not alter the problem. Real scattering events alter the

carrier’s momentum, but when a self-scattering event occurs we do not change

the carrier’s momentum. Self-scattering does not affect the carrier’s trajectory -

it simply makes the scattering rate constant so that Eq. (2.9) applies. When a

free flight is terminated by a fictitious scattering event, a new random number is

generated and the free flight continues.
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Figure 2.4: Fractional contribution versus energy for five scattering processes.
(1) Acoustic Deformation Potential, (2) Intervalley absorption, (3) Intervalley
emission, (4) Ionized impurity, (5) self scattering.

2.1.4 Identification of the scattering event

After selecting the duration of the free flight using the prescription, Eq. 2.9, the

carrier’s momentum, position, and energy are updated at time t−c . Collisions alter

the carrier’s momentum, but each mechanisms does so differently. To update the

momentum at t+c , we must first identify the scattering event that terminated the

free flight and determine whether it was real or fictitious.

The contribution of each individual scattering mechanism to the total scatter-

ing rate varies considerably with energy. Since we have now added a (k + 1)th

scattering mechanism, the contribution of self-scattering must also be included.

For the real processes and for the fictitious process, we calculate the fractional

contribution of all scattering mechanism (by using Eq. 2.8 for self scattering and

mechanism specific formula for the others, we will see later) as seen in Fig. 2.4.

Because the carrier’s energy at the end of the free flight is known, the probabil-

ities of the various events can be read directly from the figure. By adding up

the various contributions in this order, we obtain the graph shown in Fig. 2.5.
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Figure 2.5: Illustration of the procedure for identifying a scattering event.

Selection of a random number, r2, uniformly distributed from zero to one locates

a region in the graph and identifies the scattering event.

The mathematical description of the identification procedure is to select mech-

anism l, if

∑l−1
i=1

1
τi(p)

Γ0

≤ r2 <

∑l
i=1

1
τi(p)

Γ0

l = 1, 2, 3, .....k + 1. (2.10)

The procedure consists of determining the carrier’s energy just before the col-

lision, constructing a bar graph like that in Fig. 2.5, choosing a random number,

r2, and locating it within the bar graph to identify the scattering event.
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2.1.5 Choice of state after scattering

Once the scattering mechanism that caused the end of the electron free flight

has been determined, the new state after scattering of the electron, k
′

must be

chosen as the final state of the scattering event. If the free flight ended with a

self-scattering, k
′

must be taken as equal to k, the state before scattering. When,

in contrast, a true scattering occurred, then k
′

must be generated, stochastically,

according to the differential cross section of that particular mechanism.

For spherical, parabolic energy bands, the magnitude of the carrier’s momen-

tum just after scattering is

k(t+c ) = k
′

=
√

2m∗[E(t−c ) + ∆E]/h̄, (2.11)

where ∆E is the change in energy associated with the particular scattering event

selected by random number r2. For elastic scattering, ∆E = 0, and for inelastic

scattering it is typically a phonon energy. Because there is a unique ∆E associated

with each scattering event, random number r2 also determines the magnitude of

the carrier’s momentum after scattering, but to update the orientation of k, two

more random numbers must be selected.

When updating the orientation of k, it is convenient to work in a coordinate

system in which the x̂ axis is directed along the initial momentum k. The new

coordinate system (x̂r, ŷr, ẑr) is obtained by rotating the (x̂, ŷ, ẑ) system by an

angle φ about the x̂ axis, then θ about ŷ as illustrated in Fig. 2.6. The probability

that ka lies between azimuthal angle β and β + dβ is found by evaluating

P (β)dβ =
dβ

∫

∞

0

∫ π
0 S(k, k

′

) sin αdαk
′2dk

′

∫ 2π
0 dβ

∫

∞

0

∫ π
0 S(k, k′) sin αdαk′2dk′

. (2.12)

Because this simple treatment of scattering makes the transition rate independent

of β, the integration over β in the denominator can be performed directly, and
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Figure 2.6: (a) Scattering event in the (x̂, ŷ, ẑ) coordinate system. The incident
momentum is k and the scattered momentum, k

′

. (b) The same scattering event
in the rotated coordinate system, (x̂r, ŷr, ẑr) by an angle of φ about the x̂− axis,
then θ about the the ŷ − axis. In the rotated system the incident momentum is
kr and the scattered momentum k

′

r.

we find

P (β)dβ = dβ/2π, (2.13)

which states that the azimuthal angle is uniformly distributed between 0 and 2π.

The azimuthal angle after scattering is specified by a third random number, r3,

according to

β = 2πr3. (2.14)

If r3 is uniformly distributed from zero to one, then β will be uniformly distributed

from 0 to 2π.

The prescription for selecting the polar angle α is slightly more involved be-

cause S(k,k
′

) may depend on α. By analogy with Eq. (2.12), we find

P (α)dα =
sin αdα

∫

∞

0

∫ 2π
0 S(k, k

′

)dβk
′2dk

′

∫ 2π
0

∫

∞

0

∫ π
0 [S(k, k′) sin α]dβk′2dk′

. (2.15)

Consider an isotropic scattering mechanism like acoustic phonon scattering for

which S(k, k
′

) = CAP δ(E
′

− E)/Ω. Because CAP is independent of α, Eq. 2.15

gives

P (α)dα =
sin αdα

2
. (2.16)
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The angle, α, is specified by a fourth random number according to

P (r)dr =
sin αdα

2
. (2.17)

For a uniform random number generator, P (r) = 1, and

∫ r4

0
dr =

1

2

∫

∞

0
sin αdα =

1

2
(1 − cos α), (2.18)

so that for isotropic scattering, α is determined by

cos α = 1 − r4. (2.19)

Note that β is uniformly distributed between 0 and 2π, but α is not uniformly

distributed between 0 and π (rather, it is cos α that is uniformly distributed

between −1 and +1). For anisotropic scattering, small angle deflections are most

probable. The procedure for selecting the polar angle begins with Eq. (2.15), but

the appropriate S(k, k
′

) must be used.

2.2 MC simulation and the Boltzman Transport

Equation

There has been considerable discussion in the literature about the connection

between the Boltzmann transport equation and the ensemble Monte Carlo (EMC)

technique. Most of this discussion relates to whether or not they yield the same

results, and if so upon what time scale. In fact, it was easily pointed out many

years ago that the MC procedure only approached the Boltzmann result in the

long-time limit (Rees, 1969; Boardman et al., 1970). Yet, there are still efforts to

put more significance into the Boltzmann equation on the short time scale. The

problem is that the Boltzmann equation is Markovian in its scattering integrals,

a retarded, or non-Markovian, form of the Boltzmann equation is required for the

short time scale. For this reason it needs to be mentioned that EMC technique

supercedes the Boltzman transport equation even if it could be solved exactly

in short time scales and therefore the EMC technique is intrinsically much more

suited to tackle the high-field transport phenomena [10].
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2.3 The evolution of the Bilkent EMC code

Initial steps in our group to develop an EMC code were taken in the spring of 2001

via the senior project of Mr. Engin Durgun, starting from Boardman’s archaic

code [11] (written in Fortran 66!) which was only a single-particle MC code.

With the need for an ensemble MC (hence, EMC) approach, Tomizawa’s code

[7] in Fortran 77 was then adopted2 which needed to be modernized, thanks to

the modular programming tools provided by the f90 environment. Mr. Menderes

Işkın’s (fall 2001) and Mr. Serdar Özdemir’s (spring 2002) senior projects made

use of this code.

Figure 2.7: The empirical pseudopotential band structure of the GaN and AlN.

With the commencement of this thesis work in the summer of 2002, the sim-

ulation input parameters were separated into two parts, first one including the

parameters that control the simulation and the other including the material prop-

erties. The code was split into a motor part and application-specific drivers,

2We gratefully acknowledge Prof. Tomizawa who kindly sent us this code.
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such as bulk/APD/Gunn. The band structures were obtained using the empir-

ical pseudopotential technique, see Fig. 2.7. The necessary band edge energy,

effective mass and non-parabolicity parameters of all valleys in the lowest two

conduction bands and valence bands located at high symmetry points were ex-

tracted through the computed bands of GaN and AlN; refer to Table A.1. All

of major scattering mechanisms missing are added to EMC code which is con-

trolled by switches in the simulation parameters input file. In particular, impact

ionization and alloy scatterings have been given special emphasis; the details of

our approach can be found in the Appendix.

The modified EMC code is used to simulate the both electrons and holes,

within unipolar/bipolar diode structures. During the simulation, real density of

states computed from the EPM band structure and the Lehmann-Taut procedure

[9]. The simulation program is designed so that all of the output parameters can

be recorded at each time step, which are then utilized to produce time-evolution

movies via auxiliary codes in Matlab environment. Finally, a Python graphic user

interface to Bilkent EMC code has been written by Dündar Yılmaz in the summer

2003. However, the construction work never ceases, some possible extensions are

mentioned at the end of our final assessment in Chapter 6.



Chapter 3

Hot electron effects in n-type

structures

GaN, AlN and their ternary alloys are becoming technologically important semi-

conductors, finding application in high power microelectronic devices such as

GaN/AlGaN HEMTs as well as in optoelectronic devices like visible- and solar-

blind AlGaN photodiodes1. The impact ionization (II) is an important process

for all these devices subject to extreme electric fields. In the case of high power

devices, II is undesired, leading to breakdown, whereas for devices like avalanche

photodiodes, its sole operation relies on the II mechanism. The aim of this chap-

ter is the analysis of II and related hot electron effects in GaN, AlN and their

ternary alloys, all of which can support very high-field regimes, reaching few

MV/cm values.

Surprisingly, there has been, as yet, no published measurement of the II coef-

ficient for the AlxGa1−xN system. To meet this demand from the computational

side, very recently II in bulk AlGaN alloys has been analyzed [12], whereas in this

work, we focus on device related aspects of II and hot electron effects. A useful

model system for understanding hot electron effects is the unipolar n+ − n − n+

homojunction channel (cf. Fig. 3.1) which is to some extend impractical as it

1The contents of this chapter has been published in IEE Proceedings Optoelectronics [4].
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gives rise to an excessive amount of current density. In the following sections we

explain our computational procedure and present the transient and steady state

hot electron phenomena taking place within this structure.

+-

Vb

n
+ n n

+

Unintentionally Doped
Region

1016cm−3

Heavily Doped
Region

5×1018cm−3

Figure 3.1: Structural schematic

3.1 Computational details

Our high-field transport methodology is based on the ensemble Monte Carlo

technique [13], incorporating standard scattering processes: acoustic, non-polar

and polar optical phonons, ionised impurity scattering, as well as alloy and II

scatterings. We include all of the valleys in the lowest two conduction bands,

aided by our empirical pseudopotential band structure calculations [14, 15]. We

further append an additional higher-lying free electron band to account for the

remaining bands. Due to emphasis of our work on II, the energy loss of the

impacting electrons is accurately modeled [12]. We employ more than 20,000

electrons within the ensemble, for a total simulation time of about 7.5 ps. The

time interval of invoking the Poisson solver is taken to be 0.1 fs.
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3.2 Alloy scattering

The subject of alloy scattering has caused substantial controversy over the years

which is still unsettled. In the case of group-III nitrides, Farahmand et al. [16]

have dealt with this issue and reported that using the conduction band offset

between the binary constituents as the alloy potential leads to an upper bound

for alloy scattering. Being more conservative, for this value we prefer to use

0.91 eV, which is half of the corresponding GaN/AlN conduction band offset.

Another source of concern has to do with the particular implementation of alloy

scattering within the Monte Carlo simulation. Following Fischetti and Laux [17],

we treat the alloy scattering as an intra-valley process with the distribution of

the final scattering angles assumed to be isotropic, even though at higher energies

it attains a forward directional character which should presumably weaken the

effect of this mechanism on the momentum relaxation. Therefore, we are led to

think that the effect of alloy scattering may still be overestimated.
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Figure 3.2: Velocity distribution over the n+ − n − n+ channel under an applied
bias of 20 V.
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3.3 Results

To gain insight into the high-field transport phenomena in GaN, AlN or

AlxGa1−xN based sub-micron sized dimensions we consider a simple n+ −n−n+

homojunction channel device [18] having 0.1 µm-thick unintentionally doped (1016

cm−3) n region sandwiched between two heavily doped (5× 1018 cm−3) n+ regions

of thickness at least 0.2 µm thick; cf. Fig. 3.1. In Fig. 3.2 we show the veloc-

ity profiles for these materials; the Al0.4Ga0.6N based structure suffers severely

from alloy scattering and has a much reduced velocity. If we turn off the alloy

scattering, then the curve for Al0.4Ga0.6N (not shown) almost coincides with that

of GaN. As a matter of fact, our previous analysis for bulk AlGaN alloys has

identified the alloy scattering to modify the high energy electron distribution and

lead to an increased II threshold [12].
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Figure 3.3: Electric field distribution over the n+−n−n+ GaN channel at applied
biases ranging from 5 V to 50 V.

The electric field along this device is distributed highly non-uniformly, reach-

ing a few MV/cm values, which peaks at the right nn+ interface, as shown in
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Fig. 3.3 and Fig. 3.5 (a).
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Figure 3.4: Time evolution of the transient electron density profile over the n+ −
n − n+ GaN channel under an applied bias of 50 V; steady state result is also
shown, evaluated at 7.5 ps.

Also note the penetration of the electric field into the heavily doped anode

n+ region with increasing applied bias, which amounts to widening of the unin-

tentionally n-doped ”base” region as in the Kirk effect; following Figures further

support this viewpoint. The time evolution of the electron density profile is de-

picted in Fig. 3.4 starting from 0.4 ps. Oscillations around the unintentionally

doped n region are clearly visible until steady state is established (7.5 ps curve

in Fig. 3.4).

The fermionic degeneracy effects are seen to be operational at high fields and

at high concentration spots. We make use of the Lugli-Ferry recipe [19] to account

for degeneracy. However, if degeneracy is ignored, the electron distribution is

observed to develop a dip in the n+ anode region, shown in Fig. 3.5(a)

At a higher applied bias (80 V in GaN) the effect of II becomes dominant.

As illustrated in Fig. 3.5 (b), this mechanism introduces a substantial energy loss
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mechanism for the energetic carriers that have just traversed the unintentionally

doped n region.
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Figure 3.5: (a) Steady state density profile at a bias of 50 V, with and without
the degeneracy effects included. (b) Energy distribution over the n+ − n − n+

GaN channel under an applied bias of 80 V, with and without impact ionization
being included.



Chapter 4

AlGaN solar-blind avalanche

photodiodes

Achieving ultraviolet solid-state photodiodes having internal gain due to

avalanche multiplication is a major objective with a potential to replace pho-

tomultiplier tube based systems for low-background applications1 [20]. The

AlxGa1−xN material with the Aluminium mole fraction, x ≥ 0.38 becomes a natu-

ral candidate for the solar-blind avalanche photodiode (APD) applications which

can also meet high-temperature and high-power requirements. Unfortunately,

due to growth-related problems, such as high defect and dislocation densities

causing premature microplasma breakdown, there has been as yet no experimen-

tal demonstration of an APD with the AlxGa1−xN material. As a matter of fact,

even for the relatively mature GaN-based technology, few reports of observation

of avalanche gain exist [21, 22, 23, 24].

While the material quality is being gradually improved, our aim in this chap-

ter is to meet the immediate demand to explore the prospects of (Al)GaN based

APDs from a computational perspective. Within the last decade, several tech-

niques have been reported which model gain and time response of APDs. Most,

1The contents of this chapter has been recently published in Applied Physics Letters [5].
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however, approximate the carriers as always being at their saturated drift veloc-

ity and impact ionization rates are usually assumed to depend only on the local

electric field; for references, see Ref. [25]. While nonlocal effects have recently

been incorporated [26], the dubious assumption on carrier drift velocity remains.

Among all possible techniques, the ensemble Monte Carlo (EMC) method is po-

tentially the most powerful as it provides a full description of the particle dy-

namics. However, only a small number of such simulations have been reported,

predominantly on GaAs based APDs [27, 28].

4.1 Computational details

As mentioned several times before, for the high-field transport phenomena, the

EMC technique is currently the most reliable choice, free from major simplifica-

tions [29]. All standard scattering mechanisms are included in our EMC treat-

ment other than dislocation, neutral impurity and the piezoacoustic scatterings as

they only become significant at low temperatures and fields [30]. Impact ioniza-

tion parameters for bulk GaN are extracted from a recent experiment of Kunihiro

et al. [31]. As for the case of AlN, due to lack of any published results, we had

to resort to a Keldysh approach, while Bloch overlaps were taken into account

via the f -sum rule [10]; for details, see Ref. [12]. Furthermore, the polar opti-

cal phonon and ionized impurity potentials are screened by using random phase

approximation based dielectric function [32].

The band structures for GaN and AlN are obtained using the empirical pseu-

dopotential technique fitted to available experimental results and first principles

computations [14, 15]. For the alloy, AlxGa1−xN, we resort to linear interpola-

tion (Vegard’s Law) between the pseudopotential form factors of the constituent

binaries. The necessary band edge energy, effective mass and non-parabolicity

parameters of all valleys in the lowest two conduction bands and valence bands

located at high symmetry points are extracted through the computed bands of

GaN and AlxGa1−xN. To account for the remaining excited conduction and va-

lence bands, we further append additional higher-lying parabolic free electron and
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hole bands. At this point it is important to stress that we use the actual density

of states computed using the Lehmann-Taut approach [9], rather than the valley-

based non-parabolic band approximation, in calculating the scattering rates [33].

This assures perfect agreement with rigorous full-band EMC simulations [34] even

for the hole drift velocities at a field of 1 MV/cm.

During the computation the Schottky barrier height is neglected in compar-

ison to the applied very high reverse bias, whereas, it needs to be included in

the case of a forward bias. Similarly, this eliminates the subtle complications re-

garding the choice of a suitable boundary condition, hence, we use the standard

neutral-contact model which keeps the charge density constant at the boundary

regions via injecting or removing majority/minority carriers. To decrease the sta-

tistical noise on the current, we employ more than 60,000 superparticles within

the ensemble, and use the higher-order triangular-shaped-cloud representation of

the superparticle charge densities [35]. The Poisson solver is invoked in 0.25 fs

time intervals not to cause an artificial plasma oscillation. All computations are

done for a temperature of 300 K. To avoid prolonged transients following the

sudden application of a high-field, the reverse DC bias is gradually applied across

the APD over a linear ramp within the first 1.25 ps.

Vb

n+

n

p+ 	 ⊕

	 	⊕

hν

Optical
Pump

Impact
ionization

Figure 4.1: Structural details.
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4.2 Results

In the following subsections, we only deal with the gain and temporal response

of the GAN and AlGaN APDs. Other important properties, such as noise and

spectral response are not included in this work.

4.2.1 GaN APDs

Even though, our principal aim is to characterize solar-blind APDs attainable

with the band gap of Al0.4Ga0.6N, we first test the performance of our method-

ology on GaN-based visible-blind APDs where a few experimental results have

recently been reported [21, 22, 23, 24]. Among these, we choose the structure

(Fig. 4.1) reported by Carrano et al. [23] having 0.1 µm thick unintentionally

doped (1016 cm−3) n (multiplication) region sandwiched between 0.2 µm thick

heavily doped (1018 cm−3) p+ region and a heavily doped (1019 cm−3) n+ region.

Fig. 4.2(a) shows that the current gain of this structure where, following Carrano
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Figure 4.2: (a) Current gain of the GaN APD; EMC simulation (symbols) com-
pared with measurements [23] (dotted). (b) Current gain of the Al0.4Ga0.6N APD
simulated using EMC with and without alloy scattering. Full lines in EMC curves
are used to guide the eye.
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et al., the current value at 1 V is chosen as the unity gain reference point. The

overall agreement between EMC and the measurements [23] is reasonable. No-

tably, EMC simulation yields somewhat higher values over the gain region, and

the breakdown at 51 V cannot be observed with the simulations. Nevertheless,

given the fact that there is no fitting parameter used in our simulation, we find

this agreement quite satisfactory.

An important characteristic of the APDs is their time response under an

optical pulse. For this purpose, an optical pump is turned on at 6.25 ps creating

electron-hole pairs at random positions consistent with the absorption profile of

the electromagnetic radiation with a skin depth value of 10−5 cm for GaN. The

photon flux is assumed to be such that an electron-hole pair is created in 0.5 fs

time intervals. The optical pump is kept on for 25 ps to assure that steady state

is attained and afterwards it is turned off at 31.25 ps to observe the fall of the

current. As we are assuming a p-side illumination, it is mainly the electrons

which travel through the multiplication region, even though in the simulation the

impact ionization of both electrons and holes are included.

The falling edge of the optical pulse response can be fitted with a Gaussian

profile exp(−t2/τ 2
f ), see parameters in Table 4.1. As seen in Fig. 4.3 and Table 4.1,

Table 4.1: Fitted temporal response functions exp(−t2/τ 2
f ) and 1 −

exp(−t2/τ 2
r ) cos(ωrt) for the GaN APD.

Bias (V) τf (ps) τr (ps) ωr (r/ps)
25 1.72 3.06 0.35
30 1.78 2.57 0.38
40 2.04 1.75 0.506

the width of the Gaussian profile increases with the applied bias. Hence, the

temporal response of the device degrades in the high gain region where substantial

amount of secondary carriers exist, as expected. The rising edge of the pulse shows

an underdamped behavior, becoming even more pronounced towards the gain

region; this can approximately be fitted by a function 1 − exp(−t2/τ 2
r ) cos(ωrt),

with the parameters being listed in Table 4.1.
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Figure 4.3: Temporal response of the GaN and Al0.4Ga0.6N (vertically shifted for
clarity) APD to a 25 ps optical pulse, applied between the dashed lines.

Fig. 4.4(a) demonstrates the electric field profile of the GaN APD. Observe

that as the applied bias increases the moderately doped p+ region becomes vul-

nerable to the penetration of the electric field, hence preventing further building

up in the multiplication region and increasing the impact ionization events. In

this regard, it needs to be mentioned that achieving very high p doping persists

as a major technological challenge. Therefore, in our considerations to follow for

the AlGaN APDs, we replace the problematic p+ region with a Schottky contact.

4.2.2 Schottky contact-AlGaN APDs

With this insight, we analyze an Al0.4Ga0.6N APD of 0.1 µm thick unintentionally

doped (1016 cm−3) n region sandwiched between a Schottky contact and a heavily

doped (1019 cm−3) n+ region.

Previously, in unipolar AlGaN structures we observed the alloy scattering to

be substantial (Chapter 3)[4], whereas the actual significance of this mechanism
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has always been controversial [10]. For this reason, we provide in Fig. 4.2(b)

the gain characteristics of this Al0.4Ga0.6N APD both with and without alloy

scattering. The presence of alloy scattering almost doubles the breakdown voltage

with respect to the case when there is no alloy scattering.
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Figure 4.4: Electric field distribution over (a) GaN (b) Al0.4Ga0.6N APDs at
several bias levels.

The time response of the Al0.4Ga0.6N APD is shown in Fig. 4.3 in the low

gain region (30 V) under the same optical illuminations discussed in the GaN

case, above. The falling edge of the response can be fitted by an exponential

exp(−t/τf ) whereas the rising edge by a Gaussian function, 1− exp(−t2/τ 2
r ); see

Table 4.2 for the parameters.

Fig. 4.4(b) demonstrates the electric field profile of this Al0.4Ga0.6N structure.

It is observed that for all values of the applied bias, the electric field is confined in

the intrinsic (multiplication) region which is very desirable for the APD operation.

Finally, we would like to check the standard assumption made in other theoretical

APD treatments assuming the carriers to travel at their saturated drift velocities.
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Table 4.2: Fitted temporal response functions exp(−t/τf ) and 1 − exp(−t2/τ 2
r )

for Al0.4Ga0.6N APD under a reverse bias of 30 V.

Alloy Scattering τf (ps) τr (ps)
No 0.75 0.67
Yes 1.06 2.14

It is seen in Fig. 4.5 that this assumption may be acceptable for the Schottky

structure having a uniform field distribution within the multiplication region,

whereas it is not appropriate in the p+ − n − n+ case with our doping values.

Also it should be noted that, some of the wild oscillations in the n-region of

Fig. 4.5(a) are possibly due to poor statistical averaging of our EMC simulation2.
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2This point has been kindly brought to our attention by Prof. Cengiz Beşikçi.
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Any experimental support, which is currently impeded by the poor AlGaN

material quality, will be extremely valuable to further refine our models. In other

words, our simulations await to be verified or falsified by other researchers.



Chapter 5

Gunn oscillations in GaN

channels

At high electric fields, the electron velocity, v, in GaAs, GaN, AlN, and some

other compound semiconductors decreases with an increase in the electric field,

F , so that the differential mobility, µd = dv/dF becomes negative (see Fig. 5.1).

Ridley and Watkins in 1961 and Hilsum in 1962 were first to suggest that such

a negative differential mobility in high electric fields is related to an electron

transfer between different valleys of the conduction band (intervalley transfer).

When the electric field is low, electrons are primarily located in the central valley

of the conduction band. As the electric field increases many electrons gain enough

energy for the intervalley transition into higher satellite valleys. The electron

effective mass in the satellite valleys is much greater than in the central valley.

Also, the intervalley transition is accompanied by an increased electron scattering.

These factors result in a decrease of the electron velocity in high electric fields.

There are other mechanisms than the intervalley transfer to achieve negative

differential mobility as well [36]. From the technological point of view, this effect

is exploited to build oscillators up to Terahertz frequencies.

32
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Figure 5.1: EMC simulation of the drift velocity versus field for bulk GaN at
300 K.

5.1 Basics

A simplified equivalent circuit [37] of a uniformly doped semiconductor may be

presented as a parallel combination of the differential resistance (see Fig. 5.2)

Rd =
L

qµdn0S
, (5.1)

and the differential capacitance:

Cd =
εS

L
. (5.2)

Here S is the cross section of the sample, L is the sample length, and n0 is the

electron concentration.

The equivalent RC time constant determining the evolution of the space

charge is given by

τmd = RdCd =
ε

qµdn0

, (5.3)
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Rd =
L

qµdn0S

Cd =
εS
L

Figure 5.2: Equivalent circuit for a uniform piece of semiconductor.

where, τmd is called the differential dielectric relaxation time or Maxwell dielec-

tric relaxation time. In a material with a positive differential conductivity, a

space charge fluctuation decays exponentially with this time constant. However,

if the differential conductivity is negative, the space charge fluctuation may grow

with time. What actually happens depends on the relationship between τmd and

the electron transit time, τtr = L/v. If (-τmd) � τtr, a fluctuation of the electron

concentration occurring near the negatively biased terminal (cathode) grows very

little during its transit time toward the positively biased terminal (anode). How-

ever, when (-τmd) � τtr, a space charge fluctuation grows tremendously during

a small fraction of the transit time. In this case, it develops into a high-field

region (called a high-field domain), which propagates from the cathode toward

the anode with the velocity that is approximately equal to the electron saturation

velocity, vs.

The condition (-τmd) � τtr leads the following criterion of a high-field domain

formation:

n0L �
εvs

q|µd|
. (5.4)

For v = 105 m/s, |µd| ' 0.15 m2/Vs, ε = 1.14×10−10 F/m, we obtain n0L �

1.5×1011 cm−2. This condition (first introduced by Professor Herbert Krömer

in 1965) is called the Krömer criterion. On the experimental side, Ian Gunn



CHAPTER 5. GUNN OSCILLATIONS IN GAN CHANNELS 35

was first to observe high-field domains in GaAs in 1963. Ever since, these GaAs

two-terminal devices are often called Gunn diodes

5.2 Motivation

The negative differential mobility threshold field due to intervalley carrier transfer

for GaN is quite high, above 200 kV/cm, which becomes appealing for building

very high power millimeter-wave oscillators (see Fig. 5.1). In addition to their

technological importance, these Gunn diodes still pose a number of physical puz-

zles, such as the detailed understanding of the domain nucleation process in

different doping profiles [38]. Also, the onset of chaotic behavior [39] in these

structures is another intriguing subject. As a matter of fact, the presence of im-

pact ionization has been reported to give rise to chaotic multi-domain formation

[40]. This result was based on a numerical solution of a set of partial differential

equations under simplifying assumptions. The ensemble Monte Carlo (EMC) ap-

proach is believed to be much better suited for this task [41], and, for instance,

it has been successfully tested in the analysis of InP Gunn diodes [42].

An ever-present objective is to increase the operating frequency of the Gunn

diodes. This can be achieved in several ways. Our approach is to operate the

Gunn diodes at their higher harmonic frequencies rather than the fundamental.

However, the drawback here is the very low efficiency associated with these high

harmonic modes. Therefore, we devote much of this chapter to the harmonic RF

conversion efficiency enhancement by all means.
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Figure 5.3: Structural details.

5.3 Computational details

Along this line, here we employ the EMC method to shed light on the dynam-

ics of millimeter-wave Gunn domain oscillations with large amplitudes in GaN

channels. The same GaN material was the subject of another recent study with

an emphasis on multiple-transit region effects on the output power [43]. Unfor-

tunately, their analysis utilized unrealistic values for the two important satellite

valleys, chosen as 2.27 eV and 2.4 eV above the conduction band edge. These are

about 1 eV higher than the experimental and theoretical values. In this work,

as mentioned before, the necessary band structure data is extracted from our

empirical pseudopotential calculations [14] fitted to available experimental and

theoretical data. An analytical-band variant of EMC is preferred that enables a

vast number of simulations. Very good agreement of such an approach with full

band EMC results [44] gives further confidence for this choice. Moreover, we use

the actual density of states, rather than the valley-based non-parabolic bands in
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forming the scattering tables [45].

The basic structure we investigate is of the form, n+ − n− − n− n+, with the

active region being formed by the n− notch with a doping of 1016 cm−3 and the

main n-doped channel having 3×1017 cm−3 doping; the n+ contact regions are

assumed to have 2×1018 cm−3 dopings; see, Fig 5.3. The length of the notch region

is varied to investigate its effect on the harmonic operation, while keeping the total

length of the active region (n−−n) constant at 1.2 µm. Our EMC simulations all

start from a neutral charge distribution, and unless otherwise stated, are at 300

K. As a standard practice in modeling Gunn diodes (see, Ref. [38] and references

therein), a single-tone sinusoidal potential of the form VDC+VAC sin(2πft) is

imposed across the structure; in our work VDC=60 V and VAC=15 V (if not

stated). This choice significantly simplifies our frequency performance analysis;

its validity will be checked later on. The oscillator efficiency is defined as η

= PAC/PDC , where PAC is the time-average generated AC power and PDC is

the dissipated DC power by the Gunn diode. Therefore, a negative efficiency

corresponds to a resistive (dissipative) device and a positive value designates an

RF conversion from DC.

5.4 Results

Fig. 5.4(a) displays Gunn domains for operations at the fundamental, second,

third and fourth harmonic frequencies for a 250 nm notch device1. As usual,

the domains build up as they approach to the anode side. Fig. 5.4(b) illustrates

the evolution of the electric field in one period for the fundamental frequency

operation (122.5 GHz). It can be noted that due to the relatively wide notch

width, significant amount of the electric field accumulates around this region,

with a value that can exceed 1.2 MV/cm (under a DC bias of 60 V), reaching

impact ionization threshold [12]. To analyze this further, we increased the DC

bias to 90 V and the operating temperature to 500 K; the effect of turning off the

impact ionization mechanism was observed to be marginal even at these extreme

1A part of this section will be published in Semiconductor Science and Technology.
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conditions for all notch widths considered.
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Figure 5.4: (a) Typical charge density profiles for a 250 nm-notch device operat-
ing at the fundamental, second, third, fourth-harmonic modes, each respectively
vertically up-shifted for clarity. (b) Time evolution of the electric field profile
within one period of the Gunn oscillation at 2 ps intervals for the 250 nm-notch
device.

5.4.1 The effect of notch width

In Fig. 5.5(a) different notch widths are compared in terms of their frequency

performance. Our main finding is that, by increasing the notch width, GaN Gunn

diodes can be operated with more efficiency at their second harmonic frequency

than the fundamental, as seen for the 250 nm notch-width curve. However, we

observed that further increasing the notch width above 400 nm gives rise to total

loss of the Gunn oscillations. These results are extracted from long simulations
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up to 500 ps to capture the steady state characteristics at each frequency, which

becomes quite demanding. Hence, the Pauli degeneracy effects requiring extensive

memory storage are not included. Fig. 5.5(b) illustrates the effect of including the

Pauli exclusion principle using the Lugli-Ferry recipe [19, 4]. Note that for Gunn

diodes, this effect is quite negligible, slightly lowering the resonance frequencies

at higher harmonics.
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Figure 5.5: Gunn diode efficiency versus frequency. (a) Effect of different doping-
notch widths, while keeping the total active channel length fixed at 1.2 µm. (b)
Effect of including the Pauli exclusion principle for the 250 nm-notch device.
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5.4.2 The effect of lattice temperature

Being a unipolar device, Gunn diodes operate under high current levels which

leads to excessive heating of the lattice. Therefore, we would like to consider

the effects of temperature on our results, picking 250 nm-notch device (being the

most promising one in harmonic enhancement). As seen in Fig. 5.6, in response to

an increase in the lattice temperature, second harmonic efficiency increases where

as the fundamental and third harmonic efficiencies decrease. Also, as expected

the curves shift to lower frequencies due to increased phonon scattering which

reduces the carrier saturation velocity and hence the Gunn oscillation frequency.

The important finding is that at even higher lattice temperatures the second-

harmonic efficiency is further reinforced.
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Figure 5.6: RF conversion efficiency versus frequency for several lattice temper-
atures; 250 nm-notch device at 60 V bias is used.
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5.4.3 The effect of channel doping

Next, we consider the effect of the channel doping again using the same 250 nm-

notch device for comparison purposes. One can easily observe from Fig. 5.7 that

the channel doping is highly critical in the operation of the Gunn diodes. This

doping is mainly instrumental in the differential dielectric relaxation time (see

Eq. 5.3) which decreases as the doping increases. For relatively low channel

dopings, the −τmd � τtr condition gets violated which explains the behavior

displayed in Fig. 5.7. Furthermore, at lower channel dopings, not only the AC

current magnitude is decreased but also the phase angle difference with respect

to AC voltage shifts from active toward lossless and dissipative regimes. If the

channel doping is increased beyond 3 × 1017 cm−3 than the part of the active

channel on the anode side begins to act like a contact, reducing the dimension of

the active channel length, hence increasing the Gunn oscillation frequency.
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Figure 5.7: RF conversion efficiency versus frequency for several channel dopings;
250 nm-notch device at 60 V bias is used.
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5.4.4 The effect of DC operating point

Another parameter that can affect the achievement of harmonic enhancement is

the DC operating point. Not to lose the grounds for comparison, we need to

scale the RF amplitude while changing the applied DC voltage across the Gunn

diode. Hence, we simulate the same 250 nm-notch Gunn diodes operating under

three different DC and RF bias levels which are 50 V DC bias with 12.5 V RF

bias, 60 V DC bias with 15 V RF bias, 70 V DC bias with 17.5 V RF bias. The

important observation is that the harmonic enhancement is favored towards the

critical field at which negative differential mobility sets in (50 V case in Fig. 5.8).
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Figure 5.8: RF conversion efficiency versus frequency for several DC bias voltages;
250 nm-notch device.
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5.4.5 Connecting to a tank circuit

Finally, we relax the imposed single-tone sinusoidal voltage across the Gunn diode

and connect it to an external tank circuit with the voltage across the device being

self-consistently updated at each simulation step (0.4 fs) through solving in time-

domain a Gunn diode in parallel with a capacitor and a resistor, all in series with

an inductor and a DC source (cf. Fig. 5.9(b) inset). The AC voltage and current

of the Gunn diode are shown in Figs. 5.9(a) and (b), comparing respectively the

imposed single-tone bias with the tank circuit tuned to the fundamental frequency

of the 150 nm notch device. For both cases the current and voltage are in anti-

phase with each other leading to RF generation as intended; the main discrepancy

being higher harmonic content in the tank circuit case as governed by the quality

factor of the resonator.
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Figure 5.9: Current and voltage waveforms for a 150 nm-notch Gunn diode (a)
under an imposed single-tone sinusoidal voltage, and (b) connected to an external
tank circuit shown in the inset.
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5.5 Computational budget

Finally, we would like to give some details about the computational load of our

simulations. All of our computations have been carried on a dedicated Pentium-

4 3.06 GHz PC running on a Linux (RedHat v8.0) operating system, complied

with the most recent Intel 7.1 Fortran complier. To give some idea, the Gunn

simulations of this chapter have been completed in about 3.5 months non-stop.

The memory requirement of a typical run is less than 5 Mb which increases to

1.1 Gb when Pauli exclusion principle as implemented by the Lugli-Ferry recipe

is included as in Fig. 5.5(b).



Chapter 6

Summary of the main findings

This work has been devoted to the investigation of the high field transport phe-

nomena in wide bandgap semiconductors such as (GaN, AlGaN and AlN). With

this objective, an EMC-based simulation tool has been developed. All of major

scattering mechanisms have been added, capable of simulating both electrons and

holes, within unipolar/bipolar diode structures.

First, we considered GaN, AlGaN and AlN based unipolar homojunction chan-

nel devices to gain insight to the high-field transport phenomena. We examined

the velocity, electric field profiles and time evolution of the electron density in

these materials. Our first finding was that the Al0.4Ga0.6N-based structures suffer

severely from alloy scattering and possess a much reduced drift velocity. When

we turned off the alloy scattering, the curve for Al0.4Ga0.6N has almost coincided

with that for GaN. The electric field profile along this device was distributed

highly non-uniformly, reaching a values of few MV/cm, peaking at nn+ inter-

face and also penetrating into the heavily doped anode n+-region as the applied

bias is increased. In time evolution of the electron density oscillation around the

unintentionally doped n-region were observed until steady state is established.

Fermionic degeneracy effects were seen to be operational at high fields and high

concentration spots. At very high fields II was shown to introduce a substantial

energy loss mechanisms for the energetic carriers that have just traversed the

unintentionally doped n-region.

45



CHAPTER 6. SUMMARY OF THE MAIN FINDINGS 46

Next, we analyzed multiplication and temporal response characteristic of GaN

and Schottky Al0.4Ga0.6N APDs. To check our model, we simulated the structure

reported by Carrano et al. [23] and obtained reasonable agreement. Examining

the time response of APDs under a pico-second optical illumination, an under-

damped step response was observed in the rising edge and a Gaussian profile

damping in the falling edge. For the electric profile of the GaN APD, we noted

that as the applied bias increases the electric field increases along the p+ region.

To increase the electric field at the multiplication region, we replaced the prob-

lematic p+-region with a Schottky contact and simulated the Schottky-contact

Al0.4Ga0.6N APD. As intended, for all values of the applied bias, the electric field

was observed to be confined in the multiplication region. For the gain characteris-

tics of Schottky contact Al0.4Ga0.6N APD both with and without alloy scattering

and we found that the presence of alloy scattering doubles the breakdown voltage.

Finally, we studied the Gunn domain oscillations under both impressed single-

tone sinusoidal bias and external tank circuit conditions. In particular, our mo-

tivation was to seek all means to enhance the harmonic RF conversion in com-

parison to the fundamental mode operation. Hence, we examined the effect of

the notch width on the higher harmonic frequencies and found that GaN Gunn

diodes can be operated with more efficiency at their second harmonic frequency

for wide-enough notch regions. However, there exists an upper limit the width

of this region beyond which Gunn oscillations ceases altogether. Moreover, the

Pauli degeneracy effect and impact ionization scattering were seen to be quite

negligible. Furthermore, increasing the lattice temperature or the channel dop-

ing was observed to enhance the second harmonic efficiency. Finally, we studied

the Gunn diodes operating under different DC bias levels; the fundamental mode

was seen to be affected by far, compared to higher harmonics.

At this point, we would like to mention some possible extension of this work.

Being a close relative of the devices considered here, IMPATT diodes can also

be studied using the some infrastructure. On the more basic research side, it is

intriguing to explore chaos in Gunn diodes [53], and other high field devices. From

a technical perspective, other scattering mechanisms can be included such as the

carrier-carrier scattering, and for low temperature and poor quality samples the
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dislocation scattering. Finally, the code can be upgraded to a fullband EMC [54]

and even employing ab-initio bandstructure techniques rather than the EPM.

However, our current analytical-band EMC tool will still preserve its place, as it

is still the preferred choice for extensive simulations to test certain ideas, as we

have done in pursing the harmonic enhancement in Gunn diodes.
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Appendix A

Impact ionization and alloy

scattering

In this appendix, we would like to explain our approach for the impact ionization

(II) and alloy scattering in more detail for documentation purposes.

A.1 Impact ionization

The only available experimental report about II relevant to our work is on GaN

by Kunihiro et al. [31]. Using our EMC framework, we are able to fit to their

electron ionization coefficient with an II scattering rate of P GaN
II (1/s)=2.5 × 1016

(Ein - EGaN
th )8 u(Ein - EGaN

th ), where Ein is the energy of the electron in eV,

EGaN
th = 4 eV is the II threshold energy, and u(·) is the unit step function1. This

expression, when compared to the ab initio results for GaN [46] possesses similar

exponent and threshold values, but a reduced coefficient. On the other side,

for AlxGa1−xN Ando et al. [47]. used linear interpolation between the II rates

of GaN and AlN, assuming for simplicity a null value for AlN. Aiming for a

more realistic estimation for AlN, we make use of the Keldysh approach valid for

parabolic bands while Bloch overlaps are taken into account via the f -sum rule

1The contents of this chapter has been adopted from Ref [12].
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Table A.1: Band edge analysis throughout the lowest two conduction bands of
AlxGa1−xN alloys: band edge energy, E, density of states effective mass, m∗, and
non-parabolicity factor, α (other than the lowest valley, two-band ~k · ~p values
are preferred). Equivalent valley multiplicities, Nv are included as well. Note
that the ordering of the U and K valleys is interchanged at an aluminium mole
fraction of 0.6.

E(eV)
m∗/m0

α(eV−1) GaN Al0.2Ga0.8N Al0.4Ga0.6N Al0.6Ga0.4N Al0.8Ga0.2N AlN
Γ1(Nv = 1) 0 0 0 0 0 0

0.2 0.214 0.227 0.238 0.246 0.26
0.262 0.243 0.230 0.221 0.213 0.207

U(Nv = 6) 1.34 1.285 1.233 1.181 1.131 1.05
0.442 0.456 0.468 0.486 0.487 0.495
0.064 0.056 0.049 0.043 0.039 0.035

K(Nv = 2) 1.59 1.444 1.307 1.179 1.057 0.9
0.47 0.477 0.483 0.478 0.488 0.488
0.055 0.050 0.045 0.042 0.039 0.106

M(Nv = 3) 1.87 1.830 1.798 1.769 1.741 1.68
0.565 0.577 0.590 0.604 0.617 0.629
0.035 0.030 0.026 0.023 0.020 0.017

Γ3(Nv = 3) 2.14 2.23 2.312 2.390 2.462 2.49
0.439 0.463 485 0.507 0.529 0.55
0.056 0.046 0.039 0.032 0.027 0.023

Free electron
band (Nv = 1) 3.5 3.6 3.7 3.8 3.9 4

1 1 1 1 1 1
0 0 0 0 0 0
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Table A.2: A and K values in the electron II coefficient expression, A exp(−K/F ),
where, F is the electric field. A temperature of 300 K and an ionized impurity
concentration of 1017 cm−3 are used.

GaN Al0.2Ga0.8N Al0.4Ga0.6N Al0.6Ga0.4N Al0.8Ga0.2N AlN
A(107 cm−1) 1.1438 1.5126 2.0647 1.7974 1.2993 8.8750
K(MV cm−1) 23.8933 31.6707 36.6251 37.7751 36.3373 37.5904

[10]. The corresponding II scattering rate comes out as PAlN
II (1/s)=7.04 × 1011

(Ein - EAlN
th )2 u(Ein - EAlN

th ), where EAlN
th = 6.84 eV. Examining the forms of

these two scattering rate expressions, we see that GaN possesses a soft threshold,

whereas the Keldysh treatment demands a hard threshold for AlN. The latter

should not be undermined as well, as Hess pointed out, the Keldysh approach

can still adequately represent the experimental data for the case of steady-state

phenomena [36].

Utilizing the results of first-principles characterization by Jung et al. on II [49],

we employ a piecewise linear functional relation between the initial (Ein) and

final (Efin) energies of the impacting electron, measured from the conduction

band minimum, as

Efin =















0, Ein < EAB
th

c1(Ein − EAB
th ), EAB

th ≤ Ein ≤ EAB
br

c2(Ein − EAB
0 ), Ebr < Ein,

(A.1)

where EAB
br =c3E

AB
gap , EAB

0 = [c1E
AB
th + (c2 − c1)E

AB
br ]/c2,and EAB

br is the alloy

II threshold energy obtained using Vegard’s Law from the binaries The energy

coefficients above, c1, c2 and c3, are practically taken to be material independent

[50], and we use the values of Jung et al. ’s c1=0.55, c2=0.267, c3=2.11 values ex-

tracted from GaAs data at 300 K [14], Fig. A.1. Incorporating the first-principles

II scattering rate expression of this reference to our EMC formalism yields excel-

lent agreement with the experimental results for GaAs [31], giving confidence on

the validity of this approach. In bipolar simulations, such as APDs, it becomes

important to include the secondary electron-hole pair as well. Their energies
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Figure A.1: Electron II coefficient versus inverse electric field. Dotted lines indi-
cate the results when alloy scattering is not included, after Jung [49].

and momenta should be assigned in such a way to meet conservation laws as

much as possible; more vital is the momentum conservation for the current gain

considerations.

Returning to the AlxGa1−xN system, electron II coefficient, , for several alloy

compositions are plotted in Fig. A.2 with respect to electric field, F . These results

are obtained for a temperature of 300 K and an ionized impurity concentration of

1017 cm−3. We note that these curves do not obey Wolff’s form, A exp(−K/F 2),

but rather can be faithfully represented using Shockley’s form of A exp(−K/F );

refer to Table A.1 for a listing of these constants, A and K. In this connection,

we find it useful to add Bude and Hess’s remark that the functional dependence

of on F is closely related to the rise of density of states in the most important

energy range, and not as much on the question of whether lucky electrons are

important for the ionization or not [51].
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Figure A.2: Electron II coefficient versus inverse electric field. Dotted lines indi-
cate the results when alloy scattering is not included. The curves for Al0.6Ga0.4N
and Al0.8Ga0.2N merge at higher fields. These results are obtained for a temper-
ature of 300 K and an ionized impurity concentration of 1017 cm−3.

A.2 Alloy scattering

In a semiconductor alloy, the scattering of free carriers due to deviations from

the virtual crystal model, as also employed in this work, has been termed as alloy

scattering [10]. Recently, Farahmand and Brennan addressed alloy scattering in

group-III nitride ternary alloys, using the conduction band offset between the

binaries as the alloy potential [16]. They have argued that this approach yields

an upper bound for alloy scattering. As a representative value, in our work we

use Ualloy = 0.91 eV, which is half of the corresponding GaN/AlN conduction

band offset. The dotted curves in Fig. A.2 corresponding to aluminium mole

fractions of 0.2 and 0.4 indicate that when alloy scattering is turned off II is

significantly enhanced. In contrast, the elastic nature of the alloy scattering might

initially suggest a marginal effect on the electron energy distribution. However,

the deviation of the electron wave vector away from the electric field due to an

elastic scattering causes deceleration in the drift cycles, hence a loss in its energy

of such an electron, lowering its potential for II. Fig. A.3 illustrates this point for
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Figure A.3: Electron energy distribution for Al0.4Ga0.6N at an electric field of 3.5
MV/cm, with (solid) and without (dotted) the alloy scattering. A temperature
of 300 K and an ionized impurity concentration of 1017 cm−3 are considered

Al0.4Ga0.6N (which is an important alloy composition for solar-blind applications)

at an electric field value of 3.5 MV/cm; the depletion of the high energy tail of

the distribution function due to alloy scattering explains the decrease in the II

coefficient obtained in Fig. A.2. However, we would like to draw attention to

two simplifications in our approach inherited from the treatment of Fischetti and

Laux [17]. The alloy scattering is implemented as an intravalley process due to

its small wavelength attenuation [17]; in the case of closely located valleys, like U

and M , this may become rather crude. More importantly, the distribution of the

final scattering angles is assumed to be isotropic, even though at higher energies

alloy scattering attains a forward directional character [52]. Thus, we are lead to

think that the effect of the alloy scattering may still be somewhat overestimated.


