
THE LINE BALANCING ALGORITHM

FOR OPTIMAL BUFFER ALLOCATION

IN PRODUCTION LINES

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL

ENGINEERING

AND THE INSTITUTE OF ENGINEERING

AND SCIENCE OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Ömer Selvi

September, 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52939589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Murat Fadıloğlu

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. İhsan Sabuncuoğlu

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Prof. Erdal Erel

Approved for the Institute of Engineering and Science

Prof. Mehmet Baray

Director of Institute of Engineering and Science

i

Abstract

THE LINE BALANCING ALGORITHM

FOR OPTIMAL BUFFER ALLOCATION

IN PRODUCTION LINES

Ömer Selvi
M.S. in Industrial Engineering

Supervisor: Asst. Prof. Murat Fadıloğlu
September, 2002

Buffer allocation is a challenging design problem in serial production lines that

is often faced in the industry. Effective use of buffers (i.e. how much buffer storage to

allow and where to place it) in production lines is important since buffers can have a

great impact on the efficiency of the production line. Buffers reduce the blocking of the

upstream station and the starvation of the downstream station. However, buffer storage

is expensive both due to its direct cost and the increase of the work-in-process

inventories it causes. Thus, there is a trade-off between performance and cost. This

means that the optimal buffer capacity and the allocation of this capacity have to be

determined by analysis. In this thesis, we focus on the optimal buffer allocation

problem. We try to maximize the throughput of the serial production line by allocating

the total fixed number of buffer slots among the buffer locations and in order to achieve

this aim we introduced a new heuristic algorithm called “Line Balancing Algorithm

(LIBA)”applicable to all types of production lines meaning that there is no restriction

for the distributions of processing, failure and repair times of any machine, the

disciplines such as blocking, failure etc. and the assumptions during the application of

LIBA in the line.

 Keywords: Production Lines, Buffer, Optimal Buffer Allocation Problem

ii

Özet

ÜRETİM HATLARINDA
OPTİMAL ARA DEPO PAYLAŞTIRIMI İÇİN

HAT DENGELEME ALGORİTMASI

Ömer Selvi
Endüstri Mühendisliği Bölümü Yüksek Lisans
Tez Yöneticisi: Yar. Doç. Murat Fadıloğlu

Eylül, 2002

 Üretim Hatlarında ara depo paylaştırımı günümüz endüstrisinde genellikle

karşılaşılan önemli bir problemdir. Ara depoların üretim hattında etkili kullanımı yani

ara depoların hangi miktarda ve nereye yerleştirileceği önemlidir çünkü ara depoların

üretim hatlarının verimliliğinde büyük etkisi vardır. Ara depolar kendisinin önündeki ve

kendisini takip eden istasyonun tıkanma ve aç kalma sıklıklarını azaltır. Ama direkt

maliyetinden ve ara ürün miktarındaki artışa neden olmasından dolayı ara depo

kullanımı pahalı bir yatırımdır. Bu yüzden, performans ve maliyet arasında endirekt bir

ilişki vardır. Bu, optimal ara depo gereksinim miktarı ve bu miktarın paylaştırımı analiz

ile belirlenmeli anlamına gelir. Bu çalışmada, optimal ara depo paylaştırım problemi

üzerinde odaklanılmıştır. Toplam sabit ara depo miktarını mevcut ara depo lokasyonları

arasında paylaştırımı yoluyla seri üretim hattının birim üretim miktarı maksimize

edilmeye çalışılmış ve bu amaca ulaşmak için istasyonların işleme,bozulum ve onarım

zamanları dağılımı, blokaj, bozulum vs. disiplini ve hattın varsayımları ne olursa olsun

her türlü üretim hattına tatbik edilebilir “Hat Dengeleme Algoritması” adlı sezgisel bir

algoritma geliştirilmiştir.

 Anahtar Sözcükler: Seri Üretim Hatları, Ara Depo, Optimal Ara Depo Payalaştırım

Problemi

iii

Acknowledgement

I would like to express my gratitude to Asst. Prof. Murat Fadıloğlu for his

supervision, suggestions and encouragement throughout the development of this thesis.

I am also indepted to Prof. İhsan Sabuncuoğlu and Prof. Erdal Erel for accepting

to read and review this thesis and for their suggestions.

I would like to take this opportunity to thank Onur Boyabatlı, Çerağ Pinçe, Güneş

Erdoğan, Savaş Çevik, Sezgin Işılak, Burhan Ürek, Ozan Pembe, Aydın Özçelik and

Gökhan Çevik for their friendships, helps, morale supports and encouragements during

my graduate life in Bilkent. I would also like to express my gratitude to Avni Sezer,

Osman Sarıçam, Naci Yılmaz for their friendships.

My special thanks go to my family. This study is dedicated to them without whom

it would not have been possible.

iv

Contents

Abstract i

Özet ii

Acknowledgement iii

Contents iv

List of Tables vi

List of Figures vii

List of Charts viii

1. INTRODUCTION…………………………………………………......1

2. BACKGROUND……………………………………………………….3

2. 1. Major Features and Classes of Production Lines………………………….3

2. 2. General Results Pertaining to Production Rate of a Production

Line…………………………………………………………………………………6

2. 2. 1. Buffer Issues…………………………………………………………….6

2. 2. 2. Reversibility and Duality………………………………………………..8

3. LITERATURE SURVEY……………………………………………10

4. TWO RELATED ALGORITHMS....................…………………….26
4. 1. Standard and Non-Standard Exchange Vector Algorithms (SEVA and

Non-SEVA)………………………………………………………………………..26

4. 1. 1. Standard Exchange Vector Algorithm (SEVA)………………………..29

4. 1. 2. Non-Standard Exchange Vector Algorithm (Non- SEVA)……………31

4. 2. Simple Search Algorithm (SSA)………………………………....................35

v

5. LINE BALANCING ALGORITHM (LIBA)……………………….40
5. 1. Introduction…………………………………………………….....................40

5. 2. The Algorithm………………………………………………….....................43

5. 2. 1. Initial Allocation Procedure……………………………………………47

5. 2. 2. A Simple Example for Line Balancing Algorithm (LIBA)……………52

5. 3. Comparison of Algorithms………………………………………………….60

5. 3. 1. Numerical Results……………………………………………………...62

6. CONCLUSION……………………………………………………….71

BIBLIOGRAPHY…………………………………………………….....75

APPENDIX………………………………………………………………80

A. 1. The Pseudo-Code of LIBA………..……………………………..................80

A.2. General model frame for the simulation of the production lines in SIMAN

V………………………………………………...86

A.3. Experimental frame of the production line given in Seong et.al.[35] as

Case 9 for the simulation in SIMAN V…………………………………....89

A.4. Behaviour of throughput with respect to total imbalance………………..90

A.5. Throughput values for all feasible allocations in the sample problem given

as Case 9 in Seong et. al.[35]………………………... …………………….91

A.6. Processing, failure and repair rates for production lines in Seong

et.al.[35]……………………………………………………………………...92

 A.7. Optimal allocations with estimated throughput values via simulation for

SEVA, Non-SEVA and LIBA………………………...……………………93

A.8. Efficiency evaluation of initial allocation procedure of

LIBA………..94

vi

List of Tables

3. 1. Summary of Literature Survey………………………………………………..25

5. 1. Processing, failure and repair rates for each machine ………………………..52

5. 2. Availabilities and production rates in isolation for all machines ………….…52

5. 3. Initial buffer allocation where bi = 1/(ρi+ρi+1) ……………………………...53

5. 4. Initial buffer allocation where bi =1 / min{ρi , ρi+1}……………………...…53

5. 5. Initial buffer allocation where bi = (1/ρi) + (1/ρi+1) ………………...………53

5.6. Throughput values and related computations for the candidate
initials………………………………………………………….…………… 56

5.7. Throughput values and differences for two initial allocation alternatives for
each replication……………………………………………………………....56

5.8. Throughput values and efficiency of initial allocations determined by
 LIBA initial allocation procedure ………………………...…………………63

5. 9. Step sizes for the cases studied ……………………………...……………….64

5. 10. Increase in the throughput value in LIBA 2 ………………………..………67

5. 11. Increase in the throughput value in LIBA 1 ………………..……………….67

5. 12. Data of the cases that we study in Powell and Harris[33]…………………. 69

5. 13. Optimal allocations with estimated throughput values via simulation for SSA
and LIBA ……………………………………...…………………………..69

A.4. Behaviour of throughput with respect to total imbalance ……………………90

A.5. Throughput values for all feasible allocations in the sample problem given as
Case 9 in Seong et. al.[35] ………………………………………………......91

A.6. Processing, failure and repair rates for production lines in Seong et.al.[35]....92

A.7. Optimal allocations with estimated throughput values via simulation for
SEVA, Non-SEVA and LIBA ………………………………………………93

A. 8. Efficiency evaluation of initial allocation procedure of LIBA ………….......94

vii

List of Figures

1. 1. The N-machine production line ……………………………………………….1

4. 1. The illustration of SEVA …………………………………………………….30

4. 2. The procedure how to obtain non-standard integer exchange vector

approximating the gradient vector in Non-SEVA …………………………..31

5. 1. The N-machine production line L ……………………………………………40

5. 2. Two sub-lines L1 , L2 obtained by decoupling L from the buffer i …………40

5. 3. Illustration of the property of imbalance around any other buffer locations even

though the exact balance around any specific one in production lines............42

5. 4. Bisection procedure for determination of potential giver and receiver……....43

5. 5. Bisection of 8-machine production line until its final sub-lines……………...44

5. 6. Illustration of determination of criticality function ……………………...…. 49

5. 7. Initial decomposition of the line during the execution of LIBA ……………. 57

5. 8. Restart of LIBA from the second buffer location B2 ………….……………..58

5. 9. LIBA proceeds to the first buffer location …………………………………...59

5. 10. Termination of LIBA ………………………………………………….....…59

viii

List of Charts

5. 1. t-statistics versus the degrees of freedom for α = 0.05 confidence level…….55

1

Chapter 1

INTRODUCTION

Production lines, also called manufacturing flow lines, transfer lines, flow lines

or serial production lines, have been an important area of research ever since 1950�s.

Since flow lines can often be found throughout manufacturing industry (e.g. automobile

industry), many researches have recognized the importance of the subject and

contributed to it.

Let us first define manufacturing flow lines briefly. Manufacturing flow line

systems consist of material, work areas, and storage areas. Material flows from work

area to storage area, from storage area to the proceeding work area and so on. Material

visits each storage and work area. There is an entry work area through which material

enters and an exit work area through which it leaves the system. The work areas are

usually called machines or stations and the storage areas are usually called buffers.

Figure 1.1 illustrates an N-machine production line where Mi�s stand for machines and

Bi�s are buffers.

 ��

 M1 B1 M2 B2 B(N-2) M(N-1) B(N-1) MN

Figure 1. 1. The N-machine production line

CHAPTER 1 : INTRODUCTION

2

Due to their diversity, complexity and inherent randomness in their behaviour,

modelling and estimating the performances of manufacturing flow lines are difficult.

Especially, the randomness inherent in production lines is what makes manufacturing

flow lines difficult to analyze. The primary source of randomness is that the times parts

spend in work areas are not deterministic. This randomness may be due to random

processing times, random failure and repair events that occur on the stations, or both.

In serial production lines, one of the key questions that the designers face is the

buffer allocation problem, i.e., how much buffer storage to allow and where to place it

in the line. This is an important question since buffers can have a great impact on the

efficiency of the production line. They reduce blocking in the upstream stations and the

starvation in the downstream stations. Unfortunately, buffer storage is expensive both

due to its direct cost and the increase of the work-in-process inventories it causes.

Because of the trade-off between the performance and the cost, determination of the

total buffer capacity and the allocation of the buffer capacities is an important problem.

The problem can be formulated in many different ways depending on the choice

of the objective function. Objectives used in the literature are basically maximizing

throughput, minimizing work-in-process, minimizing sojourn time and minimizing cost

or maximizing profit based on the user defined cost or profit functions. In this thesis,

we study the classical problem, which is known as �Optimal Buffer Allocation Problem

(OBAP)� with the objective of maximizing production rate. We focus on the allocation

of total fixed number of buffer slots among the buffer locations for the optimal

production rate of the production line.

In the second chapter of our study, we give a brief background of the production

lines. We provide a review of related research in the literature in Chapter 3. In Chapter

4, we present two related algorithms on the allocation of total fixed number of buffer

slots for maximizing throughput and compare these algorithms in Chapter 5 where we

also develop a heuristic algorithm. Finally, concluding remarks are made in Chapter 6.

 3

Chapter 2

BACKGROUND

 2. 1. Major Features and Classes of Production Lines

 There are three major classes of manufacturing flow lines. These are;

 1. Asynchronous Systems

 2. Synchronous Systems

 3. Continuous Systems

Asynchronous and synchronous systems are suitable for the manufacturing of

discrete parts. The only difference between them is that all the operations and machine

state changes in the line occur simultaneously as well as buffer levels in the

synchronous systems. In asynchronous systems, the machines are not forced to start or

stop their operations at the same instant. Even when machines have fixed, equal

operation times, the presence of buffers between them allows them to start and stop

independently, as long as the intermediate buffers are neither empty nor full. In some

applications, the operation times may be random. Finally, uncertain failure and repair

times can lead the unsynchronized operation times. Unlike asynchronous systems, in

synchronous systems, all machines are forced to start and stop their operations at the

same time.

CHAPTER 2 : BACKGROUND

4

The feature distinguishes continuous systems from the others is that the material

is treated as continuous rather than discrete. That is, instead of discrete parts moving

from buffer to machine and vice versa at specific instants, there is a fluid that is

transferred continuously. Continuous systems are naturally the production systems in

which the material processed is a fluid rather than discrete entities (e.g. chemical

processing).

 A machine is said blocked if the processed part on it cannot be put to the

downstream buffer and starving if it is idle and there is no part to be processed in the

upstream buffer. The function of a buffer is to decouple machines. If a machine is

subject to a disruption (a failure or a long operation time), the machine upstream can

still operate until the upstream buffer fills up and the machine downstream can still

operate until the downstream buffer becomes empty. The larger the buffers of the line,

the longer before the filling or emptying occur, and the larger is the production rate.

Pairs of machines that have no storage space between them have the greatest coupling;

and infinite buffers, or storage areas that are never filled, have the least (Infinite buffers

allow coupling when they become empty).

In real life, since all buffers have finite capacity, blocking may occur. There are

two types of blocking;

1. Blocking After Service (BAS)

2. Blocking Before Service (BBS)

BAS, also called type-1 blocking, manufacturing blocking, production blocking,

transfer blocking or non-immediate blocking, occurs at the instant of completion of a

part on the machine, if downstream buffer is full. In that case, the part stays on the

machine until a space is available in the downstream buffer. During this time, the

machine is prevented from working and it is said to be blocked. When a space becomes

available in the downstream buffer, the part is immediately transferred to the

downstream buffer and the machine can start processing another part, if any.

In BBS, also called type-2 blocking, communication blocking, service blocking

or immediate blocking, machine can start processing only if there is a space available in

the downstream buffer. Otherwise, it has to wait until a space becomes available. BBS

is further classified according to whether the position (space) on the machine may be

CHAPTER 2 : BACKGROUND

5

occupied or not while the machine is blocked. These two cases are Blocking Before

Service with Position Occupied (BBS-PO) if the space on the machine is used during

the blockage, and Blocking Before Service with Position Non-Occupied (BBS-PNO) if

the space on the machine is not used during the blockage.

 In some systems, machines are prone to failures. In the literature, generally two

types of failures are considered. These are;

1. Operation Dependent Failures (ODFs)

2. Time Dependent Failures (TDFs)

ODFs are failures that are related to the processing of parts and thus can only

occur when the machine is working. The machine is working means that the machine is

up (operational) and it is not idle. On the other hand, TDFs are not related to the

processing of part and thus can occur at any time, including the time when the machine

is idle.

 When failure occurs, the machine cannot process any material, so the upstream

buffer cannot lose material and the downstream buffer cannot gain material. Systems in

which machines can fail are called Flow Lines with Unreliable Machines (FLUMs) and

systems in which machines do not fail are called Flow Lines with Reliable Machines

(FLRMs). In FLRMs, all the randomness is due to the variability of the processing

times, while, in FLUMs, randomness is due to both varying processing times and

failures.

 Material arrives at and leaves from the flow line in a variety of different ways. It

is always possible for raw material to be unavailable, or removal of finished goods may

be delayed in real life. Such systems are non-saturated systems. On the other hand, in

the literature, it is almost always assumed that the first machine is never starved and the

last is never blocked. Such systems are called saturated systems. However, it is possible

to model a non-saturated system with a saturated system by adding a non-starving

initial machine as the arrival process and a final machine that is never blocked (means it

has infinite capacity downstream buffer) as the departure process to the line. Hence, the

second machine of the model corresponds to the first machine of the real system and

the machine just before the last machine of the model corresponds to the last machine

of the real system.

CHAPTER 2 : BACKGROUND

6

 2. 2. General Results Pertaining to Production Rate of a

Production Line

 Several measures of performance are of interest when analyzing flow lines. The

most important one is the production rate, P, which is the average number of parts

leaving the system per unit time.

 The production rate of a line is limited in two ways. First, the throughput can be

no greater than that of the machine with the smallest isolated production rate. The

isolated production rate of a machine is the rate that it would operate at if it were not in

a system with other machines and buffers. When the machines have different isolated

production rates, their capacities except the lowest are largely wasted. Second, the

unsynchronized disruptions that cause buffers to be empty or full also waste machine

capability. Buffers become empty or full because machines fail or take long time to

process material at different times. If all machines could be perfectly synchronized, not

only in performing operations, but also in failing and getting repaired, buffers would

not affect flow. It is the lack of synchronization that causes machines to be starved or

blocked, and thus to lose the opportunity to work.

A fundamental relationship of flow lines is the conservation of flow which states

that all machines have the same production rates, that is

P1 = P2 = �.. = PN = P.

Conservation of flow holds for FLRMs and also for FLUMs provided that there

is no scrapping of parts. Conservation of flow can be established by using sample path

approach. The sample path behaviour of any flow line can be described by means of

recursive equations. These equations are defined as the evolution equations of the flow

line.

 2. 2. 1. Buffer Issues

The production rate increases monotonically as the buffer capacities increase.

This is monotonicity property. Consider two flow lines, L1 and L2, which have identical

machines but with different buffer capacity vectors K1 and K2. The capacity of each

CHAPTER 2 : BACKGROUND

7

buffer in L2 is at least as large as the corresponding buffer in L1. That is, K1 ≤ K2. Then

the production rate of the flow line satisfies

P(K1) ≤ P(K2).

The production rate of a flow line in which one buffer is infinite can be obtained

by decomposing the line into two sub-lines from this infinite capacity buffer. Let La be

the part of line L that consists only of the first i machines and the first (i � 1) buffers

and similarly let Lb be the part of line L that consists only of the last (N - i) machines

and the last (N - i - 1) buffers where the buffer location Bi has infinite capacity. Let Pa

and Pb be the production rates of lines La and Lb respectively. Then, the production rate,

Pinf , of the line with the infinite buffer is

Pinf = min(Pa , Pb).

By combining the above result with the monotonicity property, we obtain the

following upper bound for the production rate of the line where there is no infinite

capacity buffer:

P ≤ min(Pa , Pb)

By applying this decomposition several times, we see that the production rate of

a flow line is bounded by the isolated production rate of the machine that has the

smallest isolated production rate as given below:

P ≤ min(ρi) i = 1 to N

Tighter upper bound on the production rate of the original line can be derived

from the decomposition approach and given as

P ≤ min(Pi,i+1) i = 1 to (N-1)

 where Pi,i+1 is the production rate of the two-machine flow line consisting of Mi,

Bi , Mi+1 .

This upper bound can be useful since the production rates of the two-machine

flow lines can be calculated exactly in most cases.

CHAPTER 2 : BACKGROUND

8

The monotonicity property can also be used to obtain the following lower bound

on the production rate of the original line:

P0 ≤ P

where P0 is the production rate of the flow line with no intermediate storage.

 2. 2. 2. Reversibility and Duality

 Consider a flow line Lr, which is obtained from flow line L by reversing the

flow of parts. The first machine in Lr is the same as the last machine in L. More

generally, Mi in line Lr is the same as MN-i+1 in line L. Also buffers are reversed in line

Lr. Then the production rate of the reversed line Lr is the same as the production rate of

original line L if both lines� blocking mechanism is BAS. This is reversibility property.

Proof of this property is based on the comparison of the sample paths of the two

systems again using the evolution equations.

Consider now the case of BBS. In that case, there is a much stronger

equivalence between the two systems (Lr and L). This equivalence is based on the

concept of job/hole (or part/hole) duality. The idea is that in line L, whenever a part

moves in one direction, a hole (empty space) moves in the other direction. In the case

of BBS, it is easy to check that the behaviour of parts in the reversed system is the same

as the behaviour of holes in the original system. Indeed, starvation in the reversed

system corresponds to blocking in the original system and vice-versa. As a result, the

steady-state distribution of parts in the reversed line is exactly the same as the steady-

state distribution of holes in the original line. This equivalence especially implies that

these two systems have the same production rate.

The concept of job/hole duality still makes sense in the case of BAS. However,

the behaviour of parts in the reversed system is no longer the same as the behaviour of

holes in the original system.

In this chapter we give the brief background of the production lines. It is worth

to give this background since all researches on the production lines in the literature use

any of these classes and features of production lines as the framework while modelling

them and introduce new derivations by basically using the general results pertaining to

CHAPTER 2 : BACKGROUND

9

flow lines. Therefore, the content of this chapter will help the reader understand the

next chapter easily where we will introduce the researches on production lines in the

literature.

 10

Chapter 3

LITERATURE SURVEY

Over the years, a large amount of research has been devoted to the analysis of

production lines. This body of research can be classified as evaluative and generative.

Evaluative studies focused on the performance evaluation of the production lines such

as production rate, average WIP and average sojourn time in the system. Generative

studies dealt with the optimization of these performance measures of the production

lines. Since there is vast amount of work on production lines, we will only deal with the

ones that are directly related to our problem, buffer allocation. However, the review of

production lines written by Gershwin and Dallery[8] can be given as a guide to the

readers who are interested in finding about evaluative studies.

In serial production lines, one of the key questions that the designers face is the

buffer allocation problem, i.e., how much buffer storage to allow and where to place it

in the line. This is an important question because buffers can have a great impact on the

efficiency of the production line. They compensate blocking of the upstream stations

and the starvation of the downstream stations. Unfortunately, buffer storage is

expensive both due to its direct cost and the increase of the work-in-process inventories

it causes. Therefore, there is a trade-off between performance and cost. Thus, the

CHAPTER 3 : LITERATURE SURVEY 11

determination of buffer capacity requirement and the allocation of the buffer capacities

is an important issue.

While solving the buffer allocation problem, determination of the objective and

the assumptions of the models that are worked on are also important for some reasons

such as the tractability, fidelity to reality etc. Objectives that were used in the literature

are basically maximizing throughput, minimizing work-in-process, minimizing sojourn

time and minimizing cost or maximizing profit based on the user defined cost or profit

functions. Minimization of WIP and average sojourn time are positively correlated,

meaning that minimization of one produces the minimization of the other, while these

objectives are negatively correlated with the objective of maximizing throughput. There

are also multi-objective studies aiming to achieve two or more objectives, which were

stated above, at the same time. You can see various studies with these objectives in the

proceeding section. Unless otherwise stated, all proceeding researches used the basic

assumption stated below due to simplicity and tractability;

1. The first machine is never starved and the last machine is never blocked

(Saturated Systems).

2. All random variables (processing times, uptimes, downtimes) are

independent random variables.

3. The transfer through the buffers takes zero time.

4. Manufacturing blocking (BAS) is the blocking criterion, meaning that any

machine can pass the completed part as long as a buffer space is available

(or, when no buffer exists, the downstream machine is idle).

5. Failures are operation dependent failures (ODFs) meaning that any machine

can fail only when it is processing a part. In other words, a machine can not

fail when it is idle (starved or blocked).

6. When a failure occurs, the part stays on the machine; it can be reworked

when the machine is up again; the work resumes exactly at the point it

stops(no scrapping of parts)

Conway et al.[5] analyzed both balanced and unbalanced serial lines with

stations having uniform and exponential processing times via simulation and reported a

number of useful generalizations about the effect of buffers on serial lines. These can

be summarized as follows:

CHAPTER 3 : LITERATURE SURVEY 12

• Diminishing returns: Throughput increases at a decreasing rate when

successive buffer are placed at a single buffer site, or when successive sets

of buffers are placed at all sites.

• Non-concavity: Throughput increases in a non-concave fashion when

successive buffers are placed optimally.

• Sufficiency of small numbers: For lines with low coefficient of variations,

small numbers of buffers at each site are sufficient to recover most of the

throughput lost to stochastic interference.

• Bowl-phenomenon: Buffers should be allocated evenly to all sites if

possible, with any remaining buffers allocated symmetrically around the

centre of the line.

• Reversibility principle: Any line has the same throughput as its mirror

image.

• Decomposition principle: A single buffer should be placed where an

unlimited buffer would be most effective.

• Built-up property: The optimal allocation of (n+1) buffers can be built upon

the optimal allocation of n without moving any of the first n.

 Anderson and Moodie[2] analyzed the balanced production lines with normal

and exponential operation times to estimate the coefficients for buffer locations that

satisfies the optimal production cost modeled. Multi-product production lines with

equal storage capacity for all buffer locations were considered. Anderson and Moodie

derived mathematical expression for the operation cost of the line for both cases:

normal and exponential service times, and developed minimum cost buffer models

from these expressions. Transient behavior of the line was also considered in order to

observe whether it is beneficial to control the buffer capacities during this period or not.

However, it was observed that there was no cost advantage in controlling the inventory

during the transient period.

In his study, Helber[12] defined the problem of buffer space allocation in

production lines as an investment problem. A model was developed and solution

techniques were described that could be used to determine buffer allocations that

maximize the expected net present value of the investment, including machines, buffers

and inventory. Several examples of flow lines as well as assembly / disassembly

CHAPTER 3 : LITERATURE SURVEY 13

systems and flow lines with rework loops were analyzed. Optimal buffer allocation was

determined via gradient algorithm based on the assumption of concavity of the function

of the expected net present value of the investment with respect to the buffer capacity

vector. Basic result of this study was that as product quality in a system with a rework

loop improves, an optimally designed system can receive more buffer spaces and may

use more inventory.

A flow-shop type production line where the stations were subject to breakdown

was studied by Altiok and Stidham[1]. The objective was to find the allocation of inter-

stage buffer capacities that maximizes the total profit. The stations, which are modeled

as single-server queuing systems, had completion time distribution of two-stage Coxian

type. After a standard transformation to a phase-type state representation, the new

system gave rise to a Markov chain. The balance equations for this chain were solved

by successive approximations to find the steady-state probability distribution of the

number of items at each station, once the buffer capacities were given. A search

procedure has been employed to find the optimal buffer capacities.

Seong et al.[36] studied the same objective function as Altiok and Stidham[1]

with general linear constraints on buffer sizes and continuous-type product assumption.

Operation times were assumed to be deterministic and equal, while the repairs and

failures were exponentially distributed. They solved the problem with a gradient

projection algorithm.

While allocating the fixed total number of buffers among intermediate buffer

locations optimally, Andijani and Anwarul[3] considered and investigated the trade-off

between three conflicting objectives: maximizing the average throughput rate,

minimizing the average WIP and minimizing the average system time. They used lines

with three and four identical reliable machines with exponential and uniform service

times. Stochastic system simulation was used to generate and construct an efficient set

of buffer allocations which maximizes the average throughput rate and minimizes both

the average WIP and the average system time. Based on these simulation results,

Analytical Hierarchy Process (AHP) was utilized to identify the most preferred

allocation. The objective of this process was to find, for the line, the best buffer

allocation solution to the trade-off between the three conflicting objectives stated.

CHAPTER 3 : LITERATURE SURVEY 14

Papadopoulos et.al.[25] also tried to allocate the fixed-number of buffers,

servers and fixed amount of workload at the same time as well as individually and in

couples in order to maximize the throughput with minimum average WIP by using

simulated annealing approach. Decision variables considered were the sizes of the

buffers placed between successive workstations of the lines, the number of servers

operating parallel allocated to each workstation and the amount of workload allocated

to each workstation. The study was extended up to 60 stations with 120 buffer capacity

and 120 servers, and it was observed that the approach worked very well compared

with complete enumeration whenever possible as well as produced near-optimal

configurations for relatively large lines in reasonable time.

So[38] studied the buffer allocation problem with the objective of minimizing

the average work-in-process (WIP) subject to a minimum required throughput and a

constraint on the total buffer space. Both the balanced and the unbalanced lines up to

five reliable machines were considered in this study. Exponential and non-exponential

(Erlang-2, Coxian etc.) operation times were assumed in balanced lines while only

exponential operation times were taken into account in the unbalanced lines. So�s

results showed that the optimal strategy of allocating buffer size for this problem

exhibited a rather interesting pattern that was different from the buffer allocation

problem of maximizing the throughput subject to a constraint on the total buffer space.

Specifically, monotonically increasing allocations, where an increasing amount of

buffer space is assigned toward the end of the line, were shown to be optimal for the

most cases investigated. Furthermore, empirical results obtained in this study suggest

that when the line is unbalanced, the slowest operations should be assigned to the

beginning of the line to provide the best throughput and the average work-in-process

trade-off. On the basis of these results, a good heuristic for selecting the optimal buffer

allocations for minimization of work-in-process inventory while achieving minimum

required throughput with constant total buffer space was developed.

 Papadopoulos and Vidalis[28] worked on the same optimization problem,

minimizing the work-in-process inventory while achieving the required throughput with

constant total buffer capacity. However, they only focused on the short reliable

balanced production lines with Erlang-k (k ≥ 2) operation times. More specifically,

they studied the average WIP and throughput for all the ordered buffer allocations of a

certain total number of buffer slots among the intermediate buffer locations. The

CHAPTER 3 : LITERATURE SURVEY 15

vectors of the buffer allocations were classified systematically into equivalence classes,

something that facilitated a lot in the analysis of the evolution of the average WIP and

the throughput as a function of these ordered allocations. Papadopoulos and Vidalis�

results were very similar to the ones So[38] derived. According to these results, each

buffer location takes at least as much buffer slot as the preceding one for the required

throughput levels small relative to the theoretical maximum throughput that is attained

when the buffer slots at hand are placed in order to maximize the throughput of the

whole line. However, while the desired throughput level is increasing to the theoretical

maximum level, buffer slots are transferred to the inner locations gradually resulting in

well-known bowl phenomenon. Also a heuristic algorithm was proposed to find the

optimal buffer allocation (OBA), which reduces the search space by 50% compared to

enumeration in this study.

 Another study on the OBA in order to minimize WIP by Kim and Lee[20]

proposed an efficient heuristic algorithm. This algorithm named MNS (Modified Non-

SEVA) is the modified version of the Non-SEVA algorithm (Non-Standard Exchange

Vector Algorithm) which was originally proposed by Seong et al.[35] for the

throughput maximization problem. However, since some useful structural properties

such as monotonicity and concavity which hold for the throughput function and are the

basic assumptions of the Non-SEVA algorithm, do not hold for the average WIP.

Therefore, Kim and Lee used the results of Seong et al.[35] in order to obtain a initial

solution which close to the global optimum. Kim and Lee worked on the unreliable

production lines with up to ten machines. The failure rate, the repair rate and the

production rate of each machine were obtained from the same uniform distributions. In

order to compare the efficiency of MNS in the computational tests, also another

heuristic, which was based on one buffer assignment at a time, was proposed called

Simple Heuristic Algorithm (SHA) in this study. The two algorithms were compared

with the solutions obtained by enumeration for short lines with up to 3 or 4 machines

and compared against each other for longer lines with 8 and 10 machines where

complete enumeration is inefficient. For all cases, MNS outperformed SHA in terms of

average WIP levels with reasonable number of iterations. MNS also gave average WIP

levels very close to the optimal solution achieved by enumeration for the cases where

enumeration technique was used.

CHAPTER 3 : LITERATURE SURVEY 16

Papadopoulos and Vouros[29] presented a prototype model management system

(MMS) for the design and operation of manufacturing systems. The model management

system classifies different models according to the type of the manufacturing system to

which they apply and according to the particular technique employed. The system

comprises three different techniques, namely, analytical, simulation and artificial

intelligence (AI) based techniques for production lines. The first two are evaluative

methods, whereas the last one is a generative (optimization) method that solves the

buffer allocation problem in a production line. Papadopoulos and Vouros studied on

both balanced and unbalanced production lines with reliable stations having

exponential operation times aiming to minimize average WIP by allocating fixed

number of buffer capacity. First contribution of this work was that the development of a

flexible MMS, which provides a simple and intelligible framework for classifying

different, modeling techniques, enables the interaction among these models and does

not restrict the developers to follow a particular model development task. Second one is

the development of a knowledge based system, called Advisor System for Buffer

Allocation (ASBA), which solves the buffer allocation problem in the production lines

with very satisfactory results.

Papadopoulos and Vouros[30] also introduced ASBA2, a knowledge based

system that solves the buffer allocation problem in production lines as an extension of

ASBA. ASBA allocates buffer space in reliable both balanced and unbalanced

production lines, aiming at reducing average WIP subject to a given total buffer space

and a required throughput. However, ASBA2 aims to extend the functionality of ASBA

to unreliable, balanced and unbalanced production lines and allocates the fixed total

buffer space in order to achieve the objective of maximizing throughput. The results

showed that ASBA2 allocates the buffers very close to the optimal ones in a

computationally efficient way by using specific types of knowledge.

Hillier and So[15] also provided a study of the effect of machine breakdowns

and inter-stage storage on the efficiency of production lines. Based on the results they

obtained, Hillier and So developed a simple heuristic method to estimate the amount of

storage space required to compensate for the decrease in throughput due to machine

breakdowns. The study focused on four and five machine production lines with again

operation times from two-stage Coxian distribution. Hillier and So used Coxian

distribution for operation times due to useful interpretation of this distribution. Stage 1

CHAPTER 3 : LITERATURE SURVEY 17

can be interpreted as corresponding to the normal service for an item at a machine,

whereas Stage 2 corresponds to downtime at the station for whatever reason (e.g.

breakdown of the machine) that interrupts this service where the probability of having

Stage 2 corresponds to the probability that the service is interrupted by down time.

Therefore, their model can be used to study the effect of breakdowns on the allocation

of storage space in a production line. First basic result of this study was that the

throughput of the production line is inversely proportional to the coefficient of variation

of the operation times meaning that increase in coefficient of variation will reduce the

throughput of the line. Secondly, percentage increase in the throughput achieved by

adding one extra unit of buffer space decreases as the buffer capacities increase. Lastly,

while the throughput of a line depends heavily on the average amount of downtime

during one service, the mean length of downtimes can affect the throughput

significantly for fixed average amount of downtime during one service; smaller mean

length of downtimes gives higher throughput than larger mean length of downtimes.

Yamashita and Altiok[41] were concerned with finding the minimum total

buffer number required and its allocation for a desired throughput in both balanced and

unbalanced production lines with three and five stations having phase-type processing

times. One significant difference of this study from others was that the capacity of each

buffer was assumed to be bounded above by a constant value, say Ci. They have

implemented a dynamic programming algorithm that uses a decomposition method to

approximate the line throughput at every stage.

Lutz et. al.[21] addressed the problem of buffer location and the storage size in

a manufacturing lines. The question was what buffer sizes should be employed and

where the buffers should be located. Hence, the objectives of Lutz et.al. were to

determine the minimum number of storage spaces needed and the allocation of these

storage spaces among the buffers, so as to maximize the overall throughput of the line.

To achieve these objectives, simulation-search heuristic procedure based on tabu search

was developed. Simulation was used to model the manufacturing process and the tabu

search was used to guide the search to overcome the problem of being trapped at local

optimal solutions. The procedure employs a Swap Search routine and a Global Search

routine. With the Swap Search routine, the procedure identifies good performing buffer

profiles and determines the maximum output level for any given storage level. With the

Global Search routine, the procedure can locate promising neighborhood of buffer

CHAPTER 3 : LITERATURE SURVEY 18

profiles quickly. The procedure is capable of modeling a variety of manufacturing

processes with a variety of scheduling policies and dispatching rules.

Park[31] presented characteristics of the buffer design problem associated with

the production lines and discussed some drawbacks related to the optimization methods

thus far his study applied to the buffer allocation problem. An efficient two-phase

heuristic method, using a dimension reduction strategy and a buffer utilization-based

beam search method, was developed to minimize total buffer storage required while

satisfying a desired throughput rate in unreliable balanced production lines with stations

having deterministic processing times, and geometric failure and repair times. While

Phase I attempts to accelerate the finding of an initial solution by reducing the

combinatorial search dimension to one, Phase II reduces the total buffer storage

required as much as possible while maintaining a desired throughput rate.

Gershwin and Schor [9] described efficient algorithms for determining how

buffer space should be allocated in a flow line. They considered unreliable lines with

deterministic operation times. Two problems were analyzed: a primal and a dual

problem. The goal of the primal problem is to minimize total buffer space required for

the line to meet or exceed a given average production rate, and the goal of dual problem

is to maximize the production rate achievable with a given total buffer space. The dual

problem is solved by means of a gradient method, and the primal problem is solved

using the dual solution. It was also showed how buffer allocation problems with profit

maximization objective could be solved by using essentially the same algorithms.

Sheskin[37] studied the allocation of buffer spaces in systems like Gershwin and

Schor[9]: those with unreliable machines with equal deterministic processing times. In

addition, he assumed time-dependent failures. A decomposition method was used to

produce numerical results for small systems with small buffer capacities. These results

led to some rules of thumb on the allocation of buffer spaces to maximize production

rate.

Soyster et.al.[39] used the same model with Sheskin[37] to study the

maximization of production rate subject to general linear inequality constraints on

buffer sizes. They approximated the production rate for small systems and used an

integer programming package to find optimal allocation of buffer spaces.

CHAPTER 3 : LITERATURE SURVEY 19

El-Rayah[6] attempted to study the effect of unequal allocation of fixed number

buffer storage and the imbalance in the operation time variabilities on the throughput

and average WIP. He simulated balanced lines in terms of mean operation times where

operation times were assumed to be normal. In the first section of the study, he only

investigated the effect of unequal buffer allocation on the output rate and average WIP

of the lines up to four machines which were also CV-balanced (where all machines

have same coefficient of variation). On the basis of simulation results for this section,

El-Rayah concluded that the output rate of a production line where the buffer capacity

is allocated equally cannot be significantly improved by deliberately unbalancing buffer

allocation. However, if imbalance is unavoidable, throughput is maximized by

assigning larger buffer capacities to the middle buffer locations and smaller capacities

to the end buffer locations on the line. He also observed from the results of the first

section that increasing order of buffer capacities encourages the reduction of average

WIP significantly while affecting the throughput in the decreasing direction so this

knowledge should be taken into account while the objective is to minimize WIP. In the

second section of his study, El-Rayah investigated the effect of imbalance of operation

time variabilities on the output rate of the balanced production lines in terms of mean

operation times with no storage buffers and he observed that bowl phenomenon holds

meaning that assigning stations with more variable operation times to the ends of the

line while assigning the ones with less variable operation times to the middle of the line

in order to maximize output rate.

Hillier and So[14] studied the effect of coefficient of variation of operation

times on the optimal allocation of storage space in production lines. They worked on

both µ-balanced and CV-balanced lines with operation times having two-stage Coxian

type distributions and considered the throughput as the only performance measure.

Their study showed that the optimal buffer allocation depends on the degree of

variability in the operation times. Specifically, the results showed that the inverted bowl

effect is more pronounced with higher variability in the operation times. Higher

variability meaning increasing coefficient of variations generally increases the

imbalance in the optimal allocation.

 Powell[32] provided a detailed study of the unbalanced three-station serial lines

with reliable stations having log-normal processing times with the objective of

maximizing throughput. In this study, imbalances in both means and variances were

CHAPTER 3 : LITERATURE SURVEY 20

considered. The study established a rule, Alternation Rule, for buffer allocation in

unbalanced lines. It was observed that the optimal sequential allocation of buffers to

lines in which one station had a higher mean or variance was to place the first buffer

next to the bottleneck, but then to place subsequent buffers alternately at the two

available sites. In effect, this rule suggests that a balanced allocation is optimal unless

the imbalance in processing times is extreme. Powell also observed that imbalances in

means have stronger effect than imbalances in variances, so that when a line is

unbalanced in both senses one can buffer the bottleneck with the high mean in

preference to that with the high variance unless the imbalances are extreme.

Chow[4] pursued a simple and practical solution for the optimal allocation of

buffers with the objective of maximizing throughput. He adopted an approach similar to

that used in Anderson and Moodie[2] except that the operation times were not

necessarily identical and the number of stations in the line could be arbitrary. At the

end, Chow constructed a dynamic programming procedure for buffer design for optimal

throughput which generates results that consolidates the bowl-phenomenon.

Yamashina and Okamura[42] dealt with the role of buffer stocks in multi-stage

transfer lines by presenting computer simulation results. Lines with unreliable stations

were investigated. Breakdown and repair times were assumed to have geometric

distributions. It was also assumed that breakdown results in the destruction or damage

of the production unit at the affected stage so that the production unit must be removed

from the line as scrap. Yamashina and Okamura observed that bowl phenomenon,

which was stated for balanced lines with reliable stations, also holds for the balanced

lines with unreliable stations. They also obtained the result that uniform buffer storage

capacity allocation does not guarantee the optimum allocation even for balanced

identical lines, but this postulate may be accepted for balanced identical lines in the

sense that the throughput for uniform capacity allocation does not differ very much

from the throughput for optimum allocation. It was also shown that an N-stage line

should be designed such that the lowest stage production rate occurs in the Nth stage,

the second lowest in the first stage, the third lowest in the (N-1)th stage, the fourth

lowest in the second stage and so on, to maximize the line throughput. This study also

demonstrates that the total buffer capacity should be allocated such that the difference

between the production rates of the stages on either side of a storage point is minimized

CHAPTER 3 : LITERATURE SURVEY 21

and the production rate of the stages before the storage point is slightly greater than that

of the stages following the storage point.

Papadopoulos and Spinellis[23] described a simulated annealing approach for

solving the buffer allocation problem with the objective of maximizing throughput for

fixed amount of buffer slots in reliable production lines with exponential operation

times. Performance of the simulated annealing approach was evaluated by comparing

the results of it with the results of complete enumeration whenever practical for short

lines and the results of the reduced enumeration which is widely used in literature for

the cases of longer lines. Obtained throughput rates by the simulated annealing

approach were quite close to the solutions obtained by complete and reduced

enumerations. However, evaluated configurations in simulated annealing approach

nearly did not change while asymptotically increasing in complete enumeration and

reduced enumeration with respect to the increase in the total buffer slots that will be

allocated among the buffer locations. For this reason, simulated annealing approach is

superior over both enumerative techniques for the lines with large total buffer slots.

Papadopoulos and Spinellis[24] broaden their research[23] by also taking

genetic algorithm into account near simulated annealing and obtained interesting

results. Genetic algorithm showed similar properties to simulated annealing. However,

it gave slightly worse throughput rates than simulated annealing approach with less

evaluative configurations where the difference between the throughput rates decreased

with the increasing total buffer capacity and line length. The most interesting result that

makes genetic algorithm superior to simulated annealing was that the number of

evaluative configurations for simulated annealing is increasing linearly but with

significantly higher rate than the case of genetic algorithm with respect to the increase

in the number of stations in the line.

Hillier et.al.[16] investigated the problem of the optimal allocation of fixed to

total buffer capacity for maximizing the throughput of the whole line. They used

enumeration on balanced lines with identical exponential service times. Their

conclusion was that storage bowl phenomenon holds meaning that interior buffer

locations are given preferential treatment (more buffer slots) over the end buffer

locations. The other key conclusion of this study was the hypothesis that, when the total

amount of storage space also is a decision variable, the overall optimal solution

CHAPTER 3 : LITERATURE SURVEY 22

commonly follows a storage bowl phenomenon whereby the allocation of buffer

storage space fits an inverted buffer pattern meaning that optimal allocation would have

one additional storage space at each of the internal buffer locations.

Hillier[13] investigated the hypothesis in Hillier et al.[16] with a simple cost

model including a linear revenue function and a linear cost per buffer space. The

objective was to maximize profit with the total buffer space being decision variable in

this study. Hillier worked with balanced and unbalanced four- and five-stations

production lines with a single bottleneck in terms of mean processing times.

Exponential, Erlang-2 and Erlang-4 processing times were used. Hillier observed that

inverted bowl phenomenon was typically optimal for balanced lines but shape became

more and more pronounced with larger numbers of buffer spaces. However, in

unbalanced lines the buffer space pattern deviates from the bowl pattern by reducing

the number of buffer spaces in buffer locations that are not adjacent to the bottleneck

station. Also it was stated that the processing time variability measured by coefficient

of variation was shown to have very little impact on the pattern of buffer space

allocation while the total number of buffer spaces was significantly affected by (being

roughly proportional) coefficient of variation of processing times.

Ho et.al.[17] presented a design algorithm based on the gradient vector of the

throughput with respect to the buffer sizes, and aiming to maximize throughput via

allocation of fixed amount of buffer capacity in transfer lines. They studied the effect of

allocating an additional buffer space at a certain location along the line and predicted

the improvement in the production rate. Proceedingly, they introduced simulation-based

gradient algorithm which solves the buffer allocation problem for unreliable lines

having Markovian property effectively.

Gurkan[11] used simulation-based optimization, sample path optimization, to

find the optimal buffer allocation in serial production lines where machines were

subject to random breakdowns and repairs in contrast to deterministic operation times.

Gurkan�s objective was to maximize throughput with given total buffer capacity but she

used fluid-type single product instead of discrete-type. Gurkan decided to work with

continuous type production line instead of discrete-type since continuous type line

simulation are substantially faster than discrete type line simulations meaning

considerable increase in computational efficiency, the approximations of discrete

CHAPTER 3 : LITERATURE SURVEY 23

product transfer lines via continuous product transfer lines are quite accurate and she

interested in optimizing systems of large size. Obtained results showed that her method

performed quite well even for very long lines.

 Papadopoulos and Vidalis[26] dealt with the optimal fixed amount of buffer

allocation problem with the objective of maximizing throughput in balanced production

lines with reliable workstations having exponential or Erlang-k (k = 2,3,4) processing

times. They presented two basic design rules that were extracted for the optimal buffer

allocation in these types of lines using enumeration and developed a search technique

that gives the optimal buffer allocation very fast.

Papadopoulos and Vidalis[27] also investigated the optimal buffer allocation

giving the maximum throughput in short (with 3,4,5,6 and 7 stations) production lines

with unreliable stations balanced in mean processing times. Repair and failure times

were assumed to be exponential whereas operation times were assumed to have Erlang-

k (k = 1,2,4 and 8) distribution. They answered the critical questions such as the effect

of the distribution of the service and repair times, the availability of the stations and the

repair rates on the optimal buffer allocation and the throughput of these types of lines.

Papadopoulos and Vidalis also confirmed the validity of reversibility property for

unreliable lines in this work.

Powell and Pyke [34] studied the problem of buffering reliable serial lines with

moderate variability and a single bottleneck in terms of processing time for the

maximization of throughput. Processing times were assumed to have log-normal

distribution. Their analysis showed that bottleneck station drew buffers toward itself,

but the optimal allocation was dependent on the location and the severity of the

bottleneck, as well as the number of buffers available. It was also observed that

relatively large imbalances in mean processing times are required to shift the optimal

buffer allocation away from an equal allocation and line length appeared to have a

relatively small effect on the optimal allocation with a given bottleneck. Furthermore,

in severely unbalanced lines, throughput appeared to be insensitive to the allocation of

buffers. Based on these results, Powell and Pyke suggested that equal buffer allocations

might be optimal except in severely unbalanced lines.

CHAPTER 3 : LITERATURE SURVEY 24

Jafari and Shanthikumar[19] also aimed to solve the problem of allocation of

given total buffer storage with the objective of maximizing throughput subject to local

buffer storage constraints (i.e. buffer slots no more than Ci could be assigned to the

buffer location Bi) in transfer lines. They worked on the synchronized transfer lines

with unreliable stations having geometric up- and down-times. It was also assumed that

when station i breaks down, the part being processed by it is either scrapped with

probability βi or it will be completed with probability 1- βi , at the end of the cycle

where the station is repaired. Jafari and Shanthikumar presented a heuristic solution

which was based on dynamic programming and an approximate procedure to compute

the production rate of the transfer line and which was producing quite reasonable

results.

It is worth to conclude this chapter with summary of researches on the optimal

buffer allocation in the literature. Below table named Table 3.1 gives the related

researches with their objectives and types of lines on which they focus on briefly.

CHAPTER 3 : LITERATURE SURVEY 25

AUTHOR TYPES OF LINES OBJECTIVE
THROUGHPUT
ESTIMATION

METHOD

Conway et al.[5] Balanced, Unbalanced Analyzing the effect of buffers on
serial lines Simulation

Anderson and Moodie[2] Balanced Analyzing the optimal production cost
modeled Simulation

Helber[12] Several examples of flow
lines

Maximizing net present value of the
investment Simulation

Altiok and Stidham[1]. Unreliable Maximizing the total profit Analytical
approximation

Seong et al.[36] Unreliable Maximizing the total profit

Andijani and Anwarul[3] Balanced Reliable Maximizing throughput, minimizing
WIP and minimizing time in system Simulation

So[38] Balanced and Unbalanced
Reliable Minimizing WIP Exact analytical

solutions(Markovian)
Papadopoulos and
Vidalis[28] Balanced Reliable Minimizing WIP Exact analytical

solutions(Markovian)

Kim and Lee[20] Unreliable Minimizing WIP Analytical
approximation

Papadopoulos and
Vouros[29] Balanced, Unbalanced Minimizing WIP

Exact analytical
solutions(Markovian),

Simulation

Papadopoulos and
Vouros[30]

Balanced and Unbalanced
Unreliable Maximizing throughput

Exact analytical
solutions(Markovian),

Simulation

Hillier and So[15] Unreliable Analyzing the effect of breakdowns
and buffers on the efficiency of line

Exact analytical
solutions(Markovian)

Yamashita and
Altiok[41] Balanced, Unbalanced Minimizing total buffer slots for

desired throughput
Dynamic programming

algorithm

Lutz et. al.[21] Several examples of flow
lines

Minimizing total buffer slots for
desired throughput Simulation

Park[31] Balanced Unreliable Minimizing total buffer slots for
desired throughput

Analytical
approximation

Gershwin and Schor [9] Unreliable Minimizing total buffer slots for
desired throughput

Analytical
approximation

Sheskin[37] Unreliable Maximizing throughput Analytical
approximation

El-Rayah[6] Balanced
Analyzing the effect of unequal

allocation of buffers on throughput
and WIP

Simulation

Hillier and So[14] Balanced Analyzing the effect of CV of
operation times on OBA of buffer

Exact analytical
solutions(Markovian)

Powell[32] Unbalanced Reliable Maximizing throughput Simulation

Chow[4] Balanced, Unbalanced Maximizing throughput
Analytical

approximation,
Simulation

Yamashina and
Okamura[42] Unreliable Maximizing throughput Simulation

Papadopoulos and
Spinellis[23],[24] Reliable Maximizing throughput Analytical

approximation

Hillier et.al.[16] Balanced Maximizing throughput Exact analytical
solutions(Markovian)

Hillier[13] Balanced, Unbalanced Maximizing profit Exact analytical
solutions(Markovian)

Ho et.al.[17] Unreliable Maximizing throughput Simulation
Gurkan[11] Unreliable Maximizing throughput Simulation
Papadopoulos and
Vidalis[26] Balanced Reliable Maximizing throughput Exact analytical

solutions(Markovian)
Papadopoulos and
Vidalis[27] Balanced Unreliable Maximizing throughput Exact analytical

solutions(Markovian)
Powell and Pyke [34] Reliable Maximizing throughput Simulation
Jafari and
Shanthikumar[19] Unreliable Maximizing throughput Analytical

approximation
Table 3. 1. Summary of Literature Survey

26

Chapter 4

TWO RELATED ALGORITHMS

Most of the studies, reviewed in the previous chapter, about the optimal buffer

allocation in production lines with the objective of maximizing throughput do not solve

the problem directly. Instead, some generalizations and intuitive ideas about the

characteristic of the optimal buffer allocation or the effects of some parameters (i.e.

repair rate, failure rate etc.) on it are introduced. On the other hand, the ones that solve

the optimal buffer allocation problem are not applicable to all types of production lines.

These types of studies focus on the specific production lines (i.e. balanced lines) or

production lines with special features such as reliable machines etc. However, on the

contrary to these studies, Seong et.al.[35] and Powell and Harris [33] introduced new

heuristic algorithms applicable to all types of production lines.

4. 1. Standard and Non-Standard Exchange Vector

Algorithms (SEVA and Non-SEVA)

Seong et al.[35] worked on unbalanced lines with unreliable machines having

exponential failure and repair times whereas operation times are deterministic or

exponential with different rates. They focused on the optimal buffer allocation problem

(OBAP) with the objective of maximizing throughput with the concavity assumption of

CHAPTER 4 : TWO RELATED ALGORITHMS

27

objective function. In their study, OBAP, a non-linear integer-programming problem, is

presented as below mathematical structure;

OBAP: max E(K)
 K

 s.t. eTK = C

 Kj is a non-negative integer

where E(K) is the throughput with K,

 e is a unit column vector,

 K is a buffer allocation (= (K1 , ��.. , K(N-1))T), and

 C is the fixed total buffer capacity available.

Two different versions of the heuristic algorithm for solving OBAP based on

the idea of the local search are presented in this study. Namely, first of all, it is needed

to define a specific neighborhood with respect to a given solution. The best solution in

this defined neighborhood is determined and becomes the next solution. This process is

repeated until no better solution is found. The process of defining the specific

neighborhood is called the line segment selection and the process of finding and

moving to the best solution in the neighborhood is called the point search.

The line segment selection yields a line segment L which is specified by two

integer vectors L1, L2 and two integer parameters θ1 and θ2 (θ1 < θ2) as below:

L (L1, L2 , θ1 , θ2) = { L | L = L1+ θL2 , θ = θ1 , θ1 + 1, � , θ2 }

where L1, L2 , θ1 and θ2 are selected in such a way that all points in the set L (

L1, L2 , θ1 , θ2) are within the feasible region.

In the point search, an optimization problem given below is solved:

 max E(L)

 s.t. L in L (L1, L2 , θ1 , θ2)

 which is denoted by PS(E: L1, L2 , θ1 , θ2).

 At this point, it is worthwhile to explain the point search and the line segment

selection in more detail:

CHAPTER 4 : TWO RELATED ALGORITHMS

28

 The point search is a process of finding the best integer solution among a set of

integer solutions defined on a straight line. In PS(E: L1, L2 , θ1 , θ2), there are (θ2 - θ1 +

1) integer vector points in L. If (θ2 - θ1 + 1) is less than or equal to 4, objective function

is evaluated at each point and the optimum solution can be obtained. However, if (θ2 -

θ1 + 1) is greater than 4, solving this problem becomes equivalent to finding an interval

containing 4 consecutive integer vector points defined by an integer value θ* satisfying

the following conditions:

 E (L1 + θ*L2) ≤ E (L1 + (θ* + 1)L2)

 E (L1 + (θ* + 2)L2) ≥ E (L1 + (θ* + 3)L2)

Such an interval can be found in O(log M) time where M (= θ2 - θ1 + 1) is the

number of integer vector points on the line segment L by using modified bisecting

method. Optimum solution is among the one (L1 + (θ* + 1)L2) , (L1 + (θ* + 2)L2) with

higher objective value of E(L).

 Throughout the algorithm, since the sum of the components of each solution is

equal due to the fixed amount of total given buffer slots, moving from one solution to

the other can be considered as the movement along an integer directional vector h

whose entries sum up to zero meaning that eTh = 0. Such vector is defined as �exchange

vector�. If a certain exchange vector yields the better production rate, it is called

�improving exchange vector�. Hence, the line segment selection can be thought of as a

process of choosing a line segment along an improving exchange vector.

Two propositions are presented below that are necessary to develop heuristic

algorithms, which differ only in the line segment selection procedure and that are based

on the interesting properties of the feasible region K which is given as

K = {K | eTK = C, K ≥ 0 , K Є R(N-1), Kj integer for all j = 1, � , (N-1)}.

Proposition I: For an arbitrary pair of points K1 and K2 in the set K, K2 � K1

can be represented as a unique integer linear combination of vectors {X 1 , � , X (N-2)}

defined as

CHAPTER 4 : TWO RELATED ALGORITHMS

29

 1 if j = i

 i
jX = -1 if j = i + 1 for all i = 1, � , (N-2).

 0 otherwise

Proposition II: The vector Z satisfies eTZ = 0, if and only if Z is a linear

combination of vectors {X 1 , � , X (N-2) }.

X i is called �standard exchange vector� since it represents an exchange between

two adjacent buffers, i.e. ith and (i+1)th buffers.

 4. 1. 1. Standard Exchange Vector Algorithm (SEVA)

 Proposition I gives the basis for setting up a line segment selection procedure

used for developing the first algorithm, Standard Exchange Vector Algorithm (SEVA).

The basic derivation from Proposition I is the simple fact that all possible exchanges

among the buffers can be represented as a unique linear combination of standard

exchange vectors. In other words, any exchange among buffer allocations can be

achieved by a set of exchanges between adjacent pairs of buffers. This idea is used for

developing SEVA.

 In the Figure 4.1, it can be seen how SEVA proceeds for 4-machine production

line with three buffer locations where totally seven buffer slots will be allocated. The

initial solution is K 0,0 (= K 0). At this point, two point search procedures are performed,

generating K 0,1 and K 0,2. Then K 0,2 is assigned to K 1(= K 1,0) and again two more

point search procedure is applied, yielding K 1,1 and K 1,2 where K 1,2 is set to the third

point K 2 (= K 2,0) and the algorithm proceeds.

CHAPTER 4 : TWO RELATED ALGORITHMS

30

Figure 4. 1. The illustration of SEVA

SEVA can be summarized as follows;

Step 0: (Initialization) Set m = 0.

 Choose an initial feasible allocation K 0, which is in the feasible region K.

Step 1: Set K m,0 = K m .

Step 2: For i = 1, � , (N-2) , set K m,i to be an optimal solution to

 PS(E: K m,(i-1), X i , θi
1 , θi

2)

 where θ i
1 = 1)(im, −− iK and θi

2 = 1)(im,
)1(
−

+iK .

Step 3: Set K(m+1) =Km,(N-2) .

Step 4: (Termination)

 If | E (K(m+1)) - E (Km) | < ε (ε is set to 10-6 in the applications), then STOP.

 Otherwise set m = m + 1 and go to Step 1.

K0,0

K0,1

K1,1

K1,0 = K0,2

K2,0 = K1,2

(0,0,7)

V2

V3

V1

(0,7,0) (7,0,0)

CHAPTER 4 : TWO RELATED ALGORITHMS

31

4. 1. 2. Non-Standard Exchange Vector Algorithm (Non- SEVA)

The number of elements of the feasible region K becomes huge with the

dramatic increase in the total fixed amount of buffer slots C and the number of

machines N. In such cases, SEVA might have to go through too many point search

procedures and each point search procedure can be slowed down significantly due to

the large number of integer vector points on each selected line segment. Based on the

observation that the selection of a non-standard exchange vector pointing toward the

region with better solutions can improve the efficiency of the algorithm, second

algorithm called Non-Standard Exchange Vector Algorithm (Non-SEVA) is developed.

Figure 4. 2. The procedure how to obtain non-standard integer exchange vector

approximating the gradient vector in Non-SEVA

Proposition II, which is the consequence of Proposition I, is the basis for Non-

SEVA. Proposition II implies a simple fact, that an arbitrary exchange vector can be

represented as a linear combination of the standard exchange vectors, which is used to

develop heuristic procedure for finding a good non-standard integer exchange vector

approximating the gradient of the throughput function.

g

d

p

V1 V2

V3

(7,0,0)

(0,7,0)

(0,0,7)

CHAPTER 4 : TWO RELATED ALGORITHMS

32

Non- SEVA starts with a point in the feasible region K as SEVA does and

improving non-standard exchange vector is obtained which is the approximation of the

gradient of the throughput. However, since the objective function is not differentiable,

pseudo-gradient g is obtained which is the approximation of the gradient of the

throughput function first by finite differencing:

g(mK) = T
)2())(),....,((m

N
m
1 KgKg −

 E(� , m
jK)1(−

 , m
jK + 1 , m

jK)1(+ , �) - E(� , m
jK)1(−

 , m
jK - 1 , m

jK)1(+ , �)

 g (m
jK) =

 (m
jK + 1) � (m

jK - 1)

 E(� , m
jK)1(−

 , m
jK + 1 , m

jK)1(+ , �) - E(� , m
jK)1(−

 , m
jK - 1 , m

jK)1(+ , �)
 =

 2

The projection of pseudo-gradient g on the hyper plane eTZ = 0 is a non-

standard exchange vector (not necessarily an integer vector) satisfying eTd = 0 and it is

given as

d = (I � e(eTe)-1 eT) g . (*)

Due to Proposition II, d can be represented as a linear combination of the

standard exchange vectors satisfying

d
~ = S * d = α1 X 1 + α2 X 2 + � + α(N-2) X (N-2) , where S is the scale factor.

By rounding off αi�s to get γi�s, we get an integer vector p approximating the

pseudo-gradient vector g:

p = γ1 X 1 + γ2 X 2 + � + γ(N-2) X (N-2)

The illustration of how Non-SEVA obtains a non-standard integer exchange

vector can be seen in Figure 4.2.

Two different procedures for the round-off are developed. One is for making

�big� steps and the other is for making �small� steps.

CHAPTER 4 : TWO RELATED ALGORITHMS

33

In the big step round-off procedure, γi�s are defined to be as the following:

 For a given allocation K, calculate d using the equation (*).

Let dj be the jth entry of d:

)1(,...,1,0
min }min{

−=≠

=
Njd
j

j

dd

d
d

d
min

1~ =

∑
=

=
j

k
kj d

1

~α for all j = 1, � ,(N-2)

 Finally, γi�s are determined by rounding off αi�s.

In the small step round-off procedure, γi�s are defined to be as the following:

 For a given allocation K, calculate d using the equation (*).

Let dj be the jth entry of d:

)1(,...,1
max }max{

−=

=
Nj

jdd

 d
d

d
max

1~ =

∑
=

=
j

k
kj d

1

~α for all j = 1, � ,(N-2)

 Finally, γi�s are determined by rounding off αi�s.

While Non-SEVA yields a significant improvement, the point search procedure

along the non-standard exchange vectors are performed making �big� steps. However,

if the reverse is the case meaning that Non-SEVA does not yield a significant

improvement, making �small� steps is invoked during the point search along the non-

standard exchange vectors.

(**)

(***)

CHAPTER 4 : TWO RELATED ALGORITHMS

34

The systematic representation of Non-SEVA is as follows:

Step 0: (Initialization)

 Set m=0. Choose an initial feasible allocation Km, which is in feasible region K.

Step 1: (Big Step)

 Obtain a non-standard exchange vector p from Km by using equation (**).

 If p = 0 then go to Step 3.

 Otherwise, let Km+1 be the optimal solution to PS(E: Km, p, θ , θ2)

 where

θ2 =
)1(,...,1

}�min{
−= Nj
jp

 and

j

m
j

p

KC −
 if pj > 0

 =jp�
j

m
j

p

K
−1 if pj < 0

 ∞ if pj = 0.

Step 2: If | E (K(m+1)) - E (Km) | < δ (δ is set to 10-4 in the applications) then go to Step 3.

 Otherwise, set m = m + 1 and go to Step 1.

Step 3: (Small Step)

 Obtain a non-standard exchange vector p from Km by using equation (***).

 If p = 0 then stop here. Km is optimal solution.

 Otherwise, let Km+1 be the optimal solution to PS(E: Km, p, 0 , θ2) where θ2

 is defined as in Step 1.

CHAPTER 4 : TWO RELATED ALGORITHMS

35

Step 4: (Termination)

 If | E (K(m+1)) - E (Km) | < ε (ε is set to 10-6 in the applications) then there

exists no improvement and Km is optimal solution. Stop here.

 Otherwise set m = m + 1 and go to Step 1.

Same balanced initial allocation procedure which is proposed by Hillier and

So[14] is used for both SEVA and Non-SEVA in the study of Seong et.al[35].

According to this procedure, the initial allocation, K0, is set as follows:

−

=
)2(

0

N

C
K j for j = 1, � , (N-2)

∑
−

=
− −=

2

1

00
)1(

N

j
jN KCK where x is the largest integer that does not exceed x.

4. 2. Simple Search Algorithm (SSA)

Powell and Harris [33] developed an efficient simple search algorithm for

determining the optimal allocation of a fixed amount of buffer capacity giving the

maximum throughput in both balanced and unbalanced serial production lines with

reliable stations having log-normal processing times. Simulation was used to obtain the

throughput for every allocation considered in the algorithm. Simple Search Algorithm

is based on two important observations grasped in the execution of Non-SEVA. First

observation is that information on the throughput gradient at any point in the feasible

region is tedious to determine since the central difference approximation to the gradient

requires two simulations for each of the (N-1) buffer locations. Second one is that the

estimated gradient may not suggest a useful search direction either because it leads out

of the feasible region or because its projection onto the feasible region is not itself an

integer vector, so information is lost in approximating the projected gradient with an

integer vector. For these reasons, a simple search procedure that maintains, at each

stage, a collection of feasible buffer allocations that are sorted in order of throughput

values is introduced. The search direction is determined by moving from the point with

the lowest throughput in the current candidates to the one with the highest throughput.

CHAPTER 4 : TWO RELATED ALGORITHMS

36

The Simple Search Algorithm (SSA) has its origins in the sequential search

procedures given by Spendley and Hext [40] and Nelder and Mead [22]. The Spendley-

Hext algorithm starts with a set of candidate solutions that form a regular simplex.

Then, this algorithm identifies a search direction by moving from the centre of the

simplex out through the face opposite the worst candidate solution. A new candidate

called reflection is identified in this search direction while the old worst solution is

discarded and the procedure starts again. The shape of the simplex does not change

from stage to stage, so it may move slowly even when the gradient is steep. In the

Nelder-Mead algorithm, the centroid of all solutions in the simplex except the worst is

determined and the search direction is the one from the worst solution through the

centroid and out beyond the simplex. However, in contrast to Spendley-Hext algorithm,

the algorithm introduced by Nelder and Mead accelerates when the gradient is steep

and decelerates when it flattens out. While adapting these algorithms to the Simple

Search Algorithm, two problems are faced: to ensure that the search can move quickly

when the current candidate allocations are far from the optimal and to ensure that the

new candidate allocation that is determined from the search direction is feasible

meaning that it is an integer vector with entries sum up to total fixed number of buffer

slots.

Firstly, an initial candidate allocation K = (K1 , K2 , � , K(N-1)) is selected. This

selection is done based on the studies of Powell[32] and Powell and Pyke[34]. This

initial allocation will be balanced or as close to balanced as possible since these two

studies show that balanced allocations tend to be optimal except for highly unbalanced

lines. Then, (N-2) additional allocations from the closest neighbours to K1 are generated

by transferring one unit of buffer slot from the buffer location with the largest capacity

to the each of other buffer locations successively to form the initial simplex. These

candidates are sorted from the best to the worst according to their throughput values

estimated via simulation. In order to find the search direction, the Spendley-Hext

reflection procedure is adapted and, after some experimentation, a reflection procedure

that computes the difference between the double of the buffer allocation vector with the

best throughput and the buffer allocation vector with the worst throughput is

introduced. By this way the second one of the pre-stated problems faced during the

adaptation is overcome. The resulting allocation is always an integer vector with entries

sum up to the total fixed number of buffer slots and can be expected to lie in the

CHAPTER 4 : TWO RELATED ALGORITHMS

37

direction of improving throughput. To make these more understandable, let the vector

(0,0,0,0,5) be the initial buffer allocation for six station production line with the 5

buffer slots. Then the generated neighbours that form the initial simplex with the initial

buffer vector (0,0,0,0,5) become (1,0,0,0,4), (0,1,0,0,4), (0,0,1,0,4), (0,0,0,1,4). Say that

the best allocation is (0,1,0,0,4) and the worst is (0,0,0,0,5). By using these, new

allocation, the reflection point, is obtained as follows:

2*(0,1,0,0,4) � (0,0,0,0,5) = (0,2,0,0,3)

 If the estimated throughput of the new allocation is better than the current

worst, it is replaced with the worst allocation and the search procedure begins again on

the new simplex. If the other is the case meaning that the estimated throughput of the

new allocation is worse than the current worst allocation, the search is restarted by

generating an initial simplex via the same method (transferring one buffer slot from the

buffer location with highest capacity to each of the other buffer locations successively)

around the best of the current allocations.

The simplex usually grows as it proceeds, in the sense that new allocations are

farther and farther away from the existing allocations. This feature of the simplex

solves the first pre-stated problem during the adaptation procedure since it allows the

algorithm to accelerate when a good direction is identified.

The reflection may be infeasible. In other words, the reflection may have

negative entries. This is undesirable situation since any buffer location cannot have

negative capacity. If this is the case, reflection is produced from the second worst

allocation in the current candidates. If again an infeasible reflection is obtained by the

second worst, the third worst allocation is used in the reflection procedure and this goes

on until a feasible reflection is achieved. If no feasible reflection is achieved by all

candidates, restarting option is employed which is operated in the case of reflection

with less throughput than the current worst allocation in the simplex.

An important feature of this algorithm is that the simulation run length was

adjusted during the implementation of the algorithm to save simulation run time when

high precision in throughput estimates was not needed, and to ensure the adequate

precision when it was needed. In the first step, based on some judgment and experience,

a minimum (also initial) run length Rmin is determined in a way that the search never

CHAPTER 4 : TWO RELATED ALGORITHMS

38

uses inappropriately short runs and a maximum run length Rmax is determined in a way

that the search will not continue long after an optimal or near optimal allocation is

found. In other words, Rmax is chosen to balance the trade-off between accuracy level

and the desire for short runs.

Secondly, in adjusting the simulation run lengths, the height, H, of the simplex

is computed in order to estimate how close the simplex to the optimal solution at each

step of the algorithm by

H = (Pbest � Pworst) / Pbest .

In the above equation, Pbest and Pworst are the estimated throughput values of the

best and the worst of the current candidates respectively.

In the next step, a run length constant k is chosen (empirically a value of 100-

200 for k performs well) and run length R is set to

R = k / H2 .

The closer the simplex is to the optimum, the smaller the height of the simplex

H is expected to be and as a consequence of this the larger the run length R is.

However, this calculated R value is not directly used in the next step. Since large errors

in throughput estimates may make H either increase or decrease substantially, and thus

lead to inappropriately large changes in R, a weighted average of the previous run

length and the current value of R is taken at each stage of the algorithm and the larger

of this weighted sum and current value R is selected as the current run length. By this

way, failing to decline or incline in run length in need of less or more precision

respectively is prevented.

 Two conditions must hold simultaneously in order to stop the Simple Search

Algorithm. These conditions are

1. The current reflection must have a lower throughput value than the worst

allocation.

2. Te best allocation must be the initial point in the simplex from which (N-2)

neighbours are generated.

CHAPTER 4 : TWO RELATED ALGORITHMS

39

Since it is probable for the algorithm to stop at inappropriately short run length,

an additional condition of doubling the run length at each iteration until Rmax is reached

is integrated as the third stopping condition.

 The Simple Search Algorithm can be summarized as below:

Step 0: Choose an initial candidate. (Balanced or as close to balanced as is practical)

Step 1: Generate (N-2) adjacent candidate solutions from the current best candidate to

form a new simplex. (Initial simplex is formed from the initial candidate)

Step 2: Simulate all candidate solutions. (Simulation run length is Rmin for initial

simplex)

Step 3: Sort candidate solutions by their estimated throughput values.

Step 4: Determine the feasible reflection. (Reflection procedure was given before)

 If no feasible reflection is found

 Go to the Step 1.

 Else

 Simulate reflection point.

 If the throughput of reflection is better than the worst�s

 Replace the worst candidate with the reflection.

 Calculate the run length. (Technique was stated before)

 Go to Step 2.

 Else

 If the best candidate is same as the initial candidate

 If the run length is less than Rmax .

 Double run length.

 Go to the Step 2.

 Else

 Stop.

 Initial vertex in the final simplex is the optimum.

Else

 Go to Step 1.

 40

Chapter 5

LINE BALANCING ALGORITHM (LIBA)

5. 1. Introduction

Before introducing our algorithm for solving OBAP, it is worthwhile to state

some important observations related to production lines. Let L be the N-machine

production line with (N-1) buffers as depicted in Figure 5.1 that we are trying to

allocate the total fixed number of buffer slots among the buffer locations with the

objective of maximizing throughput.

 �..

 M1 B1 M2 B2 B(N-2) M(N-1) B(N-1) MN

Figure 5. 1. The N-machine production line L

Now, let L1, L2 be two independently operating sub-lines obtained by dividing

the line L into two from the buffer location Bi. Then L1 and L2 are given as below:

 � �

 M1 B1 M2 B2 Mi Bi M(i+1) B(N-2) M(N-1) B(N-1) MN

 Sub-line L1 Sub-line L2

Figure 5. 2. Two sub-lines L1 , L2 obtained by decoupling L from the buffer i

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

41

The output of L1 is the input of L2 , so if the throughput of L1 is less than the

throughput of L2 , L2 will starve and if the opposite is the case meaning that the

throughput of L1 is more than the throughput of L2 , L1 will be blocked where both

situations are undesirable. To be able to cope with this unbalance problem between two

sides of buffer Bi of the whole line L, we should increase the throughput of the slower

sub-line while not decreasing the throughput of the faster sub-line under the value of

the throughput of the slower one, since we know in advance that the throughput P of the

whole line L is bounded by the minimum of the throughput of these two sub-lines and

given as

P ≤ min(P1 , P2) where P1 and P2 are the production rates of L1 and L2

respectively.

The way of achieving this goal is to transfer buffer slots from the buffer

locations belonging to faster sub-line to the buffer locations belonging to slower sub-

line. Applying this procedure, we may increase the production rate of the slower sub-

line with the possibility of decreasing the production rate of the faster one. Hence, we

decrease the difference between the production rates of the two sub-lines, which results

in obtaining more balanced line around the buffer where two sub-lines are separated. In

addition to this, upper limit for the throughput of the whole line is raised to higher

value, since the minimum of P1 and P2 increases. The idea of separating the whole line

from a buffer location and obtaining more balanced line around it by the buffer slot

transfer from the faster sub-line to the slower one is defined as �Buffer Centric Line

Balance�.

By implementing the Buffer Centric Line Balance concept to each buffer

location consecutively, we expect to obtain a more balanced line with increasing

production rate at each step. However, it may not be possible to obtain a production line

with exact balance around each buffer location simultaneously, which is an interesting

property of production lines. There may most probably be imbalance around any other

buffer location even though we achieve an exact balance around any specific one. To

make this property more apparent, think of the below line:

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

42

 M1 B1 M2 B2 M3 B3 M4

 sub-line L12 (P12 = P34) sub-line L34

 sub-line L11 (P11 ≥ P24) sub-line L24

 sub-line L13 (P13 ≤ P44) sub-line L44

 Figure 5. 3. Illustration of the property of imbalance around any other buffer

locations even though the exact balance around any specific one in production lines

In the above line, although we have an exact balance around the buffer location

B2 (P12 = P34), we may not reach an exact balance around the other buffer locations B1

(P11 ≥ P24) and B3 (P13 ≤ P44) due to the fact that the expectation of decrease in the

production rate of the line when adding a new machine to it. Based on this fact, the

production rate of the sub-line L11 is expected to be greater than the production rate of

the sub-line L12(P11 ≥ P12) while the production rate of the sub-line L24 is expected to be

less than the production rate of the sub-line L34(P24 ≤ P34). Consequently, the production

rate of the sub-line L11 is expected to be greater than the production rate of the sub-line

L24 due to the exact balance around buffer location B2 (P11 ≥ P12 = P34 ≥ P24). Therefore,

exact balance around the buffer location B2 may most probably produce an imbalance

around the buffer location B1 as well as B3, which can be shown by the same logic.

Based on this property and the observations introduced, we develop a new

algorithm called �Line Balancing Algorithm (LIBA)�. The logic behind this algorithm is

the minimization of the sum of the production rate differences between two sub-lines

obtained by dividing the whole line around each buffer location. Thereby, we aim to

increase the throughput of the whole line. The correctness of this logic is supported by

the Table A.4 given in the Appendix A.4. In Table A.4, total imbalance and throughput

value for each feasible allocation for 3-station production line with total fixed number

of buffer slots equal to 15 which is studied in Seong et.al.[35]. The way of decreasing

the total imbalance is to break the initial line into two sub-lines and to apply the buffer

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

43

slot transfer from faster side to slower side that will improve the throughput of the line

we focus on. It should be kept in mind that transfer of the buffer slots from the faster

side to slower side of the line does not always improve the efficiency. The reason is that

to make the whole line more balanced around any arbitrary buffer, will usually increase

the imbalance around some other buffers, which may also result in increase in the sum

of imbalance in the whole line. Hence, we continue to find the improving transfers

during the execution of the algorithm until no more improving transfer condition is

reached.

5. 2. The Algorithm

First of all, throughput of the whole line is obtained. Then the line is divided

into two sub-lines from the buffer location in the centre of the line. However, if the

number of the machines is odd, there will be two central buffer locations since there is

even number of buffer locations in the whole line. In this case, the one towards the end

of the line, in other words the right one, is selected. This buffer location is called the

main division buffer. In the second step, production rates of the two sub-lines are

evaluated and the one with higher production rate is determined as the potential buffer

slot giver, while the slower one is determined as the potential buffer slot receiver. After

determining the potential giver and potential receiver sides of the line, determination of

the buffer locations that are receiver and the giver is the order that we follow. While

determining these locations, bisection technique is used. This bisection can be

visualized as below figure:

 M1 B1 Mi/2 Bi/2 M(i/2)+1 Mi Bi M(i+1) M(3i/2) B(3i/2)M(3i/2)+1 B(N-1) MN

 Sub-line L1 (P1) (P1 > P2) Sub-line L2 (P2)

 Sub-line L11 (P11) (P11 > P12) Sub-line L12 (P12) Sub-line L21(P21) (P21 < P22) Sub-line L22 (P22)

 Sub-line L111 (P111) Sub-line L212(P212)

Figure 5. 4. Bisection procedure for determination of potential giver and receiver

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

44

For determining the potential giver buffer location, the initial sub-line with

higher throughput will again be divided into two independently working sub-lines from

the central buffer location of the initial sub-line. Among the sub-lines of the initial sub-

line, the one with higher rate is again decoupled from its centre and this procedure will

go until we obtain two sub-lines with at most one buffer location. Among these final

sub-lines, the one with higher rate is potential giver. If this line has two machines, the

buffer location between these two machines is the one we are looking for. However, if

this line has only one machine, the potential giver buffer location is the final division

buffer location, which is just in front of this machine.

Same procedure used while determining the potential giver buffer location is

applied to determine the potential receiver buffer location. Decoupling from the center

of obtained sub-lines with lower rates continues until reaching the final sub-lines that

have at most one buffer location and potential receiver is assigned to the buffer location

between the machines if the lower rate final sub-lie has two machines or to the final

division buffer location which is just in front of the machine if the lower rate final sub-

lie has only one machine.

Buffer slot transfer between these two determined buffer locations has the

highest likelihood to improve the efficiency of the whole line since decoupling

sequence is based on the observation that we mentioned as the basis of our algorithm.

This basis is to decrease the unbalance between two sub-lines obtained. This procedure

supports the imbalance reduction between each sub-line pair formed. To see this more

clearly, let�s take N-machine production line with N equal to 8:

 M1 B1 M2 B2 M3 B3 M4 B4 M5 B5 M6 B6 M7 B7 M8

 Sub-line L1 (P1) (P1 > P2) Sub-line L2 (P2)

 Sub-line L11 (P11) (P11 > P12) Sub-line L12 (P12) Sub-line L21(P21) (P21 < P22) Sub-line L22 (P22)

Figure 5. 5. Bisection of 8-machine production line until its final sub-lines

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

45

As can be seen from a simple example given above in Figure 5.5, shaded buffer

locations are potential giver and potential receiver. B1 is the potential giver and B5 is the

potential receiver. By the buffer slot transfer from B1 to B5, we hope to decrease the

unbalance between the sub-lines L11 and L12 for the sub-line L1 as well as the unbalance

between the sub-lines L21 and L22 for the upper sub-line L2 since the production rate of

the sub-lines L11 may decrease while the production rate of the sub-line L12 remains the

same and the production rate of the sub-lines L21 may increase while the production rate

of the sub-line L22 remains the same. Moreover, the unbalance between the upper sub-

lines L1 and L2 is expected to be decreased, since the possible decrease in the

production rate of L1 is accompanied with the possible increase in the production rate of

the L2 with this buffer slot transfer. Hence, this transfer option has the highest

likelihood to improve the throughput of the whole line due to the expectation of

achieving maximum imbalance reduction.

After determining the potential giver and receiver buffer locations, buffer slots

are transferred from the potential giver to the potential receiver until no improvement is

achieved in the efficiency of the whole line and we restart the algorithm from the same

main division buffer. However, if any transfer does not increase the throughput of the

whole line, potential receiver is changed to just previous division buffer and it is

checked whether there will be increase in the throughput of the whole line. If this

transfer, from the initial potential giver to the new potential receiver, improves the rate

of the whole line, buffer slots is transferred again until no improvement is achieved. On

the other hand, if no improvement in the throughput of the whole line is achieved, the

potential receiver is assigned to the next division buffer, which is just before the

existing potential receiver. This goes on until the first division point, which is the main

division buffer, in the slower part of the line. If there is still no improvement in the

throughput of the whole line, the potential giver is changed to the just previous division

buffer and potential receiver is assigned to the initial potential receiver buffer location.

If, again, no improvement in the efficiency of the whole line is achieved for this

potential giver after applying the same potential receiver sequence, the potential giver is

changed to the division buffer for the one upper sub-line. This sequence of changing

potential giver continues until the first division point, which is the main division buffer,

in the faster part of the line.

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

46

To make it more understandable, consider the 8-machine production line

example again. Transfer sequence will be as the below order until any improvement of

overall throughput is reached:

1. B1 to B5

2. B1 to B6

3. B1 to B4

4. B2 to B5

5. B2 to B6

6. B2 to B4

7. B4 to B5

8. B4 to B6

If there is still no improvement in throughput although all transfer options are

checked for that main division buffer (it is B4 in our example), we change the main

division buffer to one left buffer location (B3 in our case) and restart bisection. If, again,

we cannot increase the production rate for this main division buffer, we will change the

main division buffer to one right of the first main division buffer. The next main

division buffer will be two left of the first one and then two right of it if no

improvement is the case. Changing of the main division buffer can be seen as an

oscillation around the center of the whole line. The order of the main division points in

our 8-machine case given in Figure 5.5 is

 B4 B3 B5 B2 B6 B1 B7 .

Up to this point, we assume that each sub-line pair has unequal production rates.

When opposite situation, meaning that the production rates of formed sub-lines are

equal, occurs around the main division buffer, we progress to the next main division

buffer. On the other hand if it occurs around any division buffer obtained during

bisection process, we stop the bisection at that division point and determine that

division buffer as first potential giver if it appears in the faster side of the line or first

potential receiver if it occurs in the slower side.

The stopping criterion for this heuristic algorithm is the failure in the

improvement of the overall throughput for (N-1) consecutive main division buffer since

we return to the same point where we restart the algorithm.

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

47

5. 2. 1. Initial Allocation Procedure

Initial allocation may be any feasible point in our feasible region. The feasible

region is given below as the one stated in the study of Seong et al. [35];

K={K | eTK = C, K ≥ 0 , K Є R(N-1), Kj integer for all j = 1, � , (N-1)}

The number of elements of the above feasible region namely the number of all

feasible allocations of C buffer slots among the (N-1) buffer locations in an N-machine

serial production line is given by the formula below:

)!(2)!(N
2)!(N2N
C

C

C

C

−
−+=

 −+

In our heuristic algorithm, based on many trials, we have observed that we

might reach different final allocations by starting with different initial allocations. We

also observed that initial allocation has an effect on the number of iterations (#

iterations is equal to the number of N-machine throughput estimation in our case)

during the implementation of the algorithm. Therefore, we came to the conclusion that

we should try to start with a good initial point, which is close to global optimum, in

order to reach this global optimum with less iteration.

After comprehending the importance of efficient initial allocation, we focused

on how we succeed in realizing our purpose. Before proceeding to the stage of

determination of efficient initial allocation, it may be useful to state some relationships

for production lines that we benefit from:

λi =
iT

1
 µi =

iMTTF
1

 ri =
iMTTR

1

ei =
)MTTR(MTTF

MTTF

ii

i

+
 =

)r(µ
r

ii

i

+

ρi = λi * ei =
)r(µ

r*λ

ii

ii

+

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

48

where Ti : average processing time of Mi

 λi : processing rate of Mi

 MTTFi : mean time to failure for Mi

 MTTRi : mean time to repair for Mi

 µi : average failure rate of Mi

 ri : average repair rate of Mi

 ei : efficiency of Mi in isolation

 ρi : production rate of machine Mi in isolation

The isolated efficiency, ei, is the average fraction of time that Mi would be

operational if it were operated in isolation (never starved or blocked). This quantity is

also seen as the availability of Mi. (Note that ei = 1 for reliable machines and ei < 1 for

unreliable machines.)

In addition to these relationships, we make use of the set of generalizations

given by Freeman [7] in his study. These generalizations can be paraphrased as follows:

1. Avoid extreme buffer allocation, even in highly unbalanced lines.

2. Allocate more buffer capacity to the station with highest mean downtime.

3. Allocate more buffer capacity between a bad and a mediocre station than a

bad and a good station.

4. The optimum allocation of buffers to the various potential buffer locations is

relatively unaffected by the total number of buffers available.

5. The end of the line is more critical than the front, so if a bad station is

located toward the end it should get more of the available buffer capacity

than if it is toward the front.

Despite the early date of this study and its limited scope, these rules have been

borne out studies except the last one, which violates the reversibility principle.

It can be deduced from the generalization 4 that each buffer location should

have capacities whose ratios to each other are constant. In other words, any change in

the amount of buffer slots that will be allocated should not affect the capacity ratios of

buffer locations to one another. Based on this derivation, as an initial step of the initial

allocation procedure, we assign criticalities to each buffer location, that are independent

on any change in the amount of buffer slots allocated. In the second step, we determine

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

49

the initial capacities of all buffer locations according to their criticalities. By this way,

relative capacities of buffer locations will be independent of the total number of buffer

slots available meaning that any change in the total number of buffer slots available

will not change the ratio of capacities of any of two buffer locations.

During the process of the determination of these criticalities for each buffer

location, we use the information that the capacity Ki of any buffer location Bi between

two machines Mi and Mi+1 is inverse proportional with the production rate of these

machines in isolation ρi and ρi+1. Therefore, the criticality of any buffer location that

will be determined is the monotonically decreasing function of the production rates of

adjacent machines in isolation. We have three candidates for the criticality function

initially. These are

f1(ρi , ρi+1) =
}ρ,min{ρ

1

1ii +

f2(ρi , ρi+1) =
1ii ρ

1
ρ
1

+

+

f3(ρi , ρi+1) =
1ii ρρ

1

++
.

While selecting the most efficient one among these functions, we took the first

three of the above generalizations.

First of all, the first function f1(ρi , ρi+1) = 1 / min{ρi , ρi+1} fails to conform the

third generalization while the others conform. To make this clear, consider the example

below:

 Mi Bi M(i+1) B(i+1) M(i+2)

 � �

 ρi=5 Ki ρi+1=2 Ki+1 ρi+2=8

Figure 5. 6. Illustration of determination of criticality function

According to the criticality function f1(ρi , ρi+1) = 1 / min{ρi , ρi+1}, both buffer

location Bi and B(i+1) will have equal criticalities since

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

50

min{ρi=5 , ρi+1=2 } = min{ ρi+1=2 , ρi+2=8 } = 2

f1(ρi=5, ρi+1=2) =
min{5,2}

1 =
2
1 = f1(ρi+1=2, ρi+2=8) =

min{2,8}
1 .

Hence, our first candidate is eliminated since it contradicts with the third

generalization, which favors more buffer slots to Bi than to Bi+1. For the second and

third candidates, this generalization holds which can be proved by below inequalities:

f2(ρi=5,ρi+1=2) = 5
1 + 2

1 = 10
7 > f2(ρi+1=2,ρi+2=8) = 2

1 + 8
1 = 8

5

f3(ρi=5,ρi+1=2) =
)25(

1
+

 =
7
1 > f3(ρi+1=2,ρi+2=8) =

)82(
1
+

 =
10
1

These remaining candidates conform to the second generalization. However, the

second one contradicts with the first generalization. To see this, let�s rewrite these

functions:

f2(ρi , ρi+1) =
1ii ρ

1
ρ
1

+

+ =
)e*(λ

1

ii

+
1iρ

1

+

 =
)

MTTRMTTF
MTTF(*λ

1

ii

i
i +

+
1iρ

1

+

 =
)MTTF*(λ

)MTTR(MTTF

ii

ii + +
1iρ

1

+

f3(ρi , ρi+1) =
)ρ(ρ

1

1ii ++
 =

1iii ρ)e*(λ
1

++

 =
1i

ii

i
i ρ))

MTTRMTTF
MTTF(*(λ

1

++
+

 =
))MTTR(MTTF*(ρ)MTTF*(λ

)MTTR(MTTF

ii1iii

ii

++
+

+

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

51

As mean downtime (Mean Time To Repair) increases production rate in

isolation ρ decreases which results in increase in both criticality function candidates.

Increase in criticality function means increase in both side buffer location of that

machine which complies with the second generalization.

However, as mean downtime (MTTR) goes to infinity, the second candidate f2

diverges to infinity since it is linear function of mean downtime (MTTR). Increase in

mean downtime also means increase in imbalance. Since the second candidate supports

the extreme allocation in the sense of high imbalance, it becomes against the first

generalization.

On the other hand, as mean downtime (MTTR) goes to infinity the third

criticality function candidate f3 converges, so this candidate is consistent with the first

generalization since it does not support extreme allocation despite high imbalance.

Since the third candidate is the only one that conforms to all generalizations,

among these three candidates, it is the most efficient one. This derivation is supported

by the results we obtained in the cases that we worked on so we select this candidate as

the criticality function in our initial allocation procedure.

Based on this derivation, we determine the relative criticality RCi of any

arbitrary buffer location Bi by defining the criticalities cri as below:

 cri = f3(ρi , ρi+1) → cri =
)ρ(ρ

1

1ii ++

 RCi =
)1(21 ... −+++ N

i

crcrcr

cr

After determining these criticalities, we calculate the amount of buffer slots KIi

that will be allocated initially to the buffer location Bi by multiplying the relative

criticality RCi by the total fixed number of buffer slots allocated C:

KIi = RCi * C for i = 1,2, � ,(N-1)

However, KIi�s may not be integer. If this is the case, we first assign the largest

integer value that is smaller than KIi�s (integer part of KIi�s) as the capacity of each

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

52

buffer location. The remaining buffer slots are assigned to the buffer locations

according to decimal part of their KIi values in decreasing order by starting from the

highest until the last remaining buffer slot allocation is completed. During the second

part of this allocation process pertaining to the remaining buffer slots equality of the

decimal parts may be faced. If such an exception arises, buffer location with higher

integer part in KIi value has higher priority. In the situation of exact equality of KIi

values meaning that the equality of both decimal and integer parts is the condition,

higher priority is given to the buffer location closer to the centre of the system.

Moreover, exact equality of KIi values and equal closeness to the centre of the line at

the same time is the case; the buffer location closer to the end of the line has higher

priority for the remaining buffer slot.

5. 2. 2. A Simple Example for Line Balancing Algorithm (LIBA)

In order to understand how LIBA works, we consider the flow line consisting of

four machines that are prone to failure. Processing, failure and repair times for each

machine have independent exponential distributions. This is the case on which is

worked in the study of Seong et.al[35]. Processing, failure and repair rates for each

machine are given in the table below:

 Processing rate(λi) Failure rate(µi) Repair rate(ri)
MC#1 3.7 0.07 0.17
MC#2 1.5 0.11 0.37
MC#3 1.1 0.49 0.78
MC#4 3.0 0.19 0.50

Table 5. 1. Processing, failure and repair rates for each machine

From the above table, availabilities and production rates in isolation for all

machines are computed:

Table 5. 2. Availabilities and production rates in isolation for all machines

 Availability (ei) Prod.rate in isolation (ρi)
MC#1 0.70833 2.62083
MC#2 0.77083 1.15625
MC#3 0.61417 0.67559
MC#4 0.72464 2.17391

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

53

By using production rates in isolation (ρi�s) obtained in the above table, we

determine the initial allocation of buffer slots among the buffer locations. This process

is illustrated in the Table 5.3 given below:

Table 5. 3. Initial buffer allocation where cri = 1/(ρ i+ ρ i+1)

Even though we showed that last one that we use is the most efficient among the

three pre-stated candidates of criticality function, we determine the initial allocation by

means of the other two criticality function candidates in order to show that our selected

candidate is superior and introduce extra examples to the initial allocation procedure.

These procedures are given in Table 5.4 and Table 5.5 respectively:

 cri KIi
Integer

part of KIi

Remaining
buffer slots

Initial
allocation

Buffer 1 0.864865 2.260944 2 2
Buffer 2 1.480186 3.869528 3 1* 4
Buffer 3 1.480186 3.869528 3 1** 4

Total 3.825238 10 8 2 10

 Note: * First Remaining Buffer Slot

 ** Second Remaining Buffer Slot

Table 5. 4. Initial buffer allocation where cri =1 / min{ρ i , ρ i+1}

 cri KIi

Integer part
of KIi

Remaining
buffer slots

Initial
allocation

Buffer 1 1.246423 2.253253 2 2
Buffer 2 2.345051 4.239326 4 4
Buffer 3 1.940186 3.507421 3 1 4

Total 5.531661 10 9 1 10

Table 5. 5. Initial buffer allocation where cri = (1/ρ i) + (1/ρ i+1)

 cri KIi
Integer

part of KIi

Remaining
buffer slots

Initial
allocation

Buffer 1 0.264755 2.279239 2 2
Buffer 2 0.545899 4.699577 4 1 5
Buffer 3 0.350938 3.021184 3 3

Total 1.161592 10 9 1 10

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

54

We estimate the throughput for each of these initial allocations via simulation.

We simulate the system for 45000 parts. Since we want to estimate the steady-state

throughput value for any buffer allocation, observations during the warm-up period will

have an effect of increasing bias in the estimated throughput value. Therefore, we

should decide the length of warm-up period and we should not take the observations

pertaining to this period into account during the estimation of the throughput. While

predicting the warm-up period, we should achieve two conflicting objectives. The more

data we discard belonging to the warm-up period, the less bias we will have in the

estimation of throughput. On the other hand, the more data we discard belonging to the

warm-up period, the more variability we will have in our estimated throughput value.

Hence, we should compromise between reducing bias and increasing variance for our

throughput estimation.

During the estimation of the warm-up period we use the simplest and the most

practical and the most popular technique named Cumulative Moving Averages

Technique and we come to a conclusion of the warm-up period of 5000 parts.

We use Replication�Deletion Technique while obtaining the estimation of

throughput and variance of this estimation since it is the best-suited technique for the

systems with minimal warm-up period. This technique is also very simple and enables

us to direct use of statistical procedures such as constructing confidence intervals for

the estimation of throughput values. While estimating the throughput value and its

variance, we have two sources of observations: individual observations within each

replication and mean of these individual observations for each replication. Although the

observations within a given replication are dependent, averages of these observations

are independent of each other and it is reasonable to assume that these average values

have normal distributions based on the Central Limit Theorem. By means of these

results, we can construct confidence interval for the throughput. Let Xi denote the mean

of individual observations in ith replication for throughput. We can compute the sample

mean Xbar and sample variance S2 of Xi�s and Xbar from n replications as follows:

barX = ∑
=

n

1i n
Xi

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

55

S2(X) = ∑
=

n

1i 1)(n
)X(X 2

bari

−
−

S2(barX) =
n
(X)S2

Since Xi�s are normally distributed, the half-width, h, of the 100(1-α)% CI for

throughput is given as

 h =
)2

α(- 1 , 1)-(n
t * S(barX).

Consequently 100(1-α)% CI for throughput is centered at Xbar and it is given as

 Xbar ±
)2

α(- 1 , 1)-(n
t * S(barX).

At this point, we should decide the number of replications. The smaller the

number of replications is, the fewer the amount of data we discard belonging to the

warm-up period. However, as n decreases, the degrees of freedom for t- statistics will

be smaller, resulting in a larger value for t-statistics and an increasing half-width for the

confidence interval. The next chart, named Chart 1, which is the graph of t-statistics

versus the degrees of freedom for α = 0.05 confidence level that we used in our cases,

shows this trade-off obviously:

t-values for 95% Confidence Interval

0
2
4
6
8

10
12
14

0 10 20 30 40

degrees of freedom

t-v
al

ue
s

Chart5. 1. t-statistics versus the degrees of freedom for α = 0.05 confidence level

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

56

As can be easily seen from the above chart, the most reasonable number of

replications to use is 10, since improvements in the t-statistics diminish beyond this

point. Based on this fact, we choose the number of replications as 10.

After explaining techniques that we use and the reasons why we use these

techniques, we return to the throughput estimation for the candidates for the

comparison step and we see that the third candidate gives the largest throughput value.

These throughput values are given in the below table with 95% confidence levels:

Case Average(Xbar) Half- width(h) (h / Xbar) % Xbar - h Xbar + h
(2,4,4) 0,6457656 0,002151472 0,33316606 0,643614128 0,64791707
(2,5,3) 0,6490498 0,001997834 0,30780903 0,647051966 0,65104763

Table 5. 6. Throughput values and related computations for the candidate initials

To reach more healthy results, we also use paired-t test for two allocation

alternatives. Below table gives the throughput values for two alternatives and the

throughput differences between them for each replication in the simulation:

Replication Throughput of Throughput of Throughput
Number Allocation (2,5,3) Allocation (2,4,4) Difference(Di)

1 0.645809 0.642097 0.003712
2 0.650929 0.647573 0.003356
3 0.647366 0.644907 0.002459
4 0.651672 0.648316 0.003356
5 0.644689 0.640807 0.003882
6 0.651590 0.647887 0.003703
7 0.646329 0.643114 0.003215
8 0.651822 0.649662 0.002160
9 0.648823 0.645130 0.003693

10 0.651469 0.648163 0.003306

Table 5. 7. Throughput values and differences for two initial allocation alternatives for

each replication

Based on the values given Table 5.7, we obtain the paired-t confidence interval

for the throughput differences as below:

Average(Xbar) Half- width(h) (h / Xbar) % Xbar - h Xbar + h

0.0032842 0.000402048 12.24189878 0.002882 0.003686

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

57

The superiority of the third candidate can also be seen from the paired-t

confidence interval for the throughput differences for each replication. All these

findings support our design for initial allocation procedure.

Moreover, it is worth to state that our estimation of throughput is extremely

accurate, since the half-width value is very small itself as well as relative to the

estimated throughput value. This can be observed from the column representing the

half-width and its percent ratio to the estimated throughput. Due to this reason, with

contentment, we use the estimated throughput as the exact value of throughput without

focusing on the confidence intervals in the cases we study.

During the implementation of LIBA, we compare the throughput values for any

allocation with each other in order to decide whether to proceed to the better solution or

not. In these steps, to achieve more convenient comparisons of alternative allocations

and more accurate results, we use common random numbers. This means that random

numbers generated for the same operations in the line for each solution will be same.

More clearly, consecutive processing, repair and failure times of any machine will be

equal to each other for every alternative allocation during the simulation. Consequently,

the difference between the alternatives comes only from the capacities assigned to the

buffer locations, which enables us to reach healthier comparisons.

Now, let�s return to our line with initial allocation of (2,5,3) and throughput

P*(2,5,3) = 0.6490498. Execution of the algorithm is given step by step as;

1. Decompose the line into two sub-lines from the buffer location B2 :

 M1 B1 = 2 M2 B2 = 5 M3 B3 = 3 M4

ρ1 261.2≅ ρ2 156.1≅ ρ3 676.0≅ ρ4 174.2≅

P12(2,5,3) = 1.0617437 P34 (2,5,3) = 0.6683699

Figure 5. 7. Initial decomposition of the line during the execution of LIBA

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

58

1.1. P12(2,5,3) ≥ P34 (2,5,3)

1.1.1. Try to transfer from B1 to B3 .

P(1,5,4) = 0.649035 < P*(2,5,3) = 0.6490498 not an improving direction.

1.1.2. Try to transfer from B1 to B2 .

P(1,6,3) = 0.651497 > P*(2,5,3) = 0.6490498 improving direction,

continue to transfer from B1 to B2.

P (0,7,3) = 0.653132 improving direction.

Cannot continue to transfer from B1 to B2 since no buffer slot in B1.

New point is (0,7,3) with P*(0,7,3) = 0.653132.

2. Decompose the line from the buffer location B2 :

 M1 B1 = 0 M2 B2 = 7 M3 B3 = 3 M4

ρ1 261.2≅ ρ2 156.1≅ ρ3 676.0≅ ρ4 174.2≅

P12(0,7,3) = 1.0365077 P34 (0,7,3) = 0.6683699

Figure 5. 8. Restart of LIBA from the second buffer location B2

2.1. P12(0,7,3) ≥ P34 (0,7,3)

2.1.1. Transfer from B1 to B3 is infeasible.

2.1.2. Transfer from B1 to B2 is infeasible.

2.1.3. Try to transfer from B2 to B3 .

P(0,6,4) = 0.651336 < P*(0,7,3) = 0.653132 not an improving direction.

No improvement for the main buffer division point B2 .

3. Decompose the line from the main division buffer location B1:

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

59

 M1 B1 = 0 M2 B2 = 7 M3 B3 = 3 M4

ρ1 261.2≅ ρ2 156.1≅ ρ3 676.0≅ ρ4 174.2≅

P11(0,7,3) = 2.261 P24 (0,7,3) = 0.663712

 P23(0,7,3) = 0.6702106 P44 (0,7,3) = 2.174

Figure 5. 9. LIBA proceeds to the first buffer location

3.1. P11(0,7,3) ≥ P24 (0,7,3)

3.1.1. P23(0,7,3) ≤ P44 (0,7,3)

3.1.1.1. Transfer from B1 to B2 is infeasible.

3.1.1.2. Transfer from B1 to B3 is infeasible.

No improvement for the main buffer division point B1 .

4. Decompose the line from the main division buffer location B3:

 M1 B1 = 0 M2 B2 = 7 M3 B3 = 3 M4

ρ1 261.2≅ ρ2 156.1≅ ρ3 676.0≅ ρ4 174.2≅

 P13(0,7,3) = 0.6590614 P44 (0,7,3) = 2.174

 P12(0,7,3) = 1.0365077 P33 (0,7,3) = 0.676
Figure 5. 10. Termination of LIBA

4.1. P44(0,7,3) ≥ P13 (0,7,3)

4.1.1. P12(0,7,3) ≥ P33 (0,7,3)

4.1.1.1. Try to transfer from B3 to B2 .

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

60

P(0,8,2) = 0.651612 < P*(0,7,3) = 0.653132 not an improving direction.

No improvement for the main buffer division point B3.

5. Stop since no improvement is achieved for every main division point consecutively

and we return to the same point where we restarted.

6. Our optimal solution is (0,7,3) with throughput P*(0,7,3) = 0.653132.

There are 66 feasible points in this example and we obtained the throughput

values of all these feasible points. Results can be seen in the Appendix A.5. By the

algorithm, we reached the global optimum with 5 iterations. Number of iterations in our

case is the number of N-machine simulations where N is the number of machines in the

whole line.

 5. 3. Comparison of Algorithms

Any buffer allocation in an N-machine production line with (N-1) buffer

locations and total fixed number of buffer slots C can be described by a vector K = (K1,

K2, � , K(N-1)) with non-negative integer entries summing up to the total buffer slots C.

Thus, any alternative solution satisfies the equality ∑ −

=
=)1(

1

N

i iKC . The set of all points

in (N-1)-dimensional space for which this equality holds is an (N-2)-dimensional

hyperplane. Since the buffer allocations must be non-negative integers, the feasible

region, K, is set to the integer lattice including the vectors whose entries are non-

negative on this hyperplane:

K = {K | eTK = C, K ≥ 0 , K Є R(N-1), Kj integer for all j = 1, � , (N-1)}

The algorithms (SEVA, Non-SEVA, SSA and LIBA) are all based on the idea

of local search. In other words, the algorithms define a specific neighborhood with

respect to the given solution, find the best solution in this neighborhood and move to

this solution. This procedure repeats until no better solution is obtained. Since the sum

of the components of each solution is equal due to the fixed amount of total given

buffer slots, moving from one solution to the other can be considered as the movement

along an integer directional vector h whose entries sum up to zero meaning that eTh = 0.

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

61

Such vector is defined as �exchange vector� in Seong et.al.[35]. If a certain exchange

vector yields the better production rate, it is called �improving exchange vector�.

All algorithms that we focus on define a neighborhood and determine the best

solution in this neighborhood. The difference between the algorithms comes from the

determination of the neighborhood and the selection procedure of improving exchange

vectors through which the algorithms will proceed. The process of defining the specific

neighborhood in SEVA, Non-SEVA and LIBA is based on the selection of line

segment along an improving exchange vector and containing at least one or more

integer solutions. This process is defined as line segment selection in Seong et.al[35].

However, in SSA, the specific neighborhood from the existing neighborhood is defined

either by the transfer of one buffer slot from the largest capacity buffer location to each

of the other buffer locations for the best allocation in the existing neighborhood or by

replacing the worst allocation with the one obtained by subtracting it from twice the

best one in the existing neighborhood. The new neighborhood has (N-1) allocations

where they do not have to lie along the same line as in SEVA, Non-SEVA and LIBA.

SSA also differs from SEVA, Non-SEVA and LIBA in the selection procedure of

improving exchange vector. In SSA, the improving exchange vector is directly set to

the twofold of the vector obtained by the subtraction of the worst allocation from the

best one in the existing neighborhood. However, SEVA, Non-SEVA and LIBA select a

line segment firstly along the improving exchange vector and extend the improving

exchange vector until maximum throughput is achieved along the line segment.

Although the line segment selection concept is valid for all SEVA, Non-SEVA

and LIBA, the procedures of selecting line segments are different. Both SEVA and

LIBA are based on the concept of the buffer slots transfer between two different buffer

locations, while there may be multiple buffer slot transfer between more than two

buffer locations in Non- SEVA simultaneously. Although the transfer of buffer slots

between two different buffer locations is the case for both SEVA and LIBA, SEVA

uses two adjacent buffer locations for the transfer whereas LIBA does not have to use

adjacent buffer locations for this transfer. The buffer slot transfer occurs in only one

direction from the pre-determined giver to the pre-determined receiver in LIBA.

However, in contrast to LIBA, the buffer slot transfer can be done in two directions,

between two adjacent buffer locations in SEVA.

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

62

Like SEVA, the improving exchange vector in LIBA has only two non-zero

entries which differ in sign only. If we re-introduce the standard exchange vectors

stated in Seong et.al.[35], we can show the improving exchange vector in LIBA as a

linear combination of standard exchange vectors as

 (-1)*Q*(Xi + X(i+1) + � + X(j-1)) if i < j

P =

 Q*(Xi + X(i+1) + � + X(j-1)) if i > j

where Q stands for the amount of buffer slot transferred and Bi ,Bj are the giver

and receiver buffer locations respectively.

5. 3. 1. Numerical Results

After mentioning the logical and methodological differences between the

algorithms presented, the numerical implementation will be the next step in the

comparison of the relative efficiencies. To see the efficiency of Line Balancing

Algorithm (LIBA), we first focus on the cases that are worked in the study of Seong

et.al[35]. There are 18 cases in this study. The first eight of these cases are synchronous

production lines with deterministic processing times while the others are asynchronous

with independent exponential processing times. In all cases, production lines consist of

unreliable machines with independent exponential failure and repair times. All related

data including the number of machines N, total fixed number of buffer slots C and

processing, failure and repair rates for each machine are given in the Table A.6 given in

the Appendix A.6.

First of all, we determine the upper bound for throughput for each case by

obtaining throughput of each line with the assumption of infinite buffer in each buffer

location. Then, we determine the initial allocations and the throughput of each line with

these initial allocations. Throughput values for each line with initial allocations

determined by the initial allocation procedure of LIBA and infinite buffer can be seen

in the Table 5.8 given below:

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

63

CASE Throughput with
Initial Allocation

Throughput with
Infinite Buffer

Efficiency
Percentage

1 0.5806027 0.7341491 79.0851205
2 0.6633516 0.6657005 99.6471536
3 0.6451765 0.7650795 84.3280339
4 0.1725131 0.4382678 39.3624857
5 0.6495863 0.6623969 98.0660236
6 0.5664700 0.5698288 99.4105600
7 0.6637694 0.6662338 99.6300998
8 0.6270106 0.6313999 99.3048304
9 0.6490498 0.6754868 96.0862300
10 0.6359135 0.6453851 98.5324111
11 0.3459187 0.5974446 57.8997115
12 0.9629590 1.1461459 84.0171395
13 1.1207174 1.1210134 99.9735953
14 0.4749513 0.4982646 95.3211005
15 0.6755334 0.6759900 99.9324546
16 1.2726538 1.2754591 99.7800557
17 0.9786912 0.9819490 99.6682312
18 0.5423842 0.5424653 99.9850497

Table 5. 8. Throughput values and efficiency of initial allocations determined by LIBA

initial allocation procedure

The last column in the above table shows the percent ratio of the throughput

with our initial allocation to the one with infinite buffer. This ratio displays the yield of

the line with the allocation of given total fixed number of buffer slots with the proposed

technique. In half of the cases (i.e. case 2,6,7,8,13,15,16,17,18) above the 99% of

throughput value for infinite buffer slots for each buffer locations are satisfied. Due to

this reason, to work with these cases will not contribute us about the efficiency of our

algorithm since increase in the throughput value can be insignificant and so it is not

worth to implement the algorithm for a negligible increase. Therefore, we skip these

cases except Case 2 in the comparison step. We hold the second case, since we want to

see whether LIBA finds better allocation despite the great efficiency of its initial

allocation procedure. The results can be seen in the Appendix A.7.

Although throughput values for the lines are evaluated by the algorithms

developed by Glassey and Hong[10] and Hong et.al.[18] in the study of Seong et.al[35],

we do not use the given throughput values directly. Instead, we determine the

throughput values for given optimal allocations via simulation. The results for LIBA as

well as SEVA and Non-SEVA in the Table A.7 in the Appendix A.7, are obtained via

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

64

simulation with Replication-Deletion Technique. We use 10 replications for each

simulation and 45000 parts for each replication for all cases we focused on.

Surprisingly, in all cases, we decide that 5000 parts as a warm-up period is the most

suitable value.

In order to make healthy comparison, we also execute LIBA with initial

allocation determined by the procedure presented in Seong et.al[35]. Final allocations

and optimal throughputs obtained by starting with the initial allocation determined by

the procedure of Seong et.al[35] are also given in the Appendix A.7 with the title LIBA

1 in the sub rows. The last column with the title ITERATION in the Appendix A.7

denotes the number of N-machine throughput evaluation during the execution of the

algorithms. The number of iterations is the measure of time spent during the execution

of the algorithm and so it is another comparison field for the performance of the

algorithms.

With the expectation of decreasing the number iterations during the execution of

LIBA, we introduce a step size concept, where step size stands for the number of buffer

slots that will be transferred during each transfer. Empirically, we decide the step

size, w , as

−

=
)1(5 N

C
w

where x means the smallest integer that is greater than x .

Step sizes for the cases we worked on are given in the below table:

CASE 1 2 3 4 5 9 10 11 12 14
N 3 4 5 10 5 4 4 5 5 6
C 15 30 12 47 110 10 30 10 15 130
w 2 2 1 2 6 1 2 1 1 6

Table 5. 9. Step sizes for the cases studied

N: Number machines in the line
C: Total fixed number of buffer slots that will be allocated
w : Step size

When we determine the giving and receiving buffer location, we transfer w

number of buffer slots from the giver to the receiver. If there is no increase in the

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

65

throughput, instead of transferring w , we transfer 1w (= 2/w) amount of buffer slots

where x means the largest integer that is smaller than x . If, again, we could not

reach an improvement by this transfer, we reduce the transfer amount from 1w to 2w (=

 2/1w). This reduction procedure for the transfer amount goes on with 1+iw equal to

 2/iw in the (i+1)th trial until an improvement is reached in the throughput value for

the candidate giver and receiver buffer locations or the transfer amount becomes zero.

By this way, we hope to proceed in the increasing direction faster and reach the

optimum with less iteration, which improves the performance and speed of the

algorithm.

Before proceeding to the comparison of LIBA with SEVA and Non-SEVA, it is

worth to mention how the performance of and the results of LIBA if effected by distinct

initial allocations. LIBA may reach to different optimal solutions with different initial

allocation. This can be observed from the Appendix A.7. There are only three cases

(cases 1, 9 and 11) that LIBA achieves to the same final allocation with different

initials. Surprisingly, it is proven by complete enumeration that these final allocations

are the global optima. The only difference between LIBA with its original allocation,

LIBA 2, and LIBA with initial allocation of Seong et.al[35], LIBA 1, is the number of

iterations for reaching the optimal values for these three cases. LIBA with its original

allocation, LIBA 2, reaches the optimal with less iteration. The number of iterations for

LIBA 2 is approximately the half of the number of the iterations done in LIBA 1. For

five cases, LIBA 2 gives better results than LIBA 1, whereas LIBA 1 is better than

LIBA 2 in remaining two cases that we study. Since the initial allocation of LIBA 1

gives worse throughput than the initial allocation of LIBA 2 in all cases we study and

despite this fact in some cases LIBA 1 finds better solutions, we can conclude that the

performance of LIBA is dependent on the initial allocation. In addition to this, LIBA

may reach better solutions with worse initial allocation. However, the likelihood of

reaching better final allocation with better initial allocation is higher than with the

worse one. Interestingly, in all these seven cases better solutions, independently of

whichever LIBA finds, are achieved with more iteration. Hence, we can say that the

more the number of iteration, the better solution LIBA obtains.

When we analyze the results in the Appendix A.7, we observe that LIBA 2 finds

better solutions than both SEVA and Non-SEVA in most of the cases. There are only

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

66

four cases (Case 1, 3, 9, 11)that the equality of solutions occurs for LIBA 2, SEVA and

Non-SEVA where it is shown by complete enumeration that three (Case 1, 9, 11)of

these four solutions are already global optima. Briefly, among the cases we worked on,

there is no one that SEVA or Non-SEVA could overcome LIBA 2. Hence, it can be

said that LIBA 2 is superior to SEVA and Non-SEVA in terms of optimal throughput

value.

On the other hand, there are three cases (Case 2, 10, 12) that LIBA 1 has worse

solution than both SEVA and Non-SEVA. For the cases 1, 9 and 11, LIBA 1 also

reaches the global optimum solution as SEVA, Non-SEVA and LIBA 2. In the

remaining four cases, LIBA 1 finds better results than SEVA and Non-SEVA. Hence, it

can be misleading to claim that LIBA 1 is superior to SEVA and Non-SEVA or vice

versa as we do for LIBA 2.

However, the optimal throughput values are not the only comparison criterion.

The numbers of iterations done for reaching these optimal values are also important.

Therefore, we should take the number of iterations for attaining the optimal allocations

into account during the comparison of the algorithms. From this point of view, LIBA

for both initial allocation procedures uses less number of iterations than both SEVA and

Non-SEVA for less complex cases. The complexity of the case is direct proportional to

the number of machines in the line and the number of buffers slots that will be

allocated, meaning that when the number of machines or the total fixed number of

buffer slots or both increases, solving the allocation problem for that line becomes more

complex. For more complex problems, the number of iterations increases for LIBA

whatever the initial allocation is. This situation is obvious for the cases 4, 5 and 14.

SEVA and Non-SEVA reaches their optimal solutions with less iteration. However,

these are the cases that both LIBA 1 and LIBA 2 find better solutions than SEVA and

Non-SEVA and it should be denoted that the number of iterations for LIBA for

achieving the throughput at least equal to the optimal throughput values of SEVA and

Non-SEVA is approximately the half of the number of iterations for LIBA to achieve

its optimal. Therefore, the number of iterations necessary for LIBA to achieve at worst

the same solution with SEVA or Non-SEVA and the number of iterations for SEVA

and Non-SEVA for optimal solution are approximately the same except Case 4. When

we sum up all these findings, we can conclude that LIBA is superior to both SEVA and

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

67

Non-SEVA for less complex cases, while this superiority diminishes as the complexity

increases.

We also check how much increase is obtained by LIBA until reaching to the

optimum. Below tables, Table 5.10 and Table 5.11 give these increases in the

percentage form:

CASE Throughput with Initial
Allocation

Throughput with Final
Allocation

Percent
Increase

1 0.5806027 0.5806027 0
2 0.6633516 0.6648211 0.2215266
3 0.6451765 0.6458731 0.1079705
4 0.1725131 0.1764558 2.2854497
5 0.6495863 0.6498637 0.0427041
9 0.6490498 0.6531318 0.6289196
10 0.6359135 0.6381569 0.3527860
11 0.3459187 0.3479317 0.5819287
12 0.9629590 0.9727568 1.0174680
14 0.4749513 0.4794121 0.9392121

Table 5. 10. Increase in the throughput value in LIBA 2

Table 5. 11. Increase in the throughput value in LIBA 1

All the percent increases in the throughput values seem reasonable for LIBA 1

except two cases (Case 2 and 12). However, the optimal solutions found in these cases,

are over the 99 percent of the optimal values obtained by LIBA 2, SEVA and Non-

SEVA. Moreover, the number of iterations for reaching the optimum in these cases is

very small compared to the ones pertaining to the other algorithms in question. On the

other hand, interestingly, the percent increases in the throughput values in LIBA 2 are

very small. Based on this result and the knowledge that LIBA 2 attains throughput at

CASE Throughput with Initial
Allocation

Throughput with Final
Allocation

Percent
Increase

1 0.5666616 0.5806027 2.4602161
2 0.6630851 0.6631803 0.0143571
3 0.6218006 0.6459400 3.8821770
4 0.1703881 0.1765216 3.5997232
5 0.6015092 0.6497500 8.0199605
9 0.6281393 0.6531318 3.9788149

10 0.6277183 0.6375757 1.5703541
11 0.3391255 0.3479317 2.5967378
12 0.9573224 0.9630241 0.5955888
14 0.4400651 0.4793024 8.9162490

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

68

least equal to the ones reached by SEVA and Non-SEVA, we also examine the ratio of

the throughput values for initial allocations determined by our own procedure to the

optimal throughput values of SEVA and Non-SEVA. These ratios can be seen from the

percentage column of Table A.8 in the Appendix A.8.

Surprisingly, the percent ratios are very high meaning that we can attain

allocation with throughput very close to the optimal throughput of SEVA and Non-

SEVA. Moreover, as occurred in Case 14, we can reach an allocation with higher

throughput than the optimal value of SEVA and Non-SEVA via the initial allocation

procedure of LIBA itself. By combining the results related to the percent increases in

the throughput values and the percent ratios of throughput values to the optimal

throughputs for SEVA and Non-SEVA, we can claim that the initial allocation

procedure that we introduced is very powerful and it can attain very good allocations

close to the optimal solutions by itself without implementing any algorithm.

After comparing the performance of LIBA with SEVA and Non-SEVA, we also

want to see the relative efficiency of LIBA with respect to the Simple Search Algorithm

(SSA) of Powell and Harris[33]. Even though they developed a new heuristic algorithm

for optimal buffer allocation in their study, Powell and Harris[33] basically focused on

some characteristics of the production lines such as the effects of bottleneck stations on

the optimal buffer allocation and bowl phenomenon instead of demonstrating the

performance their algorithm. Hence, the cases that were studied in Powell and

Harris[33] were selected according to this goal. Due to this reason, instead of studying

the all cases in Powell and Harris[33], we selected a small sample of cases which are

more likely to help us to make a healthier comparison and applied LIBA to this sample.

We studied six cases from Powel and Harris[33]. As mentioned before, Powell

and Harris[33] worked with serial production lines with reliable stations having

independent log-normal processing times. The first three of these cases consists of four

machines with a single bottleneck in the third machine, while the last three cases

consist of six machines with a single bottleneck in the fourth machine. The table given

below summarizes the related data including the number of machines N, total fixed

number of buffer slots, C, that will be allocated:

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

69

CASE 1 2 3 4 5 6
N 4 4 4 6 6 6
C 3 6 9 5 10 15

Table 5. 12. Data of the cases that we study in Powell and Harris[33]

NOTE: All Machines are reliable having lognormal processing times with

mean = 1 and standard deviation = 0.5 unless otherwise stated

* Mean of MC#3 in first three cases is equal to 1.25

* Mean of MC#4 in last three cases is equal to 1.25

In contrast to Seong et.al.[35], throughput values is the only comparison

criterion for SSA and LIBA since Powell and Harris[33] did not mention any other one

such as the number of iteration for these cases. It should also be noted that our initial

allocation procedure gave the same initial allocations for all cases with SSA so we do

not need to execute LIBA two times as we did in SEVA and Non-SEVA.

CASE METHOD ALLOCATION THROUGHPUT

SSA (1,1,1) 0.751123 1
LIBA (1,1,1) 0.751123

SSA (1,3,2) 0.785928 2
LIBA (1,3,2) 0.785928

SSA (2,3,4) 0.794758
3

LIBA (1,5,3) 0.796687
SSA (1,1,1,1,1) 0.743104 4

LIBA (1,1,1,1,1) 0.743104
SSA (1,2,3,2,2) 0.784251 5

LIBA (1,2,3,2,2) 0.784251

SSA (1,3,4,5,2) 0.796078
6

LIBA (2,3,3,5,2) 0.797372

Table 5. 13. Optimal allocations with estimated throughput values via

simulation for SSA and LIBA

In the above table, the allocations with the estimated throughput values for both

algorithms for each case are given. When we analyze the results, we observe that SSA

and LIBA both find the same solutions for the cases 1,2,4,5 where it is verified by

complete enumeration that these solutions are global optima. However, LIBA finds

CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA)

70

better solutions than SSA in the third and sixth cases. It is worth to state that the lines in

first three cases are the same. The only difference among these three cases is the total

number of buffer slots, C, to be allocated. The same situation also holds for the last

three cases meaning that they have the same system with different total number of

buffer slots. Case 3 and Case 6 are the ones having the most total number of buffer slots

available among the first and last three cases respectively. There is no case that SSA

reaches better solution than LIBA. As a result, we can say that LIBA is superior to SSA

in terms of optimal throughput value and this superiority becomes more apparent as the

number of buffer slots to be allocated increases.

71

Chapter 6

CONCLUSION

Buffer allocation is a challenging design problem in serial production lines that

is often faced in the industry. Effective use of buffers (i.e. how much buffer storage to

allow and where to place it) in production lines is important since buffers can have a

great impact on the efficiency of the production line. Buffers reduce the blocking of the

upstream station and the starvation of the downstream station. However, buffer storage

is expensive both due to its direct cost and the increase of the work-in-process

inventories it causes. Thus, there is a trade-off between performance and cost. This

means that the optimal buffer capacity and the allocation of this capacity have to be

determined by analysis.

In this thesis, we studied the optimal buffer allocation problem. The objective

was to maximize the throughput of the serial production line by allocating the total

fixed number of buffer slots among the buffer locations and in order to achieve this aim

we introduced a new heuristic algorithm called �Line Balancing Algorithm

(LIBA)�applicable to all types of serial production lines meaning that there is no

restriction for the distributions of processing, failure and repair times of any machine,

the disciplines such as blocking, failure etc. and the assumptions during the application

of LIBA in the line.

The aim of LIBA is to make the line more balanced. To obtain more balanced

line. LIBA tries to minimize the total imbalance, which is equal to the sum production

CHAPTER 6 : CONCLUSION

72

rate differences of the sub-lines obtained by dividing the whole line into two from each

buffer location, by buffer slot transfer between only two different buffer locations.

Although LIBA can be started by any arbitrary initial allocation of buffer slots

among the buffer locations, we observed that LIBA may reach different final

allocations with different initials. Based on this observation, we also integrated to LIBA

a new efficient initial allocation procedure which conforms to generalizations about

optimal buffer allocation in order to reach better solutions.

To see the power of LIBA, we applied it to some of the cases where SEVA,

Non-SEVA and SSA had applied. Even though in some cases LIBA obtains worse

solutions than SEVA and Non-SEVA with same initial allocations determined by

procedure in the study of Seong et. al.[35], it outperforms SEVA and Non-SEVA in all

cases studied with its original initial allocation procedure except the cases where every

algorithm finds the global optima.

Besides the optimal throughput value, the number of iterations done for

reaching the optimal solution is another comparison criterion. The number of iterations

is the number of throughput estimation of the whole line for achieving the optimal

solution. From this point of view, LIBA for both initial allocation procedures uses less

number of iterations than both SEVA and Non-SEVA for less complex cases. The

complexity of the case is proportional to the number of machines in the line and the

number of buffers slots that will be allocated, meaning that when the number of

machines or the total fixed number of buffer slots or both increases, solving the

allocation problem for that line becomes more difficult. For more complex problems,

the number of iterations increases for LIBA whatever the initial allocation is. Briefly,

we came to a conclusion that LIBA is superior to both SEVA and Non-SEVA for less

complex cases, while this superiority diminishes as the complexity increases.

As a final observation, it is worth to state that the initial allocation procedure we

introduced is extremely useful. Interestingly, as an indicator of this power,

improvement in the production rate of the line after the execution of LIBA did not

exceed 2.3 % for all cases that we study. In addition to this, we obtained approximately

same production rates with SEVA and Non-SEVA optimal values, even better results in

some cases, by only implementing our initial allocation procedure. Therefore, we can

CHAPTER 6 : CONCLUSION

73

say that our initial allocation procedure by itself, without the execution of LIBA, can be

enough for the systems where the effect of small increase in the throughput is

negligible.

In contrast to SEVA and Non-SEVA, throughput values is the only criterion

which we take into account during the comparison of SSA and LIBA since Powell and

Harris[33] did not mention any other one such as the number of iteration for these cases

in their study. In all cases studied, LIBA also outperforms SSA in terms of throughput

values except the cases where both algorithms find the global optima. The cases that

LIBA gives better solutions are the ones having the most total number of buffer slots

available among the first and last three cases respectively. Therefore, we can say that

LIBA is superior to SSA in terms of optimal throughput value and this superiority

becomes more observable as the number of buffer slots that will be allocated increases.

Finally, although it is the case in the industry, we observed that currently

available algorithms as well as LIBA do not consider the production lines with stations

consisting of parallel machines having individual upstream and/or downstream buffers.

It should be possible to adapt currently available algorithms to or new algorithms can

be introduced for these types of production systems.

Assembly / Disassembly (A/D) operations, which are also the parts of the

manufacturing systems, have been neglected so far. Unlike the machines in the flow

lines, A/D operations have more than one upstream and downstream buffer including

different part types. Starvation or blocking of these operations occurs when one of these

upstream/downstream buffers is empty. Therefore, more investigation is needed on this

issue to see how it affects the performance measure of interest and to provide optimal

buffer allocation generalizations or algorithms of such systems. We believe in that our

algorithm can easily be extended to these types of settings.

Buffer issues may be investigated more. The general assumption on the

behaviour of buffers is that transfer times of the parts both from machines to buffers

and from buffers to machines are zero. However, in real life, these transfer times are

not zero. There are not many studies investigating this issue. Another assumption on the

buffer behaviour is the perfect reliability of buffers. However, buffers may be prone to

failure as machines. This issue has also been neglected. Few papers have been

CHAPTER 6 : CONCLUSION

74

published on this issue. Although our algorithm can be readily used by incorporating

these changes in the simulation of the production line, more investigation is required on

this issue.

75

BIBLIOGRAPHY

[1] Altiok, T. And Stidham, S.Jr., �The allocation of inter-stage buffer capacities in

production lines� IIE Transactions, Vol.15, No.4, pp.292-299 (1983).

[2] Anderson, D.R. and Moodie, C.L., �Optimal buffer storage capacity in production

line systems� International Journal of Production Research, Vol.7, No.3, pp.233-240

(1969).

[3] Andijani, A.A. and Anwarul, M., �Manufacturing blocking discipline: A multi-

criterion approach for buffer allocations� International Journal of Production

Economics, 51, pp. 155-163 (1997).

[4] Chow, W., �Buffer capacity analysis for sequential production lines with variable

process times� International Journal of Production Research, Vol.25, No.8, pp.1183-

1196 (1987).

[5] Conway, R.W. , Maxwell, W.L. , McClain, J.O. and Thomas, L.J., �The role of

work-in-process inventories in serial production lines� Operations Research, 36,

pp.229-241 (1988).

[6] El-Rayah, T.E., �The effect of inequality of inter-stage buffer capacities and

operation time variability on the efficiency of production line systems� International

Journal of Production Research, Vol.17, No.1, pp.77-89 (1979).

[7] Freeman, M.C., �The effects of breakdowns and inter-stage storage on production

line capacity� Journal of Industrial Engineering, 15, pp.194-200 (1964).

BIBLIOGRAPHY

76

[8] Gerschwin, S.B. and Dallery, Y., �Manufacturing flow line systems: a review of

models and analytical results� Queuing Systems, 12, pp.3-94 (1992).

[9] Gershwin, S.B. and Schor, J.E., �Efficient algorithms for buffer space allocations�

Annals of Operations Research, 93, pp.117-144 (2000).

[10] Glassey, C.R. , Hong, Y., �Analysis of behavior of an unreliable n-stage transfer

line with (n-1) inter-stage storage buffers� International Journal of Production

Research, Vol.31, No.3, pp.519-530 (1993).

[11] Gurkan, G., �Simulation optimization of buffer allocations in production lines with

unreliable machines� Annals of Operations Research, 93, pp.177-216 (2000).

[12] Helber, S., �Cash-flow-oriented buffer allocation in stochastic flow lines�

International Journal of Production Research, Vol.39, No.14, pp.3061-3083 (2001).

 [13] Hillier, M.S., �Characterizing the optimal allocation of storage space in

production line systems with variable processing times� IIE Transaction, 32, pp.1-8

(2000).

[14] Hillier, F.S. and So, K.C., �The effect of the coefficient of variation of operation

times on the allocation of storage space in production line systems� IIE Transactions,

Vol.23, No.2, pp.198-206 (1991).

[15] Hillier, F.S. and So, K.C., �The effect of machine breakdowns and inter-stage

storage on the performance of production line systems� International Journal of

Production Research, Vol.29, No.10, pp.2043-2055 (1991).

[16] Hillier, F.S., So, K.C. and Boling, R.W., �Notes: Toward characterizing the

optimal allocation of storage space in production line systems with variable processing

times� Management Science, Vol.39, No.1, pp.126-133 (1993).

[17] Ho, Y.C., Eyler, M.A. and Chien, T.T., �A gradient technique for general buffer

storage design in a production line� International Journal of Production Research,

Vol.17, No.6, pp.557-580 (1979).

BIBLIOGRAPHY

77

[18] Hong, Y., Glassey, C.R., Seong, D., �The analysis of a production line with

unreliable machines and random processing times� IIE Transactions, Vol.24, No.1,

pp.77-83 (1992).

[19] Jafari, M.A. and Shanthikumar, J.G., �Determination of optimal buffer storage

capacities and optimal allocation in multi-stage automatic transfer lines� IIE

Transactions, Vol.21, No.2, pp.130-135 (1989).

[20] Kim, S. and Lee, H.J., �Allocation of buffer capacity to minimize average work-in-

process� Production Planning&Control, Vol.12, No.7, pp.706-716 (2001).

[21] Lutz, C.M., Davis, K.R. and Sun, M., �Determining buffer location and size in

production lines using tabu-search� European Journal of Operational Research, 106, pp.

301-316 (1998).

[22] Nelder, J.A., Mead, R., �A simplex method for function minimization� Computer

Journal, 7, pp.308-321. (1965).

[23] Papadopoulos, C.T. and Spinellis, D.D., �A simulated annealing approach for

buffer allocation in reliable production lines� Annals of Operations Research, 93, pp.

373-384 (2000).

[24] Papadopoulos, C.T. and Spinellis, D.D., �Stochastic algorithms for buffer

allocation in reliable production lines� Mathematical Problems in Engineering, Vol.5,

Iss.6, pp. 441-458 (2000).

[25] Papadopoulos, C.T. , Spinellis, D.D. and Smith, J.M., �Large production line

optimization using simulated annealing� International Journal of Production Research,

Vol.38, No.3, pp.509-541 (2000).

[26] Papadopoulos, H.T. and Vidalis, M.I., �Optimal buffer storage allocation in

balanced reliable production lines� International Transactions in Operational Research,

Vol.5, No.4, pp.325-339 (1998).

[27] Papadopoulos, H.T. and Vidalis, M.I., �Optimal buffer allocation in short mu-

balanced unreliable production lines� Computers & Industrial Engineering, 37, pp.691-

710 (1999).

BIBLIOGRAPHY

78

[28] Papadopoulos, H.T. and Vidalis, M.I., �Minimizing WIP inventory in reliable

production lines� International Journal of Production Economics, 70, pp.185-197

(2001).

[29] Papadopoulos, H.T. and Vouros, G.A.,�A model management system (MMS) for

the design and operation of production lines� International Journal of Production

Research, Vol.35, No.8, pp.2213-2236 (1997).

[30] Papadopoulos, H.T. and Vouros, G.A., �Buffer allocation in unreliable production

lines using a knowledge based system� Computers and Operations Research, Vol.25,

No.12, pp.1055-1067 (1998).

[31] Park, T., �A two-phase heuristic algorithm for determining buffer sizes of

production lines� International Journal of Production Research, Vol.31, No.3, pp.613-

631 (1993).

[32] Powell, S.G., �Buffer allocation in unbalanced three-station serial lines�

International Journal of Production Research, Vol.32, No.6, pp.2201-2217 (1994).

[33] Powell, S.G. and Harris, J.H., �An algorithm for optimal buffer placement in

reliable serial lines� IIE Transaction, 31, pp.287-302 (1999).

[34] Powell, S.G. and Pyke, D.F., �Allocation of buffers to serial production lines with

bottlenecks� IIE Transactions, 28, pp.18-29 (1996).

[35] Seong, D. , Chang, S.Y. and Hong, Y., �Heuristic algorithms for buffer allocation

in a production line with unreliable machines� International Journal of Production

Research, Vol.33, No.7, pp.1989-2005 (1995).

[36] Seong, D. , Chang, S.Y. and Hong, Y., �An algorithm for buffer allocation with

linear resource constraints in a continuous flow production line� Asia-Pacific Journal of

Operational Research, Vol.17, Iss.2, pp.169-180 (2000).

[37] Sheskin, T.J., �Allocation of inter-stage storage along an automatic production

line� AIIE Transactions, 8(1), pp.146-152 (1976).

[38] So, C.K., �Optimal buffer allocation strategy for minimizing work- in-process

inventory in unpaced production lines� IIE Transactions, 29, pp .81-88 (1997).

BIBLIOGRAPHY

79

[39] Soyster, A.L. , Schmidt, J.W. and Rohrer, M.W., �Allocation of buffer capacities

for a class of fixed cycle production lines� AIIE Transactions, 11(2), pp.140-146

(1979).

[40] Spendley,W. , Hext, G.R., �Sequential application of simplex designs in

optimization and evolutionary operations� Technometrics, 4, pp.441-461 (1962).

[41] Yamashita, H. and Altiok, T., �Buffer capacity allocation for a desired throughput

in production lines� IIE Transactions, 30, pp.883-891 (1998).

[42] Yamashina, H. and Okamura, K., �Analysis of in-process buffers for multi-stage

transfer line systems� International Journal of Production Research, Vol.21, No.2,

pp.183-195 (1983).

 80

APPENDIX

A. 1. The Pseudo-Code LIBA

Line Balancing Algorithm (LIBA) can be given in a systematic way as below:

Step 0: Start with an initial allocation of buffer slots.

Step 1: Evaluate the production rate P of line L.

Step 2: Set �k = 0� and �N = #machines in line L�.

Step 3: (Initial decoupling of the whole from the main division buffer location)

3.1. If �N is even� then

3.1.1. Decouple the line into two sub-lines L1 and L2 from the buffer

location k)2
N(+ , which is the main division buffer

k)2
N(

B
+

.

3.2. If �N is odd� then

3.2.1. Decouple the line into two sub-lines L1 and L2 from the buffer

location k)
2

1)(N(++ , which is the main division buffer
k)

2
1)(N(

B
++ .

Step 4: Evaluate the production rates P1
 and P2 of L1 and L2.

Step 5: (Proceeding to the next main division buffer location in case of throughput

equality around the existing one)

5.1. If �P1
 = P2� then

5.1.1. If �k ≥ 0� then

APPENDIX

81

5.1.1.1. If �N is even� and �k = 1)2
N(− � then

5.1.1.1.1. Set �k = 0�.

5.1.1.1.2. Return to Step 3.

5.1.1.2. Set �k = - (k+1)�.

5.1.1.3. Return to Step 3.

5.1.2. If �k < 0� then

5.1.2.1. If �N is odd� and �k = - (1
2

1)(N −+) � then

5.1.2.1.1. Set �k = 0�.

5.1.2.1.2. Return to Step 3.

5.1.2.2. Set �k = -k�.

5.1.2.3. Return to Step 3.

Step 6: (Determination of the potential giver and receiver initial sub-lines)

6.1. If �P1
 > P2� then

6.1.1. L1 is the potential giver line with N1 machines.

6.1.2. L2 is the potential receiver line with N2 machines.

6.1.3. Set �N1(1) = N1� and �L1(1) = L1�.

6.1.4. Set �N2(1) = N2� and �L2(1) = L2�.

6.2. If �P1
 < P2� then

6.2.1. L1 is the potential receiver line with N1 machines.

6.2.2. L2 is the potential giver line with N2 machines.

6.2.3. Set �N1(1) = N2� and �L1(1) = L2�.

6.2.4. Set �N2(1) = N1� and �L2(1) = L1�.

6.3. Go to Step 7.

Step 7: (Determination of the potential buffer slot giver candidate sequence)

7.1. Set �I =1�.

7.2. While �I ≤

 −

−
1

ln2
1)(1)ln(N1 � do

7.2.1. If �N1(I) is even� then

APPENDIX

82

7.2.1.1. Decouple the line L1(I) into two sub-lines L1 (I,1) and L1(I,2) with

N1 (I,1) and N1(I,2) machines respectively from the buffer location N1(I),

which is the Ith division buffer location.

7.2.2. If �N1(I) is odd� then

7.2.2.1. Decouple the line L1(I) into two sub-lines L1(I,1) and L1(I,2) with

N1(I,1) and N1(I,2) machines respectively from the buffer location

2
1)(I)(N1 +

, which is the Ith division buffer location.

7.2.3. Evaluate the production rates P1(I,1) and P1(I,2) of the sub-lines L1(I,1)

and L1(I,2) respectively.

7.2.4. If �P1 (I,1) > P1(I,2)� then

7.2.4.1. Set �N1(I+1) = N1 (I,1)� and �L1(I+1) = L1(I,1)�.

7.2.5. If �P1(I,1) < P1(I,2)� then

7.2.5.1. Set �N1(I+1) = N1 (I,2)� and �L1(I+1) = L1(I,2)�.

7.2.6. If �P1(I,1) = P1(I,2)� then

7.2.6.1. Set initial potential giver to the Ith division buffer location of line

L1(I).

7.2.6.2. Go to Step 8.

7.2.7. Set �I = I +1�.

7.3. If �N1(I) = 2� then

7.3.1. Set initial potential giver to the buffer location of the line L1(I).

7.3.2. Go to Step 8.

7.4. If �N1(I) = 1� then

7.4.1. Set initial potential giver to the buffer location, which is the Ith division

buffer location just in front of the machine.

7.4.2. Go to Step 8.

Step 8: (Determination of the potential buffer slot receiver candidate sequence)

8.1. Set �J =1�.

8.2. While �J ≤

 −

−
1

ln2
1)(1)ln(N2 � do

8.2.1. If �N2(J) is even� then

APPENDIX

83

8.2.1.1. Decouple the line L2(J) into two sub-lines L2(J,1) and L2 (J,2) with

N2(J,1) and N2(J,2) machines respectively from the buffer location N1(J),

which is the Jth division buffer location.

8.2.2. If �N2(J) is odd� then

8.2.2.1. Decouple the line L2(J) into two sub-lines L2(J,1) and L2(J,2) with

N2(J,1) and N2(J,2) machines respectively from the buffer location

2
1)(J)(N2 +

, which is the Jth division buffer location.

8.2.3. Evaluate the production rates P2(J,1) and P2 (J,2) of the sub-lines

L2(J,1) and L2 (J,2) respectively.

8.2.4. If �P2 (J,1) > P2 (J,2)� then

8.2.4.1. Set �N2(J+1) = N2 (J,1)� and �L2(J+1) = L2(J,1)�.

8.2.5. If �P2 (J,1) < P2 (J,2)� then

8.2.5.1. Set �N2(J+1) = N2 (J,2)� and �L2(J+1) = L2(J,2)�.

8.2.6. If �P2 (J,1) = P2 (J,2)� then

8.2.6.1. Set initial potential receiver to the Jth division buffer location of

the line L2(J).

8.2.6.2. Go to Step 9.

8.2.7. Set �J = J +1�.

8.3. If �N2(J) = 2� then

8.3.1. Set initial potential receiver to the buffer location of the line L2(J).

8.3.2. Go to Step 8.

8.4. If �N2(J) = 1� then

8.4.1. Set initial potential giver to the buffer location, which is the Jth division

buffer location just in front of the machine.

8.4.2. Go to Step 8.

Step 9: (Determination of transfer locations)

9.1. If �improvement occurs with transfer between existing potential giver and

receiver� then

9.1.1. Transfer the buffer slots from the potential giver to potential receiver

until no improvement.

9.1.2. Set �M = 0�.

9.1.3. Go to Step 3.

APPENDIX

84

9.2. Set �Jmax = J�.

9.3. While �I > 0� and �no improvement with transfer between existing potential

giver and receiver� do

9.3.1. Set potential giver to the Ith division buffer location of the line L1(I).

9.3.2. While �J > 0� and �no improvement with transfer between existing

potential giver and receiver� do

9.3.2.1. Set potential receiver to the Jth division buffer location of the line

L2(J).

9.3.2.2. If �improvement occurs with transfer between existing potential

giver and receiver� then

9.3.2.2.1. Transfer the buffer slots from the potential giver to potential

receiver until no improvement.

9.3.2.2.2. Set �M = 0�.

9.3.2.2.3. Go to Step 3.

9.3.2.3. If �no improvement with transfer between existing potential giver

and receiver� then

9.3.2.3.1. Set �J = J � 1�.

9.3.3. If �J = 0� then

9.3.3.1. Set potential receiver to the main division buffer location.

9.3.3.2. If �improvement occurs with transfer between existing potential

giver and receiver� then

9.3.3.2.1. Transfer the buffer slots from the potential giver to potential

receiver until no improvement.

9.3.3.2.2. Set �M = 0�.

9.3.3.2.3. Go to Step 3.

9.3.3.3. If �no improvement with transfer between existing potential giver

and receiver� then

9.3.3.3.1. Set �J = Jmax�.

9.3.3.3.2. Set potential receiver to the Jth division buffer location of the

line L2(J).

9.3.3.3.3. Set �I = I � 1�.

9.4. If �I = 0� then

9.4.1. Set potential giver to the main division buffer location.

APPENDIX

85

9.4.2. While �J > 0� and �no improvement with transfer between existing

potential giver and receiver� do

9.4.2.1. Set potential receiver to the Jth division buffer location of the line

L2(J).

9.4.2.2. If �improvement occurs with transfer between existing potential

giver and receiver� then

9.4.2.2.1. Transfer the buffer slots from the potential giver to potential

receiver until no improvement.

9.4.2.2.2. Set �M = 0�.

9.4.2.2.3. Go to Step 3.

9.4.2.3. If �no improvement with transfer between existing potential giver

and receiver� then

9.4.2.3.1. Set �J = J � 1�.

9.4.3. Set �M = M + 1�

9.4.4. If �k ≥ 0� then

9.4.4.1. If �N is even� and �k = 1)2
N(− � then

9.4.4.1.1. Set �k = 0�.

9.4.4.1.2. Return to Step 3.

9.4.4.2. Set �k = - (k+1)�.

9.4.4.3. Return to Step 3.

9.4.5. If �k < 0� then

9.4.5.1. If �N is odd� and �k = - (1
2

1)(N −+)� then

9.4.5.1.1. Set �k = 0�.

9.4.5.1.2. Return to Step 3.

9.4.5.2. Set �k = - k�.

9.4.5.3. Return to Step 3.

APPENDIX

86

A.2. General Model frame for the simulation of the production lines in

SIMAN V

BEGIN;

CREATE;

ASSIGN:M=ILK+1;

ENTRY QUEUE,INITIAL;

 SCAN:NQ(M-1).EQ.0;

 DUPLICATE:1,ENTRY;

 ROUTE:0,M;

STATION,STATIONSET;

QUEUE,M-1;

SCAN:(NQ(M+numstat).EQ.0).and.(NR(M).EQ.0).and.(MR(M).NE.0);

SEIZE:M;

ASSIGN:PROCESSTIME(M)=1/PROCESS_RATE(M):

 FAILTIME(M)=EXPO(1/FAILURE_RATE(M),M-1);

REPAIR IF:(MR(M).EQ.0).AND.(NQ(M+1+(2*numstat)).EQ.1);

 DELAY:EXPO(1/RERAIR_RATE(M),M-1);

 ALTER:M,1;

 DISPOSE;

 ENDIF;

WHILE:PROCESSTIME(M).GT.FAILTIME(M);

 DELAY:FAILTIME(M);

 RELEASE:M;

 ALTER:M,-1;

 ASSIGN:PROCESSTIME(M)=PROCESSTIME(M)-FAILTIME(M);

 ASSIGN:FAILTIME(M)=EXPO(1/FAILURE_RATE(M),M-1);

 DUPLICATE:1,REPAIR;

 QUEUE,M+1+(2*numstat);

 SEIZE:M;

ENDWHILE;

APPENDIX

87

IF:PROCESSTIME(M).LE.FAILTIME(M);

 DELAY:PROCESSTIME(M);

ENDIF;

RELEASE:M;

IF:BUFFERCAPACITY(M).EQ.0;

 QUEUE,M+numstat;

 SCAN:(NR(M+1).EQ.0).and.(NQ(M+1+numstat).EQ.0).and.(MR(M+1).NE.0);

ENDIF;

IF:BUFFERCAPACITY(M).EQ.1;

 IF:NQ(M).EQ.1;

 ASSIGN:HESITATE(M)=0.0000000001;

 ELSEIF:NQ(M).EQ.0;

 ASSIGN:HESITATE(M)=0;

 ENDIF;

 QUEUE,M+numstat;

 SCAN:(NQ(M).LT.BUFFERCAPACITY(M));

 DELAY:HESITATE(M);

ENDIF;

IF:BUFFERCAPACITY(M).GT.1;

 QUEUE,M+numstat;

 SCAN:(NQ(M).LT.BUFFERCAPACITY(M));

ENDIF;

IF:M.EQ.MEMBER(STATIONSET,SON+1);

 ROUTE:0,EXITSYSTEM;

ENDIF;

ROUTE:0,M+1;

STATION,EXITSYSTEM;

ASSIGN:PART=PART+1:

 RATE=PART/TNOW;

IF:PART.GT.WARMUP;

 ASSIGN:CSUM=CSUM+RATE;

ENDIF;

IF:PART.EQ.MC(1);

 WRITE,AVGRATE:CSUM/(PART-WARMUP);

ENDIF;

APPENDIX

88

COUNT:OUTPUT,1;

DISPOSE;

END;

APPENDIX

89

A.3. Experimental frame of the production line given in Seong

et.al.[35] as Case 9 for the simulation in SIMAN V

BEGIN;THESIS,CASE 9,SEONG ET.AL.[35];

VARIABLES:BUFFERCAPACITY(11),1000,1,5,4,0,0,0,0,0,0,1000:

 FAILURE_RATE(12),1000,0.07,0.11,0.49,0.19,0,0,0,0,0,0,1000:

 REPAIR_RATE(12),1000,0.17,0.37,0.78,0.5,0,0,0,0,0,0,1000:

 PROCESS_RATE(12),1000,3.7,1.5,1.1,3,0,0,0,0,0,0,1000:

 PROCESSTIME(12):FAILTIME(12):HESITATE(12):

 PART:RATE:CSUM:

 numstat,10:WARMUP,5000:

 ILK,1: SON,4;

STATIONS:MC0:MC1:MC2:MC3:MC4:MC5:MC6:

 MC7:MC8:MC9:MC10:EXITSYSTEM;

SETS:STATIONSET,MC0,MC1,MC2,MC3,MC4,MC5,MC6,MC7,MC8,MC9,MC10;

QUEUES:BUFFER0:BUFFER1:BUFFER2:BUFFER3:BUFFER4:BUFFER5:

 BUFFER6:BUFFER7:BUFFER8:BUFFER9:BUFFER10:

 DUMMY1:DUMMY2:DUMMY3:DUMMY4:DUMMY5:

 DUMMY6:DUMMY7:DUMMY8:DUMMY9:DUMMY10:

 RESUME0:RESUME1:RESUME2:RESUME3:RESUME4:RESUME5:

 RESUME6:RESUME7:RESUME8:RESUME9:RESUME10:INITIAL;

RESOURCES:MACHINE0:MACHINE1:MACHINE2:MACHINE3:

 MACHINE4:MACHINE5:MACHINE6:MACHINE7:

 MACHINE8:MACHINE9:MACHINE10;

FILES:AVGRATE,"out.txt",SEQ,FOR;

COUNTERS:OUTPUT,45000,YES;

REPLICATE,10;

END;

A
P

P
E

N
D

IX

90

 A
.4

. B
eh

av
io

ur
 o

f t
hr

ou
gh

pu
t w

ith
 r

es
pe

ct
 to

 to
ta

l i
m

ba
la

nc
e

T
ab

le
 A

.4
. B

eh
av

io
ur

 o
f t

hr
ou

gh
pu

t w
it

h
re

sp
ec

t t
o

to
ta

l i
m

ba
la

nc
e

Su
bl

in
e

#1

Su
bl

in
e

#2

A
bs

ol
ut

e
im

ba
la

nc
e

Su

bl
in

e
#1

Su

bl
in

e
#2

A

bs
ol

ut
e

im
ba

la
nc

e

C
A

SE

B
uf

fe
r

#1

B
uf

fe
r

#2

M

C
#1

M

C
#2

 -
M

C
#3

ar

ou
nd

 b
uf

fe
r

#1

M

C
#1

 -
M

C
#2

M

C
#3

ar

ou
nd

 b
uf

fe
r

#2

T

ot
al

 I
m

ba
la

nc
e

T
hr

ou
gh

pu
t

1
15

0

0.

75
10

10
5

0.
60

40
87

4
0.

14
69

23
1

0.

66
44

30
7

0.
75

26
06

1
0.

08
81

75
4

0.

23
50

98
5

0.
56

66
61

6

2
14

1

0.

75
10

10
5

0.
61

08
22

6
0.

14
01

87
9

0.

66
21

40
5

0.
75

26
06

1
0.

09
04

65
6

0.

23
06

53
5

0.
57

06
36

9

3
13

2

0.

75
10

10
5

0.
61

69
55

7
0.

13
40

54
8

0.

65
96

56
4

0.
75

26
06

1
0.

09
29

49
7

0.

22
70

04
5

0.
57

35
58

5

4
12

3

0.

75
10

10
5

0.
62

26
40

6
0.

12
83

69
9

0.

65
69

58
5

0.
75

26
06

1
0.

09
56

47
6

0.

22
40

17
5

0.
57

57
27

1

5
11

4

0.

75
10

10
5

0.
62

78
97

8
0.

12
31

12
7

0.

65
40

00
9

0.
75

26
06

1
0.

09
86

05
2

0.

22
17

17
9

0.
57

81
50

2

6
10

5

0.

75
10

10
5

0.
63

26
50

9
0.

11
83

59
6

0.

65
08

11
1

0.
75

26
06

1
0.

10
17

95
0

0.

22
01

54
6

0.
57

92
75

8

7
9

6

0.
75

10
10

5
0.

63
73

04
2

0.
11

37
06

3

0.
64

75
23

9
0.

75
26

06
1

0.
10

50
82

2

0.
21

87
88

5
0.

58
02

47
9

8
8

7

0.
75

10
10

5
0.

64
16

68
3

0.
10

93
42

2

0.
64

38
66

9
0.

75
26

06
1

0.
10

87
39

2

0.
21

80
81

4
0.

58
05

49
4

9
7

8

0.
75

10
10

5
0.

64
55

68
3

0.
10

54
42

2

0.
64

00
21

8
0.

75
26

06
1

0.
11

25
84

3

0.
21

80
26

5
0.

58
06

02
7

10

6
9

0.

75
10

10
5

0.
64

87
52

2
0.

10
22

58
3

0.

63
60

76
9

0.
75

26
06

1
0.

11
65

29
2

0.

21
87

87
5

0.
58

01
70

9

11

5
10

0.
75

10
10

5
0.

65
29

07
9

0.
09

81
02

6

0.
63

18
85

1
0.

75
26

06
1

0.
12

07
21

0

0.
21

88
23

6
0.

57
94

88
4

12

4
11

0.
75

10
10

5
0.

65
60

91
0

0.
09

49
19

5

0.
62

69
48

2
0.

75
26

06
1

0.
12

56
57

9

0.
22

05
77

4
0.

57
82

48
2

13

3
12

0.
75

10
10

5
0.

65
88

16
0

0.
09

21
94

5

0.
62

18
41

5
0.

75
26

06
1

0.
13

07
64

6

0.
22

29
59

1
0.

57
60

09
7

14

2
13

0.
75

10
10

5
0.

66
12

48
0

0.
08

97
62

5

0.
61

58
84

4
0.

75
26

06
1

0.
13

67
21

7

0.
22

64
84

2
0.

57
40

19
4

15

1
14

0.
75

10
10

5
0.

66
39

24
2

0.
08

70
86

3

0.
60

96
65

2
0.

75
26

06
1

0.
14

29
40

9

0.
23

00
27

2
0.

57
11

13
9

16

0
15

0.
75

10
10

5
0.

66
65

80
7

0.
08

44
29

8

0.
60

30
32

5
0.

75
26

06
1

0.
14

95
73

6

0.
23

40
03

4
0.

56
73

84
7

APPENDIX

91

A.5. Throughput values for all feasible allocations in the sample problem given as Case 9 in Seong et. al.[35]

Table.A.5. Throughput values for all feasible allocations in the sample problem given as Case 9 in Seong et. al.[35]

BUFFER BUFFER BUFFER PRODUCTION
LOCATION #1 LOCATION #2 LOCATION #3 RATE

0 7 3 0.6531318
0 8 2 0.6516116
1 6 3 0.6514968
0 6 4 0.6513359
1 7 2 0.6506884
2 6 2 0.6491286
2 5 3 0.6490498
1 5 4 0.6490348
0 5 5 0.6474089
3 5 2 0.6466561
0 9 1 0.6459260
2 4 4 0.6457656
3 4 3 0.6456720
1 8 1 0.6455040
2 7 1 0.6445656
1 4 5 0.6443031
4 4 2 0.6430809
3 6 1 0.6430230
0 4 6 0.6419335
3 3 4 0.6406850
4 5 1 0.6403728
4 3 3 0.6403363
2 3 5 0.6393603
5 3 2 0.6379511
5 4 1 0.6369806
1 3 6 0.6368844
0 10 0 0.6336940
0 3 7 0.6336293
1 9 0 0.6335532
2 8 0 0.6329160
4 2 4 0.6327535
5 2 3 0.6324114
3 7 0 0.6321167
6 3 1 0.6318294
3 2 5 0.6315741
4 6 0 0.6304804
6 2 2 0.6299246
2 2 6 0.6294050
5 5 0 0.6281393
1 2 7 0.6262134
6 4 0 0.6246663
7 2 1 0.6237570
0 2 8 0.6220849
5 1 4 0.6203103
6 1 3 0.6198679
7 3 0 0.6195772
4 1 5 0.6193777
7 1 2 0.6171390
3 1 6 0.6170826
2 1 7 0.6146056
8 2 0 0.6119668
8 1 1 0.6113383
1 1 8 0.6106461
0 1 9 0.6056569
6 0 4 0.6005731
7 0 3 0.6000120
9 1 0 0.5999668
5 0 5 0.5998935
4 0 6 0.5981102
8 0 2 0.5975358
3 0 7 0.5956128
2 0 8 0.5921852
9 0 1 0.5920033
1 0 9 0.5875122
0 0 10 0.5815684

10 0 0 0.5810414

APPENDIX

92

A.6. Processing, failure and repair rates for production lines in
Seong et.al.[35]

 CASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 N 3 4 5 10 5 5 8 9 4 4 5 5 5 6 8 9 10 10
 C 15 30 12 47 110 200 110 155 10 30 10 15 115 130 125 200 310 315

 λ1 1 1 1 1 1 1 1 1 3,7 3 1,2 2,8 2,6 3 1 2,5 2,7 2,4

MC#1 µ1 0 0,4 0,2 0 0,1 0,1 0 0,3 0,1 0,4 0,1 0,3 0,1 0,3 0,3 0,2 0,1 0,4
 r1 0,1 0,7 0,7 0 0,3 0,2 1 0,7 0,2 0,5 0,3 0,6 0,4 0,2 0,5 0,7 0,8 0,5

 λ2 1 1 1 1 1 1 1 1 1,5 1 1 1,7 3 1 3,6 1,5 1,8 1,7
MC#2 µ2 0 0,2 0,2 0 0,1 0,2 0,1 0,2 0,1 0,3 0,3 0,4 0,2 0,5 0,2 0,1 0,2 0,2

 r2 0,1 0,8 0,7 0 0,4 0,3 0,9 0,6 0,4 0,6 0,5 0,8 0,4 0,5 0,5 0,6 0,3 0,6
 λ3 1 1 1 1 1 1 1 1 1,1 2 3 2,5 3,4 1,2 1,7 2,8 2,1 2,8

MC#3 µ3 0 0,2 0,2 0 0,2 0,3 0,1 0,4 0,5 0,4 0,5 0,5 0,2 0,1 0,2 0,3 0,3 0,3
 r3 0,1 0,7 0,7 0 0,4 0,4 0,9 0,7 0,8 0,5 0,2 0,8 0,6 0,3 0,6 0,8 0,5 0,5

 λ4 1 1 1 1 1 1 1 3 3,6 2 3,4 4,7 1,8 1,4 3,6 2,3 2,2

MC#4 µ4 0,1 0,2 0 0,2 0,2 0 0,2 0,2 0,5 0,4 0,4 0,2 0,2 0,3 0,2 0,2 0,4
 r4 0,6 0,7 0 0,5 0,4 1 0,5 0,5 0,4 0,3 0,9 0,5 0,1 0,5 0,8 0,5 0,5

 λ5 1 1 1 1 1 1 1,8 1,9 1,5 1,5 2,8 2,1 1,6 2,1
MC#5 µ5 0,2 0 0,2 0,1 0,2 0,2 0,2 0,1 0,1 0,3 0,2 0,1 0,3 0,3

 r5 0,7 0 0,4 0,3 0,7 0,6 0,1 0,7 0,3 0,2 0,5 0,7 0,8 0,5
 λ6 1 1 1 2 2,7 1,9 2,7 2,5

MC#6 µ6 0 0,2 0,1 0,4 0,4 0,1 0,3 0,4
 r6 0 0,6 0,5 0,3 0,5 0,6 0,7 0,4

 λ7 1 1 1 1,6 2,7 1,5 1,1
MC#7 µ7 0 0,3 0,4 0,3 0,3 0,1 0,3

 r7 0 0,5 0,7 0,7 0,8 0,6 0,5
 λ8 1 1 1 1,2 3 1,5 1,3

MC#8 µ8 0 0,1 0,3 0,2 0,2 0,2 0,3

 r8 0 0,9 0,8 0,4 0,5 0,6 0,5
 λ9 1 1 2 1,2 1,6

MC#9 µ9 0 0,2 0,3 0,1 0,3
 r9 0 0,5 0,6 0,6 0,5

 Λ10 1 2,6 0,8
MC#10 µ10 0 0,3 0,2

 R10 0 0,4 0,5

Table A.6. Processing, failure and repair rates for production lines in Seong et.al.[35]

 λ i: processing rate for machine i

 µi: failure rate for machine i

 ri: repair rate for machine i

 C: total fixed number of buffer slots that will be allocated

 N: number of machines in the production line

NOTE: Processing times are deterministic for the cases from Case#1 to Case#8

 Processing times are exponential for the cases from Case# 9 to Case#18

 Failure and Repair times are all exponential for all cases

APPENDIX

93

A.7. Optimal allocations with estimated throughput values via
simulation for SEVA, Non-SEVA and LIBA

Table A.7. Optimal allocations with estimated throughput values via simulation for
SEVA, Non-SEVA and LIBA

 A: SEVA
 B: Non-SEVA with both big and small steps
 C: Non-SEVA with only small steps
 LIBA 1: LIBA with initial allocation determined in Song et.al.[35]
 LIBA 2: LIBA with initial allocation determined by its original procedure

 NOTE: SEVA was not applied to Case 14

CASE N K METHOD ALLOCATION THROUGHPUT ITERATION
 A (7,8) 0.5806027 8
 B (7,8) 0.5806027 8
1 3 15 C (7,8) 0.5806027 8
 LIBA 1 (7,8) 0.5806027 7
 LIBA 2 (7,8) 0.5806027 4
 A (20,8,2) 0.6646476 48
 B (19,9,2) 0.6647446 25
2 4 30 C (20,8,2) 0.6646476 29
 LIBA 1 (19,11,0) 0.6631803 4
 LIBA 2 (18,9,3) 0.6648211 15
 A (2,4,4,2) 0.6458731 34
 B (2,4,4,2) 0.6458731 25
3 5 12 C (2,4,4,2) 0.6458731 30
 LIBA 1 (3,3,4,2) 0.6459400 19
 LIBA 2 (2,4,4,2) 0.6458731 17
 A (0,3,8,8,9,8,8,3,0) 0.1756255 333
 B (0,5,5,10,10,5,5,5,2) 0.1752594 41
4 10 47 C (0,4,7,8,9,8,6,4,1) 0.1757494 58
 LIBA 1 (0,4,8,8,8,9,5,5,0) 0.1765216 407
 LIBA 2 (0,5,6,9,8,9,4,6,0) 0.1764558 274
 A (22,27,38,23) 0.6494134 141
 B (22,28,36,24) 0.6497027 36
5 5 110 C (22,28,36,24) 0.6497027 43
 LIBA 1 (19,35,34,22) 0.6497500 77
 LIBA 2 (23,30,35,22) 0.6498637 81
 A (0,7,3) 0.6531318 26
 B (0,6,4) 0.6513359 16
9 4 10 C (0,7,3) 0.6531318 24
 LIBA 1 (0,7,3) 0.6531318 8
 LIBA 2 (0,7,3) 0.6531318 5
 A (11,16,3) 0.6380394 53
 B (11,16,3) 0.6380394 37

10 4 30 C (11,16,3) 0.6380394 24
 LIBA 1 (10,18,2) 0.6375757 23
 LIBA 2 (10,16,4) 0.6381569 28
 A (1,3,4,2) 0.3479317 31
 B (1,3,4,2) 0.3479317 48

11 5 10 C (1,3,4,2) 0.3479317 48
 LIBA 1 (1,3,4,2) 0.3479317 24
 LIBA 2 (1,3,4,2) 0.3479317 15
 A (4,6,3,2) 0.9719334 74
 B (4,6,4,1) 0.9708824 25

12 5 15 C (4,6,4,1) 0.9708824 25
 LIBA 1 (4,7,4,0) 0.9630241 8
 LIBA 2 (4,7,3,1) 0.9727568 14
 B (26,45,26,16,17) 0.4611404 58

14 6 130 C (23,38,47,14,8) 0.4448229 83
 LIBA 1 (15,36,23,42,14) 0.4793024 177
 LIBA 2 (15,31,28,42,14) 0.4794121 178

APPENDIX

94

 A.8. Efficiency evaluation of initial allocation procedure of LIBA

CASE N K METHOD ALLOCATION THROUGHPUT PERCENTAGE
 A (7,8) 0.5806027 100
 B (7,8) 0.5806027 100
1 3 15 C (7,8) 0.5806027 100
 initial (7,8) 0.5806027 -
 A (20,8,2) 0.6646476 99.81
 B (19,9,2) 0.6647446 99.79
2 4 30 C (20,8,2) 0.6646476 99.81
 initial (11,10,9) 0.6633516 -
 A (2,4,4,2) 0.6458731 99.89
 B (2,4,4,2) 0.6458731 99.89
3 5 12 C (2,4,4,2) 0.6458731 99.89
 initial (3,3,3,3) 0.6451765 -
 A (0,3,8,8,9,8,8,3,0) 0.1756255 98.23
 B (0,5,5,10,10,5,5,5,2) 0.1752594 98.43
4 10 47 C (0,4,7,8,9,8,6,4,1) 0.1757494 98.16
 initial (5,5,5,5,6,6,5,5,5) 0.1725131 -
 A (22,27,38,23) 0.6494134 100.03
 B (22,28,36,24) 0.6497027 99.98
5 5 110 C (22,28,36,24) 0.6497027 99.98
 initial (27,27,28,28) 0.6495863 -
 A (0,7,3) 0.6531318 99.38
 B (0,6,4) 0.6513359 99.65
9 4 10 C (0,7,3) 0.6531318 99.38
 initial (2,5,3) 0.6490498 -
 A (11,16,3) 0.6380394 99.67
 B (11,16,3) 0.6380394 99.67

10 4 30 C (11,16,3) 0.6380394 99.67
 initial (10,12,8) 0.6359135 -
 A (1,3,4,2) 0.3479317 99.42
 B (1,3,4,2) 0.3479317 99.42

11 5 10 C (1,3,4,2) 0.3479317 99.42
 initial (2,3,2,3) 0.3459187 -
 A (4,6,3,2) 0.9719334 99.08
 B (4,6,4,1) 0.9708824 99.18

12 5 15 C (4,6,4,1) 0.9708824 99.18
 initial (4,5,3,3) 0.9629590 -
 B (26,45,26,16,17) 0.4611404 102.99

14 6 130 C (23,38,47,14,8) 0.4448229 106.77
 initial (22,27,25,31,25) 0.4749513 -

Table A.8. Efficiency evaluation of initial allocation procedure of LIBA

 A: SEVA

 B: Non-SEVA with both big and small steps

 C: Non-SEVA with only small steps

 Initial: Initial allocation determined by our own procedure

 N: Number of machines in the production line

 K: Total fixed number of buffer slots that are to be allocated

 NOTE: SEVA was not applied to Case 14

