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ABSTRACT 
 
 

BALANCING STRAIGHT AND U-TYPE ASSEMBLY LINES 

WITH STOCHASTIC PROCESS TIMES 
 
 

Halil Şekerci 

M.S. in Industrial Engineering 

Advisor: Prof. İhsan Sabuncuoğlu 

August,2003 

 
 
In this thesis, we study the problem of assembly line balancing with stochastic task process 

times. The research considers both the well-known straight line balancing problem and U-line 

balancing problem where the line is paced, with no buffer inventories between stations. The 

objective is to minimize a two component cost function where the cost terms come from cost 

of manning the line and cost of finishing the incomplete units off the line. Cost is measured 

by an existing exact method for straight line balancing and a heuristic cost measurement 

method is developed for U-line balancing. The key idea in the core of this research is a task's 

marginal desirability for assignment at a given station. This idea is embedded in a beam 

search heuristic for solving both the straight line and U-line balancing problem. Extensive 

computational experiments and simulation experiments are made with well-known problems 

in the literature under the assumption of normally distributed task processing times. The 

quality of the solutions found by beam search for the straight-line balancing problem is 

compared to an existing method in literature. A simulation model of the assembly design is 

constructed and sample results from the U-line balancing problem are tested against the 

simulation results. The algorithm presented in this thesis improves the objective function by 

up to 24 percent. 
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ÖZET 
 
 
RASSAL İŞ ZAMANLI DÜZ VE U TİPİ MONTAJ HATLARININ 

DENGELENMESİ 
 
 

Halil Şekerci 

Endüstri Mühendisliği, Yüksek Lisans 

Tez Yöneticisi: Prof. Dr. İhsan Sabuncuoğlu 

Ağustos 2003 

 
 
Bu tezde Rassal İş Zamanlı Montaj Hatlarının Dengelenmesi problemi üzerinde çalışıldı. 

Araştırmamız hem iyi bilinen anuyumlu düz montaj hatlarını hem de anuyumlu U tipi montaj 

hatlarını istasyonlar arasında tampon envanterlerin yokluğunda incelemektedir. Amacımız 

işgücü maliyeti ve ürünü çevrimdışı montajlama maliyeti gibi iki bileşenli bir maliyet 

fonksiyonunu en azlamaktır. Maliyet düz hatlar için kesin, U tipi hatlar için ise sezgisel bir 

yöntemle hesaplanmaktadır. Bu araştırmanın temelinde yatan ana fikir bir işin verilen 

istasyondaki konuma atanması için marjinal istenilirliğinin belirlenmesidir. Bu fikir düz ve U 

tipi montaj hatlarının dengelenmesinde kullanılmak üzere bir ışın taraması sezgisel 

yönteminin içerisinde kullanılmıştır. İş zamanlarının normal dağılıma sahip olduğu varsayımı 

altında literatürdeki iyi bilinen problemler üzerinde kapsamlı hesapsal deneyler ve benzetim 

deneyleri gerçekleştirilmiştir. Işın taraması kullanılarak elde edilen sonuçların kalitesi düz 

montaj hatları için literatürdeki bir diğer yöntemin sonuçlarıyla karşılaştırılmıştır. Montaj 

hattının bir benzetim modeli kurularak U tipi montaj hatları için elde edilen sonuçlar benzetim 

modelinin sonuçlarıyla karşılaştırılmıştır. Bu tezde sunulan yöntem amaç fonksiyonunda % 

24’lere varan iyileştirmeler sağlamıştır.  

 

Anahtar Sözcükler: Montaj hattı dengeleme, Rassal iş zamanları, Işın taraması, 
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Chapter 1 
 
Introduction 
 

 1.1 A brief history 
 

Development of assembly lines is perhaps one of the most important 

triumphs of the twentieth century. The advent of assembly line in production 

systems, triggered mass production and made many products available to the 

benefit of mankind at reasonable prices. Although the first assembly line is 

credited to Henry Ford who developed such a line in 1913 and used it to produce 

Ford automobiles, the analysis and analytical statement of the assembly line 

balancing problem dates back only to 1955 (Salveson 1955). Jackson (1956), 

Bowman (1960), Supnik and Solinger (1960), White and Hu (1961) later followed 

his work. Extensive research on the assembly line balancing problem (ALBP) has 

accumulated since then, but the structure of the problem consistently defied the 

development of exact algorithms. Several survey papers review the work 

published on the subject: Kilbridge and Wester (1962), Ingall (1965), Mastor 

(1970), Buxey et al. (1973), Johnson (1981), Baybars (1986b), Yano and Bolat 

(1989), Erel and Sarin (1998), Amen (2000). In this section the concept of 

assembly line and the problem of assembly line balancing is introduced on 

straight shaped and U-shaped line configurations.  
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1.2 Preliminaries of the ALBP 
 

An assembly line is a production sequence of stations connected together 

by a material handling system, where parts are assembled together at stations to 

form an end product. In this system there are work elements to be performed each 

of which is called a task. A task is the smallest indivisible work element in the 

assembly process.  

Several tasks are performed at a physical location by a single worker and 

other tasks are similarly performed by other workers at different stations. A 

station is a location along the line at which tasks are performed by completing the 

assembly operations.  

Task performance time, ti is the duration of task i, and cycle time C is the 

amount of time available at each station. Equivalently cycle time is defined as the 

amount of time elapsed between two successive units entering or leaving the 

assembly line. Accordingly, station time Sj is defined as the sum of task times of 

the tasks assigned to station j on the line.  

After the line begins to give the first product, a partially assembled product 

remains at each station during each cycle, while the set of tasks assigned to this 

station is performed on it. The material handling system then moves all partially 

assembled parts forward to next station and a new cycle begins. Thus all the units 

at every station advance to their next station in sequence at the same time. This 

time point is the end of cycle time. Thus, if tasks are completed on a unit before 

the cycle time ends, the unit waits idle until the end of cycle time. Because of this 

synchronization in movement, these type of assembly lines are  sometimes called 

as "synchronous lines". 

Since there must exist at least one station and at least one task at each 

station, cycle time is bounded by the following relation : 

 

 

Tasks are not completed arbitrarily, rather there exists a precedence 

relationship between the tasks, dictating the completion of some tasks before  

1,.., 1,.., 1
max max

N

i j ii N j K i
t S C t

= = =

≤ ≤ ≤∑
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others can be started. A precedence diagram depicts the ordering, in which tasks 

must be performed to achieve a successful assembly of the product. This 

precedence diagram is either represented by a network of tasks or by an upper 

triangular NxN matrix, where N is the number of tasks in the assembly process. In 

the network representation, an arc originating from task i and ending at task j 

represents that task i must be completed before task j can be begun. In the matrix 

representation the entry [i,j] is 1 if task j follows task i in the precedence diagram, 

otherwise it is zero. Network representation is illustrated in Figure 1.1. 

 

 

 

 

 

Figure 1.1: A precedence relationship diagram.  

 

The assembly line balancing problem (ALBP) can be stated as assigning tasks 

to an ordered sequence of stations such that the precedence relations among the 

tasks are satisfied and some performance measure is optimized. The most 

commonly used objectives can be classified into two categories. In the first 

category one desires to minimize the number of stations given the cycle time. In 

this category we minimize number of stations subject to the following constraints. 

(1) All tasks must be performed 

(2) The work content in any station is less than or equal to the cycle time C. 

(3) Precedence relations are not violated. 

Notice that such an objective is equivalent to minimizing the total idle time, since  

 

 

where K is the number of stations in the design, under consideration.  

Thus, when idle time is minimized K is also minimized. The reduction is due to 

the fact that          is constant and C is given. This category is known as the Type I 

problem.  

1
*

N

i
i

Idle time K C t
=

= −∑
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In the other category the objective is to minimize cycle time given the 

number of stations. This category is known as Type II problem. In both categories 

minimization is subject to precedence constraints.  

A general integer programming formulation to the Type I problem is given 

as follows:  

 

1
0ij

if task i is assigned to station j i I and j J
x

othervise
∀ ∈ ∀ ∈ 

= 
 

 

 

 N represents the number of tasks in the problem, K represents the total 

number of stations in the design (K≤ N), and F(i) represents the set of tasks that 

are immediate precedence followers of task i. 

In this formulation the objective function (1) minimizes the number of 

stations opened by minimizing the station number assigned to the terminating 

task. Constraint (2) is known as assignment constraint and states that each task is 

assigned exactly to one station. Constraint (3) is the precedence constraint and 

states that all predecessors of task i must previously be assigned in order to assign 

it to a station. Constraint (4) is the cycle time constraint and states that station 

times can’t exceed the cycle time. Constraint (5) is the nondivisibility constraint 

of tasks. 

Although the problem is easy to formulate, it has enormously large number 

of feasible solutions. Ignoring the precedence constraints, there are N! different 

orderings possible. Precedence relations decrease the number of feasible solutions 
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drastically, but nevertheless the solution space is still too large to enumerate. Both 

Type I and Type II assembly line balancing problems are known to be NP-hard 

because the partition problem is known to be NP-hard (Papadimitriou, 1982). 

There is a vast number of heuristics and exact procedures in the literature to solve 

this problem.  

 There are also some other objectives offered in the literature other than the 

ones mentioned above. Smoothness index is a measure of how uniformly the 

workload is distributed among stations and is given by  

 

 

Here sj represents the total mean task duration at station j. Smax is the maximum of 

these statistics among all stations. 

A measure of efficiency is balance delay, which is the ratio of the total idle 

time and the total time spent by a product moving from beginning to the end of 

line. It is given by: 

 

 

 

Balance delay measures the idle percent of time that the unit spends on line. 

 

1.3 Preliminaries of U-line balancing 
 

The key difference between the traditional (straight) assembly line balancing 

problem and the U-line balancing problem is the following: In the straight line 

balancing problem, units to be processed enter the line from the head of the line 

and proceed their way to next station as operations are completed on them. Finally 

completed units leave the line from the end of the line. Hence the units flow in 

one direction which is from the head of the line to its rear. However, in a U-line 

units enter the line and traverse all stations from first to last and return all the way 

back from last station to first. In U-line configuration a station has at any time two 

units, one moving in forward direction and the other in backward direction. 

Workers at any station first complete the necessary tasks on the forward moving 

∑
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unit, then they may turn to finish tasks on backward moving unit. Hence the 

completed parts leave the line from the first station. Straight line and U-line 

configurations are illustrated in Figure 1.2.  

 

 
1, 2, 4 
 
 

3, 6 
 
 

5, 7 
 
 

9, 8 
 
 

10, 11 
 
 

 
A straight line configuration with 11 tasks assigned to stations. 
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10 
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7, 8 

 
A U-line configuration with 11 tasks assigned to stations. 

 

Figure 1.2: Straight and U-line configurations. 

 

Feasible U-line designs can be generated quite easily; the procedure is very 

similar to the straight line balancing case but proceeds in both forward and 

backward directions. In the straight line balancing problem, tasks are selected 

from a set of available tasks for assignment in order to form a station. These tasks 

are the ones whose predecessors have already been assigned. In the U-line 

balancing problem, the set of tasks available for assignment is the union of the set 

of tasks whose predecessors and successors have already been assigned. In other 

words, tasks with all predecessors assigned, are available for assignment in 

forward direction. Similarly tasks with all successors assigned, are available for 

assignment in backward direction.   

The need for U-line configuration in manufacturing environments arises from 

attempts to improve productivity and increase flexibility. Miltenburg and 

Wijngaard (1994) state the following advantages of U-line configurations: 

Parts flow in this direction 

Parts follow this path 
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1. Quick response to changes in environment (machine breakdowns, worker 

absenteeism etc.) 

2. Ease to adapt to changes in cycle time because of high potential to 

rebalance the line. 

3. High level of participation between workers.  

4. Flexibility for adding or removing workers 

5. Require at most the same or fewer amount of stations than traditional 

lines. 

U-lines also present some operational difficulties such as scheduling the 

movement of workers, dispatching jobs, etc. Moreover the line balancing problem 

of a U-line is much more complicated than the traditional line due to increased 

search space. 

An integer programming formulation of U-line balancing problem due to 

Urban (1998) is as follows: 

 

 

 

min
*

min max

1
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When making assignments to stations two copies of the precedence network is 

used. One copy is considered for forward assignments and the other is used for 

backward assignments. The copy of the precedence network is also called as 

"phantom network". Forward assignments are made through the original network 

and backward assignments are made through the phantom network . In this 

formulation, P is the precedence set for which the element (r,s) indicates that task 

r immediately precedes task s. 

Constraint (1) ensures that every task is assigned to only one station either in 

original or phantom network. Constraint (2) and (3) ensures that sum of the task 

times assigned to each station does not exceed cycle time. Constraints (5) and (6) 

enforce the precedence relationships between tasks. 

 

1.4 Variations of the balancing problem 
 

The assembly line problem has not remained as originally formulated. In 

time there arose many varieties of the original problem such as mixed model line 

balancing, U-type line balancing, stochastic assembly line balancing, etc. One 

such category that deserves special attention is the one that assumes stochastic 
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task times rather than deterministic. In the stochastic assembly line balancing 

problem task times are assumed to be random variables. Thus with such a setting 

one cannot guarantee that all the tasks assigned at a station be completed within 

the cycle time. Therefore, stochastic line balancing problem considers 

incompletion to occur at stations and alternative policies to adapt in incompletion 

situations. Naturally, the objective function in the formulation of  stochastic line 

balancing may be different from the ones in deterministic cases. Incompletion 

ratio (Suresh and Sahu 1994) and expected line operating cost (Kottas and Lau 

1973, Silverman and Carter 1986) are two example objectives used in literature. 

 

1.5 Importance of the problem 
  

The motivation for this study stems from the fact that assembly lines play 

important roles in today's manufacturing technology and understanding their 

behavior under variability is crucial to a firm's competitiveness. In general, 

variability is known to be detrimental but at the same time impossible to eliminate 

totally. Production plants, although designed for perfect synchronization, 

unfortunately do not operate at full efficiency due to the considerable variability 

inherent to the system. Conway et al. (1987) mentions that even in today's 

manufacturing plants a value of 10 for the ratio of flow time to total processing 

time is hard to achieve. Since the laws governing the performance of 

manufacturing systems are not understood to the full extent, it would be useful to 

provide the manufacturer with some design principles and guidelines. Without 

doubt a generic line balancing heuristic that employs these principles will reveal 

valuable information to the manufacturer and this will in turn reduce the operating 

cost of the plant and increase its competitiveness.  

 The use of JIT production methods also initiated the need for multi-

functional workers and proper design of machinery layout. This resulted in U-

shaped production lines which improved visibility and communication between 

workers as well as reducing the number of stations. The number of stations 

required on a U-line is never more than that required on a traditional line. This 

property of U-lines indicates their importance on the cost of production. Although 
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U-lines are important, there is little amount of work available in the literature. 

Therefore we believe that this study will contribute to the U-line literature 

especially if we consider that the stochastic U-line balancing problem has only 

one published journal paper. 

 

1.6 The scope of this study 
 

The problem investigated in this thesis is single model stochastic paced 

assembly line with straight and U-type configurations. Since task times are 

considered stochastic, operating costs incurred by balancing the line are affected 

by the cost of manning the line (labor cost), and the cost that arises from not 

completing the tasks as the unit moves down the line. These two cost terms are 

inversely related because the line operates at a constant output rate and amount of 

work to complete each unit on the line remains constant. The more work assigned 

to a worker reduces the number of workers needed but however it also increases 

the probability that the allocated work will not be completed within the given 

cycle time. Thus, a balance is to be established between these two cost terms 

given the cycle time. Figure 1.3  illustrates the situation. 

 

Figure 1.3: Single model stochastic line balancing costs. (From Kottas and Lau 

(1973)) 

 

Total Cost 

Incompletion Cost  

Labor Cost 

$ per 
unit of 
output 

Less More Amount of work assigned 
to a typical worker 

min. cost design 
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Kottas and Lau (1973) report that industrial practice is to give some time 

allowance to the workers so that a variation in task time can be compensated 

without necessitating an incompletion. For this reason the industrial approach is to 

group the tasks into work assignments so that the sum of the expected task times 

does not exceed some specified percentage of the cycle time. However, as Kottas 

and Lau (1973) point out, this approach leaves two critical questions unanswered: 

Up to what percent of the cycle time should work stations be filled, and should 

this percentage be the same for all stations? 

 

1.7. Assumptions of this study 
  

The following assumptions are made about the assembly line considered in 

this research. These assumptions are the same as the ones adopted by Kottas and 

Lau (1973). 

1. The cycle time and precedence relationships are the only restrictions on 

task assignments. 

2. Each worker is paid the same wage regardless of the assignment 

3. A task can only be begun if all its predecessors are completed. 

4. The time to complete any task i is normally distributed with mean µi and 

standard deviation σi and further, the  performance time of any task is 

independent of other task times and ordering of tasks within a station. 

5. Whenever a task is not finished, the unit goes down the line with as many 

of the remaining tasks being completed as possible. All unfinished tasks 

are completed off-line. The cost to complete task i offline is not a function 

of what fraction of the task i was completed on the line. 

The first three assumptions are very common in the assembly line balancing 

literature (Kottas and Lau (1973), Silverman and Carter (1986)). Normally 

distributed task times are widely used in the stochastic line balancing literature 

e.g. Mansoor (1968). Assumption 5 is just one of the possible line operating 

policies and closely approximates the situation often encountered in the assembly 

of automobiles and appliances (Kottas and Lau (1973)).  
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In this research stochastic straight line and stochastic U-type line balancing 

are studied. Therefore throughout the study tasks are assumed to come from a 

distribution function which is known in advance. The research concentrates on the 

ways to minimize the operating cost of these lines. To achieve this, line designs 

are generated and evaluated by heuristic methods. 

 

1.8 Summary of work done   
 

In this research a line balancing algorithm is developed for each of 

stochastic straight line balancing problem and stochastic U-line balancing 

problem. The objective in both problems is to minimize total cost of the line 

which comprises of labor cost and incompletion cost.  

For the stochastic straight line balancing problem, Kottas and Lau's (1973) 

stochastic straight line balancing procedure and Kottas and Lau's (1976) straight 

line exact cost evaluation method is embedded in a beam search based algorithm 

to generate better designs in terms of cost than that of Kottas and Lau (1981). 

Several test problems are solved by the proposed method and the results are 

compared to that of Kottas and Lau's (1981) algorithm. Results indicate that the 

proposed heuristic can improve the solution found by Kottas and Lau's (1981) 

algorithm by up to 24 percent.   

 For the stochastic U-line balancing problem, Kottas and Lau's (1973) 

stochastic straight line balancing procedure is modified and streamlined. This 

procedure is embedded in a beam search based procedure together with a U-line 

cost evaluation  heuristic which is developed by the author of this research. The 

efficiency of the heuristic cost estimation is compared with simulation results for 

several test problems. The results indicate for the test problems that the solution 

found by the heuristic is within 95% confidence interval of the simulation run 

results. The method developed for the U-line balancing problem is successful in 

that, it correctly estimates the cost of line with 95% confidence. Moreover, it is 

the first method in literature to estimate a cost based objective for the stochastic 

U-line balancing problem. Using the modified procedure together with beam 

search improves the quality of the solutions found.  
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1.9 Potential contributions to the literature 
 

The contribution of this research to the existing literature is twofold. First 

the research presents a method for the stochastic U-type line balancing problem 

for which the first publication appeared only on February 2003. There is  quite 

vast room for research on this field and U-type lines are becoming much more 

common as the JIT production philosophies get more popular. The second 

contribution is stemming from the heuristic method used in this research. Beam 

search, which is the main heuristic on which this research relies on, has never 

been used for single model assembly line balancing problem. In this respect this 

research is the first to use this search methodology for single model assembly line 

balancing problem. Beam search was previously being used in scheduling 

problems (Sabuncuoglu and Karabuk (1997), Sabuncuoglu and Bayiz (2000)) and 

for sequencing product types in mixed model assembly lines (Matanachai and 

Yano (2001)). Therefore this research presents a new usage area of beam search, 

namely the assembly line balancing. Moreover, the research gives valuable 

information on the basic principles of a good design over dominated designs.    
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Chapter 2 
 
Literature Survey 

 
ALBP's can be classified into four categories depending on whether task 

times are deterministic or stochastic and based on the variety of products 

assembled. These are: Single Model Deterministic (SMD), Single Model 

Stochastic (SMS), Multi/Mixed Model Deterministic (MMD) and Multi/Mixed 

Model Stochastic (MMS). The SMD version of the problem is the most common 

and the simplest version of the problem. In this version task times are known 

constants. The SMS version introduces stochastic task times, where the task times 

are not known in advance but rather the task time distribution is known. MMD 

version deals with the case when more than one type of item is produced on the 

same line and task times are known constants. Finally version MMS deals with 

producing more than one item on a single line where the task times are stochastic. 

There are also other classification schemes based on movement of 

assembled parts along the line. In this scheme there are two distinct types, non-

mechanical and moving belt lines. Operators on non-mechanical lines are unpaced 

since in these kind of lines a unit moves independent of other units when the 

process at the current station is complete. This type of transfer is called 

asynchronous transfer. Moving belt lines are simply characterized by a conveyor 

belt and are known as paced lines. In paced lines units at all stations move 

simultaneously. This type of transfer is called synchronous transfer.  

In this survey single model deterministic and single model stochastic line 

balancing problems are covered.  One classification of the ALBP and related 

solution procedures is presented in the survey paper of Erel and Sarin (1998). 

Their classification is introduced in Figure 2.1.  
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Figure 2.1: Classification of ALBP and related solution procedures 

2.1 Single Model Deterministic ALBP  
 

In this version of the problem, line is designed to produce only one model 

for which the task times are known with certainty. Thus, the problem is, given a 

finite set of tasks, a set of precedence constraints and a cycle time value, to assign 

tasks to an ordered sequence of stations such that the precedence relations are 

satisfied, total duration of tasks in any station does not exceed the cycle time and 

some performance measure is optimized. This problem is in the general class of 

sequencing and scheduling problems and is closely related to other problems in 

this class, such as single machine scheduling problem, bin packing and knapsack 

problem. Most of the studies on single model deterministic ALBP are about Type 
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I problem. There are two approaches in the literature for this problem: optimum-

seeking algorithms and heuristics. 

  

2.1.1 Optimum-Seeking Approaches 
 

The exact methods in Type I and Type II problems can be treated under 

two main categories. In the first category the commonly used formulations are 0-1 

IP and solution methodologies are enumerative techniques like branch-and-bound. 

The first branch-and-bound algorithm was developed by Jackson (1956). 

Many other researchers followed his work with various optimum branching and 

optimum search strategies. 

Johnson (1973) constructed a newest-node branch-and-bound algorithm 

and in 1981 he developed an improved version of his previous work (1973) by 

changing only the bounding mechanism. 

Patterson and Albracht (1975) proposed a 0-1 IP formulation and the 

Fibonacci search procedure. In this method  a sequence of 0-1 IP problems are 

examined to determine feasible solutions. They also used lower and upper bounds 

to reduce the number of variables. 

Wee and Magazine (1981a) proposed a branch-and-bound algorithm that 

depends on two heuristics rather than the IP formulation. The first heuristic is 

called IUFFD (Immediate Update First-Fit Decreasing) and is a variation of the 

bin packing heuristic FFD (First-Fit Decreasing). The second heuristic is called 

IUBRPW (Immediate Update Backward Recursive Positional Weight) which is a 

reverse application of the well-known RPW (Ranked Positional Weight) 

technique. 

Talbot and Patterson (1984) constructed a general IP algorithm and used 

network cuts and chains in order to expedite the backtracking in the problem. 

They have obtained optimal solutions for assembly lines up to 100 tasks in 

reasonable computational time. 

Johnson (1988) proposed a method called FABLE (Fast Algorithm for 

Balancing Lines Effectively) which is a depth-first branch-and-bound algorithm. 

He used eight fathoming rules to shorten the search time. 



 17 
 

 

Hoffman (1992) developed a depth-first branch-and-bound algorithm 

called EUREKA. This procedure searches all the branches by considering the 

"theoretical minimum slack time" fathoming rule. The method starts with 

theoretical minimum number of stations and if the cumulative sum of station slack 

times exceeds "theoretical minimum total slack time" then all emanating branches 

are fathomed. This method requires much computational effort. 

Nourie and Venta (1991) proposed a method called OptPack which is a 

depth first search algorithm that checks solutions in lexicographic order until 

optimum is found. 

Klein and Scholl (1996) proposed a branch-and-bound algorithm named as 

SALOME-2 for the Type II problem adapted from SALOME-1 (Scholl and Klein, 

1994). This method uses a new enumeration technique, local lower bound method 

together with unidirectional and bi-directional search mechanisms. 

 Sprecher (1999) offered a competitive branch-and-bound algorithm for 

the Type I problem. His algorithm relies on a precedence tree guided enumeration 

scheme. He reformulates the ALBP as a resource-constrained project scheduling 

problem with single renewable resource whose availability varies with time and 

then uses branch-and-bound to solve the problem. 

Amen (2000) proposed an exact method for cost oriented assembly line 

problem. He introduces an exact backtracking method in which the enumeration 

process is limited by modified and new bounding rules. 

In the second category are the algorithms based on DP. The very first 

algorithm in this category was developed by Jackson (1956) although it was not 

formulated using the conventional DP terminology. A few years later a new DP 

algorithm was reported by Held and Karp (1962). Schrage and Baker (1978) 

proposed an efficient method for generating feasible sets. In their method, they 

define the feasible subsets of tasks and enumerate all of them with a labeling 

scheme. Their work was followed by  Kao and Queyranne (1982). They defined a 

minimum cost function with the minimum number of stations needed for all tasks 

in their procedure. Computational experience indicates that as the size of the 

problem grows, the computational effort involved in DP algorithms increase 

enormously.  
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2.1.2 Heuristic Solution Approaches 
 

The problem size sometimes makes it almost impossible to solve 

optimally. Therefore heuristic solution methodologies  are developed to save from 

computational time at the cost of not guaranteeing the optimal solution. Heuristic 

procedures in single model deterministic ALBP are classified in three categories.  

In the first category a single-pass decision rule is used. Such procedures 

prioritize some task based on a single attribute of each task using a list processing 

scheme.  

The first and well-known was constructed by Helgeson and Birnie (1961) 

under the name Ranked Positional Weight Technique (RPWT). In this technique 

each task is given a weight equal to sum of its task time and task times of its 

followers. Then tasks are listed in decreasing weight and selection is made in that 

order as long as the cycle time and precedence constraints are not violated. If 

precedence constraints or cycle time constraint is violated, next task in the list is 

considered. If no further task can be assigned to the station, a new station is 

opened. Though its popularity, the method is shown to give very poor solutions by 

Ignall (1965) and by Mastor (1970) in their example problems.  

There are other similar procedures which rank tasks according to some 

rule and selecting the highest rank task. Kilbridge and Wester (1961), proposed 

another heuristic that groups the tasks into columns in the precedence diagram and 

assigns them to stations by shifting their place in between groups. 

 Baybars  (1986b) developed a heuristic that combines some tasks to 

reduce the size of the problem. Then he decomposes problem into smaller sub-

problems to seek their solutions and finally he combines these solutions and 

decomposes tasks to reach the solution of the problem. 

Wee and Magazine (1982) developed two heuristic procedures named RA 

(Rank-and-Assign) and GFF (Generalized First-Fit). These heuristics assign 

numerical scores to all tasks, ranks them in the descending order and selects them 

according to their rank and precedence relations.  
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  The second category belongs to multiple-pass procedures. Arcus's (1966) 

technique called 'Computer Method of Sequencing Operations for Assembly 

Lines' (COMSOAL ) is well-known example in this category. The main idea in 

COMSOAL is random generation of a feasible sequence. The method determines 

the available tasks for assignment at every iteration and selects randomly among 

the available tasks to fill the remaining station time. The author also used 

variations of the method by biasing the selection of tasks available for assignment. 

Among the variants the combined method gave the best results.  

Later, Schofield (1979), Nksau and Leung (1995) constructed similar 

procedures in which best design is selected among several generated. 

Hackman, Magazine and Wee (1989) developed several heuristic 

fathoming rules for the branch-and-bound algorithm so that the size of the 

problem is reduced. 

 The third and the last category comprises procedures that try to improve a 

solution or a station assignment by some iterative backtracking methods. An 

example to this category is the two phase procedure of Moodie and Young (1965) 

where in the first phase a preliminary balance is obtained by selecting among the 

available tasks the one with the largest performance times. In the second phase of 

this algorithm tasks are transferred between stations so that idle time is evenly 

distributed among the stations. Chiang (1998) uses tabu search for the ALBP. In 

his paper he considers four different approaches that use either first or best 

improvement strategies with or without task aggregation. Goncalves and Almeida 

(2002) used a hybrid genetic algorithm for ALBP. Their chromosome 

representation of the problem is based on random keys. The assignment of tasks to 

stations are made by some heuristic rules. They also use a local search to improve 

the solution.  
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2.2 Single Model Stochastic ALBP 
 

The Stochastic Assembly Line Balancing Problem can be stated as assigning a 

set of tasks to an ordered sequence of stations, where performance times of tasks 

are distributed according to a probability distribution, subject to precedence 

constraints such that some performance measure is optimized. Now that the task 

times are random variables, a task can be incomplete either because the task is not 

completed within cycle time C or it is the precedence follower of another 

incomplete task. Incompletions reduce the efficiency of the line because they 

decrease throughput. So an incompletion  cost term is associated with  SALBP 

and this term depends on how incompletions are handled. Incompletions can be 

completed off the line and in this case the cost includes the labor cost of 

completing the task off the line. Incompletions can be handled by other ways as 

follows: 

(1) The entire line can be stopped for the time necessary to complete the 

incomplete task 

(2) Incomplete products can be inspected and repaired at special stations 

strategically located along the line. 

(3)  A skilled team can serve as a mobile repair station to help where needed. 

When the task performance times are assumed to be random, the station time 

may exceed the cycle time C. As a result the enumeration and evaluation of the 

feasible solutions is much complex in the stochastic case. Hence the effort in the 

SALBP is limited to heuristics. 

The stochasticity of task times are recognized to be normally distributed by 

several authors (Moodie and Young 1965, Mansoor and Ben-Tuvia 1966, Kottas 

and Lau 1973, Silverman and Carter 1986, Yano and Bolat 1989), however there 

are exceptions to this (Arcus 1966, Raouf and Tsui 1982). 

The solution procedures to the SALBP can be classified into three categories. 

The first category involves modified versions of the solution procedures for SMD. 

The formulations in this category attempts to minimize labor cost either by filling 

the station up to a predetermined portion of the cycle time (Sj ≤ aC, for all j, 

where 0<a≤1) or they try to minimize labor cost by providing that at each station 
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there is at least a given probability of completing the work within the cycle time 

C.  The two formulations are shown to be equivalent under certain circumstances.  

Moodie and Young (1965), in order to provide an allowance at each station, 

computes the station time as: 

 

 

 

where r is a constant multiplier. Assuming that the tasks are independent a 

confidence level can be determined by adjusting r. Typical values for this 

parameter takes values around 1 (Moodie and Young (1965)). 

Kao (1976) used a DP procedure to minimize the number of stations, while 

satisfying the precedence constraints and the constraint that, for all j, P(Sj ≤C)≥ α, 

where α is the given lower bound.  

Suresh and Sahu (1994) used simulated annealing to solve the SMS problem 

with the objectives of minimizing the smoothness index and the probability of line 

stoppage. 

In the second category simulation is used to examine the problem and 

compare its deterministic and stochastic versions. Reeve and Thomas (1973) used 

a procedure that starts with an initial balance and rearranges tasks such that the 

probability of one or more tasks exceeding the cycle time is minimized. Buxey et 

al. (1973) used Monte Carlo simulation to examine SMS assembly lines. Driscoll 

and Abdel-Shafi (1985) used a balancing procedure similar to ranked positional 

weight technique and linked it with simulation to evaluate the performance of 

solutions. 

The third category involves procedures developed solely for the SALBP. 

Kottas and Lau (1973) developed a heuristic procedure which attempts to 

minimize the total cost function comprised of total labor cost and total expected 

incompletion cost. They assume that whenever a task is not finished, the unit goes 

down the line with as many of the remaining tasks being completed as possible. In 

their procedure a task is assigned to the current station only if its anticipated labor 

savings are greater than its expected incompletion cost. Kottas and au (1981) 

developed an extension of their earlier work in which they use several selection 
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rules to generate several promising line designs. Sarin et al. (1997) developed an 

enumeration based approximation methodology. The proposed procedure divides 

the problem into sub-problems and  obtains an initial solution to each sub-problem 

by a DP procedure. These solutions are then improved by using a branch and 

bound type of procedure. Finally these improved solutions are appended to each 

other to obtain the final solution. Erel et al. (1999) developed a methodology for 

SALBP. In their method they get an initial solution using dynamic programming 

and try to improve this solution by using a branch-and-bound procedure which 

uses approximate solution instead of lower bounds for fathoming nodes. A 

summary of the work done in literature is given in Table 2.1. 

 

2.3 Single model deterministic ULBP 
  

The literature on U-lines is sparse and new as compared to the traditional 

straight lines. In this literature there are two distinct groups. One concentrates on 

identifying the important design factors an their effects on the performance of U-

lines. The other group, which is core to the scope of this research, concentrates on 

the problem of balancing U-type assembly systems to minimize either cycle time 

or the number of stations. Monden (1993) brought the U-lines to the attention of 

scientific community and since then the literature on U- lines accumulated at an 

increasing rate.  

Miltenburg (2001-1) studied the effect of breakdowns on synchronized U-

shaped production lines. This study assumes that small buffer inventories are 

placed between stations to reduce the effect of breakdowns. Miltenburg used line 

effectiveness, which is percent of time the line is up, as performance measure with 

constant repair rate and failure rate is assumed to be a linear function of the work 

done in the station. He suggested a markov chain model to investigate the effect 

of breakdowns and showed that U-lines dominate straight lines in terms of 

effectiveness in the presence of buffer inventories. 

Nakade and Ohno (1999) worked on the optimal worker allocation 

problem on U-shaped production lines. They assume no buffer inventory between 

stations and derive a lower bound for the number of workers under the required 
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cycle time and propose  an algorithm to find the allocation of workers to the line 

that minimizes the cycle time under the minimum number of workers which 

satisfies the demand. 

Miltenburg (2001-2) published his tutorial-like study which analyzes one-

piece flow manufacturing on U-shaped production lines. In his study he gave 

valuable ideas on designing the U-shaped lines, determining when one-piece flow 

manufacturing is appropriate etc. He also gave an integer programming, a 

dynamic programming and a Markov Chain representation of the problem and 

studied several example problems. 

Miltenburg (2001-3) studied the U-shaped production lines. He described 

several U-line layouts such as simple U-lines, embedded U-lines, multi-lines in a 

single U, doubly dependent U-lines etc. He also gave examples of experiences of 

manufacturing companies with U-lines and the use of them in JIT production 

systems. 

Erel, Sabuncuoglu and Aksu (2001) used simulated annealing to balance 

U-lines. In their study they try to minimize the number of stations. To achieve this 

they started with an initial solution and tried to decrease the number of stations by 

relaxing the cycle time constraint. Interestingly, they used simulated annealing to 

restore feasibility and used swapping and inserting as the neighborhood 

generation strategy. The authors also experimented the algorithm on several 

problems of varying size.       

Scholl and Klein (1999) developed an algorithm for the several types of 

the U-line assembly line balancing problem. These types are UALBP-1 in which 

the number of stations are minimized given the cycle time, UALBP-2 in which 

cycle time is minimized given the number of stations and UALBP-E in which line 

efficiency is maximized with cycle time and number of stations are free to take 

any value. In their study line efficiency is defined as the sum of task times over 

number of stations multiplied with cycle time. Their solution methodology is 

branch and bound which uses several dominance rules and branching strategies. 

The authors show that their results are optimal for small size problems for which 

the optimal solutions are known. 
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Miltenburg and Wijngaard (1994) describe the U-line balancing problem 

and the importance of such lines in JIT production systems. They also show that 

classical assembly line balancing algorithms can be streamlined to solve U-line 

balancing problem. They illustrate this idea by a dynamic programming procedure 

and a heuristic ranked positional weight method. The authors also report some 

good computational results on some problems with number of tasks ranging from 

7 to 111. 

Miltenburg (1997) suggested a dynamic programming algorithm to 

minimize the number of stations subject to precedence, cycle time and location 

constraints. The author also adopts a secondary objective to concentrate the idle 

time in one station so that improvement efforts can be focused in that station in 

accordance with the JIT principles. The author's method however, does not prove 

to be effective for problems with size more than 22 and with sparse precedence 

graphs. 

Urban (1998) presented an integer programming formulation for the U-

lines. He solved the Type-I  ULBP in which number of stations is minimized 

subject to cycle time and precedence relations. He solved problems up to 45 tasks 

with this formulation with the computation time ranging from 1 second to two 

hours. 

 

2.4 Single model stochastic U-Line 
 

Guerriero and Miltenburg (2003) suggested an exact recursive algorithm 

for the U-line balancing problem in which the objective is lexicographic 

minimization first over the number of stations and then over the incompletion 

probability in the last station. This paper assumes that task times have any 

distribution function and hence differ from any other work in the literature which 

assumes deterministic task times. The authors also make computational 

experiment for problems of size up to 30 tasks. The computation time however, 

exceeds 30 minutes in some instances. A summary of work done in literature is 

given in Table 2.2. 
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Chapter 3 
 

Proposed Method 
 

3.1 Structure of beam search 
 

The method proposed to solve the problems stated in chapter 1 is a 

heuristic based on beam search. Beam search is a fast and approximate branch-

and-bound method which operates on a search tree. However it differs from 

branch-and-bound because a certain number of best paths is selected and the rest 

is permanently pruned. Thus, at any level in the search tree only the promising 

nodes are kept for further branching and the other nodes are simply ignored. Beam 

search moves downward from the best β promising nodes at each level and β is 

called the beam width. Hence the heuristic is a partial enumeration technique 

which progresses level by level without backtracking. 

In order to select the best β nodes, an estimate of the promise of each node 

is determined. This value can be determined in various ways: One way is to 

employ an evaluation function which estimates the minimum total costs of the 

best solution that can be obtained from the partial design represented by the node. 

In this case evaluation is based on the global view of the solution. Another 

approach would be to use one-step evaluation function which may rely on one or 

several surrogate measures. Unfortunately, there is a trade off between these 

approaches. One step evaluation is quick but may discard good solutions. On the 

other hand, a thorough evaluation by the global evaluation function is more 

accurate but computationally more expensive. Disregarding the complexity of 

global and local evaluation functions, beam search itself has polynomial time 
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complexity of O(n3) where n is the number of tasks in the problem (Sabuncuoglu 

and Karabuk 1998). The running time of the algorithm is polynomial in the size of 

the problem because a large part of the search tree is pruned off. 

A filtering mechanism is also proposed in the literature to reduce the 

computational effort in beam search. With this mechanism a fast local evaluation 

function is used to discard some of the nodes based on their local evaluation 

function values, then only the remaining nodes are subjected to global evaluation. 

In this approach the number of nodes retained for global evaluation is called the 

filter width (α). However we would rather not use this approach because  such a 

good local evaluation function is hard to find and the minimum cost objective is 

very sensitive to  small changes in design. Hence it could be the case that a partial 

design that is locally evaluated to be bad can prove to be good when globally 

evaluated. 

 

Figure 3.1: Representation of a beam search tree. 

Root 

Level 1 

Level 2 

Level 3 

Level 4 

Beam Width = 2 

Beam Nodes 
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In Figure 3.1, a sample beam search tree is shown. We select the best β 

number of nodes from the nodes emanating from the root node by comparing the 

value of the global evaluation function of these nodes. After determining the first 

beam nodes at level 1, the algorithm is applied to these nodes independently and a 

partial tree is generated from each of them. Since there are beam width number of 

nodes in the current level and we progress by keeping one descendant only at each 

beam node, we have at any level beam width number of nodes and the search 

progresses from β parallel beams resulting in β different solutions in the end.   

 Without doubt, the quality of the solutions found by beam search depends 

both on the beam width β and quality of the global evaluation function. 

This search technique was first used by Lowerre (1976) as an artificial 

intelligence method for the speech recognition problem. Later Fox (1983) used it 

to solve complex scheduling problems. In another study Chang et al. (1989) used 

beam search as a part of FMS scheduling algorithm. Sabuncuoglu and Karabuk 

(1997) developed a beam search based algorithm to evaluate scheduling 

approaches for flexible manufacturing systems. Leu et al. (1997) used beam 

search technique for sequencing mixed model assembly lines. Later Sabuncuoglu 

and Bayiz (1999) applied beam search for job shop scheduling.  

Beam search has not been used in the context of assembly line balancing 

other than sequencing in mixed model lines. Thus, to the best of my knowledge 

this research is first to use beam search technique for balancing assembly lines. 

An overview of beam search and its applications can be found in Morton and 

Pentico (1993). 

 

3.2 Beam search based algorithm for our problem 
 

 When using a beam search algorithm there are two important issues to 

consider: (1) search tree representation and (2) application of a search 

methodology.  

 



 30 
 

 

3.2.1 Search tree representation 
 

As previously mentioned, each node in the tree corresponds to a partial 

design. A partial design is an incomplete design where some tasks are allocated to 

opened stations but there are still tasks to assign and probably more stations to be 

opened. In this scheme a line between two nodes represents a decision to add a 

task to the existing station. Since at any level it may be desirable to close the 

station, we use a dummy task named task 0, the selection of which implies that the 

current station is closed and a new station is opened. Dummy task can be assigned 

again and again without being exhausted and is independent of any precedence 

relations. Once dummy task is assigned at a level, it is prohibited to assign it in 

the next level because this would mean opening and closing a station without 

assigning any task to it. Finally, the leaf nodes at the end of the tree correspond to 

complete designs. To facilitate understanding, the search tree representation of a 

small precedence diagram is given in Figure 3.2. According to the search tree in 

Figure 3.2, the path 1-2-0-3 implies that the tasks 1 and 2 are assigned to first 

station in the given order and task 3 is assigned to second station. The dashed 

nodes represent the final nodes of their paths.  

 

Figure 3.2: A precedence diagram and corresponding search tree  

1
3

2 1

0 2 3

2 3 0 3 0 2

0 3 0 2 3 2

3 2
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3.2.2 Search methodology 
  

The second issue in beam search is determination of a search 

methodology. In the proposed algorithm beam search is used to perform search in 

the tree. No filtering mechanism is used, because filtering mechanism may cause 

to lose some good solutions for saving from computation time. However, our 

main concern is the quality of the solutions found rather than reduced 

computational time. Moreover there is no known filtering mechanism for 

assembly line balancing problem that is proved to work well. All the nodes at 

level 1 are globally evaluated to determine the best β number of promising nodes. 

The selected nodes become the first nodes of the β parallel beams. Subsequently 

the descendants of these selected nodes are globally evaluated to select the beam 

node at each parallel beam. If the number of nodes expanded at very first level are 

less than the specified beam width, then all the nodes in the following levels are 

expanded until the number of nodes at a level is greater than the specified beam 

width. 

 

3.2.3 The search procedure 
 

The procedural form of the proposed beam search algorithm is given as 

follows: 

Step 0 :(Initial node generation) Determine the set of available tasks for 

assignment considering the precedence relations. These tasks constitute the level 1 

nodes. Each node represents a partial design in which the selected task is assigned 

to the first position in the first station. 

Step 1:(checking the number of nodes) If number of level 1 nodes is less than the 

specified beam width then expand nodes by generating further level nodes until 

the total number of nodes in the last level is greater than the specified beam width. 

Else go to Step 2. 
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Step 2: (completing the partial designs) Since these nodes represent only partially 

completed designs, they can't be evaluated  globally. In order to evaluate these 

partially completed designs, they must be completed by assigning the remaining 

tasks by some heuristic rule. (More on this in the following sections) 

Step 3: (computing global evaluation function) Compute the global evaluation 

function for all the nodes and select the best β of them. (initial beam nodes) 

For each beam node: 

Step 4: (node generation) Generate descendants of these beam nodes by 

considering the set of available tasks for that node. Set of available tasks for a 

node is determined by deducing all up to then assigned tasks for that node from 

the precedence diagram and choosing the ones with no unassigned predecessors 

for straight line balancing. For U-line balancing a task must have both its 

predecessors and followers assigned in order to be available for assignment. 

Consider also dummy task as the descendant provided that the beam node under 

consideration has not assigned it in the previous level. (closing the current station) 

Step 4.1: (computing global evaluation function) Compute the global evaluation 

values of each of these nodes. 

Step 4.2: (selecting beam nodes) For each beam in the tree select the node with 

the lowest global evaluation value(i.e., beam node). Go to step 2 and proceed until 

there is no task to assign.  

Step 5 : (selecting the solution design) Among the beam width number of designs 

generated, select the one with the minimum objective value. 

 

3.3 The evaluation mechanism for straight line 
 

In the beam search based algorithm implemented in this research, when the 

search procedure comes to evaluate a node, which represents a partial design, it 

performs two operations. First the line design must be completed by some 

heuristic rule so that all tasks are assigned to their appropriate stations and 

secondly this complete design must be evaluated in terms of total expected cost 
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again by some other heuristic or exact procedure. Since this research does not 

propose any filter mechanisms all the generated nodes are evaluated globally.   

 

3.3.1 Heuristic for completing partial designs 
  

There are several variations of the main heuristic method considered for 

completing a partially complete design. These variations are all adapted from 

Kottas, Lau (1973), (1981).  

The first heuristic considered is the same heuristic presented by Kottas and 

Lau (1973) with one slight modification. This heuristic successively builds up 

stations taking into account the precedence relationships. In order to achieve this, 

tasks that are available for assignment are classified in desirable list, which 

comprises tasks, whose placement in the current station increases cost no more 

than the cost of opening a new station. The selection is then made from sets by 

some priority rules depending on the status of the station under consideration. 

This heuristic proceeds in the following manner: 

Given a node it first determines the set of assigned tasks and the 

precedence relations among the remaining tasks. To do this, precedence 

relationships are preserved for the unassigned tasks but the restrictions arising 

from tasks that are assigned are no more active. In other words the arcs 

originating from the tasks that are previously assigned are removed from the 

precedence diagram.  

The very first step in this heuristic is determination of tasks available for 

assignment. Available tasks must have all their predecessors assigned. Hence if a 

task has no unassigned predecessor in the precedence diagram it is available for 

assignment. Such tasks are placed in a set called available list. The heuristic 

computes available tasks at each step to update the available list. If the available 

list happens to be empty, this means that there are no more tasks to assign and 

hence the line design is complete.  

 The next step in the heuristic is selection of tasks from the available list 

which are marginally desirable to perform. A task is considered marginally 
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desirable when its expected labor savings in the specific position under 

consideration is greater than or equal to its expected incompletion cost.  

The labor savings is determined by how much the labor cost of performing 

task k at a new station will be reduced by performing it in the existing station. 

Since the marginal labor cost of performing a task at the existing station is zero, 

expected labor savings is equal to labor cost of the existing station. 

The incompletion cost Ik , stemming from not completing task k is 

determined by both the cost of completing task k and the cost of completing all its 

precedence related followers off the line. 

The expected incompletion cost for assigning task k in the existing station 

is equal to the cost Ik stemming from not completing task k in the line multiplied 

by probability Pk of not doing so within the cycle time C.  

Pk = 1-F(Zk) 

where 

 

 

Marginally desirable tasks constitute the so called, desirable list. The 

heuristic computes the set of desirable tasks at each step. A station is closed when 

there are no desirable tasks available.  

Among the tasks in desirable list some have virtual certainty of 

completion. These tasks comprise the sure list and is defined as those tasks for 

which Pk < 0.005.  

There is one more occurrence to point out. It could be the case that some 

tasks may be available for assignment but not marginally desirable to assign. Such 

tasks comprise the so called critical list. Since any critical list task can't be made 

more desirable than by performing it first in the station they are assigned when the 

station is empty. A flow chart of the algorithm for completing the partial line 

design is given in Figure 3.3 

The second heuristic considered is adapted from Kottas and Lau (1981) 

and in fact this heuristic is presented as an alternative to the existing one by 

Kottas and Lau (1973). This heuristic follows the same lines with the heuristic 

presented above. The only difference is the selection criteria of tasks for 
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assignment from desirable, critical or sure list. Contrary to the prior method this 

heuristic adapts random selection of tasks from these lists rather than the largest 

or lowest Ik criterion.   

3.3.2 Procedure for evaluating designs 
 

Once a line design is generated, its expected operating cost must be 

determined. For this reason we need an evaluation function. The global evaluation 

function used in beam search is adopted from the method developed by Kottas & 

Lau (1976). To be able to evaluate the incompletion cost associated with a paced 

line, it is necessary to be able to identify all the possible combinations of 

incomplete tasks, which occur in any unit coming off the line. This identification 

procedure utilizes the fact that each incompletion combination (IC) associated 

with a K station line design is uniquely represented by a K-tuple (n1,n2,.....,nK) 

where nk is the number of tasks assigned to station k which are not completed due 

to lack of time.  

A set generation process is used to identify the tasks belonging to each IC 

represented by the K-tuples as the latter are indexed through all their feasible 

values. Identifying the tasks comprising the IC represented by a given K-tuple is a 

matter of generating the appropriate sequence of sets. The process begins with 

station 1 and continues in K stages through station K. At each state k, the station k 

tasks belonging to the IC are identified. This is done by first deleting from station 

k any tasks which are precedence followers of incomplete tasks in station 1 

through k-1. Remaining are the station k tasks which can be started. The last nk 

startable tasks in this station belong to the K-tuple identified IC as do their 

precedence followers. 

The probability P[G] of a given incompletion combination is calculated in the 

following manner (from Kottas and Lau (1976)): 

 

 

where Gk represents the tasks that are incomplete in station k due to lack of time, 

and Hk represents the set of tasks upstream of station k which are incomplete due 

to lack of time. 

∏
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Figure 3.3: Flow chart of line balancing algorithm  
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 There are two cases: when                  or        

 

 

 

 

 

 

 

 

 

 

 

 

In this formulation Wk represents the set of tasks that are complete and Vk 

represents the set of tasks that are complete plus the first incomplete task. 

 Since objective function to be minimized is total unit labor cost plus the 

expected incompletion cost; the expected operating cost of a paced line is found in 

terms of time per unit by the following equation: 

 

                                                          

Below an example problem is given to detail how the cost evaluation 

procedure works. The example problem is taken from Kottas and Lau (1973). 

Consider the example problem with the precedence diagram in Figure 3.4 

and supporting data in Table 3.1: 

A feasible design to this problem is : 

 Line Design 

Station 1 1,2,3,6 

Station 2 4,5,8 

Station 3 7,10,9,11 
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Table 3.2 summarizes all incompletion tuples and their respective occurrence 

probabilities. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4:  Precedence diagram of the example problem 

 

Table 3.1: Supporting data for the example problem 

Task No Mean Task Time Variance of Task 

Time 

Task Incompletion 

Cost 

1 4 0.8 5.6 

2 2 0.4 2.8 

3 8 1.6 11.2 

4 8 1.6 11.2 

5 3 0.6 4.2 

6 1 0.2 1.4 

7 3 0.6 4.2 

8 3 0.6 4.2 

9 1 0.2 1.4 

10 8 1.6 11.2 

11 4 0.8 5.6 
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Table 3.2: All incompletion combinations and their respective probabilities 

IC's  Prob. IC. Occurs 

3-tuple 

representation 

Time related 

incomplete 

tasks 

Incompletion 

Cost 

When C = 15 When C = 20 

(0,0,1) 11 5.6 0.2485 0.0126 

(0,0,2) 9 7.0 0.0083 0 

(0,0,3) 9,10 18.2 0.00127 0 

(0,0,4) 10,7 22.4 0 0 

(0,1,0) 8 21.0 0.1358 0.000168 

(0,1,1) 8,9 22.4 0 0 

(0,1,2) 8,7 26.6 0 0 

(0,2,0) 8,5 30.8 0.00175 0 

(0,3,0) 8,5,4 42.0 0 0 

(1,0,0) 6 22.4 0.2242 0.00178 

(1,0,1) 6,9 23.8 0 0 

(1,0,2) 6,7 28.0 0 0 

(1,1,0) 6,5 32.3 0.000787 0 

(1,2,0) 6,5,4 43.4 0 0 

(2,0,0) 6,3 39.2 0.2741 0.000168 

(2,1,0) 6,3,5 43.4 0.000963 0 

(2,2,0) 6,3,5,4 54.6 0 0 

(3,0,0) 3,2 42.0 0 0 

(3,1,0) 3,2,5 46.2 0 0 

(3,2,0) 3,2,5,4 57.4 0 0 

(4,0,0) 1 63.0 0 0 

At C = 15 min. Total Exp. Inc. Cost = 20.2104 

 Total Labor Cost =  45 = (15*3) 

 Total Cost 65.2104 

At C =20 min. Total Exp. Inc. Cost = 0.1208 

 Total Labor Cost = 60=(20*3) 

 Total Cost 60.1208 
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3.4 The evaluation mechanism for U-line 
 

Similar to the straight line balancing case we need a heuristic for 

completing partially generated designs as well as a heuristic for evaluating them.  

 

3.4.1 Heuristic for completing partial designs 
 

This heuristic follows the same lines with the heuristic for balancing 

straight lines with a slight modification in determining the set of available tasks 

(See Figure 3.2). As there are two units moving in different directions at a station 

in U-lines, in assigning tasks to stations one must consider not only the tasks 

whose predecessors have already been assigned, but also those tasks whose 

successors have already been assigned. In other words, tasks whose predecessors 

have already been assigned, are available for assignment in forward direction at a 

station whereas tasks whose successors have already been assigned, are also 

available for assignment in backward direction. Therefore the available list 

comprises not only tasks whose predecessors are assigned, but also comprises 

tasks whose followers are assigned.  

The second and the last modification is about the task selection rule. 

Among the tasks that are marginally desirable for assignment, a subset is sure list. 

The tasks in this set have virtual certainty of completion. When a selection is to be 

made from the sure list, i.e. sure list is not empty, tasks available for forward 

assignment are considered according to "largest incompletion rule", whereas the 

tasks available for backward assignment are considered according to "lowest 

incompletion rule". This is reasonable because the worker at a station first 

performs the operations on forward direction and then turns back to perform 

operations on backward direction. If there are tasks available for both sides the 

selection is made in favor of forward assignment. 
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3.4.2 Heuristic for evaluating designs 
 

Rather than the exact procedure for the straight line balancing case a 

simpler heuristic method is used for the U-line balancing problem. This heuristic 

assumes that, only the tasks that are allocated to later parts of task sequence in a 

station can be incomplete. In order to determine these tasks, the following method 

is adopted: First the station variance ξ2
sta of station under consideration is 

calculated. Then a threshold value of  C-α*√ξ2
sta  is calculated for each station. 

Here C is cycle time and α is a confidence parameter. In our study the number α 

is chosen as 2, which implies that the probability of a task being incomplete 

before this point in cycle time, is less than 0.03.  

After determining the tasks that are candidate for incompletion, we need to 

estimate their share in incompletion cost. In order to achieve this we need to 

calculate their incompletion probability as well as total incompletion cost of their 

followers. 

The total expected cost is approximated by the following relation: 

where r is the off-line completion rate. 

A task sequence is obtained by appending tasks assigned in backward 

direction, if any, to tasks assigned in forward direction. If  task under 

consideration is in position j in the task sequence, then its incompletion 

probability within the station is calculated as: 

where ϕ(x) represents the area under standard normal distribution curve to the left 

of point x. 

Further, this probability is multiplied by the probability that all other tasks 

that must be performed prior to the task under consideration is complete to get the 

probability that first incompletion is on task i. 
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Total incompletion cost in case of such an occurrence is bound below by : 

 

Hence, the heuristic tends to underestimate the cost of line. But the 

experimentation shows that results are quite reasonable. 

An example problem is given below to illustrate the heuristic method: 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
Figure 3.5:  Precedence diagram of the example problem 

 
Consider the following design: 

 
1 
 

11, 9 

3, 4 
 
 

2, 5, 6 
 

10 

7, 8 
 

 

 
Table 3.3: Task means: (Ti   for the ith task) 

  
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 
6 2 4 9 2 2 3 6 5 5 3 

 

 
Table 3.4: Task variances: (σ2

i   for the ith task) 

  
σ2

1 σ2
2 σ2

3 σ2
4 σ2

5 σ2
6 σ2

7 σ2
8 σ2

9 σ2
10 σ2

11 
1.2 0.4 1 5 0.4 0.4 0.6 1.2 1 1 1.8 
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Let cycle time C = 15 and off-line completion rate r =1.5 

Then, threshold mean times for stations are: 

Station 1  Station 2  Station 3  Station 4 

15-

2*√(1.2+1+1.8)  15-2*√(1+5)  

15-

2*√(0.4+0.4+0.4+1)  15-2*√(0.6+1.2) 

=11  =10.1  =12.03  =12.31 

 Thus, the critical tasks are 4 and 11. 

P[4 is the first incomplete task]=P[Task 1 is complete]*P[Task 3 complete and 4 

incomplete] 

=Φ((15-6)/√1.2)* [Φ((15-4)/√1)- Φ((15-13)/√6)] = 0.209 

P[11 is the first incomplete task] = P[Task 1 and 9 is complete, 11 incomplete ] * 

P[no incompletion in station 2]* P[no incompletion in station 3]* P[no 

incompletion in station 4] 

=[Φ((15-11)/√2.2)- Φ((15-14)/√4)]* Φ((15-13)/√6)* Φ((15-11)/√2.2)* Φ((15-

9)/√1.8) = 0.2403 

Hence the incompletion cost of the line is approximated as : 

0.209*(1.5*(9+3+5+3))+0.2403*(1.5*(3))= 7.35 

The procedural form of the heuristic is:     

Begin 

Input Design 

Get threshold mean for all stations 

Determine the critical tasks 

For i = 1 to number of stations 

   For j = 1 to number of critical tasks at station i 

     Begin 

     Calculate probability that  critical task j at station i is incomplete 

     Determine the tasks that can't be completed due to incompletion of critical task 

number j.  

     Calculate expected incompletion cost arising from incompletion of critical task 

number j. 

     End 

End.  
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Chapter 4 
 
Experimental Setting 
 
 In this section the parameters input to the described problem formulation 

are given and how they are determined is explained. Before experimentation with 

the proposed method  is given, the literature is searched to understand the methods 

adopted by other researchers in this field. Below we give an overview of the 

approaches in literature as well as our approach under appropriate headings. 

 

Cycle Time: Since the model proposed in this research minimizes the total 

expected cost given the cycle time, cycle time is an input to this research. 

Theoretically cycle time is a value bounded by maximum task duration and total 

task duration.                               However, there is no universally agreed method 

to select cycle time. Miltenburg (2003) suggest selecting randomly from the first 

half of this range. This is reasonable because selecting cycle time value from the 

other half means that there will be few number of stations to the solution of the 

problem. This is undesirable because such a selection oversimplifies the problem. 

In this research we treat each problem under three different cycle time values and 

select the cycle time from the first half of the possible range trying to select as 

evenly as possible.   

 

Task processing times: In this research task processing times are assumed to be 

stochastic. Hence a duration realization from a distribution is required for each 

task to be complete. In the literature there are several distributions used for 

stochastic process times. For example Magazine (2000) use shifted exponential 

distribution. The stochasticity of task times are recognized to be normally 

1,.., 1
(max )

N

i ii N i
t C t

= =

≤ ≤∑
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distributed by several authors (Moodie and Young 1965, Mansoor and Ben-Tuvia 

1966, Kottas and Lau 1973, Silverman and Carter 1986, Yano and Bolat 1989, 

Miltenburg 2003), however there are exceptions as well (Arcus 1966, Raouf and 

Tsui 1982). Since normally distributed processing times are most widely used in 

the literature, task processing times are assumed to come from normal distribution 

with known mean and variance. This research employs the standard test problems 

from literature in the experiments. Since these problems are generated for 

deterministic assembly line balancing, tasks have deterministic processing times. 

In order to use these test problems in our case, we need both a mean and a 

variance value for each task. This is achieved in the following manner. Task 

means are set to their deterministic processing times. In other words, the task 

processing times in the deterministic assembly line test problems are assumed to 

be the mean processing times in the stochastic case. The standard deviation term 

is obtained by multiplying the task means with a coefficient of variation. In the 

literature, coefficient of variation terms ranging from 0.1 to 0.4 are used with 0.1 

indicating low variability and 0.4 high variability. In the past, Silverman and 

Carter (1986) used 0.1 as coefficient of variation for low variability and 0.25 for 

high variability. We use the same coefficient of variation terms in our 

experiments. These are 0.1 for low variability and 0.25 for high variability.   

 

Off-line completion rates: As previously stated when a task is incomplete, it 

moves down the line with as many of the remaining tasks being completed 

provided that the precedence relations permit. However, when a unit is incomplete 

on the line its assumed to be completed off-line. The off-line cost for completing a 

task is assumed to be a multiple of the mean task processing time. In the literature 

there are several values used for this multiple value. Kottas and Lau (1976) use 

1.4 as coefficient of variation. Silverman and Carter (1986) use three different 

levels: 1.5 for low off-line rate, 5 for medium off-line rate and 10 for high off-line 

rate. In this research we use 1.5 for low off-line rate and 5 for high off-line rate.     

 

Test problems: As previously mentioned test problems are taken from the 

literature. Scholl and Klein (1999) collected these data sets and published at their 
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web site (http://www.bwl.tu-darmstadt.de/bwl3/). However, for easy reference the 

reader can access these data sets also from our web site: 

(www.bilkent.edu.tr/~halils/albdata.zip). 

 

Choice of beam width: As previously mentioned the choice of beam width is of 

crucial importance when evaluating the performance of a beam search heuristic 

because it is directly related with the size of the search tree enumerated and 

investigated. In the literature most application of beam search are reported to 

make no improvement in objective when beam width is raised above five. 

However, these results are most commonly for problems in scheduling 

applications. Since there is no previous work of beam search on ALBP, we have 

to make pilot runs on some test problem to get an initial idea of what beam width 

to use in ALBP. So the results of three test problems each taken at three different 

cycle time levels are presented in Figures 4.1 through 4.3. 

 The experimental results suggest that a good solution can be obtained 

when β=2 or β=3. Increasing the beam width further does not make any 

contribution to the quality of the solution found. It should be noted that a 

generalization can't be made by investigating these nine instances but nevertheless 

in this research higher beam width values will not be used for computational 

purposes. 
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Figure 4.1: The impact of beam width for Jackson's 11 task problem. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The impact of beam width for Sawyer's 30 task problem. 

 

 

 

 

 

 

 

 

 

Figure 4.3: The impact of beam width for Tonge's 70 task problem. 
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Chapter 5 

 

Computational Results 
 

5.1 Computational Results for SLBP 
 

 In this section we present the results of the proposed beam search heuristic 

on several test problems studied. The test problems are well-known problems 

selected from literature and their size ranges from 11 tasks up to 70 tasks. These 

problems are solved under different cycle time, off-line completion rate and 

coefficient of variation settings. In order to compare our algorithm with the best 

compatible heuristic in literature we coded Kottas and Lau's (1981) algorithm. 

Kottas and Lau's (1981) algorithm is a single pass heuristic method that uses 

several selection rules for task assignments to stations. Briefly their method works 

in the following fashion:  

1. Get the set of tasks available for assignment 

2. From the set of tasks available for assignment, determine those that are 

marginally desirable to assign to the existing station 

3. Select a task from the marginally desirable tasks by some selection 

rule. If the total mean task times at the existing station is less than a 

specified percent (k%) of cycle time then use selection rules for the 

"early part" of cycle time. Else use selection rules for the "later part" of 

cycle time. 

4. Evaluate the total cost of the line designs generated  

5. Select the line design with the lowest cost 
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For "early part" of a station one of the two rules is used. These are: 

1. Random selection 

2. Select task with the largest task incompletion cost Ii . 

For the "later part" of the station the one rule is selected from the following four 

rules: 

1. Random selection 

2. Select task with lowest task incompletion cost Ii . 

3. Select task with highest mean task processing time (µi). 

4. Select task with highest value of (µi/Ii). 

Therefore, a total of 4*2=8 combinations of these selection rules can be 

used to generate a design. If the selection rule is a deterministic rule for both the 

"early part" and "later part" of the station the design generated is unique. 

However, whenever random selection rule is employed, different replications of 

the heuristic yields different designs. Thus the heuristic may be run again and 

again to get different solutions. In our study we used two levels for determining 

the "early part" and "later part" of a station. These levels are: k=60% and k=80%. 

We should also note that both algorithms are let to run for approximately same 

duration so that a fair comparison can be made.   

 The results found by the proposed heuristic are given in Tables 5.1 through 

5.6. In this tables you can also find the results found by Kottas and Lau's (1981) 

heuristic and the percent improvement that the proposed heuristic makes over 

Kottas and Lau's (1981) algorithm. The algorithms are coded in Borland Pascal 

7.0. and the results are obtained on a Pentium II 400 mhz processor PC. 

 Of the total of 72 instances solved, the beam search based heuristic beats 

the Kottas and Lau's (1981) heuristic in 64 instances with the percent 

improvement in objective function ranging between 0.1 % and 24 %. In 7 

instances, Kottas and Lau's (1981) heuristic finds better results with improvement 

over the beam search based heuristic being no more than 0.67 %. 

 Since Kottas and Lau's (1981) algorithm is a single pass heuristic that runs 

very quickly, many random line designs can be generated and evaluated from 

scratch. Moreover, random selection rule makes it possible to explore a wide 

range of feasible good solutions. Most of the best designs found by Kottas and 
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Lau's algorithm are the ones generated by using random selection rule in either 

"early" or "later" parts of the station. However, there is one big disadvantage of 

Kottas and Lau's (1981) algorithm. This algorithm is not very structured because 

the basic motivation behind the algorithm is to generate many designs by 

incorporating randomness into selection. Thus at any iteration, selecting a task 

marginally desirable for assignment by some selection rule may make another 

task, which is currently desirable, undesirable at next iteration. This is because 

desirable set of tasks are updated after every task assignment to a station. Beam 

search based heuristic, on the other hand is more structured since it rather makes 

the task assignment after considering the assignment of all marginally desirable 

tasks one by one and then selecting the best. This one step look ahead property of 

beam search based heuristic makes it possible to keep the set of marginally 

desirable tasks nonempty as long as possible by selecting the "right task". 

Therefore beam search based heuristic can find solutions that involve fewer 

number of stations with higher incompletion costs. This could be very beneficial 

especially if the cycle time is high, because then closing a station brings a high 

reduction in cost function as compared to increase in incompletion cost. For 

example in Table 5.6 on line 11, reducing the number of stations from 4 to 3 saves 

from the cost by 1200 (since cycle time is 1200) at the expense of incurring 

additional 285 time units in off-line completion cost. This makes a 24 percent 

improvement in cost function which is very promising.  

 In searching for good designs, the objective in this thesis is to minimize a 

cost function made up of two parts: labor cost and incompletion cost. Generating 

line designs to minimize such an objective may favor some designs that produce  

incomplete units over designs that produce complete units at higher cost. 

However, this is not a big issue because such a situation can always be avoided by 

setting the off-line completion rate to a high value. 
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Table 5.1: Results for Jackson's 11 task problem 

 
CT Inc. Rate C.V. Beam Search Solution   Kottas & Lau Solution  Percent 

Improvement 
   # of Stations Labor 

Cost 
Inc. 
Cost 

CPU # of Stations Labor 
Cost 

Inc. 
Cost 

 

10 1.5 0.15 6 60 1.96 4.3 7 70 0.629 13.99 
  0.25 6 60 7.23 4.38 7 70 5.536 12.35 
 5 0.15 6 60 5.34 3.84 7 70 2.094 10.34 
  0.25 6 60 28.03 4.94 8 80 8.961 1.06 

15 1.5 0.15 3 45 14.13 1.32 4 60 0.278 1.94 
  0.25 4 60 2.75 2.1 4 60 2.827 0.12 
 5 0.15 4 60 0.928 1.76 4 60 4.587 6.01 
  0.25 4 60 10.87 2.32 5 75 1.575 8.05 

20 1.5 0.15 3 60 0.7 1.1 3 60 0.85 0.25 
  0.25 3 60 1.634 1.76 3 60 1.832 0.32 
 5 0.15 3 60 0.23 0.98 3 60 0.23 0.00 
  0.25 3 60 3.42 1.32 3 60 4.826 2.22 
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Table 5.2 Results for Mitchell's 21 task problem 

 
CT Inc. Rate C.V. Beam Search Solution   Kottas & Lau Solution  Percent 

Improvement 
   # of Stations Labor 

Cost 
Inc. 
Cost 

CPU # of Stations Labor 
Cost 

Inc. 
Cost 

 

20 1,5 0,15 7 140 0,43 18,24 7 140 0,827 0,28 
  0,25 7 140 6,88 14,06 7 140 8,438 1,06 
 5 0,15 7 140 0,65 15,7 7 140 0,951 0,21 
  0,25 8 160 5,79 15,6 8 160 10,386 2,77 

30 1,5 0,15 4 120 2,57 7,24 4 120 3,774 0,98 
  0,25 4 120 5,99 11,22 4 120 11,744 4,57 
 5 0,15 5 150 0,18 11,98 5 150 5,582 3,60 
  0,25 5 150 1,52 14,38 5 150 1,664 0,10 

40 1,5 0,15 3 120 2,24 7,14 3 120 6,942 3,85 
  0,25 3 120 3,14 9,66 3 120 3,797 0,53 
 5 0,15 3 120 2,397 5,92 3 120 2,723 0,27 
  0,25 4 160 0,97 7,46 4 160 0,38 -0,37 
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Table 5.3 Results for Sawyer's 30 task problem 

 
CT Inc. Rate C.V. Beam Search Solution   Kottas & Lau Solution  Percent 

Improvement 
   # of Stations Labor 

Cost 
Inc. 
Cost 

CPU # of Stations Labor 
Cost 

Inc. 
Cost 

 

40 1.5 0.15 10 400 6.32 382.5 10 400 20.62 3.52 
  0.25 11 440 27.13 461.6 11 440 31.849 1.01 
 5 0.15 11 440 1.95 474.2 11 440 14.054 2.74 
  0.25 12 480 20.53 631.8 12 480 28.704 1.63 

70 1.5 0.15 5 350 21.06 91.8 5 350 23.946 0.78 
  0.25 5 350 34.52 127.6 5 350 42.453 2.06 
 5 0.15 6 420 3.15 100.1 6 420 2.673 -0.11 
  0.25 6 420 11.73 160.9 6 420 14.587 0.66 

100 1.5 0.15 4 400 4.28 50.6 4 400 3.312 -0.24 
  0.25 4 400 4.84 38.7 4 400 6.161 0.33 
 5 0.15 4 400 0.4 33.8 4 400 0.527 0.03 
  0.25 4 400 7.89 61.64 4 400 8.676 0.19 
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Table 5.4: Results for Kilbrid's 45 task problem 

 
CT Inc. Rate C.V. Beam Search Solution   Kottas & Lau Solution  Percent 

Improvement 
   # of Stations Labor 

Cost 
Inc. 
Cost 

CPU # of Stations Labor 
Cost 

Inc. 
Cost 

 

100 1.5 0.15 7 700 9.69 1763.05 7 700 12.596 0.41 
  0.25 7 700 8.19 2255.13 7 700 13.938 0.81 
 5 0.15 7 700 5.92 1812.15 7 700 7.074 0.16 
  0.25 7 700 15.21 2353.1 7 700 19.819 0.64 

150 1.5 0.15 4 600 8.21 454.35 4 600 9.95 0.29 
  0.25 5 750 6.27 418.64 5 750 7.06 0.10 
 5 0.15 5 750 5 473.73 5 750 3.948 -0.14 
  0.25 5 750 6.824 412.71 5 750 10.976 0.55 

200 1.5 0.15 3 600 3.42 126.66 3 600 4.309 0.15 
  0.25 3 600 18.06 152.97 3 600 19.978 0.31 
 5 0.15 3 600 9.6 119.3 3 600 11.533 0.32 
  0.25 4 800 6.7 359.15 4 800 8.877 0.27 
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Table 5.5: Results for Warnecke's 58 task problem 

 
CT Inc. Rate C.V. Beam Search Solution   Kottas & Lau Solution  Percent 

Improvement 
   # of Stations Labor 

Cost 
Inc. 
Cost 

CPU # of Stations Labor 
Cost 

Inc. 
Cost 

 

500 1,5 0,15 4 2000 5,36 282,54 4 2000 17,005 0,58 
  0,25 4 2000 8,47 342,24 4 2000 21,548 0,65 
 5 0,15 4 2000 4,28 534,32 4 2000 4,37 0,00 
  0,25 4 2000 15,53 475,82 4 2000 17,59 0,10 

600 1,5 0,15 3 1800 0,41 208,72 3 1800 7,982 0,42 
  0,25 3 1800 3,42 165,44 3 1800 5,965 0,14 
 5 0,15 3 1800 0,31 211,19 3 1800 5,642 0,30 
  0,25 3 1800 12,15 157,25 3 1800 16,769 0,25 

700 1,5 0,15 3 2100 6,24 159,22 3 2100 5,216 -0,05 
  0,25 3 2100 5,63 140,66 3 2100 9,979 0,21 
 5 0,15 3 2100 3,09 200,37 3 2100 6,59 0,17 
  0,25 3 2100 21,4 159,72 3 2100 7,197 -0,67 
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Table 5.6: Results for Tonge's 70 task problem 

 
CT Inc. Rate C.V. Beam Search Solution   Kottas & Lau Solution  Percent 

Improvement 
   # of Stations Labor 

Cost 
Inc. 
Cost 

CPU # of Stations Labor 
Cost 

Inc. 
Cost 

 

800 1,5 0,15 5 4000 6,04 1085,98 5 4000 7,357 0,03 
  0,25 5 4000 44,193 1772 6 4800 43,513 19,76 
 5 0,15 5 4000 30,83 1268,01 5 4000 91,742 1,51 
  0,25 5 4000 174,48 790,49 5 4000 297,41 2,94 

1000 1,5 0,15 4 4000 3,69 416,66 4 4000 10,003 0,16 
  0,25 4 4000 16,54 979,66 4 4000 28,209 0,29 
 5 0,15 4 4000 50,62 412,05 4 4000 95,626 1,11 
  0,25 4 4000 100 677,18 4 4000 136,758 0,90 

1200 1,5 0,15 4 4800 1,93 387,55 4 4800 1,324 -0,01 
  0,25 4 4800 2,06 403,15 4 4800 16,599 0,30 
 5 0,15 3 3600 285,45 319,44 4 4800 23,264 24,14 
  0,25 4 4800 112,99 484,99 4 4800 131,003 0,37 
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5.2 Computational Results for ULBP 
 

 In this section we present the results of some problems for U-type 

configuration. These problems are the same problems that solved for straight line 

balancing problem. As previously mentioned in chapter 2, there is no available 

method in literature for the cost-based evaluation of U-type assembly systems 

with stochastic process times. For this reason, we cannot compare our results to 

those of any other algorithm. Moreover, exact calculation of incompletion 

probabilities is very difficult, because the incompletion probability tree expands 

very quickly and two units moving in different directions at a station makes 

incompletion probability of one unit dependent on the other unit. Therefore, we 

proposed a heuristic method for estimating expected cost of a U-line design. The 

details of the proposed method are presented in chapter 3. However, we need to be 

confident that, the proposed heuristic cost estimation method estimates within a 

desired accuracy. For this reason several designs are evaluated under the proposed 

estimation method and the cost estimate for these designs are compared to cost 

estimates obtained by simulating the line designs.  

The investigated line designs are simulated until steady state is reached 

and 10 replications are taken for each line design. A 95 % confidence interval is 

constructed for the average cost per unit produced by the line and it is checked 

whether the cost, estimated by proposed method lies within this confidence 

interval. In Figures 5.1 to 5.4 and Tables 5.7. through 5.8. we present the problem 

studied and its supporting data as well as the design configurations. 
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Figure 5.1: Precedence diagram for the test problems. 

 
Table 5.7. Task means: (Ti   for the ith task) 

 
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 
6 2 4 9 2 2 3 6 5 5 3 

 

Table 5.8: Task variances: (σ2
i   for the ith task) 

 
 σ2

1 σ2
2 σ2

3 σ2
4 σ2

5 σ2
6 σ2

7 σ2
8 σ2

9 σ2
10 σ2

11 
1.2 0.4 1 5 0.4 0.4 0.6 1.2 1 1 1.8 
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Figure 5.2: Configuration of 1st design.  
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Figure 5.3: Configuration of 2nd design  
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Figure 5.4: Configuration of 3rd design  
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 Simulation mean, standard deviation and confidence interval for all three 

designs as well as the result of proposed heuristic estimation is presented in Table 

5.9. The results indicate that in all of the three designs evaluated, cost estimate by 

proposed heuristic method lies within the 95% confidence interval obtained by 

simulating the lines. This suggests that the proposed heuristic finds very good 

estimates of the incompletion cost of a U-line. Confidence interval upper and 

lower limits as well as heuristic solution are plotted in Figure 5.5. for all three 

designs. 

 

Table 5.9: Comparison of simulation results and proposed heuristic results 

 

 Simulation 
Mean 

Simulation 
St. Dev. 

CI Lower 
Bound 

CI Upper 
Bound 

Heuristic 
Solution 

Design 1 18 12.85 17.2 18.79 18.1 
Design 2 7.27 5.26 6.98 7.56 7.3 
Design 3 2.45 5 2.27 2.63 2.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Confidence interval and heuristic solution for test problems. 
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In Tables 5.10. through 5.15. we present the results found by the proposed 

heuristic. The total cost of line, when U-line configuration is used to solve a 

problem instance is very close to total cost of line when straight line configuration 

is used to solve the same instance in most of the problem instances solved. 

However, U-line configuration can sometimes reduce the total cost of the line 

design by reducing the number of stations. For example in Table 5.11. on lines 1 

and 2, U-line configuration results in 6 stations whereas for the same instances 

straight line configuration results in 7 stations as indicated by Table 5.2. This 

situation was expected since as Miltenburg and Wijngaard (1994) state, the U-

type configuration increases the solution space of the feasible designs. This is 

because at any iteration the number of available tasks for assignment in U-type 

configuration is never less than number of available tasks for assignment in 

straight line configuration. Thus, U-type configuration presents more design 

opportunities than straight line configuration.   

In some instances U-type configurations can result having greater number 

of stations, but this is for reducing the incompletion cost component of the total 

cost. For these instances the total cost terms are very close in both U-type and 

straight line configurations. 

 When generated U-line designs are investigated it is seen that, a good U-

line design is the one that avoids incompletion on the units moving in forward 

direction. This is because the contribution of a unit moving in forward direction to 

incompletion cost has higher magnitude than that of a unit moving in backward 

direction. The contribution to total cost is higher when the forward moving unit is 

incomplete in earlier stations and backward moving unit is incomplete in later 

stations. Thus two design consideration rules can be identified for U-type 

configuration. These are:  

1. When a station has tasks allocated on both sides (forward and backward), the 

task assignments on forward side must not make the incompletion probability 

of any forwardly assigned task exceed some threshold value (say τf). This 

threshold value is an increasing function of the number of station under 
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consideration. In a likewise manner, task assignments on backward side must 

not make the incompletion probability of any backwardly assigned task 

exceed a threshold value (say τb with τf≤τb). This threshold value is a 

decreasing function of the number of station under consideration. 

2. When task assignments occupy only one side of the line, the task assignments 

if on forward side, must not make the incompletion probability of any 

forwardly assigned task exceed some threshold value (say τf). Similarly task 

assignments on backward side must not make the incompletion probability of 

any backwardly assigned task exceed a threshold value (say τb) 

 

In conclusion it appears that a desirable pattern for stochastic U-line 

balancing solution is one where the workload on forward direction tends to 

increase as we move in forward direction and workload on backward direction 

tends to increase as we move in backward direction. Unfortunately, τf and τb are 

two hypothetical functions and a definition of what is a proper range for these 

functions is vague and very difficult. Thus, one must try several values on some 

test problems to get a rough idea about how their values should be.   

 We furthermore compare the results of the line costs found by the 

proposed heuristics in Table 5.16. The results indicate that U-Line configuration 

generally finds lower cost designs for the studied problems. However, the reader 

must be reminded that the expected cost of straight lines are found by an exact 

method whereas the cost of U-Lines are found by a heuristic method.    
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Table 5.10: Results for Jackson's 11 task problem 

 
CT Inc. Rate C.V. Beam Search Solution   

   # of Stations Labor 
Cost 

Inc. 
Cost 

CPU 

10 1.5 0.15 5 50 12.4368 0.83 
  0.25 6 60 6.588 1.43 
 5 0.15 6 60 5.333 1.04 
  0.25 7 70 10.082 1.37 

15 1.5 0.15 4 60 1.0417 0.5 
  0.25 4 60 2.505 0.6 
 5 0.15 4 60 0.3596 0.55 
  0.25 5 75 0.3811 0.66 

20 1.5 0.15 3 60 0.0297 0.39 
  0.25 3 60 0.9507 0.33 
 5 0.15 3 60 0.099 0.44 
  0.25 3 60 2.4936 0.33 
 
 

      

Table 5.11: Results for Mitchell's 21 task problem 

 
CT Inc. Rate C.V. Beam Search Solution   

   # of Stations Labor 
Cost 

Inc. 
Cost 

CPU 

20 1.5 0.15 6 120 3.5719 3.13 
  0.25 6 120 1.9767 4.17 
 5 0.15 7 140 0.8849 3.24 
  0.25 7 140 7.4553 4.23 

30 1.5 0.15 4 120 1.4495 1.31 
  0.25 4 120 5.0194 1.65 
 5 0.15 4 120 6.092 1.43 
  0.25 5 150 0.7133 2.14 

40 1,5 0.15 3 120 0.4089 1.21 
  0.25 3 120 2.6319 1.42 
 5 0.15 3 120 0.6735 1.49 
  0.25 3 120 5.998 1.87 
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Table 5.12: Results for Sawyer's 30 task problem 
 

CT Inc. Rate C.V. Beam Search Solution   
   # of Stations Labor 

Cost 
Inc. 
Cost 

CPU 

40 1.5 0.15 10 400 6.6705 14.77 
  0.25 10 400 4.2613 15.32 
 5 0.15 10 400 31.5134 15.33 
  0.25 11 440 32.1244 18.4 

70 1.5 0.15 5 350 11.6969 4.84 
  0.25 5 350 17.3369 6.04 
 5 0.15 6 420 1.5376 6.81 
  0.25 6 420 6.1645 7.25 

100 1.5 0.15 4 400 2.1915 4.12 
  0.25 4 400 3.6056 4.55 
 5 0.15 4 400 0.189 4.23 
  0.25 4 400 3.8451 4.4 

 
 

Table 5.13: Results for Kilbridge's 45 task problem 
 

CT Inc. Rate C.V. Beam Search Solution   
   # of Stations Labor 

Cost 
Inc. 
Cost 

CPU 

100 1.5 0.15 6 600 18.7853 17.96 
  0.25 7 700 8.374 23.34 
 5 0.15 7 700 2.6078 19.28 
  0.25 7 700 10.0831 24.72 

150 1.5 0.15 4 600 5.1685 14.72 
  0.25 5 750 4.2915 18.62 
 5 0.15 4 600 23.0274 13.51 
  0.25 5 750 3.7707 14 

200 1.5 0.15 3 600 2.5188 10.71 
  0.25 3 600 11.6386 14.78 
 5 0.15 3 600 2.4322 10.71 
  0.25 4 800 0.7338 12.3 
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Table 5.14: Results for Warnecke's 58 task problem 
 

CT Inc. Rate C.V. Beam Search Solution   
   # of Stations Labor 

Cost 
Inc. 
Cost 

CPU 

500 1.5 0.15 4 2000 3.5663 19.5 
  0.25 4 2000 17.674 21.86 
 5 0.15 4 2000 0.9451 15.71 
  0.25 4 2000 1.4058 14.83 

600 1.5 0.15 3 1800 2.509 16.26 
  0.25 3 1800 9.1044 19.99 
 5 0.15 3 1800 0.2842 16.48 
  0.25 3 1800 2.6897 16.21 

700 1.5 0.15 3 2100 0.0023 16.15 
  0.25 3 2100 0.6148 17.41 
 5 0.15 3 2100 0.011 19.16 
  0.25 3 2100 0.555 16.48 
 
 

      

Table 5.15: Results for Tonge's 70 task problem 

 
CT Inc. Rate C.V. Beam Search Solution   

   # of Stations Labor 
Cost 

Inc. 
Cost 

CPU 

800 1.5 0.15 5 4000 6.711 51.3 
  0.25 5 4000 8.083 58.55 
 5 0.15 5 4000 92.09 54.93 
  0.25 5 4000 131.1088 66.74 

1000 1.5 0.15 4 4000 4.0559 40.54 
  0.25 4 4000 3.5821 47.07 
 5 0.15 4 4000 96.055 48.44 
  0.25 4 4000 87.6336 51.08 

1200 1.5 0.15 4 4800 3.8047 44.71 
  0.25 4 4800 2.7046 49.54 
 5 0.15 3 3600 96.652 43.77 
  0.25 3 3600 172.77 52.89 
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Table 5.16: Cost comparison of different line configurations. 
11 Task Problem 21 Task Problem 

CT Inc. 
Rate C.V. Cost of Line Design  CT Inc. 

Rate C.V. Cost of Line Design 

   Straight U     Straight U 
10 0.15 0.15 61.96 62.43  20 0.15 0.15 140.43 123.57 

  0.25 67.23 66.58    0.25 146.88 121.97 
 5 0.15 65.34 65.33   5 0.15 140.65 140.88 
  0.25 88.03 80.08    0.25 165.79 147.45 

15 0.15 0.15 59.13 61.04  30 0.15 0.15 122.57 121.44 
  0.25 62.75 62.50    0.25 125.99 125.01 
 5 0.15 60.93 60.35   5 0.15 150.18 126.09 
  0.25 70.87 75.38    0.25 151.52 150.71 

20 0.15 0.15 60.70 60.02  40 0.15 0.15 122.24 120.40 
  0.25 61.63 60.95    0.25 123.14 122.63 
 5 0.15 60.23 60.09   5 0.15 122.39 120.67 
  0.25 63.42 62.49    0.25 160.97 125.99 

30 Task Problem  45 Task Problem 

CT Inc. 
Rate C.V. Cost of Line Design  CT Inc. 

Rate C.V. Cost of Line Design 

   Straight U     Straight U 
40 0.15 0.15 406.32 406.67  100 0.15 0.15 709.69 618.78 

  0.25 467.13 404.26    0.25 708.19 708.37 
 5 0.15 441.95 431.51   5 0.15 705.92 702.60 
  0.25 500.53 472.12    0.25 715.21 710.08 

70 0.15 0.15 371.06 361.69  150 0.15 0.15 608.21 605.16 
  0.25 384.52 367.33    0.25 756.27 754.29 
 5 0.15 423.15 421.53   5 0.15 755.00 623.02 
  0.25 431.73 426.16    0.25 756.82 753.77 

100 0.15 0.15 404.28 402.19  200 0.15 0.15 603.42 602.51 
  0.25 404.84 403.60    0.25 618.06 611.63 
 5 0.15 400.40 400.18   5 0.15 609.60 602.43 
  0.25 407.89 403.84    0.25 806.70 800.73 

58 Task Problem  70 Task Problem 

CT Inc. 
Rate C.V. Cost of Line Design  CT Inc. 

Rate C.V. Cost of Line Design 

   Straight U     Straight U 
500 0.15 0.15 2005.36 2003.56  800 0.15 0.15 4006.04 4006.71 

  0.25 2008.47 2017.67    0.25 4044.19 4008.08 
 5 0.15 2004.28 2000.94   5 0.15 4030.83 4092.09 
  0.25 2015.53 2001.40    0.25 4174.48 4131.10 

600 0.15 0.15 1800.41 1802.50  1000 0.15 0.15 4003.69 4004.05 
  0.25 1803.42 1809.10    0.25 4016.54 4003.58 
 5 0.15 1800.31 1800.28   5 0.15 4050.62 4096.05 
  0.25 1812.15 1802.68    0.25 4100.00 4087.63 

700 0.15 0.15 2106.24 2100.00  1200 0.15 0.15 4801.93 4803.80 
  0.25 2105.63 2100.61    0.25 4802.06 4802.70 
 5 0.15 2103.09 2100.01   5 0.15 3885.45 3696.65 
  0.25 2121.40 2100.55    0.25 4912.99 3772.77 



 66 

5.3 Analysis of Results for ULBP and SLBP 
 

At this point, we need to give some statistical results for the effects of 

design factors considered. The factors we consider are as follows: 

1. Line configuration (straight or U-Line configuration ) 

2. Task time variability (coefficient of variation) 

3. Offline completion rate r. 

We need to figure out, if one configuration type is better than the other. 

Thus, we first perform analysis of variance on several sample problems. The 

experiment to be presented is a single-factor experiment. 11, 21, 30, 45 task 

problems are solved under both U-Line configuration and straight line 

configuration. Cycle time, coefficient of variation and offline completion rate 

levels are given in Tables 5. 17 through 5.20 together with the results . For this 

case, the experimental variable is the configuration type of design. Each resulting 

design is simulated in Arena 7.0. We take 5 replications and each replication 

collects data for 1000 units after the steady state for average cost per unit 

assembled is reached. Analysis of variance results indicate that with 99% 

significance, U-Line configuration leads in a lower average cost per unit figure 

than straight line configuration. This is an important piece of information since, it 

indicates that by constructing a U-Line rather than straight line average cost per 

unit assembled can be lowered. When line configurations for larger size problems 

are studied, it is seen that the main advantage of U-Line configuration stems from 

its ability to balance the line with fewer number of stations. In 12 of the 72 

problem instances, U-Line configuration results in fewer number of stations. 

However, complete information cannot be inferred from single-factor analysis 

hence a multi-factor analysis of variance should be performed to obtain useful 

information on the interaction of several design factors with each other. This will 

be presented later in this chapter, but before presenting the results we perform 

another single-factor experiment for analyzing the effects of task time variability 

on both straight and U-Line designs. In this experiment we again solved Jackson's 

11 task problem with cycle time fixed at 10, offline completion rate fixed at 5. We 



 67 

again make the same number of replications and record the same number of data 

points. The results are presented in Tables 5.21. and 5.22.  

According to analysis of variance results, task time variability indicated by 

cv significantly effects the average cost per unit of the line. This fact indicates that 

variance reduction in task completion times can save from the cost of assembly 

line. In 8 of the problem instances solved, setting values of coefficient of variation 

to its high value rather than low, increased the number of stations by one as 

compared to cv at its low value. This increased the labor cost component of the 

line. Higher task time variance also increased the incompletion cost component of 

the total cost because with higher task time variance the incompletion 

probabilities grew larger. However, as previously mentioned cross effects of this 

factor with other factors should be analyzed before a statement is made. 

The effect of offline completion rate to the average cost per unit assembled 

is obvious since this term is represented linearly in the objective function. Thus, a 

stand alone experimentation for this factor is not performed. However, in order to 

see its effect together with other factors a multi-factor analysis of variance is 

performed. This experiment is also performed for the Jackson's 11 task problem 

with cycle time fixed at 10. The number of replications and the data points 

recorded are same as those of previous experiments. The factors and their levels 

are presented in Table 5.23. 

The results of the three factor analysis of variance in Table 5.24. indicate 

that all three factors are 99% significant on the average cost of per unit assembled. 

Lower values of cv and r result in lower average cost per unit and U-Line 

configuration has lower cost than straight line configuration. The most effective 

factor on the cost of line is the task time variability represented by cv. Higher 

variability in task times may require higher number of stations which adds to the 

labor cost of line. This factor also increases the incompletion cost component of 

the cost function since higher variance in task completion times result in higher 

incompletion probabilities. The effect of offline completion rate and line 

configuration are the second and third most effective factors, respectively. The 

interaction of these factors also 99% significant. It may be inferred from the 
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multi-factor analysis that closer a design instance to the origin in Figure 5.6. the 

lower cost it has 

 

Table 5.17: Analysis of variance for effect of line configuration on line cost 

Jackson's 11 task problem, C=10, r=5, cv=0.25 
 Replication  

Averages 
 Replication 

Averages 
 

 (Straight Line)  (U-Line)  
       
1   
2   
3   
4   
5 

86.83 
90.72 
88.23 
89.14 
88.15  

83.28 
79.40 
80.57 
81.41 
79.74  

       
       
 Source of 

Variation 
Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

F0 F0.99,1,8 
 
 

 Configuration 149.49 1 149.49 66.95 11.26 
 Error 17.87 8 2.23   
 Total 167.36 9    
       

 

Table 5.18: Analysis of variance for effect of line configuration on line cost 

 Mithcell's 21 task problem, C=40, r=5, cv=0.15 
 Replication  

Averages 
 Replication 

Averages 
 

 (Straight Line)  (U-Line)  
       
1   
2   
3   
4   
5 

127.99 
129.13 
126.84 
126.02 
125.29  

120.80 
120.57 
120.92 
120.89 
120.71  

       
       
 Source of 

Variation 
Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

F0 F0.99,1,8 
 
 

 Configuration 98.37 1 98.37 82.90 11.26 
 Error 9.49 8 1.18   
 Total 107.86 9    
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Table 5.19: Analysis of variance for effect of line configuration on line cost 

Sawyer's 30 task problem, C=100, r=5, cv=0.25 
 Replication  

Averages 
 Replication 

Averages 
 

 (Straight Line)  (U-Line)  
       
1   
2   
3   
4   
5 

406.32 
408.61 
406.60 
405.20 
406.90  

403.23 
403.76 
404.28 
404.72 
404.78  

       
       
 Source of 

Variation 
Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

F0 F0.99,1,8 
 
 

 Configuration 16.57 1 16.57 16.98 11.26 
 Error 7.80 8 0.97   
 Total 24.37 9    
       

 
 
 
 
Table 5.20: Analysis of variance for effect of line configuration on line cost 

Kilbrid's 45 task problem, C=200, r=5, cv=0.15 
 Replication  

Averages 
 Replication 

Averages 
 

 (Straight Line)  (U-Line)  
       
1   
2   
3   
4   
5 

608.06 
610.47 
608.96 
608.02 
608.14  

602.05 
602.77 
601.84 
602.07 
602.22  

       
       
 Source of 

Variation 
Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

F0 F0.99,1,8 
 
 

 Configuration 106.88 1 106.88 175.88 11.26 
 Error 4.86 8 0.60   
 Total  9    
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Table 5.21: Analysis of variance for effect of variability on straight line cost 

Jackson's 11 task problem, C=10, r=5 
 Replication  

Averages 
 Replication 

Averages 
 

 (Straight Line) 
CV=0.15 

 (Straight Line) 
CV=0.25 

 

       
1   
2   
3   
4   
5 

65.78 
65.63 
64.89 
65.53 
64.69  

84.98 
83.40 
85.96 
85.53 
82.54  

       
       
 Source of 

Variation 
Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

F0 F0.99,1,8 
 
 

 Effect of cv 919.49 1 919.49 780.97 11.26 
 Error 9.42 8 1.17   
 Total 928.91 9    
       

 

 

Table 5.22: Analysis of variance for effect of variability on U-Line cost 

Jackson's 11 task problem, C=10, r=5 
 Replication  

Averages 
 Replication 

Averages 
 

 (U-Line) 
CV=0.15 

 (U-Line) 
CV=0.25 

 

       
1   
2   
3   
4   
5 

65.57 
65.52 
64.87 
65.37 
64.87  

86.08 
83.42 
83.71 
86.14 
83.68  

       
       
 Source of 

Variation 
Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

F0 F0.99,1,8 
 
 

 Effect of cv 937.79 1 937.79 926.18 11.26 
 Error 8.10 8 1.01   
 Total 945.89 9    
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Table 5.23: Factors and their levels 

Factor Name Coefficient of 
Variation 

Offline 
Completion Rate 

Line 
Configuration 

Level A B C 
- 0.15 1.5 U-Line 
+ 0.25 5 Straight Line 

 
 
Table 5.24: Analysis of variance of line operating cost for three factors. 

 
Source of 
Variation 

Sum of 
Squares 

Degrees of 
Freedom 

Mean 
Square 

F0 F0.99,1,32 

A 1518.93 1 1518.93 2423.28 7.51 
B 1039.68 1 1039.68 1658.70  
C 33.98 1 33.98 54.22  
AB 511.15 1 511.15 815.48  
AC 41.88 1 41.88 66.82  
BC 42.20 1 42.20 67.34  
ABC 31.95 1 31.95 50.97  
Error 20.05 32 0.626   
Total 3239.85 39    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6: The designs closer to the origin have lower line costs. 

Straight Line U-Line 
Low r 

High r 

Low cv 

High cv 

Configuration 

CV 

r 
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 From a managerial viewpoint, the first thing to consider when balancing an 

assembly line is the variability in task times. If the variability in task times is high, 

then whatever the choice of other design factors line operating cost may not be 

low as desired. The line may produce as many incomplete units as it produces 

complete units. This is of course undesirable. Thus, variability should be 

eliminated whenever possible. Use of skilled labor, or training labor for 

operations highly variable in completion time can be recommended to reduce 

variability. Furthermore, automation of operations whenever possible can reduce 

the variability in task completion times. When the variability in task times is at an 

acceptable level, then by configuring a U-Line design rather than a straight line 

design we can achieve cost improvements. The results of this study indicate that 

U-Line configurations can bring reductions in operating cost of line. 

Unfortunately, in the literature U-Line balancing problem has not been studied in 

detail up to date. In this thesis we claim and show that U-Lines perform better 

than straight lines and deserve attention of the people in the manufacturing 

business.  
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Chapter 6 

 

Conclusion 
 
 In this study, we dealt with the stochastic assembly line balancing problem 

for both the straight line and U-line configurations. Since the problem is known to 

be NP-hard, there are many heuristic methods developed for the assembly line 

balancing problem. 

 This research proposed one such heuristic method for the stochastic 

assembly line balancing, with the objective of minimizing a line operating cost 

that consisted of both labor cost and task incompletion cost. We developed a beam 

search based method for the cost oriented assembly line balancing problem. The 

idea, key to the core of this research is the concept of marginal desirability. This 

idea removed the need for rule of thumb methods for closing a station by bringing 

a rationale behind this decision. 

 The methodology for evaluating the expected cost of generated designs is 

taken from Kottas and Lau (1976). This procedure is exact and works by 

generating and enumerating all possible incompletion tuples.  

The solution methodology developed is tested on several problems of 

varying in size from 11 to 70 tasks. The test problems selected for use in this 

research are well known and well studied problems. The solution found by the 

proposed method is compared to that of Kottas and Lau's (1981) algorithm.  

For the straight line balancing problem, the results obtained from 

experimentation on these problems reveals that the proposed heuristic 
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outperforms its competitor in most of the instances and can improve the solution 

found by competing algorithm by up to 24 %. The results obtained from this 

research generally agreed with the following findings of Kottas and Lau (1981) : 

1. In order to avoid their incompletion, tasks with high incompletion 

costs should be performed early in the station. 

2. Since there will be a higher probability of incompletion for the tasks 

assigned to the later part of the cycle time in a station, these tasks 

should have the lowest possible incompletion costs. 

3. Preferably, the last task of a station should have a large mean process 

time, so that the incompletion probability prior to the last task becomes 

negligible. 

4. Last tasks at a station are responsible for a large percentage of the total 

expected incompletion cost. 

5. The general tendency in assigning tasks to stations is to leave more 

slack time at the initial stations, since incompletion at these stations 

generally involve more incompletion cost than that of other stations. 

For the U-line balancing problem, analyzing the results led us to the 

following findings: 

1. There is no discernible pattern in leaving idle time at stations. 

However, there are patterns for workload on forward and backward 

parts of the station. 

2. When a station has task assignments on both forward and backward 

directions, it is important that a task assigned in forward direction not 

be incomplete. For this reason, total mean task times of tasks assigned 

in forward direction must not constitute a high percent of cycle time. 

3. The workload on forward direction at a station should be increased as 

we move from first to last station. 

4. The workload on backward direction at a station should be increased 

as we move from last to first station. 

 

Even though, this thesis concentrated on some design issues, it considered 

only very known assumptions and settings from literature. However, there are still 
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several other research issues that deserves attention and needs to be addressed. 

Below we list the most important of these issues:  

1. The method also used the incompletion handling methodology adopted by 

Kottas and Lau (1973). There are many other policies in the literature and 

these methodologies worth being studied. Moreover the same incompletion 

handling policy may not necessarily be used for all the incompletions. For 

example some serious incompletions may be handled by stopping the entire 

line while some minor incompletions may be handled after the unit moves 

down at the end of  line. Comparing the effectiveness of such different line 

operating policies can be a fruitful research area. 

2. Workers were assumed to belong to the same skill level and tasks were 

assumed to be worker independent. Workers may be classified under skilled, 

semi-skilled and unskilled groups. This way some tasks can only be completed 

by a worker of a predetermined skill level. Of course, this would make the 

problem much harder to solve, but also more realistic. 

3. Task processing times were assumed to come from normal distribution. Other 

distributions for task processing times might as well be tried. Thus, the 

problem can solve instances for which tasks follow a nonsymmetrical 

distribution. However, such an approach cannot be the extension of this 

research since normality assumption of task time distributions is crucial to the 

methods developed here.  

4. Maybe the learning effect for the workers may be incorporated to assembly 

line balancing problem. 

5. The mixed model extension of the problem deserves attention for research. A 

solution methodology developed for the mixed model stochastic assembly line 

balancing would be more realistic, since in today's production environments 

rarely a single model product is produced on the assembly lines. 

6. In the U-Line balancing problem, workers were assumed to turn between the 

back and forth of the station in zero time. Travel time for moving within a 

station may be used in modeling the U-Line balancing problem as Guerrero 

and Miltenburg (2003) did. 
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