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ABSTRACT

USING REINFORCEMENT LEARNING FOR

DYNAMIC LINK SHARING PROBLEMS

UNDER SIGNALING CONSTRAINTS

Nuri Çelik

M.S. in Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Nail Akar

May 2003

In static link sharing system, users are assigned a fixed bandwidth share of the

link capacity irrespective of whether these users are active or not. On the other

hand, dynamic link sharing refers to the process of dynamically allocating band-

width to each active user based on the instantaneous utilization of the link. As

an example, dynamic link sharing combined with rate adaptation capability of

multimedia applications provides a novel quality of service (QoS) framework for

HFC and broadband wireless networks. Frequent adjustment of the allocated

bandwidth in dynamic link sharing, yields a scalability issue in the form of a sig-

nificant amount of message distribution and processing power (i.e. signaling) in

the shared link system. On the other hand, if the rate of applications is adjusted

once for the highest loaded traffic conditions, a significant amount of bandwidth

may be wasted depending on the actual traffic load. There is then a need for

an optimal dynamic link sharing system that takes into account the tradeoff

between signaling scalability and bandwidth efficiency. In this work, we intro-

duce a Markov decision framework for the dynamic link sharing system, when

the desired signaling rate is imposed as a constraint. Reinforcement learning
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methodology is adopted for the solution of this Markov decision problem, and

the results demonstrate that the proposed method provides better bandwidth

efficiency without violating the signaling rate requirement compared to other

heuristics.

Keywords: Link Sharing, Reinforcement Learning, Markov Decision Processes,

Dynamic Link Sharing, Dynamic Programming.
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ÖZET

SİNYALLEŞME KISITLAMALARI ALTINDA DİNAMİK LİNK

PAYLAŞIMI PROBLEMLERİNİN GÜÇLENDİRMELİ

ÖĞRENME METODUYLA ÇÖZÜLMESİ

Nuri Çelik

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Assist. Prof. Dr. Nail Akar

Mayıs 2003

Statik link paylaşım sistemlerinde, kullanıcılara, aktif olup olmadıklarına

bakılmaksızın, linkin sabit bir bantgenişliği pay edilir. Öte yandan, kullanıcılara,

linkin o andaki kullanım durumuna göre dinamik bir bantgenişliği verilmesine

dinamik link paylaşımı denmektedir. Örneğin, dinamik link paylaşımının çoklu-

ortam uygulamalarının hız uyarlama becerisiyle bir arada kullanılması, HFC

ağlarında ve genişbant kablosuz ağlarda yeni bir hizmet niteliği (QoS) yapısı

sağlamaktadır. Dinamik link paylaşımında, ayrılmış bantgenişliğinin çok sık

değiştirilmesi, link paylaşım sisteminde mesaj yoğunluğuna ve işlemci gücü har-

canmasına neden olduğundan bir ölçeklenme sorununa yol açar. Diğer taraftan,

uygulamaların hızları, bir kereye mahsus olarak en kötü şartlara göre ayarlanırsa,

trafik yüküne bağlı olarak bantgenişliğinin önemli bir bölümü boşa harcanabilir.

Bu yüzden, sinyalleşme oranı ve bantgenişliğinin verimli kullanılması arasındaki

ödünleşimi gözönüne alan optimal bir link paylaşım sistemine ihtiyaç vardır.

Bu çalışmada, dinamik link paylaşımı için, sinyalleşme oranının bir kısıtlama

olarak belirtildiği bir Markov karar verme yapısı önerilmektedir. Bu Markov

karar verme probleminin çözümü için güçlendirmeli öğrenme metodu seçilmiştir.
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Sonuçlara göre, önerilen metod sinyalleşme oran kısıtlamalarını bozmadan, diğer

buluşsallara (heuristic) göre daha yüksek bir bantgenişliği kullanım verimliliği

göstermiştir.

Anahtar kelimeler: Link Paylaşımı, Güçlendirmeli Öğrenme Metodu, Markov

Karar Verme Süreçleri, Dinamik Kanal Paylaşımı, Dinamik Programlama.
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Chapter 1

Introduction

User demands for multimedia applications and services are increasing at a rapid

pace with unprecedented growth of the Internet. Multimedia applications have

strict Quality of Service (QoS) requirements in terms of guaranteed bandwidth,

delay, jitter, loss etc. New standards and QoS architectures are being developed

by international standards organizations (ATM, ITU-T, IETF, etc.,) in order to

provide these QoS requirements.

Efficient transport of multimedia applications requires new network capabil-

ities such as:

• Packet scheduling mechanisms to prioritize multimedia traffic [1] and [2].

• Call admission control to limit the number of multimedia streams on a

given link [3], [4], [5], and [6].

• Traffic shaping to limit the rate of multimedia streams injected towards

the network [7].

• QoS routing protocols to find the best possible path satisfying the QoS

requirements of the multimedia call [8] and [9].
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In this thesis, we concentrate on another capability in which multimedia ap-

plications can adapt their rates to changing network conditions. Such an adapta-

tion capability provides a promising means for using network resources efficiently

while providing the required application QoS [10]. Several layers of the network

protocol stack can be responsible for rate adaptation [11]. In this thesis, adap-

tation at the application layer is considered which means that the application

is capable of adjusting its bandwidth (rate) requirement. In this work, video

streaming is selected as a type of multimedia application thus rate adaptation

can be achieved by various coding techniques such as layered coding [12], [13]

and adaptation of compression parameters [14], [15], [16], as well as bandwidth

smoothing [14], etc. Particularly, wavelet coding [16] is most suitable for contin-

uous rate adaptation. When video streaming applications change their rates, the

perceived quality of the application shows some variability. Applications such

as video teleconferencing, interactive training, low-cost information distribution

such as news can tolerate this variability.

Rate adaptation capability of multimedia applications is crucial in shared-

link environments such as Hybrid Fiber Coax (HFC) and broadband wireless

networks. The number of active users that share the links of such networks,

changes randomly in time. The link sharing problem is controlling the bandwidth

usage of users sharing a single link. There can be different classes of users sharing

this link or there can be multiple classes of applications (real time, non-real

time). This problem is explained by Jacobson [17], and Floyd and Jacobson [18]

in detail. In static link sharing, all users are assigned a bandwidth share of the

link capacity once and for the worst conditions, whereas dynamic link sharing

refers to the process of allocating bandwidth to each active user based on the

instantaneous utilization (i.e., instantaneous number of active users) of the given

link.
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The advantage of dynamic link sharing is that when the number of active

users is low then they can share all the available bandwidth of the link and re-

ceive high bandwidth. The disadvantage is that as the number of users that share

the same link increases, the perceived quality of multimedia applications reduce

significantly when the system is left uncontrolled. However large system utiliza-

tion and acceptable quality of reception can be provided when proper admission

control along with application rate control is used. In this approach, when the

number of active users is small, applications achieve their maximum requested

rate. When the system load increases, the application transmission rate is re-

duced, while still remaining within acceptable levels, so that more connections

can be admitted. Let’s make these points clear by an example, consider a link

with capacity 2 Mbps. Assume that the minimum bandwidth requirement of the

users is 0.2 Mbps and the maximum is 0.5 Mbps. In static link sharing, all users

are assigned 0.5 Mbps (or 0.2 Mbps) each, irrespective of the number of active

users, then the system can only have 4 users maximum (or 10 users having the

minimum required bandwidth). On the other hand in dynamic link sharing, the

assigned bandwidth can change according to number of active users in the system

therefore the instantaneous number of users can go as high as 10. Consider the

case when the number of active users increases from 4 to 5; the static sharing

system would not permit this user into the system, when the maximum required

bandwidth is assigned to each user. On the other hand, the dynamic link sharing

system would allow this user and reduce the bandwidth share of each user from

0.5 Mbps to 0.4 Mbps.

The rate control mechanism mentioned above works as follows: Controllers

(headend in HFC networks [19] and base stations in wireless cellular networks)

convey feedback to the already running applications through the downstream

channel requesting them to change their upstream rate according to network

conditions. A dynamical link sharing (DLS) system having this working mech-

anism is shown in Figure 1.1. Rate adaptation (bandwidth update) is a change

3
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Figure 1.1: A typical link sharing system

in the encoding mechanism which can increase the CPU load on the end users.

Moreover, each update means signaling between end users and the headend, thus

the number of rate adaptations in unit time should be limited in order to reduce

the CPU load on end users and signaling overhead on the downstream channel.

Throughout this thesis, the load associated with each rate adaptation will be

called “signaling overload”.

In this thesis, we study the optimal dynamic link sharing problem that consid-

ers the tradeoff between bandwidth efficiency and CPU load on end-users due to

rate adaptation. In our proposal, the bandwidth of the given link is dynamically

divided into a number of channels and each active user is then assigned a single

channel. We assume that the channel bandwidths are variable but identical. At

each user arrival or departure, the headend decides on the number of channels

to set-up according to the number of active users.
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Figure 1.2: Dynamic link sharing example

In Figure 1.2, an example trace of our proposed rate adaptation algorithm

is shown. The solid line shows the number of active users versus time, and the

dashed line shows the number of channels allocated on the shared link. The

bandwidth share of each user equals to total bandwidth divided by the number

of channels. Our objective is minimizing the area between the dashed line and

solid line while keeping the number of discontinuities in the dashed curve in unit

time bounded by a predetermined value. We note that each discontinuity is

associated with a new signaling message between the headend and the end-users

thus creating signaling load. The area between the dashed line and the solid line

is an indicator of how efficiently we use the shared line; if number of allocated

channels on the link is much larger than the number of active users, the link is

not efficiently utilized. The maximum efficiency is obtained when the number of

channels is exactly equal to number of active users, however this means a larger

number of discontinuities in the number of channels, resulting in a larger number

of bandwidth updates in unit time. In our proposal, we attempt to maximize the
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bandwidth utilization under signaling constraints, i.e., the maximum number of

bandwidth updates is a-priori given as a constraint.

In dynamic link sharing problem, the headend decides on the number of

channels to set-up at each arrival or departure instant according to number of

active users, signaling rate, and number of channels allocated on the shared link.

This problem can be formulated using average reward Markov decision process

framework [20] which has been a popular paradigm for sequential decision mak-

ing under uncertainty. Such problems can be solved by Dynamic Programming

(DP) algorithms [20] which provides a suitable framework and algorithms to find

optimal policies. Policy iteration and relative value iteration [20] are the most

commonly used DP algorithms for average reward Markov decision problems.

However, these algorithms become impractical when the underlying state-space

of the Markov decision problem is large, leading to the so-called “curse of dimen-

sionality”. Recently, an adaptive control paradigm, the so-called “Reinforcement

Learning” (RL) [21], [22] has attracted the attention of many researchers in the

field of Markov decision processes. RL is based on a simulation scenario in which

an agent learns by trial and error to choose actions that maximize the long-

run reward it receives. RL methods are known to scale better than their DP

counterparts [21].

The dynamic link sharing problem does not only arise in HFC networks for

video streaming applications, but arises in other scenarios as well. This specific

dynamic link sharing case is studied by [23]. This work finds the queueing solu-

tions for certain dynamic link sharing systems. Moreover, a heuristic is proposed

to reduce the signaling load on the network. We list below the other applications

of dynamic link sharing problem.

• Voice over IP networks [24]. In these networks dynamical allocation of

the capacity for the virtual path established between two voice over IP

gateways is crucial. This capacity determines the number of voice calls that
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the virtual path is capable of handling simultaneously; if one uses a fixed

allocation and for the worst case conditions, then the allocated capacity

would be idle in the non-busy hours. [24] proposes dynamically changing

the capacity of the virtual path according to number of active users in the

system which is very similar to the approach in this thesis. They have used

reinforcement learning and dynamic programming algorithms in order to

find the optimal capacity allocation scheme.

• Bandwidth brokers [25]. In this problem, Anjali et. al. tries to estimate

the bandwidth to allocate between two differentiated services domains. A

bandwidth broker acts as the resource manager for each network provider.

Neighboring bandwidth brokers communicate with each other to estab-

lish inter-domain resource reservation agreements. If allocation follows the

traffic demand very tightly, the resource usage is efficient but leads to

frequent modifications of the reservations. This would lead to increased

inter-bandwidth-broker signaling in order to propagate the changes to all

the concerned networks. Contrarily, if large cushions are allowed in the

reservations, the modifications are far spaced in time but the resource us-

age becomes highly inefficient. In [25], a Kalman filtering based scheme for

estimating the traffic on an inter-domain link and forecasting its capacity

requirement, based on a measurement of the current usage, is proposed.

• Renegotiated CBR [10]. This work studies the effect of adding renegotiation

capability to Constant Bit Rate (CBR) links for the case of video transfer.

The video sources show highly burstiness in terms of bit rate in slow time

scales. If the capacity of the CBR link is adjusted once and for the highest

bit rate, resource usage becomes highly inefficient. On the other hand, large

buffering requirements occur when the capacity is adjusted to the mean

traffic rate. In [10], the capacity of the CBR link is renegotiated based

on incoming traffic rate and the buffer size. In the off-line case optimal
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renegotiation schedule is found by a Viterbi-like algorithm. A heuristic is

provided for the online case.

The contribution of this thesis is as follows. To the best of our knowledge,

[24] is the only work to apply RL to the dynamic link sharing problem discussed

above. In [24], RL and DP algorithms are used to find an optimal dynamic link

sharing methodology but they only considered homogeneous traffic with small

problem sizes. We extend the work [24] so that we apply RL to large sized

problems and with nonhomogeneous traffic. To cope up with large state space

dimensionality, we propose a function approximation algorithm based on delta-

learning rule [26]. For tackling the nonhomogeneous traffic we introduce a new

concept called “policy switching”.

The organization of this thesis is as follows. Chapter 2 addresses Markov

decision problems, reinforcement learning basics, and the related algorithms. The

third chapter will be about formulation and RL implementation for the problem

of resource allocation with buffering in order to demonstrate the convergence of

RL algorithms. Moreover the results of the reinforcement learning approach to

this introductory problem is given in the third chapter. Chapter 4 will include

the formulation details and results of the dynamic link sharing problem with

extensive numerical examples with large problem sizes and also covering the

nonhomogeneous traffic case. We conclude in Chapter 5.
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Chapter 2

Reinforcement Learning (RL)

2.1 Introduction

When we think about the nature of learning, the first thing that comes to mind

is that we learn by interacting with our environment. An infant has no explicit

teacher but learns many things by interacting with the environment with its

sensori-motor. Using this interaction reveals information about cause and effect,

and consequences of actions. This interaction with the environment is our major

source of information throughout our lives. Learning from interaction is the basic

idea for almost all theories of learning and intelligence.

Reinforcement learning is the process of learning how to map situations to

actions in order to maximize the reward. The learner is not told which actions to

take unlike most forms of machine learning, instead it must discover which actions

to take by trial and error and by the help of rewards. In some extreme cases

of learning, the actions may not only affect the immediate reward but also the

subsequent rewards which is called delayed reward. The important distinguishing

characteristics of reinforcement learning is trial and error search and delayed

reward.
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The learning agent environment interface is shown in figure 2.1. Here the

learning agent takes an action at in state St, the environment responds the agent

by taking it to another state St+1 and also by giving an immediate reward rt. The

immediate reward is a reinforcement to learning-agent, that is why this method is

called reinforcement learning. Because reinforcement learning methods combine

neural network methods with dynamic programming algorithms, some authors

call these methods “Neuro-Dynamic Programming” methods.

Let’s consider an example of reinforcement learning task in order to have a

full understanding of the concept. Tetris game is an example task in which one

decides on the horizontal position and rotation of a falling object according to

the status of the grid. The grid is empty initially and filled up with falling bricks

of different shape. The falling bricks are of different shapes and at each instant,

a random shape from the set is chosen. When one makes a full row of bricks, the

row is destroyed and points are awarded. The objective is having the maximum

points before the brick level reaches to top, therefore one should avoid the actions

leaving an empty point in a row. In this example, the state of the system is the

shape of the falling object and the state of the grid (fullness or emptiness of grid

elements) and our action is the horizontal positioning and rotation of the falling

object. The environment responds to us by giving rewards when we destroy a

row. The actions one would choose would be the ones that avoids leaving empty

points in a row and destroys as much rows as possible.
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Tetris is a simple example that involves interaction between a decision maker

and its environment in which the decision maker tries to achieve a goal despite

uncertainty about its environment. At the same time, the effects of actions can

not be fully predicted. The goal is explicit in the sense that decision maker

can progress toward its goal using its senses. The decision maker can use its

experience to improve its performance over time, the player plays better with

experience.

There are six main sub-elements of a reinforcement learning system:

Learning agent This is the decision maker. The learning agent takes actions,

explores the environment and finds a proper way of acting in order to

maximize the reward it receives from environment.

Environment This is the source of feedback to the learning agent. The environ-

ment gives feedback to the agent in terms of a reward according to actions

of the learning agent, the grid for tetris game is an example environment.

Policy Policy defines the learning agent’s action at a given time and situation.

A policy is a mapping from perceived states of the environment to actions

to be taken in those states.

Reward function Reward function maps the state-action pairs to a single num-

ber denoting the reward that would be gained by taking that action. A

learning agent’s objective is to maximize the total reward received in the

long run. As a result the reward function defines what is good and what

is bad in the immediate sense, pleasure and pain is the biological system

analogy of reward function.

Value function A value function specifies what is good in the long run. The

value of a state is the total amount of expected reward that can accumulate

over the future starting from that state. Values indicate the long term

desirability of environmental states after taking into account the states
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that are likely to follow and rewards available in those states. For example

a state may yield a high reward but the following states can be very low

reward yielding states.

Model of the environment Given a state and action, the model might predict

the resultant next state and next reward. Models are used for planning,

deciding on a course of actions by considering possible future situations

before they are experienced.

If the decisions and actions of a task are dependent only on the current state

and not on previous states, than that task satisfies Markov property. Reinforce-

ment learning tasks that satisfy Markov property are called Markov decision

processes, now it is time we should have a look at Markov decision processes and

their solution methods.

2.2 Markov Decision Processes (MDP)

A Markov Decision Process consists of a set of states denoted by S and a set of

actions denoted by A for moving between the states. Associated with each action

a, there is a state (probability) transition matrix P(a), where Pxy(a) represents

the probability of moving from state x to y under action a. There is also a reward

or payoff function r:S×A −→ R where r(x,a) is the expected reward for doing

action a in state x.

A policy is a mapping π:S→ A from states to actions. This policy is both

stationary and deterministic. Any policy induces a state transition matrix P(π),

where Pxy(π) = Pxy(π(x)). Thus any policy yields a Markov chain (S, P (π)).

Before going into details of MDPs, it is appropriate to describe some important

terms about MDPs.
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Two states x and y communicate under a policy π if there is a non-zero

probability of reaching each state from the other. A state is recurrent if starting

from the state, the probability of eventually reentering it is 1. A non-recurrent

state is called transient , since at some finite point in time the state will never

be visited again.

An ergodic or recurrent class of states is a set of recurrent states that all

communicate with each other, and do not communicate with any state outside

this class. If the set of all states forms an ergodic class, the Markov chain is said

to be irreducible .

An ergodic or recurrent MDP is one where the transition matrix correspond-

ing to every policy has a single recurrent class. An MDP is termed unichain

if the transition matrix corresponding to every policy contains a single recurrent

class, and a set of transient states. In this work, we will focus on algorithms

dealing with unichain MDPs.

2.2.1 Gain and bias optimality

In average reward MDPs, the purpose is to compute policies that yield the highest

expected reward per step. The policy that maximizes the average reward over

all states is called gain optimal policy. The average reward ρπ(x) associated with

a particular policy π at a state x is defined as

ρπ(x) = lim
N→∞

E
(∑N−1

t=0 Rπ
t (x)

)
N

(2.1)

where Rπ
t (x) is the received reward at time t starting from x and actions are

chosen using policy π. E(·) denotes the expected value. If π∗ denotes gain

optimal policy, then ρπ∗
(x) ≥ ρπ(x) over all policies π and states x.
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A key point simplifying the design of average reward algorithms is that the

average reward for any policy is independent from starting state for unichain

MDPs. In mathematical terms:

ρπ(x) = ρπ(y) = ρπ.

The reason for this lies in the unichain assumption. Unichain policies create

a single recurrent class of states, and a set of transient states. Transient states

will be visited for once and recurrent states will be visited forever, as a result

the average reward can not differ across recurrent and transient states. The

effect of transient states will vanish in the limit, because a finite reward will be

accumulated because of them until entering a recurrent state and its effect will

diminish in the long run.

In the problems with absorbing states (in ones our purpose is reaching some

specific state like treasure hunt), all of the policies reaching the goal will have

the same average reward and be gain optimal. The policy reaching the goal in

least number of steps is called the bias optimal policy [27].

2.2.2 Bellman Equation

Bellman optimality equation is one of the fundamental results showing the exis-

tence of an optimal policy for an MDP when some requirements are met.

V ∗(x) = max
a

[
r(x, a) + γ

∑
y

(Pxy(a) × V ∗(y))

]
(2.2)

V ∗(x) + ρ∗ = max
a

[
r(x, a) +

∑
y

(Pxy(a) × V ∗(y))

]
(2.3)

Equation 2.2 is the discounted Bellman optimality equation. V ∗(x) represents

the value of state x. The value of a state is the total maximum average reward one
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can get beginning from that state. Intuitively, the value of a state is immediate

reward of action a plus the expected value of the next state. The summation on

the right hand side is an expectation calculation, estimating the value of possible

next state. γ is the discount factor which is chosen as less than 1 and shows the

importance of next state relative to current state.

Equation 2.3 is average reward version of Bellman optimality equation. ρ∗ is

the average one step reward. The value of current state plus the reward for one

step should be equal to immediate reward plus the expected value of next state.

Now let’s turn our attention to Bellman Theorem; for a proof see [28]:

Theorem 1: For any MDP that is either unichain or communicating, there

exists a value function V ∗ and a scalar ρ∗ satisfying Equation 2.3 such that the

greedy policy π∗ resulting from V ∗ achieves the optimal average reward ρ∗ = ρπ∗

where ρπ∗ ≥ ρπ over all policies π.

Greedy policy mentioned in Theorem 1 is the policy constructed by choosing

the actions maximizing the right hand side of Equation2.3.

There are various methods for computing the optimal reward policies, now

let’s discuss some of them.

2.3 Dynamic Programming Algorithms

2.3.1 Policy Iteration

Policy iteration is introduced by Howard [29]. Policy iteration has two phases,

policy evaluation and policy improvement.

1. Initialize k = 0 and set π0 to some arbitrary policy
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2. Policy Evaluation: Given a policy πk, solve the following set of |S| linear

equations for the average reward ρπk
and relative values V πk

(x), by setting

the value of a reference state V (s) = 0

V πk

(x) + ρπk

= r(s, πk(x)) +
∑
y

(
Pxyπ

k(x)V πk

(y)
)

(2.4)

3. Policy Improvement Given a value function V πk
(x), compute an improved

policy πk+1 by selecting an action maximizing the following quantity at

each state,

maxa(r(x, a) +
∑
y

(
Pxy(a)V πk

(y))
)

(2.5)

setting if possible, πk+1(x) = πk(x)

4. If πk(x) �= πk+1(x) for some state x, increment k and return to step 2.

V (s) is set to 0 because there are |S| + 1 unknown variables but only |S|
equations. In [29], it is shown that this algorithm would converge in finitely

many steps to give a gain-optimal policy.

2.3.2 Value Iteration

The policy iteration algorithm requires solution of |S| linear equations at every

iteration, this becomes computationally complex when |S| is large. An alter-

native solution methodology is to iteratively solve for the relative values and

average reward. These algorithms are called value iteration methods in dynamic

programming literature.

The right hand side of Bellman equation is as follows:

maxa(r(x, a) +
∑
y

(
Pxy(a)V πk

(y))
)

(2.6)
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Let us denote the mapping in Equation 2.6 by T (V )(x), this mapping is monotone

which is an important property used in the proof of this algorithm. The value

iteration algorithm is as follows:

1. Initialize V 0(t) = 0 for all states t, and select an ε > 0. Set k = 0.

2. Set V k+1(x) = T (V k)(x) ∀x ∈ S

3. If sp(V k+1 − V k) > ε, increment k and go to step 2

4. For each x ∈ S, choose π(x) = a to maximize
(
r(x, a) +

∑
y Pxy(a)V k(y)

)

In step 3, the sp denotes span semi-norm function which is sp(f(x)) =

maxx(f(x)) − minx(f(x)).

In value iteration algorithm, the values V (x) can grow very large and cause

numerical instabilities. A more stable version proposed in [30] is called relative

value iteration algorithm. This algorithm chooses one reference state and value

of that reference state is subtracted from value of all other states in each step as

shown below:

V k+1(x) = T (V k)(x) − T (V k)(s) ∀x ∈ S

2.3.3 Asynchronous Value Iteration

Both value iteration and policy iteration are synchronous algorithms because

at each iteration whole state space is swept. Only the old values of the other

states are used when updating the relative value of a state. It is shown that

asynchronous version of value iteration given in previous section may diverge ac-

cording to some conditions. However, there are some other asynchronous control

methods, below an asynchronous control method by Jalali and Ferguson [31] is

given.
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1. At time step t = 0, initialize the current state to some state x, cumulative

reward to K0 = 0, relative values V 0(x) = 0 for all states x, and average

reward ρ0 = 0. Fix V t(s) = 0 for some reference state s for all t. The

expected rewards r(x, a) are assumed to be known.

2. Choose an action a maximizing
(
r(x, a) +

∑
y P t

xy(a)V t(y)
)

3. Update relative value V t+1(x) = T (V t)(x) − ρt, if x �= s.

4. Update the average reward ρt+1 = Kt+1

t+1
, where Kt+1 = Kt + r(x, a)

5. Carry out action a, and let the resulting state be z. Update the probabil-

ity transition matrix entry P ′
xz(a) using a maximum-likelihood estimator.

Increment t, set the current state x to z, and go to step 2.

The relative values are updated only when they are visited, as a result this

algorithm is asynchronous.

2.4 Reinforcement Learning Algorithms

Note that in all of the algorithms below, average reward framework is adopted,

as a result the objective is maximizing the average reward. If we use average

cost framework, in which the objective is minimizing the average cost, we should

replace all of the max terms with min terms.

2.4.1 Discounted Reinforcement Learning

In RL literature, most of the existing work is on maximizing the discounted

cumulative sum of rewards. The discounted return of a policy π starting from a

state x is defined as

V π
γ (s) = lim

N→∞
E

(
N−1∑
t=0

γtRπ
t (s)

)
(2.7)
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where γ ≤ 1 is the discount factor, and Rπ
t (s) is the reward received at time

step t starting from state s and choosing actions using policy π. An optimal

discounted policy π∗ maximizes the above value function over all states x and

policies π.

The action value Qπ
γ(x, a) denotes the discounted return obtained by per-

forming action a in state x, and thereafter following policy π

Qπ
γ(x, a) = r(x, a) + γ

∑
y

(
Pxy(a) max

a∈A
Qπ

γ(y, a)
)

(2.8)

Here r(x, a) is the expected reward for doing action a in state x.

2.4.2 Q-Learning

In the aforementioned methods we had to have or estimate the probability tran-

sition matrix to calculate the value functions. Most reinforcement learning meth-

ods do not need any probability transition matrix to find the optimal policies.

Q-Learning is proposed by Watkins [32] as an iterative method for learning Q

values. All the Q(x, a) values are randomly initialized to some value. At time

step t, the learner either chooses the action a with the maximum Qt(x, a) value

or selects a random “exploratory” action. If the agent moves from state x to

state y and receives an immediate reward rimm(x, a), the current Qt(x, a) values

are updated using the following rule:

Qt+1(x, a) ← Qt(x, a)(1 − α) + α
(
rimm(x, a) + γ max

a∈A
Qt(y, a)

)
(2.9)

where 0 ≤ α ≤ 1 is the learning rate controlling how quickly errors in action val-

ues are corrected. Q-learning asymptotically converges to the optimal discounted

policy for a finite MDP. The convergence conditions are given in [33], shortly all

state action pairs must be visited infinitely often, and the learning rate α must

slowly decay to zero.
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2.4.3 R-Learning

R-learning is an average reward RL technique proposed by Schwartz [34]. R-

learning uses the action value representation like Q-learning. The action value

Rπ(x, a) represents the average adjusted value of doing an action a in state x

and then following policy π. That is,

Rπ(x, a) = r(x, a) − ρπ +
∑
y

(
Pxy(a) max

a∈A
Rπ(y, a)

)
(2.10)

Here ρπ is the average reward of policy π. R-learning can be described by the

following steps,

1. Set t = 0. Initialize all the Rt(x, a) to 0. Let the current state be x

2. Choose an action a that has the highest Rt(x, a), or with some probability

choose a random exploratory action.

3. Carry out action a. Let the next state be y, and the reward be rimm(x, y).

Update the R values and the average reward ρ using the following update

rules:

Rt+1(x, a) ← Rt(x, a)(1 − α) + α
(
rimm(x, y) − ρt + max

a∈A
Rt(y, a)

)
(2.11)

ρt+1 ← ρt(1 − β) + β
(
rimm(x, a) + max

a∈A
Rt(y, a) − max

a∈A
Rt(x, a)

)
(2.12)

4. Set the current state to y and go to step 2.

Note that ρ is updated when a non-exploratory action is chosen in step 3. Here

α is the learning rate controlling how quickly the errors in the estimated action

values are corrected and β is the learning rate for updating ρ. Both parameters

should be less than 1 and should be properly decayed to zero throughout the

learning process.
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2.4.4 Gosavi’s RL Algorithm

Unlike RL algorithms given above, this algorithm can be applied to Semi-Markov

Decision Processes (SMDPs) in which the transition times between states are not

constant. There are some proposed algorithms for solving semi-Markov average

reward problems but their convergence proofs are not complete [35] or they are

shown to diverge in some cases [36]. Gosavi’s RL algorithm has a proof in

[37] using method of ordinary differential equations. This algorithm is the first

Average Reward RL algorithm that has a convergence proof.

1. Set number of iterations m = 0. Initialize action values Q(s, a) = 0 ∀i ∈ S

and a ∈ As. Set the cumulative cost C = 0, the total time be T = 0, and

the cost rate ρ = ρs (can be zero). Start system simulation.

2. While m < MAX STEPS do

If the system state at iteration m is i ∈ S,

(a) Calculate p,α, and β using the iteration count m and the number of

times state i has been visited.

(b) With probability of (1 − p), choose an action u ∈ Ui that maximizes

Q(i, u), otherwise choose a random (exploratory) action from the set

Ui

(c) Simulate the chosen action. Let the system state at the next decision

epoch be j. Also let t(i, u, j) be the transition time, and g(i, u, j) be

the immediate cost incurred in the transition resulting from taking

action u in state i.

(d) Change Q(i, u) using:

Q(i, u) ← (1 − α)Q(i, u) + α
(
g(i, u, j) − ρt(i, u, j) + max

v
Q(j, v)

)

(2.13)
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(e) In case an exploratory action was chosen in step 2(b) go to step 2(f),

else

• Update total cost C ← (1 − β)C + βg(i, u, j)

• Update total time T ← (1 − β)T + βt(i, u, j)

• Calculate cost rate ρ ← C
T

• Go to step 2(f)

(f) Set current state i to new state j, and m ← m + 1. Go to step 2(b)

For MDPs set all t(i, u, j) = 1. Calculation of p, α and β will be described

in the next sections. In setting initial value of ρ, estimate of average reward will

result in faster convergence.

2.5 Learning Rate Schedules

In the above sections, it is mentioned that learning rates α, β should be decreased

to 0, in order for the algorithm to converge. The decreasing mechanism has a

large effect on the rate of convergence of the algorithm. In this section, we will

present some widely used methods for decreasing the learning parameters but

first we will describe the need for decreasing these parameters. Consider the

update rule for Q-learning:

Qt+1(x, a) ← Qt(x, a)(1 − α) + α
(
rimm(x, a) + γ max

a∈A
Qt(y, a)

)
(2.14)

By some modification Equation 2.14 becomes:

Qt+1(x, a) ← Qt(x, a) + α
(
rimm(x, a) + γ max

a∈A
Qt(y, a) − Qt(x, a)

)
(2.15)

According to action-value representation definition, Q(x, a) is the reward

gained when action a is chosen in current step and optimal policy is applied

afterwards. As a result Q(x, a) should be equal to immediate cost (rimm) plus
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the maximum discounted reward of the next state (maxa∈A Qt(y, a)). As our

objective is maximizing the average reward gained, we choose the actions with

highest Q values, that is why the maximum of the Q values of next state is chosen.

In Equation 2.15, it is seen that the difference of Q(x, a) from its expected value

is added to Q(x, a) in order to decrease this difference. This is called a“temporal

difference (td) method” in learning literature. Here the optimal value of Q(x, a)

is our target and we want to reach there by adding the differences to its value.

In order to prevent oscillations around the target point, there is a learning rate

α applied, which is chosen between 0 and 1. For better approximation to target

point this α should be small, which increases the number of iterations required

to reach the target value. The appropriate method is starting with a large α

(close to 1) and reducing it to zero [38]. There are various methods of reduction,

now let’s survey most common ones.

2.5.1 Constant Learning Rate

The simple solution is taking learning rate to be constant which results in persis-

tent residual fluctuations. The magnitude of such fluctuations and the resulting

degradation of system performance are difficult to anticipate. Choosing a small

value of learning rate (η) reduces the magnitude of fluctuations, but seriously

slows convergence, whereas a large value can result in instability. An example

will help our understanding of the problem. In this example the coefficients of a

4th degree polynomial will be found using delta-learning rule [26]. Delta-learning

is a method used for fitting a function to samples coming from an unknown func-

tion. In this method, the coefficients of approximating function are updated

according to difference between real and estimated values in order to minimize

the mean square error.

In Figure 2.2 performance of different learning rates approximating the poly-

nomial is shown, the learning lasted for 100000000 iterations. In this figure it
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Figure 2.2: Approximation with different constant learning rates

Learning Rate (η) Variance
0.01 3.02x10−11

0.1 4.94x10−26

1.0 4.93x10−14

Table 2.1: Learning performance with different rates

is seen that all the algorithms have converged to target value η = 1.0 being the

fastest. A closer examination of these plots will reveal more details about the

effects of learning rates.

In Figure 2.3 the last 1000 values of approximated coefficients are drawn, we

observe that the approximation with η = 0.01 haven’t converged to target value

yet. The approximation with η = 0.1 has converged to desired value and stayed

there whereas η = 1.0 version is oscillating around the desired value. When one

makes the number of iterations higher, the learning with η = 0.01 will eventually

converge to the desired rate with a smaller error than bigger learning rate ones.

The variance of last 1000 coefficients will be more meaningful in describing the

convergence, which is shown in Table 2.1

24



0 100 200 300 400 500 600 700 800 900 1000

9.9446

9.9446

C
oe

ffi
ci

en
ts

Last 1000 Iterations for Different Learning Rates

η=0.01

0 100 200 300 400 500 600 700 800 900 1000
10.0001

10.0002

10.0002

10.0002

10.0003
η=0.1

0 100 200 300 400 500 600 700 800 900 1000
10.0002

10.0002

10.0003

η=1.0

Figure 2.3: Approximation with different learning rates last 1000 iterations

From these results we can infer that η = 0.1 constant had better convergence

result, but this may not be true when we consider convergence speed. A mech-

anism that will start with larger learning rate and later make that rate small

will reduce the variance of coefficients while decreasing the number of iterations

required for convergence.

2.5.2 Time Reciprocal Learning Rate

In this scheme, learning rate is taken to be a function that is inversely propor-

tional with time. In this approach, η = c
t
is employed in which c is a constant and

t is the time. This is the most widely used choice in stochastic approximation

literature which typically results in slow convergence to bad solutions for small

c and coefficients will blow-up for big c. For polynomial approximation example

this scheme is not able to find the correct coefficient for c = 1.0 which is shown

in Figure 2.4 because of high speed decreasing of the learning rate with number

of iterations.
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Figure 2.4: Approximation with time reciprocal learning rate

2.5.3 Darken Chang Moody (DCM) Scheme

Search Then Converge (STC) learning schedules are proposed for solution to

the problems of escaping from metastable local minima, finding a ”good” local

minimum and achieving asymptotically optimal rate of convergence [39]. With

STC schedules, η is chosen to be a fixed function of time, such as the following:

η(t) = η0

1 + c
η0

t
τ

1 + c
η0

t
τ

+ τ t2

τ2

(2.16)

This function is approximately constant with value η0 at times small com-

pared to τ (the search phase). At times large compared with τ (the converge

phase), the function decreases as c
t
. This schedule has demonstrated a dramatic

improvement in convergence speed and quality of solution compared to tradi-

tional learning schedules. This method combines the speed of high learning rates

with accuracy of lower learning rates. Consider Figure 2.5 which shows the vari-

ance of learning parameter with number of iterations. Here η0 = c = 1.0 and

τ = 1015.
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Figure 2.5: η variation with DCM scheme

Learning Rate (η) Variance
DCM 4.94x10−26

0.1 4.94x10−26

1.0 4.93x10−14

Table 2.2: Learning performance with different learning rate schedules

When we examine Figure 2.5, we infer that the learning result is as accurate

as η = 0.1 constant case with a faster convergence. The learning process is drawn

along with η = 0.1 constant case in Figure 2.6

It is seen that DCM scheme has the speed of η = 1.0 constant case, but

the accuracy is the same with η = 0.1 constant case. The variance of last 1000

terms is the same for DCM and constant η = 0.1 case. This proves our initial

assumption that DCM will combine the speed and accuracy of constant learning

rate schemes.

As a conclusion, the variation in the learning rate brings the flexibility of

choosing speed and accuracy during the learning process. If we have a constant

learning rate, we have to sacrifice either speed of convergence or accuracy of

learning, but with adaptive learning rate schedules we can have both of them

and get more stable results.
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2.6 Exploration

Exploration is essential for RL algorithms to converge. The convergence theo-

rem of all reinforcement algorithms require that all state action pairs (x, a) are

visited infinitely often [40]. An example would be helpful in understanding the

importance of exploration in RL. Consider a 3-armed bandit problem, a bandit

is a gambling machine in which one puts money and pull an arm, and with a

probability earns some money. Figure 2.7 gives the Markov model for the ban-

dit system, the numbers in parenthesis give the action number and associated

reward, for example (1, 2) means action 1 has a reward of 2.

Assume that Q-learning algorithm is used, and we have initialized all Q(x, a)

pairs to zero. In the first iteration, we are in state 0, we choose action 1 and

have a reward of 2. This means Q(0, 1) becomes a positive number according

to update rule 2.9. In the next step, we end up in state 0, the maximum Q

value is associated with action 1 because it is a positive number whereas the
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Figure 2.7: Markov model for 3-armed bandit problem

others are 0, so we again select the same action. The result is we will never have

the chance of trying other actions because of our greedy manner of choosing

the action with maximum Q value. We would have a reward of 10 if we have

once tried action 3 and we will stick with it instead of trying action 1 forever.

The method of selecting the action with maximum Q value is called greedy action

selection and prevents the algorithm from reaching the optimal solution. In order

to reach the optimal solution, we should not always be greedy and sometimes

try another action with some probability which is called exploration. There are

various methods for exploration in reinforcement learning, and this is another

area of research. Exploration is not good in the short run because we may select

the worst actions, but in the long run we will find the action with highest reward

and maximize our reward.

In some RL problems, we should find the optimal policy while the system is

running therefore too much exploration will lead the system to very bad states

and performance degradations will occur. A better way will be making a trace

of the system, then running the RL algorithm off-line using the trace with a

high exploration rate. Later we can use the policy found and the Q values in

the system with a small exploration rate in order to catch up with changing

conditions in the system therefore we will reduce the amount of performance

degradation due to exploration.
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2.6.1 ε-Greedy Exploration

This is the simplest method of exploration, instead of selecting the action with

highest Q value, with ε probability we select a random action. All actions have

equal probability in the exploration step. This is not a powerful method since

we never take into account the number of visits to a state-action pair.

2.6.2 Boltzmann Exploration

This is a method of assigning probabilities to each action according to Q values.

Initially, all the actions have equal probabilities independent of their Q values,

during the simulation the importance of Q values is gradually increased. In

the limit the action with highest Q value is chosen, and exploration ends. The

probabilities are assigned according to formula:

pk(x, a) =
e

Qk(x,a)

Tk

∑
a∈A e

Qk(x,a)

Tk

(2.17)

Here pk(x, a) stands for probability of choosing action a in state x at simula-

tion step k. T is the temperature parameter controlling the degree of randomness

as in Boltzmann distribution [41], [42]. The temperature parameter Tk starts

from a high value and decreased through the simulation. When Tk is high, all

actions have almost equal probability which means a high degree of exploration,

when Tk becomes closer to zero, the action with the highest value will be as-

signed a probability of 1 which means no exploration. Any of the learning rate

schedules given in the previous section can be chosen as the decreasing scheme.
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2.6.3 Recency-based Exploration

In recency based exploration [42], the action selected is one that maximizes the

quantity Q(x, a) + ε
√

N(x, a) where N(x, a) is a recency counter and represents

the last time step when action a is tried in state x, ε is a small constant < 1.

2.6.4 Uncertainty Estimation Exploration

In this strategy, with a fixed probability p, the agent picks the action a that

maximizes Q(x, a) + c
Nf (x,a)

where c is a constant and Nf (x, a) represent the

number of times that the action a has been tried in state x. With probability

1 − p, the agent picks a random action.

2.6.5 ε-Directed Exploration

In this exploration scheme, with ε probability the least visited action will be

selected as the exploratory action. This way the number of visits to each action

will be equal for high exploration rates. This type of exploration scheme is found

to be useful for call admission problems [43].

2.6.6 Visit Probability Exploration

This exploration methodology is proposed in this thesis. In this exploration

strategy, with (1 − ε) probability, we choose the action with maximum Q(x, a)

value. With ε probability we enter exploration phase. In the exploration phase

every action is assigned a probability that is inversely proportional to number of

visits to that state action pair. Let’s denote visits to state action pair (x, a) by

V is(x, a), then probability of choosing action a′ in state x in exploration phase
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is given by:

P (a = a′) =

∑
k∈A V is(x, k) − V is(x, a′)
(N − 1)

∑
k∈A V is(x, k)

(2.18)

Here N denotes the size of action space for state x. By this exploration

strategy, least visited actions will be visited in the exploration phase.

2.7 Generalization and Function Approxima-

tion

In the sections so far, we have assumed that the value functions or state-action

values are represented as a table with one entry for each state or each state-

action pair. Except in very small environments, this means impractical memory

requirements. The problem is not just the memory needed for large tables,

but the time and data needed to accurately fill them. We can generalize our

experience with a limited subset of state space to a good approximation over a

larger subset.

Generalization is a problem and there is still research on these techniques. In

many tasks, most of the states will never be visited enough to make the algorithm

converge. This will always be the case when the state or action spaces include

continuous variables or large number of sensors, such as a visual image. The

only way to learn anything at all on these tasks is to generalize from previously

experienced states to ones that have never been seen.

The mostly used type of generalization is function approximation, which takes

samples from a desired function (value function, state-action value) and attempts

to approximate them by a function in terms of state variables [44].
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2.7.1 Function Approximation

A method of allowing reinforcement learning techniques to be applied in large

state spaces is function approximation. In this method, a function approximator

is used to represent the value function by mapping a state description to a value.

In this methodology, value function is written as a function of features that

describes the state of the system. Assume that our state space consists of two

variables θ1 and θ2, the problem is that can we describe Q values of state-action

pairs by the help of a Q(x, a) = f(θ1, θ2) type of function? The type of f(θ1, θ2)

is problem dependent, one can choose polynomial type of functions with varying

degree or one can use some other type of functions like cubic splines. The best

methodology is solving the problem using look-up table method for a small state

space and examine the Q values, this way one can see what type of function

would be useful for approximating the Q values in a large state space problem.

If our initial type of function is not suitable to problem, we are in a bad situation.
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In Figure 2.8, Q values for a link sharing problem is shown as a solid blue

line. We can fit this Q value distribution, a function in terms of Users, in

the same figure the approximations are also drawn. As we see a four degree

polynomial is not enough to extract all the information in the Q values, on the

other hand spline type of approximation has shown very good results. In finding

the approximating functions, a rule called Delta Learning Rule by Widrow and

Hoff is employed [26].

2.7.2 Delta Learning Rule

In this rule, one has some sample values of an unknown function and one wants

to fit some function to these values. This rule has the objective of minimizing

the mean square error (the sum of squared differences between samples and

approximated values), sometimes this rule is called LMS standing for Least

Mean Square [26]. Suppose you want to approximate yk values by a function

y′
k = f(θ1, θ2, .....θn). The mean square error is given by:

MSE =
∑

k(y − y′)2

In order to minimize MSE, we should increase or decrease y′, i.e. we have to

change (θ1, θ2, ....θn) = 
θt. The best way is to increase these parameters according

to their effect on y′, if we change them in the direction of the gradient of y′ this

objective is satisfied. Call (y − y′) = ε

∇ε�θt
= −2 × ε ×∇y′

�θt

thus the update rule for delta learning rule is:


θt+1 = 
θt + α × ε ×∇y′
�θt

(2.19)
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Here α is a small learning rate. An example would clarify the mathematical

notation used, we try to find the coefficients of a 4th degree polynomial. In this

example, 100 samples from a 4th degree polynomial is taken and these samples

are approximated again by a 4th degree polynomial using the delta learning rule.

In here, y′ = r[0] × x4 + r[1] × x3 + r[2] × x2 + r[3] × x + r[4] will be used as

the approximating function. Here 
θt = (r[0], r[1], r[2], r[3], r[4]), and the learning

lasted for 100 million iterations. The algorithm for this example is as follows:

1. Initialize r parameters to random values

2. Pick a sample (y, x) point, evaluate the approximator at x to find y′ and

calculate ε = (y − y′)

3. Update r parameters as follows:

r[0] ← r[0] + α × ε × x4

r[1] ← r[1] + α × ε × x3

r[2] ← r[2] + α × ε × x2

r[3] ← r[3] + α × ε × x

r[4] ← r[4] + α × ε

4. Go to step 2 until a target error or maximum number of iterations is

reached.

The original polynomial coefficients and the coefficients found by approxima-

tion is given in the Table 2.3. As we observe, there is some error for 10 million

iterations, but the exact polynomial is found by learning that lasted for 100

million iterations. The polynomial learned after 10 million iterations and the

original one is shown in Figure 2.9

As a result the delta-learning rule can be used to describe samples of an

unknown function by an approximating function.
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Term Orig. Coef. Appr. Coeff. (10 m. iter.) Appr. Coeff. (100 m. iter.)
Constant -953.5 -941.1 -953.5

x 13290 13083 13290
x2 -50095 -49288 -50095
x3 62848 61734 62848
x4 -25607 -25105 -25607

Table 2.3: Delta Learning Results
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Figure 2.9: Approximation by Delta Learning Rule

2.7.3 Combining Reinforcement Learning with Delta

Learning Rule

Reinforcement learning can be combined with the delta learning rule and can be

applied to very large or continuous state space problems. Consider the update

rule for Q-learning:

Qt+1(x, a) ← Qt(x, a) + α (rimm + γ maxa∈A Qt(y, a) − Qt(x, a))

From the form of update rule we can see a similarity to delta learning rule, in

each update the Q(x, a) value is brought closer to its real value, the term that is
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multiplied by α is the difference of what Q must be and current Q and a fraction of

this difference is added to Q value. Let (rimm+γ maxa∈A Qt(y, a)−Qt(x, a)) = td,

then this td is made smaller at each iteration. Note that td is similar to ε in the

delta learning rule. Assume that Q(s, a) can be described by a vector function


θt t. Then at each iteration we can update them as follows and have a function

approximated version of Q-learning:


θt+1 = 
θt + α × td ×∇Qt(s, a)�θt
(2.20)

Thus instead of updating the element in a memory cell, we update a set of

coefficients after calculating the td at each iteration.

2.8 RL Methods vs DP Methods

Some requirements and characteristics of DP methods such as model requirement

and size of state space encourage people to use RL methods for solving their

problems.

RL methods do not require the state transition probability matrix Pxy(a) as

an input. Thus RL methods save us from the burden of deriving the probability

transition matrix. This property is important because in some problems it is

almost impossible to derive the probability transition matrix. Moreover some

problems may have continuous state spaces, in which the state transition matrix

do not exist, where the DP methods become obsolete.

In addition to these, DP methods are synchronous meaning that at each up-

date all the state space is swept. On the other hand, in RL methods, one updates

only the visited states. This has the advantage that the states that are not likely
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to be experienced will not be learned and time will be spent on more impor-

tant states that will be visited much often. Another problem occurs in problems

with large state spaces, the complexity of DP algorithms increase with the size

of state space and after some point these algorithms become intractable, this is

called curse of dimensionality in DP literature. When we turn our attention to

RL methods, we see that there are methods of generalization such as function

approximation, which makes RL algorithms attractive for applications to prob-

lems with large state spaces, because by function approximation one can update

a large part of state space in a single sweep and get rid of the computational

complexity of sweeping all the state space. Another problem with large state

spaces is the memory requirement to store the value of each state action pair,

function approximation can reduce the memory requirement of a large state space

to a few number of features and coefficients as shown in the section of function

approximation for an example of fourth degree polynomial.
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Chapter 3

Introductory Problem: Resource

Allocation with Buffering

This problem is chosen as an introductory problem for the reinforcement learning

(RL) methods. This problem seemed as a good choice, because having an optimal

solution it gave us the opportunity of comparing performance of RL methods

with DP methods. The state space associated with this problem is intentionally

chosen small, and the probability transition matrix is easy to find which makes

this problem relatively easier to solve.

3.1 Resource Allocation with Buffering

By the developments in multimedia and the Internet technologies, the transfer

of compressed video over the Internet has become widespread. The inherent

variable bit rate (VBR) nature of compressed video makes the transfer painful

because of the constant capacity links.

A key characteristic of compressed video source is its burstinesss, that is, the

source exhibits peak rates which can be significantly larger than the long term
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Figure 3.2: Transfer of compressed video over the Internet

average rate. In Figure 3.1 frame sizes for a section of MPEG encoded Jurassic

Park movie is shown, there is a variation in the source rate not only over a period

of milliseconds to seconds but also over a period of tens of seconds to minutes,

corresponding to scenes with differing information content. Peak bit rates may

occur in scenes of high motion or flashing lights.

In the broadband integrated services network paradigm [45], variable bitrate

traffic from a source is queued at a buffer at the end system, and the network

drains the buffer at a given drain rate as seen in Figure 3.2. The drain rate is

chosen based on a traffic descriptor supplied by the source. If sources exhibiting

sustained bursts are allowed only a single (static) traffic descriptor to describe

their behavior (i.e. CBR links), they are faced with a number of choices each
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having a drawback of its own. Assume that the drain rate is chosen close to the

long term average rate in order to efficiently use the bandwidth. Then during

sustained peaks, either the data buffer at the end-system has to be very large, or

there will be many losses. If low loss rates are desired , then one has to make data

buffers very large in size which leads to expensive buffering at the end systems

and long delays for the sources. For an MPEG 1 encoded version of Star Wars

movie, the required buffer size when the link capacity is 5% over the mean bit

rate is 100MBit [10]. Setting the link capacity to the maximum bit rate of the

video file can be an option but most of the time your bandwidth will not be

fully utilized, you will pay for the capacity you don’t use. As a result, there

is a tradeoff between bandwidth efficiency and delay; when you increase your

bandwidth efficiency by setting link capacity close to mean rate, you will end up

with longer delays and vice versa. Other solution proposed for this problem is

renegotiating the link capacity according to the buffer size and incoming rate to

buffer which is called renegotiated constant bit rate (RCBR) [10]. Keshav et. al.

proposed an architecture that estimates the incoming bandwidth using an AR(1)

type of estimator, and renegotiates the bandwidth according to buffer size and

buffer thresholds.

RCBR scheme exploits the slow time scale variation of compressed video files.

Users of RCBR service are given the option to renegotiate their service rate at

any time. Renegotiation consists of sending a signalling message along the path,

requesting an increase or decrease of the current service rate. If the request is

feasible, the network allows the renegotiation, and upon the completion of the

request, the source is free to send data at the new CBR rate. The renegotiation

brings some overhead to system in terms of signaling and processing but this can

be kept small by limiting the renegotiation rate to a desired value.

In Figure 3.3, the renegotiation scheme is shown. The dashed line shows the

renegotiated CBR and the blue line is the video bitrate. When the renegotiated
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CBR is below the video bitrate, buffering occurs. When buffer size reaches a

value, a new CBR should be renegotiated requesting an increase in the band-

width. When the renegotiated CBR is above the video bitrate, the buffer is

emptied and when the buffer size goes below some value, there is a request to

reduce the bandwidth. By means of RCBR, slow time scale variations in the

source bitrate are compensated, fast time scale variations in the source bitrate

are compensated by the buffer. A small buffer is enough for fast time scale

variations which means lower buffering delays.

The calculation of optimal renegotiation schedule is the subject of this study.

For stored (offline) applications, the solution can be found by using a Viterbi-like

algorithm [10]. For interactive (online) applications there is a heuristic, making

use of the estimate of the incoming rate and the buffer size [10]. Our solution will

use reinforcement learning to find the optimal renegotiation schedule for offline

applications, also a cost mechanism that will limit the number of bandwidth

changes will be employed in the formulation to meet the CPU load requirements

of the network elements associated with bandwidth updates.
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Action = 3 Send 3 PacketsAction = 3 Send 3 Packets

Action = 4 Send 4 PacketsAction = 4 Send 4 Packets

Action = 5 Send 5 PacketsAction = 5 Send 5 Packets

Figure 3.4: Packet sending scheme for k = 5

3.2 Formulation

3.2.1 General Case

The system will be modeled as a discrete time system. A time slot is the amount

of time required to transmit a fixed size packet. will be equal to time a constant

packet is completely sent by the system. Assume 1000 byte packets and a 30Mbit

link, then a time slot is equal to 254.31 µsec. A real world video trace will be

used as the traffic source, this trace will be segmented into fixed size packets and

packet arrival times will be calculated. Then the number of packets arriving at

each time slot will constitute the input traffic.

Bandwidth Control

The system’s decision instants are the start of each kth time slot, k being any

positive integer. The action is defined to be the number of packets to send in the

next k time slots. For example, let k = 5, then the decided number of packets to

send can be any integer between 0 and 5. This way we can renegotiate 6 different

bandwidths for the CBR link, assuming a 30 Mbit/sec line, we can renegotiate

bandwidths of 0, 7.5, 15, 22.5, 30 Mbit/sec. The packets should be sent in a

way that avoids bursts, and is suitable for the renegotiated bandwidth scheme,

for example when 15Mbit/sec is renegotiated which is sending 3 packets in the

next 5 slots then a packet should be sent at each 2nd time slot, i.e we should

evenly distribute the packets to send between the k slots. The packet sending
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mechanism is very similar to a time division multiplexing scheme, and is shown

in Figure 3.4 for k = 5. In this figure, the black painted cells denote that a

packet is sent in that slot whereas the white ones show the slots that no packets

are sent.

Cost Structure

There are three type of costs involved in this problem.

Bandwidth Cost (b) For every unit of reserved bandwidth, we assume an as-

sociated cost b

Bandwidth Change Cost (s) This is the cost associated with each bandwidth

change. Each change in reserved bandwidth requires signaling in the net-

work elements which is costly in terms of CPU time and overhead. A cost

of s is incurred for each renegotiation.

Loss Cost (l) Each packet lost in the system due to buffer overflow results

in glitches in the video and audio, which causes degradation in customer

satisfaction. As a result, the system should refrain from losing packets,

thus there should be a cost associated with each lost packet.

As a result, our total cost is r(x, a) = bandwidthcost × bandwidth +

bandwidthchangecost × (1 − δ(|sign(previousaction − action|)) + losscost ×
numberofpacketslost.

Markov Chain Formulation

We have included the number of packets in the buffer, and the previously chosen

action in the state definition. The system should be aware of the buffer size

in order to avoid loss of packets, and the previous action is important because
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it indicates whether a renegotiation is required or not. As a result our state

is S = {(k, l) | 0 ≤ k ≤ |A|, 0 ≤ l ≤ |B|}, k stands for the previous

bandwidth, l is the number of packets in the buffer. Here |A| and |B| denote the

size of action space, and the maximum buffer size respectively.

pi,j(a), i, j ∈ S is the probability that next state will be j, when action a is

chosen in state j.

ci(a), i ∈ S is the expected cost incurred until the next state when action a

is chosen in the present state i.

As the system is sampled at discrete epochs, this problem fits into the Markov

decision framework and we can use RL methods associated with it.

3.2.2 Simple Case: k = 1

In this thesis, we do not study the general k case but instead we focus only on

the k = 1 case. The reason for this decision is that the k = 1 case is not only

simple but it also is sufficient to compare and contrast the DP and RL methods.

For the particular k = 1 case, decisions are made at each time slot.

Traffic Source

For packet arrivals, we assume a binomial arrival process:

P (X = x) = (1 − p) × px

where the discrete random variable X denotes the number of packets arriving

at each time slot and E(X) = p
(1−p)

. At each slot, we can send only 1 packet

so expected number of packets arriving at each slot should be less than 1. For

E(X) = 0.75, p is calculated to be 0.429.
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Buffer

For this problem, a maximum buffer size of 20 is chosen. When the maximum

buffer size is exceeded, incoming packets will be dropped and this is reflected in

the cost. Since the size of the buffer directly affects the size of the state space, we

should keep size of the state space small for dynamic programming algorithms

to be numerically tractable. Furthermore, RL algorithms require infinitely many

visits to each state in order to converge, thus a small state space makes the

algorithm faster to converge.

Actions

We have two different actions for this simple problem, our decision is whether

sending or not sending a packet in the next time slot. We have encoded the action

space so 0 corresponds to sending no packets in the next time slot whereas action

1 corresponds to sending a packet in the next time slot.

State Space Definition

State space is the same that is defined for the general case which is S = (k, l).

Size of state space equals to 42, which is equal to 2 × 21. 21 is the number of

buffer states, and 2 stands for the size of action space, as previous action is also

in action space. The size of state space is small therefore function approximation

for RL is not needed and also DP methods will perform reasonably well for this

small sized problem.

Probability Transition Matrix

The probability transition matrix Pxy(a) (x = (k1, l1) y = (k2, l2)) is as follows:
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• Pxy(a) = 0 when l2 < (l1 − a)

• Pxy(a) = (1 − p)pl2−l1+a when l2 < 20

• Pxy(a) = 1 − ∑19−l1+a
k=l1−a (1 − p)pk−l1+a when l2 = 20

where a denotes the current action.

DP Algorithms

Value iteration (VI) and relative value iteration (RVI) will be used as dynamic

programming algorithms. As you know the update rule for dynamic program-

ming algorithms require the term maxa(r(x, a) +
∑

y Pxy(a)V πk
(y)) to be cal-

culated. Our r(x, a) depends on number of packets lost, which is hard to find

without simulation. We have substituted it with expected number of packets lost

for a state action pair (x, a) that is E(LostPackets) = p21−x+a × 1
1−p

RL Algorithms

R-learning and Gosavi’s RL algorithm is used for calculation of RL policies for

this problem.

Exploration Methodology

Visit probability exploration is used for exploration purposes. As a result, least

visited actions had the highest probability of being chosen in the exploration

mode. Also the exploration rate ε is gradually reduced to zero from a high value,

which is found to be useful for learning. Initial value of ε is 0.1.
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Learning Rates

Learning rates α is reduced to zero using DCM scheme. Initial value of α is 0.2.

β is chosen to be constant and its value is 0.001.

Performance Measures

We have three performance measures for this problem. These are:

• Average cost per time slot

• Bandwidth efficiency which is BE = TotalPacketsCarried
MaxPacketsCouldBeCarried

× 100

We want to maximize the bandwidth efficiency. This indicates the amount

of bandwidth that is reserved and used.

• Average loss rate which is ALR = TotalBytesLost
TotalIncomingBytes

× 100

We want to minimize the number of bytes lost, because this is an indicator

of customer satisfaction.

• Average renegotiation rate which is ARR = TotalNumberofRenegotiations
TotalSimulationT ime

Average renegotiation rate should be kept small in order to reduce the CPU

load on the core network elements and signaling overhead in the network.

3.3 Implementation and Results

A discrete time simulator is written in C programming language. Also a simulator

to evaluate the policies found by RL algorithms is written. VI and RVI algorithms

are implemented using C language.
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Figure 3.5: Policy found using DP

3.3.1 RVI and VI Results

RVI and VI methods are proven to converge to optimal policies. For this small

problem their convergence time is very small but it grows exponentially by the

size of state space. We expect the optimal policy to be a hysteresis type of curve

for small bandwidth change costs, the system will buffer the packets, and then

send them until the buffer becomes empty, then the system will buffer incoming

packets again.

In Figure 3.5, policy found for b = 0.1, s = 0.5 and l = 1.0 is shown. As

we observe the found policy shows a hysteresis type of behavior. Assume that

buffer size is 0 and your previous action is zero, than you are on the lower curve.

The corresponding action is 0 meaning ”not send any packets” so the buffer size

gradually increases. When buffer size equals to 13 packets, the system decides

to send packets (action=1) because increasing buffer size beyond this value can

cause packet losses. As action equals 1 we move on to the upper curve, as the
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expected number of incoming packets (0.75) is less than sending rate, the buffer

size decreases slowly. When the buffer size equals 0, there are no more packets

to send, thus the system chooses the action 0 therefore setting the reserved

bandwidth to zero.

The average cost associated with this policy is 0.094. Bandwidth efficiency is

100 percent, and the average renegotiation rate is one renegotiation in every 30

time slot, and the loss ratio is 0.7 %. Assume that the policy always chooses the

action 1, then the average cost would be 0.1 which is higher than 0.094. When

the policy always chooses the action 0, then the average cost would be again 1

which is higher than 0.094.

Let’s observe the learned policy for an extreme case, the first that comes to

mind is setting the setup cost s to zero. The expected policy is sending the

packets whenever there exists a packet in the buffer, and closing down the link

when the buffer is empty, i.e the space between the upper line and lower line on

the policy plot would become smaller.

In Figure 3.6, the policy associated with setup cost equals to zero case is

shown. As you see, whenever a packet comes to system, the link is made ready

to send the packet. When the buffer empties, the link is closed down. The

average cost for this policy is 0.0817.

The second extreme case is the one in which the setup cost is very high. This

time the policy should be always sending the packets and never renegotiating

the bandwidth. An example is shown in Figure 3.7, where the setup cost is 0.85.

The system waits until the buffer reaches a threshold and establishes the link,

the link stays on forever. When you trace the upper curve, you see that it stays

as 1 when the buffer size is 0. Here the average cost is 0.1067 and the bandwidth

efficiency is 75 %. The average cost is slightly higher than 0.1 because of losses.
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Figure 3.6: Policy found using DP for s = 0, b = 0.1, and l = 1.0
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Figure 3.7: Policy found using DP s = 0.85, b = 0.1, and l = 1.0
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Figure 3.8: Bandwidth efficiency vs setup cost

As the expected number of incoming packets in a time slot is 0.75, the bandwidth

efficiency when the link is always active turned out to be 75 %.

Bandwidth Efficiency Vs Setup Cost

One of our objectives was providing a bandwidth efficiency close to 100 percent.

We provide this by means of bandwidth cost, but if the setup cost becomes

reasonably expensive compared to bandwidth cost, the system can choose always

sending the incoming packets, i.e the highest bandwidth therefore the efficiency

decreases because the system is sending packets even when there are no packets

to send. Figure 3.8 shows the bandwidth efficiency vs setup cost curve. When

setup cost is 0.75, no renegotiation scheme is selected.

This graph shows that after some value of setup cost, the system finds out

that renegotiations are more expensive than bandwidth and decides not to tear
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Figure 3.9: Renegotiation rate vs setup cost

the link down. As a result, the system stays on when there are no packets are in

the buffer, so bandwidth is reserved even when there is no need.

Renegotiation Rate vs Setup Cost

One will expect that when the setup cost becomes higher, the system will reduce

the number of renegotiations; this is shown in Figure 3.9. Number of renegotia-

tions decrease with the setup cost, when the setup cost increases, renegotiation

rate will eventually decrease to zero. In this system, we control the number of

renegotiations by adjusting the setup cost. A cost scheme can be found that is

suitable for the requirements of the system by trial and error. If the resulting

renegotiation rate is higher than what the system can handle, you can increase

the setup cost and rerun the algorithm and calculate a policy.
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Figure 3.10: Average cost vs setup cost

Average Cost vs Setup Cost

We expect the average cost to increase with the setup cost, but after some value

the average cost will not increase because the system decides not to renegotiate

therefore the effect of setup cost on average cost diminishes.

In Figure 3.10 we see average cost vs setup cost curve, the average cost

increases with increasing setup cost. Here b = 0.1 and l = 1.0. The average cost

is less than b for all s, so the renegotiation system is better in average cost than

the case of choosing a = 1 for all the time.

Loss Rate vs Setup Cost

Loss rate is expected to increase by setup cost, because when setup cost increases

the system tries to decrease the number of renegotiations, thus the point when

the system starts to send packets will increase, so the average buffer size will
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Figure 3.11: Loss rate vs setup cost

be larger which means there is a higher probability of packet loss. This effect is

observed in Figure 3.11.

As we observe, the loss rate is very small for all cost combinations, this is

because we have chosen the loss cost to be 1.0 which is much higher than the

bandwidth cost. You can adjust this loss cost in order to have less loss in the

system.

3.3.2 RL Results

R-learning and Gousavi’s RL algorithms were implemented. There are two differ-

ent programs for each algorithm, one program finds the algorithm by simulation

and the other program uses this algorithm and runs the system and evaluates

the performance of the policy. The results of the RL algorithms happened to be

same with the policies of DP so the RL algorithms converged to optimal policies.

This problem is important in the sense that, it constituted an example for the
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Figure 3.12: Policy found by RL for b=0.1, s=0.5 and l=1.0

convergence proof of RL algorithms to optimal policies. In Figure 3.12, it is seen

that the policy found by RL algorithms are the same found by DP algorithms

for the same cost structure of b = 0.1, s = 0.5, and l = 1.0.

Now let’s check whether the policies found for the extreme cases are the same

with DP policies. The first extreme case is the one with setup cost equal to zero,

the system allocates the maximum bandwidth and sends the packet whenever

there exists a packet in the system, this behavior is depicted in Figure 3.13, this

policy is found by RL. As you see this policy is the same as optimal policy found

by DP algorithms.

The second extreme case is when the setup cost is too high. This time the pol-

icy found will never select action 0, or never renegotiate. This policy is depicted

in fig 3.14, which is again the same as DP policy.

As a result, RL algorithms found the same policies with DP algorithms for

these three different cost examples. In order to have a convincing convergence
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Figure 3.13: Policy found by RL for b=0.1, s=0 and l=1.0
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Figure 3.14: Policy found by RL for b=0.1, s=0.85 and l=1.0
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s DP R-learn Gosavi
0 0.077 0.078 0.077

0.1 0.081 0.082 0.082
0.2 0.085 0.085 0.085
0.3 0.088 0.088 0.088
0.4 0.091 0.091 0.091
0.5 0.094 0.094 0.094

Table 3.1: Average costs for different algorithms, b = 0.1 and l = 1.0

proof, we should have more example points. For this purpose, RL algorithms

are run for 50 different cost combinations and the results are compared with DP

algorithms in terms of average cost. This is shown in Figure 3.15.

As you may have noticed RL algorithms are different from DP algorithms at

certain points. At these points, RL algorithms were unable to find the optimal

policy but they found some sub-optimal ones. This is due to setting of all learn-

ing parameters to the same value for all simulations. The parameters should be

adjusted according to cost values, the adjustment is done by trial and error and

there is no robust mechanism to adjust them. Also these results are obtained
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by running the simulation for just one time, for more accurate results, the sim-

ulations are done for many times with different random number generator seeds

and the average of them is drawn. This is not applied in this simulation because

of time constraints because there are 50 points in the plot, if you simulate 40

times for each simulation, it makes 2000 runs which is very time consuming. At

most of the points, the algorithms have found the optimal policy, which is an

encouraging result. Table 3.1 shows that the difference in the performances of

algorithms is minor, and the different points are confined to end points of the

simulations which proves that the difference is due to the constant choice of the

learning parameters.

3.3.3 Function Approximated RL Results

This problem’s main purpose is to show convergence results for RL methods.

As a result we should show that RL algorithm with function approximation can

converge to some reasonable policy. It is known that, function approximated RL

algorithms have no guarantee to converge to optimal policies, they converge to

some suboptimal policy. For this example, we have calculated the Q(s, a) values

for a small example, it is found that the Q values can be represented by a fourth

degree polynomial. In Figure 3.16, the Q[0][BufferSize][0] values are plotted

along with its 4th degree polynomial approximation.

One may see that the error with a 4th degree polynomial is very small, there-

fore we can extract many of the features of Q values with a 4th degree polynomial.

As a result the following type of function is used to approximate the Q values

where bs is the buffersize:

Q[bs] = r[0] + r[1] × bs

20
+ r[2] × bs

20

2

+ r[3] × bs

20

3

+ r[4] × bs

20

4

(3.1)
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Figure 3.16: Q values for tabular R-learning

Here the r values are different for each previous action and action value, this

makes a parameter set of 20 different r values. This way you can store the 84

element action-state space in terms of 20 values. Figure 3.17 shows the original

Q values with approximated ones. The functional form of Q values is very similar

for both representations, but the values are different. The simulations are run

for 500 million steps, and the parameters are obtained through the delta-learning

rule.

Although the Q values are different from tabular representation method, the

resultant policies are very close to optimal policies. We infer that the form of

Q value function is important in function approximation, because the minimum

of Q values in a state is chosen as an action, if all the Q values shift by some

amount, the policy will not change and the average cost will be the same. For this

purpose, we have run 50 simulations with function approximation scheme and

compared the average costs of function approximation with that of the tabular

representation method. The graph is given in Figure 3.18.
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Figure 3.19: An example policy found by function approximated RL

An example policy found by function approximated R-learning is shown in

Figure 3.19, as you may notice, this policy is not very different from lookup table

policies. Only the link establishing and tearing down points are slightly different

from the optimal policy.

3.4 Discussion

On a simple example problem, it is shown that RL policies can find optimal

policies as DP algorithms do without having to find the probability transition

matrix for the underlying problem. This model-free nature of reinforcement

learning algorithms opens up a new space for researchers for problems with hard-

to-derive state transition matrices. Moreover, some problems may not have a

model and these can not be solved by DP algorithms. RL algorithms have

the possibility of being applied to real world problems with ease because one

needs to obtain just the traces of the problem data and apply the algorithm
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there. DP algorithms become inefficient when the state space of the problem is

very large, their computational complexity increase, the look-up table method

becomes obsolete. On the other hand RL algorithms can work, when you can

implement a simulator for the system. In addition to these, RL algorithms can

be applied to problems with continuous state spaces where DP algorithms are

not applicable.

Function approximation is a good tool for state generalization. You can find

suboptimal policies for problems with large state spaces. Also you can reduce

the computational complexity of a problem by sacrificing the optimal policy

and obtaining a suboptimal one. In the previous sections, it is shown that the

suboptimal policies found by function approximated RL are indeed very close to

optimal policies.

By solving this simple problem, the experience and knowledge for applying

RL to more complex problems is obtained. For some problems, optimal solution

may not ever be known, thus we should learn ways of obtaining better results by

RL by first applying it to a simpler problem with known optimal solutions.
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Chapter 4

Dynamic Link Sharing Problem

In the dynamic link sharing problem, a link is shared by a number of users.

The link is divided into a number of channels, which gets an equal share of the

link capacity. Determining the number of channels according to the number of

active users is a Markov decision problem (MDP). In this problem, our objective

is maximizing the average bandwidth per user whilst limiting the number of

bandwidth updates (update rate) to a given number. The number of bandwidth

updates is limited in order to reduce the amount of signaling between the network

elements. Moreover, in this work end users are assumed to stream video over

the shared link, as a result there is a limit on the rate adaptation rate of the

encoders, they can not change their encoding bitrate arbitrarily, thus an upper

limit should be put on the bandwidth update rate of the system.

In this chapter, first the general formulation for the system would be given,

then the proposed heuristics and their drawbacks will be discussed. MDP and

RL formulation for the problem will be shown. In real world, the user arrival

rate process is not homogeneous, statistics show that telephone traffic makes two

peaks throughout the day, so an RL framework for nonhomogeneous arrivals will

be proposed and its working conditions will be discussed. Later the results for
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homogeneous traffic will be presented, and the results for nonhomogeneous traffic

will follow.

4.1 General Formulation

Before going into details of performance measures, it is appropriate to give the

conventions adopted for this problem.

Assume that there are k channels set-up at time t, then the allocated rate for

each channel is bk. Assuming link capacity C, bk can be defined as:

bk = C
k

This bk can be known beforehand as a function of k by the end users, or can

be broadcasted by headend using the downlink. The end users have maximum

and minimum bandwidth requirements denoted by bmax and bmin, respectively.

kmax defines the maximum number of channels in the system and kmin is the

minimum number of channels and they are defined as follows:

kmax ≤ C
bmin

, kmin ≥ C
bmax

The number of channels on the link is selected by headend between these

numbers and the bandwidth per user is determined. The system should always

make number of channels larger than or equal to number of active users as

long as the maximum channel limit is reached due to QoS requirements. When

the maximum channel limit is reached, the incoming users are denied access to

shared link system. Assume a link capacity of 2Mbps, bmax = 0.5Mbps and

bmin = 0.2Mbps, then kmax = 10 and kmin = 4. The number of channels can

not exceed 10, therefore at most 10 concurrent users can exist in these system.

Assume that the number of active users is 5 ,and number of channels established

on the link is 8. Therefore each user will have 0.25 Mbps assigned bandwidth.
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4.1.1 Performance Measures

Performance measures for such a shared link system are average allocated rate

for a connection, and update rate. Average allocated rate should be kept high

while keeping the update rate as low as possible.

Average Bandwidth (AB)

Average bandwidth is defined as the average bandwidth a user gets during its

lifetime. Assume that the holding time for a connection is H. Let b(t) be the rate

allocated to the connection at time t. The mean rate allocated to the connection

is:

ÂB(H) =

∫ H

0
B(t)dt

H

Average Update Rate (AUR)

Average update rate is the average number of bandwidth updates that take place

in unit time. For calculation of AUR, the bandwidth updates are counted during

a time window, and this number is divided to this window for finding average.

In our work, the duration of time window is chosen as an hour.

4.1.2 Traffic Characteristics

In this thesis, we have assumed that bandwidth requests are identical and they

arrive at the headend according to a homogeneous Poisson process with rate

λ. We also assume exponential holding times for each connection with mean 1
µ
.

The arrival rate (λ) is determined using the formula p = EB(kmax,
λ
µ
) where p

is the rejection probability which is typically chosen as 0.01. EB is the Erlang’s

B formula. This formula gives the maximum arrival rate (λ) possible in order
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to have p rejection probability when the maximum number of channels is kmax.

Erlang’s B formula is given below:

EB(kmax, ρ) =
ρkmax

kmax!∑kmax
i=0

ρi

i!

where ρ = λ
µ

4.2 Stationary Case

In the stationary case, λ and µ are chosen as fixed. The solution is finding a

policy which is a mapping from number of users to number of channels to set-up.

4.2.1 Solutions Proposed

Switched Virtual Circuit (SVC) Heuristic

In this approach, the number of established channels is exactly equal to the

number of active users. This is equivalent to establishing a virtual circuit for

each incoming user which is called switched virtual circuit in ATM. This means

we update the rate of connections at each user arrival and departure. For example

for a 100 channel system, the bandwidth update rate is about 3500 updates/hour

on the average which can not be tolerated by the end users and the core network

elements. No control is imposed on the bandwidth update rate, which is the

main drawback of this heuristic. On the other hand, this heuristic is the best in

bandwidth efficiency. As the number of channels is equal to number of users, the

bandwidth of the link is fully utilized.
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Permanent Virtual Path (PVP) Heuristic

This approach works on the principle of setting-up maximum number of channels

that is allowed on the link and never changing the number of channels. Then the

users would always have their minimum required bandwidth bmin all the time.

This approach has the minimum network utilization because the link will be fully

utilized only when all the users are active at the same time. On the other hand

this approach has the minimum bandwidth update rate which is 0.

Argiriou Heuristic

This heuristic finds a static policy taking into account the average bandwidth

function according to number of users [23]. The bandwidth assigned to a user is

equal to total link capacity over number of active users in SVC heuristic, which

shows a behavior as shown in Figure 4.1 with a solid line, here total link capacity

is 2Mbps, maximum number of channels is 10 and minimum number of channels

is 1. Argiriou Heuristic (AH) approximates this curve by a piecewise constant

line, as shown by dashed line in the figure. The dash-dot line is the bandwidth

assigned by PVP heuristic.

As you may have noticed, when the number of active users is high, number

of allocated channels does not make a significant change in the bandwidth of

the users, as a result this heuristics sets up more channels when the number of

users is high and takes advantage of this in order to reduce the frequency of

bandwidth updates. This heuristic has the drawback of not having an explicit

bandwidth update rate control mechanism, also it is defined only for a maximum

of 10 channels case, no general form is given.

68



1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Active Users

A
ss

ig
ne

d
B

an
dw

id
th

(M
bp

s)

Bandwidth Assignments for Heuristics

SVC
Argiriou
PVP

Figure 4.1: Bandwidth assignments for various heuristics

RL Approach

We propose a method that learns the user-channel mapping by simulation. Also

a rate control scheme is adopted. The end-users specify the maximum number

of bandwidth updates they can tolerate and you can find a mapping policy ac-

cording to these specifications. The advantage of this approach is that it can be

applied to systems of any size with a few modifications as it learns the policy

only by simulation.

4.3 Non-Stationary Case

The analysis of communication systems revealed that the arrival process of cus-

tomers changes according to time of day. A sinusoidal change model is proposed
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for the daily changes which makes two peaks during the day [46]. The traffic

model chosen is shown in Figure 4.2.

4.3.1 Solution Proposed

The arrival rate space can be quantized to a finite number of levels. Then RL

algorithms can be used to find policies off-line for each of these quantized levels

using stationary traffic. If the frequency of arrival rate change is small enough

then a mechanism at the headend can detect the rate of arrival and load the policy

trained for that traffic rate and use it for assigning bandwidth to users. We call

this approach quasi-stationary approximation when the frequency of arrival rate

change is small enough to be detected.

Traffic Detection

We have assumed an exponential model of traffic for the arrivals, as a result if we

can estimate the interarrival time of customers we can have an estimate of arrival
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rate λ. The detection mechanism uses Robbins-Monro stochastic approximation

scheme to have an estimate of the arrival rate [47]. The detection mechanism

can be described as follows:

• Let τk be an interarrival time at time k

• τ̃ ← 0.99 × τ̃ + 0.01 × τk

• λ̃ = 1
τ̃

Then the headend can select the policy trained with a rate of traffic that is

closest to λ̃.

4.4 Semi Markov Decision Process (SMDP)

Formulation

Decision instants for this system are chosen as arrival or departure points of a

connection. As the time between decision instants are continuous, this is an

SMDP.

4.4.1 State Definition

Assume a connection request arrives at the system or some user tears down

its connection, the number of active users at this instant is denoted by Users,

the number of channels on the link by Channels, and the number of tokens by

Tokens. The meaning of token will be defined later in the section for bandwidth

update rate control. The state of the system at this instant is defined as:

S = {(Users, Channels, Tokens) | 0 ≤ Users ≤ kmax + 1, kmin ≤
Channels ≤ kmax, 0 ≤ Tokens ≤ tmax}
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Figure 4.3: Example run of the DLS system

4.4.2 Action Definition

It is explained that our action is selecting the number of channels to establish on

the link. We say that the number of channels should be larger than the number

of active users in order not to reject any user. Therefore the action space for state

S is defined to be A = {max(Users, kmin),max(Users, kmin) + 1, ..........., kmax}
meaning that the number of channels can be any number between the maxi-

mum of number of active users and minimum number of channels and maximum

number of channels.

An example run of the system is depicted in Figure 4.3.

Consider the system at the instant (t − 1), the state of the system is S =

(8, 5, 3), and the system chooses the action of establishing 9 channels for the next

time interval. In the next decision moment t, an arrival event occurs, as a result

the number of users becomes 9, as there is a bandwidth update in the previous

decision instant the number of tokens becomes 2, and the number of channels

becomes 9, so the state of the system is S = (9, 9, 2) for instant t.

4.4.3 Cost Definition

Our one step cost is defined as follows:

g(S, a, j) = c × a × t(S, a, j)

Here the system is initially at state S, action a is chosen and the next state

is j, t(S, a, j) is the sojourn time from state S to state j. c is the cost of one
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channel per unit time, this should be chosen greater than 0 in order to prevent

the waste of bandwidth. Assume that c equals zero, then the system sets up

the maximum number of channels in order to minimize the bandwidth update

rate, therefore the policy learned would be PVP policy, in which the number of

channels is set to maximum.

4.5 Bandwidth Update Rate Control Mecha-

nism

In this thesis, we propose a mechanism that sets a bound on the number of

bandwidth updates in unit time. This mechanism is very similar to the leaky

bucket algorithm used in ATM [7].

Suppose you have a bucket which stores tokens. The tokens arrive at the

bucket with a rate ta tokens per hour, and a token is taken out of the bucket

at each bandwidth update. A bandwidth update is not allowed when there is

no token left in the bucket. The arrival rate of the tokens should be set to the

desired update rate. If one wants the system to make 50 bandwidth updates in

an hour on the average, the token arrival rate should be set to 50 tokens/hour.

The size of the bucket (bs) is also effective in the rate control mechanism.

Consider that the bucket is full of tokens at the beginning of an hour. The

number of tokens arriving in that hour equals to ta, as a result the maximum

number of bandwidth updates that could be made in an hour equals to:

Updatesmax = bs + ta

As you will have Updatesmax number of tokens to use during an hour, the

bucket size should be set to a small number. A smart system could save the

tokens in non-busy hours and tries to use them in the busy hours which can
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not be tolerated because of end-user requirements. Thus the size of bucket is

finite, when the bucket is full, the incoming tokens are lost without being used.

Therefore the bandwidth update rate could be less then token arrival rate but

not more than token arrival rate plus the bucket size.

It was explained before that number of channels set-up should always be

larger than or equal to the number of active users. In token bucket methodology,

we have said that no bandwidth update is allowed when there are no tokens left

in the bucket. Then the last token left in the bucket should be used wisely. One

should set the number of channels to the maximum available when the number

of active users is higher than the number of established channels. One should

not make any changes when the number of active users is less than the number

of established channels.

Examples can help us in understanding this token mechanism. Suppose

kmax = 10 for a shared link system.

• At a decision epoch the headend examines the system and observes that

there are 9 active users, 8 channels established on the link and 3 tokens

in the bucket. The state of the system is S = (9, 8, 3), as the number of

tokens in the bucket is 3, there is no danger of having no token in the next

decision instant. As the number of users is more than number of channels,

the system should increase the number of channels, it can set-up 9 or 10

channels according to its policy.

• At another decision time, the system is found to be S = (6, 8, 3). The

system could reduce the number of channels. The options for number of

channels is 6,7,8,9,10. Here it may seem irrational to allocate 10 channels

on the link when there are 6 users, because there are already 8 channels

allocated on the link. We leave the RL algorithm free to discover this type
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of actions on its own. Increasing the channels when there is a need for

reducing is not rational and RL will eventually find it out.

• At another decision epoch, the system state is S = (9, 8, 1) . This time the

system should increase the number of channels but as there is only 1 token

left, it sets the number of channels to maximum of 10.

• The system state is S = (6, 8, 1). The system can reduce the number of

channels, but as there is 1 token left, the system decides not to change the

number of channels on the system.

• State is S = (8, 10, 0), therefore the channel number stays at 8.

4.6 Implementation

4.6.1 Stationary Case

Two event-driven simulators are written using C programming language. The

first simulator learns the policy by RL algorithms and the second simulator

evaluates the policy found.

Gosavi’s RL algorithm was used for learning purposes. First a look-up table

version of RL algorithm will be implemented, then a function approximation

scheme will be applied.

For all implementations, size of the token bucket is set to 10 tokens.

Implementation Details

For the first case, a small size version of the problem will be studied. For this

case bmax = 0.5Mbps and bmin = 0.2Mbps is chosen, this makes kmax = 10 and
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kmin = 4. Customer service rate µ is chosen to be 0.00555 1/sec and is constant.

Given µ and number of channels, ρ is calculated to be 4.4 using Erlang’s B formula

for 0.01 rejection probability which makes a λ of 0.02442 1/sec. Capacity of the

link is chosen to be 2Mbps.

For the second case, 100 channels maximum will be studied. For this case

bmax = 0.2Mbps and bmin = 0.02Mbps is chosen, this makes kmax = 100 and

kmin = 10. Customer service rate µ is chosen to be 0.00555 1/sec and is constant.

Given µ and number of channels, ρ is calculated to be 84.01 using Erlang’s B

formula for 0.01 rejection probability. Capacity of the link is chosen to be 2Mbps.

For lookup table version, ε-directed exploration scheme will be adopted,

whereas for function approximation one ε-greedy exploration scheme will be used.

The reason for choosing ε-greedy for RL with function approximation is that due

to state aggregation, we don’t have the number of visits to a specific state. For

both versions the exploration rate is gradually decreased from 0.95 to 0, by halv-

ing the rate at each 1.000.000th step.

For the lookup table version, the learning rate α is gradually decreased from

1.0 to 0 according to number of visits to a specific state, the reducing scheme of

α is similar to that of ε. For RL with function approximation, the learning rate

α is gradually decreased from 1.0 to 0 according to simulation steps. For both

versions, β is reduced using the DCM scheme by number of simulation steps, the

parameters for DCM scheme are η0 = 0.5 and τ = 1.000.000.

Simulators are run for 100 billion connection request arrivals. And the learned

policy is written to a file. Evaluating simulator runs the system using the policy

learned and evaluates its performance.

The other implementation details will be given in their corresponding sections

because their effects on system performance will be discussed along with the

results.
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4.6.2 Non-Stationary Case

For non-stationary case, simulators are written using the C programming lan-

guage. The policy learning simulators are the same with stationary case ones,

only their training traffic generators are different.

Also there is a simulator that loads previously learned RL policies and selects

them according to traffic rate it has detected. This simulator also generates

nonhomogeneous Poisson traffic of rate λ(t) which is a continuous function of

time, for generation of this type of traffic a method called the Thinning Algorithm

is used [48].

4.7 Results For Stationary Case

4.7.1 10 Channel Case

Initial Results

In Table 4.1, the results for reinforcement learning algorithms are shown. As

we observe, the average bandwidth becomes closer to that of the SVC approach

when the desired update rate is increased. When one decreases this rate, the

average bandwidth becomes closer to that of the PVP approach which is shown

in Table 4.2.

The function approximated version of RL performs better than the look-up

table version. According to theory look-up table will perform better because it is

guaranteed to converge to optimal policy but this is not proven for this example.

Size of the state space for this problem is large (7 x 7 x 11 =539 states), as a

result every state is not visited infinitely often, then the convergence condition

is not satisfied. On the other hand, the function approximated version of RL
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Tabular Method Function Approximation

DUR(U/h) AUR(U/h) AB(Mbps)
10 10.000 0.2383
20 20.000 0.2762
30 30.000 0.3052
40 39.996 0.3286
50 50.000 0.3400
60 59.950 0.3448
70 69.396 0.3518
80 77.198 0.3608
90 81.697 0.3673
100 85.775 0.3721
110 85.560 0.3804

DUR(U/h) AUR(U/h) AB(Mbps)
10 10.000 0.2375
20 20.000 0.2909
30 30.000 0.3201
40 38.800 0.3351
50 46.715 0.3509
60 54.159 0.3618
70 60.986 0.3660
80 79.717 0.3633
90 89.699 0.3638
100 71.273 0.3802
110 108.613 0.3648

Table 4.1: Results for 10 Channel Case DUR=Desired Update Rate, AUR=
Average Update Rate, AB=Average Bandwidth, U/h=Updates/Hour

Heuristic AUR(U/h) AB(Mbps)
SVC 110.651 0.3988
PVP 0.000 0.2000

Table 4.2: SVC and PVP Heuristics Results for 10 Channel Case, AUR= Average
Update Rate, AB=Average Bandwidth, U/h=Updates/Hour

makes generalization over the states, as a result it can update values of many

states with a visit to a specific state.

For this case, the delta learning rule is applied to approximate the Q values.

Function approximation is done for the Users dimension of the Q function, the

other dimensions remained as look-up table type. For approximation along the

Users axis, a second degree polynomial is used.

When we compare average bandwidths for the AH and RL results for the

same average update rate, we observe that RL performs almost as better as the

AUR(U/h) AB(Mbps)
55.763 0.3610
71.293 0.3723
77.496 0.3807
93.161 0.3908

Table 4.3: Argiriou Heuristic Results for 10 Channel Case, AUR= Average Up-
date Rate, AB=Average Bandwidth, U/h=Updates/Hour

78



10 20 30 40 50 60 70 80 90 100 110
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Average Bandwidth vs Update Rate

Desired Update Rate (Updates / Hour)

A
ve

ra
ge

B
an

dw
id

th
(M

bp
s)

RL with FA
RL Table
Argiriou
SVC
PVP

Figure 4.4: Results for 10 Channel Case

AH which is specifically designed for this example. Another important point to

note is AH [23] has no specific update rate control whereas our algorithm has a

strict upper limit on the number of updates in unit time. The difference is due

to this rate control mechanism.

For AH, the update rate control is done by means of a parameter, when you

increase this parameter, the system behaves conservatively in terms of update

rate, there are only 4 possible values of this parameter and the corresponding

update rates and bandwidth are tabulated in Table 4.3.

As we notice, the performance of RL is not very good for update rates close

to that of SVC, this is due to small size of the token bucket, the tokens are saved

for later usage but some of the incoming tokens are lost due to bucket overflow.

This is seen in the difference between DUR and AUR for rates close to SVC.

Another point to mention is that, for all the simulations the same parameter set
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Figure 4.5: Trace for 10 Channel Case with RL algorithm for 50 updates/hour
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Figure 4.6: Trace for 10 Channel Case with RL algorithm for 20 updates/hour
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is used, this parameter set works better for DUR of 50 updates / hour but at

higher rates it does not work that well.

In Figures 4.5 and 4.6, the traces for RL policies with 50 updates/hour and

20 updates/hour bandwidth update rate limit are shown. In these plots 50 call

arrivals are shown, as you see the algorithms avoid the setting up of maximum

channels case when you run out of tokens. The system spends its tokens taking

into account the number of tokens left. The RL algorithms perform very well

under the update rate constraint and the learned policies change as you see in

the plots. For a lower update rate limit, the system sets up more channels than

users and for a higher update rate the system tries to track the number of users.

Token Coding

The state space for this problem is still large because we have applied function

approximation only on the Users axis, as a result the state space remained large.

A method for decreasing the size of the state space is coding the number of tokens.

In the initial simulations, number of tokens is taken as a state which makes 11

states, this method is called linear token state. We propose a non-linear coding of

the token state, in this coding mechanism TokenStateMax defines the maximum

number of states used for coding number of tokens. When TokenStateMax = 2,

there are 3 states, they are:

• TokenState = 0: There are no tokens left in the bucket.

• TokenState = 1: There are one token left in the bucket.

• TokenState = 2: There are two or more tokens left in the bucket.

This way the size of state space is decreased from 11 to 3. The performance

of RL policies with non-linear coding of token states is shown in Figure 4.7.
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Figure 4.7: Performance comparison for different token coding mechanisms

In general non-linear token coding mechanism does not make any difference

from linear token coding scheme. For a TokenStateMax of 5, the difference

is negligible, but for smaller TokenStateMax, there is some difference because

the system can not know the exact number of tokens so behaves conservatively.

For TokenStateMax = 2, the system can either have 2 tokens or 10 tokens at

TokenState = 2, as a result the conservative option is chosen therefore we get a

lower AB for this case. For lower DUR, small token state performs better because

the number of tokens is always very close to 0 and small number of states decodes

this number of tokens better than higher number of states in which the number

of visits is a problem. For larger number of states, some states are not visited

often; this makes the RL algorithm unable to learn the best actions for these

states. When we decrease the number of states, we end up with better results.
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Improved Function Approximation Scheme

We have applied function approximation on the Users axis, done nonlinear cod-

ing of token state but the state space of the problem still remains very large. We

are trying to apply RL to shared link systems where 1000 channels may exist, as

a result the state space should further be decreased.

For this purpose, we tried to apply function approximation along the

Channels dimension of the state space. This part is problematic because the

form of Q function on this axis is very complex. For Users part a second degree

polynomial is enough and performed very well, however a second degree poly-

nomial resulted in very poor results for Channels axis. Examination of the Q

values revealed very important results for this axis. Consider the Q values for

setting up 6 channels when there are 5 users and 4 tokens which is drawn as a

solid line in Figure 4.8.

As one may notice, the minimum of this function is when the number of

channels is 6, because the system does not want to change the number of channels

most of the time. The reason for a second degree polynomial approximation not

working is clear when this plot is shown. One can not extract all the features

of this plot using a two degree polynomial, namely a parabola. As a result we

used a fourth degree polynomial approximation structure, the results for this

approximation is shown as dashed line on the same plot. It approximates the Q

values better than second degree but is not complete. The reason for this lies in

the coefficients of polynomial approximating this function, when we give Matlab

the complete Q function, calculated coefficients are on the order of thousands,

which is very hard to find using delta learning. Long simulations with careful

observation and adjustment of learning rates are required for better convergence,

because a wrong adjustment brings the coefficients to infinity.
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In Figure 4.9 the results for improved function approximation structure is

given. The results are obtained only up to a DUR of 60 updates/hour because

after this rate, the coefficients approach infinity very quickly. Due to this reason,

the improved function approximation scheme is left for future work. The problem

with function approximation is that, no convergence guarantee exists for these

methods, even there are cases showing divergence when function approximation

is used with RL algorithms [49].

4.7.2 100 Channel Case

Dynamic link sharing problem with a maximum of 100 channels is a problem

with a very large state space, there are 91 × 91 × 11 = 91091 states. This

number equals to |Users| × |Action| × |Tokens|. For this problem, the token

state is nonlinear with a TokenStateMax of 3. As a result the state space size

is 3 × 91 × 4 = 1092, by function approximation and token coding, the state

space is reduced approximately 90 folds in size. In this size calculation, size of

user space is taken as 3 due to second degree approximating polynomial, when

TokenStateMax = 3, the token state is encoded to 4 states. Therefore the size

of state space is reduced to 1092.

For 100 channels, µ = 0.00555 is chosen, ρ = 84.01 is found using Erlang’s

B formula for a rejection probability of 0.01. Bandwidth of the shared link is

2Mbps, kmax = 100 and kmin = 10.

Figure 4.4 shows the performance of the RL approach in the 100 channel

case. The system performance approaches PVP for small DUR and to the SVC

for large DUR. As the DUR increases, one observes a saturation type of behaviour

for AB. This is mainly due to nonlinear token space encoding mechanism. When

you increase the DUR, you increase the token arrival rate. As token arrival

rate increases, the number of tokens reaches levels that is not well encoded with
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Figure 4.10: Results for 100 Channels

nonlinear mechanism. In this case the token space is encoded by a single state

(TokenState = 3) when the number of tokens is bigger than or equal to 3. Thus

the system would not differentiate between the cases when the number of tokens

in the bucket is 3 and 10 as they will be encoded to the same state. This does not

constitute a problem when DUR is small because number of tokens can not be

as high as 10 but this can happen when DUR is close to AUR of SVC approach.

Therefore the AB does not increase much when DUR increases after some point

due to nonlinear token encoding mechanism.

Table 4.4 tabulates the ABs for different DUR values. It is observed that

DUR and AUR have substantial differences, this is mainly due to the small size

of the token bucket and nonlinear encoding mechanism of the token state. One

has a DUR of 2000 but only stores 10 of these tokens, most of them will be lost

due to bucket overflow when they are not used.
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DUR(Updates/hour) AUR(Updates/hour) AB(Mbps)
100 94.866 0.0212
200 174.428 0.0223
300 260.840 0.0228
400 362.040 0.0230
500 459.106 0.0231
600 564.176 0.0233
700 659.446 0.0234
800 754.682 0.0234
900 860.695 0.0236
1000 909.904 0.0236
1100 1046.892 0.0236
1200 1117.131 0.0237
1300 1203.401 0.0237
1400 1309.357 0.0238
1500 1411.126 0.0238
1600 1454.961 0.0238
1700 1593.930 0.0238
1800 1664.658 0.0238
1900 1667.318 0.0238
2000 1873.361 0.0238

Table 4.4: Results for 100 Channel Case DUR=Desired Update Rate, AUR=
Average Update Rate, AB=Average Bandwidth

Heuristic AUR(Updates/hour) AB(Mbps)
SVC 3325.727 0.0242
PVP 0 0.0200

Table 4.5: SVC and PVP results for 100 Channel Case , AUR= Average Update
Rate, AB=Average Bandwidth
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Figure 4.11: A system trace for 100 Channels for 1000 updates / hour

Figure 4.11 shows a sample run of the system with the policy found by the

RL algorithm for 1000 updates / hour. As you see the system runs well with

an update rate that is a third of the SVC’s update rate. The difference in the

resulting bandwidth is very small, RL gives 97.5 % of SVC AB with a much

smaller AUR.

The only heuristics given for this case is SVC and PVP. As no general form

is given Argiriou heuristic is not applicable to problem of this size. As you may

notice, we propose a versatile methodology that can be used to find policies that

lie in between the SVC and PVP policies. By adjusting the DUR, the user can

bring the system closer to a PVP system or vice versa.
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4.8 Results for Non-Stationary Case

The arrival rate of customers to the system changes during the day. We have

assumed a sinusoidal model for the change of traffic arrival rate [46]. Here we

use the learning methodology developed in the previous section for stationary

traffic. We will divide the system arrival rate to a number of levels and train

a policy for each of these rates by RL. Then these policies will be loaded to

headend and headend will choose which policy to apply using instantaneous

traffic characteristics.

This section is formed as follows. First we will present non-stationary case

esults for the 10 channel case, and there will be discussion. Secondly we will give

the results for 100 channels case.

4.8.1 10 Channels Case

For 10 channels case, the maximum ρ is calculated to be 4.4, we assume that this

arrival rate changes from 1.2 to 4.4 during the day, as a result we will quantize

this space to a number of levels and train a policy for each of them. The arrival

rate space is divided into 33 pieces, each being apart by 0.2 units from the other.

Policy Training

In Figure 4.12 the ABs for different heuristics are drawn vs the system load ρ.

As the system load increases, the number of customers in the system increase

therefore the average bandwidth decreases. Argiriou and SVC have policies that

do not change according to incoming traffic. On the other hand we have trained

33 different policies for different traffic using RL for a constant DUR of 56 up-

dates/hour. 56 is chosen because this is the average update rate of Argiriou

heuristic when ρ = 4.4.
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As you see our RL policies perform as SVC when the load is mild and they

become close to Argiriou when the load is high. In the end RL AB is less than

that of Argiriou because that heuristic does not impose an upper limit on the

number of updates. The disadvantage of Argiriou is that, it always tries to stay

below the SVC update rate (almost half of it), but when the traffic is low, even the

SVC update rate can be tolerable. Figure 4.13 shows the average update rates

for different methods. The update rate of SVC heuristic grows exponentially

with traffic rate, Argiriou also shows an exponential growth, whereas RL policy

saturates at a value as a result of token bucket mechanism. Average bandwidth

of RL stays below that of Argiriou for ρ = 4.4 case, because the average update

rate of RL is below Argiriou.

Policy Equivalence

A question that comes to mind is how the 33 policies found by RL are different

from each other? In order to find out the difference, all the policies can be tested

using the same traffic arrival rate, for this purpose all 33 policies are evaluated

using loads of ρ = 1.2 and ρ = 4.4, and the corresponding average bandwidths

were drawn in Figure 4.14.

In Figure 4.14, it is observed that average bandwidth does not change much

from one policy to other, as a result there is no need for headend to change

policies for small arrival rate changes. In order to show this, we have evaluated

policies trained for ρ = 4.4 and ρ = 1.2 using all the traffic rates in the range.

The resulting plots are shown in Figure 4.15, as you see the two policies trained

at the two ends of the arrival rate space perform almost equally well. ”RL 4.4”

means RL policy trained with ρ = 4.4 load.

Figure 4.15 shows that the RL policies have ABs very close to SVC when

the system load is low. Considering the state space for the problem, we observe
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that the mapping from number of users to number of channels changes by the

number of tokens. One might expect that the policy when the number of tokens

is set to maximum would be very similar to SVC policy. As the number of

tokens decreases in the bucket, the system understands that it has done many

bandwidth updates and tries to be more conservative on the number of channels.

For lightly loaded traffic conditions the resulting AUR is much less than our

imposed DUR of 56 updates/hour as shown in Figure 4.13. AUR being less

than imposed DUR means that the token bucket would be full most of the time,

therefore the performance of the system would be close to SVC.

Varying Traffic Results

In this part, the policies trained are used by the headend. The arrival rate of

the system changes at the start of the hour, and stays the same throughout the

hour, this is a piecewise constant traffic generation. Two methods are employed

for detection of traffic rate, in the first one number of arrivals are counted for 15

minutes and the next fifteen minutes the arrival rate calculated by this number

of arrivals will be used as the traffic estimate, this is called 15 min estimator.

In the second one, the arrival rates are calculated again in 15 minute intervals,

but this time the highest of these arrival rates for the last hour is used for the

next hour, this one is called Cisco Estimator as we have the inspiration for this

from Cisco Auto Bandwidth Estimator [50]. The nearest policy to the estimated

arrival rate is used.

The traffic rate sinusoidally changes from ρ = 1.2 to ρ = 4.4. As you see

in Table 4.6, SVC has the highest AB. RL and Argiriou have almost the same

AB but the RL algorithm has less AUR and MaxUR than Argiriou heuristic. As

we have discussed before, Argiriou has no rate control mechanism, therefore for

busy times the update rate goes as high as 90 updates/hour. We claimed that

RL update rate will never exceed number of tokens plus the token rate, as you
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AB(Mbps) AUR(U/H) MaxUR(U/H) VUR(U2/H2)
SVC 0.4646 42.03 188.94 1892.0

Argiriou 0.4491 23.91 90.02 503.02
RL-E 0.4470 23.71 58.52 378.17
RL-W 0.4462 23.28 58.93 378.95
RL-CE 0.4469 23.60 58.93 377.60

Table 4.6: Results for changing arrival rate VUR means variance of update rate,
MaxUR means maximum update rate, AUR means average update rate, and AB
means average bandwidth

see the MaxUR for RL is about 59 which is less than token rate of 50 plus token

bucket size of 10. RL-E uses the 15 min estimator mechanism, RL-CE uses Cisco

estimator and RL-W uses only one policy which is trained at the highest arrival

rate. As a result, we see that for small arrival rate changes, policy switching

does not have a significant advantage as seen from the outputs. Also we have

shown above that the difference between these 33 policies are minor, as a result

the policy switching method is not beneficial for this example.

4.8.2 100 Channels Case

We have discussed above that we should minimize the state space of the problem

using reinforcement learning in order to tackle large problem sizes. The benefit

of a larger problem size is that the range of traffic arrival rate change is bigger for

a large size problem. In the previous sections, we have seen that policies trained

by different traffics with close arrival rates do not differ much. Our expectation

is that the policies should differ from each other when their training rates are

very distant. From Erlang’s B formula the ρ parameter for 100 channels is 84.01

which is much bigger than 4.4 for the 10 channel case.
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Policy Training

For this problem, the traffic arrival rate is divided into 34 equal levels starting

from 18 and ending at 84 with 2 unit spacing. 34 different RL policies are trained

for these 34 quantization levels. The DUR for RL policies is chosen to be 500

which is about a seventh of the SVC policy. The performance of RL policies with

respect to the SVC policy are shown in Figures 4.16 and 4.17.

SVC heuristic’s update rate linearly increases with the arrival rate, at the

end point it is about 3500 updates/hour which is very high. A user streaming

video can not tolerate that many updates in an hour which makes almost an

update in a second. On the other hand, RL update rate stayed at about 500 all

the time, while keeping the bandwidth at about 95 % of the SVC heuristic. This

is a substantial improvement because we keep our update rate constant while

keeping our bandwidth in close to that of a policy whose update rate increases

linearly. In Figure 4.18, the ratio of RL AB to that of SVC is drawn in terms of

percentage. As you see the ratio is about 95 % for all traffic rates.

Policy Equivalence

In the previous sections with 10 channels case, we have compared the policies

trained with different arrival rates and found them almost identical. This time

we have a larger arrival rate space, and the policies are different from each other.

In Figure 4.19, the average bandwidth for the 34 policies is drawn. The traffic for

the upper curve is constant ρ = 18.0 whereas for the lower curve it is ρ = 84.0.

We have evaluated all the policies with the end point traffics. As you see for

the two end points, the policy having the highest AB is the policy trained with

that traffic. Also the performance degradation in using a policy different than

the trained one is substantial, it is over 30 % for ρ = 18.0 case. These results
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demonstrate that the policies are different from each other and policy switching

by headend will be very useful for this problem.

Varying Traffic Results

The varying traffic for this example is generated using thinning algorithm which

is useful for generating non-homogeneous Poisson processes [48]. The interarrival

times are exponentially distributed with parameter λ. The rate λ changes con-

tinuously with respect to the time of day. The arrival rate is estimated by the

headend using a Robbins-Monro type estimator using the observed interarrival

times. In Figure 4.20, the generated traffic rate and the estimated traffic rate are

depicted. µ = 0.00555 as a result, ρ varies between 18.0 and 84.0 in a sinusoidal

fashion.
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Figure 4.19: Performances of RL policies with two stationary traffic rates

In Figure 4.20, the estimated arrival rate varies rapidly when the arrival rate

is high. This is mainly due to the high variance of interarrival times because the

variance of exponential distribution is its rate parameter. As we estimate the

arrival rate from interarrival times, high interarrival time variance yields high

estimator variance. When we apply filtering to estimated values, this problem

is eliminated, but then delay between the actual traffic rate and the estimated

traffic rate increases. Then the detection mechanism has no use because the

selected policy will not be used when it is needed and performance degradations

will occur.

The estimated arrival rate will be used to select the appropriate policy. A

hysteresis type of function will be used for selecting policies. Consider the 34

level quantization, the distance between levels is 2, assume that estimated ρ is 19,

and the policy used is for 44, then the policy trained for 20 would be chosen, the

convention is in the way that always the policy with higher training rate is chosen,

this is why 18 is not chosen for this case. Later on, the estimated traffic becomes
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21.5, the policy will not be changed and 20 will be run because of the hysteresis

type of behavior. The policy will not be changed till the estimated traffic is +
−2

of the quantization level. This hysteresis levels are different for different levels

of quantization but chosen to be plus minus a quantization distance. Hysteresis

is used in order to prevent very rapid policy changes due to oscillations in the

estimated traffic rate.

In Table 4.7, the results for RL algorithms with arrival rate estimation mecha-

nism is shown. RL1 denotes the reinforcement learning policy with 1 quantization

level whereas RL34 denotes reinforcement learning policies with 34 levels. Num-

ber of policy switchings increase with number of levels, this is due to oscillations

in the estimated arrival rate, these oscillations are so high that the hysteresis

mechanism becomes ineffective after some quantization level is exceeded. The

effect of policy changing is obviously seen when RL1 and RL2 is considered, the

average bandwidth is almost doubled by the introduction of an additional policy

to the system.
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Method AB(Mbps) AUR(U/H) APSR(C/H)
RL1 0.0285 179.87 0
RL2 0.0454 299.77 0.738
RL3 0.0463 348.85 1.381
RL5 0.0482 376.13 6.023
RL9 0.0493 405.72 52.498
RL17 0.0498 415.40 159.774
RL34 0.0500 430.51 272.441
SVC 0.0527 2103.0 0
PVP 0.0200 0 0

Table 4.7: Results for changing arrival rate AUR means average update rate,
AB means average bandwidth, and APSR means average policy switching rate,
U/H=updates per hour, C/H=changes per hour

Figure 4.21 shows the dependency of the average bandwidth on number of

quantization levels. The average bandwidth saturates after a number of quan-

tization levels is reached, this is due to similarity of policies with close training

traffic rates. When the distance between quantization levels drops under a level,

the policies become similar so no gain is obtained. According to policy change

rates and bandwidths, 5 quantization levels are enough for this problem. After

this value the policy change rate dramatically increases as a result of oscillations

in the estimated arrival rate. There is no study done for the number of policy

changes in a headend, so no maximum is known for this number. Also a policy

change is changing the pointer of the policy to another memory location in the

headend which is not very costly in terms of CPU load.

In Figure 4.22, the policy change schedule for 5 and 34 levels of quantization is

depicted. The unnecessary policy changes due to oscillations are clearly observed

for 34 quantization levels. There are some oscillations even in the 5 level case,

because the variance of interarrival times are so big in the upper parts of traffic

arrival rate. The delay between actual rate and chosen policy is very small, as a

result this mechanism performs well. When the frequency of arrival rate change

is very high, the delay of detection and policy choosing becomes important and

the system may not work or perform very bad.

100



0 5 10 15 20 25 30 35
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Number of Quantization Levels

A
B

(M
bp

s)

AB vs Number of Quantization Levels

Figure 4.21: Average bandwidth vs number of quantization levels

The difference between SVC bandwidth and RL34 bandwidth is very small,

and the difference is mainly due to delay in detecting the policy. Moreover, the

oscillations make the system work with a policy that is not suitable to conditions

of that time. The average update rate is about 400 for RL policies, we have given

the upper limit as 500 while training the policies, average update rate is less than

upper limit because the token bucket size is 10 which is not enough for saving

tokens in mild load conditions. If the token bucket is made larger, the system

will save the tokens when the arrival rate is very low, and use them later when

the conditions get worse.

Figures 4.23 and 4.24 shows the performance of RL34 along with the SVC

heuristic. The difference in the average bandwidths is indistinguishable whereas

the update rates show a great difference. RL update rate is always lower than

the minimum update rate of SVC and the performance in terms of bandwidth

is 95 %. As a result we can say that switching between RL learned policies is a

useful method in environments with changing arrival rates. The weakest point
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Figure 4.22: Policy change mechanism with 5 and 34 levels

of our proposed methodology is that when the frequency of arrival rate change is

very high, the detection delay makes this algorithm ineffective. In order to prove

this hypothesis, the frequency is increased fifty times, and the arrival rate now

makes 100 peaks in a day instead of 2 peaks as shown in Figure 4.25. The one

with 2 peaks is called the Low Frequency (LF), whereas with 100 peaks is called

High Frequency (HF) scheme.

In Figure 4.26, the relative performances of high frequency and low frequency

arrival schemes to that of SVC are depicted. As the results indicate, when the

arrival rate changes rapidly, the performance of our system degrades. This can

be noted by the following example, you detect the arrival rate to be 50 in terms

of ρ and selected the policy associated with that, but when you begin to run the

policy 50, the arrival rate becomes 84 and you are in a worse situation because

the policy 50 will not perform well at an arrival rate of 84 therefore the system

performance will degrade. This system works in a condition when the arrival
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rate becomes for example 55 when you select the policy of 50. On the other

hand, according to statistics, the telecommunication traffic has not an arrival

rate change mechanism such as HF, it is found to be making two peaks in a day.

This is the point where our proposal gives very good results.

As a conclusion, RL approach to link sharing problem with a framework of

traffic detection and appropritate policy switching can perform as better as SVC

with a much less update rate.
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Chapter 5

Conclusions

Developments in the Internet technology fostered the use of multimedia appli-

cations over the Internet. Multimedia applications have stringent delay and

jitter requirements, and intelligent network elements are needed for providing

these QoS requirements. Reinforcement learning (RL) methods are proven to

be beneficial in applications where some intelligence and adaptivity to changing

conditions are required.

Dynamic programming (DP) methods are widely adopted for finding the min-

imal average cost solutions to a wide range of problems. The major disadvantage

of the dynamic programming algorithms is that one has to have a-priori Marko-

vian model for the underlying system. The model requirement reduces the size of

the set of problems that could be solved by dynamic programming methods. In

many problems, either the model is very hard to derive, or the properties of the

system change making it very hard to find a robust system model. On the other

hand, reinforcement learning methods do not require any model of the system,

and these methods can learn the system either on-line or off-line. The learning

mechanism can change its learned policy when a change in the system model is
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detected, meaning that the learning continues as the system is working (on-line)

which brings adaptivity to reinforcement learning methods.

In this thesis, a reinforcement learning approach to the dynamic link sharing

problem is proposed. Unlike proposed heuristics (Argiriou [23], SVC, and PVP),

our proposed RL framework includes a bandwidth update rate control mechanism

which limits the number of bandwidth updates in unit time to a number that is

determined according to user preferences and system properties. A leaky-bucket

like algorithm used in the simulation limits the number of updates successfully.

The headend decides on the number of channels on the shared link which de-

termines the bandwidth assigned to each user depending on the previous number

of channels and number of active users. We believe that, this thesis is one of the

first applications of RL to dynamic link sharing. The results show that RL algo-

rithms can learn policies that are very close to optimal. The system proposed in

this work is very complex to model therefore DP algorithms are ineffective. The

RL framework proposed in here has a performance very close (about 95%) to the

maximum achievable bandwidth while keeping the update rate under a limit in

unit time.

In previous works on dynamic link sharing problem, the changing conditions

of system in time are not taken into account while developing policies. These

proposals have just one policy that is designed for worst case conditions. In this

thesis it is shown that some of these proposals perform poorly in mild network

conditions as they are designed for the worst case conditions. An adaptive system

that can choose the policy that is appropriate for current network conditions can

outperform the single policy heuristic. We propose a traffic detection method in

this work; the detected traffic rate will be used to select an appropriate policy.

These policies are found using the RL approach for a constant rate of traffic and

are stored in the headend.
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Our proposal has shown robustness by keeping the update rate almost con-

stant, and below a given limit while keeping the performance constant with re-

spect to maximum bandwidth. The update rate of SVC increased linearly with

increasing rate of traffic where the update rate of our system is kept constant.

The performance in terms of average bandwidth assigned to each user is kept at

about 95% of the SVC heuristic despite the limited update rate.

To conclude, in this thesis an RL approach to dynamic link sharing problem

is given which is able to track network condition changes and take necessary mea-

sures in terms of policy changes where the policies are found by RL algorithms

for different network conditions.

The directions that would be taken for future work are as follows:

• Function approximation scheme mentioned in the thesis would be improved

in order to have a more robust approximation to original Q values so that

one can apply the framework given in here to large problem sizes.

• Different distributions of call holding time for voice traffic would be studied

other than exponential distribution in order to show the performance of RL

algorithms for various types of distributions.

• Internet traffic can be studied using RL framework. Internet traffic shows

burstiness in the traffic rate which does not occur in exponential distribu-

tion. This burstiness will enable us to test the performance of RL algo-

rithms in different scenarios.

• The RL algorithms and solutions can be applied to networks (such as voice

over IP network) in order to show the gain by the dynamic link sharing. The

effects of dynamic scheme is not obvious when a single node is considered,

a network environment will help us understand the gain introduced by the

dynamic link sharing.
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