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ABSTRACT 

MODELING AND OPTIMIZATION OF CENTRAL RING 

TRANSPORTATION SYSTEM (CRTS) IN TURKISH LAND 

FORCES 

 

Hamdi Ünal Akmeşe 

M.S. in Industrial Engineering 

Advisor:Assoc. Prof. Osman Oğuz 

July 2003 

 

This thesis shows how Turkish Land Forces can optimally meet delivery and 

pick-up demands of its units via Central Ring Transportation System. A mixed 

integer programming model is proposed, and for the implementation of the 

model, mathematical modeling software GAMS is used. The model is 

implemented for three different fleet sizes of vehicles (4-vehicle, 5-vehicle, 6-

vehicle) with taking eight-week data of 2002 into account. How transportation 

costs are affected by the number of vehicles is investigated, and  an ideal number 

of vehicles and the optimal routes to be followed are proposed. 

 

Keywords : Mixed Integer Programming, Capacitated Vehicle Routing, Time 

Windows, Transportation Costs.  
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ÖZET 

KARA KUVVETLERİ MERKEZİ RİNG TAŞIMACILIĞI 

SİSTEMİNİN MODELLENMESİ VE OPTİMİZASYONU 

 

 

Hamdi Ünal Akmeşe 

Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. Osman Oğuz 

Temmuz 2003 

 

Bu çalışma Türk Kara Kuvvetlerinin kendi birliklerinin sevkiyat ve toplama 

taleplerini Merkezi Ring Taşımacılığı Sistemi vasıtası ile en uygun  olarak nasıl 

karşılayabileceğini göstermektedir. Bunun için tamsayılı programlama modeli 

önerilmiş ve bu modelin uygulanması için matematiksel modelleme yazılımı 

GAMS kullanılmıştır.  2002 yılına ait sekiz haftalık bilgier gözönüne alınarak, 

model üç farklı sayıdaki araç filoları (4-araç, 5-araç, 6-araç) için çalıştırılmıştır. 

Taşıma maliyetlerinin araç sayısına bağlı olarak nasıl etkilendiği sorusuna yanıt 

bulunmaya çalışılmış ve ideal araç sayisi ile bunlarin izleyeceği  ideal rotalar 

önerilmiştir. 

Anahtar Kelimeler : Tamsayılı Programlama, Kapasite Sınırlı Araç Güzergahı 

Bulma, Zaman Kısıtları, Taşıma Maliyetleri.  
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CHAPTER 1 

 

INTRODUCTION 

  

Turkish Land Forces have implemented many modifications in its structure to 

catch up with technological development in recent years. In the context of 

these modifications, Turkish Land Forces have started projects about logistics 

that plays an important role for the Land Forces to perform its duty written in 

the Constitution. Establishing a unit managing all logistic efforts was one of 

these projects started. For that purpose, Logistics Command was established in 

1988. 

  

Logistics, which stems from the word “logisticus” belonging to Medieval 

Latin, means “the planning and control of the flow of goods and materials 

through an organization”[19]. A logistic system can only be achieved on the 

basis of a functional, economical and effective transportation system. 

Transportation is a technical service, which arranges the movements and 

replacements of the units, personnel and items regarding to requirements of the 

management and control of the operations and logistics. For this purpose, 

Transportation Command was formed with the order of Logistics Command, 

which is in charge of logistics on behalf of Turkish Land Forces. It is the 

mission of Transportation Command to meet the transportation demands of the 

units of the Land Forces in time with economical and secure means. 

 

Transportation Command uses three modes of transportation to perform its 

task. These are Airway Transportation, Railway Transportation and Ring 

(Highway) Transportation. A modern transportation concept is based on the 

principle of delivering goods from an address to demanding address or picking 

up goods from demanding address to another address. Recently, Railway 

Transportation and Ring Transportation have been in preference among the 

transportation systems in Land Forces since they are more economical and 

secure.  
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Ring Transportation system is composed of Central Ring Transportation 

System (CRTS) and Regional Ring Transportation System (RRTS). CRTS 

satisfies transportation demands through Logistics Command’s depots, military 

factories and armies whereas RRTS meets transportation demands inside of 

Armies’ and Corps’ own responsibility areas. In order to run CRTS, a Mid-

Level Auto Transportation Battalion Command was formed in Yenikent, 

Ankara in 2001. On the other hand, RRTS is run locally by its own Light-Level 

Auto Transportation units of Army/Corps/Division/Brigade. 

 

1.1 CENTRAL RING TRANSPORTATION SYSTEM (CRTS) 

 

CRTS’s mission is to deliver items from Main Depot to points (units, depots, 

factories) and to pick up items from points to bring to Main Depot.  Delivering 

to points is called as Provision. The existing types of provision are explained in 

Section 1.1.1. Picking up depends on the demand points requiring those items 

in their own areas be sent to Main Repair Factories in Ankara through Main 

Depot, i.e., to send a defective machine, weapon and ammunition for repair. 

 

As mentioned above, CRTS is performed by Mid-Level Auto Transportation 

Battalion Command in Yenikent, where Main Depot of Logistics Command is 

also situated. Related to The Joint Support Concept of Land Forces; ordnance, 

signal, engineer and quartermaster corps are combined under one unit to 

provide cooperative purchase, sharing depot resources and combining 

transportation efforts. So, Main Depot was formed in Yenikent in addition to 

depots in Army/Corps regions. 

 

1.1.1 Provision Types of Land Forces 

 

There are mainly two types of provision in military. 

 

Pull System: Provision is provided when a demand occurs.  
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  demand 

  Units Depot 
 items 

 

Push System: Provision is provided periodically. Logistics Command makes 

plans to send items to the units periodically. There is no need for the units to 

make requests for items. 

  Units             items Depot 
  
 

In order to prevent system faults in both systems and to control the provision, 

Material Management System cooperating with Depot Managements in 

Logistics Command was established to manage all branches of items in Main 

Depot and other depots. 

 

1.1.2 The Current and The proposed CRTS 

 

In the current CRTS, five fixed routes are performed every week. The points 

representing the units, depots and factories on routes were selected by 

Transportation Command regarding size , importance, function and previous 

demands. All demands (pick-up/delivery) must be satisfied in three days 

following the vehicles’ departure.  

 

CRTS delivers to the points in two occasions. First, points can request any item 

from Main Depot at any time and inform Mid-Level Auto Transportation 

Battalion Command and Main Depot Management  (Pull System). Then, CRTS 

delivers to these points. Secondly, Points are delivered periodically. Main Depot 

knows when to deliver to  the points without being informed (Push System). The 

word “delivery demand” will stand for two occasions in the following parts of 

our study. The points having delivery demand can be named as Linehaul points. 

 

CRTS also picks up  items from the points. The points make “pick-up demand” 

when they have any item to send to Main Depot or to the factories in Ankara. 
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In the current system, points have a tendency not to inform Mid-Level Auto 

Transportation Battalion Command and Main Depot Management about their 

pick-up demands since points are sure to be visited. This effects vehicle 

utilization and creates problems in transportation. Figure 1.1 shows the current 

CRTS. The points having pick-up demand can be named as Backhaul points. 

 
 

 

 

   
             

 
 
 
 
 
 
  
                                                      
Figure 1.1 Routes of the Current System 

 
Each vehicle is assigned to a tour and then loaded in Main Depot after Mid-

Level Auto Transportation Battalion Command and Main Depot Management 

have gotten information of delivery demand quantities of the linehaul points on 

vehicles’ routes. The vehicle fleet  loaded with delivery demands come back to 

Garage with the load that they picked up from the backhaul points after 

completing the routes. 

 

As seen in Fig.1.1, one of the routes is a cycle and others are two-way trips on 

a route. Fifteen points included on the two-way routes are visited twice a week 

while six points included by the cyclic route are visited once. This application 

brings fixed travel distance and fixed cost for each week since five fixed routes 

are performed even if some points on the routes have zero demand. It is clear 

that this fixed travel distance (cost) includes unnecessary distance (cost) 

because of re-visiting some points and ignoring non-demanding points.  

 

Main Depot 
& 

Garage 
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Our aim is to develope a mathematical programming model to provide a better 

operational system for CRTS. In our mathematical model, only demand points 

are visited and these points are visited only once a route. To give an example, 

let us assume that fourteen points have demands (pick- up/delivery) and these 

points inform Mid-Level Auto Transportation Battalion Command and Main 

Depot Management about their demand quantities. The other characteristics of 

the problem (volume&weight quantities, time windows, vehicle capacities, 

speed, load/unload times) are explained in details in Chapter 3.We only aim to 

show the improvement in travel distance (cost) in this part. Table 1.1 shows 

these demanding (pick-up/delivery) points. 

 
 1 2 3 4 5 6 7 8 9 10 11 

Delivery +  +  + + + + +   

Pick-up +  +  + + + + +   

 
 12 13 14 15 16 17 18 19 20 21  

Delivery + + +  +   + + +  

Pick-up + + +  +   + + +  

Table 1.1 Demanding Points of  the Sample Problem 

 
Optimal solution of our Mixed-Integer Programming Model is shown in Figure 

1.2.The points in black are demanding points. To comply with the current 

system, we employed five vehicles. 

 
 

 
 

   
             

 
 
 
 
 
 
   
                                                                     
Figure 1.2 Routes of Sample Problem Solved by The proposed Model. 

Main Depot 
& 

Garage 
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Vehicle fleet visits only demanding customers and just once. This application 

enables us to get rid of unnecessary distance (cost). It can easily be seen that 

less than five vehicles are sufficient to meet the demand in the sample problem. 

So, instead of employing fleets of five vehicles every week, we can also 

determine the vehicle fleet size giving the optimal solution by considering the 

number of demanding points. 

 

In this thesis, our goal is to investigate how the total distance (cost) is affected 

when the proposed system for CRTS is employed. We have developed a 

mixed-integer programming model for solving this problem. The model 

determines which routes will be followed, and assigns demands (pick-

up/delivery) to vehicles. Its objective is to minimize distance and transportation 

costs. The model is solved for eight-week data for three cases. To compare the 

proposed system with the current system, the model is solved for a fleet of five 

vehicles in Case 1. In Case 2 and Case 3, the model is solved for fleets of four 

and six vehicles fleet, respectively. To determine the most suitable vehicle size 

to satisfy the demands of points belonging to these eight-week data, cases are 

compared according to the total distance and cost. 

  

Assumptions and details of the model are given in Chapter 3.  
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CHAPTER 2 
 
 

LITERATURE REVIEW 
 

 

In this chapter, we give a brief review of the literature on problem related to 

vehicle routing problem, starting with the traveling salesman problem (TSP) 

and its variations. 

 
2.1 The TSP and m-TSP 

 
The Traveling Salesman Problem (TSP) is one of the most widely studied 

combinatorial optimization problems. TSP has interested many mathematicians 

and computer scientists specifically, because it is so easy to describe and so 

difficult to solve. Its statement is deceptively simple and yet it remains one of the 

most challenging problems in Operational Research. Hundreds of articles have 

been written on TSP. The reader is directed to Lawler et al [41] and Burkard [9], 

for a comprehensive survey of major research studies up to now. 

The first use of the term “traveling salesman problem” in mathematical circles 

goes back to 1832. In that year, a book was printed in Germany entitled “Der 

Handlungsreisende, wie er sein soll und was er zu Thun hat, um Auftrage zu 

erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiss zu sein. Von 

einem alten Kommis-Voyageur“ (‘The Traveling Salesman , how he should be 

and what he should do to get Commissions and to be Successful in his Business. 

By a veteran Traveling Salesman’). Although devoted for the most part to other 

issues, the book reaches the essence of the TSP in its last chapter: ‘By a proper 

choice and scheduling of the tour, one can often gain so much time that we have 

to make some suggestion… The most important aspect is to cover as many 

locations as possible without visiting a location twice…’(Voigt, 59). We don’t 

know who brought the name TSP into mathematical circles, but there is no 

question that Merrill Flood [23] is most responsible for publicizing it within that 

community and the operations research fraternity as well. In 1948, Flood 
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popularized the TSP at the RAND Corporation, at least partly motivated by the 

purpose of creating intellectual challenges for models outside the theory of 

games. A prize was offered for a significant theorem bearing on TSP. 

Another reason for the popularity of the problem was its intimate connection 

with prominent topics in combinatorial problems arising in the new subject of 

linear programming. As mentioned before, the TSP was like those other 

problems, but apparently harder to solve, and the challenge became an intriguing 

issue.  

In its most basic form, TSP is the problem of finding the shortest route in a given 

graph which starts and ends at the same node, called the origin, with all the other 

nodes visited exactly once. 

A generalized version of the well-known TSP is the Multiple Traveling 

Salesman Problem (m-TSP). Furthermore, the characteristics of the m-TSP seem 

more appropriate for real life applications where there is a need for more than 

one salesman.  

2.1.1 Mathematical Formulation of the m-TSP 

The m-TSP is the problem of finding a set of routes for m salesmen, such that the 

total distance traveled or the cost is minimized. Consequently, in a feasible 

solution, there will be m distinct tours all containing the origin such that all the 

nodes are covered. 

Let G = (V, A) be a graph where { }  1, 2,......,V n=  is the set of nodes (vertices) 

and { }{ , }:  ,    ,  A i j i j V i j∈ ≠  is the set of edges, and let   C = ( ijc ) be a 

distance (cost) matrix associated with A. The m-TSP, then, is the problem of 

finding the minimum cost  circuits in G. (Circuit is a graph cycle (i.e., closed 

loop) through a graph that visits each node exactly once.) The distance (cost) 

matrix mentioned above can be of different types. It will be useful to distinguish 

between the cases where C is symmetric, i.e. when ij jic c=  for all ,   Vi j ∈ , and 
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the case where it is asymmetric, i.e. when ij jic c≠  for some ,   Vi j ∈ . C is said to 

satisfy the triangle inequality if and only if  for all , ,   ij jk ikc c c i j k V+ ≥ ∈ . This 

occurs in Euclidean Problems, i.e. when V is a set of points in R2 and ijc  is the 

straight-line distance   between j and i. 

The m-TSP is generally formulated as an integer linear program (ILP) based on 

the assignment model as follows. Let, 

1,if arc ( , ) is in the tour
0, otherwiseij

i j
x 

= 


 

ij
x is a 0-1 variable indicating whether or not a salesman goes directly  from node 

i  to city j.Then we would like to find ijx which are to become 1, i.e. finding the 

edges that salesman should go through, for the distance traveled or cost to be 

minimized. 

Miller, Tucker and Zemlin’s Formulation  

The first Integer Linear Programming formulation (ILP) for the m-TSP was 

given by Miller, Tucker and Zemlin (MTZ) [47]. In the formulation of MTZ, the 

salesman turns back to the origin, denoted by 0, t times. 

Minimize    
0 0,

n n

ij ij
i j i j

c x
= = ≠
∑ ∑  

Subject to 0
1

n

i
i

x t
=

=∑                                                                                  (2.1) 

                     
n

i=0

1,                     1, 2,...,   
ij

x j n i j= = ≠∑                           (2.2)     

                      
0

1,                    1, 2,...,    
n

ij
j

x i n j i
=

= = ≠∑                           (2.3) 
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                      1   1        
i j ij

u u px p i j n− + ≤ − ≤ ≠ ≤                             (2.4) 

                                          1,...,
i

u R i n∈ ∀ =  

                     { } 0,1                     ,
ij

x i j∈ ∀  

The constraint (2.1) forces the salesman to turn back to the origin exactly t times. 

The constraints (2.2) and (2.3) are the usual degree constraints of an assignment 

problem. They proposed constraint (2.4) by using extra variable in order to 

reduce the number of exponentially growing subtours, which do not include the 

origin. These constraints are generally called subtour elimination constraints 

(SEC). In constraint (2.4), p is the maximum number of nodes that a salesman is 

allowed to visit and ui are arbitrary real numbers. 

2.1.2 Solution Methods of m-TSP 

The TSP and m-TSP problems belong to the class of combinatorial optimization 

problems, known as NP-complete. Specifically; if one can find an efficient 

algorithm (i.e., an algorithm that will be guaranteed to find the optimal solution 

in a polynomial number of steps) for the TSP and m-TSP problems, then 

efficient algorithms could be found for all other problems in the NP-complete 

class. To date, however, no one has found a polynomial-time algorithm for the 

m-TSP. Exact methods to find an optimum solution require too much 

computation time, whereas heuristic approaches need much more less 

computational effort, but do not guarantee optimality.  

The solution methods found in the literature for the m-TSP can be discussed in 

three categories. These are exact solution methods including branch-and-bound 

approach, branch-and-cut approach and cutting plane algorithm, heuristics 

including extended TSP heuristics and neural networks, and transformations. 

Although m-TSP is an important extension of TSP there is not much work done 

on the problem. For a detailed review of these solution methods, the reader is 

directed to Bodin et al [6], Laporte [37] and Lawler et al [41].  
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2.1.2.1 Exact Solution Methods for   m-TSP 

A number of exact solution methods proposed for the m-TSP are based on 

Integer Linear Programs (ILPs) formulations and algorithms. The most 

promising exact methods seem to be branch-and-bound approach, branch-and-

cut approach and cutting plane algorithms. 

The branch-and-bound algorithm can formally be stated as relaxing some of the 

constraints initially and at each iteration either finding a different lower bound 

for the value of the optimal solution for the current subproblem or “fathoming” 

the current subproblem by showing that it does not contain a feasible solution. If 

the subproblem cannot be fathomed, it is further split into other subproblems 

containing the feasible solution of original problem. Svestka and Huckfelt [56] 

employed their formulation in a branch-and-bound framework developed by 

Bellmore and Malone [6] with a new set of SECs. Gavish and Srikanth [26] 

employed branch-and-bound algorithm to solve m-TSP by relaxing one of the 

constraints given below : 

Degree Constraints: ( They require each node to be visited only once )  

SEC: (They eliminate tours not including the origin ) 

Integrality Constraints: ( They force all variables in the optimal solution to be 

integer ) 

The algorithm basically starts with solving the associated assignment problem 

(AP). However the solution of the corresponding AP requires the augmentation 

of the original distance matrix. If there exists any subtours in the solution, a 

subset of subtour elimination constraints are introduced and the resulting AP is 

solved as an integer programming again. The procedure repeats itself until there 

are no subtours and the solution satisfies all the constraints of the ILP 

formulation. 

The cutting plane technique is based on relaxing the original problem and 

continuously tightening the lower bound by introducing extra cuts, thus getting a 
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relaxation value close to the optimal integer value. The most commonly used 

inequalities for cuts are SECs, comb inequality, clique tree inequality, path, 

crowns and ladder inequality. For detailed information the reader is directed to 

Jünger et al [32]. The first example of cutting plane method was due to Dantzig, 

Fulkerson and Johnson [15]. They proposed a method for solving TSP and 

showed the power of this method by solving 49-city TSP. Laporte and Nobert 

[39] introduce a cutting plane algorithm for the m-TSP similar that of Svestka 

and Huckfeld, without modifying the original distance matrix. The algorithm can 

be extended to have the number of salesman fixed or variable, or the objective 

function to include a fixed traveling cost. 

Branch-and-cut approach uses the cutting planes in a branch-and-bound scheme 

to obtain better relaxations. It means that for each partition of the solution set of 

LP relaxation, several cuts are added to the current formulation to tighten the 

problem. That is in bounding step, instead of solving one relaxation; a sequence 

of relaxation is solved each time adding an inequality that is violated by the 

current fractional solution. Various branch-and-cut techniques have been 

proposed for solving m-TSP. Some of these can be found in the papers of Hong 

in 1972, Miliotis in 1976, Padberg and Hong in 1980. Applegate et al [2] uses a 

new branch and cut type method to obtain a solution of 13,509-city instance. 

2.1.2.2 Heuristic Solution Methods for   m-TSP 

In order to obtain a “near-optimal” solution in a reasonable amount of time 

instead of finding the optimal solution in more expensive way, many heuristic 

solution techniques have been introduced for the TSP and m-TSP. Many 

heuristics developed for TSP are applied to m-TSP by transforming it to standard 

TSP. Heuristic solutions can be grouped in two. The First is Tour Construction 

Heuristics and the second is Tour Improvement Heuristics. 

2.1.2.2.1 Tour Construction Heuristics 
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These types of heuristics build an approximately optimal tour starting from the 

original distance matrix according to a construction procedure. The procedure 

stops without trying to improve it, once it has found a feasible solution. In the 

tour construction procedures the following three components serve as key 

ingredients: The choice of an initial tour, the selection criterion, the insertion 

criterion. 

Christofides [10] developed a construction heuristic on the base of spanning 

trees and minimum weight matching. Johnson and McGeoch [31] proved that 

this procedure has a computation time of O(n3). But later on, Reinelt [51] 

showed that computation time can be reduced to  O(n2). 

In Nearest Neighbor Heuristics, the simplest of all the heuristics, the procedure 

starts from an initial node arbitrarily and each step moves to the next nearest 

node, which was not visited yet. After all the nodes are visited, the tour is finally 

accomplished by linking the last visited node to the initial starting node. By 

considering all the n vertices as the starting point, the computation time of this 

procedure can grow up to O (n3) from O (n2)  (Laporte, 37). 

Insertion Algorithm starts with a small subset of nodes and enlarge this subset by 

inserting the nodes, which are not included in the subset. While inserting, the 

procedure uses insertion criterions. The computation time of this procedure can 

grow up to O(n3) from O(n.logn) depending on the insertion criterion        

(Laporte, 37). 

Another tour construction heuristic is The Savings Algorithm having derived 

from the vehicle routing algorithm proposed by  Clarke and Wright [13]. This 

heuristic will be explained in detail in Section 2.2.2. The computation time of 

this procedure is O (n2.logn), but the storage space for savings require a space of 

O (n2) Reinelt [51]. 

2.1.2.2.2 Tour Improvement Heuristics 
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Tour Improvement Heuristics try to improve a feasible tour by simple tour 

modifications after an initial tour is obtained by the use of tour construction 

heuristics. Tour improvement heuristics are performed according to a specified 

order of operations until a tour for which no operation yields a better tour is 

reached. These specified order of operations could be assumed as a local search 

method because better tours obtained are only local optimum tours. 

Lin [44] proposed the r-opt algorithm where r edges in a feasible tour are 

exchanged for r edges not in that optimal solution as long as the result remains a 

tour and the length of that tour is less than the length of the previous tour. An 

improvement to Lin’s r-opt algorithm is due to Lin and Kerninghan [45], where 

the value of r changes dynamically during the algorithm.  

Simulated Annealing Heuristics remove the disadvantage of r-opt algorithm, 

which can get stuck at local optima by moving from a given initial solution to a 

minimum –cost solution by changing the initial solution gradually. However, 

sometimes, the initial solution is substituted by the new solution although the 

new solution is more costly. This increases the probability of getting closer to the 

global optimum. Many authors have proposed the application of simulated 

annealing to the TSP.  Some of these are due to Rossier et al. [53] and Nahar et 

al. [49]. 

Tabu search heuristics are similar to the simulated annealing in the way of 

prevention from getting stuck at local optima. These kinds of heuristics have 

become popular for the last decades. The solutions which have already been 

examined are stored in ‘tabu list’ to prevent cycling. The tabu search has been 

applied to the TSP with numerous successful results. Some of these are due to 

Knox [34], Malek [46] and Fiechter [20]. 

Genetic algorithms (GA) have been recent approach to the combinatorial 

optimization type problems. GAs  are actually based on human genetics, trying 

to imitate the natural evolution scheme and known to find near-optimal solutions 

to highly complex problems. For the case of TSP, the chromosomes are used to 
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represent the tours are generally coded as the order of visited vertices or edges in 

the graph. Detailed discussions on the subject can be found in Grefenstette al 

[29]. 

2.1.2.3.Transformations to the TSP 

Third group for the solution methods of  m-TSP is the transformation of the 

problem to a single TSP. By transformation, m-TSP can be solved by any 

algorithm developed  for TSP.  Orloff [50], work of whose demonstrates that 

solving any m-TSP is equivalent to a TSP solution on a transformed graph.He  

transformed m vehicle General Routing Problem (m-GRP) into a single vehicle 

GRP on the same graph.  

Bellmore and Hong [4] showed that the asymmetric case of the m-TSP with m 

salesman and n nodes could be converted into a standard asymmetric TSP 

containing (n+m-1) nodes. Hong and Padberg [30] proposed a similar work to 

that of Bellmore and Hong where symmetric m-TSP with m salesman and n 

nodes is transformed into a standard symmetric TSP containing (n+m-4) , 

considering the fixed charges as well. 

2.2. VEHICLE ROUTING PROBLEMS (VRP) 

Vehicle Routing, which is called “one of the great success stories of operations 

research in the last decade”, is distinguished by a highly successful interplay 

between algorithmic techniques and the development of effective routing 

systems for industry. On the one hand, operations researchers with academic 

affiliations have gone beyond the design and development of algorithms to play 

an important role in the implementation of routing systems. On the other hand, 

developments in computer hardware and software and their growing integration 

into operational activities of commercial concerns have created a high degree of 

awareness of potential benefits of vehicle routing. The interested reader may 

consult a number of useful surveys of the field including Golden and Assad [28], 

Bodin et al [6], Bott and Ballaou [7],Christofides [11]. 
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The Vehicle Routing Problem (VRP) is a distribution problem in which   a set of 

customers with known locations and requirements for some commodity is to be 

supplied from a single depot using a set of delivery vehicles each with a 

prescribed capacity. From a graph theoretical point of view the VRP may be 

stated as follows: Let G (V, A) be a complete graph with node set { }0,1,...,V n=  

and arc set { }( , ) :  ,    ,  A i j i j V i j∈ ≠ . In this graph model, node “0” is the 

depot and the other nodes are the customers to be served. Each node except from 

the depot is associated with known demands di. For every arc, there is an 

associated cost cij, ( )i j≠ , representing the travel cost (distance, time) between 

nodes i and j. There are m identical vehicles based at the depot, having same 

capacity Q. The VRP consists of designing a set of least-cost vehicles in such a 

way that each node excep the depot is visited exactly once by exactly one vehicle 

to satisfy its demand; all vehicle routes start and end at the depot, vehicle 

capacities are not exceeded and some other side constraints are satisfied. 

The VRP can have different aspects that form the characteristics of the problem. 

Some of these are: Nature of demand (pure pick-ups or pure deliveries, pick-ups 

or deliveries with backhaul option, single or multiple commodities, priorities for 

customers), information on demand (known in advance, changeable by time), 

vehicle fleet (fixed or variable fleet size, one or more than one) homogeneous 

fleet or multiple vehicle types), depot (single or multiple), scheduling 

requirements (time windows for pick-up/delivery (soft, hard), load/unload 

times). 

2.2.1 Mathematical Formulations of VRP 

Most of the VRP problems with underlying characteristics listed above are well 

defined mathematically, and they are extremely difficult in NP-hard class. This 

difficulty in the problem induced researchers to develop heuristic solution 

procedures in addition to optimization algorithms. We present general models 

where a set of customers is served by m non-identical vehicles based at a depot 

with a set of routes whose total distance (travel cost) is minimized for 
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Capacitated Vehicle Routing Problem  (CVRP), Vehicle Routing Problem with 

Backhaul (VRPB) and Vehicle Routing Problem with time windows (VRPTW). 

Dantzig and Ramser Formulation 

Dantzig and Ramser (DR) [14], who proposed a formulation for single depot 

VRP with vehicle with capacity and maximum cost (time or distance) 

constraints, considered the VRP for the first time in the literature. The 

formulation is given as follows: 

Minimize 
1 1 1

N N N

ij ijk
i j k

c x
= = =

∑∑∑  

Subject to 
1 1

1,                    1,2,..., 1     
N N

ijk
i k

x j N
= =

= = −∑∑                    (2.20) 

                 
1 1

1,                     1, 2,..., 1   
N N

ijk
j k

x i N
= =

= = −∑∑                      (2.21) 

                 
1 1

0,   1,2,..., ,  1, 2,...,  
N N

ihk hjk
i j

x x k V h N
= =

− = = =∑ ∑              (2.22) 

                 
1 1

               1, 2,...,    
N N

i ijk k
i j

Q x P k V
= =

≤ =∑ ∑                           (2.23) 

                 
1 1

                1, 2,...,    
N N

ij ijk k
i j

c x T k V
= =

≤ =∑∑                          (2.24) 

                 
1

1

 1                        1, 2,...,     
N

Njk
j

x k V
−

=

≤ =∑                          (2.25) 

                 
1

1

 1                        1, 2,...,            
N

iNk
j

x k V
−

=

≤ =∑                   (2.26) 

                 { }0,1                          , ,
ijk

x i j k∈ ∀  
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1        1 1 

                                           1        
i j ijk

y y Nx N i j N

k V

− + ≤ − ≤ ≠ ≤ −

≤ ≤
                     (2.27)  

                         

In the formulation, V vehicles, say {1,…,V ) based at a depot (node N) with 

capacities Pk  respectively visit the customers whose demands are Qi .Tk stands 

for maximum cost allowed for a route of vehicle k. xijh is 0-1 variable and xijk=1 

if pair i,j is in the route of  vehicle k , 0 otherwise. Constraints (2.20) and (2.21) 

are usual assignment constraints. Route continuity is represented by constraint 

(2.22). Constraint (2.23) represents the vehicle capacity constraints. Constraint 

(2.24) represent the total route constraint. Constraints (2.25) and (2.26) make 

certain that vehicle availability is not exceeded. Finally constraint (2.27) is SEC. 

In this model, it has been assumed that whenever a customer is serviced, his 

requirements are satisfied. 

Desrochers, Savelsberg, Lenstra and Soumis Formulation  

Minimize 
( , )

ij ij
i j A

c x
∈

∑  

Subject to  1,                          for       
ij

j N

x i N
∈

= ∈∑                              (2.28) 

                 0,            for              
ij ji

j N j N

x x i N
∈ ∈

− = ∈∑ ∑                        (2.29) 

                                        for ( , )   
i ij j

D t D i j I+ ≤ ∈                             (2.30) 

                                         for   
i i i

e D l i N≤ ≤ ∈                                    (2.31) 

                                        for ( , )     
i ij j

y q y i j I+ ≤ ∈                            (2.32) 

                 0                         for    
i

y Q i N≤ ≤ ∈                                    (2.33) 

                 { }0,1           
ij

x ∈                ,i j∀  
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In the formulation of Desrochers, Savelsberg, Lenstra and Soumis [16] for 

VRPTW, xij is a 0-1 variable and xij =1 if a vehicle visits customer j immediately 

after customer i, and 0 otherwise. Q stands for the capacity of the vehicle, cij 

represents the travel cost between customers i and j .tij is the travel time between 

customer i and j. For each customer, there is a demand qi and time window [ei,li]  

which identifies the earliest and latest  time to be visited , respectively.  We note 

that the number of vehicles is  not bounded in the formulation. 

Constraints (2.28) and (2.29) are usual assignment constraints. Constraints (2.30) 

and (2.31) guarantee feasibility of the schedule and constraints (2.32) and (2.33) 

ensure feasibility of the loads. 

Toth and Vigo Formulation 

Toth and Vigo [58] proposed an integer linear programming model for VRPB in 

asymmetric distance matrix. They grouped the vertices as Linehaul (L) and 

Backhaul (B). Let Λ (respectively Β) be the family of all subsets of vertices in L 

(respectively B), and let Φ=Λ ∪ Β. For each S∈Φ, let σ (S) be the minimum 

number of vehicles needed to serve all the costumers in S. For each i, 

{ } { }+ -
i i

Γ : ( , )   and Γ : ( , )j i j A j j i A= ∈ = ∈  where A is the arc set. In the 

formulation K is the number of vehicles and depot is node 0. 

Minimize 
( , )

ij ij
i j A

c x
∈

∑ ∑  

Subject  to 1                   
j

ij
i

x j V
−∈Γ

= ∈∑                                                    (2.34) 

                 1                 
i

ij
i

x i V
+∈Γ

= ∈∑                                                      (2.35)  

                 
0

0i
i

x K
−∈Γ

=∑                                                                            (2.36) 
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0

0  j
j

x K
+∈Γ

=∑                                                                           (2.37) 

                 
\

( )            
j

ij
j S i S

x Sσ
−∈ ∈Γ

≥∑ ∑                                                    (2.38) 

                 
\

( )       
i

ij
j S i S

x Sσ
+∈ ∈Γ

≥∑ ∑                                                          (2.39) 

                 { } 0,1                  ,ijx i j∈ ∀  

Constraints (2.34), (2.36) and (2.35),(2.37) impose indegree  and outdegree 

constraints for the customer and the depot vertices, respectively. Constraints 

(2.38) and (2.39) impose both connectivity and the capacity constraints. 

Kulkarni and Bhave Formulation 

A simple formulation based on that of DR was proposed by Kulkarni and Bhave 

[36]. In the formulation L is the maximum number of nodes which a vehicle can 

visit and Qi is the demand of node i. If P  is the capacity of all the vehicles and T 

is the maximum cost allowed for a route for the vehicle,  then for a single depot 

VRP formulation is as follows:  

Minimize 
1 1

N N

ij ij
i j

c x
= =
∑∑  

Subject to
1

1,                            1, 2,..., 1          
N

ij
i

x j N
=

= = −∑                  (2.40) 

                
1
 1,                          1, 2,..., 1      

N

ijk
j

x i N
=

= = −∑                       (2.41) 

                
1

 ,    
N

Nj
j

x V
=

≤∑                                                                           (2.42) 

                 
1

 ,   
N

iN
i

x V
=

≤∑                                                                         (2.43) 
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                 { }0,1                             ,
ij

x i j∈ ∀                                         

                1           1 1  
i j ij

y y Lx L i j N− + ≤ − ≤ ≠ ≤ −                        (2.44) 

                         1 1 
i j ij i

u u Px P Q i j N− + ≤ − ≤ ≠ ≤ −                         (2.45) 

                 1           1 1 
i j ij

v v Tx T i j N− + ≤ − ≤ ≠ ≤ −                         (2.46) 

In the above formulation, constraints (2.40)-(2.43) ensure that each node is being 

served only once and that all the V vehicles are being used. Constraints (2.44)-

(2.46) are the subtour breaking constraints, which also represent the node 

constraints, capacity constraints and cost constraints respectively. In words these 

equations ensure that all the tours are starting and ending at the Depot N and 

further every route serves at the most L nodes and the load and the cost on every 

route are less than or equal to the vehicle capacity P and the maximum allowable 

cost T respectively. 

But, later Achuthan and Caccetta [1] proved that formulation above fails since 

constraints (2.46) do not ensure that the maximum allowable cost for a vehicle 

tour is at most T. They redefined constraints (2.46) as: 

( )                                                                              
i j ij ij

v v c T x T− + + ≤                    (2.47)  

In 1988, Brodie and Waters [8] redefined constraints (2.39) in Kulkarni and 

Bhave Formulation as: 

                                   
i j ij ij

v v T x T c− + ≤ −                                         (2.48) 

 

2.2.2 Solutions Methods of VRP 

Almost all problems of vehicle routing are NP-hard. (Lenstra&Rinnoy Kan 43). 

Computational complexity theory has provided strong evidence that any 
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optimization algorithm for their solution is likely to perform very poorly on 

some occasions which means that its worst case running time is likely to grow 

exponentially with problem size. The solution methods of VRP may be classified 

as exact algorithms and heuristic algorithms. 

2.2.2.1 Exact Algorithms for VRP 

The usual solution methods in integer programming and combinatorial 

optimization are applied in the design of exact solution algorithms to the VRP. 

Exact methods are based on the formulations that were given before. Exact 

algorithms for the VRP can be classified into three broad categories:  direct tree 

search methods, dynamic programming and integer linear programming. 

Laporte,Mercure and Nobert [40] proposed an algorithm by exploiting the 

relationship between the VRP and one of its relaxation, the m-TSP. Given an 

upper bound mu on m, the m-TSP can be transformed into a 1-TSP.(Lenstra and 

Rinnooy Kan 42). Then, the problem  is solved through a branch-and-bound 

process in which subproblems are assignment problems. Using this 

methodology, Laporte, Mercure and Nobert [40] have solved to optimality 

randomly generated asymmetrical CVRP involving up to 260 vertices by 

partitioning the current infeasible subproblem. 

Christofides, Mingozzi and Toth [12] have developed an algorithm for 

symmetrical VRPs. It is based on the k-degree center tree relaxation of the m-

TSP where m is fixed. In any feasible solution the set E of edges are partitioned 

into   four subsets which are (i) edges not belonging to the solution, (ii) edges 

forming k-degree tree center, (iii) y edges incident of vertex 1,which is depot, 

(iiii) m-y edges not incident to vertex 1. The core of the algorithm is to embed 

the lower bound on the solution in a branch-and-bound scheme. They have 

successfully solved VRPs ranging in size from 10 to 25 vertices. 

Kolen, Rinnooy Kan and Trienekens [35] extended the state space relaxation 

presented by Christofides, Mingozzi and Toth. This state space relaxation  is 
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based in a mapping from the original state space to a space of smaller cardinality. 

Kolen, Rinnooy Kan and Trienekens used a two-level state space relaxation for 

VRPTW. At the first level, a lower bound on the costs of a time-constrained path 

from the depot to vertex j with load q is computed. The states are of the form 

(t,q,j), where q is the load of a shortest path arriving at vertex j no later than time 

t. at the second level , a lower bound on the costs of m routes with total load 

i
i N

q
∈
∑ and different destination vertices is computed. The states are of the form 

(k,q,j), where q is the total load of the first k routes and j is the destination vertex 

of route k. Problems with up to fifteen customers are solved. 

Fisher [21] proposed an algorithm using minimum k-trees. Given a graph with 

n+1 nodes a K-tree is defined to be a set of n+K edges that span the graph. He 

showed that the vehicle routing problem could be modeled as the problem of 

finding a minimum cost K-tree with K edges incident on the depot and subject to 

some side constraints that impose vehicle capacity and the requirement that each 

customer be visited exactly once. The side constraints are dualized to obtain a 

Lagrangian problem that provides lower bounds in a branch-and-bound 

algorithm. This algorithm has produced proven optimal solutions for a number 

of difficult problems, including a well-known problem with 100 customers and 

several real problems with 25-71 customers. 

Eilon, Watson-Gandy and Christofides [18] were the pioneers to propose 

dynamic programming for VRP with a fixed number of m vehicles. Let c (S) 

denote the cost (length) of a vehicle route through vertex1 –the depot-and all 

vertices of a subset S of { }\ 1V . Let fk(U) be the minimum cost achievable using 

k vehicles  and delivering to subset U of { }\ 1V . Then the minimum cost can be 

determined through the following recursion:  

   fk(U) = 
{ }*

* *
1   \ 1

( )                                                        ( 1)
    min  ( \ ) ( )         ( 1)

kU U V

c U k

f U U c U k
−⊂ ⊆

=
  + > 

            (2.49) 
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The solution cost is equal to fm ( { }\ 1V ) and the optimal solution corresponds to 

the optimizing subsets U* in (2.49) 

Balinski and Quandt [3] were among the first to propose a set partitioning 

formulation for VRPs. Consider J, the set of all feasible routes j and aij be a 

binary coefficient equal to 1 if and only if vertex i > 1 appears on route j. Let cj
* 

be the optimal cost of route j and xj , binary variable equal to 1 if and only if 

route j is used in the optimal solution. The problem can then be formulated as 

follows: 

Minimize *
j j

j J

c x
∈
∑  

Subject to { }1        ( \ 1 )
ij j

j J

a x i V
∈

= ∈∑                                                  (2.50) 

                 { }0,1    
j

x ∈      ( )j J∈  

 

There is at least one exact procedure for VRPB developed by Yano et al [60]. 

This procedure uses set covering to find an optimal set of routes. Each route can 

at most have four points. All such routes are generated ant the optimal route 

sequencing is found by complete enumeration. 

Mingozzi, Giorgi and Baldacci [48] described a procedure for VRPB that 

computes a valid lower bound to the optimal solution cost by combining 

different heuristic methods for solving the dual of the  LP-relaxation of the exact 

formulation. 

In the Toth and Vigo’s [60] new integer linear programming model mentioned in 

Chapter 2.2.1, a Lagrangian lower bound, which is strengthened in a cutting 

plane fashion for VRPB in symmetric and asymmetric versions is proposed. The 

model is used to derive a Langrangian lower bound, based on projection of the 
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shortest spanning arborescence with fixed degree at the depot vertex and the 

optimal solution of min-cost flow problems. 

 Desrosiers, Soumis and Desrochers [17] apply branching on flow variables 

when time windows are very tight for VRPTW. They solved problems up o 150 

customers. Sörensen [54] suggests the use of Lagrangean decomposition for 

VRPTW. The two resulting sub problems are the shortest path problem with 

time window and the generalized assignment problem. But no computational 

results were reported. 

2.2.2.2.Heuristic Algorithms for VRP 

Heuristic algorithms for the VRP can often be derived from procedures derived 

from the TSP.(Laporte,38). Several families of heuristics proposed for the VRP 

can be classified into two main classes: classical heuristics developed mostly 

between 1960 and 1990, and metaheuristics whose growth has occurred in the 

last decade. Most standard construction and improvement procedures in use 

today belong to the first class. These classical heuristics performs in limited 

exploration of search space. Nevertheless, they can produce good solutions. In 

metaheuristics, a deep exploration of search space is performed. Combining 

neighborhood search rules, memory structures, are effective in metaheuristics. 

They can produce higher quality solutions than classical heuristic can. But, it is 

clear that the price to pay is increased computing time. 

Clarke and Wright’s saving algorithm [13] was first proposed in 1964 to solve 

CVRP which has unlimited number of vehicles. The method is based on to 

merge two routes according to the largest savings that can be generated. The 

savings 
1 1ij i j ij

s c c c= + −  for  , 2,...,i j n=  and  n-1  vehicle routes are created. 

The savings are ordered in a non-increasing way. Then, routes are merged as in 

the following example. Let two vehicle routes contain (i,1) and (1,j) 

,respectively. If sij > 0 these two routes are merged by introducing arc (i,j) and 

deleting arcs (i,1) and (1,j). The merge is implemented if the resulting node is 
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feasible.  The procedure is repeated until no improvement is possible. This 

procedure has O(n2log n ) operation time.  

One of the classical approaches of the VRP is Fisher and Jaikumar [22] 

algorithm, which is also named in cluster-first, route-second algorithms. These 

kinds of algorithms solve a Generalized Assignment Problem (GAP) in order to 

form the clusters instead of using a geometric method. The Fisher and Jaikumar 

algorithm includes the following step. 

• Choose seed points 
k

j in V to initialize   each cluster k. (seed selection)  

• Compute the cost 
ik

d  of allocating each customer i to each cluster k  

as { }0 0 0 0 0 0min  ( ).,  
k k kk k k kij ij j ii j j i j jd c c c c c c c c+ −= + + + +  

(allocation) 

• Solve a GAP with costs dij , customer weights qi and vehicle capacity Q. 

(generalized assignment) 

• Solve a TSP for each cluster corresponding to the GAP solution.(TSP 

solution) 

In the algorithm, the number of vehicle routes m is fixed and relating to the 

customer weights the plane is parted into m cones. The seed points are dummy 

customers located along the rays bisecting the cones. After having determined 

the clusters, the algorithm solves the TSPs optimally using a constraint 

relaxation based approach. 

The last group of classical heuristics is improvement heuristics. Improvement 

heuristics for VRP are performed on each seperate vehicle route or on several 

routes at a time. Most improvement procedures for TSP are based on r-opt 

algorithm Lin-Kernighan. As explained before, r edges in a feasible tour are 

exchanged for r edges not in that optimal solution as long as the result remains a 

tour and the length of that tour is less than the length of the previous tour. 
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Thompson and Psaraftis [57] and Kindervater and Savelsbergh [33] propose 

descriptions of multi-route exchanges for the VRP.In these papers tours are not 

considered in isolation. Paths and customers are exchanged between different 

tours until no further improvements can be obtained. Figure 2.1, Figure 2.2 and 

Figure 2.3 show the Crossover, Customer Relocation and Customer Exchange 

operations, respectively. 

 

     

 

Figure 2.1 Crossover 

 

     

 

Figure 2.2 Customer Relocation 

 

     

 

                                            Figure 2.3 Customer Exchange 

One group of the metaheuristics is tabu search heuristics. It starts form an initial 

solution 
1

x  and moves at each iteration t from 
t

x  to its best neighbour 
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x
+

, until 

a stopping criteria ‘s satisfied. To avoid cycling, solutions that were recently 

examined are forbidden, or tabu. In order to reduce time and  memory 

requirements, it is generally accepted to record an attribute of tabu solutions 
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rather than solutions themselves. Rochat and Taillard [52] proposed Tabu search 

with set-partition based heuristic where an adaptive memory is kept as a pool of 

good solutions. 

Gendreau, Hertz and Laporte [27] present a GENI procedure related to the tabu. 

When applied to classical VRPs described in the literature, the proposed 

heuristic may be one of the best ever developed for the VRP regarding the results 

they found. 

 A new metaheuristic   approach inspired by foraging behavior of real colonies of 

ants is Ant Colony Optimization (ACO). The basic ACO idea is that a large 

number of simple artificial agents are able to build good solutions to hard 

combinatorial optimization problems via low-level based communications. Real 

ants cooperate in their search for food by depositing chemical traces on the floor. 

An artificial ant colony simulates this behavior. Artificial ants cooperate by 

using a common memory that corresponds to the pheromone deposited by real 

ants. This artificial pheromone is one of the most important components of ant 

colony optimization and is used for constructing new solutions. Gambardella, 

Taillard and Agazzi [24] used ant colony system to solve VRP. In their paper, 

VRP is transformed into a TSP by adding m-1 new depots A sample is picturized 

in Figure 2.4 Ants are used to compute complete feasible tours. Local search that 

exchange paths and customers is executed. 

 

 

                             d2             d3 

                             

                                        d1                                     d0 

                                   

                    Figure 2.4 Transformation to Four Depots 
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CHAPTER 3 
 

ANALYSIS OF THE PROBLEM 

and 

MATHEMATICAL FORMULATION 
 

 

In this thesis, our objective is to develop and solve a model that determines the 

optimal routes, which vehicle fleet will follow and provides a method for 

assigning demands (pick-up/delivery) to vehicles. Best fleet size will be 

determined by comparing the optimal solutions for alternative sizes. 

  

It is the aim of the Ring Services System to deliver items to points and to pick 

up items from points within three days if there is a demand (pick-up/delivery). 

The fleet is loaded regarding to points’ demands in the Main Depot, where all 

kind of items is stored. After having performed the routes, the fleet loaded with 

pick-ups comes back to the Garage, which is near the Main Depot.  

 

This process is repeated every week.  As explained in Section 1.1, five fixed 

routes are performed in the current system regardless of demands (pick-

up/delivery). Although a point doesn’t have any demand (pick-up/delivery), 

one vehicle of the fleet must visit this point anyway, according to the current 

system. So, the fleet makes a lot of unnecessary mileage. For each week, 

Transportation Command has a fixed distance and cost of these five fixed 

routes.  Provided that Transportation Command knows in advance which of the 

points have demands (pick-up/deliver), the fleet visits only these points and can 

do away with the unproductive mileage. It is clear that the fixed cost for each 

week will be reduced by this method. 

 

3.1. DATA FILE 

 

Mid-Level Auto Transportation Battalion Command, which is responsible for 

performing Central Ring Transportation System (CRTS) as a subordinate unit 
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of Transportation Command, has a very detailed documentation of past years. 

Since the CRTS started to be employed in 2001, Mid-Level Auto 

Transportation Battalion Command has filed the information for all weeks, i.e., 

weights and volumes they delivered and picked up, types of vehicles 

performing the routes. We used an eight-week data belonging to 2002. 

 

3.1.1. Main Depot and Garage 

 

Logistic Command wants to keep its safety stocks only in Main Depot. This 

depot is large enough to store Ordnance, Signals, Quartermaster and Engineers 

Corps items. Although ordnance, signal and engineers corps have their own 

depots as fourth level depots in the Corps region, provision except for fourth 

level is provided from Main Depot.  There exists a strong communication 

network including Material Management Centers established to arrange each of 

the branches in Logistic Command, points, Mid-Level Auto Transportation 

Battalion Command and Main Depot management.  Garage is located in Mid-

Level Auto Transportation Battalion near Main Depot. A large number of 

trucks with different capacities are available here. 

 

3.1.2. Points 

 

The military units, factories and depots are situated throughout the country. 

Nearly, in all of the cities in the country a military unit or a factory or a depot 

is located. But regarding size, importance and function of those, twenty-one 

points were selected for demand (pick-up/ delivery) points. The demands 

(pick-up/ delivery) of military units, factories and depots out of these twenty-

one points are provided by the Regional Ring Transportation System (RRTS). 

This issue is not related to our study. The shortest distance table is shown in 

Appendix A, page  65. 
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3.1.3.Vehicles 

 

Mid-Level  Auto Transportation Battalion Command has a vehicle fleet   in 

different capacities  and characteristics to perform  its task. We used the same  

fleet of five vehicles (Case 1) as in the routes performed in eight-week data of 

2002. When solving the model for fleet of four vehicles (Case 2), we  excluded 

the Type 5 and used the first four types of vehicles, while one more Type 1 

vehicle is added to fleet  when fleet of six vehicles are employed (Case 3). 

Capacities of vehicles are shown in Table 3.1 

 

 TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5 
WEIGHT 
(1000KG) 35 23 16 20 25 

VOLUME 
(M3) 55 46 53 40 54 

 

Table 3.1. Capacities of Vehicles  

 

Since vehicles can be refueled on their way whenever they need, it doesn’t 

make sense to consider how long a vehicle can travel with a full depot.  

 

3.1.4. Items 

 

All kind of items related to ordnance, signal, quartermaster and engineer corps 

are delivered and picked up with these vehicles. The volumes and weights of 

the items are important in the view of volume and weight capacity of vehicles. 

In the documentation belonging to 2002, although we know the volumes and 

weights of the items, we cannot get any information about contribution of 

specific items to these volumes and weights. Properties (volume and weight) of 

the items demanded (picked up/delivered) are shown in the Appendix A, pages 

57-64. 
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3.2 ASSUMPTIONS 

 

In order to simplify the problem and make it solvable, we make some 

assumptions. These are: 

 

3.2.1. All demands (pick-up/delivery) must be satisfied 

 

We assume that the Main Depot must meet all demands (pick-up/delivery). For 

delivery, it is not true in reality. Vendors and military factories supply Main 

Depot and Main Depot supplies the points. Main Depot may not provide every 

item whenever needed. As mentioned in Chapter 1, Land Forces have two 

types of Provision, i.e., Pull System and Push System.  In real life, the situation 

that demands (delivery) are not satisfied may occur in Pull System, since the 

points may demand an item from Main Depot at any time when Main Depot 

does not have this item. However, because Provision is provided periodically 

in Push System, the probability that demands (delivery) are not satisfied in 

Push System is less than the Pull system. There is a schedule determining when 

and how much to provide units in the Push System. Items are stored in Main 

Depot according to this schedule and all demands (delivery) are satisfied in 

Push System. But in our study, we do not consider the type of Provision.  It is 

assumed that all demands (delivery) are satisfied. Pick-up demands are 

independent of the type of Provision.  All points can have pick-up demands 

whenever they have any item to send to Main Depot or factories in Ankara..  

 

3.2.2. Demands (pick-up/delivery) are fixed and known in advance 

 

For delivery, in Pull System, points inform Main Depot Management, Material 

Management Centers, Mid-Level Auto  Transportation Battalion Command 

about their demands (delivery). In Push System, the same trio knows how much 

to deliver to points according to schedule. For pick-up demands, points inform 

Main Depot Management, Material Management Centers, Mid-Level Auto 
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Transportation Battalion Command about the quantities of items to be sent to 

Main Depot. 

 

3.2.3.The load/unload times are fixed and known in advance. 

 

Time to load/unload the vehicle in the points is known in advance. In real life, 

weather conditions, the number of personnel in loading/unloading points and 

disorders in loading/unloading machines may affect the length of the time.  

 

3.2.4.Time windows are fixed and known in advance. 

 

Each point has time intervals, i.e., earliest and latest time to be visited. Earliest 

time of the points are not important but all the points demanding (pick-up/ 

delivery) must be visited within three days following the vehicles’ departure. 

The fleets leave the Main Depot on Mondays and all the points on the routes 

must be visited by Thursday.  

 

3.2.5. Vehicle speed is fixed and known in advance. 

 

Each vehicle’s speed is fixed with 70 km/h during the travel. In spite of the fact 

that vehicles use freeways, vehicles cannot exceed the speed limit for a secure 

trip. 

 

3.2.6.The number of vehicles is fixed and known in advance. 

 

The number of vehicles is fixed. Battalion Commands has the initiative to 

decide on the number of vehicle fleet size at the beginning of the tours. First, 

we used fleets of five vehicles to compare the current system with the proposed 

system. We also used four and six vehicles of fleet to see if there is any 

improvement in total distance (cost) for different sizes of fleet. 
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3.3.FORMULATION 

 

In the literature survey, we come across many  ILP formulations of m-TSP and 

VRP. Each one has different features ( different vehicle types, 

pickups&deliveries, time windows, load&unload times, variable speed) and 

different objectives (minimize distance, minimize travel time, minimize 

number of vehicles, minimize total cost). We used some of the constraints in 

the formulations complying with our model.  

 

3.3.1. Indices 

 

N : Set of all the points including Main Depot and Garage. 

              Main Depot,2,3…20,21,22, Garage. 

V : Set of  vehicles. 

   Type1, Type2…Type6. 

 

3.3.2.Initial Data and Parameters 

 

Cij            : Distance from i to j 

Tij : Travel time between i and j ( Cij/h) 

min
iT  : Earliest time of point i to be visited. 

max
iT  : Latest time of point i to be visited. 

Li : Time of loading/unloading   in point i. 

Qv : Weight capacity of vehicle v.(1000 kg) 

Bv : Volume capacity of vehicle v.(m3) 

di : Quantity to be delivered to point i.(in 1000 kgs) 

pi : Quantity to be picked up  from  point i.(in 1000 kgs) 

fi : Quantity to be delivered to point i.( m3) 

gi : Quantity to be picked up  from  point i.(m3) 

h : Speed of the vehicles (70 km/h) 

q : The number of the vehicles 
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3.3.3. Variables 

 

Xijv    : Indicator of visit of vehicle v to  point j  immediately   after point i. 

Si       : Time of arriving   at point i. 

Mi       : Load (weight) of  a   vehicle  arriving    at  i  before  delivering   or          

          picking up at i in terms of  weight (kg). 

Yi    :Load (volume) of a vehicle arriving at i before  delivering or           

picking up at i in terms of  volume (m3). 

 

3.3.4. Constraints 

 

3.3.4.1.  Assignment Constraints 

 

Every point except for Garage has a successor. 

1 1

1      ,  1 1 , 
n V

ijv
j v

X i n i j
= =

= < < + ≠∑∑ . 

Every point except for Main Depot has an antecedent. 
 

1

2 1

1       , 1 1 ,  
n V

ijv
i v

X j n i j
+

= =

= < < + ≠∑∑ . 

 
 
The arriving and leaving vehicles of a point must be the same.   
 

1

2 1

 , 2  
n n

ijv jkv
i j

X X k n
+

= =

= ≤ <∑ ∑  

 

Each vehicle arrives at the Garage.  

1
2 1

  ,  1  
n V

i v
i v

X q Garage
= =

= =∑∑  

Each vehicle leaves the Main Depot. 
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1,
2 1

 ,   n+1    
n V

n jv
j v

X q Main Depot
+

= =

= =∑∑  

 
 
3.3.4.2.Capacity Constraints 

The total weights of the items to be delivered in a vehicle at the beginning of a 

tour cannot exceed the vehicle’s weight capacity. 

2 1

  , ,
n n

i ijv v
i j

d X Q i V
= =

≤ ∀ ∀∑ ∑  

 
 
The total volumes of the items to be delivered in a vehicle at the beginning of a 

tour cannot exceed the vehicle’s volume capacity. 

 

2 1

   , ,
n n

i ijv v
i j

f X B i V
= =

≤ ∀ ∀∑ ∑  

      
 

3.3.4.3. Load Feasibility Constraints 

 

Load  (weight)  of a  vehicle arriving   at i  before delivering   or   picking  

up at  i   in     terms   of     weight (kg)    cannot      exceed   the  vehicle’s  

weight  capacity. 

 

0    , ,M Q i Vvi≤ ≤ ∀ ∀  

 

Load (volume) of a  vehicle arriving   at i before  delivering or picking  up  at i  

in  terms  of   volume (m3)  can not exceed  the vehicle’s volume capacity. 

 

0     , ,Y B i Vvi≤ ≤ ∀ ∀  

Subtour breaking constraints, which guarantees the feasibility of loads in terms 

of weight and volume, where K is a large constant. 
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(1 )  
i i i j ijv

M p d M K X+ − − ≤ −  , ,i V∀ ∀  

(1 )  
i i i j ijv

Y g f Y K X+ − − ≤ −        , ,i V∀ ∀  

 

These subtour breaking constraints were first used in the constraint (2.4) of MTZ 

formulation. We adapted this constraint into our model. Mi ( Yi ) are the loads 

(weigh&volume) of the vehicles before delivery or pick up in point i. If xijv 

equals to 1, the inequality will be true since the left and right side of the 

inequality will be zero. Meanwhile if xijv equals to zero, right side of the 

inequality will be greater than the left side and it will be true again. 

 
3.3.4.4. Time Feasibility Constraints 
 
 
Delivery and pick-up must be made in time intervals. 
 

min

max

     ,

     ,

i
i

i
i

T S i

T S i

≤ ∀

≥ ∀
 

 
 

Subtour breaking constraint, which guarantee the feasibility of time, where K is a 

large constant. 

(1 )    , ,
i i ij j ijv

S L T S K X i V+ + − ≤ − ∀ ∀  

 
1 1,  1 1 ,  i n j n i j< ≤ + ≤ ≤ + ≠   
 
 
 
3.3.4.5. Non-negativeness and Binary Variables 
 
 

{ }0,1
ijv

X =     for   all   , ,i N j N v V∈ ∈ ∈  

 
 ,   ,    0 for all 

i i i
M Y S i N≥ ∈  
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3.3.5. Objective Function  
 
Our aim is to minimize the distance. Using the distance found, we calculate the 

total cost. The cost per kilometer is 551.400 TL (valid for the year  2002). To 

find the total cost this number is multiplied with total distance.  

 

1 1 1

    
n n V

ij ijv
i j v

Min c X
= = =

∑∑ ∑  

 

Sural and Bookbinder [55] describes VRPB by a scheme α  / β  / γ  , where α   

denotes the number of vehicles, β  refers to backhaul service options and  γ  

specifies the precedence  order of Linehaul (demanding delivery) and Backhaul 

(demanding pick-up) points. Our problem is a mixed of VRPB and VRPTW. 

We can describe our problem 5(4)(6) / must / any, according to this scheme.  

The fleet consists of five (four,six) vehicles, all demanding points must be 

served   and there is not any order of points. 

 

 

1 1 1

     
n n V

ij ijv
i j v

Min c X
= = =

∑∑ ∑  

 

Subject to 
 

1 1
1      ,  1 1 , 

n V

ijv
j v

X i n i j
= =

= < < + ≠∑∑  

1

2 1

1       , 1 1 , 
n V

ijv
i v

X j n i j
+

= =

= < < + ≠∑∑  

 
1

2 1

 , 2  
n n

ijv jkv
i j

X X k n
+

= =

= ≤ <∑ ∑  

1
2 1

   1
n V

i v
i v

X q Garage
= =

= =∑∑  
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1,
2 1

 ,   1   
n V

n jv
j v

X q n Main Depot
+

= =

= + =∑∑  

 

2 1

   
n n

i ijv v
i j

d X Q
= =

≤∑ ∑  , ,i V∀ ∀  

 

2 1

   
n n

i ijv v
i j

f X B
= =

≤∑ ∑  , ,i V∀ ∀  

 

0    M Qvi≤ ≤  , ,i V∀ ∀  

0     Y Bvi≤ ≤  , ,i V∀ ∀  

(1 )  
i i i j ijv

M p d M K X+ − − ≤ −  , ,i V∀ ∀  

(1 )  
i i i j ijv

Y g f Y K X+ − − ≤ −  , ,i V∀ ∀  

min
i

i
T S≤  , i∀  

max
i

i
T S≥ , i∀  

 
(1 )      

i i ij j ijv
S L T S K X+ + − ≤ −      

 
                                                       1 1,  1 1 ,  i n j n i j< ≤ + ≤ ≤ + ≠   
 
 

{ }0,1
ijv

X =                                   for   all   , ,i N j N v V∈ ∈ ∈  

 
       ,   ,    0 for all 

i i i
M Y S i N≥ ∈  

 
 
 
3.4.EXPERIMENTATION 

 

We have used the mathematical modeling software GAMS 2.25[25] in the 

implementation of the model. We solved the problem for three different vehicle 

fleet sizes. In the first case,  fleets of five vehicles are employed to comply 
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with the current system, while in the second and third one four and six vehicles 

are employed to find the adequate vehicle fleet by comparison. As a sample, a   

GAMS code of the model belonging to week-7  for the case of five vehicles of 

fleet are shown in Appendix B, pages 65-68. 

 

Firstly, we run the case when five vehicles are employed for eight-week data. 

But we have discovered that excessive amounts of  CPU times  are needed to 

solve the model in a GAMS licensed server. CPU times increase enormously as 

the number of demanding points increases. So, we decide to work in Unix 

operating system on a machine (Sun Hpc 4500) consisting of twelve 400 MHz 

CPU processors. Since there is no license for GAMS in this machine, we run the 

program for each case on a different server that has a license for GAMS in order 

to construct the model file including all the equations in explicit form. Then, we 

use the output files of GAMS to solve the model in CPLEX 7.1 at Sun Hpc 4500 

and at this time we see that CPU times are shorter than those of server having 

GAMS license. 

We found exact integer optimal solutions in Case 1 for each week without 

using any relative (epgap) or absolute (epagap) optimality criterions in 

CPLEX. Epgap is relative tolerance on the gap between the best integer 

objective and the objective of the best node remaining whereas epagap is the 

absolute tolerance on the gap between the best integer objective and the 

objective of the best node remaining.Following table shows number of demand 

points, CPU times, number of iterations and number of nodes observed. 

 

 # of points CPU # of Iterations # of nodes 
observed 

Week-1 14 174.92 247006 20344 
Week-2 16 519.97 591470 47540 
Week-3 13 466.28 640031 33542 
Week-4 14 122.13 132757 18507 
Week-5 21 7118.54 4970274 373259 
Week-6 14 43.88 33625 4214 
Week-7 21 6986.41 5713782 263654 
Week-8 15 855.60 1182234 122807 

Table 3.2. Required CPU  times, number of iterations and number of nodes observed when 
five vehicles are employed in the model. 
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We apply the same procedure when fleet size is four and six. Again, exact 

integer optimal solutions for each week in each case are found without using 

any relative or absolute gap.  Following tables show number of demanding 

points, CPU times, number of iterations and number of nodes observed. 

 
 # of points CPU # of Iterations # of nodes 

counted 
Week-1 14 168.20 234903 13324 
Week-2 16 1084.56 1432551 107736 
Week-3 13 7908.98 3545621 153161 
Week-4 14 34.78 28825 3226 
Week-5 21 24054.44 20299444 1434962 
Week-6 14 294.61 514432 29742 
Week-7 21 30687.56 24948707 1785694 
Week-8 15 26468.72 38043669 3286107 

 
Table 3.3. Required CPU  times, number of iterations and number of nodes observed when 
four vehicles are   employed in the model. 
 

 
 # of points CPU # of  Iterations # of nodes 

counted 
Week-1 14 511.69 806400 53614 
Week-2 16 823.37 933358 94153 
Week-3 13 2592.66 3146252 213960 
Week-4 14 206.54 258438 21258 
Week-5 21 3659.04 2647596 206223 
Week-6 14 46.53 24287 4055 
Week-7 21 1134.65 874358 67325 
Week-8 15 381.91 409075 48316 

 
Table 3.4. Required CPU  times, number of iterations and number of nodes observed  when 
six  vehicles are    employed in the model . 
 

3.5 Results 

 

The total distances of optimal routes, which we have found for each week in 

each case, are shorter than the fixed distance of the current system. Comparison 

of the Proposed system in three cases  with the current system is evaluated in 

ways of distance and cost for each week. Figures and tables below show that 

there are vast differences between the Proposed System and the Current 

System for total distance and cost. 
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3.5.1 Case 1. Fleets of Five vehicles  are employed. 

  

Following table shows the total distance and cost of optimal routes, which we 

have found, and the savings, which we have made for each week when fleets of  

five vehicles  are employed. 

 
Weeks  1 2 3 4 5 6 7 8 

Current 
System’s 
Distance 

8346 8346 8346 8346 8346 8346 8346 8346 

Optimal 
Distance 5595 5619 5876 5379 5605 5782 5605 5439 

Current 
System’s Cost 

  (Million TL) 
4602 

 
4602 

 
4602 

 
4602 

 
4602 

 
4602 

 
4602 

 
4602 

 
Week Cost 

(Million TL) 3085 3098 3240 2966 3090 3188 3090 2999 

Saving 
(Million TL) 1517 1504 1362 1636 1512 1414 1512 1603 

 
Table 3.5. Total distances, costs and savings for weeks in Case 1. 
 
 
It can be seen more clearly on the following figures that there is great 

improvements in total distance and cost. The distances are shortened for %30-

35. So, application of the model can save the same ratio of cost. 
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Figure 3.1. Comparison of  The Current System with The Proposed System in Distance for 
weeks in Case 1. 
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Figure 3.2. Comparison of  The Current System with The Proposed System in Cost for 
weeks in Case 1. 
 

3.5.2 Case 2. Fleets of Four vehicles  are employed.  

 

Following table shows the total distance and cost of optimal routes, which we 

have found and the savings, which we have made for each week when fleets of 

four vehicles are employed. 

 
Weeks  1 2 3 4 5 6 7 8 

Current 
System’s 
Distance 

8346 8346 8346 8346 8346 8346 8346 8346 

Optimal 
Distance 5201 5235 5912 4931 5200 5115 5200 5034 

Current 
System’s Cost 
(Million TL) 

4602 4602 4602 4602 4602 4602 4602 4602 

Week Cost 
(Million TL) 2869 2888 3261 2720 2869 2822 2869 2777 

Saving 
(Million TL) 1733 1714 1341 1882 1733 1780 1733 1825 

 
Table 3.6. Total distances, costs and savings for weeks in Case 2. 
 
It can be seen more clearly on the following figures that there is great 

improvements in distance cost. The distances are shortened for %29-40. So, the 

same ratio of cost can be saved by applying the model. 



 44 

0

2000

4000

6000

8000

10000

D
is

ta
nc

e 
(k

m
)

1 2 3 4 5 6 7 8
WeeksCurrent System

Proposed System
 

 
Figure 3.3. Comparison of  The Current System with The Proposed System in Distance for 
weeks in Case 2. 
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Figure 3.4 Comparison of  The Current System with The  Proposed System in Cost for 
weeks in Case 2. 
 
 

3.5.3 Case 3. Fleets of Six vehicles are employed.  

 

Following table shows the total distance and cost of optimal routes, which we 

have found and the savings, which we have made for each week when fleets of 

six vehicles are employed. 
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Weeks  1 2 3 4 5 6 7 8 
Current 

System’s 
Distance 

8346 8346 8346 8346 8346 8346 8346 8346 

Optimal 
Distance 6277 6111 6222 5852 6121 6462 6121 6040 

Current 
System’s Cost 
(Million TL) 

4602 4602 4602 4602 4602 4602 4602 4602 

Week Cost 
(Million TL) 3461 3370 3431 3227 3375 3563 3375 3330 

Saving 
(Million TL) 1141 1232 1171 1375 1227 1039 1227 1242 

 
Table 3.7. Total distances, costs and savings for weeks in Case 3. 
 
 
 
It can be seen more clearly on the following figures that there is great 

improvements in distance cost. The distances are shortened for %22-29. So, the 

same ratio of cost can be saved by applying the model. 
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Figure 3.5. Comparison of  The Current System with The  Proposed System in Distance for 
weeks in Case 3. 
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Figure 3.6. Comparison of  The Current System with The  Proposed System in Cost for 
weeks in Case 3. 
 
 
Lastly, we compare the cases in the view of distance and cost for each week. 

Case 2 including  fleets of four vehicles has the minimum distance and cost 

among the other cases. Figures below show that fleets of  four vehicles  are 

enough to meet the demands of points in the most economic way.  
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Figure 3.7. Comparison of cases in distance for weeks 
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CHAPTER 4 

CONCLUSION 

In this thesis we discussed about the Central Ring Transportation System, 

which is an important management problem in the field of distribution and 

logistics in Land Forces. We proposed a mathematical model of the system. 

The objectives of our study are: 

 

• To find optimal routes which vehicles will follow and to      

      allocate demands to vehicles depending on these optimal                                      

      routes. 

• To decide on vehicle fleet size which satisfies customers’  

      demands in the most economic way. 

 

The model we proposed is in the class of the capacitated vehicle routing 

problem with backhauls and time windows. Our model has mainly focused on 

the general assignment based mixed-integer linear programming formulation 

which utilize subtour elemination constraints (SECs). Results show that our 

mathematical model can do away with the unproductive mileage. In each case, 

we can save approximately  % 30  of distance (cost) when we compare our 

model with the current system. 

  

We created our capacitated vehicle routing problem with time windows and 

backhauls model by using the modeling software GAMS (General Algebraic 

Modeling System). This process facilitates the coding process of the 

optimization problems and solves the problems by using another software 

CPLEX. GAMS provides a high level language for the exact representation of 

large and complex models and allows change in the model specifications. 

 

We run the model for three cases each of which includes the same eight-week 

data. For each case, we observed that the proposed system decreases the 



 49 

transportation costs since non-demanding points are not visited and demanding 

points are visited only once. For the Case 1, Case 2 and Case3,  we can save 

%30-35, %29-40 and %22-29 of the current transportation cost respectively.  

 

When comparing the cases with each other, we saw that vehicle fleet with four 

(Case 2) is best to satisfy the  demands for eight-week data. We got the shortest 

and cheapest routes in Case 2. Although all points ((week 5 and week 7) have 

demands, vehicle fleet with four is enough to satisfy the demands. In our 

model, the increasing number of vehicles causes to increase the total distance 

and cost. Because of that it is important to run the model within the different 

cases to get an optimum vehicle fleet size.  

  

 

4.1.Future Research Topics 

 

The points selected by the Logistics Command may change with time and 

Logistics Command may add new points to CRTS. Because of the fact that 

solution times of the model will increase as the number of demanding points 

increase, a heuristic solution method which will solve the model in a 

reasonable amount of time can be employed in such situations. 

 

A mathematical model giving the optimal vehicle fleet size can be developed. 

So, we can decide on the optimal vehicle fleet size at once without making any 

comparison  among the alternative fleet sizes. 

  

CRTS and RRTS can be united and managed from one center. This requires a 

vast and detailed communication network with an enormous vehicle fleet. But 

transportation costs saved may amortize the system in a short time period.  
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Appendix A : Data File 

 
DELIVERY PICK-UP  

Weight 
(1000 kg) 

Volume 
(m3) 

Weight 
(1000 kg) 

Volume 
(m3) 

DEPOT 0 0 0 0 

2 3 4 2 4 

3     

4 5 6 4 6 

5     

6 3 4 2 1 

7 4 4 3 4 

8 5 6 4 6 

9 6 3 3 3 

10 7 7 2 7 

11     

12     

13 1 2 2 1 

14 4 6 3 6 

15 3 8 2 8 

16     

17 4 5 1 5 

18     

19     

20 6 7 8 7 

21 7 7 7 7 

22 2 5 7 5 

GARAGE 0 0 0 0 
 
Table A.1. Demand (pick-up/delivery)   quantities  of points for Week 1 
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DELIVERY PICK-UP  

Weight 
(1000 kg) 

Volume 
(m3) 

Weight 
(1000 kg) 

Volume 
(m3) 

DEPOT 0 0 0 0 

2 7 8 2 2 

3 6 5 3 2 

4 3 2 0 0 

5 2 3 4 5 

6     

7 3 3 4 4 

8 4 4 6 6 

9 7 6 7 6 

10     

11 2 3 2 2 

12 4 5 5 6 

13     

14 6 4 5 4 

15     

16 2 3 4 3 

17     

18 3 2 2 2 

19 5 5 6 7 

20 8 9 5 5 

21 7 7 7 7 

22 8 7 4 6 

GARAGE 0 0 0 0 
 
Table A.2. Demand (pick-up/delivery)   quantities  of points for Week 2. 
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DELIVERY PICK-UP  
 

Weight 
(1000 kg) 

Volume 
(m3) 

Weight 
(1000 kg) 

Volume 
(m3) 

DEPOT 0 0 0 0 

2     

3 6 4 4 4 

4     

5 5 6 7 7 

6 7 7 5 5 

7     

8 7 8 8 9 

9 6 6 5 5 

10     

11 8 9 6 6 

12 6 5 6 5 

13     

14 8 7 8 7 

15     

16     

17 8 9 7 7 

18 4 5 6 5 

19 6 7 8 7 

20 10 6 6 6 

21     

22 10 11 7 7 

GARAGE 0 0 0 0 
 
Table A.3. Demand (pick-up/delivery)   quantities  of points for Week 3. 
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DELIVERY PICK-UP  

Weight 
(1000 kg) 

Volume 
(m3) 

Weight 
(1000 kg) 

Volume 
(m3) 

DEPOT 0 0 0 0 

2     

3 3 3 2 2 

4 4 3 3 3 

5 2 2 1 1 

6 5 5 4 3 

7 4 5 4 4 

8     

9 3 3 3 3 

10 4 3 3 4 

11     

12 4 4 2 1 

13     

14 3 2 2 2 

15 4 6 4 3 

16 3 5 2 2 

17     

18 5 4 5 5 

19     

20 9 10 8 8 

21     

22 9 9 10 10 

GARAGE 0 0 0 0 
 
Table A.4. Demand (pick-up/delivery)   quantities  of points for Week 4. 
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DELIVERY PICK-UP  

Weight 
(1000 kg) 

Volume 
(m3) 

Weight 
(1000 kg) 

Volume 
(m3) 

DEPOT 0 0 0 0 

2 2 2 1 1 

3 1 1 1 1 

4 0 0 2 2 

5 1 1 0 0 

6 1 1 0 0 

7 2 2 1 1 

8 0 0 3 3 

9 2 3 3 2 

10 1 1 1 1 

11 2 2 2 2 

12 4 3 1 1 

13 0 0 3 2 

14 1 2 2 2 

15 1 1 0 0 

16 0 0 1 1 

17 2 3 0 0 

18 3 2 1 1 

19 1 1 0 0 

20 3 3 1 1 

21 2 2 2 2 

22 5 5 5 5 

GARAGE 0 0 0 0 
 
Table A.5. Demand (pick-up/delivery)   quantities  of points for Week 5. 
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DELIVERY PICK-UP  

Weight 
(1000 kg) 

Volume 
(m3) 

Weight 
(1000 kg) 

Volume 
(m3) 

DEPOT 0 0 0 0 

2 4 4 3 3 

3     

4 3 2 1 1 

5     

6     

7     

8 2 2 1 2 

9     

10 1 2 3 3 

11 2 2 2 2 

12 1 1 2 2 

13 2 2 1 1 

14 2 2 3 3 

15     

16 2 1 1 1 

17 4 4 3 3 

18 2 2 1 1 

19     

20 9 10 8 8 

21 1 1 1 1 

22 9 9 10 10 

GARAGE 0 0 0 0 
 
Table A.6. Demand (pick-up/delivery)   quantities  of points for Week 6. 
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DELIVERY PICK-UP  

Weight 
(1000 kg) 

Volume 
(m3) 

Weight 
(1000 kg) 

Volume 
(m3) 

DEPOT 0 0 0 0 

2 2 3 4 4 

3 1 1 2 1 

4 2 2 1 2 

5 1 1 0 0 

6 1 1 1 1 

7 2 2 2 1 

8 1 1 1 2 

9 2 3 3 3 

10 1 1 1 1 

11 1 1 0 0 

12 1 1 0 0 

13 0 0 3 2 

14 3 2 2 2 

15 1 1 0 0 

16 1 1 1 1 

17 0 0 1 2 

18 0 0 1 1 

19 1 1 1 1 

20 2 2 4 4 

21 2 2 2 1 

22 7 7 0 0 

GARAGE 0 0 0 0 
 
Table A.7. Demand (pick-up/delivery)   quantities  of points for Week 7. 
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DELIVERY PICK-UP  

Weight 
(1000 kg) 

Volume 
(m3) 

Weight 
(1000 kg) 

Volume 
(m3) 

DEPOT 0 0 0 0 

2 2 2 3 3 

3     

4 1 1 2 1 

5 2 3 0 0 

6 1 1 2 2 

7     

8 3 2 2 2 

9 1 1 1 1 

10     

11     

12 1 1 0 0 

13 2 3 2 2 

14 1 2 2 1 

15 0 0 1 1 

16 2 2 0 0 

17 1 1 2 3 

18     

19     

20 5 5 4 3 

21 0 0 1 1 

22 8 8 6 6 

GARAGE 0 0 0 0 
 
Table A.8. Demand (pick-up/delivery)   quantities  of points for Week 8. 
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 G 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
GARAGE 10000 460 404 340 191 233 382 533 580 369 257 443 689 877 258 363 483 424 319 660 761 912 

2  10000 56 120 269 337 250 394 572 508 463 890 1044 1232 675 819 939 1079 779 1120 1221 1372 
3   10000 64 213 281 294 345 516 452 407 844 988 1176 619 763 883 1023 723 1064 1165 1316 
4    10000 149 182 155 301 465 341 303 780 882 924 555 699 829 959 659 1000 1101 1252 
5     10000 296 272 423 594 467 422 631 7753 963 445 550 670 810 510 851 952 1103 
6      10000 149 300 412 219 146 676 922 1110 338 581 681 821 542 883 984 1135 
7       10000 151 322 310 275 825 1047 1235 487 770 830 979 691 1032 1133 1284 
8        10000 173 224 323 976 1198 1386 546 812 889 1029 842 1183 1284 1423 
9         10000 211 323 1023 1269 1457 546 812 889 1029 867 1208 1309 1423 
10          10000 112 812 1058 1246 335 601 678 818 656 997 1098 1212 
11           10000 700 946 1134 223 489 566 706 544 885 966 1099 
12            10000 246 434 521 339 497 462 194 247 329 480 
13             10000 188 767 585 743 685 440 364 263 406 
14              10000 955 773 882 742 628 421 320 324 
15               10000 218 349 489 327 668 769 883 
16                10000 181 316 142 470 587 738 
17                 100000 202 326 461 562 596 
18                  100000 320 348 446 506 
19                   10000 341 442 593 
20                    10000 101 252 
21                     10000 151 
22                      10000 

DEPOT 10000 462 406 342 193 235 384 535 582 371 259 445 691 879 260 365 485 426 321 662 763 914 
 

Table A.9. Distance between points 
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Appendix B: GAMS CODE 
 

SETS 
 
i / 
GARAGE,POINT2,POINT3,POINT4,POINT5,POINT6,POINT7,POINT8,POINT9,POI
NT10,POINT11,POINT12,POINT13,POINT14,POINT15,POINT16,POINT17,POINT
18,POINT19,POINT20,POINT21,POINT22,DEPOT/ 
a(i) 
/POINT2,POINT3,POINT4,POINT5,POINT6,POINT7,POINT8,POINT9,POINT10,P
OINT11,POINT12,POINT13,POINT14,POINT15,POINT16,POINT17,POINT18,POI
NT19,POINT20,POINT21, POINT22/ 
b(i) 
/GARAGE,POINT2,POINT3,POINT4,POINT5,POINT6,POINT7,POINT8,POINT9,PO
INT10,POINT11,POINT12,POINT13,POINT14,POINT15,POINT16,POINT17,POIN
T18,POINT19,POINT20,POINT21, POINT22/ 
c(i) 
/POINT2,POINT3,POINT4,POINT5,POINT6,POINT7,POINT8,POINT9,POINT10,P
OINT11,POINT12,POINT13,POINT14,POINT15,POINT16,POINT17,POINT18,POI
NT19,POINT20,POINT21,POINT22, DEPOT/ 
 
veh  vehicle /TYPE1, TYPE2, TYPE3, TYPE4, TYPE5/ 
 
ALIAS(i,j,p) 
ALIAS(veh,k) 
 
PARAMETERS 
EARLYT  
LATET  
D  
U  
V 
TRAVELT  
LOADT  
DEL1  
DEL2 
PICK1 
PICK2 
 
EARLYT(i) /GARAGE 1,  POINT2 1, POINT3 1, POINT4 1 ,POINT5 1, 
POINT6 1, POINT7 1, POINT8 1, POINT9 1, POINT10 1, POINT11 1, 
POINT12 1, POINT13 1,POINT14 1, POINT15 1, POINT16 1, POINT17 1, 
POINT18 1,POINT19 1, POINT20 1,POINT21 1, POINT22 1, DEPOT 0/ 
 
LATET(i) /GARAGE 72,  POINT2 72, POINT3 72, POINT4 72 ,POINT5 72, 
POINT6 72, POINT7 72, POINT8 72, POINT9 72, POINT10 72, POINT11 
72, POINT12 72, POINT13 72, POINT14 72, POINT15 72, POINT16 72, 
POINT17 72, POINT18 72,POINT19 72, POINT20 72,POINT21 72, POINT22 
72,  DEPOT 96/ 
 
VARIABLES 
X  
Z  
T  
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M 
Y 
BINARY VARIABLE X; 
 
EQUATIONS 
DIST  
SUC  
ANT  
VEHIC  
CAPA  
CAPA2 
ARR  
DEP  
TIME1 
TIME2 
TIME3 
LOAD1 
LOAD2 
LOAD11 
LOAD22; 
 
DIST .. Z=E= SUM ((c(i),b(j),veh), D(i,j)*X(veh,i,j)); 
SUC(a(i)) .. SUM((b(j),veh),X(veh,i,j)) =E=1; 
ANT(a(j)) .. SUM((c(i),veh),X(veh,i,j)) =E=1; 
VEHIC(veh,a(p)) .. SUM(c(i), X(veh,i,p))- SUM (b(j), 
X(veh,p,j))=E=0; 
CAPA (veh) .. SUM(a(i),(DEL1(i)*SUM(b(j),X(veh,i,j))))=L=U(veh); 
CAPA2 (veh) .. SUM(a(i),(DEL2(i)*SUM(b(j),X(veh,i,j))))=L=V(veh); 
ARR(veh) .. SUM((k(veh),a(i)),X(veh,i,"GARAGE"))=E=1; 
DEP(veh) .. SUM((k(veh),a(j)),X(veh,"DEPOT",j))=E=1; 
TIME1(i) .. T(i)=G= EARLYT(i); 
TIME2(i) .. T(i) =L= LATET(i); 
TIME3(c(i),b(j))..T(i)+LOADT(i)+TRAVELT(i,j)-T(j)=L= 
5000*(1-SUM(veh,X(veh,i,j))); 
LOAD1(veh,a(i))..Y(i)=L=U(veh); 
LOAD2(c(i),b(j)).. Y(i)+PICK1(i)-DEL1(i)-Y(j)=L=          5000*(1-
SUM(veh,X(veh,i,j))); 
LOAD11(veh,a(i))..M(i)=L=V(veh); 
LOAD22(c(i),b(j)).. M(i)+PICK2(i)-DEL2(i)-M(j)=L=        5000*(1-
SUM(veh,X(veh,i,j))); 
 
MODEL TEZ/all/; 
*DATA 
PARAMETERS 
 
U(veh)  
/ TYPE1     35 
  TYPE2     23 
  TYPE3     16 
  TYPE4     20  
  TYPE5     25     / 
V(veh)  
/ TYPE1     55 
  TYPE2     46 
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  TYPE3     53 
  TYPE4     40   
  TYPE5     54 /  
 
LOADT(i) /GARAGE 1, POINT2 1, POINT3 1, POINT4 1, POINT5 1, POINT6 
1, POINT7 1,    POINT8 1, POINT9 1, POINT10 1, POINT11 1, POINT12 
1, POINT13 1,POINT14 1, POINT15 1,   POINT16 1, POINT17 1, POINT18 
1,POINT19 1, POINT20 1,POINT21 1, POINT22 1, DEPOT 1/ 
 
PICK1(i) /GARAGE 0, POINT2 4, POINT3 2, POINT4 1, POINT5 0, POINT6 
1, POINT7 2, POINT8 1, POINT9 3, POINT10 1,  POINT11 0, POINT12 0, 
POINT13 3, POINT14 2,  POINT15 0, POINT16 1, POINT17 1,   POINT18 
1,   POINT19 1, POINT20 4, POINT21 2,POINT22 0, DEPOT 0/ 
 
PICK2(i) /GARAGE 0, POINT2 4, POINT3 1, POINT4 2, POINT5 0, POINT6 
1,  POINT7 1, POINT8 2, POINT9 3, POINT10 1, POINT11 0,  POINT12 
0,  POINT13 2,   POINT14 2,POINT15 0, POINT16 1, POINT17 2, 
POINT18 1, POINT19 1,POINT20 4,    POINT21 1,POINT22 0, DEPOT 0/ 
 
 
DEL1(i) /GARAGE 0, POINT2 2, POINT3 1, POINT4 2, POINT5 1, POINT6 
1,    POINT7 2, POINT8 1,  POINT9 2,  POINT10 1,    POINT11 1,     
POINT12 1,        POINT13 0, POINT14 3,POINT15 1, POINT16 1, 
POINT17 0, POINT18 0, POINT19 1,    POINT20 2, POINT21 2,POINT22 
7, DEPOT 0/ 
 
DEL2(i) /GARAGE 0, POINT2 3, POINT3 1, POINT4 2, POINT5 1, POINT6 
1, POINT7 2, POINT8 1, POINT9 3,  POINT10 1,  POINT11 1,  POINT12 
1,  POINT13 0,     POINT14 2,POINT15 1, POINT16 1, POINT17 0, 
POINT18 0, POINT19 1,    POINT20 2, POINT21 2,POINT22 7, DEPOT 0/; 
 
TABLE D(i,j)(Appendix A, Page 72) 
 
SCALAR SPEED /70/; 
TRAVELT(i,j)=C(i,j)/SPEED; 
OPTION RESLIM=60480000; 
OPTION ITERLIM = 1000000000; 
TEZ.OPTFILE=1; 
OPTION OPTCR=0.0; 
SOLVE TEZ USING MIP MINIMIZING Z; 
 
display x.l, T.l; 
 
 
 


