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ABSTRACT 

 

Hepatocellular Carcinoma 

 Viral Etiology and Cellular Mechanisms 

                                                   Esra Erdal-Yıldız 

 

Ph.D. in Molecular Biology and Genetics 

Supervisor: Prof. Dr. Mehmet Öztürk 

2002, 95 pages 

 

Hepatocellular carcinoma (HCC) is one of the most frequent carcinomas throughout 

the world, being responsible for more than 1 million deaths annually and has a strong 

association with several etiological factors including aflatoxinB1, alcohol and 

Hepatitis virus B and C. Several studies suggested that HCV subtype 1b causes more 

severe liver diseases including HCC in a high manner and resistance to antiviral 

therapy. So, it is important to know genotype and some characteristics of HCV which 

are unique for the countries to develop better strategies regarding public health. By 

using direct sequencing information from 5`UTR and NS5B regions we identified 

subtype 1b as a predominant hepatitis C virus genome in Turkey. Next, the full 

genome sequence of a Turkish 1b isolate (HCV-TR1) was obtained by cloning of 

polypeptide-encoding region into 7 overlapping fragments. Although major structural 

and functional motifs of HCV proteins were maintained in HCV-TR1, it displayed 

amino acid substitutions in 6 out of 9 major cytotoxic T-cell epitopes. Several HCV 

proteins have been reported to contribute hepatocellular malignancy by interaction 

with critical cellular proteins involved in hepatocyte proliferation and survavil. Such 

studies often use HCC-derived cell lines as experimental models. As a prerequisite to 

future studies about the Turkish HCV 1b isolate in term of its contribution to HCC 

developments we investigated on phenotypic characterization of HCC cell lines. We 

provide experimental evidence that α-fetoprotein-producing HCC lines display in 



 iii 

vitro liver stem cell-like properties with self-renewing capability and multi-lineage 

differentiation potential, even after single-cell cloning. However, their ability to 

generate fully differentiated normal progeny was disrupted, even if they modulate 

their differentiation program in response to external factors. These features qualify 

AFP-producing HCCs as “mis-specified” liver stem cell cancers whose cellular 

programs are deviated from repopulating liver to forming malignant tumors. 

Interestingly, stem-like cells described here have been used extensively to study the 

role HCV proteins. Our observations offer new opportunities for addressing the 

potential role of HCV in the misspecification of liver stem cells in relation with viral 

hepatocellular carcinogenesis. 
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ÖZET 

 

Karaciğer kanseri  

Viral Etiyoloji ve Hücresel Mekanizmalar 

Esra Erdal-Yıldız 

 

Doktora Tezi, Moleküler Biyoloji ve Genetik Bölümü 

Tez yöneticisi: Prof. Dr. Mehmet Öztürk 

2002, 95 sayfa 

 

Hepatosellular karsinoma (HCC), yılda 500.000’den fazla kişinin ölümünden 

sorumlu olan ve aflatoksin B1, alkol, Hepatit  C ve B virusları gibi birçok 

etiyolojik faktörle ilişkili, tüm dünyada en sık görülen karsinomalardan biridir. 

HCC patogenezinde HCV’nin rolü tüm olarak aydınlatılamamışsa da, birçok 

çalışma HCV altgrup 1b’nin büyük oranda HCC olmak üzere, ağır karaciğer 

hastalıklarına ve antiviral terapiye dirence sebep olduğunu öngörmektedir. 

Bundan dolayı, HCV’nın ülkelere özgün bazı yapılarının ve genotipinin bilinmesi 

toplum sağlığı ile ilgili stratejilerin daha iyi geliştirilmesi için önemlidir. 5’UTR 

ve NS5B bölgelerinden direk sekanslama bilgisi kullanılarak Türkiye’de genotip 

1b’nin baskın Hepatit C virus genomu olduğunu tespit ettik. Daha sonra proteın 7 

birbirini takip eden parçalar şeklinde klonlanması ile Türk 1b isolatının (HCV-

TR1) tüm genom sekansı elde edildi. HCV-TR1’de HCV proteinlerinin temel 

yapısal ve işlevsel motifleri bulunsa da 9 temel sitotoksik T-hücre epitoplarından 

6’sında amino asit değişiklikleri görülmüştür. Birçok HCV proteininin hepatosit 

çoğalması ve yaşamasında rol alan önemli hücresel proteinlerle ilişkiye girerek 

hepatosellular malignansı oluşturduğu rapor edilmiştir. Bu çalışmalarda sıklıkla 

deneysel model olarak HCC kaynaklı hücre hatları kullanılmıştır. HCC 

gelişimindeki rolü ile ilgili Türk HCV izolatının gelecekteki çalışmalarına ön 

hazırlık olarak, HCC hücre hatlarının fenotipik karakterizasyonu incelendi. 

Alfafeto protein üreten HCC hatlarının in vitro koşullarda, tek hücre 



 v 

klonlamasından sonra bile, farklı hücre tipleri verebilme ve kendini yenileyebilme 

gibi karaciğer kök hücre benzeri özellikler gösterdiği deneysel olarak kanıtlandı. 

Fakat, dış faktörlerle module edilebilmesine rağmen, tamamen farklılaşmış 

progeni oluşturma özelliği kaybolmuştur. Bu özellikler AFP üreten HCC hücre 

hatlarını, hücresel programları habis tümor oluşturmak üzere tekrar popule 

olabilen “yanlış özelleştirilmiş (mis-specified)” karaciğer kök hücre kanserleri 

olarak belirlemiştir. İlginç olanı, burada tanımlanan kök hücre benzeri hücreler 

çoğunlukla HCV proteinlerinin rolünü çalışmak için kullanılmıştır. Bizim 

gözlemlerimiz, viral hepatosellular karsinogenez ile ilgili karaciğer kök 

hücrelerinin, yanlış özelleşmesinde HCV’nin muhtemel rolünü göstermek için 

yeni ufuklar açmıştır. 
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CHAPTER 1. INTRODUCTION  
 

 

1-1   HEPATOCELLULAR CARCINOMA 

 

Hepatocellular carcinoma (HCC) accounts for 80-90% of liver cancers and is 

one of the most frequent carcinomas worldwide, with an estimated 564,000 new 

cases per year and almost as many deaths in 2000 (Parkin, 2001). In developing 

countries the incidence rates are two to threefold higher than in developed countries.  

The disease is more prevalent in parts of Africa and Asia than in continental America 

and Europe with a strong etiological association with viral hepatitis, 

hemochromatosis, known liver (hepatic) carcinogens, and toxins (aflatoxin).   

 

Hepatocarcinogenesis is a slow process during which genomic changes 

progressively alter the hepatocellular phenotype to produce cellular intermediates 

that evolve into hepatocellular carcinoma. During the long preneoplastic stage, in 

which the liver is often the site of chronic hepatitis, cirrhosis, or both, hepatocyte 

cycling is accelerated by upregulation of mitogenic pathways. It is believed that this 

chronic regeneration process leads to the production of aberrant and dysplastic 

hepatocytes that have telomere erosion and telomerase re-expression, sometimes 

aberrant methylation or occasionally structural changes in genes and chromosomes. 

Development of dysplastic nodules and hepatocellular carcinoma are associated with 

the accumulation of irreversible structural alterations in genes and chromosomes, but 

the genomic basis of the malignant phenotype is heterogeneous. The malignant 

hepatocyte phenotype may be produced by the disruption of a number of genes that 

function in different regulatory pathways, producing several molecular variants of 

hepatocellular carcinoma (Thorgeirsson and Grisham, 2002). 
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1-1.1 Genetic Mechanisms of Hepatocarcinogenesis 

 

As with other kinds of cancer, the etiology and carcinogenesis of HCC are 

multifactorial and multistage. The multistep process of HCC may be divided into 

chronic liver injury that produces inflammation, cell death, cirrhosis and 

regeneration, dysplasia, and finally HCC (Figure 1.1). 

          

 
 
Figure 1.1. Multistage process of carcinogenesis (Tannapfel and Wittekind, 2002) 

 

 

            It has been proposed that six essential alterations in normal cell physiology 

state progression of liver malignancy, including independence towards growth, anti 

growth and apoptotic signals, unlimited division, and angiogenetic and metastatic 

capacities (Ozturk and Cetin-Atalay, in press ). Mutations in critical genes may range 

from subtle sequence changes at a few nucleotides to gross chromosomal 

abnormalities including deletions, amplifications, and translocations of large DNA 

fragments. 
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Allelic imbalance and microsatellite instability 

Most of the genes mutated in HCC are tumor suppressor genes, and frequent 

allelic loses (loss of heterozygosity, LOH) have been described. By comparative 

genomic hybridization, chromosomes 1q, 8q, and 17q show gene dose increase 

while chromosomes 1p, 4q, 8p, 9p, 13q, 16p, 16q, and 17p show gene dose loss. 

Frequent LOH, or more comprehensive, allelic imbalance (AI), is consistently 

observed on chromosomes 1p, 4q, 6p, 8p, 13q, 16q, and 17p by whole-genome 

allelotyping (Tannapfel and Wittekind, 2002). The chromosome regions with gene 

dose increase may contain critical oncogenes while those with gene dose loss may 

contain tumor-suppressor genes. For chromosomes 17p, 13q, 9p, 6q, and 16p, LOH 

could be related to p53, Retinoblastoma 1(RB1), p16, Insulin-like growth factor-2 

receptor (IGF2R) and E-cadherin inactivation (Feitelson et al., 2002). In dysplastic 

nodules LOH has been observed with a prevalence of 50-80%. (Thorgeirsson and 

Grisham, 2002). 

 

In HCC, chromosome 2 and 3 on which DNA mismatch repair genes are 

located are not frequently affected by allelic loses. But mutations in a mismatch 

repair gene known as Human Mut S homolog-2 (hMSH2) have been reported at 

about 30% of HCCs examined (Yano et al., 1999). 
 

 

Cell cycle regulation 

Cells respond to proliferative or antiproliferative signals through the cyclin 

D1-RB-CDK4/6 and the p14ARF/mdm2/p53 pathways. When quiescent cells in G0 

are stimulated to enter cell cycle, genes encoding cyclin-D type cyclins are induced 

in response to mitogenic signals (Figure 1.2). These cyclins associate with either 

CDK4 or CDK6 subunits and the complex becomes activated by phosphorylation. 

Active cyclin/CDK complexes drive the cell cycle forward via phosphorylation of 

substrates such as Rb in early G1 phase (Weinberg, 1995). Rb is thereby inactivated, 

and its growth repressive functions abolished, resulting in release of a class of 

associated transcription factors known as E2Fs. Then “free” E2F transactivate cyclin 

E gene and promote DNA synthesis necessary for cell cycle progression. According 

to this, loss of Rb or its aberrant phosphorylation leads to a loss of growth control at 

the G1 phase. To maintain Rb protein in its active, anti-proliferative state, p16 



 4 

(INK4a) inhibits the activity of CDK4 by specific binding thus preventing its 

association with cyclin D and/or blocking the catalytic activity of the kinase (Hirai et 

al., 1995). The p14ARF tumor suppressor, encoded by an alternative reading frame of 

the INK4a-ARF locus (9q21), senses "mitogenic current" flowing through the Rb 

pathway and is induced by abnormal growth promoting signals. By antagonizing 

Mdm2, a negative regulator of the p53 tumor suppressor, ARF triggers a p53-

dependent transcriptional response that diverts incipient cancer cells to undergo 

growth arrest or apoptosis. Although ARF is not directly activated by signals that 

damage DNA, its loss not only dampens the p53 response to abnormal mitogenic 

signals but also renders tumor cells resistant to treatment by cytotoxic drugs and 

irradiation.  

 

 
Figure 1.2 Schematic representation of the cell cycle and G1/S controlling elements 

(Hashemi, 2002)  

→ activation      I        inhibition 

 

 

Taken together, disturbances in the p16-cyclin D-CDK4-Rb and p14-Mdm2-

p53 pathways could be a main axis of genetic events in HCC because all players in 

these pathways seem to be altered in HCC. The Rb gene, one of the main player, is 

localized to chromosome 13q, which is a common deletion site for HCC and Rb 
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mutations are also observed in 15% of HCCs (Ozturk M., 1999). Moreover, Rb 

protein is a target for ubiquitin-dependent degradation and this degradation 

mechanism was shown to be dysregulated in HCCs by overexpression of a pRb 

specific ubiquitin ligase, gankyrin (Higashitsuji et al., 2000). Also, overexpression 

of cyclin D1 has been observed in about 10-13% of HCC cases (Ozturk, 1999). It has 

recently been shown in a transgenic mouse model that overexpression of cyclin D1 is 

sufficient to initiate hepatocellular carcinogenesis (Deane et al., 2001). The 

transduction of antisense cyclin D1 inhibits tumor growth in a xenograft hepatoma 

model. Correcting alterations that have occurred in the G1 phase regulatory 

machinery may therefore provide a novel weapon to treat and prevent HCC (Deane 

et al., 2001). Also, it was reported that about 50% of HCC displays de novo 

methylation of INK4a-ARF locus that encodes p16INK4 and p14ARF and LOH at the 

same locus was 20 % (Ozturk, 1999; Liew, 1999) 

 

 

p53 and homologues 

The protein product of p53 gene is activated by different stimuli such as 

oncogenic activation, DNA damage, decrease in nucleotide pools and oxidative 

stress and induces cell cycle arrest or apoptosis, depending on the cell context 

(Blagosklonny, 2002). p53 mutations are found in about 30% of HCC cases 

worldwide. Until now all reported mutations (mostly missense, leading to 

stabilization of protein) have been somatic, indicating that germline p53 mutations 

do not appear to be predisposition for HCC. Tumor-specific p53 mutations have been 

identified in several studies, linking the mutation pattern to suspected etiological 

factors. A selective guanine-to-thymine transversion mutation in codon 249 AGG to 

AGT (transversion italicized) leading to an arginine-to-serine substitution of the p53 

gene has been identified as a "hotspot" mutation for HCC. Epidemiological and 

experimental evidence suggests that in HCC this mutation is strongly associated with 

exposure to aflatoxin B1 in combination with a high level of chronic hepatitis B virus 

infection in the population (Bressac et al., 1991; Hsu et al., 1991). Moreover, there 

is a strong correlation between p53 mutations, large tumor size, and poor 

differentiation state. 
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No specific mutations or interactions have yet been described for p73 and p63 

which are homologs of p53. However, overexpression of p73 (wild type) has been 

described in a subset a HCC, indicating a poor prognosis in these patients (Tannapfel 

et al., 1999). More recently Sayan et al., identified that it is the transcriptionally 

active (TA) form of p73 which is upregulated in HCC, probably because of Rb 

pathway dysregulation (Sayan et al., 2001). 

 

 

Wnt pathway: APC, β-catenin, axin 1, and E-cadherin 

Somatic mutations of β-catenin have been observed in 19-26% of HCC cases, 

mostly missense mutations and interstitial deletions of exon 3 (Tannapfel and 

Wittekind, 2002). These mutations cause nuclear accumulation of aberrant β-catenin 

proteins that stimulates the activity of LEF-TCF family of transcription factors 

which in turn transactivate a series of cell cycle progression genes such as cyclin 

D and myc as shown in colorectal cancers (Calvisi et al., 2001). Axin, an 

important regulator of β-catenin, is mutated in about 10% of HCC cases, leading to 

an activation of the Wnt pathway. Axin1 and β-catenin mutations are mutually 

exclusive in HCC, suggesting that they affect the same (presumably Wnt) pathway 

(Morin et al., 1997; Satoh et al., 2000). It has recently been shown that ectopic 

expression of the wild-type axin gene (AXIN1) induces apoptosis in HCC cells, 

indicating that axin 1 may be an effective growth suppressor of hepatocytes (Satoh et 

al., 2000) 

             

Somatic APC mutations are rare events in HCC, but it was recently reported 

that biallelic inactivation of the APC gene contributed to the development of HCC in 

a patient with familial adenomatous polyposis and a known germline mutation of the 

APC gene at codon 208 (Su et al., 2001).  E-cadherin, a receptor in adherence 

junctions, which is essential both for maintenance of tissue structure and regulation 

of free cytoplasmic β-catenin level, is rarely mutated in HCC. However, loss of 

function due to LOH or de novo methylation occurs in about 30% of HCC cases 

(Tannapfel and Wittekind, 2002). 
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Alterations of the TGF-β /IGF-axis 

Transforming growth factor (TGF) β initiates signaling through heteromeric 

complexes of transmembrane type I and type II serine/threonine kinase receptors. 

Activated TGF-β receptors phosphorylate receptor-regulated Smads which induces 

both inhibition and apoptosis in hepatocytes. Genetic alterations of the TGF-β 

pathway are mediated by mutations of the Smad2 and Smad4 gene, which occur in 

about 10% of HCC cases (Yakicier et al., 1999). Mutations of the TGF-β receptor 

(TGF-β1RII) gene itself are detected in patients with HCC and may also abrogate 

TGF-β signaling (Enomoto et al., 2001). 

           

A potent activator of TGF-β is the mannose-6-phosphate/insulin-like growth 

factor 2 receptor (M6P/IGF2R) which suppresses cell growth through binding to the 

insulin-like growth factor (IGF) 2 and latent complex of TGF-β. The deregulation of 

the IGF axis, including the autocrine production of IGFs, IGF binding proteins 

(IGFBPs), IGFBP proteases, and the expression of the IGF receptors, has also been 

identified in the development of HCC. Also, both LOH and mutations of the 

M6P/IGF2R have been reported in about 30% HCC patients (Oka et al., 2002; De 

Souza et al., 1995; Piao et al., 1997). 

          

PTEN/MMAC1/TEP1 (PTEN) tumor suppressor gene has recently been 

shown to block growth-stimulatory and survival signals mediated by PI-3 kinase and 

to converge the activation of protein kinase B/Akt. Alterations, mainly mutations but 

also LOH, of PTEN have been reported in about 27% of HCC cases (Kawamura et 

al., 1999). Recently it was demonstrated that PTEN significantly lowers IGF 

secretion and also expression of secretory and cellular vascular endothelial growth 

factor proteins in HCC cell lines and could therefore inhibit tumorigenicity 

(Kawamura et al., 1999). 

 

 

1-1.2 Significance of Hepatitis B and C viruses in HCC 

 

From the information released by the World Health Organization, it is 

estimated that the numbers infected with HBV and HCV worldwide are 180 and 300 
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millions, respectively. Together, the two viruses contribute to the etiology of about 

80% of global HCC (World Health Organization., 2000). They contribute to 

hepatocarcinogenesis indirectly, by causing chronic necroinflammatory hepatic 

disease. They may also display direct hepatocarcinogenic activity. 

 

Hepatitis B Virus (HBV) is a partially double-stranded DNA virus belonging 

to the Hepadnaviridae and approximately 25% of chronic carriers of the virus 

develop the tumor (Beasley and Hwang, 1984). Oncogenic mechanism of HBV 

infection may be simply defined as releasing the growth control of hepatocytes by 

coding for a factor that activates otherwise dormant genes or activates proto-

oncogenes or silences anti-oncogenes; by inserting its DNA sequences that can 

activate and influence the transcription of cellular genes; by causing chronic 

inflammation with cell death and hepatocyte regeneration with fibrosis; as well as by 

activation of the immune system liberating cytokines at the wrong time in the wrong 

place. Transcriptional activation of a wide range of viral, as well as cellular genes 

such as c-fos, c-myc, IGF2, insulin-like growth factor I receptor (IGFR1) and β-

interferon, by HBV encoded X antigen (HBxAg) was shown in many studies 

(Caselmann, 1996; Colgrove et al., 1989; D'Arville et al., 1991; Kim et al., 1996; 

Twu and Schloemer, 1987). In chronic HBV infection, it has been shown that 

HBxAg binds and functionally inactivates the tumor suppressor p53 (Huo et al., 

2001; Ueda et al., 1995) and the negative growth regulator p55sen (Feitelson, 1999; 

Ueda et al., 1995), both of which are involved in senescence-related pathways. The 

activation of the Rb tumor suppressor by hyperphosphorylation resulting in the 

activation of E2F1 has been reported in HBxAg positive HCC cells (Sirma et al., 

1999). It has also been shown that HBxAg can down regulate the expression of 

translational factor, sui1, and cyclin dependent kinase inhibitor, 

p21WAF1/CIP1/SDI1(Feitelson et al., 1999; Sirma et al., 1999).  As with HBxAg, 

carboxyterminal truncated middle hepatitis B surface protein (MHBSt) can activate 

various viral and cellular gene promoters (Caselmann et al., 1990; Kekule et al., 

1990). Recent data suggests that HBxAg contributes to HCC development also by 

mechanisms other than transactivation. HBxAg binds to the X-associated protein 1 

and possibly disturbs its function in nucleotide excision repair mechanism (Becker et 

al., 1998) and also it has been show that HBxAg stimulated cell growth is associated 

with constitutive activation of the ras/raf/MAPK and NKκ-B signal transduction 
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pathways (Benn and Schneider, 1994; Lucito and Schneider, 1992; Shirota et al., 

2001).  

 

Hepatitis C Virus is a more important causal association of the tumor than is 

HBV, and in Japan, Italy, and Spain the virus accounts for as much as 80% of HCC 

(Kew, 1998). It has been postulated that HCC largely develops indirectly as a result 

of the inflammatory responses that lead to hepatocyte destruction, regeneration and 

fibrosis. Since there is no evidence that HCV RNA is integrated into host genome as 

stated in HBV, the virus may play a more direct role in neoplastic transformation of 

hepatocytes. HCV proteins are shown to interact with various cellular proteins: 14-3-

3 protein, apolipoprotein AII, Tumor necrosis factor (TNF) receptor, lymphotoxin-ß 

receptor, DEAD domain of RNA helicase, nuclear ribonucleoprotein K for core 

protein, double stranded RNA protein kinase (PKR) for E2 and NS5A, p53 for NS3 

and possibly core, and SNARE-like protein for NS5A. (Ghosh et al., 1999; Ray and 

Ray, 2001; Shimotohno, 2000). Interactions with these cellular proteins which seem 

to be important for the function of HCV proteins in the regulation of cell 

proliferation will be summarized in 1.2.3.  

 

Recently developed transgenic mice model for the viral hepatocarcinogenesis 

showed that HBx protein and HCV core protein may be capable of inducing HCC in 

the absence of a complete set of genetic aberrations which are necessary for a 

multistage development of all cancer types as proposed by Vogelstein. (Koike et al., 

2002; Moriya et al., 1998) 

 

 

 

 

1-2   HEPATITIS C VIRUS 

 

          Hepatitis C was first recognized as a separate disease entity in 1975 when the 

majority of cases of transfusion-associated hepatitis were found not to be caused by 

the only two hepatitis viruses recognized at the time, hepatitis A virus and hepatitis B 

virus. The disease was called "non-A non-B hepatitis," and it was demonstrated to be 

transmissible to chimpanzees. It was not until 1989, however, that the cloning and 
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sequencing of the viral genome of the non-A non-B hepatitis virus was first reported 

and the virus was renamed "hepatitis C virus" (Choo et al.,1991). 

 

           Hepatitis C virus is a positive strand RNA virus of Filaviviridae, genus 

hepacivirus, approximately 9.6 kb in length, and is most closely related to the 

pestiviruses. 

 

 

1-2.1  Epidemiology 

 

Hepatitis C is a major cause of acute hepatitis and chronic liver disease, 

including cirrhosis and liver cancer. An estimated 170 millions of persons are 

chronically infected with HCV worldwide and 3-4 million persons are newly infected 

each year (World Health Organization, 2000). 

 

HCV infection appears to be endemic in most parts of the world, with an 

estimated overall prevalence of 3%. However, there is considerable geographic and 

temporal variation in the incidence and prevalence of HCV infection. In United 

States, 1.8% of population is infected with HCV (Alter, 1997) while the HCV 

prevalence rate is in between 0.2-3% in Europe (Memon and Memon, 2002). In 

Turkey the prevalence of HCV is % 0.3-1.8 (Sharara et al., 1996). 

 

There are a few countries with very high HCV prevalence rate, such as Egypt, 

where 10-30% of population is infected with HCV (Arthur et al., 1997; el-Sayed et 

al., 1996). The nationwide campaing to treat schistosomiasis infections by 

inoculation of needles in 1970s is hypothesized to be responsible for this high 

prevalence, as lower HCV prevalence among individuals born after the end of 

campaign was observed as a preliminary evidence (el-Zayadi et al., 1997). 

 

 

1-2.2 Genomic Organization of HCV  

             

           The genome of HCV is a single-strand linear RNA of positive sense. The 

functional and structural units of the HCV genome are schematically depicted in 
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Figure1.3. A 5' untranslated (UTR) region consists of approximately 340 nucleotides, 

which has stem-loop structure and contains an apparent internal ribosomal entry site 

(IRES). Immediately downstream is a single large open reading frame (ORF) of 

approximately 9,600 nucleotides, encoding a large polyprotein precursor of 

approximately 3,200 amino acids that is cotranslationally or posttranslationally 

cleaved into separate proteins by a combination of host and viral proteases. The 

genomic order of HCV has been shown to be C-E1-E2-p7-NS2-NS3-NS4A-NS4B-

NS5A-NS5B. Capsid protein (C), two envelope proteins (E1 and E2) are the virion 

structural proteins. The function of p7 is currently unknown. These proteins have 

been shown to arise from the viral polyprotein via proteolytic processing by the host 

signal peptidases.  

 

Figure 1.3 Genomic map of the Hepatitis C virus (Rosenberg, 2001).  

 

 

Generation of the mature nonstructural protein, NS2 to NS5B, relies on the activity 

of viral proteinases. Cleavage at the NS2/NS3 junction is accomplished by metal-

dependent autocatalytic proteinases encoded within NS2 and the N-terminus of NS3. 

The remaining cleavages downstream from this site are affected by a serine 

proteinase also contained within the N-terminal region of NS3. NS3 also contains an 
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RNA helicase domain at its C-terminus. NS3 forms a heterodimeric complex with 

NS4A. The latter is a membrane protein that has been shown to act as a cofactor of 

the proteinase. While no function has yet been attributed to NS4B, it has been 

suggested that NS5A is involved in mediating the resistance of the HCV to 

interferon. And the NS5B protein has been shown to be the viral RNA-dependent 

RNA polymerase. Finally, there is a 3' UTR region that consists of approximately 40 

nucleotides, a polypyrimidine track and a highly conserved terminal sequence of 

approximately 90 nucleotides. 

 
 

1-2.3 Genetic Heterogeneity and Classification systems  

            

After the complete HCV genome was determined by Choo et al. (1991), 

several HCV isolates from different parts of the world were obtained and sequenced. 

Comparison of the published sequences of HCV has led to the identification of 

several distinct types that may differ from each other by as much as 33% over the 

whole viral genome (Okamoto et al., 1992). Sequence variability is distributed 

equally throughout the viral genome, apart from the highly conserved 5` UTR and 

core regions and the hypervariable envelope (E) region that is the most 

heterogeneous portion of the genome.  

           

As different investigators developed and used their own classification for 

HCV strains, a confusing literature developed by Okamoto, Simmonds, Enomato, 

Choo. However, at the 2nd International Conference of HCV and Related Viruses, a 

consensus nomenclature system was proposed to be used in future studies of HCV 

genotypes and subtypes (Simmonds et al., 1994). According to this system, HCV is 

classified on the basis of the similarity of nucleotide sequence into major genetic 

groups designated genotypes. HCV genotypes are numbered (arabic numericals) in 

the order of their discovery. The more closely related HCV strains within types are 

designated subtypes, which are assigned lowercase letters (in alphabetic order) in the 

order of their discovery.  The complex of genetic variants found within an individual 

isolate is termed the quasispecies (Table 1.1). 
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The heterogeneity of HCV within an individual can be attributed to error 

prone RNA-dependent RNA polymerase (RdRp) of HCV, NS5B. The absence of 

proof reading activity of NS5B creates de novo mutations. Recently, HCV RNA 

turnover rate is calculated in humans as 4-7 hours and this high turnover rate leads to 

production of 300 billion HCV RNA molecules per day (Neumann et al., 1998), 

which contributes significantly to the heterogeneity of HCV. It was hypothesized that 

the existence of HCV as quasispecies may be the basis of the mechanism for viral 

persistence. With high numbers of RNA produced per day and NS5B without 

proofreading activity would lead to production of escape mutants, therefore, HCV 

establishes chronic infection. 

             

 According to this classification, there are 6 main genotype and 

approximately 70 subtypes and some of the recently identified isolates from 

Vietnam, Thailand and Indonesia were identified as subtypes of HCV genotype 6. 
 

TABLE  1.1. Terminology commonly used in studies related to HCV genomic heterogeneity    

 

Terminology Definiton %Nucleotide 

similaritya 

Genotype Genetic heterogeneity among different HCV isolates         66-69 

Subtype Closely related isolates within each of the major genotypes         77-80 

Quasispecies Complex of genetic variants within individual isolates         91-99 

 
a % Nucleotide similarity refers to the nucleotide sequence identities of the full-length sequence of the 

HCV genome 
 

  

1-2.4 Importance of HCV genotypes on disease progression and treatment 

        

The role of HCV genotypes in the progression of liver disease is one of the 

most controversial areas of HCV research. Several studies showed that subtype 1b 

infections proceed much faster to severe forms of chronic hepatitis, cirrhosis 

(Watson et al., 1996) and hepatocellular carcinoma (Silini et al., 1996; Zein et al., 

1996). However, there are also reports that failed to show the association between 

subtype 1b infections and faster progression into cirrhosis (Mita et al., 1994) or HCC 
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(Lee et al., 1996; Yotsuyanagi et al., 1995). Moreover, in the patients with chronic 

HCV, infection with genotype 1b is reportedly associated with a more severe liver 

disease and a more aggressive course than is infection with other HCV genotypes 

(Nousbaum et al., 1995; Pozzato et al., 1995). Similar to these studies (Silini et al., 

1995; Zein et al., 1995), HCV genotype 1b was significantly more prevalent among 

patients with liver cirrhosis and those with decompensated liver disease requiring 

liver transplantation than among those with chronic active hepatitis C (Zein et al., 

1995; Belli et al., 1996) and was associated with earlier recurrence and more severe 

hepatitis than other genotypes in liver transplant recipients (Pageaux et al., 1997). 

Although these are indirect evidence, they suggest an association between HCV 

genotype 1b and the development of these complications. Furthermore, HCV 

genotype 1b was shown to be present in most of the patients in approximately 60 to 

70 % with HCV associated hepatocellular carcinoma (Zein et al., 1996; Reid, 1994).  

However, some reports refute the associations related with HCV subtype 1b, which 

was mentioned above (Benvegnu et al., 1997; Brechot, 1997; Naoumov et al., 1997; 

Yamada et al., 1994).  Since the patients infected HCV 1b generally were older than 

those infected with other genotypes and genotype 1b may have been present before 

the other genotypes, whether HCV genotype 1b is a marker for severe HCV-

associated liver disease remains unclear, because it may have been a reflection of a 

longer time of infection rather than a more aggressive form of hepatitis C. 

  

 Enomoto et al by comparing full length genome sequences of HCV isolates 

obtained from different Japanese patients, identified a 39 amino acid long region 

(2209-2248) in carboxyl terminus of N55A, which is associated with sensitivity to 

interferon and referred as interferon sensitivity determining region (ISDR) (Enomoto 

et al., 1996). Other groups working with Japanese patients infected with genotype 1b, 

2a, or 2b HCV strains confirmed that the IFN-α resistant strains had same sequences 

with HCV- 1b prototype strains in the ISDR region (Chayama et al., 1997; Kurosaki 

et al., 1997; Halfon et al., 2000). However, the correlation is substantially weaker or 

lacking in patients infected with genotype 1a HCV strains or European patients 

infected with HCV strains of 1b, 2b, or 3a (Casato et al., 1997; Pawlotsky et al., 

1998). The reason for these discrepancies are not clear, but differences in the 

interferon doses of these patients and the lower mutation rate of the ISDR in 

European HCV-1b patients relative to their Japanese counterparts are likely to be 
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contributing factors. In summary, ISDR sequences may affect the response of the 

individual HCV isolates to interferon treatment. 

 

 

1-2.5 Geographic Distribution of HCV Genotypes 

 

At least six major genotypes of HCV, each comprising multiple subtypes, 

have been identified worldwide. The geographical distribution of different genotypes 

and subtypes differs greatly from one region to the other. The reasons of this 

differential distribution are ill known, but the profile of geographical distribution 

could reflect the different modes of viral transmission as well as the host immune 

response variations. For example, HCV 1a subtype, which is seen frequently in North 

America, could have been transmitted to other regions of the world, especially to 

Europe, by contaminated blood-derived products (Brechot et al., 1998). In contrast, 

subtype 1b appears to be dominant in Japan and Southern Europe. In Europe, HCV 1 

is the major genotype and there is a south-north gradient for 1a and 1b subtypes, the 

prevalence of subtype 1b being increasingly higher in southern Europe. The data on 

HCV subtypes in the Middle Eastern countries is limited. In Egypt, Hepatitis C is an 

endemic disease that is associated with genotype 4, almost exclusively (Ray et al., 

2000). Similarly, genotype 4 is also predominant in the Gaza region, but not in Israel 

where subtype 1b is predominant (Shemer-Avni et al., 1998).  Moreover, genotypes 

5 and 6 seem to be confined to South Africa and Hong Kong, respectively. HCV 

genotype 7, 8, and 9 have been identified only in the Vietnamese patients, and 

genotypes 10 and 11 were identified in patients from Indonesia. 

           

The HCV genotype distribution of patients living in Turkey is not well 

known. To our knowledge, there are only two published reports concerning Turkish 

patients, which indicated a high frequency (75-87 %) of subtype 1b (Abacioglu et al., 

1995; Simsek et al., 1996). Regarding the distribution of HCV genotypes in 

neighbors of Turkey, subtype 4a and 1b are predominant in Syria and there is no data 

for Iraq and Iran (Abdulkarim et al., 1998). On the other hand, in countries located 

on the northern frontiers of Turkey as well as in Greece, subtype 1b appears to be the 

dominant form (Viazov et al., 1997; Andonov et al., 1996). 
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The geographical distribution and diversity of HCV genotypes may provide 

clues about the historical origin of HCV. The presence of numerous subtypes of each 

HCV genotype in some regions of the world, such as Africa and Southern Asia, may 

suggest that HCV has been endemic for a long time. Conversely, the limited diversity 

of subtypes observed in United States and Europe could be related to the recent 

introduction of these viruses from areas of endemic infection. 

 

 

1-2.6 Methods for HCV Genotyping 

     

Molecular genotyping 

         Because differences in geographical distribution, disease outcome, and 

response to therapy among HCV genotypes have been suggested, reliable methods 

for determining the HCV genotype may become an important clinical test. In theory, 

the most accurate method for HCV genotyping is the sequencing of whole genome 

and phylogenetic tree construction. However, in practice this method is not 

appropriate and feasible in genotyping large numbers of samples as full-length 

genome sequencing is too laborious and expensive. Hence, subgenomic regions 

representative of whole genome have been investigated. To this date, phylogenetic 

analysis E1, NS5B, and 5’UTR sequences correlated with whole genome based 

phylogenetic analysis suggesting the equivalence of sequence relationships between 

HCV genotypes in different regions of genome. This finding formed the basis of the 

proposal by Simmonds et al. that a new HCV genotype should be assigned only if 

phylogenetic analysis of at least two genomic regions showed a distinct phylogenetic 

branch (Simmonds et al., 1994). 5’UTR region is the most conserved region of HCV 

genome. Therefore, it may have identical sequence in different subtypes but contains 

variations aiding determination of 6 genotypes and some subtypes.  

            

Amplification of NS5B, core, E1 regions, followed by sequence comparison 

and phylogenetic tree construction for confirmation, is currently considered  “gold-

standard” for the assignment of HCV genotypes. However, there are limitations of 

this method. Amplification of some genomic regions may not be efficient. In this 

case, use of different sets of primers would be needed, which may lead to the 

selection of certain genotypes or quasispecies. In a large-scale genotyping study, 
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mixed infections would not be identified. In these studies, the cost of the study and 

labor-intensive nature of this technique also limits to its usage.  

 

Other methods that depend mainly on the amplification of HCV RNA 

followed by either reamplification with type specific primers or hybridization with 

type-specific probes or by digestion of PCR products with restriction endonucleases 

that recognize genotype-specific cleavage site. HCV genotyping by using type-

specific primers was first introduced by Okamoto et al. and used primer specific for 

the core region (Okamoto et al., 1992a). This method lacked sensitivity and 

specificity and was only able to detect subtypes 1a, 1b, 1c, 2a, 2b, and 3a. New 

variations of this method from both core and NS5B region have been developed to 

increase genotyping of more types or subtypes (Ohno et al., 1997). A commercial kit 

(InnoLipa) for HCV genotyping has been introduced in Europe and is based on 

hybridization of 5`UTR amplification products with genotype specific probes. 

Although initial version of InnoLipa had lower sensitivity, the newer version is 

capable of discriminating among HCV subtypes 1a, 1b, 2a to 2c, 3a to 3c, 4a to 4h, 

5a, and 6a. 

             

Restriction Fragment Length Polymorphism analysis of HCV genome for 

genotyping was initially reported by Nokao et al. (1991). Subtype or type-specific 

restriction enzyme recognition sites present in amplified PCR products are utilized to 

cut PCR fragments with different restriction endonucleases. Electrophoresis profiles 

of these are used to identify the genotype of the sequence. In the RFLP analysis, 

5’UTR or NS5B region has been used widely with variations. 

 

Although all these methods are able to identify correctly the major genotypic 

groups, only direct nucleotide sequencing is efficient in discriminating among 

subtypes. Moreover, all of these PCR-based methods have the shortcomings and 

advantages of PCR. They are expensive and time-consuming and require specialized 

facilities to ensure accurate results and prevent contamination. The advantages of 

PCR-based methods include reliability if performed accurately and the ability to 

obtain information relevant to the molecular pathogenesis of HCV. 
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Serological genotyping 

Serological genotyping has several advantages that make it suitable for large 

epidemiological studies, especially. These advantages include the low risk for 

contamination and the simplicity of the assay. However, it seems to lack specificity 

and sensitivity, which limits its usefulness. 

 

Two commercially available serological genotyping assays have been 

introduced over the past 3 to 4 years. The RIBA SIA was introduced by Chiron Corp. 

and contained five different serotype-specific peptide sequences taken from the NS4 

region and two taken from the core region of the HCV genomes for genotype 1, 2, 

and 3. The second serological genotyping assay is the Murex HCV serotyping 

enzyme immune assay, which is based on the detection of genotype-specific 

antibodies, directed to epitopes encoded by the NS4 region of the genomes for 

genotypes 1 through 6.  

 

 

1-2.7 Role of Genomic Heterogeneity in HCV Persistence and Vaccine 

Development 

  

With the rarity of severe acute or fulminant HCV infections, the significance 

of this infection in humans is its tendency to become persistent and to induce chronic 

liver disease. The mechanisms whereby HCV circumvents the immune response, 

persists and causes chronic inflammatory liver disease are currently undefined.  

 

            One hypothetical explanation of HCV persistence, sequence variation due to 

the quasispecies nature and the high mutation rate of HCV, has often been discussed. 

Amino acid changes in immunodominant epitopes may permit HCV to escape from 

the antiviral immune response. The most convincing evidence of this phenomenon is 

the lack of the immune protection and the infectibility   of chimpanzees rechallenged 

with the same HCV inoculum (Prince et al., 1992). In addition to the lack of 

protection by the humoral immune response, there is also evidence that the cellular 

immune response may be subverted during HCV infection, since subsequent 

experiments Weiner et al., 1995 have described the emergence of an HCV mutant 

that was able to escape the HCV-specific CTL response in an infected chimpanzee. 
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Possible targets for HCV-specific CTL recognition within the conserved core protein 

and additional epitopes in the more highly variable region E2 protein were also 

identified (Koziel et al., 1993).  In a chronically infected chimpanzee, CTLs obtained 

from the liver were initially able to recognize an epitope in the NS3 protein. Over a 

period of years, a new strain of the virus emerged with a mutation in the CTL epitope 

that was no longer recognized by the CTLs isolated earlier. Although direct evidence 

for the presence of CTL escape mutants in human HCV infection is lacking, it has 

been shown that single-amino-acid changes in CTL epitopes result in failure of 

recognition by HCV-specific CTLs (Koziel et al., 1998). These single-amino-acid 

changes are found in natural isolates of HCV, hence the need to address the problem 

of type specificity of immune responses. 

 

 

1-2.8 Molecular mechanisms of HCV related hepatocarcinogenesis 

 

Role of Hepatitis C virus proteins in the modulation of proliferation 

Core protein of HCV has been shown to play various roles in the regulation 

of cell proliferation including activation of the Ras/Raf kinase cascade, regulation of 

p53 function, modulation of apoptosis, oncogenic functions in transgenic mice and 

certain cell lines, and transactivation or transexpression of certain cellular genes as 

well as HBV and HIV genes. Recently, the envelope protein of E2 was shown to 

suppress RNA-activated protein kinase (PKR) function, which is important to disrupt 

viral gene expression, by acting as a decoy of elF2-α. Also, NS3 protein of HCV 

interacts with p53 and has the ability to transform NIH3T3 cells. Finally, NS5A 

protein interacts with SNARE-like protein, which may be important for membrane 

fusion (Shimotohno K. 2000). 

   

 

Anti-apoptotic function of HCV core protein 

            Core protein of HCV plays a role in the suppression of caspase activation 

induced by anti-Fas and TNF-α in some of the cell lines, and that the suppression 

was likely to be achieved upstream of caspase-8 in the caspase cascade. It also binds 

to the death domain of tumor necrosis factor receptor 1 (TNFR1) and the cytoplasmic 
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tail of lymphotoxin-β receptor, implying that it may be involved in anti-apoptotic 

signaling pathways (Zhu et al., 1998). Finally, hepatitis C virus core protein activates 

the cellular transcriptional factor, NF-κB and it may be another mechanism to 

suppress apoptotic mechanisms (Tai et al., 2000). 

           

 

Possible roles of HCV proteins in liver dysfunction 

             When HCV-specific T cells migrate into hepatocytes and recognize the viral 

antigen via T-cell receptor, they become activated and express Fas ligand that can 

transduce the apoptotic death signal to Fas-bearing hepatocytes. The cells in which 

NF-κB is activated by core protein may escape from Fas-mediated apoptosis and 

contribute to virus replication and release of virus particles. Persistent infection with 

HCV may be explained by such a mechanism, in addition to insufficient activation of 

CTL to clear HCV-infected cells. Core protein also has the potential to activate the 

MAK kinase cascade, which may have a mitogenic effect. The liver undergoes 

persistent regeneration following hepatic injury and growth factors stimulate this 

liver regeneration in hepatitis. It is possible that HCV core protein, in regenerating 

hepatocytes, enhances growth stimuli and repeated hepatocyte proliferation may 

cause disorder of the gene in the hepatocytes, thus causing hepatocellular carcinoma.  

  

In conclusion several HCV proteins have been shown to interfere with the 

function of cellular proteins involved in malignant transformation of hepatocytes. 

However, currently there is no experimental model for HCV infection of 

hepatocytes, in vitro or in vivo. Therefore, it is unknown whether such virus-cell 

protein interactions also occur during HCV infection. This is why, it is not possible 

at present time to classify HCV as an oncogenic virus. It is also important to pay 

attention to the fact that molecular and cellular events involved in the initiations of 

human HCC (either viral or nonviral) are not known at all. Although we know 

several genes that are mutated in HCC, we do not know whether and how they 

contribute to the initiation of hepatic neoplasia.  
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1-3   LIVER CANCER STEM CELL 

 

 One of the most debated issues in HCC, is its origin. Dedifferentiation of 

mature hepatocytes was proposed by some authors as a main cause of HCC, although 

others believe that HCC results from incomplete differentiation of hepatic stem cells. 

We will first describe “stem cell and cancer stem cell” concepts. 

 

 
1-3.1 Stem Cell, Cancer Stem Cells  

 

            Potten and Loeffler define stem cells as undifferentiated cells capable of (a) 

proliferation, (b) self-maintenance, (c) the production of a large number of 

differentiated, functional progeny, (d) regenerating the tissue after injury, and (e) 

flexibility in the use of these options, but make a distinction between actual and 

potential stem cells- the latter being cells possessing, but not expressing, all these 

capabilities (Potten and Loeffler, 1990). 

             

Recently, it was suggested that tumours might contain “cancer stem cells”- 

rare cells with indefinite proliferative potential that drive the formation and growth 

of tumours. For example; it was shown that lymphoblastic, acute and chronic 

myeloid leukemias originate from haematopoietic stem cells (HSCs) (Bonnet and 

Dick, 1997; Mauro and Druker, 2001; George, 2001). Moreover, there are many 

similarities in the mechanisms that regulate self-renewal of HSCs and cancer cells. 

For instance, the prevention of apoptosis by enforced expression of the oncogene bcl-

2 results in increased numbers of HSCs in vivo, suggesting that cell death has a role 

in regulating the homeostasis of HSCs (Domen and Weissman, 2000). Some other 

pathways associated with oncogenesis such as the Notch, Sonic hedgehog (Shh) and 

Wnt signaling pathways, may also regulate stem cell self renewal (Taipale and 

Beachy, 2001). Furthermore, it is well documented that many types of tumours 

contain cancer cells with heterogenous phenotypes reflecting aspects of the 

differentiation that normally occurs in the tissues from which the tumours arise. The 

variable expression of normal differentiation markers by cancer cells in tumour 

suggests that some of the heterogeneity in tumours arises as a result of the anomalous 

differentiation of tumour cells. Examples of this include the variable expression of 
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myeloid markers in chronic myeloid leukaemia, the variable expression of neuronal 

markers within peripherial neurectodermal tumours, and the variable expression of 

milk proteins or the oestrogen receptor within breast cancer. In other words, both 

normal stem cells and tumorigenic cells give rise to phenotypically heterogeneous 

cells that exhibit various degrees of differentiation. Tumorigenic cells can be thought 

of as cancer stem cells that undergo an aberrant and poorly regulated process of 

organogenesis analogous to what normal stem cell do (Sell and Pierce, 1994).  

 

 

1-3.2 Origin of Hepatocellular carcinoma 

    

           As stated earlier, one of the most debated issues concerning HCC is its 

cellular origin. Various rodent models of chemically induced liver tumors are 

currently used to clarify this issue.  

            

According to the conventional theory, HCC results from “dedifferentiation” 

of mature hepatocytes into a less differentiated state without the involment of other 

cell types (Aterman, 1992). According to this model, cancer results from a multistep 

process. Chemical carcinogens act by modifying DNA of mature hepatocytes to form 

DNA adducts during the first step of initiation. In the second step of carcinogenesis, 

often referred to as promotion, other noncarcinogenic compounds increase 

hepatocarcinogenic effects, most of them being able to induce cellular proliferation. 

Arguments of this hypothesis are the findings that exposure of rats to carcinogens 

results in sequential liver alterations as follows; (a) focal proliferation of altered 

hepatocytes, (b) appearance of preneoplastic nodules, and (c) rise of cancer from 

persistent nodules (Farber and Sarma, 1987).  

             

A “stem cell origin” has been proposed as an alternative mechanism (Sell 

and Dunsford, 1989, Sell, 2001). According to this theory, HCC originates from 

“oval” cells displaying stem cell-like properties that are detected in the liver prior to 

the chemical induction of HCC in rats. First, Solt and Faber showed that 

administration of 2-acetylaminofluorene (2-AAF) together with partial hepatectomy 

results in suppression of hepatocyte proliferation and stimulation of oval cell 

proliferation (Solt et al., 1977) Later, oval cells have been observed in various 
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models of rodent experimental carcinogenesis, including exposure to DIPIN (Factor 

and Radaeva, 1993) and choline-deficient, ethionine-supplemented (CDE) diet 

(Shinozuka et al., 1978). Oval cells are small, oval shaped epithelial cells identified 

in the liver during normal embryonic development (Tian et al., 1997) and in some of 

the adult liver pathologies, such as hemochromatosis and alcohol liver disease 

(Lowes et al., 1999). Moreover they arise in the periportal region of the liver 

probably derived from cells of Hering canal, bile ducts, intraportal or periportal 

ductules, or from periductular cells (Paku et al., 2001; Sarraf et al., 1994;  Sell and 

Salman, 1984; Vessey and Hall, 2001) 

  

 Recently, it has also been suggested that oval cells may derive from bone 

marrow cells (Peterson et al., 1999). Evidence suggests that the liver oval cell is at 

least bipotential, capable of differentiating into mature hepatocytes (Evarts et al., 

1989, Coleman et al., 1993) or cholangiocytes (Germain et al., 1988a; Germain et al., 

1988b; Lenzi et al., 1992) under different experimental regimens. Progenitor cells in 

the liver are identified by their ability to express markers characteristic of immature 

hepatocytes. Such markers include albumin, transferin, alpha fetoprotein (AFP), and 

cytokeratin19 (CK19) all of which are expressed by the first primitive liver stem 

cells as well as oval cells (Cascio and Zaret, 1991). 

             

The stem cell theory is not readily applicable to human HCC that occurs 

mostly as a virally induced disease. Consequently, the “dedifferentiation” is still 

considered as the major mechanism of HCC development in man (Kojiro, 2002). 

Although “oval” cell-like structures have been described in association with different 

liver diseases (Hsia et al., 1994; Roskams et al., 1998; Lowes et al., 1999; Theise et 

al., 1999; Libbrecht et al., 2001b), these descriptive observations do not provide 

convincing evidence for a direct contribution of liver stem cells to HCC. Moreover, 

in the absence of isolated human liver stem/progenitor cells, their occurrence remains 

hypothetical, although bone morrow-derived putative stem cells appear to generate 

hepatocytes, and bile duct cells (Alison et al., 2000; Theise et al., 2000). 
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1-3.3   Stem Cells during liver embryonic development  

 

            Hepatogenesis can be considered in distinct developmental stages: 

competence, commitment, differentiation and morphogenesis. Although these stages 

reflect key aspects of hepatic development it is worth bearing in mind that they are 

closely related, interdependent, and often overlapping processes. 

 

 

From Endoderm to Liver; Determination, Commitment, and Differentiation 

This process begins on embryonal day (ED) 8.5 in the mouse with 

proliferation of undifferentiated endodermal cells of the ventral foregut and their 

migration into the septum transversum, where they come into contact with 

mesenchymal cells (Figure 1.4). 

 

            At this point, they are already specified to enter the liver lineage 

(determination) and form the hepatic diverticulum (Zaret, 2001). Mouse foregut-

derived cells begin to express AFP at ED9.0 and then albumin at ∼ED9.5, followed 

by placental alkaline phosphatase and intermediate filament proteins, cytokeratins 

14, 8 and 18 (Cascio and Zaret, 1991). Fibroblast growth factors (FGFs), particularly 

FGFs 1 and 2, can cause cardiac mesenchyme in inducing albumin gene expression 

(Jung et al., 1999). The morphology of the cells then changes to that of the 

hepatoblast (an early progenitor or stem/progenitor cell), expressing δ-glutamyl 

transpeptidase, α-antitrypsin, glutathione-S-transferase and fetal isoforms of 

aldolase, lactic dehyrogenase and pyruvate kinase in addition to AFP and albumin 

(Fausto, 1990; Brill et al., 1995; Thorgeirsson, 1996). The cells proliferate rapidly 

between ED12 and ED16 and subsequently diverge along two distinct lineages, the 

hepatocyte and cholangiocyte, beginning just prior to ED16. This time period has 

been referred to as a differentiation window in hepatic development (Marceau et al., 

1992). In cell culture prior to ED16, fetal liver epithelial cells (early progenitor cells) 

appear to have the ability to change their phenotypic gene expression pattern from 

hepatocytic to ductular or reverse, depending on the environmental (cell culture) 

conditions (Marceau et al., 1992; Blouin et al., 1995). However, after ED16, the cells 

are committed to progress along one or the other of these lineages and no longer 
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retain their bipotential properties, although they continue to proliferate (i.e. 

“committed” or late progenitor cells). However, the irreversible nature of these 

changes no longer holds, as even phenotypically fully mature cells isolated from the 

adult liver appear to switch their phenotype in culture between hepatocytic and 

ductal, depending on experimental conditions (Michalopoulos et al., 2001). 

 

 

           
                     Figure 1.4  Schematic diagram of fetal liver development in the mouse (Shafritz and 
Dabeva, 2002) 
 

 

After commitment, hepatocyte progenitor cells express antigens HBD-1, H-2, 

transferrin receptor, c-CAM and HES6 in addition to the proteins mentioned above 

and biliary epithelial cell progenitors also express CK7 and 19, OC-2, OV-6 and BD-

1 (Shiojiri et al., 1991; Fausto, 1990; Thorgeirsson, 1996; Marceau et al., 1992; 

Blouin et al., 1995). As organogenesis proceeds, intrahepatic bile ducts are formed in 

the vicinity of large portal vein branches, beginning on ED17. This is evidenced by 

formation of ductular structures containing CK19 positive epithelial cells that have 

the appearance of “strings of pearls”. The basic lobular structure is then formed, 

although the hepatic parenchymal plates or cords do not become fully mature until 

several weeks after birth. 
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Transcriptional Regulation of Liver Development 

Although the different steps involved in liver development are well described 

from the hepatic specification of ventral endoderm to the generation of hepatoblasts 

and the differentiation of mature hepatocytes, the control mechanisms underlying 

these steps are still poorly understood. Recent experiments with primary tissue 

explants of foregut endoderm have suggested the influence of positive and negative 

extracellular signals, respectively provided by cardiac and dorsal mesoderm, during 

early hepatic specification (Gualdi et al., 1996). Gene disruption in mice has 

demonstrated those factors as diverse as c-jun (Hilberg et al., 1993), RelA (Beg et al., 

1995), and both hepatocyte growth factor/scatter factor (HGF/SF; (Schmidt et al., 

1995) and its receptor Met (Bladt et al., 1995). It is generally accepted that particular 

combinations of members of four families of liver-enriched transcription factors 

(LEFT), including hepatocyte nuclear factor (HNF)3, HNF4, HNF1, and 

CCAAT/enhancer binding protein (C/EBP) control critical steps in hepatic 

differentiation, and that a hierarchy of expression of these transcription factors exists 

(Cereghini, 1996)(Figure 1.4) 

 

 
Figure 1.5 Key stages in liver development (Duncan, 2000) 

  

 

The HNF3 family of transcription factors has important roles in determining 

hepatic competency of endoderm. The initial expression of hnf-3 occurs before the 

onset of hepatic development with hnf-3β preceding to that of hnf-3α in mouse. 

HNF3 proteins share a highly conserved novel DNA binding domain and, along with 

the Drosophila forkhead protein, are the founding members of the winged helix 

family of transcription factors. HNF3 remodels the configuration of chromatin 

around transcriptional regulatory regions containing hnf-3 binding sites. It can 

interact with its DNA binding element within the context of chromatin. Upon 
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binding, HNF3 acts to disrupt linker histone binding and repositions nucleosomes 

around the regulatory region. This enhances the accessibility of other transcription 

factors such as GATA4 which acts cooperatively with HNF3 to regulate gene 

expression (Cirillo and Zaret, 1999) and Hex (hematopoietically expressed 

homeobox) that is also essential for the earliest stages of liver development 

(Martinez Barbera et al., 2000) then commitment of endoderm to a hepatic fate has 

started by the expression of AFP and Albumin. 

 

Once the pre-hepatic cells become committed to the liver-cell fate, the 

process of differentiation starts. HNF4α, which is required for complete 

differentiation of hepatocyte, binds DNA strictly as a homodimer. Expression of 

HNF4α closely correlates with the expression of the transcription factor HNF1α 

(Bulla, 1997). HNF4α and 1α combination has a key role in the expression of 

diverse sets of genes that control multiple aspects of metabolism, detoxification, and 

serum factor secretion in normal liver physiology (Spath and Weiss, 1997).   

 

 

1-3.4 Identification of Stem-Like Cells in Animal and Mouse Models 

 

 In response to the loss in the hepatic mass after partial hepatosectomy, 

hepatocytes readily proliferate to reconstitute the liver. However, when proliferation 

of hepatocytes was inhibited, a novel cell population proliferates in the liver; these 

cells are collectively termed “oval cells”. It is suggested that the oval cell 

compartment contains putative hepatic stem cells and/or their partially committed 

progeny (Sell and Pierce, 1994; Fausto, 1994).  

 

When the hepatic cells were labeled in vivo using retroviral vectors to follow 

their fate during early stages of chemical induced hepatocarcinogenesis in rats, it has 

been demonstrated that preneoplastic foci can originate from mature hepatocytes as 

similar as what dedifferentiation theory tells about the origin of HCC. However, 

workers still can not exclude the possibility that oval cells may contribute to the 

generation of foci either directly or by differentiation of oval cells to hepatocytes that 

will subsequently dedifferentiate and give rise to foci (Gournay et al., 2002) 
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Nonparenchymal liver epithelial (oval) cell lines derived from the livers of 

adult rats fed by a choline-deficient diet containing ethionine have been used to 

provide hepatocytic differentiation under different in vitro culture conditions and 

they demonstrated that cultured oval cells have capacity toward hepatocytic 

differentiation and suggested that these cells also have the capacity to differentiate 

along the bile duct lineage (Lazaro et al., 1998).  Later, Kubota and Reid (2000) used 

colony-forming assay and flow cytometry to identify rat hepatoblast, common 

precursors for hepatocytic and biliary lineages. Fetal epithelial liver cells with a dual 

hepatocytic biliary phenotype also have been isolated from monkey fetus and 

immortalized by retrovirus-mediated transfer of SV40 large T antigen to provide 

unlimited expansion capacity (Allain et al., 2002). In both of the studies, the cells 

express the liver epithelial cell markers CK8/18, the hepatocyte specific markers 

albumin and AFP, and the biliary specific markers CK7 and 19 and bipotentiality of 

gene expression was confirmed by clonal analysis initiated from a single cell. 

Recently, it was shown that hepatic stem cells isolated from mouse fetus by using 

flow cytometry and single cell-based assays are pluripotent besides having self-

renewal capacity (Suzuki et al., 2002) which means they can differentiate to the cells 

of other organs of endodermal origin under appropriate microenvironment.    

 

Haruna et al., identified bipotential progenitor cells in the developing human 

liver and studied the expression of CK14, CK19, HepPar1 and Vimentin on 19 

human fetal liver tissues taken from different periods of gestation, 4 to 40 weeks 

(Haruna et al., 1996). Since in rat experiments, activation of progenitor cells is seen 

in conditions associated with hepatocyte injury, or inhibited replication, regenerating 

human liver models are used to identify existence of hepatic stem cells in man.  

Human putative progenitor cells have been shown in chronic cholestasis, in 

regenerating human liver after submassive necrosis, hepatocellular adenomas and in 

several human liver diseases by immunostaining with cell lineage specific markers 

(Theise et al., 1999; Roskams et al., 1998; Libbrecht et al., 2001a). 
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CHAPTER 2. AIMS AND STRATEGY OF THE STUDY 
 

 

This thesis work had two main objectives. Initially, we focused on the 

genomic characterization of HCV subtype 1b which affects >90 % of hepatitis C 

patients in Turkey. This was important to study, because subtype 1b appears to be a 

potent form for hepatocellular carcinogenesis. As a continuation of this project, we 

aimed to define the cellular phenotype of HCC cells, as a critical step in the overall 

HCC programme at Bilkent University. Prior to addressing specific questions related 

to the role of HCV in HCC, it was important to define the nature of HCC cell lines to 

be used as an experimental model for future studies. To our great surprise, we 

obtained unexpected results in this second step, so that we had to extend our second 

aim to a careful investigation of HCC stem cell lines. 

 

Specific Aims I: 

Hepatitis C virus is the most important etiologic factor for the occurrence of 

hepatocellular carcinoma. And there are controversial studies regarding the different 

role of HCV genotypes on the diagnosis, disease progression and treatment. 

Therefore, determination of genotypes in selected population would be helpful to 

design the prevention policy for hepatitis infection accordingly. At the time we 

started our study, there was only one reported genotyping study in Turkey 

(Abacioglu et al., 1995) and it showed that the predominant genotype is subtype 1b 

which is the form of hepatitis C virus having severe end liver disease and resistant to 

antiviral therapy. First aim of this part of the study was to determine genotypes of 

HCV in Turkey by using direct sequencing of 5`UTR and NS5B region of 

genome and second is to sequence full genome of one of the HCV isolates as a 

predominant form by cloning of polypeptide-encoding region into seven 

overlapping fragments. Then further characterization of the clone was done by 

comparing major structural and functional motifs that are important for the 
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processing of polyprotein, replication and host response of the virus with the 

other sequences available in database. 

 

Specific Aims II: 

It was proposed that mutations affecting genes involved in wnt, hedgehog and 

TGF-β signaling pathways contribute to the “mis-specification” of stem cells 

(Taipale and Beachy, 2001, Reya et al., 2001). In this regard, it is noteworthy that 

HCC cells display mutations in genes involved in wnt and TGF-β signaling 

pathways. In the second part of study, we aimed to analyze HCC-derived lines for 

stem cell-like properties. For this, expression analysis was performed for early and 

late hepatic lineage markers such as HNF1α, 3α, 3β,.. by using semi-quantitative 

PCR and for the liver stem cell markers such as AFP, CK19 by western blotting in 

HCC cell lines. Then, self-renewing capability and multi-lineage differentiation 

potential of candidate HCC cell lines for being stem cell was tested by using in vitro 

colony assay at clonal density in which colonies initiated from a single cell would be 

stained by ALB/CK19 and ALB/AFP antibodies. Finally, we decided to further 

analyse the clonolality and in vitro modulation of differentiation program of stem 

cell-like HCC cells. 
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CHAPTER 3.  MATERIAL AND METHODS  
 

 

3-1. Genotyping of Hepatitis C Virus and Analysis of Full Genome Turkish 

HCV 1b Isolate 

 

 
3-1.1 Patients 

 

A total of 79 HCV-positive patients from the Gastroenterology Department of 

Çukurova University in Turkey were investigated for HCV genotyping. The great 

majority of these patients lived in South Anatolia and Southeast Anatolia regions at 

the time of diagnosis. All patients were positive for anti-HCV antibodies, which were 

determined using a second-generation ELISA test. Among this group of patients, a 

serum sample from a 59 year old woman suffering from chronic hepatitis C which 

was collected prior to any treatment for her disease was used for HCV cloning 

studies. 

 

 

3-1.2 Viral RNA Extraction from serum and cDNA synthesis 

 

We used a modified and optimized RNA extraction protocol derived from a 

previously published procedure (Ausubel, 1987). RNA was extracted from 300 µl of 

serum with the freshly made lysis buffer containing 4M guanidine-HSCN, 0.5% N-

laurylsarcosine, and 1% mercaptoethanol in the presence of an RNA carrier (1µg/ml) 

and 2M sodium acetate pH: 4.0. After extraction with distilled water saturated phenol 

pH: 8.0 and chloroform/isoamyl alcohol (24:1) the RNA was recovered by 

isopropanol precipitation and resuspended in 10 µl DEPC−ddH2O. First strand 

cDNA synthesis was performed using a commercial kit (MBI). Briefly, 10 µl 
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resuspended RNA was treated in a 20 µl reaction volume with 0.2 µg of random 

primers, 40 U of M-MuLV Reverse Transcriptase, 20 U of Ribonuclease inhibitor, 

and 1mM (each) deoxyribonucleotides at 37 °C for 1 hr after brief denaturing at 90 

°C. 

 

 

3-1.3 PCR amplification of 5`UTR and NS5B regions of HCV for genotyping 

studies 

 

Initially we used sequence information at 5`UTR for genotyping studies. 

Sequence information derived from NS5B region was used for confirmation studies. 

A 285 bp fragment from the 5`UTR of the HCV genome was generated with PCR 

amplification of one fourth of cDNA. The first round of “nested” PCR was 

performed using outer primers F1 (5'-ATCACTCCCCTGTGAGGAAC-3') and R1 

(5'-TGCTCATGGTGCACGGTCTAC-3'), after denaturation at 94°C for 5 min, with 

25 cycles, each containing 45s at 94°C, 45 s at 55 °C and 45 s at 72°C, followed by a 

final extension for 10 min at 72°C. For the second amplification, 8 µl of the first 

reaction mixture was further amplified with inner primers F2 (5'-

GAGGAACTACTGTCTTCACGC-3') and R2 (5’- TCTACGAGACCTCCCG 

GGGCA-3') under the previous conditions, except the annealing temperature, which 

became 60°C to generate a fragment of 285 bp. For PCR amplification of NS5B 

region, two-step PCR with the same primer set was established to generate a 400 bp 

DNA fragment-covering region 7904 to 8304 (Position of 5` base relative to HCV 

genomic sequence in Choo et al., 1991) by using NS5B Forward (5'-

TGGGGATCCCGTATGATACCCGCTGCTTTGA-3') and NS5B Reverse (5'-

GGCGGAATACCTGGTCATAGCCTCCGTGAA-3') primers. PCR amplification 

was done after denaturation at 94°C for 4 min, with 30 cycles, each containing 40s at 

94°C, 40 s at 58 °C and 40 s at 72°C, followed by a final extension for 10 min at 

72°C. For the second amplification, 4 µl of the first reaction mixture was further 

amplified with the same set of primers in a total volume of 50 µl, using Taq 

Polymerase (MBI). Specific PCR amplification of correct sized DNA fragments was 

confirmed by agarose gel electrophoresis and appropriate amount of PCR products 

(usually 100 ng) were subjected to automated nucleic acid sequencing using the same 
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sets of primers and cycle sequencing kits from Perkin Elmer and Amersham 

following the manufacturer’s instructions. Sequencing reaction products were 

analyzed on ABI-377 DNA sequencer (Perkin Elmer). 

 

 

3-1.4 Agarose Gel Electrophoresis 

 

DNA fragments were separated by gel electrophoresis using agarose at 

concentration of 0.8- 2.0 w/v in 1x TBE buffer. Samples were mixed with loading 

dye (8% deionized formamide, 1xTBE and 0.1 % bromophenol blue) and the 

samples were loaded onto the gel and electrophoresis was performed at 100V. When 

the run was complete, the gel was stained in 1xTBE containing 0.1 % EtBr for 5 

minutes and rinsed with ddH2O. DNA fragments were visualized by using UV 

transilluminator. The gel photos were captured with BioRad Multi-Analyst Software. 

 

TBE Buffer:  

Working Solution                                                      10X Stock Solution (1lt)     

45 mM Tris-borate                                                       108 g Tris Base 

1mM EDTA                                                                  55 g Boric Acid 

                                                                                       40 ml 0.5 M EDTA, pH:8.0 

 

 

3-1.5 HCV genotype identification and phylogenetic sequence analysis 

 

The 5’UTR and NS5B regions of all available genotypes at NCBI Taxonomy 

Homepage were aligned using MULTIALIN multiple alignment program to reveal 

the subtype-specific consensus sequences (http://npsa-pbil.ibcp.fr/cgi-

bin/npsa_automat.pl?page=/NPSA/npsa _multalinan.html). Using the PHYLIP 

program to determine the genotypic distribution of all samples also used the same 

groups of sequences to construct the phylogenetic tree.  In order to compute the 

distance matrix, we used DNADIST module from PHYLIP software package with 

Kimura 2-parameter model (http://sdmc.krdl.org.sg:8080/~lxzhang/phylip). 
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3-1.6 Molecular cloning and characterization of a Turkish HCV 1b isolate 

(HCV-TR1) 

 

A nearly full length HCV isolate from a 59 years old female Turkish patient 

was amplified in 7 overlapping PCR fragments Figure 3.1. Primer sets for each 

fragment, which were designed from the most conserved regions in the desired area, 

are given Table 3.1. Fragments smaller than 1 kb were amplified with Pfu DNA 

Polymerase in the first round in order to decrease the PCR-mediated mutation risk 

and in the second round Expand High fidelity PCR System (Boehringer Mannheim) 

was used to obtain PCR products with adenine overhangs. Fragments larger than 1 

kb were amplified with Expand High Fidelity System. PCR products were cloned into 

pGEM®-T Easy vector (Promega) which is a linearized vector with T overhangs in 

the multiple cloning site. Selected plasmids containing desired inserts were purified 

by using QIAfilter plasmid midi kit (Qiagen) and the automated DNA sequencing of 

the inserts were performed with sequencing primers by ABI Prism 310 Sequencer.  

(Asli Öztan, M.S. Thesis, MBG, Bilkent ) For sequencing, M13 and T7 universal 

primers that are present at the two ends of the cloning site, on the vector sequence 

and HCV sequence-derived sense and anti-sense primers were used initially. Then 

internal primers, which were designed and synthesized according to the outer 

sequencing data obtained from previous reactions, were used to complete full 

genome sequence data.  

         The obtained nucleic acid sequence was translated into protein sequence by 

Translator program (http://www.expasy.ch/tools/dna.html). Inferred amino acid 

sequence of Turkish HCV-1b isolate were aligned with 48 protein sequences of other 

HCV isolates in NCBI database (http//:www.ncbi.nlm.nih.gov) by Clustal W program 

(http://workbench.sdsc.edu) to identify the differences in amino acid sequences, that 

may be specific to the Turkish isolate. At each position, we compared the amino acid 

sequences and we defined an amino acid difference if and only if none of the amino 

acid sequence agrees with that of Turkish HCV-1b isolate. 
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Figure 3.1 : Amplification strategy of HCV genome 

 
 
 
 
Table 3.1 : Sequences of primers used for PCR amplification of overlapping cDNA regions of the 
genome of HCV isolate HCV-TR1 
 
Primer  Sequence (5`→ 3`)     Position* Amplified 

Fragment 

F1 

CoreR 

ATCACTCCCCTGTGAGGAAC 

(G/A)GAGCA(G/A)TCGTTCGTGACAT 

-306 

964 

5`UTR & 

Core 

E1F 

E2R 

CCCGGTTGCTCTTTCTCTATC 

ATGC(A/G)GCCATCTCCCGGTC 

850 

2791 

E1 & E2 

& p7 

NS2F 

NS2R 

T(C/T)CT(G/A)(C/T)TG(G/T)C(G/A)TTACCACC 

GT(C/T)TG(C/T)TG(G/A/T)G(A/C)GTAGGCCGT 

2738 

3449 

NS2 

NS3F 

NS3R 

CCGAAGGGGGA(A/G)GGAGAT 

GCACCCA(G/A)GTGCT(A/C/G)GT(G/A)ACGAC 

3354 

5326 

NS3 

NS4F 

NS4R 

ATGCATGTCGGC(C/T)GACCT 

TG(G/A)AGCCA(G/A)GTCTTGAAGTC 

5283 

6329 

NS4A & 

NS4B 

NS5AF 

NS5AR 

TATGTGCCTGAGAGCGACG 

(A/G)CG(C/T)AGCAAAGAGTTGCTCA 

6142 

7695 

NS5A 

NS5BF 

NS5BR 

AGCGACGGGTC(C/T)TGGTCTAC 

CCTGGAGTG(G/T)TT(A/G)GCTCCC 

7543 

9397 

NS5B & 

3`UTR 

 
*Nucleotide numbers according to (Choo et al., 1991). 
 

ZEUS (Core+ 5`UTR) 

Charon (Env1+ Env2+ p7) 

NS2
NS3

NS4A+NS4B

NS5A

NS5B
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3-2 Identification of Stem-like Cells in Hepatocellular Carcinoma Lines 

 
 

3-2.1 Maintenance and Subculturing of Cells 

 

All cells (listed in table 3.2) were grown in RPMI-1460 media (Sigma) 

supplemented with 10% fetal calf serum (FCS), 1% non-essential amino acids, 

100 µg/ml penicillin/streptomycin at 37oC and 5% CO2. The cells were routinely 

subcultured at 2-4 day intervals depending on the growth rate.   

 

Defrosting Cells 

One vial of the frozen cell line from the nitrogen tank was taken and 

immediately put into ice. The vial was placed into 37oC water bath until the 

external part of the cell solution is thawed (takes approximately 1-2 minutes). The 

cells were resuspended gently using a pipette and transferred immediately into a 

15 ml. sterile tube containing 10 ml cold medium. The cells were centrifuged at 

1500 rpm at 4oC for 5 minutes. Supernatant was discarded and the pellet was 

resuspended in 10 ml 37oC culture medium to be plated into 100 mm dish. Cells 

were left O/N in culture. The following morning culture medium was refreshed. 

 

Subculturing Of Cells 

Culture renewal was done when the cells reached 80-90% confluency. For 

splitting, the medium was aspirated and the cells were washed with sterile PBS 

pH: 7.4 for three times. PBS was removed and trypsin was added to the plates. 

Plates were incubated in the incubator for 3-5 minutes until the cells are detached. 

Cells were plated in the desired dilution into new plates.  

 

Freezing Cells 

 The cells to be frozen were grown in a 150 mm cell culture dish to 70-80% 

confluency at a concentration of 4x106 cells/ml for 2 or 3 days. After washed two 

times with PBS, the cells are trypsinized and detached from the plate. The 

suspension of cells are centrifuged at 1500 rpm for 5 minutes and resuspended in 

1.5 ml freeze medium containing 20% FCS, 10% DMSO, 80% DMEM unless 

otherwise indicated at ATCC definition. Then the cells are immediately placed in 



 37 

-20°C, and kept 5 hours at this temperature. Consequently, the cells are moved to 

-70°C and kept O/N at this temperature and next day transferred to liquid nitrogen 

tank. 

   
 

Table 3.2 : The cell lines used in this thesis 

   

Cell Line Age(yr)1 Tumor2 HBV3 AFP 4 Differentiation 

status 

Huh7 57 HCC - + Differentiated 

HepG2 15 HCC/HB - + Differentiated 

Hep3B 8 HCC + + Differentiated 

Hep3B-TR * HCC + * Differentiated 

Hep40 ? HCC + + Differentiated 

PLC/PRF/5 24 HCC + + Differentiated 

FOCUS 63 HCC + - Undifferentiated 

Mahlavu ? HCC - - Undifferentiated 

SK-Hep-1 52 AC - - Undifferentiated 

SNU-449 52 HCC + - Undifferentiated 

SNU-475 43 HCC + - Undifferentiated 

SNU-387 41 HCC + - Undifferentiated 

SNU-423 40 HCC + ND Undifferentiated 

SNU-398 42 HCC + ND Undifferentiated 

SNU-182 24 HCC + ND Undifferentiated 

 
1Age of the patients at the time of tumor surgery; 2HCC: hepatocellular carcinoma; HB: 
hepatoblastoma; AC: adenocarcinoma; 3HBV: presence of integrated hepatitis B virus DNA; 
4production of α-fetoprotein 
*; The TGF-β resistance Hep3B clone 
ND; not determined 
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3-2.2 In vitro Colony assays  

 

All cell lines were grown in standard culture medium with 10% FCS, as 

described previously. For low density clonal culture analyses, cells were plated on six 

well plates at a density of ~30 cells/cm2, as described by Suzuki et al (2002), except 

that cells were grown on uncoated glass coverslips in standard cell culture medium 

for 7-10 days with a medium change at day 4. The individual clones were then 

analyzed by dual immunofluorescence staining for ALB/CK19 and ALB/AFP, 

respectively.  

 

 

3-2.3 Immunofluorescence staining  

 

      Cells were seeded on the autoclaved-sterilized coverslips which were placed into 

the well of 6-multiwell plates at a proper concentration and grown for a certain time 

interval in 2 ml growth medium. Cells were washed with PBS and fixed with 

methanol at –20 °C for 5 min, and blocked against nonspecific binding with PBS 

containing 10% FCS. Then cells were incubated with polyclonal rabbit anti-human 

ALB antibody (1: 1000) (ABCAM/ ab1217), in combination with either mouse anti-

CK19 (1: 500) (Santa Cruz/ sc-6278) or mouse anti-AFP (gift from Dr.Bellet) 

(1:1000) antibody diluted in PBS-T (PBS+ 0.1% Tween-20). After washing, cells 

were incubated with a mixture of FITC-conjugated anti-rabbit (1:100) (ABCAM/ 

ab6717)) and rhodamine-conjugated anti-mouse (1:100) (ABCAM/ ab6786) 

antibodies diluted in PBS-T, for 30 minutes. Nuclear DNA was stained with Hoechst 

33258 (3 µg/ml; Sigma). Hoechst 33258 was aspirated and destaining was done in 

double-distilled water for 15 min. Immediately after coverslips were taken out from 

the well and excess water removed by tissue paper, coverslips were mounted onto 

slides containing 10 µl 80% glycerol. All steps after the addition of FITC-conjugated 

secondary antibody, were performed in the dark. Each immunostaining experiment 

was done using appropriate antibody (no first antibody) and cell line controls, in 

parallel. Stained cells were examined under fluorescence microscope (ZEISS) and 

pictures captured in a digital Kodak Camera (DC290, Eastman Kodak Co.), using 

Adobe Photo Deluxe (Adobe Systems Inc.) software. Pictures were edited using 
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Adobe Photoshop 5.0 (Adobe Systems Inc.) software. Digital images were magnified 

when needed during picture editing. 

 

Phosphate-Buffered Saline (PBS) 

Working solution (pH:7.4)                                            x10 Stock Solution (1lt) 

137 mM NaCl                                                                  80 g NaCl 
2.7 mM KCl                                                                     2 g KCl 
4.3 mM Na2HPO4.7H2O                                                  11.5 g Na2HPO4.7H2O               
11.4 mM KH2PO4                                                            2 g KH2PO4 
 

 

3-2.4 Preparation of Huh7-derived stable clones 

 

Huh7-derived clones were obtained by transfection with pCI-Neo plasmid 

(Promega) or pCI-Neo-S33Y (kindly provided by B.Vogelstein, Bethesda, USA), 

and selection of antibiotic-resistant colonies, as described (Morel et al., 2000). G-

418-resistant colonies were collected 6 weeks later into 6-well plates using cloning 

cylinders. Huh7-SC1 and Huh7-SC3 were obtained from pCI-Neo and pCI-Neo-

S33Y transfections, respectively. Although transfected with a mutant β-catenin 

plasmid, Huh7-SC3 cells did not overexpress β-catenin, and displayed no increased 

TCF4 reporter activity, compared to parental Huh7 cells (T. Cagatay & M. Ozturk, 

unpublished). 

 

 

3-2.5 External modulation of cell differentiation fate 

 

For western blot studies, Huh7 cells were grown for 3-6 days in three 

different culture media including standard culture medium, and FCS-free standard 

medium supplemented with 100 nM NaSeO3 (Sigma), or OPI (0.15 mg/ml 

oxaloacetate, 0.05 mg/ml pyruvate, 0.0082 mg/ml bovine insulin; Sigma-Catalog No: 

O-5003). Then total cell lysates were prepared and blotting was done with anti CK19 

antibody as described below. Anti CK18 antibody was used in parallel as an equal 

loading control. 
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For immunofluorescence studies, cells were grown on Matrigel-coated cover-

slips. Glass cover-slips were coated with ten-fold diluted Matrigel (Becton-

Dickinson), following instructions recommended by the supplier, and placed in 6-

well plates. Huh7 cells were seeded on cover-slips and left overnight in standard 

culture medium. The following day the medium was changed and cells were grown 

for 16 days in either OPI or selenium-complemented FCS-free medium in parallel 

standard culture medium. Culture media were changed every 4 days. Then the cells 

were analyzed by dual immunofluorescence staining for ALB/CK19 and ALB/AFP, 

respectively.  

 

 

3-2.6 Immunoblotting 

 

Crude Total Protein Extraction from Cultured Cells 

Cells were grown to 70-80% confluency and washed two times with ice-

cold PBS. Cells were scraped in ice-cold PBS and centrifuged at 1500 rpm for 5 

minutes at 4oC. Pellet was either frozen in liquid nitrogen or lysed immediately in 

NP-40 lysis buffer (250 mM NaCl, 1.0% NP-40, 50 mM Tris (pH 8.0), Protease 

Inhibitors coctail(Sigma)) which is prepared freshly just before use. For lysis, the 

pellet was resuspended in 4-5 volume of NP-40 lysis buffer and incubated in ice 

for 30 minutes by stirring the cell within 10 minutes periods. The lysate was 

centrifuged at 14.000 rpm for 15 minutes at 4oC. Supernatant was taken to a fresh 

tube and following protein quantitation, aliquoted and stored at –70oC. 

 

Bradford Assay for Protein Quantification 

           Stock Bovine Serum Albumin (BSA) was prepared as in concentration 1.0 

mg/ml and kept at -20°C. 

Different dilutions of BSA was prepared as described below:  

Tubes nb.s 1 2 3 4 5 6 7 8 

BSA stock (µl) 0 2.5 5 7.5 10 12.5 15 20 

ddH2O (µl) 100 97.5 95 92.5 90 87.5 85 80 

Bradford working(µl) 900 900 900 900 900 900 900 900 
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Protein samples were prepared as described below: 

Tubes numbers 1 2 3 4 5 

Sample(µl) 0 2 2 2 2 

DdH2O(µl) 98 98 98 98 98 

Bradford working(µl) 900 900 900 900 900 

Lysis buffer 2 - - - - 

(1= blank in both tables) 

 

 

Blanks, BSA standards, test samples were prepared in disposable plastic 

cuvettes and were allowed to incubate at room temperature in dark for 5 minutes. 

The absorbance of each sample was measured at 595 nm using a UV-visible 

spectrophotometer. The absorbance of each BSA standard was ploted linearly as a 

function of its theoretical concentration and the best fit of the data was determine to a 

straight line in the form of the equation "y = mx + b" where y = absorbance at 595 

nm and x = protein concentration. Finally, this equation was used to calculate the 

concentration of the protein sample based on the measured absorbance. 

 

Bradford Stock Solution                                     Bradford Working Solution 

100 ml 95 % ethanol                                      42.5 ml ddH2O 

200 ml 88% phosphoric acid                          1.5 ml 95% ethanol      

           350 mg Serva Blue G                                      3 ml 88% phosphoric acid 

Stable indefinitely at RT                                 3 ml Bradford stock solution     

                                                                              Filter through Whatman No:1                           

                                                                              paper; Store at RT in a brown                           

                                                                              glass bottle. Usable for several 

                                                                   weeks but may need refiltered. 

 

SDS-Polyacrylamide Gel Electrophoresis of Proteins 

The glass plates were assembled according to the manufacturer's 

instructions (EC). The volume of the gel mold was determined according to the 

information provided by the manufacturer (EC). In an Erlenmeyer flask, the 
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appropriate volume of solution containing the desired concentration of 

acrylamide for the resolving gel was prepared. Effective range of separation of 

SDS-PAGE gels due to different acrylamide concentrations are summarized in 

Table 3.3 and concentrations of components of the 10% resolving gel, which was 

used in this thesis, are summarized in Table 3.4. 

 
Table 3.3 : Effective range of separation of SDS-PAGE gels 

 

            Acrylamide concentration (%)             Linear range of separation (kD) 

                         15                        12-43 

                         10                        16-68    

                        7.5                        36-94 

                        5.0                        57-212 

  

  Without delay, the mixture was swirled rapidly and the acrylamide 

solution was poured into the gap between the glass plates. Sufficient space (the 

length of the teeth of the comb plus 1 cm.) for the stacking gel was left. The 

acrylamide solution was overlayed by using a pasteur pipette with isobutanol. The 

gel was placed in a vertical position at room temperature. After polymerization 

was complete, the overlay was poured off and the top of the gel was washed 

several times with deionised water to remove any unpolymerized acrylamide. As 

much as possible fluid was drained from the top of the gel and then any 

remaining water was removed with the edge of a paper towel. Stacking gel was 

prepared in a disposable plastic tube at an appropriate volume and at desired 

acrylamide concentration. Concentrations of components of the stacking gel at 

different volumes are summarized in Table 3.5. Without delay, the mixture was 

swirled rapidly and the stacking gel solution was poured directly onto the surface 

of the polymerized resolving gel. The comb was immediately inserted into the 

stacking gel, being careful to avoid trapping air bubbles. The gel was placed in a 

vertical position at room temperature. While the stacking gel was polymerizing, 

the samples to be loaded were prepared by heating them to 100oC for 5 minutes 

in 1X SDS gel-loading buffer to denaturate the proteins. After polymerization 

was complete, the comb was removed carefully. By using a squirt bottle, the 
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wells were washed with deionized water to remove any unpolymerized 

acrylamide. The gel was mounted in the electrophoresis apparatus. Tris-glycine 

electrophoresis buffer was added to the top and bottom reservoirs. The bubbles 

that were trapped at the bottom of the gel between the glass plates were removed 

by a bent hypodermic needle attached to a syringe. 30-200 µg of protein was 

loaded in a predetermined order into the wells. The electrophoresis apparatus was 

attached to an electric power supply and the gel was run at 80 volts until the dye 

front has moved to the resolving gel, after the voltage was increased to 15 V/cm, 

until the bromophenol blue reaches the bottom of the resolving gel. Then the 

power supply was turned off. The glass plates were removed from the 

electrophoresis apparatus and placed on a paper towel. By using a spatula, the 

plates were pried apart. Orientation of the gel was marked by cutting a corner 

from the bottom.  

 

Tris-glycine electrophoresis buffer: 

 25 mM Tris 

 250 mM glycine (electrophoresis grade) 

 0.1% SDS 

30% mix (Acrylamide and bis-acrylamide solution) 

A stock solution composed of 29% (w/v) acrylamide and 1% (w/v) bis-

acrylamide, prepared in water. Solution was stored in dark bottles at 4oC. 

10% SDS 

 A 10% (w/v) stock solution was prepared in ddH2O 

APS 

            A small amount of 10% stock solution was prepared freshly in ddH2O  

5X gel loading buffer   

            3.8 ml ddH2O 

1.0 ml 0.5 M Tris-HCl 

0.8 ml glycerol  

1.6 ml 10% SDS  

0.4 ml 0.05% BPB fluid 

400 µl β-Mercapto ethanol (added freshly) 
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Table 3.4 Solution of preparing 10% resolving gel for Tris-glycine SDS-PAGE 

 

Solution components                                   Component Volumes (ml) 

10% 5 ml 10 ml 15 ml 20 ml 25 ml 30 ml 40 ml 50 ml 

ddH2O 1.9 4.0 5.9 7.9 9.9 11.9 15.9 19.8 

30% mix 1.7 3.3 5.0 6.7 8.3 10.0 13.3 16.7 

1.5 M Tris (pH 8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5 

10% SDS 0.05 0.1 0.15 0.20 0.25 0.30 0.40 0.50 

10% APS 0.05 0.1 0.15 0.20 0.25 0.30 0.40 0.50 

TEMED 0.002 0.004 0.006 0.008 0.010 0.012 0.016 0.020 

 

 
 

Table 3.5: Solution of preparing 5% stacking gels for Tris-glycine SDS-PAGE 

 

Solution components                         Component Volumes (ml) 

5% gel 1 ml 2 ml 3 ml 4 ml 5 ml 6 ml 

ddH2O 0.68 1.4 2.1 2,7 3.4 4.1 

30% mix 0.17 0.33 0.50 0.67 0.83 1.0 

1.0 M Tris (pH 6.8) 0.13 0,25 0.38 0.50 0.63 0.75 

10% SDS 0.01 0.02 0.03 0.04 0.05 0.06 

10% APS 0.01 0.02 0.03 0.04 0.05 0.06 

TEMED 0.001 0.002 0.003 0.004 0.005 0.006 

 

 

 

Semi- Dry Transfer of Proteins from SDS-Polyacrylamide Gels to Solid Supports 

As the SDS-polyacrylamide gel was approaching the end of its run, four 

pieces of Whatman 3MM paper and one piece of transfer membrane (PVDF) was 

cut to the exact size of the SDS-SDS-polyacrylamide gel by wearing gloves. One 

corner of the membrane was marked with a soft-lead pencil. The membrane was 

left in methanol for 1 minutes and then washed with deionized water and soaked 
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into transfer buffer for 15-20 minutes. Meanwhile the Whatman 3MM papers 

were soaked into a shallow tray containing a small amount of transfer buffer and 

kept shaking for 1 minute. 

The transfer apparatus was set as follows: 

 - 2 layers of Whatman 3MM paper that have been soaked in transfer 

buffer were put onto the plate which will be positively charged (anode). All air 

bubbles were squeezed. 

 - The membrane was placed onto the Whatman 3MM papers. (The 

transfer membrane should be exactly aligned and the air bubbles trapped between 

it and the Whatman 3MM paper should be squeezed out.) 

 - The glass plates holding the SDS-polyacrylamide gel were removed 

from the electrophoresis tank, and the gel was transferred to a tray of deionized 

water. 

 - SDS-polyacrylamide gel was placed onto the transfer membrane. Any 

trapped air bubbles were squeezed out with a gloved hand. 

 - 2 layers of Whatman 3MM paper were placed to the top of the sandwich 

(this side will be negatively charged during the transfer (cathode side)). 

The upper plate of the apparatus will be the cathode during the transfer. 

The electrical leads of the apparatus were connected to the power supply and the 

transfer was carried out at a current of 3.5 mA/cm2 of the gel for a period of 30-

45 minutes. The electric current was turned of at the end of the run time and the 

transfer apparatus was disassembled from top downward, peeling off each layer 

in turn. The gel was transferred to a tray containing Coomassie Brilliant Blue and 

stained in order to check if the transfer is complete or not. The top left-hand 

corner of the membrane was cut as insurance against obliteration of the pencil 

mark.  

Transfer Buffer: 

2.9 g Glycine 

5.8 g Tris base 

0.37 g SDS 

200 ml methanol 

Adjust volume to 1 lt with ddH20 
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Immunological detection of immobilized proteins (Western Blotting) 

The membrane was washed gently with deionized water and neutralized 

with the blocking buffer containing 3% milk powder in 0.1% Tween 20-PBS 

solution for 5 minutes. In order to inhibit non-specific binding sites, the 

membrane was immersed in the blocking solution for one hour. Primary antibody 

(Table 3.6) was diluted according to instructions in blocking solution and 

incubated with the membrane at room temperature for one hour or at 4oC O/N on 

a slowly rotating platform. Afterwards the membrane was washed three times, 

once for 15 minutes and twice for 5 minutes, with PBS-T. Following the washes, 

the membrane was incubated with an secondary antibody HRP-conjugated anti-

mouse Ig (DAKO) which is diluted as 1:1500 in blocking solution for 1 hour at 

room temperature and then washed three times with PBS-T. Then the membrane 

becomes ready for incubation with substrate and development 

 
Table 3.6  The primary antibodies used in this thesis for the western blotting 

 

Company Origin Against/ clone name Clonality Final 

concentration  

* Mouse AFP /AF01 Monoclonal 0.5 µg/ml 

* Mouse Cytokeratin18/JAR13 Monoclonal 0.5 µg/ml 

Santa cruz/ 

 

Mouse Cytokeratin19/   

A53-B/A2 

Monoclonal 0.2 µg/ml 

Transduction 

Labs.  

Mouse GSK-3b/clone7 Monoclonal 0.1 µg/ml 

 * both kindly provided by D.Bellet, France 

 

 

            For detection ECL (Enhanced ChemiLuminescence; Amersham 

Pharmacia Biotech. Cat. No. RPN 2106) was carried out according to the 

manufacturer`s instructions. 
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3-2.7    Expression analysis of a gene by semi-quantitative PCR 

 

 

3-2.7.1 Extraction of total RNA from tissue culture cells  

  

            The isolation of RNA requires pure reagents and care in preparation due to 

the sensitivity of RNA to chemical breakdown and cleavage by nucleases. Therefore, 

all the solutions (except Tris) were made either with DEPC-treated water or treated 

with 0.1% DEPC overnight at 37 °C. The centrifuge tubes were soaked overnight in 

solution of 0.1% DEPC prior to autoclaving and all glass ware were baked at 180°C 

overnight. 

 

Exponentially growing monolayer cultures were washed twice with ice-cold 

PBS, scraped with scraper, pelleted and snap frozen in liquid nitrogen, and stored at -

80°C until needed for RNA preparation. Frozen cells quickly thawed and lysed with 

Tripure. Alternatively cells were lysed directly in 150 mm tissue culture dishes with 

Tripure reagent. The Tripure (Roche) isolation reagent was used for isolation of total 

RNA from cultured cells. The Tripure is a monophasic solution of phenol and 

guanidine thiocyanate, which allows the isolation of total RNA, DNA and protein 

from the same sample in single-step liquid separation. Tripure reagent RNA isolation 

protocol was followed as manufacturer’s instruction. Total RNA pellets were 

dissolved in 50 µl of DEPC-treated water. This procedure yields approximately 5-10 

µg RNA /106 cells. Integrity and quality of total RNAs was checked with gel 

electrophoresis (as described in section 3.2.7.2 and spectrophotometric 

quantification was performed. 

 

 

3-2.7.2 Formaldehyde Containing RNA Gel and RNA Electrophoresis 

 

1% Formaldehyde containing agarose gel is prepared as follows: 11 ml 5X 

Forrmaldehyde gel running buffer (10 ml of 2M Sodium Acetate, 10.3 gr MOPS and 

390 ml DEPC treated distilled water is mixed and pH is adjusted to 7.0 with Sodium 

Hydroxide (~15 ml 5M NaOH). 5 ml, 0.5 M, pH. 8.0 EDTA is added and the 
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solution is added up to 500 ml), 35 ml DEPC water and 0.5 gr agarose is added and 

the sample is heated to boil in a microwave owen. When the solution is cooled to 60-

70 degrees, 10 ml Formaldehyde is added and the gel is immediately poured into the 

casted apparatus. 

 

RNA samples for loading are prepared as follows: 15 µl of RNA loading 

buffer (50% formamide, 20% Formaldehyde, 15% 5X running buffer, 15% 

glycerol-dye, premixed and stored at -20 degrees) and 5 µl of RNA sample is 

mixed, heated at 70 degrees for 5 minutes, chilled on ice. The prepared samples 

are loaded to the gel and run at 80V for 45 minutes and stained in Et-Br 

containing water for 5 min and destained overnight in distilled water. 

 

 

3-2.7.3 First strand cDNA sythesis 

 

First strand cDNA synthesis from total RNA was performed using RevertAid 

First Strand cDNA synthesis kit from MBI. The RevertAid kit relies on genetically 

engineered version of Moloney Murine Leukemia Virus reverse transcriptase 

(RevertAid M-MuLV RT) with low RNase H activity. This allows the synthesis of 

full-length cDNA from long templates. The first stand reactions were primed with 

oligo(dT) primer to specifically amplified mRNA population with 3’-poly(A) tails. 

As the reaction conditions and components of this kit and those of conventional PCR 

are compatible, first strand synthesized with this system can be used as a template for 

the PCR. 

  

3.5 µg total RNA was used to synthesize the first stand cDNA following the 

manufacturer’s instruction.  After 1:1 dilution of total reaction products in DEPC-

treated water, 2 µl of diluted first strand cDNA was used for PCR.  

 

 

3-2.7.4 Primer design for expression analysis by semi-quantitative PCR 

 

 Expression profile analysis of a gene can be performed by semi-quantitative 

PCR of first strand cDNAs. The primer pairs will be used in such study should be 
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design carefully. Forward and reverse primer should be positioned on different 

exons of the gene of interest, that the primer pair should either be able to produce 

a longer amplicon from genomic DNA or should not be able to amplify from the 

covered genomic DNA region in a given PCR conditions (critical parameter is 

extension time) therefore the amplicon, which will be amplified from cDNA, 

should not be longer than 1500 bp. Primers were used for expression analysis 

have been designed strictly considering these criteria as in Figure 3.2 and listed in 

Table 3.7 

 

 

3-2.7.5 Fidelity and DNA Contamination control in first strand cDNAs 

 

            The fidelity and genomic DNA contamination of in first strand cDNAs 

were checked before making expression analysis. 2µl of diluted first strand cDNA 

was used for PCR amplification of glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), a ubiquitously expressed transcript. GAPDH primer pair for this 

analysis was designed to produce a 151 bp fragment from cDNA and 250 bp 

fragment from genomic DNA (Table 3.7).  

 

 

3-2.7.6 PCR Amplification using cDNA  

  

Target DNA sequences between a pair of oligonucleotide primers were 

amplified by using thermostable DNA Polymerase of T. aquaticus (Taq) (MBI). 

A typical 50 µl PCR reaction contained 2 µl cDNA as DNA template, 25 pmol of 

each primer, 2 mM of each dNTP (200mM), 1.5 mM MgCl2 (25mM), 1x Taq Pol 

buffer, and 2 units Taq DNA Polymerase (5u/µl). PCR amplification was done 

after denaturation at 94 °C for 4 min, with optimized number of cycles, each 

containing 30 sec at 94 °C, 30 sec at proper Tm of primer and 30 sec at 72 °C, 

followed by a final extension for 10 min at 72°C by using an automated thermal 

cycler (Perkin Elmer Gene Amp PCR System 9600). The product was assessed by 

agarose gel electrophoresis and EtBr staining as described above. 
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3-2.7.7 Determination of optimal cycle number for semi-quantitative PCR of a 

gene 

 

Using an equal amount of templates for PCR amplifications of a gene of 

interest gives comparable results at a specific number of PCR cycles. The number of 

optimal PCR cycle was determined by an initial study for each gene by performing 

35-cycle PCR during which PCR amplicon samples were collected by 2 cycle 

intervals. Agarose gel analysis of samples from 20th, 23rd, 26th, 29th, 32nd, and 35th 

cycles of PCR with an equal load defined the minimum number of cycle to visualize 

the product on agarose gel and the saturation cycle. Agarose gels were analyzed by 

Densitometric Fluorescence-Chemiluminescence image analyzer and The Molecular 

Analyst software (BioRad). The determined cycle number was used for amplification 

of gene of interest.  

 

 

3-2.7.8 GAPDH Normalization  

 

Equal volume (2µl) of all first strand cDNA samples was used for cold-PCR 

amplification of GAPDH transcript using the pre-determined optimal cycle number 

for GAPDH. Then equal volume of each sample was loaded onto agarose gel and 

intensity of each band was analyzed by Densitometric Fluorescence-

Chemiluminescence image analyzer and The Molecular Analyst software. After 

intensities were determined, intensity of sample with the highest densitometric 

reading and 2 µl loading volume were used as reference points for normalization of 

input loading volume of other samples for expression analysis of both GAPDH and 

gene of interest by cold PCR amplification. Amplification products were analyzed in 

computer. 

 

 

3-2.7.9 PCR amplification of selected transcripts using the optimized cDNA 

 

 The PCR reactions were carried out as described above. The transcript 

specific primers are summarized in Table 3.7.  Position of primers and size of the 

amplified fragments can be seen as a schematic representation in Figure 3.2. 
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Table 3.7 Primers Used In the semi-quantitative RT-PCR analysis of hepatocyte nuclear factors 

 

NAME                               SEQUENCE            Tm(°C)                            

HNF-3β- Forward        5`-CCGTCCGACTGGAGCAGCTACTAT-3`   62             
HNF-3β- Reverse        5`-CGTGTAGCTGCGCCTGTAGGTCTT-3                              
 
HNF-3α- Forward      5`-GGAACTGTGAAGATGGAAGG-3`                    59              
HNF-3α- Reverse       5`-GTGATGAGCGAGATGTACGAGTAG-3`                          
 
HNF-1α- Forward      5`-CGGAGGTGCGTGTCTACAACTGGT-3`           62            
HNF-1α- Reverse       5`-CAGGAAGTGAGGCCATGATGAGGT-3`                            
 
HNF-4α- Forward      5`-AGACAAGAGGAACCAGTGCCGCTA-3           62               
HNF-4α- Reverse      5`-CCTTCATGGACTCACACACATCTG-3`                           
 
GAPDH- Forward     5’-GGCTGAGAACGGGAAGCTTGTCAT-3’         64   
GAPDH- Reverse     5’-CAGCCTTCTCCATGGTGGTGAAGA-3’                
 

 

 
Figure 3.2 Schematic representation of the primers position on the exonic structure of hepatocyte 
nuclear factors 3β, 3α, 1α and 4α, respectively. 
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CHAPTER 4.  RESULTS AND DISCUSSION 
 

 

 As explained in the “Aims and strategy of the study” section, this Ph D 

project is composed of two separate, but complementary subjects. The first was 

related to genomic identification of a Turkish HCV 1b isolate as a predominant viral 

form in Turkey. As a part of a long term project on HCC at Bilkent University, we 

aimed to characterize HCC cell lines as potential experimental models of viral 

hepatocarcinogenesis. This characterization work led us to discover that α-feto 

protein producing HCC cells act as liver stem cells in vitro.  

 

 For these reasons, “Results and Discussion” will be presented under two 

separate sections. 

 

 

4-1    Molecular Characterization of a Full Genome Turkish Hepatitis C virus 

1b isolate (HCV-TR1): a predominant viral form in Turkey 

 

 

4-1.1  Hepatitis C virus genotyping in Turkish patients 

 

A total of 79 HCV RNA-positive sera from patients living in southern Turkey 

were used for genotyping. The amplified 5`UTR region was analyzed by automated 

DNA sequencing. The sequence data was compared with HCV subtype-specific 

consensus sequence data as described in ‘Material and Methods’.  A phylogenetic 

tree for HCV subtypes in our sample population was constructed in comparison with 

consensus HCV genotypes. For the analysis, a 100-base region located between 

nucleotides -172 and -72 of HCV was selected, since this region was variable enough 

between HCV subtypes. Out of 79, 70 samples displayed unambiguous nucleotide 



 53 

sequence at this region. The sequence similarities between our sample population 

ranged from 84 and 100 %. In order to build the pyhlogenetic tree, we included 1a, 

1b, 2a, 2b, 3a, 3b, 4a, 4b and 4c subtype consensus sequences into our population 

data, and examined the distances between sequence clusters. Prior to this analysis, 

we calculated sequence similarities between subtype consensus sequences, which 

ranged from 75 % (between 2a and 3b) to 99 % (between 1a and 1b). The 

phylogenetic tree indicated that out of 70 nucleic acid sequences, 3 were clustered 

with 1a subtype and displayed 0 to 0.0102 evolutionary distances. Sixty-five 

sequences were grouped together with 1b subtype showing a distance rate of 0 to 

0.0219. One sequence was grouped with 2a subtype with a zero evolutionary 

distance, while another sequence grouped with subtype 4c consensus with zero 

evolutionary distance. There was no sequence clustered with 2b, 3a, 3b and 4a 

subtypes (Figure 4.1). This phylogenetic tree analysis showed that 5`UTR data can 

be used for subtype identification. Accordingly, the remaining 9 samples were 

genotyped by manual alignment with subtype-specific consensus sequences. To 

confirm HCV genotyping results obtained by 5`UTR sequence data, 19 randomly 

selected samples were genotyped using NS5B region sequence data and all samples 

displayed the expected genotype (data not shown). When combined together, these 

analyses indicated that, 72 of 79 patients (91%) displayed 1b genotype of HCV, and 

5/79 (6 %) had genotype 1a.  Thus, all but 2 of 79 HCV genotypes analyzed had 

genotype 1. The other two samples displayed subtypes 2a and 4c, respectively. 
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Figure 4.1  Pylogenetic tree of the 5`UTR sequences from 70 isolates (filled circles) of HCV from 
Turkey. The consensus sequence data for subtypes 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b and 4c (arrows) were 
included as reference sequences.  The genetic distances were calculated with the DNADIST module 
from PHYLIP software package and were based on a Kimura 2-parameter matrix with a transition to 
transversion ratio of 2.  
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4-1.2  Molecular Characteristics of Turkish isolate of HCV 1b (HCV-TR1) 

 

           Following our identification of subtype 1b as the main HCV genotype 

affecting Turkish patients, we decided to obtain full genome sequence information 

from a Turkish HCV 1b isolate. Using a single serum sample obtained from a patient 

prior to any treatment, we cloned the major portion of HCV genome into 7 

overlapping fragments. When combined together, these clones covered the entire 

sequence for HCV polyprotein, as well as most of the nucleotides of the 5`UTR and 

3`UTR regions. The overlapping regions all contained identical sequences. The 

Turkish 1b isolate which we named HCV-TR1, comprises 9361 nucleotides, 

including 306 nucleotides of 5`UTR, a single long open reading frame of 9033 

nucleotides, and 22 nucleotides of 3`UTR (data submitted to GenBank nucleotide 

sequence database and assigned the accession number AF483269) (Figure 4.2). This 

genomic sequence showed highest homology (91 % identity) to a reported HCV 1b 

isotype (strain HCV-1b, clone HCV-K1-R2) from Japan, when tested by BLAST 

using GenBank database. The HCV-TR1 displayed a single open reading frame 

encoding a 3010-amino acid polyprotein which showed 93 % identity to clone HCV-

K1-R2.  

 
 
LOCUS             AF483269                9361 bp    RNA     linear   VRL 21-MAR-2002 
DEFINITION   Hepatitis C virus type 1b isolate HCV-TR1 from Turkey, complete genome. 
ACCESSION   AF483269 
VERSION        AF483269.1  GI:19568932 
KEYWORDS    . 
SOURCE          Hepatitis C virus type 1b. 
  ORGANISM   Hepatitis C virus type 1b 
                          Viruses; ssRNA positive-strand viruses, no DNA stage; Flaviviridae; 
                          Hepacivirus. 
REFERENCE   1  (bases 1 to 9361) 
  AUTHORS     Yildiz,E., Oztan,A., Akkiz,H. and Ozturk,M. 
  TITLE            Molecular chracterization of a full genome Turkish Hepatitis C virus 1b  
                          isolate (HCV-TR1): a dominant viral form in Turkey 
  JOURNAL      Unpublished 
REFERENCE   2  (bases 1 to 9361) 
  AUTHORS     Ozturk,M. 
  TITLE             Direct Submission 
  JOURNAL      Submitted (13-FEB-2002) Molecular Biology and Genetics, Bilkent 
                          University, Bilkent, Ankara 06533, Turkey 
FEATURES      Location/Qualifiers 
     source          1..9361 
                          /organism="Hepatitis C virus type 1b" 
                          /isolate="HCV-TR1" 
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                          /db_xref="taxon:31647" 
                          /country="Turkey" 
     CDS             307..9339 
                          /codon_start=1 
                          /product="polyprotein" 
                          /protein_id="AAL91977.1" 
                          /db_xref="GI:19568933" 
                     
/translation="MSTNPKPQRKTKRNTNRRPQDVKFPGGGQIVGGVYLLPRRGPRLGVR
XTRKTSERSQPRGRRQPIPKVRRPEGRAWAQPGYPWPLYGNEGXGWAGWLLSPRG
SRPSWGPTDPRRRSRNLGKVIDTLTCGFADLMGYIPLVGAPLGGAARALAHGVRVL
EDGVNYATGNLPGCSFSIFLLALLSCLTMPASAYEVRNVSGAYHVTNDCSNSSIVYE
AADMIMHTPGCVPCVRENNSSRCWVALTPTLAARNGSVPTTAIRRHVDLLVGAATF
CSAMYVGDLCGSVFLVSQLFTFSPRRHETVQDCNCSIYPGHVSGHRMAWDMMMN
WSPTTALVVSQLLRIPQAIMDMVAGAHWGVLAGLAYYSMVGNWAKVLIVMLLFA
GVDGDTYVTGGTSGRATAGFVSLFASGPTQRIQLVNTNGSWHINRTALNCNESLNT
GFLAALFYTHKFNASGCPERMASCRPIDKFAQGWGPITYTEPEDLDQRPYCWHYAP
RKCGIIPAAEVCGPVYCFTPSPVVVGTTDRFGVPTYRWGENETDVLLLNNTRPPQGN
WFGCTWMNSTGFTKTCGGPPCNIGGAGNNTLLCPTDCFRKHPDATYTKCGSGPWL
TPRCMVDYPYRLWHYPCTVNFTVFKVRMYVGGVEHRLSAACNWTRGERCDLEDR
DRSELSPLLLSTTEWQVLPCSFTTLPALSTGLIHLHQNIVDVQYLYGIGSAVVSFAIK
WEYILLLFLLLAYARVCACLWMMLLIAQAEAALEILVVLNAASVAGAHGILSFLVFF
CAAWYIKGRLVPGAAYALYGVWPLLLLLLALPPRAYAMDREMAASCGGAVFIGLA
ILTLSPHYKVLLAKLIWWSQYFITRAEAHVQVWTPPLNVRGGRDAIILLTCAVHPELI
FEITKILLAVLGPLMVLQAGITRVPYFVRAQGLIRVCMLVRKAAGGHYVQMALMRL
GALTGTYLYDHLTPLRDWAHAGLRDLAVAVEPVIFSDMETKVITWGADTAACGDII
SGLPVSARRGREILLGPADSFKGQGWRLLAPITAYSQQTRGLLGCIITSLTGRDKNQV
EGEVQVVSTATQSFLATCVSGACWTVYHGAGSKTLAGPKGPITQMYTNVDQDLVG
WPAPPGARSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYLKGSSGGP
LLCPSGHAVGIFRAAVCTRGVAKAVDFVPVESMETTMRSPVFTDNSSPPAVPQTFQV
AHLHAPTGSGKSTKVPAAYAAQGYKVLVLNPSVAATLSFGAYMSKAHGVEPNIRT
GVRTVTTGAGITYSTYGKFLADGGCSGGAYDIIICDECHSTDSTTILGIGTVLDQAET
AGARLVVLATATPPGSVTVPHPNIEEVALSNTGEIPFYGKAIPVEVIKGGRHLIFCHSK
KKCDELAAKLSGLGLNAVAYYRGLDVSVIPTSGDVVVVATDALMTGFTGDFDSVID
CNTCVTQTVDFSLDPTFTIETTTVPQDAVSRSQRRGRTGRGRAGIYRFVTPGERPSG
MFDSSVLCECYDAGCAWYELTPAETSVRVRAYLNTPGLPVCQDHLEFWESVFTGLT
HIDAHFLSQTKQAGDNFPYLVAYQATVCARAQAPPPSWDQMWKCLIRLKPTLHGP
TPLLYRMGAVQNEVNLTHPVTKYIMACMSADLEVVTSTWVLVGGVLAALAAYCL
TTGSVVIVGRIILSGKPAIIPDREALYQAFDEMEECASHLPYIEQGMQLAEQFKQKAL
GLLQTATKQAEAAAPVVESKWRALETFWAKHMWNFISGIQYLAGLSTLPGNPAIAS
LMAFTASITSPLTTQHTLLFNILGGWVAAQLAPPSAASAFVGAGIAGAAVGSIGLGK
VLVDILAGYGAGVAGALVAFKVMSGEMPSTEDLVNLLPAILSPGALVVGVVCAAIL
RRHVGPGEGAVQWMNRLIAFASRGNHVSPTHYVPESDAAARVTQILSSLTITQLLKR
LHQWINEDCSTPCSGSWLRDIWDWICTVLSDFKTWLQSKLLPRLPGVPFFSCQRGYK
GVWRGDGIMHTTCSCGAQITGHVKNGSMRIVGPKTCSNTWHGTFPINAYTTGPCTP
SPAPNYTRALWRVAAEEYVEVTRVGDFHYVTGMTTDNVKCPCQVPAPEFFTEVDG
VRLHRYAPACKPLLREEVTFQVGLNQYLVGSQLPCEPEPDVTTLTSMLIDPSHITAET
AKRRLARGSPPSLASSSASQLSAPSLKATCTTHHDSPDADLIEANLLWRQEMGGNIT
RVESENKVVILDSFDPLRAEEDEREVSVPAEILRKSRRFPSAMPVWARPDYNPPLLES
WENPDYVPPVVHGCPLPPTKAPPIPPPRRKRTVVLTESTVSSALAELATKTFGSSGSS
AVDSGTATAPPDQSPDDGDAGSDAGSYSSMPPLEGEPGDPDLSDGSWSTVSEEASE
DVVCCSMSYTWTGALITPCAAEESKLPINALSNSLLRHHNMVYATTSRSASQRQKK
VTFDRLQVLDDHYRDVLKEMKAEASTVKAKLLSVEEACKLTPPHSAKSKFGYGAK
DVRNLSSKAVNHIRSVWEDLLEDTETPIETVIMAKNEVFCVKPXMGGRKPARLIVFP
DLGVRVCEKMALYDVVSTLPQAVMGSSYGFQYSPAQRVEFLVNAWKSKKNPMGF
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SYDTRCFDSTVTENDIRVEESIYQCCDLTPEARQAIRSLTERLYIGGPMTNSKGQNCG
YRRCRASGVLTTSCGNTLTCYLKASAACRAAKLQSCTMLVNGDDLVVICESAGTQE
DAASLRVFTEAMTRYSAPPGDLPQPEYDLELITSCSSNVSVAHDASGKRVYYLTRDP
TTPLARAAWETARHTPVNSWLGNIIMYAPTIWARMILMTHFFSILLVQEQLEKALDC
QIYGAYYSIEPLDLPQIIQRLHGLSAFSLHSYPPGEINRVASCLRKLGVPPLRVWRHR
ARSVRAKLLSQGGRAATCGRYLFNWAVRTKLKLTPIPAASRLDLSGWFVAGYSGG
DIYHSLSRARPRWFMLCLFLLSVGVGIYLLPNR" 
 
BASE COUNT     1883 a   2832 c   2690 g   1953 t      3 others 
ORIGIN       
        1 atcactcccc tgtgaggaac tactgtcttc acgcagaaag cgcctagcca tggcgttagt 
       61 atgagtgtcg tgcagcctcc aggacccccc ctcccgggag agccatagtg gtctgcggaa 
      121 ccggtgagta caccggaatt gccaggacga ccgggtcctt tcttggatca acccgctcaa 
      181 tgcctggaga tttgggcgtg cccccgcgag actgctagcc gagtagtgtt gggtcgcgaa 
      241 aggccttgtg gtactgcctg atagggtgct tgcgagtgcc ccgggaggtc tcgtagaccg 
      301 tgcaccatga gcacgaatcc taaacctcaa agaaaaacca aacgtaacac caaccgccgc 
      361 ccacaggacg tcaagttccc gggcggtggt cagatcgttg gtggagttta cttgttgccg 
      421 cgcaggggcc ccaggttggg tgtgcgcscg actaggaaga cttccgagcg gtcacaacct 
      481 cgtggaaggc gacaacctat ccccaaggtt cgccgacccg agggcagagc ctgggctcag 
      541 cccgggtatc cttggcccct ctatggcaat gagggcntgg ggtgggcagg atggctcctg 
      601 tcaccccgtg gctcccggcc tagttggggc cccacagacc cccggcgtag gtcgcgtaat 
      661 ctgggtaagg tcatcgatac cctcacatgc ggcttcgccg acctcatggg gtatattccg 
      721 cttgtcggcg cccccctagg gggcgctgcc agggccctgg cgcatggcgt ccgggttctg 
      781 gaggacggcg tgaactatgc aacagggaat ctgcccggtt gctctttctc tatcttcctc 
      841 ttggctctgt tatcttgtct gaccatgcct gcttccgctt atgaggtgcg caacgtgtcc 
      901 ggggcgtacc atgtcacgaa cgactgctcc aactcaagca tagtgtatga ggcagcggac 
      961 atgatcatgc acacccccgg gtgcgtgccc tgcgttcggg agaacaactc ctcccgctgc 
     1021 tgggtggcgc tcactcccac gcttgcggct aggaatggta gcgtccccac tacggcaata 
     1081 cgacgccatg tcgatttgct cgttggggcg gctaccttct gctccgctat gtacgtgggg 
     1141 gatctctgcg gatctgtttt ccttgtttcc cagctgttca ccttctcgcc tcgccggcat 
     1201 gagacagtgc aggactgcaa ctgttcaatc tatcccggcc acgtatcagg tcaccgtatg 
     1261 gcttgggata tgatgatgaa ctggtcaccc acaacagctc tagtggtgtc gcagttactc 
     1321 cggatcccac aagccatcat ggacatggtg gcgggggccc actggggagt cctggcgggc 
     1381 cttgcctact actccatggt ggggaactgg gctaaggttt tgattgtcat gctactcttt 
     1441 gccggcgtcg acggggatac ctatgtgaca ggagggacga gcggccgcgc caccgccggg 
     1501 ttcgtgtccc tctttgcatc cggaccaact cagagaatcc agcttgtaaa caccaacggt 
     1561 agctggcaca tcaataggac cgccctcaac tgcaacgagt ccctcaacac cgggttcctt 
     1621 gccgcgctgt tctatacaca caagttcaat gcgtccggat gcccggagcg catggccagc 
     1681 tgccgcccca tcgacaagtt cgctcaggga tggggtccta tcacctacac cgagcccgag 
     1741 gacctggacc agaggcctta ctgctggcac tacgcaccta gaaagtgcgg catcataccc 
     1801 gcggcggagg tgtgcggccc agtatactgc ttcaccccga gccctgtcgt ggtggggaca 
     1861 accgatcggt tcggcgttcc tacgtataga tggggggaga acgagacgga cgtgctgctc 
     1921 ctcaacaaca cgcggccacc gcaaggcaac tggttcggct gtacatggat gaatagcact 
     1981 gggttcacca agacgtgcgg gggccccccc tgtaacatcg ggggggccgg caacaacacc 
     2041 ttgctatgcc ccacggattg cttccggaag caccccgacg ccacatacac caaatgcggt 
     2101 tcagggcctt ggttgacacc taggtgcatg gttgactacc catacagact ctggcattac 
     2161 ccctgcactg tcaactttac cgtcttcaag gtgaggatgt acgtgggggg cgtggaacac 
     2221 aggctcagcg ctgcatgcaa ttggactcgg ggagagcgtt gcgacttgga ggacagggac 
     2281 agatcggagc tcagcccgct gctgctgtct acaacagagt ggcaagtgtt gccctgttcc 
     2341 ttcaccacct tgcccgccct gtccactggt ttgatccatc tacatcagaa catcgtggac 
     2401 gtgcagtacc tgtacggtat agggtcggcg gttgtctcct ttgccatcaa atgggagtat 
     2461 atcctgctgc tcttcctcct cctggcgtac gcgcgagtct gcgcttgcct gtggatgatg 
     2521 ctgctgatag cccaggctga ggccgcccta gagatcctgg tggtcctcaa tgcggcgtcc 
     2581 gtggccgggg cacacggcat tctctccttc cttgtgttct tctgtgctgc ctggtacatc 
     2641 aagggcaggc tggtccctgg ggcggcatac gccctctacg gcgtgtggcc gctgctcctg 
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     2701 ctcctgctgg cgttaccacc gcgagcatat gccatggacc gggagatggc tgcatcatgt 
     2761 ggaggcgcgg ttttcatagg tctggcaatt ttgaccttgt caccgcacta taaggtgctc 
     2821 ctagcaaaac ttatatggtg gtcacaatac tttatcacca gggccgaggc gcatgtgcaa 
     2881 gtgtggaccc cccccctcaa cgttcggggg ggccgtgatg ccatcatcct cctcacttgc 
     2941 gcggtccacc cagagctaat ctttgaaatc accaagattt tgctcgccgt gctcggtccg 
     3001 ctcatggtac tccaggctgg cataaccaga gtgccgtact ttgtgcgcgc tcagggcctc 
     3061 attcgtgtgt gcatgttggt gcggaaagcc gctgggggtc attacgtcca aatggccctc 
     3121 atgaggttgg gcgccctgac aggcacgtac ctttatgacc atcttactcc actgcgggac 
     3181 tgggcccacg cgggcctgcg ggacctcgcg gtggcagttg agcccgtcat cttctctgac 
     3241 atggagacca aggtcatcac ctggggggca gacaccgcgg cgtgtgggga catcatctcg 
     3301 ggcctacccg tctccgcccg aagggggagg gagatacttc taggaccggc cgatagcttt 
     3361 aaggggcagg gatggcgact ccttgcgcct attacggcct actcccagca gacgcggggc 
     3421 ctacttggct gcatcatcac tagcctcaca ggccgggata agaaccaggt cgagggggaa 
     3481 gtccaagtgg tttccaccgc aacccagtct ttcctagcaa cctgtgtcag cggcgcgtgt 
     3541 tggactgtct accatggtgc cggctcaaag accctagctg gcccgaaagg accaatcacc 
     3601 caaatgtaca ccaatgtaga ccaggatctc gtcggctggc cggcgccccc tggggcgcgc 
     3661 tccttgacgc catgcacctg cggcagctcg gacctttact tggtcacgag gcatgccgat 
     3721 gtcattccgg tgcgccggcg gggcgacagc agggggagcc tgctctctcc caggcccatc 
     3781 tcctatttaa agggttcttc gggtggacca ctgctctgcc cctcggggca cgctgtgggc 
     3841 atcttccggg ctgctgtgtg cacccggggg gttgccaagg cggtggactt tgtacccgtt 
     3901 gagtccatgg aaaccactat gcggtctccg gtcttcacgg acaactcgtc ccccccggcc 
     3961 gtaccgcaga cattccaagt ggcccatctg cacgctccca ctggcagcgg taagagcact 
     4021 aaggtgccgg ctgcatacgc agcccaaggg tacaaggtac tcgtcctgaa cccgtccgtt 
     4081 gccgctacct taagtttcgg ggcgtatatg tccaaggcac atggtgtcga acccaacatt 
     4141 agaactgggg taaggaccgt caccacgggc gccggcatta cgtattccac ctacggcaag 
     4201 ttccttgctg atggcggttg ctctggaggc gcctatgaca tcataatatg tgatgagtgc 
     4261 cactcaactg actcgactac catcttgggc atcggcacgg tcctggacca agcggagacg 
     4321 gctggagcgc gactcgtcgt gctcgccacc gctacgcctc cgggatcggt caccgtgcca 
     4381 catcccaaca ttgaggaggt ggccctgtcc aacactggag agatcccctt ctatggcaaa 
     4441 gccatccccg ttgaggtcat caagggggga aggcatctca ttttctgcca ctccaagaag 
     4501 aaatgtgacg agctcgccgc aaaactgtcg ggcctcggac tcaatgctgt agcgtattac 
     4561 cggggccttg atgtgtccgt cataccgacc agcggagacg tcgttgtcgt agcaactgac 
     4621 gctctaatga cgggctttac tggcgacttt gactcagtga tcgactgtaa cacgtgtgtc 
     4681 acccaaacag tcgatttcag cctggacccc accttcacca tcgaaacgac gaccgtgccc 
     4741 caggacgcag tgtcgcgctc gcagcggcgg ggcaggactg gcaggggcag ggcaggcatc 
     4801 tacaggtttg tgactccggg agaacggcct tcgggcatgt tcgactcttc ggtcctgtgc 
     4861 gagtgctatg acgcgggctg tgcatggtac gagcttacgc ccgccgagac ctcagttagg 
     4921 gtacgggctt acctaaatac accagggttg cccgtctgcc aggaccactt ggagttctgg 
     4981 gaaagcgtct ttacaggcct tacccacata gatgctcact tcttgtccca gactaagcag 
     5041 gcaggagaca acttccccta tctggtagca taccaggcta cggtgtgcgc cagggcccag 
     5101 gccccacctc catcatggga tcaaatgtgg aagtgcctca tacggctaaa acctacgctg 
     5161 cacggaccaa cgcccctgct gtataggatg ggagccgtcc aaaacgaggt caacctcaca 
     5221 caccccgtaa ccaaatacat catggcatgc atgtcggctg acctggaggt cgtcaccagc 
     5281 acctgggtgc ttgtaggcgg ggtcctcgcg gctctggccg catattgttt gacaacaggc 
     5341 agcgtggtca ttgtgggcag gatcatcttg tccggaaagc cggcaatcat tcccgacagg 
     5401 gaagctctct accaggcgtt cgatgagatg gaggagtgcg cctcacacct cccttacatc 
     5461 gaacagggaa tgcaactcgc cgagcaattc aagcagaagg cgctcgggtt gttgcaaaca 
     5521 gcgaccaaac aagcggaggc cgctgctccc gtggtggagt ccaagtggcg ggcccttgag 
     5581 accttctggg cgaagcacat gtggaacttc attagcggga tacagtactt agcaggcttg 
     5641 tccactctgc ctgggaaccc cgcaatagca tcactgatgg cattcacagc ctctatcact 
     5701 agcccgctca ccactcaaca caccctcctg tttaatatct tggggggatg ggtagccgcc 
     5761 caactcgcgc cccccagcgc cgcttctgcc ttcgtgggcg ccggcattgc aggtgcggct 
     5821 gttggcagta taggccttgg gaaagtgctt gtggacatcc tggcgggcta tggagcgggg 
     5881 gtggcaggcg cgctcgtggc ctttaaggtc atgagtggcg agatgccctc tacagaggat 
     5941 ctggtcaact tactccctgc tatcctctct cctggtgccc tggtcgtcgg agtcgtgtgc 
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     6001 gcagcaatac tgcggcggca tgtgggccca ggagaggggg cggtacaatg gatgaaccgg 
     6061 ctgatagcgt tcgcttcacg gggtaaccac gtttccccca cgcactacgt gcctgagagc 
     6121 gacgctgcag cgcgtgtcac tcagatcctc tctagcctta ccatcactca gctgctgaag 
     6181 aggctccacc agtggattaa tgaggactgc tccacgccgt gttccggctc gtggctaagg 
     6241 gacatctggg actggatatg cacggtgttg tctgacttca agacctggct ccagtccaag 
     6301 cttctgccgc ggttaccggg agtccccttc ttctcatgcc aacgtgggta taagggagtc 
     6361 tggcgcggag acggcatcat gcacaccacc tgttcatgtg gggcacagat caccggacat 
     6421 gtcaaaaacg gttccatgag gatcgttggg ccaaaaacct gcagtaacac gtggcatgga 
     6481 acatttccca tcaacgcgta caccacgggc ccttgcacac cctccccagc gccaaactat 
     6541 actagggcgc tgtggagggt ggccgcagag gagtacgtgg aggttacgcg ggtgggggat 
     6601 ttccactacg tgacgggcat gaccaccgac aacgtcaagt gcccatgcca ggttccggcc 
     6661 cccgaattct tcacagaagt ggatggggtg cggctgcata ggtacgctcc ggcgtgcaaa 
     6721 cccctcctac gggaggaggt cacattccag gtcgggctca accagtatct ggtcgggtcg 
     6781 cagcttccgt gtgagcccga gccggacgtg acaacgctca cctccatgct catcgacccc 
     6841 tcccacatca cagcagagac tgctaagcgt aggttggcca gagggtctcc cccctccttg 
     6901 gccagctcct cagctagcca gttatctgcg ccttccctga aggcgacatg caccactcac 
     6961 catgactccc cagacgctga cctcattgag gccaacctcc tgtggcggca ggagatgggc 
     7021 ggaaacatca cccgcgtgga gtctgagaac aaggtagtaa tcctggactc tttcgacccg 
     7081 cttcgagcgg aggaggacga aagggaagtg tccgttccag cggagatcct gcggaaatcc 
     7141 aggagattcc cttcagcgat gcccgtgtgg gcacgcccag attacaaccc tccattgcta 
     7201 gagtcttggg agaacccgga ctacgtccct ccagtggtac acgggtgccc attgccacct 
     7261 actaaggccc caccaatacc acctccacgg aggaagagga cggttgtcct gacagaatcc 
     7321 accgtgtctt ccgccctggc ggagcttgct actaagacct tcggtagctc cggatcgtca 
     7381 gccgttgaca gcggcacggc gaccgcccct cccgaccagt cccccgacga cggcgacgca 
     7441 gggtctgacg ctgggtcgta ctcctccatg cccccccttg agggggagcc gggggatccc 
     7501 gatctcagcg acgggtcctg gtctaccgtg agcgaggagg ctagtgagga cgtcgtttgc 
     7561 tgctcgatgt cctacacatg gacaggcgcc ctgatcacgc catgcgccgc ggaggagagc 
     7621 aagctgccca tcaatgcgct gagcaactct ttgctgcgtc accataacat ggtgtacgcc 
     7681 acaacatccc gcagcgcaag tcagcggcag aagaaggtca cctttgacag actgcaggtc 
     7741 ctggatgacc attaccggga cgtgcttaag gagatgaagg cggaggcgtc cacagttaag 
     7801 gctaaacttc tatccgtgga agaagcctgc aagctgacgc ccccacactc ggccaagtct 
     7861 aaatttggct atggggcaaa ggacgtccgg aacctatcca gcaaggccgt taaccacatc 
     7921 cgctccgtgt gggaggacct gctggaagac actgagacac caatcgagac cgtcatcatg 
     7981 gcaaaaaatg aggttttctg cgtcaaacca raaatgggag gccgcaagcc agctcgctta 
     8041 atcgtgttcc cagacttggg ggttcgtgta tgcgagaaaa tggccctcta cgacgtggtc 
     8101 tccacccttc ctcaggccgt gatgggctcc tcatatggat tccagtactc tcctgcacag 
     8161 cgggtcgagt tcctggtgaa tgcctggaaa tcaaagaaaa accctatggg tttctcgtat 
     8221 gacacccgct gttttgactc gacggttact gagaatgaca tccgtgttga ggagtcaatt 
     8281 tatcaatgtt gtgacttgac ccccgaagcc agacaggcta taaggtcgct cacggagcgg 
     8341 ctttacatcg ggggccccat gaccaattca aaagggcaga actgcggtta tcgccggtgc 
     8401 cgcgcgagcg gcgtgctgac gactagctgc ggtaataccc tcacatgtta cttgaaagcc 
     8461 tctgcggcct gtcgagctgc aaagctccag agctgcacga tgctcgtgaa cggagacgac 
     8521 ctcgtcgtta tctgtgagag cgcgggaacc caagaggacg cggcgagcct acgagtcttc 
     8581 acggaggcta tgactaggta ctctgccccc cccggggacc tgccccaacc agaatacgac 
     8641 ttggagttga taacatcatg ctcctccaat gtgtcagtcg cgcacgatgc atctggcaaa 
     8701 agagtatact acctcacccg cgaccccacc accccccttg cacgggctgc gtgggagaca 
     8761 gctagacaca ctccagttaa ctcctggcta ggcaacatca tcatgtacgc gcccaccata 
     8821 tgggcaagga tgattctgat gactcacttc ttttccatcc ttctagtcca ggagcaactt 
     8881 gagaaagccc tagattgtca gatctacggg gcctattact ccattgagcc acttgaccta 
     8941 cctcagatca ttcaacgact ccatggtctt agcgcattct cactccacag ttaccctcca 
     9001 ggtgagatca atagggtggc ttcatgcctc aggaaacttg gggtaccgcc cttgcgagtc 
     9061 tggagacatc gggccagaag tgtccgcgct aagctactgt ctcagggggg gagggctgcc 
     9121 acatgtggta gatacctctt caactgggca gtaaggacca agctcaaact cactccaatt 
     9181 ccggctgcat ctcggttgga cttgtccggc tggtttgttg ctggttacag cgggggagac 
     9241 atatatcaca gcctgtctcg tgcccgaccc cgctggttta tgttgtgcct cttcctactt 
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     9301 tccgtagggg taggcatcta tctgctcccc aaccgatgaa cggggagcca accactccag 
      9361 g 

Figure 4.2 Complete sequence of HCV-TR1  

 

 

            Proteolytic processing of HCV polypeptide between C-E1, E1-E2, E2-p7 and 

p7-NS2 is performed by host cell proteases, whereas viral proteases cleave between 

the nonstructural proteins NS2-NS3, NS3-NS4A, NS4A-NS4B, NS4B-NS5A and 

NS5A-NS5B (Hagedorn and Rice, 2000). HCV-TR1 polypeptide displayed no major 

amino acid change in boundary regions at proteolytic cleavage sites (data on 

cleavage sites of nonstructural proteins shown in Table 4.1), suggesting that it can be 

correctly processed into HCV proteins, including core (1-191; 191 aa), E1 (192-383; 

192 aa), E2 (384-746; 363 aa), p7 (747-809; 63 aa), NS2 (810-1026; 217 aa), NS3 

(1027-1657; 631 aa), NS4A (1658-1711; 54 aa), NS4B (1712-1972; 261 aa), NS5A 

(1973-2419; 447 aa), NS5B (2420-3010; 591 aa) proteins.  

 

Table 4.1 Comparison of inferred amino acids at proteolytic cleavage sites between HCV-TR1, HCV-
J and HCV-BK 

 
Genotype NS2/NS3    NS3/NS4A  
HCV-TR1 ADSFKGQGWRLL ↓ APITAY MACMSADLEVVT ↓ STWVLV 
HCV-J      ADSFGEQGWRLL ↓ APITAY MACMSADLEVVT ↓ STMVLV 
HCV-BK ADSLEGRGLRLL ↓ APITAY MACMSADLEVVT ↓ STMVLV 
 
Genotype NS4A/ NS4B    N4SB/NS5A  
HCV-TR1 ALYQAFDEMEEC ↓ ASHLPY HQWINEDCSTPC ↓ SGSWLR 
HCV-J VLYQEFDEMEEC ↓ ASHPLY HQWINEDCSTPC ↓ SGSWLK 
HCV-BK LLYQEFDEMEEC ↓ ASHPLY HQWINEDCSTPC ↓ SGSWLR 
 
Genotype NS5A/NS5B  
HCV-TR1  SEEASEDVVCC ↓ SMSYTW 
HCV-J      SGEAGEDVVCC ↓ SMSYTW 
HCV-BK  SEEASEDVVCC ↓ SMSYTW 
 

↓ : denotes cleavage sites. Amino acid residues of HCV-TR1 those are different from that of two other 
HCV-1b isolates (Kato et al., 1990, Takamizawa  et al., 1991) are underlined.  

 

            Because of nucleic acid sequence ambiguities, we were not able to determine 

the amino acid residue in 3 positions. The alignment of this polyprotein sequence 

with that of other 48 HCV-1b isolates available at the GenBank database revealed 

that there was overall 36 amino acid substitutions in the Turkish isolate. 20 of these 
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substitutions occurred at amino acid residues that showed variations among different 

1b isolates. In contrast, the remaining 16 amino acid changes of HCV-TR1 occurred 

at conserved amino acid residues. Out of 16 unique amino acid substitutions, half 

were conserved, the other half not being conserved (Table 4.2).   

 

Table 4.2  Summary of amino acid differences between the HCV-TR1 Turkish isolate and other 
characterized HCV-1b genomes 

 

Region Amino Acid 
Position 

Other HCV 1b isolates1 HCV-
TR1 

Type of 
Substitution2 

E2 591 E D C 
E2 728 D Y NC 
E2 750 N I NC 

NS3 1075 N S C 
NS3 1539 L V C 
NS3 1628 L M C 

NS4A 1704 E A NC 
NS5A 2170 V T NC 
NS5A 2176 T I NC 
NS5B 2493 K E NC 
NS5B 2556 T V NC 
NS5B 2567 Q K C 
NS5B 2570 K M NC 
NS5B 2838 L I C 
NS5B 2897 S P C 
NS5B 2996 L F C 

     
Core 187 I, T, V M  
E2 397 F, G, H, I, L, M, Q, R, S, Y A  
E2 478 D, G, H, N, Q, R, S, V E  
E2 493 P, Q, R K  
E2 580 I, T L  
E2 626 I, L V  

NS2 828 F, L I  
NS2 857 L, M V  
NS2 861 I, V T  
NS2 949 I, V L  
NS3 1290 P, S G  
NS3 1382 I, L V  
NS3 1636 I, T, V N  

NS5A 2030 P, Q S  
NS5A 2079 S, F T  
NS5A 2302 K, R E  
NS5B 2554 D, N, Q E  
NS5B 2617 G, K A  
NS5B 2665 A, S, V T  
NS5B 2736 D, N S  

 
1Data obtained from 48 HCV 1b isolate amino acid sequences available at the GenBank database. 
2Conserved (C) and non-conserved (NC) amino acid substitutions at residues conserved in all 
published sequenced were based on PAM250 amino acid scoring matrix (Dayhoff  et al., 1978).   
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4-1.3 Main features of HCV-TR1 polyprotein primary structure  

 

            When compared to consensus HCV 1b polypeptide sequence, ten conserved 

cystein residues (14, 89, 170, 223, 243, 274, 279, 295, 366, 521) of HCV (Okamoto 

et al., 1992c), five N-glycosylation motifs (NXS) of E1 protein (Dubuisson et al., 

2000), the catalytic triad (His57, Asp81, Ser139;), AX4GKS motif involved in ATP 

binding, as well as Cys97-Cys99-Cys145-His149 metal binding site of NS3/NS4A 

heterodimeric serine protease (De Francesco et al., 1996, Kim et al., 1996, Kim et al., 

1997) were conserved. In addition, motifs I (207-GXGKS/T-211), II (290-DECH-

293), III (322-TATPP-326), V (410-ATDALMTGFTGDFD-423), VI (460-

QRXGRXGR-467) and putative Motif IV (370-SK-371) of NS3 helicase were 

maintained in HCV-TR1 (De Francesco et al., 1996, Kim et al., 1996, Kwong et al., 

2000). The ISDR (Interferon Sensitivity Determining Region) of NS5A (2209-

PSLKATCTTHHDSPDADLIEANLLWRQEMGGNITRVESEN-2248) was also 

conserved (Enomoto et al., 1996). The HVRI region which is the most prone to 

mutation in HCV, was also maintained for 25 of 27 residues in HCV-TR1 

(Puntoriero et al., 1998). These comparative data indicates that viral proteins 

encoded by HCV-TR1 share the main structural and functional features with other 

HCV isolates. 

             

The HCV virus was shown to harbour several Cyotoxic T-Cell (CTL) and T-

Helper Cell-specific dominant epitopes which may play a major role in host 

immunity toward viral infection (Urbani et al., 2001). Table 4.3 shows 

immunodominant CTL epitopes of HCV, in comparison with corresponding amino 

acid residues of HCV-TR1. There are 8 known major CTL epitopes of HCV. Among 

those, one epitope located on NS4B protein (aa 1671-1680), and 2 epitopes located 

on NS5A protein ( aa 1992-2000 and 2145-2154) were fully conserved in HCV-TR1. 

In contrast, HCV-TR1 displayed amino acid substitutions in the five remaining 

epitopes located on core, E2, NS3, NS5A and NS5B proteins, respectively. Of 

particular interest, 6 out of 11 (55%) amino acid residues of an E2 epitope (aa 402-

412) were different in HCV-TR1. Similarly, two NS3 epitopes (aa 1073-1081 and 

1406-1415, respectively) displayed amino acid changes in three positions (30-33 % 

difference). In contrast to high rate of mutations in CTL epitopes, the dominant T-
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Helper Cell-specific epitope located on NS3 protein (aa 1251—1259; 

VLVLNPSVA) was conserved in HCV-TR1 (Rehermann and Chisari, 2000) 

 

Table 4.3  Comparisons of immunodominant Cytotoxic T cell epitopes of HCV with corresponding 
amino acid residues in Turkish isolate HCV-TR1 

 

Viral Protein   Aminoacid No       Epitope1 HCV-TR1* 

Core    178-187  LLALLSCLTV LLALLSCLTM 

E2    402-412  SLLAPGAKQNV SLFASGPTQRI 

NS3  1073-1081  CINGVCWTV CVSGACWTV 

   1406-1415  KLVALGINAV KLSGLGLNAV 

NS4B  1671-1680  VLAALAAYCL VLAALAAYCL 

NS5A  1992-2000  VLSDFKTWL VLSDFKTWL 

   2145-2154  LLREEVSFRV LLREEVSFRV 

   2221-2231  SPDAELIEANL SPDADLIEANL 

NS5B  2594-2602  ALYDVVTKL ALYDVVSTL 

1 From refs. (Rehermann and Chisari, 2000; Urbani et al., 2000). 

*Amino acid residues of HCV-TR1 that are different from the known epitope are underlined 

 

 

4.1.4 Discussion on Turkish HCV 1b viral genome 

 

 Hepatocellular carcinoma (HCC) is one of the most frequent carcinomas 

worldwide, with an estimated 564,000 new cases per year and almost as many deaths 

in 2000 (Parkin et al., 2001). It has strong association with several etiologic factors 

such as aflatoxin, alcohol and viral hepatitis. Indeed, both hepatitis C and B viruses 

contribute to the etiology of about 80% of global HCC. 
             

Hepatitis C virus chronically infects at least 1% of the world`s population and 

causes end liver disease. It has been postulated that HCC largely develops indirectly 

as a result of the inflammatory responses due to persistent infection of HCV that lead 

to hepatocyte destruction, regeneration and fibrosis. HCV displays a remarkable 

degree of genomic diversity, with the six major genotypes and numerous subtypes 
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differing in geographical distribution. Moreover, there is an argument about the role 

of HCV genotypes in the progression of severe liver disease and in the resistantance 

to antiviral therapy. So, it is important to know the genotype of HCV which infect a 

certain population to develop better strategies regarding public health. 

 

            Although a variety of methods have been used for genotyping HCV, 

nucleotide sequencing of a phylogenetically informative region remains the gold 

standard. The first observation of this study was that a 100 bp sequence region (-172 

to -72) of HCV 5`UTR carries enough sequence variations for differential analysis of 

9 subtypes of genotypes 1 through 4, as shown in Figure 4.1. The phylogenetic 

analysis also showed that the HCV isolates identified in Turkish patients did not 

diverge from other known and commonly found HCV isolates. Indeed, the great 

majority of these isolates (91 %) were identified as subtype 1b with a maximum 

evolutionary distance of 0.0219 within this group based on kimura2 parameters. The 

subtype 1a was rare (6 %), while genotypes 2 and 4 were exceptional (1/79 for each 

case). Thus, more than 90 % of HCV infections in Turkish patients living in the 

southern region are caused by a single subtype, namely 1b. Since 5`UTR region of 

genome has only one base pair difference in between subtype 1a and 1b, 

confirmation experiments performed by using NS5B region were required. There is 

100% concordance between the results of these two methods and they permitted a 

correct characterization of genotypes. Also, our results confirm earlier reports for 

Turkish patients that showed 1b as a predominant subtype in other regions of Turkey 

(Abacioglu et al., 1995, Simsek et al., 1996). Thus, it appears that HCV infections in 

Turkey are due almost exclusively to a single subtype, namely subtype 1b.            

 

The predominance of 1b subtype in Turkey correlates with the north-south 

gradient of increased 1b subtype occurrence in Europe. For example, a similarly high 

frequency of 1b subtype (91%) was reported for Sicilian patients, while only 8 % of 

HCV infections in Finland are due to the same subtype (Maertens and Stuyver, 

1997).  It was hypothesised that HCV infections with 1a subtype in Europe are due to 

the use of blood products originating from the USA. The low prevalence of 1a 

subtype in Turkey may support this hypothesis and indicates that HCV infections in 

Turkey are due to the local propagation of a 1b subtype. The exceptional occurrence 

of genotype 4 in southern Turkey is in favour of such a hypothesis. This particular 
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genotype is endemic in Egypt and highly prevalent in other Middle East countries 

with the exception of Israel (Shemer-Avni et al., 1998; Abdulkarim et al., 1998). It 

appears that the genotype 4 did not propagate from these countries towards Turkey.  

             

After identification of subtype 1b as the predominant genotype, whole 

genome sequencing of a Turkish HCV-1b isolate from a single human carrier was 

performed. When compared to other variants of 1b subtype, the Turkish HCV-1b 

isolate displayed highest homology to a Japanese 1b strain. The reasons of this close 

relationship between Turkish and Japanese HCV isolates are presently unknown. As 

reported by Smith et al. (1997), the average time of divergence of variants of subtype 

1b was about 70-80 years ago. In addition, the absence of country-specific groupings 

by phylogenetic analysis of subtype 1b sequences suggested that the spread of this 

genotype occurred on a worldwide basis at a similar time (Simmonds and Smith, 

1997). Thus, the high homology of a Turkish isolate (HCV-TR1) with a Japanese 

isolate provides further evidence for this prediction.  The HCV-TR1 polyprotein 

displayed amino acid substitutions at 36 positions when compared to other 1b 

variants. More than 50% of these substitutions occurred at residues that were 

heterogenous among different isolates. However, HCV-TR1 displayed specific 

changes in 16 positions and 8 of them were nonconserved amino acid substitutions 

(Table 4.2). To further characterize HCV-TR1 isolate, we examined the amino acid 

sequence at the proteolytic cleavage sites and we found high conservation at the 

amino acid level, suggesting no alteration in the processing of the polyprotein. In the 

ISDR there was only one amino acid difference between HCV-BK isolate and 

Turkish HCV-1b isolate and also the amino acid sequence of Turkish isolate was 

identical to that of HCV J isolate at the ISDR. It was reported that HCV-1b isolates 

with more than 4 amino acid difference form HCV-J isolate are related to higher 

response to interferon treatment (Enomoto et al., 1996).  As we found no 

substitution, we expect to have lower response to interferon treatment. Lastly, we 

investigated the conservation of 26 cysteine residues in envelope proteins of Turkish 

HCV-1b isolate. Cysteine residues are conserved in four types of HCV, which is 

thought to be important for intra- and interchain disulfide bond formation. Disulfide 

bonds may provide the proper folding of envelope proteins, E1 and E2 (Okamoto et 

al., 1992c). There was no substitution in the cysteine residues and this is a promising 

evidence for proper folding of the E1 and E2 proteins of the Turkish HCV1b.  



 66 

Therefore, it appears that the Turkish HCV-TR1 share similar features with other 

HCV isolates in terms of amino acid residues directly involved in protein function. 

 

In contrast to the conservation of functional characteristics of viral proteins, a 

high number of immunodominant epitopes of HCV-TR1 displayed structural 

changes. Of particular interest, three CTL epitopes, one located on E2 and two on 

NS3 viral proteins displayed a high rate of amino acid substitutions (30-55%). Based 

on the fact that major functional features of HCV proteins are conserved, but many 

CTL-epitopes displayed substitutions at several amino acid residues, we believe that 

mutations affecting immunodominant viral epitopes in HCV-TR1 are not due to 

experimental errors and represent true changes in the immunogenicity of this strain. 

HCV-specific CD8+ cytotoxic T lymphocytes are believed to play an important role 

in the pathogenesis of liver cell injury and viral clearance in HCV infection 

(Rehermann and Chisari, 2000). The efficacy of anti-viral cytotoxic immune 

response relies on the availability of viral epitopes to be recognized by specific 

CTLs. The fact that 6 out of 9 major CTL epitopes of HCV-TR1 are different from 

the consensus epitope sequence (Table 4.3), strongly suggests that the host immune 

response to this viral strain is defective or deficient. Further studies are needed to 

know whether mutations affecting immunodominant CTL epitopes may serve as a 

basis for unusually high frequency of HCV infections with 1b subtype in Turkish 

patients. More importantly, immunodominant CTL epitopes are considered as 

candidates for design of therapeutic vaccines for HCV (Urbani et al., 2001). Such 

vaccines may not be efficient against strains such as HCV-TR1 since they display 

major amino acid changes at candidate vaccine epitopes. 
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4-2   α-Fetoprotein-Producing Hepatocellular Carcinomas As Liver Stem Cell 

Cancers 

 

4-2.1 AFP-producing HCC cell lines express early and late hepatic lineage 

markers 

 

           We initially screened liver cancer-derived cell lines (n=15) for the expression 

of several hepatocyte nuclear factors (HNFs), because of their known roles in the 

formation of embryonic liver stem cells and hepatocyte differentiation. HNF-

3 (FOXA) family of proteins are among the earliest factors expressed in the 

endoderm from which the liver bud is derived (Zaret, 2001), and HNF-3β acts as a 

hepatic competency factor (Duncan, 2000) whose activity must be critical for stem 

cell properties of embryonic hepatoblasts, progenitors of both hepatocytes and bile 

duct cells. On the other hand, HNF-4α and HNF-1α are necessary for hepatocyte-

specific expression of genes encoding proteins involved in liver functions (Kaestner, 

2000; Duncan, 2000). On the basis of HNF expression, cell lines formed two groups. 

The first group including Huh7, Hep40, HepG2, PLC/PRF/5, Hep3B and its TGF-β-

resistant clone Hep3B-TR expressed all four HNFs tested. The second group formed 

by the remaining cell lines displayed an incomplete expression pattern (Figure 4.3a). 

These observations suggested that a subset of liver cancer cell lines (first group) have 

in common to specifically express the factors needed for hepatic lineage competency, 

as well as liver differentiation.  

 

Next, we selected five cell lines from each group on the basis of their 

reported tumor origin as adult HCC (Figure 4.3b) to compare their ability to express 

liver stem cell markers AFP and cytokeratin (CK)19. AFP, the earliest known marker 

for hepatic lineage competency, marks specifically hepatoblasts and “oval” cells, 

whereas CK19 is a marker for late hepatoblasts and “oval” cells, but also bile duct 

cells (Fausto, 1994, Shafritz and Dabeva, 2002). As tested by western blotting, HCC 

cell lines formed two homogeneous groups, the first expressing both AFP and CK19, 

the second negative for both markers (Figure 4.3b).  
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 c        Committed endodermal cells (AFP+ Alb- CK19-) 

         

                  Early Hepatobalst (AFP+ Alb+ CK19-) 

 

                 Late Hepatoblast (AFP+ Alb+ CK19+) 

 

Hepatocyte (AFP- Alb+ CK19-)                 Bile Duct (AFP- Alb- CK19+)   

    
 

Figure 4.3: Hepatic transcription factor and lineage marker expression in liver cancer cell lines. (a) 
Expression analysis of HNF-3β, HNF-3α, HNF-4α and HNF-1α transcripts in 15 liver cancer-derived 
cell lines by semi-quantitative RT-PCR. GAPDH was used as a cDNA input control for PCR. (b) 
Further characterization of 10 HCC-derived cell lines by western blot analysis of hepatic lineage 
markers AFP and CK19. GSK-3β was used as a loading control. The adult HCC origin of these cell 
lines has been clearly established, with the exception of HCC-derived HepG2 that is considered to be 
a hepatoblastoma cell line (Miyazaki and Namba, 1994; Aden et al., 1979; Nakabayashi et al., 1982; 
Bouzahzah  et al., 1995; Park et al., 1995; Bressac et al., 1991). (c) Expression of hepatic lineage 
markers during embriyonic liver development 
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This observation led us to further consider the cell lines of the first group as 

potential liver stem-like cells. Next, we subjected all 5 cell lines of this group to 

double-labeling immunofluorescence staining with CK19 and AFP, in conjugation 

with a third marker, namely albumin (ALB) which marks both liver stem cells and 

mature hepatocytes (Fausto, 1994, Shafritz and Dabeva, 2002). This method, based 

on differential staining of individual cells with rhodamine- and FITC-conjugated 

secondary antibodies, revealed that all tested cell lines contain different cell types 

(Figure 4.4a/b). This cellular heterogeneity could be considered as a sign of 

multiclonality, but also as an indication that AFP-producing HCC cell lines have the 

capability to generate multiple hepatic progeny, a common feature of mammalian 

liver stem/progenitor cells (Lazaro et al., 1998; Spagnoli et al., 1998; Kubota and 

Reid, 2000; Allain et al., 2002 ; Dumble et al., 2002; Suzuki et al., 2002).   

 

 

 

Figure 4.4: Heterogeneously staining cell types in AFP-producing human HCC cell lines: (a) 
Experimental approach to investigate the occurrence of multiple cell types in a cell line. The example 
illustrates the results obtained with Huh7 cells, following double-labeling immunofluorescence 
staining for either ALB/CK19 (a-f), or ALB/AFP (g-l). Original pictures from ALB (a, g), CK19 (b), 
AFP (h) and nuclear DNA (c, i) staining were merged successively (d, e, j, k) to generate the multi-
color digital images (f, l) that were used in the following figures.  
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Figure 4.4 cont`: Heterogeneously staining cell types in AFP-producing human HCC cell lines: (b) 
All AFP-producing HCC cell lines are composed of cell types staining heterogeneously either for 
ALB/CK19 (a-e) and/or ALB/AFP (g-k). Huh7 (a, g), Hep40 (b, h), PLC/PRF/5 (c, i), HepG2 (d, j) 
and Hep3B (e, k) were AFP-positive cell lines. FOCUS served as a negative control (f, l). 
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4-2.2 Self-renewal and multi-lineage differentiation potential of AFP-producing 

HCC Cell Lines 

 

            We next tested self-renewing capability and multi-lineage differentiation 

potential of three different AFP-producing cell lines using in vitro colony assay at 

clonal density. Colonies generated by different cell lines were immunostained and 

counted. Figure 4.5 shows several representative examples of marker expression 

patterns. Most colonies were composed of homogeneously stained cells (Figure 4.5 

a, b, d, f, h, i), but we also observed heterogeneous colonies with differentially 

staining cell populations (Figure 4.5 c, e, g, j). The occurrence of heterogeneously 

staining colonies in each tested cell line mirrored their cellular heterogeneity that was 

observed under high density cell culture conditions (Figure 4.4b), a first sign of their 

capability to generate multiple hepatic progeny, rather than multiclonality. The 

percent distribution of different colony types generated by each cell line was then 

calculated (Table 4.4).  ALB/CK19 double staining indicated that all three cell lines 

produced ALB-positive, CK19-negative (ALB+/CK19-) colonies as the most 

abundant type (53-80%). Second most frequent colony population was ALB+/CK19+. 

All three cell lines also produced ALB-/CK19- colonies at low ratios. The capacity to 

produce ALB-/CK19+ colonies was poor, since only Hep3B generated such a colony 

at a very low frequency. These cell lines also formed colonies with mixed cell 

populations composed of heterogeneously staining cells.   ALB/AFP double staining 

indicated that Huh7 and Hep40 generated primarily ALB+/AFP+, secondarily 

ALB+/AFP- colonies, the latter being the most abundant type in Hep3B. Indeed, these 

two types of colonies represented 70 to 90% of colonies produced by these cell lines. 

Hep3B and Hep40, but not Huh7 cell line produced ALB-/AFP- colonies at a low 

frequency. ALB-/AFP+ colonies were not observed, but mixed-cell colonies were 

also evidenced by ALB/AFP staining. A closer examination of the data shown in 

Table 4.4 indicates that, of the colonies produced by three cell lines, 80-90% are 

ALB+, whereas 27-63% and 11-28% are respectively AFP+ and CK19+. Based on 

this, we estimated that the dominant cell population in both Huh7 and Hep40 cell 

lines is ALB+/AFP+/CK19-, whereas Hep3B cell line could be rich in both 

ALB+/AFP+/CK19- and ALB+/AFP+/CK19+ cell populations (Table 4.4). Both 

patterns of marker expression have been previously assigned to liver stem/progenitor 

cells (Shafritz and Dabeva, 2002, Kubota and Reid, 2000, Allain et al., 2002).  
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Figure 4.5 Multilineage colony formation from AFP-producing human HCC cell lines. Colonies were 
stained for ALB/CK19 and ALB/AFP, as described in Figure 4.4b.  Representative examples are 
homogenously (a, b, d, f, h, i) and heterogeneously (c, e, g, j) staining colonies derived from Huh7 (a-
c, h-j), Hep40 (d, e) and Hep3B (f, g) cell lines 
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Table 4.4  Multilineage colony formation from AFP-producing human HCC cell lines1 

 

                         Percent distribution of  colonies                              . 

ALB/CK19          +/-         +/+   -/-    -/+  Het.2     

Hep3B (n=148)         52.7                  28.4 12.2     0.7           6.1  

Hep40 (n=93)         79.6         9.7    9.7     0.0   1.1 

Huh7 (n=100)         80.0       11.0    2.0     0.0                     7.0 

Huh7-SC1 (n=100)   84.0       13.0    0.0                   0.0   3.0 

Huh7-SC3 (n=104)   81.7       15.4    0.0    0.0   2.9 

ALB/AFP          +/-         +/+    -/-    -/+             Het.2     

Hep3B (n=102)        62.8                  26.5    8.8    0.0    2.0 

Hep40 (n=93)        22.6                  58.1    6.5    0.0  12.9 

Huh7 (n=154)        23.4       63.0    0.0    0.0  13.6  

1Huh7 and Hep40 cell lines were derived from adult HCCs, whereas Hep3B tumour occurred in an 8 
year-old male. Hep40 and Hep3B, but not Huh7 have integrated HBV DNA sequences in their 
genomes (Miyazaki and Namba, 1994, Aden et al., 1979, Nakabayashi et al., 1982, Bouzahzah et al., 
1995). Huh7-SC1 and Huh7-SC3 were generated by subcloning from parental cell line. 2Het.: colonies 
composed of heterogeneous staining cell populations. Other colonies were composed of 
homogenously staining cell populations. 

 

 

Taken together, these findings provided further evidence that AFP-producing 

cell lines have self-renewing capability and multi-lineage differentiation potential. In 

order to firmly confirm that AFP-producing HCC cell lines are indeed liver stem -

like cells, we generated several single cell-derived clones form Huh7 cells. Both 

Huh7-SC1 and Huh7-SC3 constituted heterogeneous cell populations at high density 

cell culture (Figure 4.6a and. 4.6b, respectively). Both clones also generated 

heterogeneously (Figure 4.6c, 4.6d) and homogenously (Figure 4.6) staining colonies 

under low density clonogenic culture conditions, similar to their parental cell line 

Huh7. The percent distribution of ALB/CK19-reactive colonies produced from these 

clonal cell lines was comparable to that of parental cell line (Table 4.4). Taken 

together, these results established that AFP-producing HCC cells display multi-



 74 

lineage differentiation and self-renewing capabilities, similar to liver stem cells 

(Lazaro et al., 1998, Spagnoli et al., 1998, Kubota and Reid, 2000, Allain et al., 2002, 

Dumble et al., 2002, Suzuki et al., 2002).  

 

 

Figure 4.6 Clonal expansion and self-renewal capability of Huh7 cells: Huh7-SC1 and Huh7-SC2 
subclones were expanded from single cell-derived clones, and tested for hepatic lineage marker 
expression. Examples are Huh7-SC1 (a) and Huh7-SC3 (b) cells forming mixed cell populations at 
high density cell culture, and Huh7-SC1 cells which generates heterogeneously staining (c, d), as well 
as homogenously staining (e) colonies when grown at low density. 

 

 

4-2.3 In vitro modulation of differentiation program of AFP-producing Huh7 

cell line 

 

            Self-renewal and differentiation fates of stem cells, including liver stem cells 

are known to be controlled by both extrinsic and intrinsic factors (Shafritz and 

Dabeva, 2002, Morrison et al., 1997).  To investigate whether the differentiation 

program of AFP-producing HCC cell lines is modulated by external factors in vitro, 

we first tested CK19 levels in Huh7 cells following short-term culture in three 

different media.  The growth of Huh7 cells in FCS-free medium that is 
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complemented with either selenium or OPI led to an increase in CK19 protein levels 

at day 6, as compared to cells grown in standard medium. CK18 levels, used as a 

control, did not change (Figure 4.7a). Next, we studied the modulation of cell 

differentiation following long-term culture (16 days) on diluted Matrigel 

extracellular matrix. Immunostaining for ALB/CK19 indicated that cell culture in 

selenium-complemented FCS-free medium favors the emergence of CK19+ biliary 

lineage cell populations forming bile duct-like structures (Figure 4.7b). In contrast, 

cell culture in standard culture medium under the same conditions favored the 

expansion of ALB+ hepatocytic lineage cells, some of which becoming ALB-rich bi-

nuclear cells, like mature hepatocyes (Figure 4.7c).   

 

 

Figure 4.7 External modulation of Huh7 differentiation fates: (a) Modulation of bile-duct lineage 
marker CK19 expression. Western blot assay shows that the growth of Huh7 cells in selenium (Se)- or 
OPI-complemented FCS-free medium leads to an increase in CK19 protein levels at day 6, as 
compared to cells grown in standard medium (FCS). CK18 levels, used as a control, did not change. 
(b, c) Modulation of cell differentiation during long-term growth (16 days) on diluted Matrigel 
extracellular matrix. Double-labeling immunofluorescence staining for ALB/CK19 indicates that cell 
growth in selenium-complemented FCS-free medium favors the emergence of an ALB-/CK19+ cell 
population forming bile duct-like structures (white * in b), as opposed to standard culture medium that 
favors the growth of ALB+/CK19- cells, some of which becoming ALB-rich hepatocyte-like cells with 
double nuclei (white arrows in c). 
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4-2.4 Discussion about AFP-producing HCC cells  

 

One of the major implications of our investigations is that human HCC cell 

lines form two distinct groups, one producing AFP and displaying liver stem cell-like 

properties, the other not. AFP-producing HCC cell lines express HNF3α. HNF-3β, 

HNF-4α, and HNF-1α, as well as hepatic lineage markers AFP, ALB and CK19, 

albeit heterogeneously. Detailed analysis of clones produced by Huh7, Hep40 and 

Hep3B cell lines (Table 4.4) provides evidence that stem cell-like phenotype of AFP-

producing cell lines is associated with a marker expression pattern of 

ALB+/AFP+/CK19- and/or ALB+/AFP+/CK19+, that mimic early and late hepatoblast 

marker expressions, respectively (Fausto, 1994, Shafritz and Dabeva, 2002, Kubota, 

and Reid, 2000, Allain et al., 2002, Thorgeirsson, 1996). However, AFP-producing 

cell lines studied here were derived from adult HCCs (Figure 4.3, Table 4.4). This 

raises some questions about their cellular origin. They could be originated from 

mature hepatocytes to become liver stem/progenitor-like cells, according to the 

“dedifferentiation” theory (Aterman, 1992). However, recent data show that, during 

chemically induced HCC in rat, mature hepatocytes do not “dedifferentiate” into 

“oval” cells (Gournay, et al., 2002) putative progenitors of HCC (Sell, and Dunsford, 

1989, Sell, 2001). This leaves us with the possibility that AFP-producing HCC cells 

originate from liver stem cells, like chronic myeloid leukemia cells originating from 

haematopoietic stem cells (Taipale, and Beachy, 2001, Reya et al., 2001). Although 

adult human liver stem/progenitor cells have not been isolated yet, rodent “oval” 

cells share some similarities with AFP-producing HCC cell lines described here.  The 

expression of HNF3 appears be critical for “oval” cell activation, while HNF4 is 

involved in differentiation of “oval” cells into hepatocytes (Nagy et al., 1994). 

However, “oval” cells are ALB+/AFP+/CK19+ (Thorgeirsson, 1996), in contrast to 

dominant cell populations in HCC cell lines which are ALB+/AFP+/CK19-. If the 

putative precursors of “oval” cells are similar to ALB+/AFP+/CK19- early 

hepatoblasts, then it is highly likely that AFP-positive HCC cells originate from 

putative precursors of “oval” cells, if not directly from “oval” cells, in line with the 

“stem cell origin” theory (Sell  and Dunsford, 1989, Sell, 2001). 
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Although we can not firmly define their cellular origin, AFP-producing HCC 

lines act in vitro as liver stem-like cells, since they have an unlimited ability to self-

renewal and they differentiate towards hepatocytic and biliary lineages, although 

they fail to form morphologically discernible mature hepatocyte and bile duct cell 

populations. These cell lines produce solid tumors in immunodeficient mice (data not 

shown for Huh7, see Ref.(Miyazaki, and Namba,1994) for additional examples), in 

contrast to normal liver stem cells that generate normal liver tissue (Shafritz and 

Dabeva, 2002). These features qualify AFP-producing HCC cells as “mis-specified” 

liver stem cell cancer lines whose cellular programs are deviated from normal tissue 

repopulation to malignant tumor formation. It was proposed that mutations affecting 

genes involved in wnt, hedgehog and TGF-β signaling pathways contribute to the 

“mis-specification” of stem cells (Taipale, and Beachy, 2001, Reya et al., 2001). In 

this regard, it is noteworthy that HCC cells display mutations in genes involved in 

wnt and TGF-β signaling pathways. β-catenin and Axin1 gene mutations that are 

observed in these cancers lead to an aberrant accumulation of β-catenin, and 

constitutively activate the wnt pathway (Ozturk, 1999, Buendia, 2000, Tannapfel and 

Wittekin, 2002). The p53 mutations that are frequently observed in HCC may also 

activate wnt pathway because of aberrant β-catenin accumulation, as demonstrated in 

HCC cell lines including those described in this study (Cagatay and Ozturk, 2002). 

Several genes involved in TGF-β pathway including M6P/IGF2R, TGF-β1RII, 

SMAD2 and SMAD4 are also mutated in some HCCs (Ozturk, 1999, Buendia, 2000, 

Tannapfel and Wittekin, 2002) 

 

AFP expression has been closely connected to cells acting as liver stem cells 

both in vitro and in vivo (Shafritz and Dabeva, 2002, Sell, 2001). Moreover, AFP has 

been in use for many decades as a standard HCC tumor marker because 50-70% 

HCC tumors produce it (Johnson, 1999).  Now, this report establishes AFP 

expression in HCC cells as an indication of liver stem cell cancer phenotype. 

Although this phenotype was not demonstrated in situ with primary tumor cells, our 

results, together with previous knowledge on AFP expression in liver stem cells 

(Shafritz and Dabeva, 2002, Sell, 2001, Kojiro, 2002) offers persuasive evidence that 

AFP-producing HCCs are formed, if not sustained by “mis-specified” liver stem 

cells. This may provide an impetus for further investigations on stem cell-HCC 
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connection. Future research could focus on molecular dissection of liver stem cell-

like properties of AFP-producing HCC cells. As demonstrated here, these cells have 

the ability to respond to extrinsic factors and modify their differentiation program 

accordingly, at least in vitro. Through a targeted research for identification of 

biomodulators (ligands, cell surface receptors, chemicals etc.), it would be possible 

to identify molecules that are able to modulate stem cell-like properties of HCC cells, 

in order to limit their self-renewal capacity and survival or to initiate differentiation 

processes towards non-proliferating mature cells. Such molecules would be 

promising drug candidates for chemoprevention of HCC in risk groups such as 

chronic hepatitis and cirrhotic patients, as well as for chemotherapy. Another 

interesting direction would be the investigation of possible implications of HBV and 

HCV in liver stem cell biology, in the context of virally induced hepatocellular 

carcinogenesis. 
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CHAPTER 5. CONCLUSION AND FUTURE PERSPECTIVES 

 
 During this thesis work, we achieved two major tasks. Firstly, we identified 

of subtype 1b as the major etiological virus type of hepatitis C in Turkey, and we 

cloned a nearly complete genome of a Turkish HCV 1b isolate. Secondly, we 

identified a subgroup of HCC cell lines as liver-stem-cell-like cells. This group is 

characterized by a common “differentiated” phenotype associated with AFP 

production. AFP-negative cell lines were mostly undifferentiated and lacked stem 

cell phenotype. Interestingly, the cell lines of the first group (Huh7, HepG2, Hep3B) 

are used commonly to study the role of both HBV and HCV proteins in 

hepatocellular carcinogenesis. Since all these cell lines act as “misspecified” liver 

stem cells, one may claim that all these previous studies on HBV and HCV were 

done on liver stem cells, but not mature hepatocyte-like cells. Hepatocytes are 

natural hosts of both viruses, XXX acute infections. Now, it will be possible to set up 

a whole serious of experiments to address the role of HCV (or HBV) in terms of their 

implications in hepatocarcinogenesis via hepatic stem or stem-like cells. Now that 

we have a cloned HCV genome, as well as characterized liver stem-like cells, we 

believe that furtherstudies may focus on the effects of viral proteins on the phenotype 

(self-renewal and differentiation) of these cell lines. This newline of investigations 

may reveal interesting and instructive interactions of viral proteins with hepatic stem 

cell program.  
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