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ABSTRACT

FAST MULTIPOLE METHOD FOR THE

SOLUTION OF ELECTROMAGNETIC

SCATTERING PROBLEMS

Özgür Salih Ergül

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Levent Gürel

June 2003

The fast multipole method (FMM) is investigated in detail for the solution of elec-

tromagnetic scattering problems involving arbitrarily shaped three-dimensional

conducting surfaces. This method is known to reduce the computational com-

plexity and the memory requirement of the solution without sacrificing the accu-

racy. Therefore, it achieves the solution of large problems with less computational

resources compared to the other traditional solution algorithms. However, the ex-

pected efficiency of the FMM may not be obtained unless the appropriate choices

of the components are made. The types of the employed integral equation, it-

erative algorithm, and preconditioning technique directly affect the efficiency of

the implementations. Performances of these components are also related to each

other, and their simultaneous optimization creates a challenging task in the de-

sign of an efficient solver.

Keywords: Fast multipole method (FMM), electromagnetic scattering, integral

equations, iterative algorithms, preconditioning techniques.
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ÖZET

ELEKTROMANYETİK SAÇINIM PROBLEMLERİ İÇİN HIZLI

ÇOKKUTUP YÖNTEMİ

Özgür Salih Ergül

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Levent Gürel

Haziran 2003

Gelişigüzel şekilli üç boyutlu iletken yüzeyleri içeren elektromanyetik saçınım

problemlerinin çözümü için hızlı çokkutup yöntemi (HÇY) incelenmiştir. Bu

yöntemin, hesapsal karmaşıklıg̃ı ve bellek gereksinimini, çözümün dogrulug̃undan

taviz vermeden düşürdüg̃ü bilinmektedir. Böylece, büyük problemlerin çözümü

geleneksel çözüm algoritmalarına göre bilgisayar kaynaklarının daha az kullanı-

mıyla yapılabilmektedir. Öte yandan, HÇY’nin beklenen verimlilig̃i, bileşenleri

uygun seçilmedig̃i sürece elde edilemeyebilir. Kullanılan integral denklemi, ite-

ratif algoritma ve preconditioning teknig̃i uygulamanın verimlilig̃ini dog̃rudan

etkiler. Bunların kullanımının birbirine bag̃lı olmasından dolayı, verimli bir

çözücünün tasarımı zorlu bir işe dönüşmektedir.

Anahtar kelimeler: Hızlı çokkutup yöntemi (HÇY), elektromanyetik saçınım, in-

tegral denklemleri, iteratif algoritmalar, preconditioning teknikleri.
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Chapter 1

Introduction

Maxwell’s equations

∇×H(r) =
∂D(r)

∂t
+ J(r) (1.1)

∇×E(r) = −∂B(r)

∂t
(1.2)

∇ ·D(r) = ρ(r) (1.3)

∇ ·B(r) = 0 (1.4)

and the associated boundary conditions are the basic tools for the formulation

of the electromagnetic problems. However, analytic treatment of these equations

is limited to some canonical geometries. For arbitrary geometries, numerical

methods have been developed in recent years. With the aid of the advances

in the computer technology, it has become possible to apply these numerical

techniques to very large electromagnetic problems.

1.1 Motivation

Most of the real-life problems in the electromagnetics are large, requiring immense

computational resources in their solutions. In addition, the solutions of these

problems are usually required to be performed for many times. The advances

1



in the computer technology make it possible to solve larger problems in reduced

processing times. On the other hand, fast and efficient algorithms are developed

to perform these solutions with restricted computational resources. The necessity

of these algorithms is not negated by the advances in the computer technology

because of the following reasons:

1. They can be integrated with the latest advances in the computer hardware

technology so that it becomes possible to solve even larger problems.

2. They are designed to perform the solutions with less number of operations

and they minimize the round-off errors introduced by the computers.

3. The improvement introduced by the fast algorithms usually provides greater

advances than the improvement introduced by the computer hardware tech-

nology in the solution of large problems.

As a results, fast and efficient algorithms should be used to increase the ability

of computer technology in the solution of large electromagnetic problems.

1.2 Historical Background

Numerical techniques in computational electromagnetics are generally divided

into two groups: partial-differential-equation (PDE) and integral-equation (IE)

techniques. The finite-difference time-domain technique (FDTD) and the finite

element method (FEM) are the most popular PDE techniques, while the method

of moments (MOM) [1], the fast multiple method (FMM) [2, 3] and its extension,

the multi-level fast multipole algorithm (MLFMA) [4]–[6], recursive T-matrix al-

gorithms (RTMA’s) [7, 8], and the fast far-field approximation (FAFFA) [9] are

the most popular IE techniques.

In this thesis, the MOM and the FMM will be investigated in detail for the

2



solution of electromagnetic scattering problems. These methods rely on the ap-

plication of the discrete versions of the integral equations on the surfaces of the

geometries. Three integral equations will be used: The electric-field integral equa-

tion (EFIE), the magnetic-field integral equation (MFIE), and the combined-field

integral equation (CFIE). Following the discretization, a linear system of equa-

tions is obtained. The unknown of the system is a coefficient vector for the given

expansion of the induced current on the surface.

For problems that include large geometries in terms of the wavelength, the size

of the linear system becomes large, too. On the other hand, the MOM is not

suitable for solving large problems. For a linear system with N unknowns, this

method has O(N2) complexity for constructing the system, while the memory

requirement is also O(N2). In addition, the direct solution of the system requires

O(N3) processing time, and O(IN2) for an iterative solution with I iterations.

Consequently, as the number of unknowns increases, this method becomes very

inefficient in terms of the memory usage and the processing time. It becomes im-

possible to increase the problem size with the existing computational resources.

However, the MOM forms the basis for the FMM, which is much more efficient.

The FMM is based on the iterative solution of the linear system. This method

provides an efficient calculation of the matrix-vector multiplications required by

the iterative solver. With this method, the memory requirement drops to O(N3/2)

and the processing time becomes O(IN3/2). Consequently, it becomes possible

to solve larger problems. However, some FMM implementations may not show

the expected efficiency. It will be shown that the type of the integral equation to

formulate the problem directly affects the behavior of the iterative solver. Then,

the iterative solver may require large preconditioners to reach the solution and

this leads to increased memory usage and processing time.
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Linear systems obtained by the EFIE are usually ill-conditioned, especially for

the problems involving closed surfaces. Therefore, their usage in the FMM re-

duces the efficiency significantly. Using the MFIE or the CFIE leads to better

results and the efficiency can be increased to expected levels. It will be shown

that the CFIE is the most suitable integral equation to formulate large problems.

On the other hand, these two integral equations cannot be applied to geometries

with open surfaces. Therefore, the EFIE becomes the only choice for those prob-

lems.

The extension of the FMM is the multi-level fast multipole algorithm (MLFMA),

which further reduces the processing time to O(IN log N) and memory require-

ment to O(N log N). The MOM, FMM and MLFMA implementations will be

applied on scattering-from-sphere problems to demonstrate the improvement on

the efficiency. It will be seen that, with the existing computational resources, the

MOM is limited to about 14,000-unknown problems, while it becomes possible

to solve a 130,000-unknown problem with the MLFMA.

The integrals arising in the MOM are evaluated by numerical techniques. This

causes a controllable error in the solutions. In the MLFMA, there are three ad-

ditional error sources that may also affect the accuracy of the final result. These

errors can also be controlled; however, the trade-off between the efficiency and

the accuracy should be balanced. The accuracy of the implementations will be

presented by comparisons to the analytical results.
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1.3 Contributions

The main objective of this thesis is to solve large electromagnetic scattering prob-

lems with high accuracy. A brief overview on the integral equations will be given

in Chapter 2. In Chapters 3 and 4, MOM implementations will be shown in detail

to form the basis for the FMM implementations. Chapter 5 introduces the FMM

implementations using three different integral equations. The efficiency consid-

erations, with a focus on the iterative solutions of the problems, are investigated

in Chapter 6. Finally, the MLFMA will be presented in Chapter 7 as the final

stage of this work. Progress towards the MLFMA will be accompanied by the

results on accuracy and efficiency.

An efficient implementation of the MOM using the MFIE formulation and the

Rao-Wilton-Glisson (RWG) functions is given in [10]. An alternative implemen-

tation is presented in Chapter 4, which divides the expression for the impedance-

matrix elements into basic integrals and evaluates these basic integrals in a par-

allel manner. Adaptive integration algorithms are given in Chapter 3 to perform

the numerical integrations efficiently, with an adjustable accuracy.

The evaluation of the analytical integrals appearing in the MFIE formulation is

given in [10]-[12]; however, an investigation on the limit values will be presented

in Chapter 4. It will be shown that the solid angle expression in the MFIE can

be derived in these evaluations. In addition, for the unbounded integrand of the

testing integrals in the neighboring interactions, a singularity extraction method

will be suggested.

Although the CFIE is known to give better-conditioned systems for the closed

geometries [4], Chapter 6 presents a detailed investigation on the efficiency of
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the FMM implementations, according to the choices of the integral equation, it-

erative solver, and preconditioning technique. It will be shown that the EFIE

may not be used with efficient preconditioners, such as the diagonal and block-

diagonal preconditioners. It will be also shown that the increase in the number

of iterations is very limited for the CFIE as the number of unknown increases.

1.4 Simulation Environment and Computational

Resources

To model the geometries, a commercial program, I-DEAS, has been used. This

program is also able to mesh the geometries, which is required by the numerical

implementations. Various geometries meshed with linear triangles will be shown

at the end of Chapter 2.

It should be noted that the modelling stage includes an error due to the in-

exact modelling of the curved surfaces with the linear elements. In addition, the

integral equations are used in discrete form, which leads to another error source.

These errors cannot be avoided; however, they can be made ignorably small by

choosing the size of the elements carefully, before the numerical treatment.

The solvers are implemented by Fortran programs, which are able to use the

exported data of the I-DEAS. The solutions are performed on Digital Alpha pro-

cessors with 2 GB memory. In addition to the solvers, other Fortran programs

have also been implemented to display the current distribution by the I-DEAS

and to calculate the radar cross section (RCS).
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Chapter 2

Integral Equations

This chapter introduces the surface integral equations to solve the scattering and

radiation problems of objects having arbitrarily shaped geometries. For a con-

ducting surface, application of the boundary conditions leads to reduction of the

three-dimensional problem into a two-dimensional one involving the surface. In

this thesis, the objects are assumed to be perfectly conducting; however, integral

equations are also applicable to penetrable scatterers.

For the numerical solution of the problem involving the continuous fields and

current density, the method of moments (MOM) will be introduced. This method

expands the current density in terms of known basis functions, and tests the in-

tegral equation as many times as the number of unknown coefficients. The result

of this method is a linear system to be solved by a suitable technique.

2.1 Electric-Field Integral Equation

The electric-field integral equation (EFIE) can be derived by applying the bound-

ary condition about the tangential component of the electric field on a surface.
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For a perfectly conducting surface,

t̂ ·Einc(r) + t̂ ·Esca(r) = 0, (2.1)

where the observation point, r, is located on the surface. In the equation, Einc

represents the incident field due to external sources and Esca represents the scat-

tered field, which can be written in terms of the induced current as

Esca(r) = iωµ

∫

S′
dr0G(r, r0) · J(r0), (2.2)

where

G(r, r0) =

[
I +

∇∇
k2

]
g(r, r0) (2.3)

is the dyadic Green’s function and

g(r, r0) =
eik|r−r0|

4π|r − r0| (2.4)

is the Green’s function for the three-dimensional scalar Helmholtz equation.

Then, the EFIE can be formed by substituting the scattered field expression

into the boundary condition as

t̂ ·
∫

S′
dr0G(r, r0) · J(r0) =

i

kη
t̂ ·Einc(r). (2.5)

2.2 Magnetic-Field Integral Equation

The magnetic-field integral equation (MFIE) can be derived by applying the

boundary condition about the tangential component of the magnetic field on

closed surfaces of objects. For a conducting surface, this boundary condition can

be written as

n̂×H inc(r) + n̂×Hsca(r) = J(r) (2.6)

if the observation point, r, approaches the surface from outside. In this equation,

H inc represents the incident magnetic field due to external sources, while Hsca
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represents the magnetic field scattered due to the induced current on the surface

and can be written as

Hsca(r) =

∫

S′
dr0J(r0)×∇′g(r, r0), (2.7)

where g(r, r0) is the Green’s function defined in (2.4). Then, it is convenient to

rewrite Equation (2.6) as

J(r)− n̂×
∫

S′
dr0J(r0)×∇′g(r, r0) = n̂×H inc(r), (2.8)

which is the general expression for the MFIE for conducting closed surfaces when

the observation point approaches from the outside.

2.2.1 Radiation Integral

As the observation point approaches the surface, the radiation integral can be

divided into two integrals as [13]

∫

S′
dr0J(r0)×∇′g(r, r0) = lim

S′ε→0

∫

S′−S′ε

dr0J(r0)×∇′g(r, r0)

+ lim
S′ε→0

∫

S′ε

dr0J(r0)×∇′g(r, r0), (2.9)

which can be written shortly as

Hsca(r) = Hsca
PV (r) + Hsca

ε→0(r). (2.10)

S ′ε in Equation (2.9) is the infinitesimal surface in the vicinity of the observation

point, and the rest of the surface is represented by the first integral. The limits

in the equation indicate that S ′ε shrinks to zero. However, its contribution to

the overall integral does not evaluate to zero since the integrand tends to diverge

when the observation point, r, approaches the source point, r0. Figure 2.1 shows

that the observation point at (0, 0, z) approaches a smooth portion of the surface

as z goes to zero. In the figure, Vi represents the interior of the closed object, so

that the observation point approaches the surface from outside. The infinitesimal
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Vo
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(0,0,z)
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x

Figure 2.1: Observation point approaching a smooth portion of the surface from
outside.

surface S ′ε is locally planar having its normal in the z direction and in the shape

of a circle with radius ε.

Since the observation point becomes close to the source, Green’s function given

in Equation (2.4) can be approximated as

g(r, r0) =
eik|r−r0|

4π|r − r0| ≈
1

4π|r − r0| . (2.11)

In addition, source area is small enough that the current density can be assumed

to be constant over the entire surface with a value of J(r0), where r0 = (0, 0, 0)

is the point on the surface, which the observation point approaches in the limit.

Then, the current density can be taken out of the integral and the expression for

the scattered magnetic field from the infinitesimal surface becomes

Hsca
ε (0, 0, z) ≈ J(r0)×

∫

Sε

dr0∇′
( 1

4π|r − r0|
)
. (2.12)

If the gradient expression is written explicitly as

∇′
( 1

|r − r0|
)

=
R

R3
, (2.13)

where

R = r − r0 = ẑz − ρ0, (2.14)
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then

Hsca
ε (0, 0, z) ≈

J(r0)

4π
×

∫

Sε

dr0 R
R3

=
J(r0)

4π
× ẑ

∫ 2π

0

dφ′
∫ ε

0

dρ′
ρ′z

[(ρ′)2 + z2]3/2

−J(r0)

4π
× x̂

∫ 2π

0

dφ′
∫ ε

0

dρ′
(ρ′)2 cos φ′

[(ρ′)2 + z2]3/2

−J(r0)

4π
× ŷ

∫ 2π

0

dφ′
∫ ε

0

dρ′
(ρ′)2 sin φ′

[(ρ′)2 + z2]3/2

= −J(r0)

2
× ẑ

z

[(ρ′)2 + z2]1/2

∣∣∣∣
ε

0

= −J(r0)

2
× ẑ

[
z

[ε2 + z2]1/2
− z

|z|
]
. (2.15)

As the observation point approaches the surface, z goes to zero and

Hsca
ε (0, 0, z = 0) ≈

J(r0)

2
× ẑ. (2.16)

This result can be generalized as

Hsca
ε→0(r0) =

J(r0)

2
× n̂, (2.17)

where n̂ represents the normal of the surface in general.

When the observation point approaches a smooth portion of the surface, Equa-

tion (2.17) indicates that the limit value of the magnetic field shown in Equation

(2.10) has a magnitude equal to half of the current density and has a direction

perpendicular to and in the same plane with the current flow. Consequently, if

some current flow exists on a planar surface, the principle value of the magnetic

field radiated by this current density is perpendicular to that plane, while the

limit value forms the parallel component.

In general, the limit value depends on the solid angle of the surface at the ob-

servation point, which is simply 2π for smooth surfaces. This dependence will
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be shown explicitly in Chapter 4, but Equation (2.8) should be rewritten here as

[14]

Ωo

4π
J(r)− n̂×

∫

S′(PV )

dr0J(r0)×∇′g(r, r0) = n̂×H inc(r) (2.18)

with

Hsca
ε→0(r0) =

Ωi

4π
J(r0)× n̂, (2.19)

where Ωo represent the external and Ωi represents the internal solid angles of the

surface at the observation point, which may take values between 0 and 4π. It

should be indicated that the Equation (2.18) relies on the assumption that the

current density is continuous at the observation point.

2.2.2 Derivation by Using Interior Boundary Condition

If the observation point approaches the boundary from the interior of the closed

surface, the boundary condition about the tangential component of the magnetic

field should be written as

n̂×H inc(r) + n̂×Hsca(r) = 0 (2.20)

if the surface is perfectly conducting. Using the expression for scattered magnetic

field given in Equation (2.7),

n̂×H inc(r) + n̂×
∫

S′
dr0J(r0)×∇′g(r, r0) = 0, (2.21)

which seems to be different from (2.8). However, if the same procedure was

applied to the radiation integral, then the limit value would be evaluated for

smooth surfaces as

Hsca
ε→0(r0) = −J(r0)

2
× n̂, (2.22)

while it becomes

Hsca
ε→0(r0) = −Ωo

4π
J(r0)× n̂ (2.23)
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in general. Using these limit expressions, Equation (2.21) changes into Equa-

tion (2.18) again, although the derivation was based on a different form of the

boundary condition.

2.3 Combined-Field Integral Equation

When the EFIE or the MFIE are used for the scattering problems of closed ob-

jects, internal resonance problems arise at resonance frequencies. Both integral

equations have nonzero null-space solutions, which adds extra current on the ob-

ject in addition to the correct current distribution. The extra current from the

solution of the EFIE does not radiate so that the far-field radiation can be calcu-

lated correctly, even when the current is incorrect. However, null-space solution

of the MFIE radiates and leads to incorrect calculation of far-field radiation [15].

To avoid the internal resonance problem, the combined-field integral equation

(CFIE) can be used. This integral equation is simply the linear combination of

the EFIE and the MFIE, and can be represented as

CFIE = αEFIE + (1− α)MFIE, (2.24)

where α may take values between 0 and 1. Then, the CFIE can be written by

combining the Equations (2.5) and (2.8) as

α

[
t̂ ·

∫

S′
dr0G(r, r0) · J(r0)

]

+
i

k
(1− α)

[
J(r)− n̂×

∫

S′
dr0J(r0)×∇′g(r, r0)

]

=
i

k

[
α

η
t̂ ·Einc(r) + (1− α)n̂×H inc(r)

]
. (2.25)

It should be noted that the MFIE part is multiplied by the factor of i/k, in order

to weight the equations equally before the linear combination.
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Using the CFIE, two boundary conditions are applied at the same time and

null-space solution of this equation is zero for all frequencies. In other words,

the CFIE is free of internal resonance problem and it has unique solution for

all frequencies. However, the CFIE has another advantage that makes it more

preferable than the EFIE or the MFIE. As it will be shown later, matrix equations

obtained by using the CFIE are generally better conditioned than the systems

obtained by using the EFIE or the MFIE. This leads to relatively faster conver-

gence of the iterative methods in the solution of the system, and gives superiority

to the CFIE over the others [16]. Nevertheless, the MFIE and the CFIE cannot

be used for the scattering problems of objects with open surfaces, and the EFIE

becomes the only choice for those problems.

2.4 Method of Moments

Integral equations introduced in the previous sections can be represented in gen-

eral as

L{f(x)} = g(x), (2.26)

where L is the linear operator of the equation, while f(x) is the unknown function

that stands for the current distribution and g(x) is the excitation. To solve the

problem, the unknown function can be expanded in a series of basis functions as

f(x) ≈
N∑

n=1

anbn(x), (2.27)

where an is the coefficient of the nth basis function. The basis functions should

be linearly independent and they have to be chosen appropriately, so that they

can expand the current distribution. Then, defining the residual error as

R(x) =L

{ N∑
n=1

anbn(x)

}
− g(x)

=

[ N∑
n=1

anL{bn(x)}
]
− g(x), (2.28)
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the aim becomes to make this error arbitrarily small, in order the solve the

problem not exactly, but with a small error. For this purpose, another set of

functions called the testing functions, tm(x), can be used to weight both sides of

(2.28). Defining an inner product as

〈a(x), b(x)〉 =

∫
dxa(x) · b(x), (2.29)

Equation (2.28) can be tested for m = 1, ..., N as

∫
dxtm(x) ·

N∑
n=1

anL{bn(x)} =

∫
dxtm(x) · g(x). (2.30)

Finally, interchanging the order of summation and integration, the set of equa-

tions becomes

N∑
n=1

an

∫
dxtm(x) · L{bn(x)} =

∫
dxtm(x) · g(x) (2.31)

and a linear system can be formed as

N∑
n=1

anZmn = vm, (2.32)

where the matrix elements are

Zmn =

∫
dxtm(x) · L{bn(x)} (2.33)

and the vector elements are

vm =

∫
dxtm(x) · g(x). (2.34)

It is more evident in Equation (2.32) that N linearly independent equations are

used to find the unknown coefficients of N basis function. In this equation, the

matrix Z is usually called the impedance matrix, and the vector v is called the

excitation vector. An element of the Z matrix at (m,n) is referred to as the

interaction between the mth testing and nth basis functions.
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The method described above is called as the method of moments (MOM) [1],

which has been extensively used by many scientist in the solution of various

types of scattering problems. By this method, an operator equation is reduced to

a matrix equation. Therefore, it becomes possible to solve the linear equations

involving continuous functions numerically with small errors.

2.4.1 Geometry Modelling and Meshing

The application of the MOM requires the modelling of the problem geometries

in the computer environment. Then, the surface models have to be meshed ac-

cording to the type of the basis function to be used. Figures 2.2 and 2.3 show

triangular meshing applied on various models of closed and open geometries. For

high accuracy, the size of the triangles have to be small, which leads to large

number of triangles or number of unknown coefficients, N . However, it becomes

difficult to solve the linear system in (2.32) when N gets larger. The rule of

thumb is to choose the average size of the mesh about 1/10 of the wavelength so

that the MOM can be applied efficiently and with small error.

There are actually two error sources appearing at this stage. The first one is

the approximation of the continuous current density with discrete functions. The

second one is the modelling of the geometry with linear elements. The first error

always exists, but it can be reduced by decreasing the element size. The second

error, which also depends on the element size, exists only for the objects having

curved surfaces, such as the sphere. In Figure 2.2(b), the smooth surface of the

sphere is approximated by the combination of linear triangles.

Various types of basis functions can be defined on the triangular domains. For

small error in the expansion of the current, high-order functions should be pre-

ferred. In addition, the type of the linear operator also affects the choice [17], as
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will be shown in the next subsection.

(a) Cube (b) Sphere

(c) Rod (d) Box

Figure 2.2: Surface models of various closed geometries with triangular meshing.
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(a) Square sheet (b) Narrow strip

(c) Log-periodic antenna

Figure 2.3: Surface models of various open geometries with triangular meshing.
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2.4.2 Triangular Rooftop Basis Functions

Rao-Wilton-Glisson (RWG) functions are linearly varying vector functions de-

fined on planar triangular domains [18]. Due to their useful properties, they have

been widely used as basis and testing functions in MOM applications.

S+
n

ln

O

n
+

Sn

nr rr −

−

Figure 2.4: RWG function defined on the triangular domains.

Figure 2.4 shows an RWG function defined on two triangles having a common

edge of length ln. This RWG function associated with the nth edge is given as

bn(r) =





ln
2A+

n

(r − r+
n ), r ∈ S+

n

ln
2A−

n

(r−n − r), r ∈ S−n

0, otherwise





, (2.35)

where A+
n and A−

n are the areas of the triangle surfaces S+
n and S−n , respectively.

Since the function is zero outside the two triangles and due to the symmetry of

the expressions in the two triangular domains, an alternative definition can be

attempted for the function on the ith triangle as

bik(r) = ± lik
2Ai

(r − rik)δi(r), (2.36)
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where

δi(r) =





1, r ∈ Ai

0, otherwise





(2.37)

is used to indicate that the value is zero outside the triangle. The alignment of

the function on the triangle is represented by the index k = 1, 2, 3, which asso-

ciates the function to one of the three edges of the triangle.

An important property of the RWG functions is that their divergence is finite

everywhere. This comes from the fact that there is no discontinuity in the cur-

rent flow that is crossing the boundaries of the triangles. Considering a single

triangle, the current flow is purely tangential to two of the edges with no normal

component. At the edge, to which the function is associated, the current flow has

normal component; but it is continuous due to the corresponding current flow

on the other triangle of the same function. It should be noted that, the value

of the normal component becomes unity on the edge due to the normalization

factors in (2.35). Therefore, the coefficient related to the nth basis function can

be interpreted as the value of the current flow across the nth edge.

In general, divergence of the RWG function can be written as

∇ · bn(r) =





ln
A+

n

, rεS+
n

− ln
A−

n

, rεS−n

0, otherwise





(2.38)

and the total charge associated with the function becomes

A+
n

ln
A+

n

− A−
n

ln
A−

n

= 0. (2.39)

Equations (2.3) and (2.5) show that the implementation of the MOM with the

EFIE requires the divergence operation on the current density. Therefore, it is

appropriate to use the RWG functions to expand the current density, so that the
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divergence operation is guaranteed to give bounded values. In addition, it will be

shown that an efficient implementation of the MOM with the EFIE also requires

the divergence of the testing functions. Therefore, it is also suitable to use the

RWG functions as the testing functions. In general, the strategy of choosing the

same type of basis and testing functions is called the Galerkin method. This

method will be extensively used in the MOM and the fast-multipole-method

(FMM) implementations presented in this thesis.
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Chapter 3

MOM Implementations with the

EFIE

This chapter introduces the application of the MOM on the EFIE. The imple-

mentation uses the RWG functions for both basis and testing functions. For

efficiency, the impedance-matrix expression will be modified and divided into

smaller integrals. In the evaluation of these integrals, it will be seen that the

integrands tend to diverge as the observation point approaches the source point,

due to the singularity of the Green’s function. To avoid numerical problems,

singularity extraction method will be introduced to divide the problematic inner

integral into analytic and numerical parts, each of which can be evaluated without

any problem. Various methods will be explained to manage the numerical parts

of the inner and outer integrals. Numerical results demonstrating the accuracy

of the implementation will be presented at the end of Chapter 4.

3.1 Formulation

For conducting objects, the EFIE is given in Equation (2.5) as

t̂ ·
∫

S′
dr0G(r, r0) · J(r0) =

i

kη
t̂ ·Einc(r), (3.1)
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where the observation point is on the surface. To apply the MOM, current density

is expressed in terms of the basis functions as

J(r0) =
N∑

n=1

anbn(r0), (3.2)

where bn(r0) represents the nth basis function and an represents the coefficient

determining the weight of this basis function. Then,

t̂ ·
∫

S′
dr0G(r, r0) ·

N∑
n=1

anbn(r0) =
i

kη
t̂ ·Einc(r) (3.3)

and this equality can be tested as

∫

Sm

drtm(r) ·
∫

S′
dr0G(r, r0) ·

N∑
n=1

anbn(r0) =
i

kη

∫

Sm

drtm(r) ·Einc(r), (3.4)

where tm(r) represents the mth testing function. Rearranging the order of sum-

mation and integrals, the MOM system can be formed as

N∑
n=1

anZ
E
mn = vE

m, (3.5)

where

ZE
mn =

∫

Sm

drtm(r) ·
∫

Sn

dr0G(r, r0) · bn(r0) (3.6)

and

vE
m =

i

kη

∫

Sm

drtm(r) ·Einc(r). (3.7)

Writing the dyadic Green’s function explicitly, the expression for the impedance-

matrix element can be further divided as

ZE
mn =

∫

Sm

drtm(r) ·
∫

Sn

dr0
[
I +

∇∇
k2

]
g(r, r0) · bn(r0)

=

∫

Sm

drtm(r) ·
∫

Sn

dr0g(r, r0)bn(r0)

+

∫

Sm

drtm(r) ·
∫

Sn

dr0∇∇
k2

g(r, r0) · bn(r0). (3.8)
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If the basis and testing functions are chosen to be the RWG functions, the second

part of the expression can be evaluated as

1

k2

∫

Sm

drtm(r) · ∇
{∫

Sn

dr0∇g(r, r0) · bn(r0)
}

=
1

k2

∫

Sm

dr∇ ·
{

tm(r)

∫

Sn

dr0∇g(r, r0) · bn(r0)
}

− 1

k2

∫

Sm

dr∇ · tm(r)

∫

Sn

dr0∇g(r, r0) · bn(r0)

=
1

k2

∫

∂Sm

dl′û · tm(r)

∫

Sn

dr0∇g(r, r0) · bn(r0)

− 1

k2

∫

Sm

dr∇ · tm(r)

∫

Sn

dr0∇g(r, r0) · bn(r0), (3.9)

where û represents the normal direction around the triangle pair of the function,

as shown in Figure 3.1.

û
û

û

û

Figure 3.1: RWG function does not have current flow across its boundaries.

Since the RWG function does not have normal current flow across its boundaries,

1

k2

∫

∂Sm

dl′û · tm(r)

∫

Sn

dr0∇g(r, r0) · bn(r0) = 0 (3.10)

and

1

k2

∫

Sm

drtm(r) · ∇
{∫

Sn

dr0∇g(r, r0) · bn(r0)
}

=
1

k2

∫

Sm

dr∇ · tm(r)

∫

Sn

dr0∇′g(r, r0) · bn(r0) (3.11)

since

∇g(r, r0) = −∇′g(r, r0). (3.12)
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A similar procedure can be applied on the inner integral, so that

1

k2

∫

Sm

drtm(r) · ∇
{ ∫

Sn

dr0∇g(r, r0) · bn(r0)
}

=
1

k2

∫

Sm

dr∇ · tm(r)

∫

Sn

dr0∇′ ·
{

bn(r0)g(r, r0)
}

− 1

k2

∫

Sm

dr∇ · tm(r)

∫

Sn

dr0g(r, r0)∇′ · bn(r0)

=
1

k2

∫

Sm

dr∇ · tm(r)

∫

∂Sn

dl′û ·
{

bn(r0)g(r, r0)
}

− 1

k2

∫

Sm

dr∇ · tm(r)

∫

Sn

dr0g(r, r0)∇′ · bn(r0)

= − 1

k2

∫

Sm

dr∇ · tm(r)

∫

Sn

dr0g(r, r0)∇′ · bn(r0). (3.13)

Then, the impedance-matrix expression can be rewritten as

ZE
mn =

∫

Sm

drtm(r) ·
∫

Sn

dr0g(r, r0)bn(r0)

− 1

k2

∫

Sm

dr∇ · tm(r)

∫

Sn

dr0g(r, r0)∇′ · bn(r0). (3.14)

Inserting the functions and their divergences explicitly by using Equations (2.36)

and (2.38),

ZE
ik,jl =

likljl
4AiAj

∫

Si

dr(r − rik) ·
∫

Sj

dr0g(r, r0)(r0 − rjl)

− 1

k2

likljl
AiAj

∫

Sm

dr

∫

Sn

dr0g(r, r0), (3.15)

where i and j indicate that the interaction is between ith and jth triangles, while

l and k represent the alignment of the basis and testing functions on these trian-

gles. For an efficient implementation, it is essential to form the calculation loop

over the triangles, instead of calculating the interactions between the unknowns.

It will be shown that the basic integrals used in forming the impedance-matrix

expression can be calculated without any alignment information. Then, con-

structing the loop over the triangles makes it possible to avoid calculating the

same integrals for nine times.
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Before going on further, it should be noted that the divergence of a RWG func-

tion is finite, so that no problem occurs in the second integral in (3.14). The

advantage of using divergence-conforming functions in the EFIE-MOM appears

more evidently at this stage. Since the divergence is also a constant, the integral

reduces to a very simple form.

Basis Triangle

Testing Triangle

r

’ρ

z

y

x

Figure 3.2: Location of the basis and testing triangles after the coordinate trans-
formation.

Finally, a coordinate transformation can be applied, so that the basis triangle

lies on the x-y plane with one of its edges on the x-axis, as shown in Figure 3.2.

Such a transformation is essential in order to easily evaluate the analytic integrals

appearing in the singularity extraction. The final expression for the interaction

can be written as

ZE
ik,jl =

likljl
4AiAj

∫

Si

dr(r − rik) ·
∫

Sj

dr0(ρ0 − ρjl)
eikR

4πR

− 1

k2

likljl
AiAj

∫

Sm

dr

∫

Sn

dr0 e
ikR

4πR

=
likljl

4AiAj

∫

Sm

dr(ρ− ρik) ·
∫

Sn

dr0ρ0 e
ikR

4πR

− likljl
4AiAj

ρjl ·
∫

Sm

dr(ρ− ρik)

∫

Sn

dr0 e
ikR

4πR

− 1

k2

likljl
AiAj

∫

Sm

dr

∫

Sn

dr0 e
ikR

4πR
, (3.16)
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where

R = |r − ρ0| (3.17)

is the distance between the observation point and the source point.

3.2 Singularity Extraction

When the observation and source points approach each other, R goes to zero and

the integrands of the inner integrals in Equation (3.16) diverges. For a numerical

evaluation of these inner integrals, a suitable singularity extraction method has

to be applied as

∫

Sj

dr0 e
ikR

R
=

∫

Sj

dr0 e
ikR − 1

R
+

∫

Sj

dr0 1
R

(3.18)

∫

Sj

dr0ρ0 e
ikR

R
=

∫

Sj

dr0ρ0 e
ikR − 1

R
+

∫

Sj

dr0ρ
0

R
. (3.19)

It should be noted that

lim
R→0

eikR − 1

R
= ik (3.20)

so that the first integrals on the right sides of Equations (3.18) and (3.19) can be

evaluated numerically without any singularity problem, while other two integrals

can be evaluated analytically [11, 12].

Evaluation of
∫

Sj
dr01/R

Figure 3.3 shows the source triangle lying on the x-y plane with one of its edges

on the x axis, and the projection of the observation point on the x-y plane, which

may be located inside or outside the triangle. The integral can be divided into

two parts as ∫

Sj

dr0 1
R

=

∫

Sj−Sε

dr0 1
R

+

∫

Sε

dr0 1
R

, (3.21)

where the region Sε represents the infinitesimal circular area centered at the pro-

jection and lying within the source triangle. Therefore, it does not actually exist
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when the projection is outside, but it exists as a full circle when the projection

is inside the triangle.

z

y

x

r

ρ
SεSj

Observation
Point

Figure 3.3: Source triangle on the x-y plane and projection of the observation
point.

By using the identity

∇′
S ·

(
R

P
P̂

)
=

1

R
, (3.22)

where

P = |P | = |ρ− ρ0|, (3.23)

the integral can be evaluated as

∫

Sj

dr0 1
R

= lim
ε→0

∫

Sj−Sε

dr0∇′
S ·

(
R

P
P̂

)
+ lim

ε→0

∫

Sε

dr0 1
R

= lim
ε→0

∫

∂(Sj−Sε)

R

P
P̂ · ûdl′ + lim

ε→0

∫ α(ρ)

0

dφ

∫ ε

0

dP
P

(P 2 + z2)1/2

= lim
ε→0

∫

∂(Sj−Sε)

R

P
P̂ · ûdl′ + α(ρ) lim

ε→0

[
(ε2 + z2)1/2 − |z|]

=
3∑

i=1

P 0
i · ûi

∫

∂iSj

R

P 2
dl′ + lim

ε→0

∫

Sε

R

P
P̂ · ûdl′

+ α(ρ) lim
ε→0

[
(ε2 + z2)1/2 − |z|] (3.24)
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=
3∑

i=1

P 0
i · ûi

∫

∂iSj

R

P 2
dl′

+ α(ρ) lim
ε→0

[− (ε2 + z2)1/2 + (ε2 + z2)1/2 − |z|]

=
3∑

i=1

P 0
i · ûi

∫

∂iSj

R

P 2
dl′ − α(ρ)|z|. (3.25)

R0
1

+

+

R1
+

R1
P0
1−

−

+
−

−

1

3

2u

u
u

^

^
^

x

z

y
z

|l  |1
−

|l  |1
+

Observation 
Point

Figure 3.4: Geometric variables introduced to express the results of analytical
integrals.

Finally, the integral can be written in terms of the geometric variables shown in

Figure 3.4 as

∫

Sj

dr0 1
R

= −α(ρ)|z|+
∑

i

P̂ 0
i · ûi|z|

[
tan−1 |z|l+i

P 0
i R+

i

− tan−1 |z|l−i
P 0

i R−
i

]

+
∑

i

P̂ 0
i · ûi

[
P 0

i ln

(
R+

i + l+i
R−

i + l−i

)]
, (3.26)

where the variables can be summarized as follows:

• R+
i and R−

i are the distances between the observation point and the end

points of ith edge. The superscripts “+” and “−” referring to the end points
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of the edge are determined by the right-hand rule applied on the triangle

in the z direction.

• R0
i is the distance between the observation point and the ith edge, which

can be written as

R0
i = [z2 + (P 0

i )2]1/2, (3.27)

where P 0
i is the distance between the projection of the observation point on

the x-y plane and the ith edge. In addition, P̂ 0
i is the unit vector pointing

along the line between the projections of the observation point on the x-y

plane and on the ith edge. The direction of this vector is towards the edge.

• l+i and l−i have magnitudes equal to the “+” and “−” segments of the

ith edge. These segments are formed by the projection of the observation

point on the edge. The signs of l+i and l−i are determined by the relative

position of this projection compared to the “+” and “−” ends of the edge.

In general,

l±i
|l±i |

=
(ρei − ρ±) · (ρ− − ρ+)

|(ρei − ρ±) · (ρ− − ρ+)| , (3.28)

where ρei is the projection of the observation point on the ith edge, while

ρ+ and ρ− represent the “+” and “−” ends of the edge, respectively.

In Equation (3.26), α represents the angular extent of ∂Sε lying within the trian-

gle, so that it becomes 2π when the projection of the observation point is inside

the triangle and zero when it is outside. If the projection is on an edge or vertex,

then α takes values between 0 and 2π. These cases are shown in Figure 3.5. In

general,

α(ρ) =
3∑

i=1

P̂ 0
i · ûi

[
tan−1 l+i

P 0
i

− tan−1 l−i
P 0

i

]
(3.29)
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and Equation (3.26) can be rewritten as

∫

Sj

dr0 1
R

=−
∑

i

P̂ 0
i · ûi|z|

[
tan−1 P 0

i l+i
(R0

i )
2 + |z|R+

i

− tan−1 P 0
i l−i

(R0
i )

2 + |z|R−
i

]

+
∑

i

P̂ 0
i · ûi

[
P 0

i ln

(
R+

i + l+i
R−

i + l−i

)]
(3.30)

with the aid of the identity

tan−1 l±i
P 0

i

− tan−1 |z|l±i
P 0

i R±
i

= tan−1 P 0
i l±i

(R0
i )

2 + |z|R±
i

. (3.31)

z

y

x

Sε

Sε

α = φ

α = π
α = 2π

α = 0

φ εS

Figure 3.5: Different cases for the projection of the observation point.

Evaluation of
∫

Sj
dr0ρ0/R

This integral can be divided as

∫

Sj

dr0ρ
0

R
=

∫

Sj

dr0ρ
0 − ρ

R
+ ρ

∫

Sj

dr0 1
R

(3.32)

and it should be noted that the second integral has been evaluated. The first

integral can further be divided into two integrals as

∫

Sj

dr0ρ
0 − ρ

R
=

∫

Sj−Sε

dr0ρ
0 − ρ

R
+

∫

Sε

dr0ρ
0 − ρ

R
(3.33)
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and the integrand can be written as

ρ0 − ρ

R
= −∇′

SR (3.34)

so that

∫

Sj

dr0ρ− ρ0
R

=− lim
ε→0

∫

S−Sε

dr0∇′
SR− lim

ε→0

∫

Sε

dr0ρ− ρ0
R

=− lim
ε→0

∫

∂(S−Sε)

Rûdl′ − lim
ε→0

∫ 2π

0

∫ ε

0

P 2

[P 2 + z2]1/2
dPdφ

=−
3∑

i=1

ûi

∫

∂iS

Rdl′

=− 1

2

3∑
i=1

ûi

[
(R0

i )
2 ln

R+
i + l+i

R−
i + l−i

+ l+i R+
i − l−i R−

i

]
, (3.35)

where the final expression is reached by considering the geometric entities shown

in Figure 3.4. Finally, Equations (3.35) and (3.30) can be combined as shown in

(3.32) to complete the evaluation.

3.3 Evaluation of Impedance-Matrix Elements

For an efficient implementation, the expression in Equation (3.16) has to be

divided into smaller integrals as

ZE
ik,jl =

likljl
4AiAj

{[
− 4

k2
+ xikxjl + yikyjl

]
Ie1 + Ie2 + Ie3

− xjlIe4 − yjlIe5 − xikIe6 − yikIe7

}
, (3.36)

where the basic integrals can be listed as

Ie1 =

∫

Sm

dr

∫

Sn

I in
e1 , Ie2 =

∫

Sm

dr,

∫

Sn

xI in
e2 , Ie3 =

∫

Sm

dr

∫

Sn

yI in
e3 ,

Ie4 =

∫

Sm

dr

∫

Sn

xI in
e1 , Ie5 =

∫

Sm

dr

∫

Sn

yI in
e1 , Ie6 =

∫

Sm

dr

∫

Sn

I in
e2 ,

Ie7 =

∫

Sm

dr

∫

Sn

I in
e3 , (3.37)

32



and the inner integrals can be written as

I in
e1 =

∫

Sn

dr0 e
ikR

4πR
,

I in
e2 =

∫

Sn

dr0x′ e
ikR

4πR
,

I in
e3 =

∫

Sn

dr0y′ e
ikR

4πR
. (3.38)

Equation (3.36) indicates that the integrals can be evaluated without any align-

ment information of the basis and testing functions. The evaluation of these seven

basic integrals require the evaluation of three inner integrals. Then, their values

can be used in forming the contributions to different locations in the impedance

matrix. It should be noted that a triangle may belong up to three functions so

that the contribution may be added up to nine different locations.

3.4 Numerical Evaluation of Integrals

The inner integrals in Equation (3.38) are divided into numerical and analytical

parts as shown in Equation (3.18). The numerical parts of these integrals can

be evaluated by using Gaussian quadrature rules. There are many of rules em-

ploying different numbers of points on the triangle. In addition, the rules using

different or same number of points can be combined to obtain new rules using

larger number of points.

On the other hand, using a static rule in the implementation may result in in-

correct integrations or inefficiencies. For an integration, if the number of points

are less than the required, the final value may not converge to the exact value

within a small error. In the other extreme, many integration points may be used,

although few of them could already satisfy the convergence criteria. In addition,

the distribution of the points may not be uniform and it would be better to take

more samples, where the function changes rapidly, while taking less points for

33



smoother portions. As a result, instead of using high-ordered Gaussian quadra-

ture rules, an adaptive algorithm can be used to control the integration error

efficiently. Two different methods of adaptive integration will be presented here.

3.4.1 Adaptive Integration: Method 1

As shown in Figure 3.6, following steps are applied to evaluate the inner integrals

on the basis triangle:

P P

P1

3 2
Step 1

P5
P4P6

P3 P2

P1

Comparison 

Step 2

Step 3

Finish

YES

NO 1 2

3

Step 4

Step 4

Figure 3.6: Adaptive integration method 1.

1. On the triangle, three points are chosen, each of which is at the middle

of an edge. As the Gaussian quadrature rule with three points states, the

value of the integral is

I3 =

[
f(p1) + f(p2) + f(p3)

]
Aj

3
, (3.39)

where Aj is the area of the triangle.
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2. Three more points are taken on the medians of the triangle. These points

are located at 1/3 of the median nearer to the vertices of the triangle. The

value of the integral with six points becomes

I6 =

[
f(p1) + f(p2) + f(p3) + 2f(p4) + 2f(p5) + 2f(p6)

]
Aj

9
. (3.40)

3. A comparison is performed on the 6-point versus 3-point integration values.

If the error, which can be defined as

E3,6 =
|I6 − I3|
|I6| , (3.41)

is less then the given error threshold, then the integration can be assumed

to converge. Then, I6 can be returned as the value of the integral. If the

error is large, more points should be sampled in order to achieve the desired

convergence.

4. If the convergence is not satisfied, each of the three subtriangles can be

considered as separate domains, on which the integrations are to converge

individually, similar to the main triangle after first step. Three points are

already evaluated on each of these subtriangles, and the process continues

by taking three more samples to reach 6-point integrations.

5. The adaptive routine continues by comparing the results of the 3-point and

6-point integrations on subtriangles. Whenever convergence is reached in

a subtriangle, one branch of the adaptive integration stops there, but the

algorithm may go on in other subtriangles.

It should be noted that the algorithm completely stops only when the conver-

gence is accomplished in all of the subtriangles of the basis triangle. In addition,

the distribution of the points on the triangle is not uniform and more points are

taken, where the function changes more rapidly. This is due to the fact that the

algorithm continues to sample denser only on the non-converged regions.
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Figure 3.7: Function to be integrated on the triangular domain.

A disadvantage of this method appears when the aspect ratio of the integration

domain gets larger. Figure 3.7 shows a function to be integrated on the triangu-

lar domain with node coordinates (0, 0, 0), (0.083, 0, 0), and (0.042, 0.048, 0). As

shown in Figure 3.8, the method continues to make divisions towards the edge

on the x axis, but does not obtain a convergence. Actually, on the subtriangles

near the edge, the new points are not located efficiently and they are very near

to previous points. Therefore, the method tends to continue infinitely until an

external stop. The second adaptive integration method avoids such divisions that

create domains with high aspect ratios.

3.4.2 Adaptive Integration: Method 2

This method, described in Figure 3.9, consists of the following steps:

1. The algorithm starts with taking five points on the main triangle. The
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Figure 3.8: Integration points taken by the first adaptive method to evaluate the
integral of the function shown in Figure 3.7

value of the integral with five points can be written as

I5 =

[
f(p1) + f(p2) + f(p3) + f(p4) + 2f(p5)

]
Aj

6
. (3.42)

It should be indicated that two of the points are located on the longest edge

of the triangle.

2. Six more points are taken on the triangle. To determine the location of these

new points, the medians are drawn to the longest edge in each subtriangle.

Then 9-point integration can be written as

I9 =

[
f(p1) + f(p2) + 2f(p5) + f(p6) + f(p7)

+ 2f(p8) + f(p9) + f(p10) + 2f(p11)

]
Aj

12
. (3.43)

It should be noted that the third and fourth points are not used in the

9-point integration.

3. A comparison on 5-point and 9-point integrations is made to determine

the error as in the previous algorithm. If the convergence criterion is not

satisfied, the process continues.
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Figure 3.9: Adaptive integration method 2.

4. Before taking more points, each subtriangle is checked by comparing their

3-point and 5-point integrations. It should be realized that the points to

calculate these integrations have already been sampled in the previous steps.

5. The algorithm continues on the subtriangles that have large errors between

their 3-point and 5-point integrations. The subtriangle at this stage is

similar to the main triangle after the first step.

6. The algorithm continues with the comparisons of 5-point and 9-point in-

tegrations on subtriangles. Different from the first algorithm, if a parent

triangle does not satisfy the convergence criteria, the procedure does not

continue on all of the subtriangles.

This algorithm guarantees the divisions to be done appropriately so that the as-

pect ratios of the sub-domains do not grow. Figure 3.10 shows the integration

points taken on the triangle for the function in Figure 3.7, for which the first al-

gorithm fails. As it can be seen, there is no inefficient crowding of the integration
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points with the new algorithm. The control stage to determine the longest edge

of the triangles creates an extra computational load, but this load is negligible

when compared to the inefficient sampling of the integrand.

0 0.02 0.04 0.06 0.08 0.1
0

0.01
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0.03

0.04

0.05

x

y

Figure 3.10: Integration points taken by the second adaptive method to evaluate
the integral of the function shown in Figure 3.7

In both of the algorithms, the process continues until convergence in every re-

gion is guaranteed, which may lead to unnecessary usage of time. Convergence

in a small region may not be so important since the result of this region may

be negligible compared to the overall integration. For the first algorithm, this

inefficiency can be avoided by carrying the 6-point integration result of the main

triangle to each level of the adaptive method in order to compare the integration

results of the subtriangles and decide on the necessity of further division. In the

second algorithm, the carried value is the 9-point integration result of the main

triangle, which is more reliable.

Numerical parts of the inner integrals given in (3.38) are evaluated in a par-

allel manner, which means that they are calculated simultaneously within the

same adaptive algorithm. Choosing the source point, the integrands of these
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integrals are determined with a single evaluation of the extracted Green’s func-

tion. After the evaluation of the numerical parts, they are combined with the

analytical parts to complete the inner integrals. Then, these three inner integrals

are used to form the seven outer integrals given in (3.37). The evaluation of the

outer integrals can be performed either by high-ordered Gaussian quadratures

or adaptive integration. These integrals are also evaluated simultaneously, since

they have also related integrands.

3.5 Excitation

There are various excitation types that can be implemented in the MOM using

the EFIE formulation. For the scattering problems, plane-wave excitation can

be used, while the radiation problems can be implemented with either delta-gap

voltage sources or current sources defined on the geometry.

3.5.1 Plane-Wave Excitation

In the plane-wave excitation, the external source is a plane wave having a certain

propagation direction. Rewriting Equation (3.7),

vE
m =

i

kη

∫

Sm

drtm(r) ·Einc(r). (3.44)

Incident electric field in the above can be written as

Einc(r) = E0e
ik·r, (3.45)

where E0 is a complex vector, which satisfies

E0 · k = 0. (3.46)

Then, the equation

vE
m =

i

kη

∫

Sm

drtm(r) ·E0eik·r (3.47)

can be used to fill the right-side vector in the MOM system.
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3.5.2 Delta-Gap Excitation

Delta-gap sources can be located on the geometry to create voltage differences

between two separate parts of the geometry. Figure 3.11 shows a delta-gap source

located on the mth edge of the geometry. For this type of source to be meaningful,

the only connection between the geometry parts, separated by the source, should

be through this edge. In the infinitely narrow gap between the triangles of the

mth edge, some electric field is assumed to exist. The voltage difference is induced

by this electric field to excite the conductor. Incident field for delta-gap source

m+1

m−1

m

m

d

E
inc

Figure 3.11: Delta-gap source defined on the mth edge.

can be written as

Einc(r) = ûeδ(r − rm)/d (3.48)

where d represents the gap distance and ûe is the unit vector perpendicular to the

edge. δ(r − rm) in the expression indicates that the electric field is only located

on the mth edge, inside the infinitely narrow gap between the triangles. Then,

vE
m = lim

d→0

{
i

kη

∫

Sm

drtm(r) · ûeδ(r − rm)/d

}
=

ilm
kη

(3.49)

since the normal component of RWG function becomes unity on its edge.
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3.5.3 Current Sources

Similar to the delta-gap source, various current sources can be located on the

geometry. Figure 3.12 shows four different implementations that can be summa-

rized as follows:

Source

Basis Basis

Source

Basis

(a) (b)

Source

Basis Basis

Source

Basis Basis

(c) (d)

Figure 3.12: Current sources defined with the RWG functions.

• Type 1: This type of current source is implemented by forcing one of the

basis functions to have a certain coefficient.

• Type 2: This type of current source is similar to the first type, but the

current source is now located on an edge. This can be accomplished by

defining a half basis function and assigning a coefficient for it.

• Type 3: This type of current source is implemented by dividing one of the

basis functions into two, and reversing the current flow in one of them. The

currents on the two triangles may flow towards the common edge (sink) or

away from the edge.
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• Type 4: If another basis function is defined at the source location in type 3,

the electrical connectivity is maintained between the parts of the geometry

on the different sides of the source and this results in another type of current

sources.

In Figure 3.12, the basis functions are represented by triangles. Corresponding

physical equivalences for the types of the current sources are shown in Figure 3.13.

(a) (b)

(c) (d)

Figure 3.13: Corresponding physical equivalences for the current sources shown
in Figure 3.12.

3.6 Computational Analysis of the MOM

For an N -unknown problem, the MOM generates an impedance matrix that has

N2 elements, each of which is calculated separately. Then, both the processing

time and the memory requirement appears to be O(N2) to form this matrix. After

that, the system has to be solved either by using a direct method such as Gaus-

sian elimination, or by using an iterative solver. The direct solution involves

O(N3) floating-point operations (FLOPs), while the iterative solution requires
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matrix-vector multiplication in each iteration, which can be done with O(N2)

operations. Therefore, processing time for the solution becomes O(N3) for direct

methods and O(IN2) for iterative methods, where I is the number of iterations.

On the other hand, it is usually observed that I = O(N) and O(IN2) = O(N3).

In conclusion, computational requirements of the MOM increases very rapidly

as the problem size gets larger. The requirements will be quantified at the end of

Chapter 5, together with the requirements for the fast multipole method in order

to make comparisons.

3.7 RCS Calculations for RWG Basis Function

This section presents the summary for calculating the radar cross section (RCS)

of an object due to the induced current represented by the RWG the functions.

In the far-field, r À λ and

E(r) = ikη[θ̂θ̂ · F (θ, φ) + φ̂φ̂ · F (θ, φ)]g(r), (3.50)

where

g(r) =
eikr

r
(3.51)

and F (θ, φ) is the vector current moment, which can be written as

F (θ, φ) =

∫

S′
J(r0)e−ikr̂·r0 . (3.52)

If the RWG functions are used to expand the current, the expression for vector

current moment for a basis triangle can be written with the aid of Equation (2.36)

as

F (θ, φ) = ±ajl
ljl

2Aj

∫

S′j

(r0 − rjl)e
−ikr̂·r0 , (3.53)

where ajl indicates the coefficient related to the basis function that resides on

the lth edge of the jth triangle. This expression can be evaluated analytically
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without any numerical treatment. In addition, the vector current moments for

the basis functions can be summed directly to find the vector current moment of

the overall current distribution.

Finally, the RCS can be calculated as

RCS(θ, φ) = 4πr2P rad(r) = 4πr2|E(r)|2

=
k2η2

4π
|θ̂θ̂ · F (θ, φ) + φ̂φ̂ · F (θ, φ)|2. (3.54)

To check the accuracy of the implementations, one way is to calculate the RCS of

the problem by using the induced current on the geometry. This will be done in

the next chapter to compare the MOM implementations formulated by various

integral equations.
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Chapter 4

MOM Implementations with the

MFIE and the CFIE

The MOM can also be used to solve electromagnetic scattering problems formu-

lated by the MFIE. However, the MFIE introduces additional difficulties that do

not appear in the EFIE formulation. Due to the cross product term, efficient

implementation of the integrals become more difficult and the number of basic

integrals, each of which has to be evaluated independently, increases drastically.

Moreover, the MFIE contains a 1/R2 singularity, which causes extra numerical

problems that was not encountered in the EFIE [10].

This chapter introduces two different implementations of the MOM using the

MFIE formulation. The first implementation uses the Galerkin method and the

RWG functions, while the second one uses point testing functions. Singularity

extraction for the new integrals will be introduced in the first implementation.

However, it can be omitted entirely in the second implementation, which has sim-

pler expressions for the matrix elements but lower accuracy. These two will also

be combined with the EFIE implementations to form the CFIE implementations

and the results will be shown at the end of the chapter to make comparisons on

46



accuracy and efficiency.

4.1 MFIE-MOM Implementation with RWG Test-

ing Function

The MFIE formulation can be used in the MOM in a manner similar to the EFIE

formulation. Impedance-matrix expression includes double integration and the

inner part contains a singularity that should be extracted. It will be observed

that the solid angle dependence of the MFIE appears at this stage, in the evalu-

ation of the analytic integrals. Different from the EFIE formulation, some of the

outer integrals may also have a singularity in the MFIE formulation and it may

be chosen to apply singularity extraction for these integrals. This singularity is

weak so that is also possible to overcome it by high sampling of the integrands,

while controlling the location of the samples to avoid numerical errors.

For efficiency, the overall expression for an impedance-matrix element will be

divided into basic integrals and interactions between pairs of triangles will be

calculated instead of the interactions between pairs of unknowns. It will also be

observed that the self-interaction of a triangle does not require explicit imple-

mentation of singularity extraction. This is due to the fact that an infinitesimal

current density on a planar surface produces only perpendicular magnetic field

on that plane, except in its own location. Therefore, in self-interactions, only the

limit value in Equation (2.10) is tested by the testing function, while the principle

value is not.
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4.1.1 Formulation

The MFIE for closed conducting surfaces was shown in Equation (2.8) as

J(r)− n̂×
∫

S

dr0J(r0)×∇′g(r, r0) = n̂×H inc(r) (4.1)

when the observation point approaches the surface from outside. The MOM

can be applied to this equation by expressing the current density in terms of

basis functions (bn) and then testing both sides of the equation by using testing

functions (tm) as

∫

Sm

drtm(r) · n̂×H inc(r) =

∫

Sm

drtm(r) ·
N∑

n=1

anbn(r)

−
∫

Sm

drtm(r) · n̂×
∫

S

dr0
N∑

n=1

anbn(r0)×∇′g(r, r0), (4.2)

where N is the number of unknown coefficients. Interchanging the order of sum-

mations and integrations, the right side of the equation can be combined and the

MOM system can be formed as

N∑
n=1

anZ
M
mn = vM

m , (4.3)

where

ZM
mn =

∫

Sm

drtm(r) · bn(r)

−
∫

Sm

drtm(r) · n̂×
∫

Sn

dr0bn(r0)×∇′g(r, r0) (4.4)

and

vM
m =

∫

Sm

drtm(r) · n̂×H inc(r). (4.5)

If the RWG basis and testing functions are used, interaction between a basis and

a testing triangle (part of an impedance-matrix element) can be written by using

the expression for the RWG functions in Equation (2.36) as

ZM
ik,jl =δij

∫

Si

dr
lik(r − rik)

2Ai

· ljl(r − rjl)

2Aj

−
∫

Si

dr
lik(r − rik)

2Ai

· n̂×
∫

Sj

dr0 ljl(r
0 − rjl)

2Aj

×∇′g(r, r0), (4.6)
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where i and j are used to indicate that the interaction is between the ith testing

and the jth basis triangles, while k and l represent the alignment of basis and

testing functions on these triangles. The Kronecker delta function in the first

term indicates that the basis and testing functions have nonzero values only in-

side their respective triangles.

At this stage, it can be assumed that a coordinate transformation is applied

on the basis and testing triangles so that the basis triangle lies on the x-y plane

and one of its edges lies on the x axis, as shown in Figure 3.2. Such an oper-

ation is essential in order to simplify the numerical operations and singularity

extractions for the inner integrals. Then,

ZM
ik,jl = δij

likljl
4AiAj

∫

Si

dr(r − rik) · (r − ρjl)

− likljl
4AiAj

∫

Si

dr(r − rik) · n̂×
∫

Sj

dr0(ρ0 − ρjl)× (r − ρ0)(1− ikR)eikR

4πR3
, (4.7)

where

R = |r − r0| (4.8)

is the distance between the observation point and the source point, and the

gradient of the Green’s function has been written explicitly. Finally, by using the

identity

(ρ0 − ρjl)× (r − ρ0) = −(r − ρjl)× (ρ0 − r), (4.9)

the interaction between a pair of basis and testing triangles can be written as

ZM
ik,jl = δij

likljl
4AiAj

∫

Si

dr(r − rik) · (r − ρjl)

+
likljl

16πAiAj

∫

Si

dr(r − rik) · n̂× (r − ρjl)×
∫

Sj

dr0(ρ0 − r)
(1− ikR)eikR

R3
.

(4.10)
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4.1.2 Singularity Extraction

When the observation and source points approach each other and R goes to zero,

the integrand of the inner integral in Equation (4.10) diverges. This singularity

can be extracted by dividing the integral into three smaller parts as

∫

Sj

dr0(ρ0 − r)fm(R) =

∫

Sj

dr0(ρ0 − r)fm1(R)

+
k2

2

∫

Sj

dr0(ρ0 − r)fm2(R) +

∫

Sj

dr0(ρ0 − r)fm3(R), (4.11)

where

fm1(R) =
(1− ikR)eikR − (1 + k2R2/2)

R3

fm2(R) =
1

R

fm3(R) =
1

R3

fm(R) = fm1(R) + fm2(R) + fm3(R) =
(1− ikR)eikR

R3
. (4.12)

As R goes to zero, the function fm1(R) has a finite limit value

lim
R→0

fm1(R) = lim
R→0

[
(1− ikR)eikR − (1 + k2R2/2)

R3

]
=

ik3

3
(4.13)

and the first integral in Equation (4.11) can be evaluated numerically without any

singularity problem, while the second and the third integrals will be evaluated

analytically. The latter integrals can be further divided as

∫

Sj

dr0(ρ0 − r)fm2(R) =

∫

Sj

dr0(ρ0 − ρ)fm2(R)−
∫

Sj

dr0ẑzfm2(R)

∫

Sj

dr0(ρ0 − r)fm3(R) =

∫

Sj

dr0(ρ0 − ρ)fm3(R)−
∫

Sj

dr0ẑzfm3(R).

The integrals involving the 1/R singularity were evaluated in the context of the

EFIE formulation in Section 3.2. The other two integrals will be evaluated here

in a very similar manner.
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Evaluation of
∫

Sj
dr0ẑzfm3(R)

Considering Figure 3.3, the integral can be partitioned as
∫

Sj

dr0ẑz
1

R3
= ẑz

( ∫

Sj−Sε

dr0 1

R3
+

∫

Sε

dr0 1

R3

)
, (4.14)

where the region Sε is the infinitesimal area centered at the projection of the

observation point on the x-y plane. It should be recalled that this area may be a

circle, part of a circle or may not exist according to the location of the projection

with respect to the triangle. Then, the identity

∇′
S · (

1

RP
P̂ ) = − 1

R3
(4.15)

with

P = |P | = |ρ− ρ0| (4.16)

can be used, so that
∫

Sj

dr0 1

R3
=− lim

ε→0

∫

Sj−Sε

dr0∇′
S ·

(
1

RP
P̂

)
+ lim

ε→0

∫

Sε

dr0 1

R3

=− lim
ε→0

∫

∂(Sj−Sε)

1

RP
P̂ · ûdl′ + lim

ε→0

∫

Sε

1

(z2 + P 2)3/2
PdPdφ

=− lim
ε→0

∫

∂(Sj−Sε)

1

RP
P̂ · ûdl′ + lim

ε→0

[
α(ρ)

|z| −
α(ρ)

(z2 + ε2)1/2

]

=−
3∑

i=1

P̂
0

i · ûiP
0
i

∫

∂iS

1

P 2R
dl′ − lim

ε→0

∫

∂Sε

1

RP
P̂ · ûdl′

+ lim
ε→0

[
α(ρ)

|z| −
α(ρ)

(z2 + ε2)1/2

]

=−
3∑

i=1

P̂
0

i · ûiP
0
i

∫

∂iS

1

P 2R
dl′ + lim

ε→0

∫

∂Sε

1

R
dφ

+ lim
ε→0

[
α(ρ)

|z| −
α(ρ)

(z2 + ε2)1/2

]

=−
3∑

i=1

P̂
0

i · ûiP
0
i

∫

∂iS

1

P 2R
dl′

+ lim
ε→0

[
α(ρ)

|z| −
α(ρ)

(z2 + ε2)1/2
+

α(ρ)

(z2 + ε2)1/2

]

=−
3∑

i=1

P̂
0

i · ûiP
0
i

∫

∂iS

1

P 2R
dl′ +

α(ρ)

|z| .
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The final result can be written in terms of the geometric variables shown in

Figure 3.4 and the integral becomes

∫

Sj

dr0ẑz
1

R3
= ẑ

|z|
z

α(ρ)

− ẑ
|z|
z

3∑
i=1

P̂
0

i · ûi

(
tan−1 |z|l+i

P 0
i R+

i

− tan−1 |z|l−i
P 0

i R−
i

)
. (4.17)

It should be noted that α(ρ) is equal to the angle of the Sε lying within Sj, so that

it is equal to 2π if the projection of the observation point is inside the triangle,

and is equal to zero if it is outside the triangle. It can also take values between

zero and 2π if the projection is on an edge or a vertex. The expression for α(ρ)

given in Equation (3.29) can be used to rewrite Equation (4.17) as

∫

Sj

dr0ẑz
1

R3
= ẑ

|z|
z

3∑
i=1

P̂ 0
i · ûiβi, (4.18)

where

βi = tan−1 P 0
i l+i

(R0
i )

2 + |z|R+
i

− tan−1 P 0
i l−i

(R0
i )

2 + |z|R+
i

(4.19)

with the aid of the identity given in Equation (3.31).

Basis Triangle

z

y

x

ϕ

Observation Observation

Observation
Point 1 Point 2

Point 3

Figure 4.1: Limit cases for observation points approaching the basis triangle.

It is essential to check the analytic evaluation in the limit case, when the obser-

vation point approaches the x-y plane as shown in Figure 4.1. If the limit point
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is outside or inside the triangle, but not on any edge, then

lim
z→0

∫

Sj

dr0ẑz
1

R3
= ẑ

3∑
i=1

P̂ 0
i · ûi

(
tan−1 l+i

P 0
i

− tan−1 l−i
P 0

i

)
= ẑα(ρ). (4.20)

However, if the observation point approaches an edge, the contribution from that

edge to the summation in Equation (4.18) becomes

lim
R0

1→0

[
P̂ 0

1 · û1

(
tan−1 P 0

1 l+1
(R0

1)
2 + |z|R+

1

− tan−1 P 0
1 l−1

(R0
1)

2 + |z|R+
1

)]

= − lim
R0

1→0

[
tan−1 R0

1 cos(ϕ)l+1
(R0

1)
2 + |R0

1 sin(ϕ)|[(R0
1)

2 + (l+1 )2]1/2

− tan−1 R0
1 cos(ϕ)l−1

(R0
1)

2 + |R0
1 sin(ϕ)|[(R0

1)
2 + (l−1 )2]1/2

]

= − lim
R0

1→0

[
tan−1 cos(ϕ)l+1

sin(ϕ)|l+1 |
− tan−1 cos(ϕ)l−1

sin(ϕ)|l−1 |
]

= 2ϕ− π, (4.21)

where ϕ is the angle between the approach path and the x-y plane. Contribution

from the other two edges can also be evaluated as

lim
R0

1→0

[ 3∑
i=2

P̂ 0
i · ûi

(
tan−1 P 0

i l+i
(R0

i )
2 + |z|R+

i

− tan−1 P 0
i l−i

(R0
i )

2 + |z|R+
i

)]

=
3∑

i=2

P̂ 0
i · ûi

(
tan−1 l+i

P 0
i

− tan−1 l−i
P 0

i

)
= π (4.22)

and the value of the integral becomes

lim
R0

1→0

∫

Sj

dr0ẑz
1

R3
= ẑ(2ϕ− π + π) = ẑ2ϕ. (4.23)

This result is interesting because the limit value of the integral appears to de-

pend on the angle between the approach path and the plane of the basis triangle.

Figure 4.3 shows the calculated values for the magnitude of the integral when

the observation point approaches the edge with various angles as illustrated in

Figure 4.2. The result in Equation (4.23) is validated by demonstrating that the

calculated values converge to the correct limit values as R0
1 → 0.
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y
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ϕ= 0
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ϕ= 2π/3
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R0

1
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(0.5,0)

(1,1)Basis Triangle

Figure 4.2: Observation points approaching the edge at different angles.
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ϕ

Figure 4.3: Magnitude of the integral I =
∫

Sj
dr0ẑzfm3(R) for the scenario in

Figure 4.2.
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Evaluation of
∫

Sj
dr0(ρ0 − ρ)fm3(R)

Considering Figure 3.3 again,

∫

Sj

dr0ρ
0 − ρ

R3
=

[ ∫

Sj−Sε

dr0ρ
0 − ρ

R3
+

∫

Sε

dr0ρ
0 − ρ

R3

]
(4.24)

and the identity

∇′
S

(
1

R

)
= −ρ0 − ρ

R3
(4.25)

can be used to continue as

∫

Sj

dr0ρ
0 − ρ

R3
= − lim

ε→0

∫

Sj−Sε

dr0∇′
S

(
1

R

)
+ lim

ε→0

∫

Sε

dr0 (ρ
0 − ρ)

R3

= − lim
ε→0

∫

∂(Sj−Sε)

1

R
ûdl′ + lim

ε→0

∫

Sε

dr0 P̂P

R3

= −
3∑

i=1

ûi

∫

∂iS

1

R
dl′ − lim

ε→0

∫

∂Sε

1

R
ûdl′

+ lim
ε→0

∫ 2π

0

∫ ε

0

P̂
P 2

(d2 + P 2)3/2
dPdφ

= −
3∑

i=1

ûi ln
R+

i + l+i
R−

i + l−i
. (4.26)

It should be noted that the logarithmic function in Equation (4.26) diverges when

the observation point is on one of the edges of the triangle. In other words, the

analytic evaluation of an inner integral results in unbounded values for some

locations of the observation point. If the integration rule that is applied on the

testing triangle requires taking points on the edges, then an additional singularity

extraction has to be applied to some of the outer integrals for the interaction of

neighboring triangles, in order to avoid numerical problems.
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4.1.3 Evaluation of the Impedance-Matrix Elements

Any interaction between a basis and a testing triangle can be evaluated by using

Equation (4.10) with the aid of singularity extraction introduced in the previ-

ous subsection. The first integral in this equation is nonzero only for the self-

interaction of the triangles, while the second integral contributes to all interac-

tions. However, there exists a shorter way of evaluating the self-interactions. In

addition, the interactions are not calculated as shown in Equation (4.10), but

the integrals are divided into basic integrals for an efficient implementation. This

subsection goes deeper into the evaluation of the integrals from the point of view

of the implementation side.

Evaluation of the Self-Interactions of the Triangles

In the self-interaction of the triangles, all of the observation points are in the

basis triangle. Therefore, Figure 4.1 can be considered again for the observation

point that approaches a point inside the triangle on the x-y plane. Then, the

integrand of the second integral in Equation (4.10) can be written in the limit

form as

lim
z→0

{
(r − ρik) · n̂× (r − ρjl)×

∫

Sj

dr0(ρ0 − r)
(1− ikR)eikR

R3

}

= (ρ− ρik) · n̂× (ρ− ρjl)×
∫

Sj

dr0(ρ0 − ρ)
(1− ikP )eikP

P 3

− lim
z→0

{
(r − ρik) · n̂× (r − ρjl)×

∫

Sj

dr0ẑz
(1− ikR)eikR

R3

}
.

(4.27)

The first part of the integrand evaluates to zero due to the cross product between

the two vectors in the x-y plane. This cross product gives a vector in the z

direction, and the second cross product with n̂ vanishes since n̂ = ẑ in the case

of self-interaction. Although there exists a logarithmic singularity due to the

(ρ−ρ0)/P 3 term in Equation (4.26), this causes no problem since it is multiplied
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by the vanishing cross product. Then,

lim
z→0

{
(r − ρik) · n̂× (r − ρjl)×

∫

Sj

dr0(ρ0 − r)
(1− ikR)eikR

R3

}

= − lim
z→0

{
(r − ρik) · n̂× (r − ρjl)×

∫

Sj

dr0ẑz
(1− ikR)eikR

R3

}

= − lim
z→0

{
(r − ρik) · n̂× (r − ρjl)×

∫

Sj

dr0ẑzfm1(R)

}

− lim
z→0

{
(r − ρik) · n̂× (r − ρjl)×

∫

Sj

dr0ẑzfm2(R)

}

− lim
z→0

{
(r − ρik) · n̂× (r − ρjl)×

∫

Sj

dr0ẑzfm3(R)

}
, (4.28)

where fm1(R), fm2(R), and fm3(R) are given in Equation (4.12). fm1(R) has

been shown to have finite values in all cases so that the integral of zfm1(R) goes

to zero as z goes to zero. Furthermore, Equation (3.26) shows that the integral

of zfm2(R) is also zero in the limit case, while Equation (4.20) shows that the

integral of zfm3(R) converges to α(ρ), which is equal to 2π in the basis triangle.

Therefore,

lim
z→0

{
(r − ρik) · n̂× (r − ρjl)×

∫

Sj

dr0(ρ0 − r)
(1− ikR)eikR

R3

}

= − lim
z→0

{
(ρ− ρik) · n̂× (ρ− ρjl)×

∫

Sj

dr0ẑzfm3(R)

}

= −(ρ− ρik) · n̂× (ρ− ρjl)× ẑα(ρ)

= −2π(ρ− ρik) · (ρ− ρjl). (4.29)

This final result can be substituted in Equation (4.10) and the expression for the

self-interaction of a triangle becomes

Zik,il =
liklil
4A2

i

[ ∫

Si

dr(ρ− ρik) · (ρ− ρil)−
1

2

∫

Si

dr(ρ− ρik) · (ρ− ρjl)

]

=
liklil
8A2

i

∫

Si

dr(ρ− ρik) · (ρ− ρil). (4.30)

As a result, the evaluation of self-interactions reduces to a very simple form, which

does not require the explicit implementation of singularity extraction. This result

is expected from the discussion in Chapter 2. Since the current density is on a
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planar surface, magnetic field produced by an infinitesimal portion of the current

is perpendicular to the surface, except at the source location, where its magnitude

is equal to half of the current density and its direction is tangential to the plane

and perpendicular to the current flow. Then, testing of the radiation integral

reduces to testing of the limit value in Equation (2.10), while the principle value

is omitted.

For efficiency, Equation (4.30) is partitioned as

Zik,il =
liklil
4A2

i

{ ∫

Si

drx2 +

∫

Si

dry2 − (xil + xik)

∫

Si

drx

− (yil + yik)

∫

Si

dry + (xilxik + yilyik)Ai

}
. (4.31)

This new expression indicates that the integrals related to self-interaction of a

triangle can be evaluated without any alignment information about the testing

and basis functions. Then, the alignment information can be used to evaluate

nine different values to be added to different locations in the impedance matrix.

Evaluation of the Interactions Between Separate Triangles

For the interaction of separate triangles, Equation (4.10) becomes

Zik,jl =
likljl

16πAiAj

∫

Si

dr(r − rik) · n̂× (r − ρjl)

×
∫

Sj

dr0(ρ0 − r)
(1− ikR)eikR

R3
. (4.32)

The above is partitioned for an efficient implementation as

Zik,jl =
likljl

16πAiAj

{(
nzxikxjl + nzyikyjl − nxxjlzik − nyyjlzik

)
Im1

+
(
nyxikyjl − nxyjlyik

)
Im2 +

(
nxyikxjl − nyxjlxik

)
Im3

+
(
nxzik − nzxjl − nzxik

)
Im4 +

(
nyzik − nzyjl − nzyik

)
Im5 (4.33)
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+
[
nx(yjl + yik)− nyxik

]
Im8 +

[
ny(xjl + xik)− nxyik

]
Im10

+
(
nxzik − nzxik

)
Im9 +

(
nyzik − nzyik

)
Im12

+
(
nxxjl + nyyjl

)
Im6 − nyyjlIm7 − nxxjlIm11

+ nzIm13 − nxIm14 + nzIm15 − nyIm16 + nyIm17 + nzIm18

− nxIm19 − nxIm20 − nyIm21 + nxIm22 + nzIm23 − nyIm24

}
, (4.34)

where nx, ny and nz are the x, y and z components of n̂. The basic integrals in

Equation (4.33) can be listed as

Im1 =

∫

Si

drI in
m1 Im2 =

∫

Si

drI in
m2 Im3 =

∫

Si

drI in
m3

Im4 =

∫

Si

drxI in
m1 Im5 =

∫

Si

dryI in
m1 Im6 =

∫

Si

drzI in
m1

Im7 =

∫

Si

drxI in
m2 Im8 =

∫

Si

dryI in
m2 Im9 =

∫

Si

drzI in
m2

Im10 =

∫

Si

drxI in
m3 Im11 =

∫

Si

dryI in
m3 Im12 =

∫

Si

drzI in
m3

Im13 =

∫

Si

drx2I in
m1 Im14 =

∫

Si

drxzI in
m1 Im15 =

∫

Si

dry2I in
m1

Im16 =

∫

Si

dryzI in
m1 Im17 =

∫

Si

drxyI in
m2 Im18 =

∫

Si

drxzI in
m2

Im19 =

∫

Si

dry2I in
m2 Im20 =

∫

Si

drz2I in
m2 Im21 =

∫

Si

drx2I in
m3

Im22 =

∫

Si

drxyI in
m3 Im23 =

∫

Si

dryzI in
m3 Im24 =

∫

Si

drz2I in
m3

(4.35)

and the inner integrals can be defined as

I in
m1 =

∫

Sj

dr0zfm(R)

I in
m2 =

∫

Sj

dr0(x′ − x)fm(R)

I in
m3 =

∫

Sj

dr0(y′ − y)fm(R), (4.36)
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where fm(R) is given in Equation (4.12). The twenty-four basic integrals in Equa-

tion (4.35) can be evaluated without alignment information about the testing and

basis functions. Then, Equation (4.33) can be used for nine times to calculate the

contributions to the impedance-matrix elements. It should be also noted that the

basic integrals contain only three different inner integrals that can be evaluated

only once.

The interaction between the separate triangles that are on the same plane can

be entirely omitted in the MFIE implementations. This is because of the fact

that the current source on the basis triangle produces only perpendicular mag-

netic field on the testing triangle. Therefore, these interactions can be neglected

without any attempt of evaluation.

Evaluation of the Interactions Between the Neighboring Triangles

Calculation of the interactions between the testing and basis triangles, which

share common edges, can be considered as the interactions of separate trian-

gles. However, analytical evaluation of the (ρ−ρ′)/R3 integral given in Equation

(4.26) results in unbounded values as the observation point approaches the com-

mon edge, and this singularity is not suppressed by a vanishing factor as in the

case of self-interactions. Since the singularity is logarithmic, it does not cause a

serious problem in the numerical integration on the testing triangle as long as the

integration points are taken inside the triangle. However, it is also possible to

apply a singularity-extraction technique for the outer integrals as will be shown

in the next subsection.

Figure 4.4 shows the testing and basis triangles that are sharing a common edge.

The observation point sampled on the testing triangle approaches the common

edge at an angle ϕ with the x-y plane. The integrand of the integral in Equation
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Figure 4.4: Interaction between the neighboring basis and testing triangles.

(4.10) can be considered in the limit case as

lim
R0

1→0

{
(r − rik) · n̂× (r − ρjl)×

∫

Sj

dr0(ρ0 − r)
(1− ikR)eikR

R3

}

= (ρ− rik) · n̂× (ρ− ρjl)×
∫

Sj

dr0(ρ0 − ρ)
(1− ikP )eikP

P 3

− lim
R0

1→0

{
(r − rik) · n̂× (r − ρjl)×

[ ∫

Sj

dr0ẑzfm1(R)

+
k2

2

∫

Sj

dr0ẑzfm2(R) +

∫

Sj

dr0ẑzfm3(R)

]}

= (ρ− rik) · n̂× (ρ− ρjl)×
∫

Sj

dr0(ρ0 − ρ)
(1− ikR)eikR

R3

− lim
R0

1→0

{
(r − rik) · n̂× (r − ρjl)×

[ ∫

Sj

dr0ẑzfm3(R)

]}
. (4.37)

It should be noted that n̂ is not in the z direction as in the case of self-interaction.

Therefore, the cross products in the first term does not evaluate to zero and

the logarithmic singularity is not suppressed. On the other hand, integrals of

zfm1(R) and zfm2(R) become zero again, while integral of zfm3(R) has the limit
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value given in Equation (4.23). Using this value, the integrand becomes

lim
R0

1→0

{
(r − rik) · n̂× (r − ρjl)×

∫

Sj

dr0(ρ0 − r)
(1− ikR)eikR

R3

}

= (ρ− rik) · n̂× (ρ− ρjl)×
∫

Sj

dr0(ρ0 − ρ)
(1− ikR)eikR

R3

−(ρ− rik) · n̂× (ρ− ρjl)× ẑ2ϕ. (4.38)

The second term of the right-hand side of Equation (4.38) represents the testing

operation of the magnetic field produced by the infinitesimal portion of the basis

triangle around the limit location of the observation point, while the first term

represents the testing operation of the magnetic field produced by the rest of the

basis triangle.

z

x

εS

ϕ

Basis Triangle 2

Basis Triangle 1

Ω i

Observation 
Point

Figure 4.5: Limit case as the observation point approaches the edge of the basis
function.

Finally, it is possible to determine the magnetic field produced by an infinites-

imal source on the same source location residing on an edge. Figure 4.5 shows

a basis function located on an edge, where the model geometry has an internal

solid angle of Ωi. The observation point is in one of the triangles and approaches

the edge. The infinitesimal portion of the basis function located around the limit
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point is non planar and has two sides on the both triangles. The second term in

Equation (4.38) can be used to write the contribution from the side in the second

triangle as

Hsca,2
ε→0 (r) =

2ϕ

4π
(ρ− ρj2l2)

lj2l2

Aj2

× n̂2 =
ϕ

2π
J2(r)× n̂2 (4.39)

with the aid of the constants in Equation (4.10), while omitting the constants

related to the testing function. Similarly, the contribution from the side in the

first triangle can be written with the aid of Equation (4.29) as

Hsca,1
ε→0 (r) =

2π

4π
(ρ− ρj1l1)

lj1l1

Aj1

× n̂1 =
π

2π
J1(r)× n̂1. (4.40)

Then, the total field becomes

Hsca
ε→0(r) =

π

2π
J1(r)× n̂1 +

ϕ

2π
J2(r)× n̂2. (4.41)

This final expression is different from the one in Equation (2.19) since the current

density at the limit location of the observation point is not continuous in this case.

4.1.4 Singularity Extraction for Outer Integrals

Among the integrands of the basic integrals shown in Equation (4.35), those that

include I in
m2 and I in

m3 may have logarithmic singularities related to their fm3 term

given in Equation (4.26) if they are calculated for the interactions of neighboring

triangles. Some of these integrands also include z factor, which goes to zero as the

observation point approaches the common edge, and the singularity is suppressed

by this vanishing factor. One way to annihilate the singularity of the other inte-

grands is to apply a second coordinate transformation so that the common edge

always lies on the x axis, as shown in Figure 4.6.

With this rotation, the integrands including the I in
m2 term become bounded and

the singularity is suppressed since the contribution of the common edge to the
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Figure 4.6: Second coordinate transformation used to annihilate the singularity
of the outer integral.

summation in Equation (4.26) becomes zero. It should be recalled that only this

contribution leads to unbounded values, while the contributions from the other

two edges are bounded. Considering the integrands including the I in
m3 term, it

can be observed that some of them include a y factor, which also becomes zero as

the observation point approaches the common edge in the rotated configuration.

Then, the singularities in these integrands also disappear.

Finally, there are only three basic integrals

Im3 =

∫

Si

dr

∫

Sj

dr0(y′ − y)fm(R)

Im10 =

∫

Si

drx

∫

Sj

dr0(y′ − y)fm(R)

Im21 =

∫

Si

drx2

∫

Sj

dr0(y′ − y)fm(R), (4.42)

which still have logarithmic singularities in their integrands. Since the logarith-

mic singularity is weak, numerical evaluation of these integrals can be achieved

by dense sampling in the testing domain and avoiding approaching the common

edge. Alternatively, singularity extraction for the outer integrals can also be em-

ployed, as will be shown here.
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Using Equations (4.12) and (4.26),

Im3 =

∫

Si

dr

∫

Sj

dr0(y′ − y)
[
fm1(R) +

k2

2
fm2(R)

]

+

∫

Si

dr

∫

Sj

dr0(y′ − y)fm3(R)

=

∫

Si

dr

∫

Sj

dr0(y′ − y)
[
fm1(R) +

k2

2
fm2(R)

]

−
∫

Si

dr

3∑
i=1

ûi ln
R+

i + l+i
R−

i + l−i

(4.43)

and the singularity is only due to the contribution from the common edge, so

that

Im3 =

∫

Si

dr

∫

Sj

dr0(y′ − y)

[
fm1(R) +

k2

2
fm2(R)

]

−
∫

Si

dr

3∑
i=2

ûi ln
R+

i + l+i
R−

i + l−i
+

∫

Si

dr

[
ln

R+
1 + l+1

R−
1 + l−1

+ 2 ln(R0
1)

]

−
∫

Si

dr2 ln(R0
1). (4.44)

As the observation point approaches the common edge,

lim
R0

1→0

{
ln

R+
1 + l+1

R−
1 + l−1

+ 2 ln(R0
1)

}

= lim
R0

1→0

{
ln

([
(R0

1)
2 + (l+1 )2

]1/2
+ l+1[

(R0
1)

2 + (l−1 )2
]1/2

+ l−1
(R0

1)
2

)}

= ln
[
4l+1 |l+1 |

]
, (4.45)

which is finite. Then,

Im3 =

∫

Si

dr

[ ∫

Sj

dr0(y′ − y)fm(R) + 2 ln (R0
1)

]

−
∫

Si

dr2 ln(R0
1) (4.46)
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and the first integral can be evaluated numerically without any singularity prob-

lem, while the second integral can be evaluated analytically. Similarly,

Im10 =

∫

Si

drx

[ ∫

Sj

dr0(y′ − y)fm(R) + 2 ln (R0
1)

]

−
∫

Si

dr2x ln(R0
1) (4.47)

Im21 =

∫

Si

drx2

[ ∫

Sj

dr0(y′ − y)fm(R) + 2 ln (R0
1)

]

−
∫

Si

dr2x2 ln(R0
1). (4.48)

Finally, the analytical integrals can be evaluated as

∫

Si

dr2 ln(R0
1) = Ai

[
ln(hi)− 3

2

]

∫

Si

dr2x ln(R0
1) = l1Ai

[
2

3
ln(hi)− 8

9

]
+ l2Ai

[
1

3
ln(hi)− 11

18

]

∫

Si

dr2x2 ln(R0
1) = l21Ai

[
1

2
ln(hi)− 5

8

]
+ l22Ai

[
1

6
ln(hi)− 25

72

]

+ l1l2Ai

[
− 1

2
ln(hi) +

7

8

]
. (4.49)

4.1.5 Numerical Integration of Inner and Outer Integrals

The numerical evaluation of the inner integrals in the MFIE is very similar to

the evaluation in the EFIE formulation. The inner integrals in (4.36) can be

calculated in a parallel manner by using an adaptive algorithm. Then, these in-

tegrals are used in forming the outer integrals given in (4.35). It should be noted

that the number of outer integrals is twenty-four, which is much larger than the

number of outer integrals in the EFIE. These integrals are also evaluated simul-

taneously with high-ordered Gaussian quadrature rules or adaptive algorithms.

On the other hand, three of the outer integrals require singularity extraction in

the case of interactions between neighboring triangles. Thus, only the numerical

parts of these integrals are evaluated in the same numerical routine with the other

integrals, while their analytical parts are calculated separately.
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4.1.6 Excitation

Plane-wave excitation can be used with the MFIE formulation as in the EFIE.

In the excitation formula

vM
m =

∫

Sm

drtm(r) · n̂×H inc(r), (4.50)

the incident magnetic field can be written as

H inc(r) =
1

η
k̂ ×E0e

ik·r, (4.51)

where E0 is a complex vector, which satisfies

E0 · k = 0. (4.52)

Then,

vM
m =

1

η

∫

Sm

drtm(r) · n̂× k̂ ×E0e
ik·r (4.53)

can be used to fill the right-hand-side vector of the MOM system.

4.2 MFIE-MOM Implementation with Point Test-

ing Functions

This section introduces the relatively simpler implementation of the MOM using

the MFIE formulation. This implementation uses point testing functions defined

at the center of each edge and in the vector direction perpendicular to the edges

as shown in Figure 4.7. These functions are in the planes of the triangles so that,

if the two triangles are not on the same plane, then the testing functions also

split into two unaligned parts. Using these functions, the self-interactions in the

MOM matrix reduces to a very simple form and it becomes possible to omit the

singularity extraction entirely [19].
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Figure 4.7: Point testing functions.

4.2.1 Formulation

Equation (4.3) shows the MOM system as

N∑
n=1

anZ
M
mn = vm, (4.54)

where

ZM
mn =

∫

Sm

drtm(r) · bn(r)−
∫

Sm

drtm(r) · n̂×
∫

Sn

dr0bn(r0)×∇′g(r, r0) (4.55)

and

vM
m =

∫

Sm

drtm(r) · n̂×H inc(r) (4.56)

if the MFIE is used. The testing function defined on the mth edge can be written

as

tm(r) =
1

2
δ(r − rem)t̂m1 +

1

2
δ(r − rem)t̂m2, (4.57)
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where rem represents the center location of the mth edge, while t̂m1 and t̂m2

represents the unit vectors, which are perpendicular to the mth edge and lying in

the planes of the triangles. Using this expression,

ZM
mn =

[
1

2
t̂m1 +

1

2
t̂m2

]
· bn(rem)− êm ·

∫

Sn

dr0bn(r′)×∇′g(rem, r0) (4.58)

and

vM
m = êm ·H inc(rem), (4.59)

where êm is the unit vector in the direction of the mth edge. Finally, if the RWG

basis functions are used, the interaction between a basis triangle and a testing

function (part of an impedance-matrix element) becomes

ZM
m,jl =

[
1

2
t̂m1 +

1

2
t̂m2

]
· δj(rem)

ljl(rem − rjl)

2Aj

− êm · ljl
2Aj

∫

Sn

dr0(r0 − rjl)×∇′g(rem, r0), (4.60)

where the index j is used to indicate that the interaction is calculated for the jth

basis triangle and the index l represents the alignment of the basis function on

this triangle. As it was done before, a rotation can be applied at this stage, so

that the basis triangle resides on the x-y plane. Then,

ZM
m,jl =

[
1

2
t̂m1 +

1

2
t̂m2

]
· δj(rem)

ljl(rem − ρjl)

2Aj

− êm · ljl
2Aj

∫

Sn

dr0(ρ0 − ρjl)× (rem − ρ0)(1− ikRem)eikRem

4πR3
em

=

[
1

2
t̂m1 +

1

2
t̂m2

]
· δj(rem)

ljl(rem − ρjl)

2Aj

+ êm · ljl
2Aj

(rem − ρjl)×
∫

Sn

dr0(ρ0 − rem)
(1− ikRem)eikRem

4πR3
em

, (4.61)

where

Rem = |rem − r0| (4.62)

and with the aid of the identity given in Equation (4.9).
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4.2.2 Evaluation of the Impedance-Matrix Elements

Equation (4.61) can be used easily to calculate the interaction between a testing

function and a basis triangle that are not coincident in space. For those inter-

actions, the first term evaluates to zero. Because, δj(rem) is zero since rem is

located out of the basis triangle.

On the other hand, when the testing function is defined on one of the edges

of the basis triangle, it becomes possible for the observation point to be at the

same location with the source point. However, this causes numerical problems

since the Green’s function tends to diverge as R goes to zero. As a result, sin-

gularity extraction has to be applied to the integrand when the testing function

resides on one of the edges of the basis triangle.

Evaluation of Self-Interactions

Testing Function

Ω i

t m1
^

t m2
^

Basis Triangles

1

2

Figure 4.8: Point testing function approaching the center of the edge of the basis
function from outside.

Figure 4.8 shows the testing function defined on the same edge as the basis

function, and it is desired to calculate the interaction between these functions. It
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Figure 4.9: Point testing function approaching the edge of the basis triangle.

is assumed that the testing function approaches from the outside of the geometry.

Considering only the first triangle of the basis function, the scenario simplifies

to the one shown in Figure 4.9. The observation point approaches the edge on a

line making an angle ϕ with the x-y plane and

ϕ =
Ωi

2
, (4.63)

where Ωi is the internal solid angle at the edge. Then,

ZM
m,j1l1

=
1

2
t̂m1 ·

lj1l1(ρem − ρj1l1)

2Aj1

+ êm · lj1l1

2Aj1

(ρem − ρj1l1)×
∫

Sn

dr0(ρ0 − ρem)
(1− ikRem)eikRem

4πR3
em

− lim
R0

em→0

{
êm · lj1l1

2Aj1

(rem − ρj1l1)× ẑ

∫

Sn

dr0zem
(1− ikRem)eikRem

4πR3
em

}
.

(4.64)

It should be noted that half of the testing function resides on the other side of the

edge so that t̂m2 has no contribution in the first term. It can be also observed that

the second term in (4.64) evaluates to zero since the cross product of two vectors

on the x-y plane gives a vector in the z direction, which is perpendicular to êm.

Although the integral contains a logarithmic singularity, it is suppressed by the
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vanishing dot product. For the third term, only the integral of zemfm3(Rem) is

nonzero as zem goes to zero and

ZM
m,j1l1

=
1

2
t̂m1 ·

lj1l1(ρem − ρj1l1)

2Aj1

− êm ·
lj1l1(ρem − ρj1l1)

2Aj1

× ẑ
2ϕ

4π

(4.65)

with the aid of the limit value given in Equation (4.23). Finally, these two terms

can be combined as

ZM
m,j1l1

=
1

2
t̂m1 ·

lj1l1(ρem − ρj1l1)

2Aj1

− ϕ

2π
t̂m1 ·

lj1l1(ρem − ρj1l1)

2Aj1

=
1

2

[
1− Ωi

2π

]
t̂m1 ·

lj1l1(ρem − ρj1l1)

2Aj1

=
1

2

[
1− Ωi

2π

]
t̂m1 · J1(ρem)

=
1

2

[
1− Ωi

2π

]
(4.66)

since the normal component of the RWG function is unity at the edge.

It can be observed that the interaction between the second basis triangle and

the testing function is the same:

ZM
m,j2l2

=
1

2

[
1− Ωi

2π

]
t̂m2 · J2(ρem) =

1

2

[
1− Ωi

2π

]
. (4.67)

Therefore, self-interactions in the impedance matrix become

ZM
mn =

[
1− Ωi

2π

]
, (4.68)

which is a very simple expression to be evaluated when m = n.

Evaluation of Neighboring Interactions

As it is shown in Figure 4.10, the testing function may reside on one of the edges

of the triangle, but it may not be defined on the same edge as the basis function.
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Figure 4.10: The testing function residing on one of the edges of the basis triangle,
on which the basis function is not defined.

Then, using the final result in Equation (4.65), the interaction becomes

ZM
m,j1l1

=
1

2
t̂m1 ·

lj1l1(ρem − ρj1l1)

2Aj1

− ϕ

2π
t̂m1 ·

lj1l1(ρem − ρj1l1)

2Aj1

=
1

2

[
1− Ωi

2π

]
t̂m1 · J1(ρem)

=
1

2

[
1− Ωi

2π

]

= 0 (4.69)

since the current flow is parallel to the edge and perpendicular to the testing func-

tion. Consequently, the interactions between the neighboring testing functions

and basis triangles can simply be omitted.

Evaluation of Interactions Between Nontouching Functions

When point testing functions are used in the direction perpendicular to the edges,

evaluation of self-interactions in the MFIE does not require any singularity ex-

traction. In addition, neighboring interactions evaluate to zero. Therefore, to

simplify the implementation, singularity extraction can be totally omitted even

for the near-distance interactions between nontouching functions.
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The interactions between nontouching basis triangles and testing functions can

be written as

ZM
m,jl = êm · ljl

2Aj

(rem − ρjl)×
∫

Sn

dr0(ρ0 − rem)
(1− ikRem)eikRem

4πR3
em

= êm · ljl
2Aj

(rem − ρjl)×
∫

Sn

dr0(ρ0 − rem)fm(Rem). (4.70)

For an efficient implementation, this expression is divided into smaller integrals

as

ZM
m,jl =

ljl
2Aj

emx

(
yjlzemI in

mp1 − zemI in
mp3

)

− ljl
2Aj

emy

(
xjlzemI in

mp1 − zemI in
mp2

)

+
ljl

2Aj

emz

[
(xem − xjl)I

in
mp3 − (yem − yjl)I

in
mp2

+ (xjlyem − yjlxem)I in
mp1

]
, (4.71)

where emx, emy, and emz are the x, y, and z components of êm respectively. The

integrals are slightly different from the ones given in Equation (4.36) as

I in
mp1 =

∫

Sn

dr0fm(Rem)

I in
mp2 =

∫

Sn

dr0x′fm(Rem)

I in
mp3 =

∫

Sn

dr0y′fm(Rem) (4.72)

and singularity extraction is not applied to the integrands.
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4.3 CFIE-MOM Implementation with RWG Ba-

sis and Testing Functions

Combining Equations (3.15) and (4.6) with the aid of Equation (2.25),

ZC
ik,jl = α

likljl
4AiAj

{ ∫

Si

dr(r − rik) ·
∫

Sj

dr0g(r, r0)(r0 − rjl)

− 4

k2

∫

Sm

dr

∫

Sn

dr0g(r, r0)
}

+ (1− α)
i

k

likljl
4AiAj

{
δij

∫

Si

dr(r − rik) · (r − rjl)

−
∫

Si

dr(r − rik) · n̂×
∫

Sj

dr0(r0 − rjl)×∇′g(r, r0)
}

(4.73)

can be used to calculate the interactions in the CFIE formulation employing

RWG basis and testing functions. The MOM implementation on the CFIE for-

mulation should not be constructed as the sequential combination of the EFIE

and the MFIE parts. Although these formulations are generally different, their

detailed implementations share some of the inner and outer integrals. In addi-

tion, some basis operations, such as the coordinate transformation, can be done

in common to avoid duplications. Consequently, the MFIE and the EFIE imple-

mentations should be mixed to form an efficient CFIE implementation. For each

triangle-triangle pair, the EFIE and the MFIE formulations should be applied

simultaneously to calculate interaction in the CFIE.

Equations (4.53) and (3.47) can also be combined as

vm = α
i

kη

∫

Sm

drtm(r) ·E0eik·r + (1− α)
i

kη

∫

Sm

drtm(r) · n̂× k̂ ×E0e
ik·r

(4.74)

to form the expression for plane-wave excitation in the CFIE.
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4.4 CFIE-MOM Implementation with Point Test-

ing Function for the MFIE

The MFIE and the EFIE implementations can also be combined when they use

different types of testing functions. However, the contribution of the equations

into the linear sum has to be adjusted appropriately. When the MFIE with

point testing functions is combined with the EFIE using RWG testing functions,

Equations (3.5) and (4.60) can be used as

ZC
ik,jl = α

likljl
4AiAj

{∫

Sm

dr(r − reik) ·
∫

Sn

dr0g(r, r0)(r0 − rjl)

− 4

k2

∫

Si

dr

∫

Sj

dr0g(r, r0)
}

+ (1− α)
i

k
Ai

{
1

2
t̂ik · δj(reik)

ljl(reik − rjl)

2Aj

− êik

2
· ljl
2Aj

∫

Sn

dr0(r0 − rjl)×∇′g(reik, r
0)
}

, (4.75)

where the MFIE part is multiplied by the area of the testing triangle for the

correct weighting. The corresponding expression for the plane-wave excitation

becomes

vm = α
i

kη

∫

Sm

drtm(r) ·E0eik·r + (1− α)
i

k
Aiêm ·H inc(rem)

= α
i

kη

∫

Sm

drtm(r) ·E0eik·r + (1− α)
i

kη
Aiêm · k̂ ×E0eik·rem (4.76)

to form the excitation expression for the CFIE. In both (4.75) and (4.76), the

MFIE expressions are multiplied by Ai in order to balance the weight of the outer

integral in the EFIE, which is missing in the MFIE.

4.5 Results

Figure 4.11 shows eight different triangularly meshed models of sphere having a

radius of 0.3 m. The information about these models are given in Table 4.1. Only
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Table 4.1: Sphere problems.

Mesh-size Corresponding Number of Radius of the
Frequency Unknowns Sphere

6 cm 500 MHz 930 0.5 λ
5 cm 600 MHz 1302 0.6 λ
4 cm 750 MHz 2076 0.75 λ
3 cm 1000 MHz 3723 1.0 λ
2 cm 1500 MHz 8364 1.5 λ

1.5 cm 2000 MHz 14871 2.0 λ
1.0 cm 3000 MHz 32862 3.0 λ
0.5 cm 6000 MHz 132003 6.0 λ

four of these models will be considered at this step due to the limited efficiency

of the MOM. Each of these models are excited by plane waves propagating in the

−x direction and with electric fields polarized in y direction. Following MOM

implementations are used to solve the problems at the corresponding frequencies.

1. EFIE-MOM: This implementation uses the EFIE formulation introduced

in Chapter 3. RWG functions are used for both testing and basis functions.

Singularity extraction is applied for the inner integrals. Numerical parts of

the inner integrals as well as the outer integrals are evaluated by adaptive

algorithms with 1% error criteria. Figure 4.12 shows the plots of calculated

RCS results on the x-y plane. Reference values obtained with an analytical

technique, i.e., Mie scattering, are also plotted to make comparisons.

2. MFIE-MOM with Point Testing: This implementation uses the MFIE for-

mulation with RWG basis functions and point testing functions. Singularity

extraction is applied for the inner integrals and numerical parts are evalu-

ated by adaptive algorithms with 1% error criteria. Figure 4.13 compares

the computed RCS values to the analytical results.

3. MFIE-MOM with RWG Functions and Galerkin Method: This implementa-

tion also uses the MFIE formulation, but Galerkin method is applied with

77



RWG functions. Singularity extraction is applied for the inner integrals

and numerical parts are evaluated by adaptive algorithms with 1% error

criteria. For the outer integrals, Gaussian quadrature rules are used. It

has been observed that 16-point rule and 7-point rule with singularity ex-

traction for the outer integrals result in convergence of the matrix elements

with less than 1% error. Figure 4.14 compares the computed RCS values

to the analytical results.

4. CFIE-MOM with RWG Functions and Galerkin Method: This implemen-

tation is the combination of the first and the third implementations. CFIE

parameter α is chosen to be 0.2. Figure 4.15 compares the computed RCS

values to the analytical results.

It can be observed that the MFIE implementations produce RCS values that are

less accurate than those of the EFIE implementation. This is more obvious in the

second implementation, where point testing functions are used. Better testing

of the equation with the RWG functions leads to improvement, but some inac-

curacy still exists in the third implementation. It should be indicated that this

error is not due to the numerical evaluation of the integrals since the evaluation

and the convergence of the integrals have been carefully controlled. The reason

behind the relative inaccuracy of the MFIE as compared to the EFIE is not well

understood. However, the vie of basis functions that may be more suitable than

the RWG functions is currently under investigation.

If the MFIE is used, the RCS values can be significantly incorrect due to the

internal resonance problem [15, 20]. For example, this situation can be observed

when the third model in Figure 4.11 is solved at 800 MHz. Figure 4.16 shows

the plots of the RCS values obtained by the EFIE, the MFIE, and the CFIE

formulations. It can be seen that the values obtained by the MFIE are signifi-

cantly different (and incorrect) as compared to the the EFIE and the CFIE values.
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(a) (b)

(c) (d)

Figure 4.11: Models of a sphere having a radius of 0.3 m with mesh sizes (a)
6 cm, (b) 5 cm, (c) 4 cm, and (d) 3 cm.
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(e) (f)

(g) (h)

Figure 4.11: (continued) Models of a sphere having a radius of 0.3 m with mesh

sizes (e) 2 cm, (f) 1.5 cm, (g) 1.0 cm, and (h) 0.5 cm.
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Figure 4.12: RCS values obtained by the EFIE-MOM implementation for a sphere
with a radius of (a) 0.5 λ, (b) 0.6 λ, (c) 0.75 λ, and (d) 1.0 λ.
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Figure 4.13: RCS values obtained by the MFIE-MOM implementation using point
testing functions for a sphere with a radius of (a) 0.5 λ, (b) 0.6 λ, (c) 0.75 λ, and
(d) 1.0 λ.
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Figure 4.14: RCS values obtained by the MFIE-MOM implementation using the
RWG functions and Galerkin method for a sphere with a radius of (a) 0.5 λ, (b)
0.6 λ, (c) 0.75 λ, and (d) 1.0 λ.
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Figure 4.15: RCS values obtained by the CFIE-MOM implementation using the
RWG functions and Galerkin method for a sphere with a radius of (a) 0.5 λ, (b)
0.6 λ, (c) 0.75 λ, and (d) 1.0 λ.
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Figure 4.16: RCS values obtained by the EFIE, the MFIE, and the CFIE formu-
lations for a sphere with a radius of 0.8 λ. The MFIE suffers from the internal
resonance problem.
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Chapter 5

FMM Implementations

As it was stated in Chapter 3, the MOM requires O(N2) memory and O(N3)

processing time for a problem of N unknowns. Therefore, as the number of un-

knowns increases, this method becomes inefficient in terms of the computational

resources. In this chapter, another method called the fast multipole method

(FMM) will be introduced, which has lower complexity and can be used to solve

larger problems with less memory and processing time. This method was first

introduced by Rokhlin [2, 3] and used in many studies to efficiently solve elec-

tromagnetic scattering problems, as an alternative to the MOM. A two-level

FMM implementation reduces both the complexity of matrix-vector multiplica-

tion and memory requirement to O(N3/2). Multi-level fast multipole algorithm

(MLFMA), later developed by Song and Chew [4]–[6], further reduces the com-

plexity and memory requirement to O(N log N), making it possible to solve much

larger problems with limited hardware in a shorter time.

The FMM is based on the MOM, but calculates the interactions in a differ-

ent way, using the new expression developed by the factorization of the Green’s

function. The system is solved iteratively, and the FMM provides a quick way
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of matrix-vector multiplication. The efficiency heavily depends on the used inte-

gral equation, the iterative solver, and the preconditioning technique. Chapter 6

investigates these components in detail.

5.1 Theory of the FMM

Expressions for the impedance-matrix elements in the MOM implementations

using the EFIE and the MFIE formulations are given in (3.6) and (4.4) as

ZE
mn =

∫

Sm

drtm(r) ·
∫

Sn

dr0G(r, r0) · bn(r0) (5.1)

and

ZM
mn =

∫

Sm

drtm(r) · bn(r)

−
∫

Sm

drtm(r) · n̂×
∫

Sn

dr0bn(r0)×∇′g(r, r0), (5.2)

respectively. Due to the long-range effect of the Green’s function in both for-

mulas, these expressions have to be calculated separately for all basis-testing

function pairs in order to form the impedance matrix. The FMM formulation

starts with a factorization of the Green’s function to make it possible to calculate

the interactions in a group-by-group manner.

5.1.1 Factorization of the Green’s Function

Rewriting the Green’s function as

g(r, r0) =
eik|r−r0|

4π|r − r0| =
eik|D+d|

|D + d| , (5.3)

the addition theorem can be used to factorize the Green’s function as

eik|D+d|

4π|D + d| =
ik

4π

∞∑

l=0

(−1)l(2l + 1)jl(kd)h
(1)
l (kD)Pl(d̂ · D̂), (5.4)
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where jl(x) is the spherical Bessel function, h
(1)
l (x) is the spherical Hankel func-

tion of the first kind, Pl is the Legendre polynomial, and d < D. Inserting the

identity

4πiljl(kd)Pl(d̂ · D̂) =

∫
d2k̂eik·dPl(k̂ · D̂), (5.5)

where the integration is over the unit sphere, (5.4) can be rewritten as

eik|D+d|

|D + d| ≈
ik

16π2

∫
d2k̂

L∑

l=0

il(2l + 1)h
(1)
l (kD)Pl(k̂ · D̂), (5.6)

where the summation is truncated at L and the equality turns into an approx-

imation. At this stage, the summation part can be represented by a function,

called the translation function, as

TL(k, D, ψ) =
ik

4π

L∑

l=0

il(2l + 1)h
(1)
l (kD)Pl(cosψ), (5.7)

where ψ is the angle between the unit vectors k̂ and D̂. Then, the Green’s

function becomes

eik|D+d|

4π|D + d| ≈
1

4π

∫
d2k̂eik·dTL(k, D, ψ). (5.8)

5.1.2 Calculation of an Interaction

It is desired to calculate the interaction between a basis function and a testing

function, as shown in Figure 5.1, by using (5.1) or (5.2). To insert Equation

(5.8) into the formulation, the distance between the basis and testing functions

is divided into segments as

r − r0 = (r − rfm) + (rfm − rc) + (rc − rc′) + (rc′ − rfn) + (rfn − r0)

= rrfm + rfmc + rcc′ + rc′fn + rfnr′ , (5.9)

where rfm and rfn represent the reference points in the testing and basis func-

tions, respectively, while rc stands for a point near the testing function and rc′
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Figure 5.1: Dividing r − r0 into segments.

stands for another one near the basis function. Then, the segments can be ar-

ranged as

d1 = rrfm + rfmc

d2 = rc′fn + rfnr′

d = d1 + d2

D = rcc′ (5.10)

and (5.8) becomes

eik|r−r0|

4π|r − r0| ≈
1

4π

∫
d2k̂eik·(rrfm+rfmc+rc′fn+rfnr′ )TL(k, |rcc′|, r̂cc′ · k̂). (5.11)

In addition, using the above, the dyadic Green’s function can be expressed as

G(r, r0) ≈ 1

4π

∫
d2k̂(I − k̂k̂)eik·(rrfm+rfmc+rc′fn+rfnr′ )TL(k, |rcc′ |, r̂cc′ · k̂).

(5.12)

Finally, the interaction between the basis and testing functions can be written as

ZE
mn =

1

4π

∫
d2k̂F E

fmc(k̂)TL(k, |rcc′|, r̂cc′ · k̂) · F E
fnc′(k̂) (5.13)
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for the EFIE formulation and

ZM
mn =

k

4πi

∫
d2k̂F M

fmc(k̂)TL(k, |rcc′|, r̂cc′ · k̂) · F M
fnc′(k̂) (5.14)

for the MFIE formulation, where

F E
fmc(k̂) = eik·(rfm−rc)

∫

Sm

dreik·(r−rfm)(I − k̂k̂) · tm(r) (5.15)

F E
fnc′(k̂) = eik·(rc′−rfn)

∫

Sn

dr0e−ik·(r0−rfn)(I − k̂k̂) · bn(r0) (5.16)

F M
fmc(k̂) = −k̂ × eik·(rfm−rc)

∫

Sm

dreik·(r−rfm)tm(r)× n̂ (5.17)

F M
fnc′(k̂) = eik·(rc′−rfn)

∫

Sn

dr0e−ik·(r0−rfn)bn(r0). (5.18)

It should be noted that the self-interaction term in the MFIE is omitted, since

the FMM can only be applied to distant interactions, as will be explained later.

Since the CFIE is simply the linear combination of the EFIE and the MFIE, it

is also possible to write the interaction in the CFIE formulation as

ZC
mn = αZE

mn + (1− α)
i

k
ZM

mn

=
1

4π

∫
d2k̂F C

fmc(k̂)TL(k, |rcc′ |, r̂cc′ · k̂) · F C
fnc′(k̂), (5.19)

where

F C
fmc(k̂) = αeik·(rfm−rc)

∫

Sm

dreik·(r−rfm)(I − k̂k̂) · tm(r)

− (1− α)k̂ × eik·(rfm−rc)

∫

Sm

dreik·(r−rfm)tm(r)× n̂ (5.20)

and

F C
fnc′(k̂) = eik·(rc′−rfn)

∫

Sn

dr0e−ik·(r0−rfn)(I − k̂k̂) · bn(r0). (5.21)

It should be noted that F M
fmc has only θ and φ components so that F M

fnc′ can be

reduced to F E
fnc′ without any complication and F C

fnc′ becomes the same as F E
fnc′ .
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5.1.3 Clustering and Evaluation of the Interactions

The addition theorem in (5.4) is valid only if d < D. Therefore, the new expres-

sions can be used to calculate the interactions between testing and basis functions

if and only if

(r − rc) + (rc′ − r0) < (rc − rc′), (5.22)

which means that the points c and c′ should be chosen close to the testing and

basis functions, respectively, compared to the distance between these points.

r−rc

r  −r’c’

c

Cluster of basis functions

c’

Cluster of testing functions

Figure 5.2: Clustering of basis and testing functions provides a single translation
between the clusters.

Figure 5.2 shows basis and testing functions, which are grouped (clustered) ac-

cording to their locations in space. If the points c and c′ are chosen to be common

points for all functions in the testing and basis clusters, respectively, the transla-

tion function, TL(k, |rcc′|, r̂cc′ · k̂), becomes the same for all interactions between

pairs of functions in these clusters. Then, instead of calculating the interactions

separately, a single translation between the clusters can be used for efficiency.
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In the FMM, basis and testing functions are grouped to calculate the interac-

tions in a group-by-group manner. The procedure can be outlined as follows:

1. In each basis group, the expressions in (5.16) and (5.18) are calculated for

all basis functions, using the common point (cluster center) chosen for the

group. For each basis function, the expression is evaluated for K points

(directions) on the unit sphere and the value at each direction can be in-

terpreted as the radiation of the basis function in that direction from the

cluster center.

Geometry

Clusters
Basis functions

Figure 5.3: Aggregation process in basis clusters.

2. In each basis group, the values of the radiations of the basis functions

are added at each direction. Therefore, the overall radiation of the group

is found with respect to the cluster center. This aggregation process is

illustrated in Figure 5.3.

3. The translation function is defined for each pair of basis and testing groups,

instead of all pairs of the functions. For each group-group interaction, the

translation function multiplies the overall radiation of the basis group and

translates it to the center of the testing cluster. This operation can be
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Figure 5.4: Translation from a basis cluster to testing clusters.

interpreted as the translation of the radiation into incoming waves for the

testing functions. Figure 5.4 sketches this step for a basis cluster.

4. To test the incoming wave, the expressions in (5.15) and (5.17) are calcu-

lated for each testing function. Following the translations, the radiations

from all basis groups are added at the common point of the testing group.

Then, the total radiation from all basis functions can be tested by each

testing function at K points. This disaggregation process is illustrated in

Figure 5.5.

5. A group-group interaction is completed when the integration in (5.13),

(5.14), or (5.19) is evaluated on the unit sphere.

The FMM is based on the iterative solution of the system. Therefore, the

impedance matrix is not stored in the memory. Instead, the procedure above

is used in every iteration to perform the matrix-vector products required by the

iterative solver. The coefficient vector is included in the first step of the proce-

dure, as the radiated fields of the basis functions are aggregated. Radiation of

each basis function is multiplied by the corresponding coefficient to weight its
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Figure 5.5: Disaggregation process in testing clusters.

contribution to the group radiation. Then, the other steps are applied to find the

resulting vector of the multiplication.

Due to the restriction in the addition theorem, not all interactions can be calcu-

lated by the FMM. When the basis and testing clusters are close to each other,

the distance between the cluster centers becomes small and (5.22) is not satisfied.

These near-field interactions are calculated as in the MOM and combined with the

FMM interactions in the iterative procedure. The matrix-vector multiplication

in the FMM can be written as

N∑
n=1

Zmnan =
∑

C′∈N(C)

∑

n∈C′
Zmnan

+
1

4π

∫
d2k̂F fmc(k̂) ·

∑

C′∈F (C)

TL(k, |rcc′|, r̂cc′ · k̂)
∑

n∈C′
F fnc′(k̂)an,

(5.23)

where m stands for the testing function, which belongs to cluster C. The clusters

close to this cluster are represented as N(C), while the ones in the far-field

zone are represented as F (C). On the right-hand side of (5.23), the first term

includes the near-field interactions between the mth testing function, and those
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basis functions, which belong to clusters in the near-field of C. Then, the second

term adds the contributions from the other basis functions, belonging to clusters

far from C. The efficiency of an FMM implementation relies on keeping the

number of near-field interactions small as compared to the far-field interactions.

5.1.4 Truncation Number

The summation in (5.7) is truncated at L, which is an important parameter re-

quiring special attention. One of the error sources of the FMM is this truncation

since the addition theorem is originally based on an infinite sum. To reduce the

error in the factorization of Green’s function, one may attempt to choose L large

and expect the error to drop as L gets larger. However, this is not the case due

to the finite precision used in the computations.

As l exceeds the variable x and gets larger, the Hankel function, h
(1)
l (x) in (5.4)

tends to grow rapidly. Figure 5.6 shows the magnitude of the imaginary part of

the Hankel function with respect to l, for different values of x as 1, 2, ..., 10. It

can be observed that the plots tend to blow up whenever l exceeds x.

The growing values of the Hankel function are suppressed by the Bessel func-

tion so that the contribution to the summation in (5.4) becomes smaller for

larger harmonics. On the other hand, the equality holds better as these small

contributions are included.

In principle, the equality in (5.6) holds better as L gets larger. However, this

requires the perfect evaluation of the Hankel function so that the angular inte-

gration can be performed correctly. Due to the Hankel function, the integrand

takes very large values with a large variation introduced by the Legendre polyno-

mial. The perfect evaluation would result in a moderate value for the integration.
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Figure 5.6: Magnitude of the imaginary part of the Hankel function, h
(1)
l (x) with

respect to l for different values of x.

However, this becomes impossible when the used precision in the computation is

insufficient to represent the value of the integrand correctly. Then, the angular

integration fails and the equality does not hold.

Consequently, the truncation number, L, should be chosen small enough to avoid

divergence of the summation, while it should be large enough for the convergence.

Various ways of choosing the truncation number have been developed. A refined

formula is given as [6]

L ≈ kd + 1.8d
2/3
0 (kd)1/3, (5.24)

where d0 is the desired correct number of digits. Considering (5.10), it should

be noted that value of d ranges from 0 to the sum of the two cluster diameters,

according to the location of testing and basis functions with respect to the cluster

centers. However, for a cluster-cluster pair, a single value of L have to be used.

As a result, the value of d in (5.24) is generally determined by considering the

worst case when d has its largest value.
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To control L and avoid the deviation of the sum, a simple method is to com-

pare L to krcc′ , which is the variable for the Hankel function. If L exceeds this

value, the clusters are said to be in the near-field of each other and the FMM

should not be used between these clusters. Then, the interactions between the

basis and testing functions in these clusters have to be calculated as in the MOM.

Using formulas in the determination of L is well suited for static clustering. A

usual way of clustering the unknowns is to put the geometry in a fictitious box

and to divide the box into sub boxes [6]. Chapter 7 introduces multi-level FMM

implementations, which use this type of clustering.
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Figure 5.7: Values of L obtained with the formula given in Equation (5.24) and
direct test of Equation (5.8) for an accuracy of three digits.

The formula given in Equation (5.24) can be tested by comparing its values

for L with the ones obtained by a direct evaluation of Equation (5.8). Figure 5.7

shows the L values when krcc′ = 20 and d0 = 3 for an accuracy of three digits.
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For L values up to 20, the formula shows very good performance with small er-

ror. After that, its values begin to deviate from the correct curve and the error

increases drastically. This result shows that the formula in (5.24) may not be

reliable for every possible case.

Another way of determining the truncation number is to form a look-up ta-

ble, filled with values for L according to variables d,rcc′ and d0. This table can

be formed easily by using Equation (5.8) and checking L for the given values of

variables.

The method using the look-up table works well with dynamic clustering, in which

the clusters have various sizes. In this method, after determining the value for L,

it should be still checked against krcc′ . Although these values satisfy Equation

(5.8), their usage in the calculation of impedance-matrix elements may result in

failure due to large values of the Hankel function. Another strategy is to restrict

the value of L to be under a predetermined value in the look-up table.

5.1.5 Integration Points

The angular integration points used in Equations (5.13), (5.14), and (5.19) should

be chosen carefully and they must be sufficient to perform a quadrature that is

exact for all spherical harmonics of orders less than 2L. A simple method is

presented in [3] as choosing the values of θ such that they are the zeros of the

Legendre polynomial, PL(cos θ). Then, φ can be sampled uniformly at 2L points

and the number of samples, K, becomes 2L2. Figure 5.8 shows the distribution

of the integration points when L = 5.
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5.1.6 Computational Analysis of the FMM

The FMM does not fill the impedance matrix completely as MOM does. Only

the near-field interactions are calculated and stored in the memory and this leads

to a reduction in the memory usage. In addition, the rest of the interactions are

calculated in a group-by-group manner, which reduces the number of operations

significantly. In this subsection, individual steps of an FMM implementation will

be investigated to determine the requirements for the processing time and mem-

ory usage for the solution of a problem with N unknowns.

An FMM implementation has three main parts:

1. Aggregation: Equations (5.16) and (5.18) have to be calculated for all basis

functions and added to the overall radiation of the clusters. The calculation

part is done once for a problem, but the addition has to be done at each

iteration. For a basis function, K = 2L2 ∝ (kd)2 sample points are needed

on the unit sphere. If M is the number of clusters, there will be about
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N/M unknowns in each cluster and kd ∝ (N/M)1/2. As a result,

K ∝ N/M (5.25)

and O(NK) = O(N2/M) FLOPs are required to calculate the radiations.

The aggregation process can also be performed with O(N2/M) FLOPs for

each iteration. The memory requirement appears to be O(N2/M) at this

step to store the radiations of the basis functions.

2. Translation: For each pair of clusters that are far from each other, a transla-

tion has to be computed in K directions. This requires O(KM2) = O(NM)

FLOPs to be done for each iteration. On the other hand, calculation of the

translation function at K directions for each cluster-cluster pair requires

O(LKM2) = O(N3/2M1/2) FLOPs, while the memory requirement to store

the translation function is O(NM).

3. Disaggregation: At each cluster, the sum of the translation results has to be

multiplied by the receiving pattern of the testing functions. This requires

O(NK) = O(N2/M) FLOPs, which should be done at each iteration. Cal-

culation of the receiving patterns of the testing functions has to be done

once for a problem and requires O(N2/M) operations, while O(N2/M)

memory is required to store them.

In addition to these three steps, an FMM implementation also includes some

near-field interactions to be evaluated as in the MOM. For a single cluster, there

exist O(1) near clusters, so that the number of near-field interactions for this

single cluster becomes O(N2/M2). Considering all of the clusters, the near-field

interactions require O(N2/M) FLOPs. The memory requirement to keep these

interactions is also O(N2/M).
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As a result, an FMM implementation requires

Cagg1N
2/M + Cagg2IN2/M + Ctrans1INM + Ctrans2N

3/2M1/2

+ Cdis1N
2/M + Cdis2IN2/M + CnearN

2/M

= O(IN2/M) + O(INM) + O(N3/2M1/2) (5.26)

FLOPs, where I is the number of iterations, while the memory requirement ap-

pears to be

CaggN
2/M + CtransNM + CdisN

2/M + CnearN
2/M = O(N2/M) + O(NM).

(5.27)

The third term in the processing time is usually neglected, since the constant

Ctrans2 is small compared to other constants, and the number of iterations, I,

usually increases with the number of unknowns. Then, choosing M = N1/2 leads

to an optimization in both the processing time and the memory requirement.

With this choice, the memory requirement becomes O(N3/2) and the processing

time becomes O(N3/2) per iteration for the FMM.

In Chapter 3, the MOM was shown to require O(N2) memory and O(IN2) pro-

cessing time. They are reduced to O(N3/2) and O(IN3/2), respectively, by the

FMM. Therefore, the FMM makes it possible to solve larger problems with lower

increase in the need of computational sources. Results proving this efficiency will

be presented at the end of this chapter.
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5.2 FMM Implementation with RWG Basis Func-

tions

If the RWG functions are used to expand the current, the expression in (5.16)

becomes

F E
fjlc′(k̂) =

ljl
Aj

eik·(rc′−rfjl)

∫

Sj

dr0e−ik·(r0−rfjl)(I − k̂k̂) · (r0 − rjl) (5.28)

for the basis triangle j and the function alignment l. It should be noted that this

expression can also be used in the MFIE formulation since F M
fmc has only θ and

φ components and the r component in F M
fnc′ can be eliminated. The evaluation

of (5.28) for each basis function involves integrations in the form of

∫

Sj

dr0e−ik·(r0−rfjl)(r0 − rjl). (5.29)

For each triangle, the reference point of the basis function can be chosen as the

vertex, at which the current starts or ends. Then, the integrals to be evaluated

become ∫

Sj

dr0e−ik·(r0−rjl)(r0 − rjl). (5.30)

These integrals can be calculated analytically, instead of a numerical treatment.

If the Galerkin method is used and testing functions are also chosen as RWG

functions, (5.15) becomes

F E
fikc(k̂) =

lik
Ai

eik·(rfik−rc)

∫

Si

dreik·(r−rfik)(I − k̂k̂) · (r − rik), (5.31)

where i represents the testing triangle, while k is the alignment of the function on

this triangle. Comparison of (5.31) to (5.28) for a RWG function shows that the

receiving pattern of the function is simply the complex conjugate of the radia-

tion pattern. Therefore, for each function, it is sufficient to calculate only (5.28).

When the function is used for testing, the same data can be used after a simple

102



conjugation operation.

The complex-conjugate relation holds only for the EFIE formulation. It should

be noted that the testing functions require a different treatment in the MFIE

formulation. With the RWG functions, Equation (5.17) becomes

F M
fikc(k̂) = − lik

Ai

k̂ × eik·(rfik−rc)

∫

Si

dreik·(r−rfik)(r − rik)× n̂, (5.32)

which is not simply the complex conjugate of the expression in (5.31).

If point testing functions are used as testing functions, Equation (4.57) can be

inserted in (5.17) to obtain

F M
fmc(k̂) = −k̂ × eik·(rfm−rc)

∫

Sm

dreik·(r−rfm)tm(r)× n̂

= −k̂ × e−ik·rc

∫

Sm

dreik·r 1

2

{
δ(r − rem)t̂m1 + δ(r − rc)t̂m2

}
× n̂

= −(k̂ × ê)eik·(rem−rc), (5.33)

where ê is the unit vector parallel to the edge and rem represents the mid-point

of the edge. This expression is relatively simpler to evaluate, but leads to less

accuracy as in the MOM case shown in the previous chapter.

5.3 Results

To check the accuracy and efficiency of the FMM implementations, the sphere

models shown in Figure 4.11 can be considered again. It should be recalled

that these models are excited by a y-polarized plane wave propagating in the

−x direction. Two FMM implementations are used to solve the problems at the

corresponding frequencies:

1. EFIE-FMM: This implementation uses the EFIE formulation with the RWG

functions for both testing and basis functions. For near-field interactions,
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the integrals are evaluated by adaptive algorithms with 1% error criteria,

and singularity extraction is applied to inner integrals.

2. CFIE-FMM: This implementation combines the EFIE and the MFIE im-

plementations with α = 0.2. RWG functions are used for both basis and

testing functions. For near-field interactions, the inner integrals are evalu-

ated by adaptive algorithms with 1% error criteria and with the aid of sin-

gularity extraction. The outer integrals are evaluated by 7-point Gaussian

quadrature rule, while the singularity extraction applied to outer integrals

in the MFIE.

5.3.1 Accuracy of the FMM Implementations

Different from the MOM, the FMM carries two extra error sources. One of them

is the truncation of the summation in the translation function, and the other is

the integration error in the angular integration. Both of these errors are directly

controlled by single parameter, d0.

Figure 5.9 shows the RCS values in the x-y plane, calculated by the EFIE-FMM

implementation with d0 = 3. Corresponding plots for the CFIE-FMM are shown

in Figure 5.10. Both figures show that the FMM implementations have good

accuracies as compared to the MOM implementations, although they are much

more efficient.

5.3.2 Efficiency of the FMM Implementations

In the next chapter, it will be shown that the FMM implementations with the

CFIE formulation are more efficient than those with the EFIE formulation. At

this stage, only the EFIE-MOM and the EFIE-FMM implementations will be

compared to observe the superiority of the FMM over the MOM.
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Tables 5.1 and 5.2 show the processing times and required memory, respectively,

to solve various sphere problems. As the problem size gets larger, increases in

the memory requirement and processing time are slower for the FMM implemen-

tation. Thus, the FMM makes it possible to solve larger problems, which would

be very difficult to solve by using the MOM. This result was expected from the

discussions on the theoretical complexity of these implementations. The memory

requirements for the MOM and the FMM are expected to be O(N3) and O(N3/2)

respectively, while the processing times are O(N3) and O(N5/2), if I = O(N).

The superiority of the FMM over the MOM is more evident as N gets larger.

Table 5.1: Comparison of the processing times of the EFIE-MOM and the EFIE-
FMM implementations.

Radius of the Processing Time Processing Time
Sphere for the MOM (sec) for the FMM (sec)
0.5 λ 103 37
0.6 λ 210 82
0.75 λ 567 183
1.0 λ 2211 471
1.5 λ 20511 2676
2.0 λ NA 10846

Table 5.2: Comparison of the memory requirements of the EFIE-MOM and the
EFIE-FMM implementations.

Radius of the Memory Requirement Memory Requirement
Sphere for the MOM (MB) for the FMM (MB)
0.5 λ 14 25
0.6 λ 27 37
0.75 λ 68 71
1.0 λ 217 155
1.5 λ 1018 552
2.0 λ NA 1420
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On the other hand, a careful observation reveals that the memory requirement

of the EFIE-FMM is not O(N3/2), but it is somewhat higher. This problem

will be investigated and solved in the next chapter. In general, the EFIE sys-

tems are ill-conditioned, especially when they are used for closed surfaces, so

that their iterative solutions become difficult. In the solution of the sphere prob-

lems, very large preconditioners have to be used in order to reach the result in

a reasonable number of iterations. Otherwise, the solution may take very long

times to converge or may not converge at all. Attempting to develop and use

an optimal preconditioner, which balances the trade-off between the speed of the

convergence and memory requirement, may be useful, however, modifying the

integral equation to fundamentally change and improve the conditioning of the

matrix equation is usually more effective in the pursuit to reach at more efficient

solvers.
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Figure 5.9: RCS values obtained by the EFIE-FMM implementation using the
RWG functions and the Galerkin method for a sphere having a radius of (a)
0.75 λ, (b) 1.0 λ, (c) 1.5 λ, and (d) 2.0 λ.
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Figure 5.10: RCS values obtained by the CFIE-FMM implementation using the
RWG functions and the Galerkin method for a sphere having a radius of (a)
0.75 λ, (b) 1.0 λ, (c) 1.5 λ, and (d) 2.0 λ.
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Chapter 6

Iterative Methods and

Preconditioning Techniques

The FMM, introduced in the previous chapter, is based on the iterative solution

of electromagnetics problems. This chapter introduces the iterative methods as

the backbone of the implementations, which use the FMM as a routine to per-

form the matrix-vector multiplications. These methods can also be used to solve

the systems obtained by the application of the MOM and stored in the memory.

However, the main discussion in this chapter focuses on the use of the iterative

solvers within the framework of the FMM.

The efficiency of the iterative solution affects directly the efficiency of the overall

implementation. In this chapter, two types of iterative solvers and various pre-

conditioning techniques will be investigated in detail. In addition, the integral

equation used to formulate the problem will be shown to affect the convergence

of the solver directly. This will give an idea for the choice of the integral equation

whenever more than one of them is available for a problem.
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6.1 Iterative Solution of the Linear Systems

To solve the linear systems

N∑
n=1

anZE,M,C
mn = vE,M,C

m , (6.1)

which are obtained by the application of the MOM or the FMM on the integral

equations, iterative methods make successive trials to obtain the solution with

a given error criteria. In each trial for the solution, it becomes important to

determine the new guess in a clever way, in view of the results of the previous

guesses. Figure 6.1 sketches the general form of an iterative solution. The itera-

tive algorithm starts with a guess about the solution and it requires this guess to

be multiplied by the system matrix. Then, new guesses are formed, and under

certain conditions, convergence is accomplished after a number of iterations.

System

(CG, CGS, BiCG, ...)

Preconditioner

Solutions Multiplications
Iterative Algorithm 

0

Z.a=v

Z.x=y

a i

M.x=y

Guess: a 

SOLUTION (    ) 

vM

Z

Figure 6.1: General form of an iterative solution.

For many of the iterative algorithms, preconditioners can be implemented to

help the solver to reach the solution faster. This technique is based on the

transformation of the system into a new system as

M
−1 ·Z · a = M

−1 · v, (6.2)
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which has the same solution but may be better conditioned. To speed up the

convergence of the solver, M should be chosen similar to Z, e.g., by copying

some of the elements of Z directly into M . In the extreme case, M = Z and

the iterative solution turns into a direct solution in single iteration. However, M

is required to be sparse, having limited number of nonzero elements, in order to

avoid large memory requirement and increasing the processing time. Different

types of preconditioners and their usages will be investigated in Section 6.2.

There are various iterative algorithms to apply on general linear systems. Two of

them will be presented here as the most appropriate ones to work with the FMM

in the solution of the scattering problems.

6.1.1 Bi-Conjugate Gradient (BiCG) Algorithm

For complex systems, bi-conjugate gradient (BiCG) algorithm [21] is based on

two sequences to be updated as

r(i) = r(i−1) − c(i)Z · p(i)

r̃(i) = r̃(i−1) − c(i)Z
∗T · p̃(i), (6.3)

where “T” indicates the transpose and “∗” indicates the complex conjugate, with

the search directions defined as

p(i) = r(i−1) + d(i−1)p(i−1)

p̃(i) = r̃(i−1) + d(i−1)p̃(i−1). (6.4)

In these equations r, r̃, p, and p̃ are vectors of dimension N , while c and d are

constants that can be defined as

c(i) =
〈r̃(i−1), r(i−1)〉
〈p̃(i),Z · p(i)〉

(6.5)
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and

d(i) =
〈r̃(i), r(i)〉

〈r̃(i−1), r(i−1)〉 , (6.6)

where the inner operator is given as

〈a, b〉 = a∗T · b. (6.7)

Definition of the constants as in the above ensures the orthogonality relations as

〈r̃(i), r(j)〉 = 0 if i 6= j (6.8)

and

〈p̃(i),p(j)〉 = 0 if i 6= j. (6.9)

The pseudocode of a general bi-conjugate algorithm for a complex system is listed

in Figure 6.2.

Preconditioning in BiCG

The pseudocode in Figure 6.2 indicates the use of a preconditioner as shown on

lines 04 and 05. With the preconditioner, the definitions of ci and di become

c(i) =
〈r̃(i−1), z(i−1)〉
〈p̃(i),Z · p(i)〉

(6.10)

and

d(i) =
〈r̃(i),z(i)〉

〈r̃(i−1),z(i−1)〉 , (6.11)

where

z(i) = M
−1 · r(i). (6.12)

This modification directly comes from the new definition of the residual for the

updated system in Equation (6.2). In addition, the definitions in (6.4) are changed
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01 r(0) = v −Z · x(0) for some initial guess x(0)

02 choose r̃(0)

03 for i = 1, 2, ...
04 solve M · z(i−1) = r(i−1)

05 solve M
∗T

z̃(i−1) = r̃(i−1)

06 ρ(i−1) = r̃∗T(i−1) · z(i−1)

07 if ρ(i−1) = 0 then method fails
08 if i = 1 then
09 p(i) = z(i−1)

10 p̃(i) = z̃(i−1)

11 else
12 d(i−1) = ρ(i−1)/ρ(i−2)

13 p(i) = z(i−1) + d(i−1)p(i−1)

14 p̃(i) = z̃(i−1) + d(i−1)p̃(i−1)

14 endif
15 q(i) = Z · p(i)

16 q̃(i) = Z
∗T · p̃(i)

17 ci = ρ(i−1)/p̃
∗T
(i) · q(i)

18 x(i) = x(i−1) + c(i)p(i)

19 r(i) = r(i−1) − c(i)q(i)

20 r̃(i) = r̃(i−1) − c(i)q̃(i)

21 check the residual error r(i)

22 end
23 return x(i)

Figure 6.2: Pseudocode of a general BiCG algorithm for complex systems.

as

p(i) = z(i−1) + d(i−1)p(i−1)

p̃(i) = z̃(i−1) + d(i−1)p̃(i−1). (6.13)

It should be noted that the BiCG algorithm requires two solutions of the precon-

ditioner system for each iteration.

Solution

The new guess for the solution of the problem is generated on line 18 of the

pseudocode in Figure 6.2. At the end of each iteration loop, the residual error is
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compared with the desired threshold for the error. If the convergence is satisfied,

the final value of xi is returned as the solution of the system.

Matrix-Vector Multiplication

Lines 15 and 16 of the pseudocode show the matrix-vector multiplications used

in the solution. These operations are performed by the FMM, and the BiCG

algorithm requires two calls of the FMM in each iteration.

Choosing the Initial Values

The initial choice for the residual, r(0) can be arbitrary due to the arbitrary

choice of the initial guess x(0), but it will be shown in Section 6.4 that small

initial residual leads to convergence in fewer iterations even though the rate of

the decay of the residual is unchanged. It is possible to choose the definition of

r̃(0), which affects directly the efficiency of the solver, in various ways. Two of

these choices are

r̃(0) = Z · r(0) (6.14)

and

r̃(0) = r∗(0). (6.15)

The second choice results in a significant improvement of the algorithm for the

solution of the complex symmetric systems [22]. If the system matrix is symmetric

so that

Z
T

= Z, (6.16)

then this choice simplifies the algorithm in Figure 6.2 into a reduced form as

shown in Figure 6.3. It should be noted that this reduced form requires only

one solution of the preconditioner system and one matrix-vector multiplication

for each iteration. This efficiency improvement is only applicable to systems

obtained with the EFIE. The systems employing the MFIE and the CFIE are

not symmetric so that they cannot use the reduced form of the BiCG algorithm.
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01 r(0) = v −Z · x(0) for some initial guess x(0)

03 for i = 1, 2, ...
04 solve M · z(i−1) = r(i−1)

05 ρ(i−1) = rT
(i−1) · z(i−1)

06 if ρ(i−1) = 0 then method fails
07 if i = 1 then
08 p(i) = z(i−1)

09 else
10 d(i−1) = ρ(i−1)/ρ(i−2)

11 p(i) = z(i−1) + d(i−1)p(i−1)

12 endif
13 q(i) = Z · p(i)

14 ci = ρ(i−1)/p
T
(i) · q(i)

15 x(i) = x(i−1) + c(i)p(i)

16 r(i) = r(i−1) − c(i)q(i)

17 check the residual error r(i)

18 end
19 return x(i)

Figure 6.3: Pseudocode of the reduced form of the BiCG algorithm for complex
symmetric systems.

6.1.2 Conjugate Gradient Squared (CGS) Algorithm

In the BiCG method, the residual sequence can be interpreted as

r(i) = Pi(Z) · r(0), (6.17)

where Pi is an ith degree polynomial, which summarizes the process from the

initial residual to the residual at the ith step. Conjugate gradient squared (CGS)

algorithm uses this polynomial twice as

r(i) = P 2
i (Z) · r(0), (6.18)

which might result in faster convergence to the solution. A general algorithm for

the CGS is given in Figure 6.4. This algorithm also requires two solutions of the

preconditioner system and two matrix-vector multiplications for each iteration.
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Although the CGS algorithm is expected to have faster convergence than the

BiCG algorithm [21, 23], this is not observed in the solution of scattering prob-

lems. The comparison on the efficiency of the algorithms will be performed in

the following section.

01 r(0) = v −Z · x(0) for some initial guess x(0)

02 choose r̃(0) (usually r̃(0) = r(0))
03 for i = 1, 2, ...
04 ρ(i−1) = r̃∗T · r(i−1)

05 if ρ(i−1) = 0 then method fails
06 if i = 1 then
07 u(i) = r(i−1)

08 p(i) = r(i−1)

09 else
10 d(i) = ρ(i−1)/ρ(i−2)

11 u(i) = r(i−1) + d(i−1)q(i−1)

12 p(i) = r(i−1) + 2d(i−1)q(i−1) + d(i−1)d(i−1)p(i−1)

14 endif
15 solve M · p̃ = p(i)

16 ṽ = Z · p̃
17 c(i) = ρ(i−1)/r̃

∗T
(i) · ṽ

18 q(i) = u(i) − c(i)ṽ
19 solve M · ũ = u(i) + q(i)

20 x(i) = x(i−1) + c(i)ũ
21 q̃ = Z · ũ
22 r(i) = r(i−1) − c(i)q̃
23 check the residual error r(i)

24 end
25 return x(i)

Figure 6.4: Pseudocode of the general CGS algorithm for complex systems.

6.2 Preconditioning Techniques

In this section, various types of preconditioners will be outlined. In general, pre-

conditioner matrices have to be similar to the impedance matrix produced by

the integral equation of choice. With large preconditioners, which retain many
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of the impedance-matrix elements, the modified, i.e., preconditioned, system in

Equation (6.2) becomes easier to solve. However, this leads to an increase in the

memory requirement due to the need to store the elements of the preconditioner.

In addition, the inverse of the preconditioner has to be evaluated, which requires

longer time for large preconditioners. It should be noted that the extreme case

occurs when the preconditioner retains all of the elements of the impedance ma-

trix. However, taking the inverse of this matrix to use as a preconditioner in

the iterative solver is not different from the direct solution of the system. Thus,

the trade-off in the use of preconditioners has to be handled carefully to avoid

suppressing the efficiency of the FMM.

6.2.1 Types of Preconditioners

An iterative algorithm uses the preconditioner by the request of the operation as

y = M
−1 · x, (6.19)

where x changes for each call of the operation and y is the corresponding so-

lution of the preconditioner system. Different types of preconditioners can be

implemented.

No Preconditioner

Iterative algorithms can be used without preconditioners. This can be shown as

y = M
−1 · x = x (6.20)

and it can be interpreted as M = I.
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Diagonal Preconditioner

When the preconditioner has only the diagonal elements of the impedance matrix,

M
−1

(m,m) = 1/Z(m,m)

M
−1

(m,n) = 0, if m 6= n (6.21)

and

y(m) =
N∑

n=1

M
−1

(m,n)x(n) = x(m)/Z(m, m). (6.22)

The memory required of this type of preconditioner is O(N), while the inverse

operation requires O(N) FLOPs. At each iteration, the solution of the precon-

ditioner system also requires O(N) FLOPs. Overall, the memory usage and the

processing time required to implement the preconditioner appears to be O(N)

and O(N) + O(IN) = O(IN), respectively, which do not disturb the efficiency

of the FMM.

Block-Diagonal Preconditioners

This type of preconditioners are formed by choosing the interactions between

the basis and testing functions in the same cluster. Since these interactions are

among the functions in the near-field of each other, the chosen elements of the

impedance matrix are expected to be stronger than the other interactions. On

the other hand, the distribution of self-cluster elements may not originally have

the block-diagonal form in the impedance matrix. This is because of the fact that

the clustering of the functions are performed according to the spatial locations of

the functions. Therefore, a cluster may include interactions at various locations

in the impedance matrix.

Figure 6.5 shows the self-cluster interactions in an impedance matrix of a 72-

unknown problem. These elements, which are distributed randomly, are desired
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Figure 6.5: Self-cluster interactions in the impedance matrix of an 72-unknown
problem.

to be used in the preconditioner. At this stage, a renumbering of the matrix can

be useful so that the new preconditioner appears as in Figure 6.6, which is block

diagonal. According to the renumbering in the preconditioner, the input vector

x and the resulting vector y should also be rearranged. All of these operations

can be summarized as

y =
[
(M

R
)−1 · xR

]R′
, (6.23)

where R represents the renumbering operation and R′ is the reverse of this oper-

ation. In the implementation, the renumbering may not be processed explicitly,

but a mapping technique can be used in order to carry out the indexing.

The inverse of a block-diagonal matrix can be efficiently evaluated by consid-

ering the inverse of blocks separately. For each block of size of
√

N × √N , the

memory requirement is O(N) and the inverse operation is done with O(N3/2)
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Figure 6.6: Self-cluster interactions in the impedance matrix of an 72-unknown
problem after the renumbering operation.

FLOPs by direct methods. Then, for the entire factorization of the precondi-

tioner, the number of FLOPs becomes O(N2). However, this process is per-

formed only once before the iterative solution. The use of the preconditioner in

each iteration requires O(N3/2) FLOPs. Therefore, the overall processing time

for the block-diagonal preconditioner becomes O(N2) + O(IN3/2) = O(IN3/2),

assuming I = O(N). This order is the same as the complexity of matrix-vector

multiplication accomplished by the FMM, while the memory requirement is again

O(N3/2).

Filtered Preconditioners

These preconditioners are formed by selectively retaining some of the elements of

the impedance matrix [24]. The selection is done according to the magnitudes of

the elements so that the strongest elements of the impedance matrix are chosen.

By this way, the quality of the preconditioner matrix becomes high. The number

of elements selected to the preconditioner can be adjusted according the memory
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requirements. Therefore, the size of the filtered preconditioners varies in a wide

range.

Since the distribution and the number of the elements are arbitrary, it becomes

practically impossible to arrange the elements in block-diagonal or other conve-

nient forms. This brings about the difficulty in the factorization and evaluation of

the inverse matrix. Various methods on sparse matrices can be used to factorize

these preconditioners to use in the iterative solver.

6.2.2 Comparisons of Preconditioners and Iterative Solvers

Figure 6.7 shows the iteration plots for different types of preconditioners used in

the iterative solution of two different sphere problems. The problems are the sec-

ond and fourth models shown in Figure 4.11, which correspond to 1302 and 8364

unknowns, respectively. The EFIE-FMM implementation with RWG functions

and the Galerkin method are used while both CGS and BiCG are applied as the

iterative solver.

Following observations can be done on the results:

1. BiCG has always faster convergence that the CGS algorithm for any type

of the preconditioners, although both solvers start with the same initial

guess for the solution. Especially, for the small preconditioners, such as

the diagonal or the block-diagonal, the CGS algorithm does not show any

convergence within a resonable number of iterations.

2. As the number of nonzero elements is increased in the preconditioner, both

solvers tend to have faster convergence. In the bottom plots for both prob-

lems, all of the near-field interactions are used in the filtered preconditioner,

leading to the fastest convergence as expected.
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3. Although the block-diagonal preconditioner has more nonzero elements

than the diagonal preconditioner, it does not have better convergence. This

is mainly due to the characteristics of the systems obtained by the EFIE.

In general, it is observed that the self-cluster interactions in the impedance

matrix of the EFIE are not the only strong elements in the matrix. There-

fore, selecting these elements into the preconditioner while discarding some

other strong ones leads to a worse performance in the convergence. For

such systems, diagonal preconditioners seem to perform better.

4. In spite of the improved convergence with the improved preconditioners, the

overall performance of the iterative solvers with the EFIE is not satisfactory,

even for the smaller problem. Only the large preconditioners obtained by

the filtering technique give rise to acceptable convergence, which makes

the overall implementation inefficient due to the increased difficulty in the

factorization and storage of the preconditioner.

5. It can be observed that the increase in the size of the problem gives rise

to increase in the number of iterations. It is obvious that the size of the

filtered preconditioner has to be increased significantly to keep the number

of iterations low for larger problems.

6.3 Comparisons of the Integral Equations

As shown in the previous section, the EFIE systems are usually ill-conditioned

and not suitable for the iterative solutions. As the problem gets larger, better

and better preconditioners are required to obtain a convergence. Then, the use

of the preconditioner becomes the most critical cost of the implementation.

Systems obtained by the MFIE formulation are generally better conditioned than

the EFIE systems. The CFIE systems are even better than the MFIE systems if

122



the constant α in (2.25) is chosen appropriately. Then, it becomes possible to use

efficient preconditioners. This is the main reason for these two formulations to

be more preferable for the scattering problems involving geometries with closed

surfaces.

Figure 6.8 shows the iteration plots for three formulations used in the solution of

sphere problems of different sizes. For the CFIE formulation, α is chosen as 0.2,

which will be shown to be an appropriate choice. The iterative solver implements

the CGS algorithm employing diagonal and block-diagonal preconditioners. Fol-

lowing observations can be done on these results:

1. Different from the EFIE, both the MFIE and the CFIE formulations lead

to good convergence even with the diagonal preconditioner. In addition,

the convergence is improved as the preconditioner is changed from diagonal

to block-diagonal. It seems that the use of block-diagonal preconditioner

becomes applicable for the MFIE and the CFIE formulations. This is due to

the fact that the strongest elements in the MFIE and the CFIE matrices are

located in the self-cluster blocks. These elements, which are the interactions

between the close functions, are stronger than the other elements in the

impedance matrix.

2. As the problem size gets larger, the increase in the number of iterations is

very limited for the CFIE. Therefore, to solve larger problems, it becomes

important to use the CFIE. It can be surprising to use a linear combination

of two equations and duplicating the operations, instead of using a single

equation with less work. However, for large problems, the cost of the pre-

conditioner becomes the bottleneck for the EFIE systems. The MFIE is

better than the EFIE, but it also exhibits faster increase in the number

of iterations compared to the CFIE, as the problem size gets larger. As a

result, the CFIE seems to be better than the other two equations for the
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solution of large scattering problems.

6.3.1 Efficiency of the FMM for Different Formulations

As it was shown in Figure 6.7, the EFIE systems can be forced to converge faster

by using better preconditioners. However, this reduces the efficiency of the FMM

implementation as shown in Tables 6.1 and 6.2, where the processing time and

the memory requirements are given in detail for the solution of the sphere prob-

lems shown in Figure 4.11.

Table 6.1: Processing time of the EFIE-FMM implementation.

Radius of the Total Processing Solution Number
Sphere Time (sec) Time (sec) of Iterations
0.5 λ 37 9 29
0.6 λ 82 34 72
0.75 λ 183 58 61
1.0 λ 471 160 75
1.5 λ 2676 1278 198
2.0 λ 10846 6049 366

Table 6.2: Memory requirement of the EFIE-FMM implementation.

Radius of the Total Memory Memory Requirement
Sphere Requirement (MB) for the Preconditioner (MB)
0.5 λ 25 7
0.6 λ 37 12
0.75 λ 71 28
1.0 λ 155 72
1.5 λ 552 332
2.0 λ 1420 970

To solve the problems, large preconditioners, obtained by the filtering technique,

are used. As shown in Table 6.2, these preconditioners use very large portion

of the total memory required by the implementation. This portion grows as the
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problem size increases and the preconditioner becomes the bottleneck for the

memory usage.

Table 6.1 shows that the processing time for the solution becomes more sig-

nificant as the problem size gets larger. In addition, the speed of the increase is

much larger than the speed of the increase in the number of iterations. This is

the direct consequence of using large preconditioners since their use in the itera-

tive algorithm becomes more costly. It is interesting to note that the increase in

the number of iterations cannot be avoided despite the significant growth of the

preconditioner.

It is evident from the two tables that the EFIE formulation is not convenient

to solve large problems. As the problem size increases, its usage becomes more

difficult in terms of the computational sources. As it was previously stated, the

CFIE formulation gives better conditioned systems, which does not suffer from

the problems encountered on the EFIE.

To validate the superiority of the CFIE, the Tables 6.3 and 6.4 show the pro-

cessing time and memory requirements for the same problems. With the CFIE

formulation, it becomes possible to use block-diagonal preconditioners. The de-

crease in the total memory requirement due to the reduced preconditioner is fas-

cinating. As Table 6.3 shows, the total processing time also drops with the steep

decline of the solution time. As the problem size increases, the block-diagonal

preconditioner becomes smaller as compared to the impedance matrix. However,

the speed of the increase in the number of iterations is still very slow. This shows

the suitability of the CFIE for the solution of larger problems.
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Table 6.3: Processing time of the CFIE-FMM implementation.

Radius of the Total Processing Solution Number
Sphere Time (sec) Time (sec) of Iterations
0.5 λ 58 5 13
0.6 λ 95 6 13
0.75 λ 226 15 15
1.0 λ 531 24 14
1.5 λ 1853 99 17
2.0 λ 3991 169 15

Table 6.4: Memory requirement of the CFIE-FMM implementation.

Radius of the Total Memory Memory Requirement
Sphere Requirement (MB) for the Preconditioner (MB)
0.5 λ 22 0.4
0.6 λ 31 0.7
0.75 λ 52 1.4
1.0 λ 101 3.5
1.5 λ 260 11
2.0 λ 511 29

6.3.2 Choice of α in the CFIE

Figure 6.9 shows the number of iterations with respect to α in the the CFIE

formulation to reach various residual errors in the solution of the sphere problems.

It can be observed that the curves have their minimum for α values about 0.2-

0.3. In general, the the CFIE systems are better conditioned at these optimum

values of α, so that the convergence in the iterative solution is achieved with less

number of iterations.

6.4 Effect of Initial Guess on the Convergence

In Figure 6.10, the iteration plots are given for 1302-unknown and 8364-unknown

problems formulated by the EFIE and solved by the BiCG algorithm employing
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different types of preconditioners. Improved initial guesses are used for these

problems in addition to the ordinary initial guesses. For the smaller problem

solved at 600 MHz, the solution obtained at 550 MHz is used as the improved

initial guess, while the solution at 1450 MHz is used for the larger problem to be

solved at 1500 MHz. It can be seen that the number of iterations drops with the

improved initial guess for the solution. However, the speed of the convergence

seems to be the same.

In many problems, the solution is required in a range of frequencies. This brings

about the usage of a solution at a frequency as an initial guess for the solution in

the next frequency. For small intervals of frequency, a speed-up can be obtained,

leading to a significant reduction in the total time.

6.5 Multiple Excitations

With the use of efficient preconditioners, the bottleneck of the FMM implemen-

tations becomes the near-field interactions. In the next chapter, the MLFMA

is introduced, which further reduces the number of near-field interactions. This

algorithm also reduces the memory requirement and the processing time per it-

eration down to O(N log N).

If the solution of the problem is desired for multiple excitations, the near-field

interactions can be computed only once, before the beginning of the iterative al-

gorithm. Then, the iterative algorithm can be started for each excitation vector

and the same near-field data stored in the memory can be used for many times.

By this way, the processing time can be reduced significantly.
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Figure 6.7: Plots of the residual versus the iteration number for different types
of preconditioners implemented with CGS and BiCG for the solution of (a) 1302-
unknown, and (b) 8364-unknown scattering problems of the sphere shown in
Figure 4.11. The EFIE is used to formulate the problems.
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Figure 6.8: Plots of the residual versus the iteration number for the solution of
sphere problems shown in Figure 4.11 using different integral-equation formula-
tions with CGS employing (a) diagonal and (b) block-diagonal preconditioners.
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Figure 6.9: Number of iterations with respect to α to reach various residual errors
for the sphere problems having (a) 1302 unknowns, (b) 2076 unknowns, (c) 3723
unknowns, and (d) 8364 unknowns.
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Figure 6.10: Effect of the improved initial guess on the convergence for dif-
ferent types of preconditioners implemented with BiCG for the solution of (a)
1302-unknown and (b) 8364-unknown scattering problems of the sphere shown
in Figure 4.11.
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Chapter 7

MLFMA Implementations

The generalization of the two-level FMM is the MLFMA [4]–[6], which is based

on grouping the groups in the FMM. This method further reduces the memory

requirement to O(N log N), while the processing time also becomes O(N log N)

per iteration. Therefore, some large problems, which cannot be solved by a two-

level FMM implementation with the existing computational resources, can be

solved by the MLFMA. This chapter introduces this method in detail.

The aggregation, translation, and disaggregation concepts of the FMM are the

same in the MLFMA. However, the reduction of the complexity to O(N log N)

requires the interpolation and anterpolation operations during the aggregation

and disaggregation processes. This brings about extra design considerations on

the implementation of the MLFMA. In addition, the fourth error source is in-

troduced in these operations, which should be carefully controlled to balance the

efficiency and the accuracy.
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7.1 Evaluation of Interactions with the MLFMA

The usage of the MLFMA in the evaluation of the interactions appears in the

matrix-vector products required by the iterative solver. The overall process can

be divided into three steps.

7.1.1 Aggregation in the MLFMA

The aggregation process in the two-level FMM can be seen as the part of Equation

5.23 and the resulting function at the center of cluster C ′ can be written as

F C′(k̂) =
∑

n∈C′
F fnc′(k̂)an, (7.1)

where n represents the basis function with a coefficient an assigned by the it-

erative solver. This summation represents only the aggregation process for the

cluster C ′ and has to be performed for all other basis clusters to complete the

aggregation in the two-level FMM. In the MLFMA, the aggregation process con-

tinues from the lowest level to the highest level.

Figure 7.1 shows the lowest level clusters, which contain the basis functions.

After the aggregations at the centers of these clusters, a second aggregation con-

tinues towards the center of the parent cluster. This parent cluster belongs to

the higher level, which may also be inside a larger cluster. The overall process

continues up to the aggregations in the highest level.

It can be recalled from Chapter 5 that the number of points taken on the unit

sphere for the angular integration depends on the number of harmonics used in

the translation as

K = 2L2. (7.2)
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Figure 7.1: Aggregation process in the MLFMA.

In addition, L is proportional to the radius of the clusters involved in the trans-

lation, so that

K ∝ (kd)2. (7.3)

Therefore, the number of angular samples for the radiation of a cluster depends

on the size of the cluster. The clusters in the lower levels use coarser samplings,

while the clusters in the upper levels require finer samplings. This brings about

a disagreement between a cluster and its parent cluster since they use different

numbers of samples. Therefore, as the aggregation process continues after the

lowest level, interpolations have to be done before adding the contributions from

clusters to their parent clusters.

Interpolation

Figure 7.2 shows the fine and coarse sampling grids on the surface of the unit

sphere. By interpolation, the value of the function F is desired to be found on
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the sampling points of the fine grid. Various interpolation methods can be ap-

plied. However, local application of the Lagrange interpolation will be shown

here, which is known to give good results with high efficiency.
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Figure 7.2: Fine and coarse grids on the unit sphere.

As shown in Figure 7.3, the Lagrange interpolation uses a predetermined number

of points to calculate the value of the function at the target point, (θt, φt). The

source points on the coarse grid are chosen to be the nearest points to the target

point on the finer grid. The 2-D interpolation starts with 1-D interpolation in

the θ direction as

F̂ (θt, φk) =
m∑

i=1

li(θt)F (θi, φk), (7.4)

where

li(θt) =
∏

j 6=i

θt − θj

θi − θj

(7.5)
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Figure 7.3: 2-D Interpolation.

and m is the number of samples taken in the θ direction for the interpolation.

For each point in the φ direction, the values of the function at m points in the θ

direction are used to reduce the 2-D interpolation into a 1-D interpolation. This

reduced situation is shown in Figure 7.4, where there are n samples in the φ

direction.

n

φ

Phi points after the first step

Figure 7.4: Interpolation points after the first step.

Then, the one-dimensional function F̂ can be used to complete the interpola-

tion as

F̃ (θt, φt) =
n∑

i=1

li(φt)F̂ (θt, φi), (7.6)
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where

li(φt) =
∏

j 6=i

φt − φj

φi − φj

. (7.7)

Finally, the overall interpolation for a point can be written as

F̃ (θt, φt) =
n∑

i1=1

m∑
i2=1

li1(φt)li2(θt)F (θi2, φi1). (7.8)

where P = mn points are used to find the the value of the function at (θt, φt).

This process have to be done for all P̃ = m̃ñ points in the fine grid. Consequently,

the interpolation process between the two grids can be represented as

F̃ = I P̃P · F , (7.9)

where I P̃P is the interpolation matrix having a dimension of P̃ by P . The function

F̃ is not exactly the same as F since there exists some interpolation error. This

error can be easily controlled by adjusting the number of sample points to be

used in the interpolation at a point. This adjustment should be done carefully

to balance the accuracy and the efficiency.

Considerations in Interpolation

If the target point is close to the boundaries of the sampling space, some of the

interpolation points may fall outside. In other words, the interpolation may need

to use the source data at (θ, φ), which may have θ < 0, θ > π, φ < 0, or φ > 2π.

To handle these cases, the extended coverage of the sample space is shown in Fig-

ure 7.5. In the figure, θ may have values from −π to 2π, while φ has a range from

−2π to 4π. Considering the unit sphere, these values are not actually allowed.

However, this virtual extension should be done for a correct implementation of

interpolation method.

In Figure 7.5, the vertex locations of the original space are marked with A,

B, C, and D to follow the orientation of the replicas. Since the original space
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Figure 7.5: Extended sample space of unit sphere.

is periodic in the φ direction, the replicas in this direction do not change their

orientations. In other words,

f(θ, φ) = f(θ, φ + 2π), if φ < 0

f(θ, φ) = f(θ, φ− 2π), if φ > 2π. (7.10)

The situation becomes more complex in the θ direction. The replicas are the

double-rotated versions of the original space. In other words, rotation is required

in both θ and φ directions. In addition, the value of the function has to be

multiplied by −1 so that

f(θ, φ) = −f(−θ, φ + π), if θ < 0, 0 < φ < π

f(θ, φ) = −f(−θ, φ− π), if θ < 0, π < φ < 2π

f(θ, φ) = −f(2π − θ, φ + π), if θ > π, 0 < φ < π

f(θ, φ) = −f(2π − θ, φ− π), if θ > π, π < φ < 2π. (7.11)
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When the target point is close to the poles of the unit sphere, the quality of

the interpolation can be improved by using the pole values of the function. The

pole locations do not contribute to the angular integration; however, they can be

carried during the aggregation process to reduce the interpolation error.

Introducing the interpolations, the aggregated value at the center of a basis clus-

ter C ′ can be written as

F C′(k̂) =
∑

C′1∈G(C′)

βC′C′1IP ′P ′1 ·
∑

C′2∈G(C′1)

βC′2C′1IP ′1P ′2 ·
∑

C′3∈G(C′2)

βC′3C′2IP ′2P ′3 · . . .

∑

C′f∈G(C′f−1)

∑

n∈C′f

F fnc′f (k̂)an, (7.12)

where G(·) represents the children list for the given cluster. The contribution of a

cluster to its parent is performed by the shifting operators, which can be written

as

βChCl
= eik·(rCh

−rCl
), (7.13)

where rCh
is the center of the high-level cluster Ch while rCl

is the center of its

child, Cl. The aggregated value at a cluster center at any level has to be stored

in the memory since, as it will be shown in the next subsection, all of the clusters

are included in the translation step.

7.1.2 Translation in the MLFMA

Translation in the MLFMA should be done between the basis and testing clusters,

which are far from each other. In addition to this, the parents of these clusters

should be in the near-field of each other. Figure 7.6 sketches the situation for

the clusters distributed in two levels. If the parents of the clusters are not in

the near-field of each other, the translation between the clusters are included in

a high-level translation, which is handled by the aggregation and disaggregation

steps. Therefore, the direct translation between these clusters should be omitted.
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Translation at lower level

Clusters far from each other

Clusters near to each other

Figure 7.6: Translation process in the MLFMA.

After the translation step, each testing cluster has a summed value of transla-

tions from far-field clusters, which have parents close to the parent of the testing

cluster. This value can be written for a testing cluster C as

F C
T (k̂) =

∑

P (C′)∈N(P (C))

∑

C′∈F (C)

TL(k, |rcc′|, r̂cc′ · k̂)F C′(k̂), (7.14)

where P (·) represents the parent of the given cluster, while N(·) and F (·) repre-

sents the near-field and far-field clusters, as defined before. Finally, it should be

recalled that FC′(k̂) is the aggregation result at the center of C ′, calculated by

using Equation (7.12).

7.1.3 Disaggregation in the MLFMA

After the translations, the summed values at the centers of the testing clusters

have to be disaggregated towards the testing functions to be multiplied by the

receiving patterns of the testing functions. It should be noted that the function to

be multiplied by the receiving pattern of a testing function comes not only from

its cluster, but also from the parent of its cluster. In general, disaggregation in
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the MLFMA occurs by reversing the aggregation process, from high levels to the

lowest level.

Parent cluster

+
+

+ +
+

+

+

Disaggregation from 

Clusters in the lowest level

higher levels

Testing functions

Figure 7.7: Disaggregation process in the MLFMA.

Figure 7.7 shows the disaggregation process for clusters at the lowest level. The

values from the parent clusters are shifted to the centers of the clusters and added

to the translation results associated with each testing-cluster center. Then, the

disaggregation towards the testing functions proceeds as in the two-level FMM

case. The parent cluster passes its values to all of its children, after it gets the

value from its own parent.

The disagreement in the sampling of the unit sphere also appears in the disag-

gregation process. At this stage, one may choose to decimate the highly-sampled

data into the coarser grid and continue the disaggregation towards the lower lev-

els. However, this results in the angular integration to be done with the low

sampling rate of the lowest level. A clever method, called anterpolation, does
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not disturb the general structure of the disaggregation, but allows the angular

integration to be done with the high sampling rates of the implementation.

With the addition of the disaggregation process, the matrix-vector multiplica-

tion in the MLFMA can be written as

N∑
n=1

Zmnan =
∑

C′∈N(C)

∑

n∈C′
Zmnan +

1

4π

∫
d2k̂F fmc(k) · F C

TD(k̂), (7.15)

where the testing function m resides in the lowest-level cluster C, while F C
TD(k̂)

represents the obtained function at the center of C after the translation and

disaggregation processes. The angular integration is evaluated numerically as

∫
d2k̂F fmc(k̂) · F m

TD(k̂) ≈
∑

i

∑
j

w(θi, φj)F fmc(θi, φj) · F C
TD(θi, φj), (7.16)

where w(θi, φj) represents the integration weights for the sampling rate of the

lowest level.

If the decimation operation is applied during the disaggregation, the function

F C
TD can be written in the recursive form as

F C
TD = F C

T + IPP̃ ·
(
βCP (C)F̃

P (C)

TD

)
, (7.17)

where F C
T represents the contribution from the translation at the lowest level,

while F̃
P (C)

TD is the inherited value from the parent by applying the shifting op-

erator βCP (C). The interpolation matrix IPP̃ is applied on the finer grid of the

parent function to obtain a coarser sampling. This process is different from the

interpolation in the aggregation process, where a finer grid is obtained from a

coarser grid. However, the rules do not change and the decimation operation can

be thought of as a kind of interpolation.
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Inserting (7.17) into (7.16), the numerical integration can be written as

∫
d2k̂F fmc(k̂) · F m

TD(k̂) ≈
∑

i

∑
j

w(θi, φj)F fmc(θi, φj) · F C
T (θi, φj)

+
∑

i

∑
j

w(θi, φj)F fmc(θi, φj) ·
[
IPP̃ ·

(
βCP (C)F̃

P (C)

TD

)]
(θi, φj).

(7.18)

It is obvious that the decimation method leads to the angular integration to be

done at the lowest sampling rate of the implementation.

Anterpolation

If the second part of the angular integration in (7.18) was evaluated in the finer

level, then the interpolation of F fmc would be required so that

∫
d2k̂F fmc(k̂) · F m

TD(k̂) ≈
∑

i

∑
j

w(θi, φj)F fmc(θi, φj) · F C
T (θi, φj)

+
∑

ĩ

∑

j̃

w̃(θĩ, φj̃)
[
I P̃P · F fmc

]
(θĩ, φj̃) · βCP (C)F̃

P (C)

TD (θĩ, φj̃), (7.19)

where w̃(θi, φj) represents the integration weights for the fine level. Although such

a change destroys the disaggregation process and does not seem to be practical,

the idea leads to the anterpolation method. Rearrangement of the interpolation

and the summations gives rise to new expression as

∫
d2k̂F fmc(k̂) · F m

TD(k̂) ≈
∑

i

∑
j

w(θi, φj)F fmc(θi, φj) · F C
T (θi, φj)

+
∑

i

∑
j

F fmc(θi, φi) ·
{

I
T

P̃P ·
[
w̃βCP (C)F̃

P (C)

TD

]}
(θi, φi), (7.20)

where I
T

P̃P is the transpose of the coarse-to-fine interpolation matrix. It should

be noted that the summations are performed with low-level indexing. However,

the accuracy of the angular integration is improved since the evaluation is based

on the finer grid of the higher level. The operation on the w̃βCP (C)F̃
P (C)

TD is gen-

erally called anterpolation. In this operation, fine-grid functions are multiplied
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by the transpose of the interpolation matrix and reduced to coarse-grid functions.

Figure 7.8 shows the interpolation, decimation, and anterpolation operations

applied on a one-dimensional function. As shown in 7.8(a), the interpolation

results in higher sampling of the function, which was previously on a coarse grid.

The anterpolation operation from coarse to fine grid can be derived directly from

the interpolation. The only difference is changing the directions of interpolation

arrows. It should be noted that the weights used in the interpolation are not

changed. Therefore, the resulting function after the anterpolation is completely

different from the applied function.
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(c) (d)

Figure 7.8: Operations on function samplings: (a) interpolation, (b) anterpola-
tion from coarse to fine grid, (c) decimation, and (d) anterpolation from fine to
coarse grid.

Decimation shown in 7.8(c) is actually a kind of interpolation applied on a fine

grid to obtain a coarser grid of the same function. The anterpolation operation
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from fine to coarse grid can be derived directly from decimation by simply chang-

ing the arrow directions. In the given example, it is obvious that this operation

changes the function completely, since the value of the resulting function appears

to be zero at the second and fourth points. The function may not be zero at

these points, where the coarse grid does not give any value.

In general, the operations in Figure 7.8 can be used in the numerical evalua-

tion of the integrals as ∫
dxf(x) · g(x) (7.21)

when the functions f(x) and g(x) have different number of samplings in the

integration interval. Let the function f(x) have a finer grid. Then, the following

methods can be used to evaluate the integral in (7.21):

1. Interpolate the function g(x) and evaluate the integration with high sam-

pling rate: ∫
dxf(x) · g(x) ≈

∑

ĩ

w̃(̃i)f̃ (̃i) · [I P̃P · g](̃i). (7.22)

2. Anterpolate the function f(x) and evaluate the integration with low sam-

pling rate. However, the accuracy will be the same as in the first method:

∫
dxf(x) · g(x) ≈

∑
i

w(i)g(i) · [IT

P̃P · f ](i). (7.23)

3. Decimate the function f(x) and evaluate the integration with low sampling

rate. The accuracy of the evaluation drops as compared to the first and

second methods:

∫
dxf(x) · g(x) ≈

∑
i

w(i)g(i) · [IPP̃ · f ](i). (7.24)

4. Anterpolate the function g(x) and evaluate the integration with high sam-

pling rate. This is the most inefficient method, which uses high sampling
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rate but has the same accuracy as the third method:

∫
dxf(x) · g(x) ≈

∑

ĩ

w̃(̃i)f̃ (̃i) · [IT

P P̃ · g](̃i). (7.25)

7.2 Clustering and Structure of the MLFMA

A simple clustering in the MLFMA can be accomplished by dividing the geome-

try into equal cubes at each level. First, the geometry to be solved is put into a

main cube as shown in Figure 7.9(a). Then, this main cube is divided into eight

subcubes. The process continues by dividing the each subcube again into eight

cubes, and the levels of the MLFMA are formed in this manner. At the end, the

cubes at the lowest level become so small that each contain only a few triangular

elements.

(a) (b)

Figure 7.9: Clustering with cubes in the MLFMA: (a) the main cube, (b) sub-
cubes of the main cube.

Forming the clustering by equal cubes makes it easier to determine the near-

field and far-field clusters for a given cluster. Generally, it is enough to include

the neighboring (touching) cubes in the near-field group, while the rest of the

cubes in the same level can be assigned to be in the far-field list. As shown in

146



Figure 7.10, the distance between two far-field clusters is 2a in the worst case,

where a is the edge length of the cubes. Then,

L ≈ kd + 1.8d
2/3
0 (kd)1/3 = ka

√
3

2
+ 1.8d

2/3
0

(
ka

√
3

2

)1/3

, (7.26)

which gives

ka > 1.8d0 (7.27)

to satisfy the criteria as L < krcc′ . It should be noted that the translation error

for given d0 is the largest for the smallest boxes in the lowest level. The rule of

thumb for the size of these boxes in the MLFMA is to choose a ≈ 0.25λ.

Near clusters (with MOM)

Far clusters (with FMM)

Worst case

2a
a

Figure 7.10: Near and far clusters in the clustering method with cubes. In the
worst case, the distance between two far-field clusters is 2a.

For an arbitrary geometry, some of the boxes in the cluster structure are empty,

which means that these clusters does not include any elements. Those boxes

should be marked at the beginning of the implementation to avoid unnecessary

work during the MLFMA.

For efficiency, the clustering should be represented by a tree structure as shown

in Figure 7.11, where the nonempty clusters are indicated. As also shown in the

figure, the highest level of the MLFMA is the third level of the tree structure.
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Level: 3
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Figure 7.11: Tree structure of the MLFMA.

This level has the greatest boxes, to which the FMM can be applied. Before the

computational analysis, following observations can be made on the MLFMA:

• At the lowest level, the number of nonempty clusters is O(N). There are

several basis and testing functions in these clusters.

• The value of kd for the clusters in the highest level is O(N1/2). The number

of these largest clusters is O(1).

• The radius of the clusters is doubled from a level to the next higher level.

• The number of levels is O(log N).

7.3 Computational Analysis of the MLFMA

The MLFMA can be analyzed in two steps: Aggregation/disaggregation and

translation.
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7.3.1 Computational Analysis of Aggregation and Disag-

gregation

Considering the lowest level, following observations can be made:

1. The radius of the clusters is O(1).

2. L ∝ (kd) and K = L2. Therefore, the number of harmonics in the transla-

tion function, L, as well as the number of angular samples for the radiation

of the clusters, K, are also O(1).

3. For O(N) clusters in the lowest level, O(N) FLOPs are required for the

aggregation. The memory requirement is also O(N) to store the aggregation

results at the centers of the clusters.

Considering the highest level, following observations can be made:

1. The radius of the clusters is O(N1/2).

2. L ∝ (kd) and K = L2. Therefore, K = O(N).

3. The number of clusters is O(1). Therefore, the aggregation process re-

quires O(N) FLOPs. The memory requirement is also O(N) to store the

aggregation results at the centers of the clusters.

Considering the levels between the highest and lowest ones, it can be observed

that the increase in the memory and processing time required by a cluster is

balanced by the decrease in the number of clusters. Therefore, the memory re-

quirement and processing time for the aggregation process appears to be O(N)

per level. There are O(log N) levels so that they become O(N log N) for the

overall aggregation.

In these calculations, the interpolation operation for a point is assumed to be
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done in O(1) processing time, and the Lagrange interpolation satisfies this re-

quirement. In addition, the disaggregation process is simply the reverse of the

aggregation process, so that its memory requirement and processing time are also

O(N log N).

It should be recalled that both aggregation and disaggregation steps are per-

formed at each iteration. Therefore, for the solution of a problem, the processing

time for these steps appears to be O(IN log N), where I is the number of itera-

tions.

7.3.2 Computational Analysis of Translation

Considering the lowest level, following observations can be made:

1. For each basis cluster, there are O(1) testing clusters for the translation

process.

2. For each basis cluster, data to be translated is O(1).

3. For O(N) clusters in the lowest level, O(N) FLOPs are required for the

translations.

Considering the highest level, following observations can be made:

1. For each basis cluster, there are again O(1) testing clusters for the transla-

tion process.

2. For each basis cluster, data to be translated is O(N).

3. For O(1) clusters in the highest level, O(N) FLOPs are required for the

translation.

In general, each level requires O(N) processing time to complete the transla-

tion. Then, the total processing time for the translation operation becomes
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O(N log N). This operation is also required to be done at each iteration.

On the other hand, the translation function has to be calculated and stored

before the iterative algorithm. For the clusters in the lowest level, K = O(1) and

L = O(1) so that the overall calculation requires O(N) processing time. However,

for the clusters in the highest level, K = O(N) and L = O(N1/2) so that the

overall calculation for O(1) clusters becomes O(N3/2). Then, the calculation of

the translation function for a problem appears to be O(N3/2) with the domina-

tion of the highest level. The memory required to store the translation function

is O(N log N), with O(N) required for each level.

At the end, the near-field interactions can be included. Considering the clusters

in the lowest level, the number of neighboring clusters is O(1) for each cluster. In

addition, all of these clusters have O(1) unknowns. Consequently, both memory

requirement and processing time to evaluate the near-field interactions becomes

O(N).

As a result, a MLFMA has a processing time as

Cagg/disIN log N + Ctrans1IN log N + Ctrans2N
3/2 + CnearN

= O(IN log N) + O(N3/2) (7.28)

while the memory requirement is

Cagg/disN log N + CtransN log N + CnearN = O(N log N). (7.29)

If the number of iterations has an order larger than O(N1/2/ log N), then the

contribution from the calculation of the translation function is not dominant in

the above expression. Otherwise, the computational cost of the calculation of

the translation function becomes dominant as the problem size gets larger. The

remedy is the interpolation of the translation function as given in [25]. By this
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way, it is guaranteed to get O(N log N) processing time per iteration. On the

other hand, it should be indicated that the constant term Ctrans2 is small and the

N3/2 term becomes significant only for very large problems.

7.4 Results

To check the accuracy and efficiency of the MLFMA, the sphere problems shown

in Figure 4.11 are solved by an implementation with the following properties:

1. The CFIE with α = 0.2 is used to formulate the problems. This choice was

known to be the best from Chapter 5.

2. Near-field interactions are evaluated by using adaptive methods for the

inner integrals with singularity extraction. The error criteria is chosen to

be 1%. The outer integrals are evaluated by a 7-point Gaussian quadrature

rule with the singularity extraction for the MFIE part. The first error

source of the implementation is these numerical integrations.

3. d0 is chosen to be 3 for the translations in the FMM. Translations are the

second error source of the implementation, while the angular integration is

the third one.

4. The size of the smallest boxes in the MLFMA structure is fixed to be

0.25λ. Since the size of the geometry is arbitrary, this setting requires

the adjustment in the size of the largest box before constructing the tree

structure.

5. For all interpolations, the number of interpolation points is fixed to 2 for all

directions (down, up, right, and left). This leads to 16-point local Lagrange

interpolations at every point. Interpolation is the fourth error source of the

implementation.
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7.4.1 Accuracy of the MLFMA Implementations

Figure 7.12 shows the RCS values on the x-y plane obtained by the MLFMA

when the spheres are illuminated by a y-polarized plane wave propagating in the

−x direction. The analytical results are also plotted to show the accuracy of the

implementation.

7.4.2 Efficiency of the MLFMA Implementations

In Tables 7.1 and 7.2, the processing time and memory requirements are given

for the two-level FMM and the MLFMA implementations. For the largest two

problems, the values are not available for the FMM implementation, since the

computational resources are not enough to solve these problems with this imple-

mentation. With these results, the higher efficiency of the MLFMA is obvious.

Table 7.1: Comparison of the processing times of the CFIE-FMM and the CFIE-
MLFMA implementations.

Radius of the Processing Time Processing Time
Sphere for the CFIE-FMM (sec) for CFIE-MLFMA (sec)
1.5 λ 1853 313
2.0 λ 3991 714
3.0 λ NA 1569
6.0 λ NA 7516

Table 7.2: Comparison of the memory requirements of the CFIE-FMM and the
CFIE-MLFMA implementations.

Radius of the Memory Requirement Memory Requirement
Sphere for the CFIE-FMM (MB) for the CFIE-MLFMA (MB)
1.5 λ 260 78
2.0 λ 511 152
3.0 λ NA 333
6.0 λ NA 1403
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Figure 7.12: RCS values obtained by the CFIE-MLFMA implementation for a
sphere having a radius of (a) 1.5 λ, (b) 2.0 λ, (c) 3.0 λ, and (d) 6.0 λ.
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Chapter 8

Conclusion

In this thesis, the fast multipole method (FMM) is investigated in detail for the so-

lution of scattering problems involving arbitrarily shaped three-dimensional con-

ducting surfaces. To form the basis for the FMM, the method of moments (MOM)

is presented with the formulation of three integral equations: the electric-field in-

tegral equation (EFIE), the magnetic-field integral equation (MFIE), and the

combined-field integral equation (CFIE).

To define the basis and testing functions in the MOM and FMM implementa-

tions, the models are meshed with linear triangular elements. At this stage, two

error sources are identified. One of them is the inexact modelling of the curved

surfaces with linear triangles, while the other one is the discrete approximation of

continuous unknown functions. Both of the errors can be controlled by adjusting

the size of the triangular elements.

Chapter 3 presents an overview on the MOM implementation using the EFIE

formulation and the Rao-Wilton-Glisson (RWG) functions to expand the current

density. An efficient implementation of the MOM requires the elimination of the

155



computational redundancies, singularity extraction, and parallelism in the eval-

uation of the integrals. The procedure becomes more difficult when the MFIE is

used since the singularity becomes stronger and the cross product increases the

number of basic integrals, each of which has to be evaluated independently. An

efficient implementation of the MOM using the MFIE formulation and the RWG

functions is given in [10]. On the other hand, an alternative implementation is

presented in Chapter 4, which is based on the procedure given for the EFIE in

Chapter 3.

An investigation on the limit values of the analytical integrals appearing in the

MFIE formulation is presented in Chapter 4. It is shown that the solid angle

expression in the MFIE can be derived in these evaluations. In addition, a singu-

larity extraction method is suggested for the unbounded integrand of the testing

integrals in the neighboring interactions of the MFIE. Numerical integration is

another error source introduced by the MOM. For the efficient evaluation of these

integrals, adaptive integration algorithms are presented in Chapter 3, which make

it possible to control the integration error.

Chapter 5 presents an overview on the FMM implementation using the EFIE for-

mulation and the RWG functions. As the problem size gets larger, the FMM be-

comes more efficient than the MOM. However, the expected efficiency of the FMM

is not guaranteed to be obtained. The EFIE systems are usually ill-conditioned,

especially when the problem involves a closed surface, and the iterative solution

of these systems becomes difficult. Chapter 6 shows that the EFIE may not

be used with efficient preconditioners, such as the diagonal and block-diagonal

preconditioners. Consequently, the ill-conditioned EFIE systems require large

preconditioners in order to keep the number of iterations reasonably low. The

use of these large preconditioners leads to significant increases in the processing
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time and memory requirements, and the efficiency of the FMM drops significantly.

The CFIE is known to give better-conditioned systems for the closed geome-

tries [4]. Consequently, it becomes possible to use more efficient preconditioners

and the efficiency of the FMM can be recovered. Chapter 6 presents a detailed

investigation on the efficiency of the FMM implementations, according to the

choices of the integral equation, iterative solver, and preconditioning technique.

It is shown that the increase in the number of iterations is very limited for the

CFIE, even with the block-diagonal preconditioners, for larger problems.

The FMM brings about two additional error sources: translation operations and

angular integrations. However, they can be controlled by adjusting the trunca-

tion number appropriately. Comparisons between the analytical and numerical

results for the sphere problems are presented in order to show the accuracy of

the implementations. The extension of the FMM is the MLFMA, which further

reduces the complexity and memory requirements but adds another controllable

error source: the interpolation and anterpolation operations between the levels.

With the MLFMA, it becomes possible to solve a sphere problem of 6λ radius and

132,000 unknowns with only about 1.4 GB of memory and about 7500 seconds

of processing time, using a single Digital Alpha processor. The accuracy of this

solution is shown to be sufficiently good.

The future work includes the parallelization of the MLFMA to solve larger electro-

magnetic scattering problems. In addition, the accuracy of the MFIE is currently

under investigation. When the objects become sharper, it is observed that the

accuracy of the MFIE drops, which also affects the accuracy of the CFIE im-

plementations. For this purpose, the use of other types of the basis functions is

being considered for the MFIE.
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Glossary

an: Coefficient of the nth basis function.

Ai: Area of the ith triangle.

bn(·): nth basis function.

B(·): Magnetic flux density.

D(·): Electric flux density.

E(·): Electric field intensity.

Einc(·): Incident electric field intensity.

Esca(·): Scattered electric field intensity.

F (·, ·): Vector current moment.

F fnc(·): Radiation pattern of the nth basis function from the point c.

F fmc(·): Receiving pattern of the mth testing function with respect to point c.

F C(·): Aggregated radiation at the center of the basis cluster C.

F C
T (·): Incoming wave at the center of the testing cluster C, after the translation

step.

F C
TD(·): Incoming wave at the center of the testing cluster C, after the transla-

tion and disaggregation steps.

F (C): Far-field clusters of the cluster C.

g(·, ·): Green’s function.

G(·, ·): Dyadic Green’s function.

G(C): Children clusters for the cluster C.

h
(1)
1 (·): Spherical Hankel function of the first kind.
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H : Magnetic field intensity.

H inc(·): Incident magnetic field intensity.

Hsca(·): Scattered magnetic field intensity.

I: Identity matrix.

I P̃P (·): Interpolation matrix (fine-to-coarse).

IPP̃ (·): Decimation matrix (coarse-to-fine).

I
T

P̃P (·): Anterpolation (transpose interpolation) matrix (coarse-to-fine).

jl(·): Spherical Bessel function.

J(·): Electric current density.

k: Wavenumber.

k̂: Angular unit vector.

K: Number of samples on the unit sphere.

L: Truncation number.

M : Preconditioner matrix.

n̂: Normal unit vector on the surface.

N : Number of unknowns.

N(C): Near-field clusters of the cluster C.

Pl(·): Legendre polynomial.

r: Observation point.

r0: Source point.

ri: Residual vector at ith iteration.

S: Surface.

t̂: Tangential unit vector on the surface.

tm(·): mth testing function.

TL(·, ·, ·): Translation function.

v: Excitation vector.

Z: Impedance matrix.

Zmn: Interaction between the mth testing and the nth basis functions.
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Zik,jl: Interaction between the ith and jth triangles, where the testing and basis

functions are aligned with respect to the kth and lth edges, respectively, of the

triangles.

α: CFIE constant.

δ(·): Dirac delta function.

δi(·): Shape function.

δij: Kronecker delta function.

η: Intrinsic impedance.

λ: Wavelength.

µ: Permeability.

ρ(·): Electric charge density.

ω: Angular frequency.

Ωi: Internal solid angle.

Ωo: External solid angle.
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