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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Ceyhun Bulutay

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Levent Gürel
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ABSTRACT

SUB-WAVELENGTH RESOLUTION IN A PHOTONIC
CRYSTAL SUPERLENS

Ertug̃rul Çubukçu

M.S. in Physics

Supervisor: Prof. Dr. Ekmel Özbay

July, 2003

Materials that can bend light in the opposite direction to normal (’left-handed’

materials) reverse the way in which refraction usually works-this negative refrac-

tive index is due to simultaneously negative permeability and permittivity. Here

we demonstrate negative refraction of electromagnetic waves in a two-dimensional

dielectric photonic crystal that has a periodically modulated positive permeability

and a permeability of unity. This experimental verification of negative refraction

is a step towards the realization of a ’superlens’ that will be able to focus fea-

tures smaller than the wavelength of light. Our structure consists of a square

array of alumina rods in air. To obtain the frequency range within which the

negative refraction and the other peculiar properties incorporated with it, we

have calculated the the equal frequency contours of our photonic crystal with the

photonic plane wave expansion method. We found out that 13.7 GHz is the op-

timum frequency for negative refraction. We took transmission measurements to

confirm our structure’s predicted negative refraction: we used the the interfaces

of the photonic crystal in the Γ − M direction. Our experiments were simulated

with the finite-difference time-domain method (FDTD). The negative index of

refraction was determined to be −1.94, which is close to the theoretical value of

−2.06 calculated by the FDTD method. Since we know that we have a negative

refractive material , we used our crystal to test the superlensing effect that was

predicted for negative refractive materials. We have demonstrated that the im-

age of two coherent point sources separated by a distance of λ/3 can be resolved.

We have extended our approach to the case with two incoherent point sources,

and we have achieved subwavelength resolution for this configuration as well.

To our knowledge, this is the first demonstration of subwavelength resolution of

electromagnetic waves in a negative index material.
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ÖZET

FOTONIK KRISTAL BIR SUPERLENSTE
DALGABOYU-ALTI COZUNURLUK

Ertug̃rul Çubukçu

Fizik, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ekmel Ozbay

Temmuz, 2003

Mikrodalga bölgesinde çalışan iki boyutlu bir fotonik kristalin deg̃erlik

bandındaki bir frekans için tekli negatif kırınımı ve süperlens etkisini deney-

sel ve teorik olarak gösterdik. Fotonik kristalden kırılan elekromanyetik dal-

gaları ölçerek kırılma indisini teorik deg̃eri olan −2.06’ya çok yakın olan −1.94

olarak bulduk. Geçirgenlik taraması ölçümü teknig̃i kullanılarak bir noktasal

kaynaktan yayılan odaklanmış elektromanyetik dalgaların uzaydaki güç dag̃ılımı

ölçüldü. Odaklanan demetin uzaydaki maksimunun yarısında tam genişlig̃i, za-

manda sonlu fark (FDTD) metodu simülasyonlarıyla iyi uyum içerisinde olan,

0.33λ olarak ölçüldü. Ayrıca birbirlerinden λ/3 kadar uzakta olan iki nok-

tasal kaynag̃ın görüntüsünün bizim süperlensimiz kullanılarak dalgaboyu altı

çözülebildig̃ini gösterdik.

Anahtar sözcükler : Fotonik Kristal, Solak Materyal, Negatif Materyal, Negatif

Kırılma, Fotonik Bant Yapısı, Eş Frekans Kontürü.
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Chapter 1

Introduction

It is a well-known fact that allowed and forbidden energy bands for electrons in a

semiconductor do not depend on the properties which are specific for electrons or

for the atoms in the crystal. The reason for the formation of these gaps is nothing

but scattering of electrons from a periodic potential. Due to Bragg reflections [1]

from these periodic structures, electrons having certain energies are forbidden to

propagate through crystal in certain directions (Fig. 1.1). If the gap extends to

all possible directions then this is called complete band gap. For example, the

gap between valence and conduction bands of a semiconductor is a complete band

gap.

An analogous situation arise for electromagnetic waves propagating through

a material medium with a periodic variation in the dielectric constant. Such

kind of materials are called photonic band gap (PBG) materials or photonic

crystals. So, it can be understood that PBG structures can be designed by

the periodic variation of the dielectric constant of the medium in either one,

two or three dimensions. Due to this periodic structure, electromagnetic waves

cannot propagate inside the photonic crystal for certain frequency ranges in all

directions. The photonic band structure of a photonic crystal depends on the

crystal structure, lattice constant, geometry, dielectric constants of materials,

and the filling fraction (volume occupied by material divided by total volume of

the crystal).
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Figure 1.1: Schematics of photonic and electronic band gaps.

The existence of photonic band gap was first predicted by Yablonovitch [2] and

John [3] in late 80’s. In principle demonstration of the photonic band gap seems

to be straightforward, but it took five years until it was experimentally demon-

strated by Yablonovitch and his co-workers [4]. This first three-dimensional (3D)

photonic crystal, called as Yablonovite, was built by placing a triangular mask

of holes over the dielectric host and drilling through each hole three times at an

angle of 35.26◦ away from the normal and spread out 120◦ on the azimuthal direc-

tions. Of course, this was not the only way for building a photonic crystal. Then,

Iowa State group demonstrated experimentally the first layer-by-layer dielectric

photonic crystal [5, 6, 7]. The layer-by-layer photonic crystal is the first structure

that was fabricated at optical frequencies [8, 9, 10].
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The existence of full photonic band gaps in PBG materials has important po-

tential applications in the area of quantum optics and laser technology. Waveg-

uiding in photonic crystals is one of the most important applications. The waveg-

uiding effect in photonic crystals was first demonstrated both theoretically and

experimentally by MIT group [11, 12]. It was a two dimensional one and built

by creating planar defects in the perfect crystal. But this type of waveguides

were not efficient enough. Then, Bilkent photonic band gap group demonstrated

a new waveguiding mechanism [13, 14, 15]. This type of waveguides are called

coupled-cavity waveguides (CCWs) after the demonstration of Bilkent group.

Transmissions as high as 100% can be observed in CCWs. All of the above ap-

plications make use of the existence of the photonic band gap. Recently, it is

realized that photonic crystals can be used as super-refractive materials by the

virtue of the richness of their band structure. In this thesis, we investigate the

refractive properties of two-dimensional photonic crystals.



Chapter 2

Theory of photonic crystals

Even we have electromagnetic wave propagation in a photonic crystal, we can

analyze this system in the light of the Maxwell equations. The four macroscopic

Maxwell equations [16], which are valid for any electromagnetic system in cgs

units are

∇ · B = 0 , (2.1)

∇× E +
1

c

∂B

∂t
= 0 , (2.2)

∇ · D = 4πρ , (2.3)

∇× H − 1

c

∂D

∂t
=

4π

c
J . (2.4)

Here E and B are the macroscopic electric and magnetic fields, respectively. D

is the displacement field and H is the magnetic induction field. J and ρ are the free

current and charge densities, respectively. In this study, we will restrict ourselves

to propagation in medium having a spatially changing dielectric permittivity and

4
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no free charges or currents. So, we could assume that J = 0 and ρ = 0. Then we

have to relate E to D, and B to H with the constitutive relations of our problem.

Since, we are allways working with the small field strengths, we don’t have to

bother with the nonlinearity involved in the system [17]. Thus, the constitutive

relations turn out to be

D(r) = ε(r)E(r) , (2.5)

B(r) = µ(r)H(r) . (2.6)

The magnetic constitutive relation reduces to B(r) = H(r) for our nonmag-

netic system. Now, with all of this initial realistic assumptions, the Maxwell

equations become

∇ · H(r, t) = 0 , (2.7)

∇× E(r, t) +
1

c

∂H(r, t)

∂t
= 0 , (2.8)

∇ · ε(r)E(r, t) = 0 , (2.9)

∇× H(r, t) − ε(r)

c

∂E(r, t)

∂t
= 0 . (2.10)

Both H and E are in general complicated functions of time and space. We

can separate out the time dependence of the fields since the Maxwell equations

are linear. By Fourier analysis, we know that any time dependent function can

be rewritten in terms of harmonic modes with appropriate weights. This makes it

legitimate to assume that the fields consists of only one frequency component [18].

Then, we simply have
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E(r, t) = E(r)eiωt , (2.11)

H(r, t) = H(r)eiωt . (2.12)

After this separation of variables thing, we have the curl equations for the

field patterns given as

∇× E(r) +
iω

c
H(r) = 0 , (2.13)

∇× H(r) − iω

c
E(r) = 0 , (2.14)

If we decouple these equations with keeping in mind that ∇ · ε(r)E(r) = 0

and ∇ · H(r) = 0, this will yield to

∇×
(

1

ε(r)
∇× H(r)

)
=
(

ω

c

)2

H(r) , (2.15)

where E(r) could be calculated by

E(r) =

( −ic

ωε(r)

)
∇× H(r) . (2.16)

The H field equation is called the master equation. The reason for choosing

this equation is that the differential operator

Θ = ∇×
(

1

ε(r)
∇×

)
, (2.17)

acting on H(r) from the left is a Hermitian operator, unlike the operator acting

on E(r). We now have an eigenvalue problem for the Hermitian operator Θ. Our

eigenvalue problem looks like
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ΘH(r) =
(

ω

c

)2

H(r) . (2.18)

Here, the eigenvectors H(r) are the field patterns of the harmonic modes, and

the eigenvalues (ω/c)2 are proportional to the squared frequencies of those modes.

Another important point to notice is the linearity of the operator Θ. This means

that any linear combination of the solutions is itself a solution. Apparently, the

hermiticity and the linearity of the operator of interest will make our lives easier.

Let us recall the master equation of the time-independent quantum mechanics,

which is

HΨ = EΨ; , (2.19)

where

H = − h̄2

2m
∇2 + V(r) . (2.20)

One familiar with quantum mechanics will figure out that our problem is the

reminiscent of quantum mechanics, and we can safely use the methods developed

for solving quantum mechanical problems over the years [19]. One of those many

methods is the variational method that is, by the way, a powerful one.

Up to this point, our discussion was very general for any linear electromag-

netic problem. Now, it is appropriate to focus on photonic crystals. Photonic

crystals are structures possessing a periodically changing dielectric function in

space. Namely, the dielectric function satisfies the following relation.

ε(r) = ε(r + a) , (2.21)

where a is the primitive vector of the crystal lattice including all three compo-

nents. Since ε(r) is periodic with periodicity a, we can conclude that the operator

Θ has translational invariance that means Θ commutes with the discrete trans-

lation operator T . The action of T on a space function is that it moves the

argument r of the space function to the new argument r + a with keeping the

remaining intact. This can mathematically be expressed as
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Tf(r) = f(r + a) . (2.22)

The operators Θ and T can be simultaneously diagonalized, because they com-

mute [20]. This is great, because we can guess the eigenfunctions of the transla-

tional operator in contrast to the fact that we cannot for Θ. Let our initial guess

be the plane wave eiK·r where K is defined by

K = k + G , (2.23)

where

− π

ai

< ki <
π

ai

, (2.24)

and

Gi = n
π

ai

. (2.25)

Literally, G is called the G-vector(that goes from the center of the Brillouin zone

all the way up to one of the Brillouin zone corners or edges) for any integer n. And

k is the irreducible propagation vector, this will be clear later. In the meantime,

we can check the action of T on eiK·r.

TeiK·r = eiK·(r+a) , (2.26)

TeiK·r = ei(k+G)·(r+a) , (2.27)

TeiK·r = eik·(r+a)eiG·(r+a) , (2.28)

TeiK·r = eiG·aeik·aei(k+G)·r , (2.29)

TeiK·r = eik·aei(k+G)·r , (2.30)

TeiK·r = eik·aeiK·r . (2.31)

Hence, we can obviously conclude that for any G, ei(k+G)·r is an eigenfunction of

T with the eigenvalue eik·a. One will notice that we have infinite-fold degeneracy,

because for any G the eigenvalue is always eik·a. How do we handle this degen-

eracy? The answer is we simply sum them up over G with different constants of

proportionality. Then our fully operational eigenfunction Hk that diagonalizes

both Θ and T becomes
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Hk(r) =
∑
G

hGei(k+G)·r , (2.32)

Hk(r) = eik·r∑
G

hGeiG·r , (2.33)

Hk(r) = eik·ruk(r) , (2.34)

where uk(r) is obviously a periodic function with periodicity a, or uk(r) = uk(r+

a). The form of Hk(r) is commonly known as a Bloch state in solid state physics

and in analytical mechanics as a Floquet mode. After we made use of the the

discrete translational symmetry of the photonic crystal, we found out that our

eigenstates are just of the Bloch’s form.

Now, we may insert Hk(r) of Bloch’s form in the master equation. Then, we

have

Θ
∑
G

hGei(k+G)·r =
(

ω

c

)2∑
G

hGei(k+G)·r , (2.35)

∇×
(

1

ε(r)
∇×∑

G

hGei(k+G)·r
)

=
(

ω

c

)2∑
G

hGei(k+G)·r , (2.36)

∇×
(

(k + G)

ε(r)
×∑

G

hGei(k+G)·r
)

=
(

ω

c

)2∑
G

hGei(k+G)·r . (2.37)

The other point to mention here is that all eiG·r form a complete orthonormal

basis since they satisfy

∫
e−iG′·reiG·rd3r = δGG′ , (2.38)

which means that any function of space can be decomposed into these basis

vectors. We can play the same trick for 1/ε(r) as well provided that we have
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1

ε(r)
=
∑
G′

βG′eiG′·r , (2.39)

βG′ =
1

Vo

∫ e−iG′·r

ε(r)
d3r . (2.40)

Using Eq. 2.39 in Eq. 2.37 yields

∇×
(∑

G′
βG′eiG′·r(k + G) ×∑

G

hGei(k+G)·r
)

=
(

ω

c

)2∑
G

hGei(k+G)·r , (2.41)

∑
G′

∑
G

∇×
(
βG′ei(k+G+G′)·r(k + G) × hG

)
=
(

ω

c

)2∑
G

hGei(k+G)·r , (2.42)

∑
G′

∑
G

βG′∇×
(
ei(k+G+G′)·r(k + G) × hG

)
=
(

ω

c

)2∑
G

hGei(k+G)·r , (2.43)

∑
G′

∑
G

βG′(k + G + G′) × {(k + G) × hG} ei(k+G+G′)·r =
(

ω

c

)2∑
G

hGei(k+G)·r .

(2.44)

After we made the change G′ −→ G′ − G, we have

∑
G′

∑
G

βG′−G(k + G′) × {(k + G) × hG} ei(k+G′)·r =
(

ω

c

)2∑
G′

hG′ei(k+G′)·r .

(2.45)

We know that the coefficients of the plane waves must be the same for the sum

on the left-hand side and the right-hand side, thus

∑
G

βG′−G(k + G′) × {(k + G) × hG} =
(

ω

c

)2

hG′ . (2.46)

Using the vector identities, our equation transforms to
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∑
G

βG′−G{(k + G′) · (k + G)}hG − {(k + G′) · hG}(k + G) =
(

ω

c

)2

hG′ . (2.47)

Since hG′ should be perpendicular to k + G′ in accord to the transversality con-

dition, our eigenvalue problem becomes

∑
G

βG′−G{(k + G′) · (k + G)}hG =
(

ω

c

)2

hG′ . (2.48)

By solving this equation numerically, we can obtain the dispersion relation of

the eigenmodes, or the photonic band structure in addition to the eigenmodes

themselves [21, 22]. This numerical method, which is based on the Fourier expan-

sion of the electromagnetic field and the dielectric function is called the photonic

plane wave expansion method. In a real numerical calculation of the photonic

band structure, the summation in the above matrix equation is calculated up to a

sufficiently large number N of G, and an eigenvalue problem for each k is solved.

This is equivalent to diagonalization of the matrix defined by the left-hand side of

the above equation. The dimension of the matrix to be diagonalized is 2N , since

hG′ should be perpendicular to k + G′ in accord to the transversality condition.

The CPU time for the photonic band calculation by means of the plane wave

expansion method is proportional to N3.

In this thesis we focus on two-dimensional photonic crystals, so let’s solve the

matrix eigenvalue equation that we have derived from a differential version of the

eigenvalue problem. The first thing to do here is to determine the form of the

components βG′−G of the inverse dielectric function. Now, we assume that we

have a square array, having a period of a, of circular dielectric rods of radius rr

with dielectric index εr in air(Fig. 2.1). Because our structure is uniform in the

z direction, we restrict our discussion to G vectors in the plane of the photonic

crystal. In mathematical terms the periodic dielectric function can be written as

1

ε(r)
= 1 +

(
1

εr

− 1
)

S(r) , (2.49)

where S(r) is 1 for |r| ≤ rr, and is 0 otherwise.
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Figure 2.1: Our square photonic lattice of dielectric rods in air.

Substituting Eq. 2.49 into Eq. 2.40,

βG = δG0 +
1

Vo

(
1

εr

− 1
) ∫

S(r)e−iG·rd3r . (2.50)

We will use cylindrical polar coordinates in order to calculate the integral in the

equation above. Hence, βG is equal to

δG0 +
1

Vo

(
1

εr

− 1
) ∫ rr

0
rdr

∫ 2π

0
dϕe−iGr cos ϕ , (2.51)

δG0 +
1

Vo

(
1

εr

− 1
) ∫ rr

0
rdr

∫ 2π

0
dϕ
∑

l

Jl(Gr)eil(ϕ−π
2
) , (2.52)

δG0 +
2π

Vo

(
1

εr

− 1
) ∫ rr

0
rJ0(Gr)dr , (2.53)

= δG0 +
2πrr

GVo

(
1

εr

− 1
)

J1(Grr)dr . (2.54)
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Figure 2.2: The first Brillouin zone for our square photonic crystal. The triangle
represents the irreducible Brillouin zone. This is determined by making use of the
symmetries of the photonic crystal, namely the rotational, reflection, and time-
reversal symmetries. The most symmetric points of the Fourier (momentum, or
indirect) space are also shown in the figure.

After having determined βG we will construct the matrix to diagonalize for

both TM and TE polarized electromagnetic waves [23]. We can first consider

the TE polarization, H-field is parallel to the dielectric rods. The matrix to be

diagonalized for this polarization is
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β11k · k β12k · (k + G1) · · · β1Nk · (k + GN−1)

β21(k + G1) · k β22(k + G1)
2 . . . β2N(k + G1) · (k + GN−1)

...
...

...
...

...
...

...
...

βN1(k + GN−1) · k . . . . . . βNN((k + GN−1)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.55)

As we have already mentioned, we will diagonalize this matrix for each k

in the momentum space. As a result of this process, we will have a series of

eigenvalues for each k, and when the calculation is completed for all vectors the

eigenvalues will group to form a photonic band.

Figure 2.3: The TE polarized band structure of our square photonic crystal. The
first seven bands are shown here. As can be seen from this figure, our structure
does not exhibit a photonic band gap for this polarization.

To minimize the calculation time, we can for sure make use of the symmetries

of our structures. Our structure apparently exhibits translational symmetry so
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we will restrict ourselves to the first Brillouin zone (the square seen in Fig. 2.2).

We can go further, we also have the time reversal symmetry, which implies prop-

agating in the direction of kx or −kx are physically identical, and this holds for

ky and −ky as well. Now in turn we can focus on the upper left quadrant of the

first Brillouin zone. And there is one more to consider that is the rotational sym-

metry since our structure is invariant under rotations of 45◦. Consequently, we

can characterize our photonic band structure just by analyzing for k-vectors lying

in or on the triangle shown in Fig. 2.2. Subsequently, by setting r = 0.2a, and

εr = 9 we have calculated the TE polarized band structure of our square photonic

crystal as shown in Fig. 2.3. Namely, we have determined the first 7 eigenvalues

of each k vector along these special symmetry directions. And obviously these

eigenvalues automatically corresponds to a photonic dispersion relation ω(k) (all

these seven bands determine the dispersion for their frequency range span) when

plotted all together. No photonic band gap is observed for this polarization.

Meanwhile, we can calculate the band structure for TM polarized electro-

magnetic waves, the E-field parallel to the dielectric rods. For this case, our

eigenvalue problem becomes

∑
G

βG′−G{(k + G′) · (k + G)}(hGx + hGy) =
(

ω

c

)2

(hGx + hGy) . (2.56)

By transforming this equation into a matrix equation, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β11k · k β11k · k · · · β1Nk · (k + GN−1)

β21(k + G1) · k β21(k + G1) · k . . . β2N(k + G1) · (k + GN−1)
...

...
...

...
...

...
...

...

βN1(k + GN−1) · k βN1(k + GN−1) · k . . . βNN(k + GN−1)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(2.57)

to diagonalize. We should note that this time the dimension of our matrix is

2N in contrast to the matrix having a dimension of N for the other polarization.

Diagonalizing this matrix in a similar way for the k vectors along the symmetry
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direction yields to the band structure displayed in Fig. 2.4. As seen in Fig. 2.4,

in this configuration the bands form in such a fashion that we have a well-defined

photonic band gap lying in between the first (valence) and the second (conduc-

tion) band of the photonic crystal. This gap region is shaded for convenience.

There are no allowed photonic modes within this forbidden frequency range. So,

electromagnetic waves having frequencies lying within this range can not couple

to the propagating photonic modes of the photonic crystal, nor be transmitted.

Since at the very beginning we introduces lossless materials, all of the incident

power is expected to be reflected back from our photonic crystal.

Figure 2.4: The TM polarized band structure of our square photonic crystal. The
first seven bands are shown here. As can be seen from this figure, our structure
exhibits a photonic band gap for this polarization.

If we desire to calculate the field patterns of the photonic modes we can

simply solve our eigenvalue problem for the eigenvectors. After determining the

components of the eigenvectors we can construct the eigenfield pattern in space
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just inserting the coefficients in

Hnk(r) =
∑
G

2∑
j=1

h
(n)
jG ei(k+G)·rêj . (2.58)

Here, n is the photonic band index, and j determines the vector components of

Hnk(r). We can calculate Enk(r) as well through the relation

Enk(r) =

( −ic

ωn(k)ε(r)

)
∇× Hnk(r) , (2.59)

Enk(r) =

( −ic

ωn(k)ε(r)

)
∇×∑

G

2∑
j=1

h
(n)
jG ei(k+G)·rêj . (2.60)

So, we can conclude that

Enk(r) =

(
c

ωn(k)ε(r)

)∑
G

2∑
j=1

h
(n)
jG ei(k+G)·r[(k + G) × êj] . (2.61)

Up to this point we have successfully developed a comprehensive method to de-

termine the dispersion relation of the radiation modes in photonic crystal as well

as the photonic eigenmodes themselves. In addition to these, we can also in-

troduce several new parameters to characterize the eigenmodes of the photonic

crystal. The waves are characterized by three velocities, namely phase, group,

and energy velocities. These are all equal in uniform materials with dielectric

constants, which are real and independent of frequency. The phase velocity is

defined as the the velocity of the propagation of a phase front. This velocity

has a definite meaning, for instance the phase front (equal phase surface) can

be defined for plane waves unambiguously. Contrary to that, the equal phase

surface can not be defined conveniently, since as seen in Eq. 2.61 the eigenmode

of a photonic crystal is a superposition of many plane waves. The group and the

energy velocities can be proven to be equal in a photonic crystal. So, we can just

consider group velocity rather than both. The group velocity that is defined as

the velocity of the propagation of a wave packet can be calculated by

vg = ∇kωn(k) . (2.62)
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Since we are working numerically, we can represent this for our two dimen-

sional photonic crystal as

vg =

(
lim

∆kx→0

ωn(kx + ∆kx, ky) − ωn(kx, ky)

∆kx

)
x̂+

(
lim

∆ky→0

ωn(kx, ky + ∆ky) − ωn(kx, ky)

∆ky

)
ŷ .

(2.63)

Figure 2.5: The group velocity distribution of the valence band calculated by
Hellmann-Feynmann method. The group velocity drastically goes to zero at the
photonic band edges.

This numerical differentiation needs a limiting procedure for which we have

to know a series of eigenfrequencies as a function of the wave vector (we need to

diagonalize our matrix for many wave vectors for accuracy). There is an alter-

native, named the Hellmann-Feynman theorem, to this differentiation procedure.

To implement this theorem we must have a Hermitian operator and the orthonor-

mal basis composed of the eigenmodes of that operator. We already have this

preliminary conditions, and using the hermiticity of our operator we have derived

Eq. 2.48 so let us start with multiplying both sides of that equation by hG′ . This

yields
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∑
G

βG′−G{(k + G′) · (k + G)}hG · hG′ =
(

ω

c

)2

hG′ · hG′ . (2.64)

Now we can sum both sides over G′.

∑
G′

∑
G

βG′−G{(k + G′) · (k + G)}hG · hG′ =
(

ω

c

)2∑
G′

hG′ · hG′ . (2.65)

The sum on the left-hand side of the equation is equal to unity because the

eigenvectors are orthonormal. Then we have

∑
G′

∑
G

βG′−G{(k + G′) · (k + G)}hG · hG′ =
(

ω

c

)2∑
G′

hG′ · hG′ . (2.66)

By taking the gradient, our identity becomes

∇k

∑
G′

∑
G

MGG′hG · hG′ = ∇k

(
ω

c

)2

, (2.67)

where

MGG′ = βG′−G(k + G′) · (k + G) , (2.68)

MGG′ = βG′−G[(kx + Gx)(kx + G′
x) + (ky + Gy)(ky + G′

y)] . (2.69)

Then we have

2ω

c2
∇kω =

∑
G′

∑
G

hG · hG′∇kMGG′ , (2.70)

∇kω =
c2

2ω

∑
G′

∑
G

hG · hG′∇kMGG′ , (2.71)

vg =
c2

2ω

∑
G′

∑
G

hG · hG′∇kMGG′ . (2.72)

The gradient on the left-hand side of the above equation is

∇kMGG′ = βG′−G∇k[(kx + Gx)(kx + G′
x) + (ky + Gy)(ky + G′

y)] , (2.73)
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∇kMGG′ = βG′−G[(2kx + Gx + G′
x)x̂ + (2ky + Gy + G′

y)ŷ] , (2.74)

Using this in Eq. 2.72 yields

vg =
c2

2ω

∑
G′

∑
G

hG · hG′βG′−G[(2kx + Gx + G′
x)x̂ + (2ky + Gy + G′

y)ŷ] . (2.75)

Therefore, the group velocity can be evaluated once the eigenvector hG and the

eigenvalue ω are obtained by the band calculation based on the photonic plane-

wave expansion method. We have calculated the group velocities of the first TM

polarized band of our structure in different direction on the reduce Brillouin zone.

The magnitudes of the group velocity versus the k vectors are plotted in Fig. 2.5.

As one will notice the group velocity drastically goes to zero at the reduced

Brillouin zone corners, these correspond to the photonic band edges for the first

band. So for a finite size photonic crystal we expect extremely low group velocities

at the photonic band edges. Low group velocity concept are of general interest

in the area of the nonlinear processes, lasing action, and directional radiation

sources since all are enhanced as the group velocities of interest get smaller.

The transmission spectra of photonic crystals reflect their band structure di-

rectly. They are often used for the experimental characterization of real sam-

ples. In the remaining, we will briefly discuss the Finite Difference Time Domain

method for the calculation of the transmission, reflection, and as well as the

band structure of photonic crystals. As one note that in the photonic plane wave

expansion method we have focused on infinitely large structures, which are peri-

odic. In the finite difference time domain method, we can characterize any finite

size electromagnetic structure including photonic crystals of linear, nonlinear, or

dispersive, namely metallic type. The finite difference time domain method, in-

troduced by Yee, is full-wave, dynamic, and powerful solution tool for solving

the Maxwell’s equations. This method to electromagnetic waves is more than

what the Density Functional Theory is to electrons, since we can calculate the

time evolution of the electromagnetic waves in any medium. The fundamental

ingredient of the algorithm involves direct discretization of the time dependent

Maxwell’s equation by writing the spatial and time derivatives in a central finite
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difference form. This approximation is second-order accurate in both space and

time, and it requires the electric and magnetic fields to be offset from one another

in space. Furthermore, this two-step, leap-frogging algorithm requires the electric

and magnetic fields to be updated at staggered half-time steps. The update algo-

rithm is explicit, so new values of electromagnetic field components depend only

on these values at the previous time and half-time steps. The algorithm provides

a complete full-wave electromagnetic solution simply in one computational run.



Chapter 3

Negative refraction

Refraction is perhaps one of the most basic of electromagnetic phenomena,

whereby when a beam of radiation is incident on an interface between two media

at an arbitrary angle, and the direction of propagation of the transmitted beam

is altered by an amount related to the indices of refraction of the two media. We

know that we can define the plane waves with the complex amplitudes eiki·r and

eikr·r in the the first and the second medium, respectively. By requiring that the

phase of the incident and transmitted beams be the same everywhere at the in-

terface, we can arrive at the Snell’s law, which provides the quantitative relation

between the incident and refractive angles θi and θr (both are measured from the

interface normal) and the indices of refraction of the media ni and nr(Fig. 3.1).

Mathematically, the conservation of the phase along the boundary is given as

ki · r|| = kr · r|| , (3.1)

kir|| cos(
π

2
− θi) = krr|| cos(

π

2
− θi) . (3.2)

By using the basic relation between the energy and the momentum of a plane

wave inside a medium as k = nω/c, we have

22
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Figure 3.1: Schematics of refraction of electromagnetic waves transmitting
through an interface between two dielectric media.

ni
ωi

c
sin θi = nr

ωr

c
sin θr . (3.3)

And since the energy is conserved, namely ωi = ωr, we end up with the famous

Snell’s law given as

ni sin θi = nr sin θr . (3.4)

Thus, a refracted ray is bent toward the normal upon entering a naturally

occurring medium from air, as most media have nr > 1, but never emerges on

the same side of the normal as the incident ray. Refraction forms the basis of

lenses and imaging, as any finite section of material with an index differing from

that of its environment will alter the direction of incoming rays that are not

normal to the interface. Lenses can be designed to focus and steer radiation for a

variety of applications and are of use over a large range of wavelengths extending

from optical to radio.

The best way to analyze the refractive properties of any medium is using the

Equal Frequency Contours (EFC) of the medium. To determine the EFC of a

medium, we first need to determine the dispersion relation ω(k) = ω(kx, ky) of

that medium. For a linear medium having an index of refraction n we have the

dispersion relation as
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ω(k) = ω(kx, ky) =
√

k2
x + k2

yc/n , (3.5)

or

k2
x + k2

y =
(

nω

c

)2

. (3.6)

This equation defines a circle with radius nω/c in the momentum space. And as

the frequency changes as a parameter we can represent our dispersion relation as

a cone as seen in Fig. 3.2.

kx

kyF
re
qu

en
cy

Figure 3.2: Two dimensional dispersion relation of uniform frequency independent
linear medium in the k-space.

Now, we will assume that a plane wave of frequency ωo is incident from air to

a medium of refractive index n. First we will draw the EFC of air, which is simply

a circle with radius kair = ωo/c in the momentum space as shown in Fig. 3.3, and

let the wave that is incident from air to the medium makes an angle of θ1 with

the interface normal. The group velocity of the wave in air, which is the gradient

of the EFC at the point where the wave vector touches the EFC is also shown.

Since we simply have a circular EFC, the wave vector and the group velocity

are both oriented in the same direction. We should also keep in mind that we

are employing the ray picture of light in this discussion. We also know that the

component of the wave vector that is parallel to the interface must be conserved

at the boundary. This will in turn determine the wave that will be excited in the
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 2 kair

 1

Interface

Normal

vair

Figure 3.3: The equal frequency of contour of air for frequency ωo. The wave
vector and the group velocity for our incident wave are also drawn.

second medium. The dashed line in Fig. 3.4 represents the parallel wave vector

conservation. After this line, we draw the the EFC of the medium having an

index of refraction of n. This contour is a circle of radius km = nωo/c in the

momentum space as seen in Fig. 3.4. The intersection of the dashed line with the

EFC of the medium determines the direction of the wave vector in the medium.

Since the EFS is circular for this medium, the group velocity that is calculated by

taking the gradient of the EFC is parallel to the the wave vector in the medium.

In the meantime one can notice that the conservation of the surface parallel wave

vector gives us nothing but the Snell’s law. So, our claim that we can characterize

refraction of electromagnetic waves by the use of the equal frequency contours

turns out to be true. The analysis becomes more complicated for a grating that

has a periodically repeating equal frequency contour in the momentum space. For

this kind of grating medium the Snell’s law no more determines the propagation

direction, because we will have diffracted or Bragg waves as well.

After having developed the basics of refraction we can consider the special

cases of this phenomenon. One of these special cases is the negative refraction.

Although all of the known naturally occurring materials exhibit positive indices
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Figure 3.4: The equal frequency of contours of air and the dielectric medium
having refractive index n for frequency ωo. The wave vector and the group velocity
for our incident wave are also drawn.

of refraction, the possibility of materials with negative refractive index has been

explored theoretically by Victor Veselago [24]. In this seminal work, he concluded

that such materials did not violate any fundamental physical laws. These mate-

rials were termed left-handed materials (LHMs), and it was further shown that

some of the most fundamental electromagnetic properties of an LHM would be

opposite to that of ordinary right-handed materials (RHM), resulting in unusual

and nonintuitive optics. A beam incident on an LHM from an RHM, for exam-

ple, refracts to the same side of the normal as the incident ray. Furthermore,

it was predicted that the rays from a point source impinging on a flat, parallel

slab of LHM would be refocused to a point on the opposite side of the material.

Recently, analysis of this situation produced the observation that such a planar

slab, with a suitable index, can be used to achieve focusing with subwavelength

resolution, beating the normal diffraction limit associated with positive refractive

index optics [25].
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Figure 3.5: Photograph of the left-handed metamaterial (LHM) sample used by
UCSD team. The LHM sample consists of square copper split ring resonators
and copper wire strips on fiber glass circuit board material. The rings and wires
are on opposite sides of the boards, and the boards have been cut and assembled
into an interlocking lattice.

The fabrication and measurement of structured metamaterials having a range

of frequencies over which the refractive index was predicted to be negative for one

direction of propagation were reported recently by Smith et al [26]. An extension

of this structure to two dimensions was subsequently introduced and predicted to

exhibit an isotropic, negative index in two dimensions [27]. These structures use

split ring resonators to produce negative magnetic permeability over a particular

frequency region and wire elements to produce negative electric permittivity in an

overlapping frequency region. The negative permittivity to visible light of some

metals, such as silver, had been established well before Veselagos original stud-

ies. Pendry, who was developing devices to control the microwaves used in radar

systems, was interested in developing materials with negative permeability [28].

Both permittivity and permeability depend on the collective response of the elec-

trons within a material to the applied electric and magnetic fields. To control this

response, Pendry proposed an array of closely spaced, thin, conducting elements,
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such as metal hoops, which as a whole behaved as a kind of composite mate-

rial. In 1999, Pendry described how he adjusted the array properties, such as the

spacing between the elements, to create an array with negative permeability.
Fr
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y 
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Figure 3.6: TM polarized band structure of our photonic crystal along the symme-
try directions. The frequency region within which negative refraction is expected
to occur is also indicated by the gray area.

When the permittivity, ε, and permeability, µ, of a material are simultaneously

negative, one must choose the negative root of the index of refraction given by

n = ±√
εµ (1, 2, 7). Following up on Pendry’s work and the idea above, Smith

et al. reported a meta-material with a negative refractive index, which consists

of interlocking units of thin fiberglass sheets imprinted with copper rings and

wires. They tested the refractive properties of this meta-material by measuring

an incident microwave beam and found that Veselagos original calculation was

correct: the microwaves were bent in the opposite direction from normal [29].

This was the first evidence that the negative refraction is achievable in artificially

engineered materials.

We can explore the possibility of negative refraction in photonic crystals as
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Figure 3.7: The valence band of our photonic crystal calculated within the first
Brillouin zone. Using this two dimensional dispersion relation we can calculate
the equal frequency contours of the photonic crystal.

an alternative to left handed materials [29]. Recent experimental and theoreti-

cal works indicate that negative refraction phenomena in photonic crystals are

possible in regimes of negative group velocity and negative effective index above

the first band near the first Brillouin zone center Γ [30, 31, 32]. But since the

operation frequency lies within the upper bands of the photonic crystal, we have

multiple Bragg waves propagating inside the photonic crystal, and coupling to

the Bloch modes gets more difficult. Luo et al. [33] demonstrated theoretically

all-angle negative refraction effect that does not employ a negative effective in-

dex of refraction and involves photonic crystals. Throughout this thesis, we focus

on the first band of our photonic crystal for the experimental and theoretical

demonstration of single beam negative refraction in two dimensional photonic

crystals. Our structure consists of a square array of dielectric rods in air, having

a dielectric constant ε = 9.61, diameter 2r = 3.15 mm, and length l = 15 cm.
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Figure 3.8: The equal frequency contours for the valence band of our photonic
crystal in the extended Brillouin zone scheme. As can be seen here, the equal
frequency contours are periodic in the momentum space.

Center to center separation between the rods is a = 4.79 mm. The trans-

verse magnetic(TM) polarized band structure of our photonic crystal is shown in

Fig. 3.6. As we have mentioned previously, we will focus on the first or the valence

band of the photonic crystal. To study the refractive properties of the photonic

crystal, we need to have the dispersion relation ω(kx, ky) of the valence band for

every (kx, ky) lying within the first Brillouin zone. The two dimensional disper-

sion relation of the valence band calculated by plane wave expansion method, is

shown in Fig. 3.7. As can be seen in Fig. 3.7 for low frequencies the photonic

crystal acts like a regular dielectric medium since the dispersion relation resem-

bles a cone. Thus the equal frequency contours are circular with positive gradient

for low frequencies. This is consistent with the fact that for large wavelengths

our crystal will act like an effective medium and can be modelled by the effective

medium theory. However, as the frequency increases and gets close to the band

edge, the dispersion relation becomes complicated along with the equal frequency
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contours of our structure.
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Frequency (GHz)

Figure 3.9: The equal frequency contours for the whole valence band of our pho-
tonic crystal in a quarter of the first Brillouin zone scheme. The equal frequency
contours become anomalous as the frequency increases.

The equal frequency contours for the valence band of our photonic crystal in

the extended Brillouin scheme is displayed in Fig. 3.8. As seen there, the equal

frequency contours are periodic in the momentum space. This is similar to the

case that we have for a grating. Since both structures are periodic in the real

(coordinate) space, the structures exhibit periodic equal frequency contours in the

indirect (momentum) space. We have also calculated the equal frequency contours

in a quarter of the first Brillouin zone to analyze the structure better (Fig. 3.9).

The equal frequency contours change from circular to square as the frequency
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increases. This in turn enriches the refractive properties of our structure. For

instance negative refraction is one of them. Following the analysis of Ref. [33], we

have determined the negative refraction range for our structure. The frequency

range that gives negative refraction extends from 13.1 GHz to 15.44 GHz, as

shown in the shaded area of Fig. 3.6. To obtain negative refraction one needs to

have the equal frequency contours for the photonic crystal that are both convex

and larger than the equal frequency contours for air, which are circles with radii

proportional to the frequency. The equal frequency contours for air and the

photonic crystal at 13.698 GHz are shown in Fig. 3.10. Note that conservation of

surface-parallel wave vector gives the direction of the refracted waves inside the

photonic crystal (Fig. 3.10).

Figure 3.10: Equal frequency contours of air and our photonic crystal at 13.698
GHz. Here θ denotes the incidence angle from air to the photonic crystal. Note
that conservation of surface-parallel wave vector gives the direction of the re-
fracted waves inside the photonic crystal.

We performed transmission measurements for experimentally verifying the

predicted negative refraction behavior in our structure. The experimental setup

consists of an HP 8510C network analyzer, a microwave horn antenna as the
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transmitter and a monopole antenna as the receiver (Fig. 3.11). The photonic

crystal used in the refraction measurements has 17 layers in the propagation

direction and 21 layers in the lateral direction. The interfaces are along ΓM

direction. In all of our measurements and calculations the electric field is kept

parallel to the rods. The horn antenna is oriented such that the incident waves

make an angle of 45◦ with the normal of ΓM interface. We selected the operating

frequency as 13.698 GHz.
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Figure 3.11: Experimental setup. For the refraction measurements a horn antenna
is used as the transmitter, and a monopole antenna is used as a receiver.

As described later, at this frequency our structure exhibits the maximum

angular range of negative refraction. To appreciate the difference between the

negative and positive refraction, we propose a method where we scan the power

distributions along the first interface and the second interface of the slab shaped
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structure shown schematically in Fig. 3.12. We subsequently compare the peak

positions of the power distributions along the two interfaces. If the center of the

beam that emerges from the second interface is on the right-hand side of the

center of the beam that is incident to the slab structure, we clearly have positive

refraction. If the center of the beam that emerges from the second interface is on

the left-hand side of the center of the beam that is incident to the slab structure,

we apparently have negative refraction. This seems to be an amenable experiment

to differ positive and negative refraction [34].

Figure 3.12: The schematics of the positive and the negative refraction.

We first removed the photonic crystal and measured the spatial power dis-

tribution along the air photonic crystal interface by scanning the receiver an-

tenna, which corresponds to the incident power distribution. We then placed

the photonic crystal and measured the spatial power distribution along the sec-

ond(photonic crystal-air) interface. In our experiments we can only measure the

power at a certain point, which corresponds to the time averaged intensity at that

point. In order to make a realistic simulation of this structure, we calculated the

spatial time averaged intensity distribution along the first interface without the

photonic crystal and the spatial time averaged intensity distribution along the

second interface in the vicinity of the photonic crystal by using the finite differ-

ence time domain method.

In the simulations the incident Gaussian beam width is selected to be 6 cm,

which is equal to the width of the horn antenna used in the experiment. As shown

in Fig. 3.13 the center of the outgoing Gaussian beam is shifted towards the left
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Figure 3.13: Negative refraction. Calculated average intensities at the second
interface with (solid line) and at the first interface without the photonic crystal
(dashed line). Measured power distributions at the second interface with (−•−)
and at the first interface without the photonic crystal(−�−).

hand side of the center of the incident Gaussian beam, which clearly corresponds

to negative refraction. Since λ > 2
√

2a, Bragg reflections do not occur and only

a single propagating beam is excited in the photonic crystal. For this reason we

can still apply Snell’s law in the following way

n(f,ki) sin θr = nair sin θi, (3.7)

where θi is the angle of incidence and θr is the angle of refraction inside the

photonic crystal. Negative index of refraction determined from the experiment

is −1.94, which is very close to the theoretical value of −2.06 calculated by the

FDTD method. For comparison purposes, the measurements and the simulations
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are repeated with a slab that contains only polystrene pellets, which has a refrac-

tive index of 1.46. As can be seen in Fig. 3.14, the refracted beam is now on the

right hand side of the incident beam corresponding to a positive index of 1.52. To

our knowledge, this is the first experimental demonstration of negative refraction

in the valence band of a photonic crystal. The advantage of the first band is

that we do not suffer from Bragg reflections that take place inside the photonic

crystal and we have a well defined single beam propagation that is negatively

refracted. Another advantage of operating in the valence band is that we have

63% transmission at this frequency. This is almost 3 orders of magnitude larger

than the typical transmission in a left handed material [26, 35].

Figure 3.14: Positive refraction. Calculated average intensities at the second
interface with (solid line) and at the first interface without the slab (dashed line).
Measured power distributions at the second interface with (− • −) and at the
first interface without the slab (−�−).

In the aforementioned frequency range the equal frequency contours are square
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shaped around the M point in the Brillouin zone (Fig. 3.10). This results in

anisotropy for n(f,ki), where one expects to have different values for refractive

index along different propagation directions. To demonstrate this anisotropy,

the refractive index of the photonic crystal for certain angles of incidence at

f = 13.698 GHz are measured. Figure 3.15 shows the angles of refraction for

the experimental measurements and the FDTD simulations, where we observe

a negative refraction behaviour for the incidence angles > 20◦. In this angular

range vg · ki‖ < 0, (while vg · ki > 0), where vg is the group velocity inside the

PC that is given as ∇kω(k) and ki‖ is the component of wave vector, incident

from air to the photonic crystal, which is parallel to the interface.

Figure 3.15: Comparison of measured(•) and calculated(solid line) angles of re-
fraction versus angles of incidence at 13.698 GHz.

At 13.698 GHz, we achieve the maximum angular range of negative refraction

for our structure. This frequency is the optimum value, because at this frequency

the equal frequency contour for air has almost the same diameter with the equal

frequency contour for the PC (Fig 3.10). If a higher frequency is used, the equal
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frequency contour for air will be larger than the equal frequency contour for the

PC. In such a case, the maximum angle where we obtain negative refraction gets

smaller due to total internal reflection. This results in a narrower angle range

for the negative refraction behavior. If a lower frequency is used, we then have

equal frequency contour for air that is smaller than the equal frequency contour

for the photonic crystal. This in turn increases the minimum angle where we

obtain negative refraction, which again reduces the angle range for the negative

refraction behavior.



Chapter 4

Superlensing and subwavelength

resolution

The negative refraction that is not possible in ubiquitous materials has given

birth to a novel class of applications. For instance, focusing of light by a slab

structure with subwavelength resolution is achievable by these structures [25].

Lenses have been one of the prime tools of scientists for centuries. Their operation

is well understood on the basis of classical optics: curved surfaces focus light by

the virtue of the refractive index contrast (Fig. 4.1(b)). The limitations on the

conventional lenses are determined by wave optics. Namely, no lens can focus

light onto an area smaller than a square wavelength.

We can look more closely at the reason for the limitation in performance of a

conventional lens. Let us consider an infinitesimal dipole of frequency ω in front

of a lens. The electric field can be represented by the Fourier expansion,

E(r, t) =
∑
σ,k

Eσ(k)eik·r−iωt . (4.1)

Here, the axis of the lens is chosen to be the z-axis. The dispersion relation for

a linear medium tells us that,

kz = +
√

ω2/c2 − k2
x − k2

y, ω
2/c2 > k2

x + k2
y , (4.2)

39
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The function of the lens is to apply a phase correction to each of the Fourier

components so that at some distance beyond the lens the fields reassemble to a

focus and an image of the dipole source appears. However, for larger values of

the transverse wave vector,

kz = +i
√

k2
x + k2

y − ω2/c2, ω2/c2 < k2
x + k2

y , (4.3)

These evanescent waves decay exponentially with increasing z and no phase cor-

rection will restore them to their proper amplitude.

(a) (b)

Figure 4.1: (a) The slab having a positive index of refraction. The rays emerging
from the source diverge after passing through the slab. (b) A positive index lens.
If we want to focus light and have an image as well, we need a lens that has
curved surfaces.

They are effectively removed from the image which generally comprises only

the propagating waves. Since the propagating waves are limited to,

k2
x + k2

y < ω2/c2 , (4.4)
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the maximum resolution of the lens can never be greater than,

∆ =
2π

kmax
||

=
2πc

ω
= λ , (4.5)

and this is true whatever the size of the aperture is. So, we can conclude that we

can enhance the performance of a lens if we can somehow make this evanescent

waves propagating inside the lens.

Figure 4.2: The slab having a negative index of refraction. The rays emerging
from the source converge inside and after passing through the slab. If we want to
focus light and have an image as well, we can use a slab having a negative index
of refraction.

Meanwhile, we can demonstrate how a slab of negative refractive index can

make a lens. First, we suppose that we have a slab of positive refractive index,

and we place a point source in the vicinity of the lens. Since the lens has a

positive index of refraction, the rays emerging from the source will diverge as

seen in Fig. 4.1(a). And so the rays will never come into a focus beyond the slab

in contrast to the focus in conventional lenses that have curved surfaces. The

reason that the slab does not focus the rays is that we have positive refraction or
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in other words the refracted beam is on the right-hand side of the normal. And

after two refractions at the two interfaces the rays are shifted away from the axis

of the slab rather than getting closer. If instead we have a slab that has a negative

index of refraction, the refracted rays will be on the left-hand side of the interface

normals. So, the rays will focus inside the lens as seen in Fig. 4.2. The rays

will also experience negative refraction at the second interface. Subsequently, the

light transmitted through the slab comes to a second focus beyond the slab. We

are now aware of the interesting consequences of the negative refraction.

Image Plane

Figure 4.3: Ez field distribution of the source and the image in the vicinity of the
photonic crystal. The image plane is also shown.

Since we have determined the optimum frequency for a broad angle negative

refraction for our photonic crystal, we can use our crystal to test the superlensing

effect that was predicted for negative refractive materials [25, 33, 36, 37]. In

Fig. 4.3 we display the electric field distribution of our structure calculated by
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finite difference time domain method. A point source is placed below our two-

dimensional photonic crystal, and as can be seen in Fig. 4.3, the transmitted

wave obviously come to a focus above the photonic crystal. For this purpose, a

photonic crystal having 15 layers in the propagation direction and 21 layers in

the lateral direction is used.

Figure 4.4: Measured power distribution (blue bullet) and calculated average
intensity (solid line) at the image plane. Full width at half maximum of the
measured image is 0.21λ . Spatial power distribution without PC is also shown
(dashed line).

In our FDTD simulations, the surface of the photonic crystal is excited with a

continuous wave point source that is placed at 0.7 mm away from the air-photonic

crystal interface. An image of the source is formed at 0.7 mm away from the

photonic crystal-air interface. To show the focusing on the image plane in the

vicinity of the photonic crystal, the time averaged intensity distributions along
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the image plane with and without the photonic crystal are calculated (Fig. 4.4).

In the experiment, a monopole antenna is used as the point source (Fig. 4.5). The

power distribution at the image plane is measured by scanning the transmission

along the image plane. The measured distribution is also shown in Fig. 4.4.
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Figure 4.5: The experimental setup used both in the superlensing and subwave-
length resolution measurements.

The full width half maximum (FWHM) of the measured focused beam is

found to be 0.21λ , which is in good agreement with the calculated FWHM. The

calculated FWHM of the beam at this plane without the photonic crystal is found

to be 5.94λ . So, our structure exhibits 25× focusing at this plane with respect

to free space. However, in our structure superlensing effect can be observed only

for a small separation between the point source and the photonic crystal. As

the point source moves away from our finite-sized crystal, only a smaller portion

of the electromagnetic waves become incident on the crystal within the negative

refraction incidence angle range (> 20◦). So, as the separation between the source

and the crystal increases, the superlensing effect gets weaker and it can not be

observed for large separations.
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Subwavelength resolution using negative refractive materials has been theo-

retically suggested [25]. As our structure exhibits negative refraction properties,

we can also use our structure for this application. For this purpose, a crystal

that consists of 15 layers in the propagation direction and 21 layers in the lateral

direction is used. We place two point sources 0.7 mm away from the photonic

crystal, which are separated by a distance λ/3 or 6.78 mm. Figure 4.6 shows the

calculated power distribution at 0.7 mm away from the second interface with and

without the photonic crystal. In the measurements the input power is split into

two identical monopole antennas by a 3 dB splitter.
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Figure 4.6: Measured power distribution (blue bullet) and calculated average in-
tensity (solid line) at 0.7 mm away from the second interface. Calculated average
intensity at this point without the photonic crystal is also shown (dashed line).

The measured power distribution at 0.7 mm away from the second interface is

also plotted in Fig. 4.6. The peaks corresponding to each point source are clearly

resolved in both measurement and simulation.
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Lateral Position

Figure 4.7: Calculated average intensity at 0.7 mm away from the second interface
for various phase differences introduced between the point sources.

Since the point sources in the present experiments are obtained by splitting

of the same signal, they remain coherent with respect to each other. Thus the

obtained resolution may well be due to the interference effects. So, we checked

how the performance of the lens will change if we introduce a phase difference

between the two point sources. The best way to characterize the performance of

the lens is simulating the structure rather than making an experiment since it

will be very complicated to introduce a phase difference between the monopole

antennas in the experiment. We have simulated the system for different phase

differences. We can note that the peaks are still resolved in spite of the phase

difference.
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We have repeated the experiments and simulations with two incoherent point

sources 0.7 mm away from the photonic crystal, which are separated by a distance

of 6.78 mm and having frequencies 13.698 GHz and 13.608 GHz respectively. Fig-

ure 4.8 shows the calculated power distribution at 0.7 mm away from the second

interface the PC. In the measurements two independent signal generators are

used for driving the monopole antennas, and a powermeter is used for measuring

the power distribution.

Figure 4.8: Measured power distribution (blue bullet) and calculated average
intensity (solid line) at 0.7 mm away from the second interface for two incoherent
sources. Calculated average intensity at this point without the photonic crystal
is also shown (dashed line).

The measured power distribution at 0.7 mm away from the second interface is

also plotted in Fig. 4.8. The peaks corresponding to each point source are clearly

resolved in both measurement and simulation. To our knowledge, this is the first

experimental observation of subwavelength resolution of two incoherent sources

in negative refractive materials [38]. One can argue that the observed enhanced

resolution can be just due to the large refractive index as in the case of oil (or solid)
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immersion microscopy. In order to check this possibility, we repeat our incoherent

source simulations using a dielectric slab with a high refractive index. Figure 4.8

shows the simulations made for n = 3.1 (refractive index of alumina) and n =

15. As can be seen from this figure, subwavelength resolution is not achieved

even with a large index material. Besides, the large reflection resulting from the

air-slab interface significantly reduces the transmitted power when compared to

63% transmission obtained from the PC at this operating frequency. So, even

if the observed subwavelength resolution in our photonic crystal is a near field

effect, this can not be achieved by ubiquitous materials. The negative refraction

effect reported in this thesis depends only on the refractive index of the dielectric

material and the geometrical parameters used in 2D photonic crystals. So, this

effect can also be observed at optical wavelengths where it is possible to obtain

similar refractive indices using transparent semiconductors. This is in contrast

to the previously reported metal-based left-handed materials. In such structures,

increased absorption in metals prohibits the scaling of these structures to the

optical wavelengths. In terms of fabrication, a slab shaped lens structure is easier

to fabricate than a conventional curved shaped lens structure. So, our slab shaped

lens structure can also be used for nanophotonics and nanooptics applications.
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Conclusions

In this thesis work, we have investigated the negative refraction phenomenon in

a two-dimensional photonic crystal, and subwavelength resolution in a photonic

crsytal based superlens.

First, we examined the refractive properties of a two-dimensional dielectric

photonic crystal. Strong frequency dependence of the refractive index of the

photonic crystal is observed. We have in particular focused on possibility of

negative refraction in these structures. To obtain the frequency range within

which the negative refraction and the other peculiar properties incorporated with

it, we have calculated the equal frequency contours of our photonic crystal with

the photonic plane wave expansion method. We found out that 13.7 GHz is the

optimum frequency for negative refraction. We took transmission measurements

to confirm our structure’s predicted negative refraction: we used the the interfaces

of the photonic crystal in the Γ − M direction. Our experiments were simulated

with the finite-difference time-domain method. The negative index of refraction

was determined to be −1.94, which is close to the theoretical value of −2.06

calculated by the finite-difference time-domain method.

The advantage of negative refraction in the valence band is that there is no

Bragg reflection; such reflections occur in higher bands of the photonic crystal,

and we have a well-defined, single-beam propagation that is negatively refracted.

49



CHAPTER 5. CONCLUSIONS 50

Another advantage of operating in the valence band is that the transmission

efficiency at this frequency is 63%, which is almost three orders of magnitude

larger than the typical transmission efficiency in a left-handed material.

This experimental verification of negative refraction is a step towards the

realization of a ’superlens’ that will be able to focus features smaller than the

wavelength of light. Since we know that we have a negative refractive material ,

we have furthered our investigation by using our crystal to test the superlensing

effect that was predicted for negative refractive materials. We have demonstrated

that the image of two coherent point sources separated by a distance of λ/3 can be

resolved. We have extended our approach to the case with two incoherent point

sources, and we have achieved subwavelength resolution for this configuration as

well. The measurements are in good agreement with the finite-difference time-

domain method simulations. To our knowledge, this is the first demonstration of

subwavelength resolution of electromagnetic waves in a negative index material.

The negative refraction effect reported in this thesis depends only on the re-

fractive index of the dielectric material and the geometrical parameters used in

2D photonic crystals. So, this effect can also be observed at optical wavelengths

where it is possible to obtain similar refractive indices using transparent semicon-

ductors. This is in contrast to the previously reported metal-based left-handed

materials. In such structures, increased absorption in metals prohibits the scal-

ing of these structures to the optical wavelengths. In terms of fabrication, a slab

shaped lens structure is easier to fabricate than a conventional curved shaped lens

structure. So, our slab shaped lens structure can also be used for nanophotonics

and nanooptics applications.

As future work, we are planning to build structures that exhibit all-angle

negative refraction (having a circular equal frequency contour with negative gra-

dient), and that operate at higher frequencies for instance in the milimeter and

optical wave regimes. We have preliminary results that a metallic photonic crys-

tal in which just the dielectric rods are changed with metallic ones will exhibit

all-angle negative refraction and subwavelength focusing as well. For the dielec-

tric case operating at higher frequencies, we are planning to fabricate them by



CHAPTER 5. CONCLUSIONS 51

micro-machining techniques. And the dielectric structure operating at the opti-

cal wavelengths can be fabricated by using electron beam lithography and deep

reactive ion etching techniques.
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