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Abstract 
 
 

THE LINE BALANCING ALGORITHM  

FOR OPTIMAL BUFFER ALLOCATION  

IN PRODUCTION LINES 
 

Ömer Selvi 
M.S. in Industrial Engineering 

Supervisor: Asst. Prof. Murat Fadıloğlu 
September, 2002 

 

Buffer allocation is a challenging design problem in serial production lines that 

is often faced in the industry. Effective use of buffers (i.e. how much buffer storage to 

allow and where to place it) in production lines is important since buffers can have a 

great impact on the efficiency of the production line. Buffers reduce the blocking of the 

upstream station and the starvation of the downstream station. However, buffer storage 

is expensive both due to its direct cost and the increase of the work-in-process 

inventories it causes. Thus, there is a trade-off between performance and cost. This 

means that the optimal buffer capacity and the allocation of this capacity have to be 

determined by analysis. In this thesis, we focus on the optimal buffer allocation 

problem. We try to maximize the throughput of the serial production line by allocating 

the total fixed number of buffer slots among the buffer locations and in order to achieve 

this aim we introduced a new heuristic algorithm called “Line Balancing Algorithm 

(LIBA)”applicable to all types of production lines meaning that there is no restriction 

for the distributions of processing, failure and repair times of any machine, the 

disciplines such as blocking, failure etc. and the assumptions during the application of 

LIBA in the line. 

 

 Keywords: Production Lines, Buffer, Optimal Buffer Allocation Problem 
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Özet 
 

ÜRETİM HATLARINDA  
OPTİMAL ARA DEPO PAYLAŞTIRIMI İÇİN  

HAT DENGELEME ALGORİTMASI 
 

Ömer Selvi 
Endüstri Mühendisliği Bölümü Yüksek Lisans 
Tez Yöneticisi: Yar. Doç. Murat Fadıloğlu 

Eylül, 2002 
 

 Üretim Hatlarında ara depo paylaştırımı günümüz endüstrisinde genellikle  

karşılaşılan önemli bir problemdir. Ara depoların üretim hattında etkili kullanımı yani 

ara depoların hangi miktarda ve nereye yerleştirileceği önemlidir çünkü ara depoların 

üretim hatlarının verimliliğinde büyük etkisi vardır. Ara depolar kendisinin önündeki ve 

kendisini takip eden istasyonun tıkanma ve aç kalma sıklıklarını azaltır. Ama direkt 

maliyetinden ve ara ürün miktarındaki artışa neden olmasından dolayı ara depo 

kullanımı pahalı bir yatırımdır. Bu yüzden, performans ve maliyet arasında endirekt bir 

ilişki vardır. Bu, optimal ara depo gereksinim miktarı ve bu miktarın paylaştırımı analiz 

ile belirlenmeli anlamına gelir. Bu çalışmada, optimal ara depo paylaştırım problemi 

üzerinde odaklanılmıştır. Toplam sabit ara depo miktarını mevcut ara depo lokasyonları 

arasında paylaştırımı yoluyla seri üretim hattının birim üretim miktarı maksimize 

edilmeye çalışılmış ve  bu amaca ulaşmak için istasyonların işleme,bozulum ve onarım 

zamanları dağılımı, blokaj, bozulum vs. disiplini ve hattın varsayımları ne olursa olsun 

her türlü üretim hattına tatbik edilebilir “Hat Dengeleme Algoritması” adlı sezgisel bir 

algoritma geliştirilmiştir.  

 

 Anahtar Sözcükler: Seri Üretim Hatları, Ara Depo, Optimal Ara Depo Payalaştırım 

Problemi 

 



iii 

 

 

Acknowledgement 
 

  

 

I would like to express my gratitude to Asst. Prof. Murat Fadıloğlu for his 

supervision, suggestions and encouragement throughout the development of this thesis. 

 

I am also indepted to Prof. İhsan Sabuncuoğlu and Prof. Erdal Erel for accepting 

to read and review this thesis and for their suggestions. 

 

I would like to take this opportunity to thank Onur Boyabatlı, Çerağ Pinçe, Güneş 

Erdoğan, Savaş Çevik, Sezgin Işılak, Burhan Ürek, Ozan Pembe, Aydın Özçelik and 

Gökhan Çevik for their friendships, helps, morale supports and encouragements during 

my graduate life in Bilkent. I would also like to express my gratitude to Avni Sezer, 

Osman Sarıçam, Naci Yılmaz for their friendships.     

 

My special thanks go to my family. This study is dedicated to them without whom 

it would not have been possible.  

 

 

 

 

 

 

 

 



iv 

 

Contents  
 

 
Abstract                                                                                                        i 

Özet                                                                                                              ii 

Acknowledgement                                                                                     iii 

Contents                                                                                                      iv 

List of Tables                                                                                              vi 

List of Figures                                                                                           vii 

List of Charts                                                                                           viii  

1. INTRODUCTION…………………………………………………......1 

2. BACKGROUND……………………………………………………….3 

2. 1. Major Features and Classes of Production Lines………………………….3 

2. 2. General Results Pertaining to Production Rate of a Production 

Line…………………………………………………………………………………6 

2. 2. 1. Buffer Issues…………………………………………………………….6 

2. 2. 2. Reversibility and Duality………………………………………………..8 

3. LITERATURE SURVEY……………………………………………10 

4. TWO RELATED ALGORITHMS....................…………………….26 
4. 1. Standard and Non-Standard Exchange Vector Algorithms (SEVA and 

Non-SEVA)………………………………………………………………………..26  

4. 1. 1. Standard Exchange Vector Algorithm (SEVA)………………………..29 

4. 1. 2. Non-Standard Exchange Vector Algorithm (Non- SEVA)……………31 

4. 2. Simple Search Algorithm (SSA)………………………………....................35 



v 

5. LINE BALANCING ALGORITHM (LIBA)……………………….40 
5. 1. Introduction…………………………………………………….....................40 

5. 2. The Algorithm………………………………………………….....................43 

5. 2. 1. Initial Allocation Procedure……………………………………………47 

5. 2. 2. A Simple Example for Line Balancing Algorithm (LIBA)……………52 

5. 3. Comparison of Algorithms………………………………………………….60 

5. 3. 1. Numerical Results……………………………………………………...62 

6. CONCLUSION……………………………………………………….71 

BIBLIOGRAPHY…………………………………………………….....75 

APPENDIX………………………………………………………………80  

A. 1. The Pseudo-Code of LIBA………..……………………………..................80 

A.2. General model frame for the simulation of the production lines in SIMAN 

V………………………………………………...............................................86 

A.3. Experimental frame of the production line given in Seong et.al.[35] as 

Case 9 for the simulation in SIMAN V…………………………………....89 

A.4. Behaviour of throughput with respect to total imbalance………………..90 

A.5. Throughput values for all feasible allocations in the sample problem given 

as Case 9 in Seong et. al.[35]………………………... …………………….91 

A.6. Processing, failure and repair rates for production lines in Seong 

et.al.[35]……………………………………………………………………...92 

 A.7. Optimal allocations with estimated throughput values via simulation for 

SEVA, Non-SEVA and LIBA………………………...……………………93  

A.8. Efficiency evaluation of initial allocation procedure of 

LIBA………....................................................................................................94  

 

 



vi 

 

List of Tables 

3. 1. Summary of Literature Survey………………………………………………..25 

5. 1. Processing, failure and repair rates for each machine ………………………..52 

5. 2. Availabilities and production rates in isolation for all machines ………….…52 

5. 3. Initial buffer allocation where   bi = 1/(ρi+ρi+1) ……………………………...53 

5. 4. Initial buffer allocation where   bi =1 / min{ρi , ρi+1}……………………...…53 

5. 5. Initial buffer allocation where   bi = (1/ρi ) + (1/ρi+1) ………………...………53 

5.6. Throughput values and related computations for the candidate 
initials………………………………………………………….…………… 56 

5.7. Throughput values and differences for two initial allocation alternatives for 
each replication……………………………………………………………....56 

5.8. Throughput values and efficiency of initial allocations determined by 
 LIBA initial allocation procedure ………………………...…………………63 

5. 9. Step sizes for the cases studied ……………………………...……………….64 

5. 10.  Increase in the throughput value in LIBA 2 ………………………..………67 

5. 11. Increase in the throughput value in LIBA 1 ………………..……………….67 

5. 12. Data of the cases that we study in Powell and Harris[33]…………………. 69 

5. 13. Optimal allocations with estimated throughput values via simulation for SSA 
and LIBA ……………………………………...…………………………..69 

A.4. Behaviour of throughput with respect to total imbalance ……………………90 

A.5. Throughput values for all feasible allocations in the sample problem given as 
Case 9 in Seong et. al.[35] ………………………………………………......91 

A.6. Processing, failure and repair rates for production lines in Seong et.al.[35]....92 

A.7. Optimal allocations with estimated throughput values via simulation for 
SEVA, Non-SEVA and LIBA ………………………………………………93  

A. 8. Efficiency evaluation of initial allocation procedure of LIBA ………….......94 



vii 

 

 

List of Figures 

 

1. 1. The N-machine production line ……………………………………………….1 

4. 1. The illustration of SEVA …………………………………………………….30 

4. 2. The procedure how to obtain non-standard integer exchange vector 

approximating the gradient vector in Non-SEVA …………………………..31 

5. 1. The N-machine production line L ……………………………………………40 

5. 2. Two sub-lines L1  , L2   obtained by decoupling L from the buffer i …………40 

5. 3. Illustration of the property of imbalance around any other buffer locations even 

though the exact balance around any specific one in production lines............42 

5. 4. Bisection procedure for determination of potential giver and receiver……....43  

5. 5. Bisection of 8-machine production line until its final sub-lines……………...44 

5. 6. Illustration of determination of criticality function ……………………...…. 49 

5. 7. Initial decomposition of the line during the execution of LIBA ……………. 57 

5. 8. Restart of LIBA from the second buffer location B2 ………….……………..58 

5. 9. LIBA proceeds to the first buffer location …………………………………...59 

5. 10. Termination of LIBA ………………………………………………….....…59 

 

 

 

 

 



viii 

 

 

List of Charts 

 

5. 1.  t-statistics versus the degrees of freedom for α = 0.05 confidence level…….55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

1
 

 

 

 

 

Chapter 1 

 

INTRODUCTION 
 

Production lines, also called manufacturing flow lines, transfer lines, flow lines 

or serial production lines, have been an important area of research ever since 1950�s. 

Since flow lines can often be found throughout manufacturing industry (e.g. automobile 

industry), many researches have recognized the importance of the subject and 

contributed to it.  

Let us first define manufacturing flow lines briefly. Manufacturing flow line 

systems consist of material, work areas, and storage areas. Material flows from work 

area to storage area, from storage area to the proceeding work area and so on. Material 

visits each storage and work area. There is an entry work area through which material 

enters and an exit work area through which it leaves the system. The work areas are 

usually called machines or stations and the storage areas are usually called buffers. 

Figure 1.1 illustrates an N-machine production line where Mi�s stand for machines and 

Bi�s are buffers.  

 
                                                          ��            
 

                         M1            B1          M2          B2                                     B(N-2)    M(N-1)   B(N-1)    MN 
 

Figure 1. 1. The N-machine production line 
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Due to their diversity, complexity and inherent randomness in their behaviour, 

modelling and estimating the performances of manufacturing flow lines are difficult. 

Especially, the randomness inherent in production lines is what makes manufacturing 

flow lines difficult to analyze. The primary source of randomness is that the times parts 

spend in work areas are not deterministic. This randomness may be due to random 

processing times, random failure and repair events that occur on the stations, or both. 

In serial production lines, one of the key questions that the designers face is the 

buffer allocation problem, i.e., how much buffer storage to allow and where to place it 

in the line. This is an important question since buffers can have a great impact on the 

efficiency of the production line. They reduce blocking in the upstream stations and the 

starvation in the downstream stations. Unfortunately, buffer storage is expensive both 

due to its direct cost and the increase of the work-in-process inventories it causes. 

Because of the trade-off between the performance and the cost, determination of the 

total buffer capacity and the allocation of the buffer capacities is an important problem.  

The problem can be formulated in many different ways depending on the choice 

of the objective function. Objectives used in the literature are basically maximizing 

throughput, minimizing work-in-process, minimizing sojourn time and minimizing cost 

or maximizing profit based on the user defined cost or profit functions. In this thesis, 

we study the classical problem, which is known as �Optimal Buffer Allocation Problem 

(OBAP)� with the objective of maximizing production rate. We focus on the allocation 

of total fixed number of buffer slots among the buffer locations for the optimal 

production rate of the production line. 

In the second chapter of our study, we give a brief background of the production 

lines. We provide a review of related research in the literature in Chapter 3. In Chapter 

4, we present two related algorithms on the allocation of total fixed number of buffer 

slots for maximizing throughput and compare these algorithms in Chapter 5 where we 

also develop a heuristic algorithm. Finally, concluding remarks are made in Chapter 6.
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Chapter 2 

 

BACKGROUND 
 

 2. 1. Major Features and Classes of Production Lines 

  There are three major classes of manufacturing flow lines. These are; 

 1.   Asynchronous Systems 

 2.   Synchronous Systems 

 3.   Continuous Systems 

Asynchronous and synchronous systems are suitable for the manufacturing of 

discrete parts. The only difference between them is that all the operations and machine 

state changes in the line occur simultaneously as well as buffer levels in the 

synchronous systems. In asynchronous systems, the machines are not forced to start or 

stop their operations at the same instant. Even when machines have fixed, equal 

operation times, the presence of buffers between them allows them to start and stop 

independently, as long as the intermediate buffers are neither empty nor full. In some 

applications, the operation times may be random. Finally, uncertain failure and repair 

times can lead the unsynchronized operation times. Unlike asynchronous systems, in 

synchronous systems, all machines are forced to start and stop their operations at the 

same time.  
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The feature distinguishes continuous systems from the others is that the material 

is treated as continuous rather than discrete. That is, instead of discrete parts moving 

from buffer to machine and vice versa at specific instants, there is a fluid that is 

transferred continuously. Continuous systems are naturally the production systems in 

which the material processed is a fluid rather than discrete entities (e.g. chemical 

processing). 

 A machine is said blocked if the processed part on it cannot be put to the 

downstream buffer and starving if it is idle and there is no part to be processed in the 

upstream buffer. The function of a buffer is to decouple machines. If a machine is 

subject to a disruption (a failure or a long operation time), the machine upstream can 

still operate until the upstream buffer fills up and the machine downstream can still 

operate until the downstream buffer becomes empty. The larger the buffers of the line, 

the longer before the filling or emptying occur, and the larger is the production rate. 

Pairs of machines that have no storage space between them have the greatest coupling; 

and infinite buffers, or storage areas that are never filled, have the least (Infinite buffers 

allow coupling when they become empty). 

In real life, since all buffers have finite capacity, blocking may occur. There are 

two types of blocking; 

1. Blocking After Service (BAS)  

2. Blocking Before Service (BBS) 

BAS, also called type-1 blocking, manufacturing blocking, production blocking, 

transfer blocking or non-immediate blocking, occurs at the instant of completion of a 

part on the machine, if downstream buffer is full. In that case, the part stays on the 

machine until a space is available in the downstream buffer. During this time, the 

machine is prevented from working and it is said to be blocked. When a space becomes 

available in the downstream buffer, the part is immediately transferred to the 

downstream buffer and the machine can start processing another part, if any. 

In BBS, also called type-2 blocking, communication blocking, service blocking 

or immediate blocking, machine can start processing only if there is a space available in 

the downstream buffer. Otherwise, it has to wait until a space becomes available. BBS 

is further classified according to whether the position (space) on the machine may be 
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occupied or not while the machine is blocked. These two cases are Blocking Before 

Service with Position Occupied (BBS-PO) if the space on the machine is used during 

the blockage, and Blocking Before Service with Position Non-Occupied (BBS-PNO) if 

the space on the machine is not used during the blockage.  

  In some systems, machines are prone to failures. In the literature, generally two 

types of failures are considered. These are; 

1. Operation Dependent Failures (ODFs) 

2. Time Dependent Failures (TDFs) 

ODFs are failures that are related to the processing of parts and thus can only 

occur when the machine is working. The machine is working means that the machine is 

up (operational) and it is not idle. On the other hand, TDFs are not related to the 

processing of part and thus can occur at any time, including the time when the machine 

is idle.  

 When failure occurs, the machine cannot process any material, so the upstream 

buffer cannot lose material and the downstream buffer cannot gain material. Systems in 

which machines can fail are called Flow Lines with Unreliable Machines (FLUMs) and 

systems in which machines do not fail are called Flow Lines with Reliable Machines 

(FLRMs). In FLRMs, all the randomness is due to the variability of the processing 

times, while, in FLUMs, randomness is due to both varying processing times and 

failures. 

 Material arrives at and leaves from the flow line in a variety of different ways. It 

is always possible for raw material to be unavailable, or removal of finished goods may 

be delayed in real life. Such systems are non-saturated systems. On the other hand, in 

the literature, it is almost always assumed that the first machine is never starved and the 

last is never blocked. Such systems are called saturated systems. However, it is possible 

to model a non-saturated system with a saturated system by adding a non-starving 

initial machine as the arrival process and a final machine that is never blocked (means it 

has infinite capacity downstream buffer) as the departure process to the line. Hence, the 

second machine of the model corresponds to the first machine of the real system and 

the machine just before the last machine of the model corresponds to the last machine 

of the real system. 
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 2. 2. General Results Pertaining to Production Rate of a 

Production Line 

 Several measures of performance are of interest when analyzing flow lines. The 

most important one is the production rate, P, which is the average number of parts 

leaving the system per unit time.  

 The production rate of a line is limited in two ways. First, the throughput can be 

no greater than that of the machine with the smallest isolated production rate. The 

isolated production rate of a machine is the rate that it would operate at if it were not in 

a system with other machines and buffers. When the machines have different isolated 

production rates, their capacities except the lowest are largely wasted. Second, the 

unsynchronized disruptions that cause buffers to be empty or full also waste machine 

capability. Buffers become empty or full because machines fail or take long time to 

process material at different times. If all machines could be perfectly synchronized, not 

only in performing operations, but also in failing and getting repaired, buffers would 

not affect flow. It is the lack of synchronization that causes machines to be starved or 

blocked, and thus to lose the opportunity to work. 

A fundamental relationship of flow lines is the conservation of flow which states 

that all machines have the same production rates, that is 

P1 = P2 = �.. = PN = P. 

Conservation of flow holds for FLRMs and also for FLUMs provided that there 

is no scrapping of parts. Conservation of flow can be established by using sample path 

approach. The sample path behaviour of any flow line can be described by means of 

recursive equations. These equations are defined as the evolution equations of the flow 

line.  

 2. 2. 1. Buffer Issues 

The production rate increases monotonically as the buffer capacities increase. 

This is monotonicity property. Consider two flow lines, L1 and L2, which have identical 

machines but with different buffer capacity vectors K1 and K2. The capacity of each 
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buffer in L2 is at least as large as the corresponding buffer in L1. That is, K1 ≤ K2. Then 

the production rate of the flow line satisfies 

P(K1)  ≤  P(K2). 

The production rate of a flow line in which one buffer is infinite can be obtained 

by decomposing the line into two sub-lines from this infinite capacity buffer. Let La be 

the part of line L that consists only of the first i machines and the first (i � 1) buffers 

and similarly let Lb be the part of line L that consists only of the last (N - i) machines 

and the last (N - i - 1) buffers where the buffer location Bi has infinite capacity. Let Pa 

and Pb be the production rates of lines La and Lb respectively. Then, the production rate, 

Pinf , of the line with the infinite buffer is 

Pinf = min(Pa , Pb). 

By combining the above result with the monotonicity property, we obtain the 

following upper bound for the production rate of the line where there is no infinite 

capacity buffer: 

P  ≤  min(Pa , Pb) 

By applying this decomposition several times, we see that the production rate of 

a flow line is bounded by the isolated production rate of the machine that has the 

smallest isolated production rate as given below: 

P  ≤  min( ρi )    i = 1 to N 

Tighter upper bound on the production rate of the original line can be derived 

from the decomposition approach and given as 

P  ≤  min(Pi,i+1)  i = 1 to (N-1) 

 where Pi,i+1 is the production rate of the two-machine flow line consisting of Mi, 

Bi , Mi+1 . 

This upper bound can be useful since the production rates of the two-machine 

flow lines can be calculated exactly in most cases. 
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The monotonicity property can also be used to obtain the following lower bound 

on the production rate of the original line: 

P0 ≤ P 

where P0 is the production rate of the flow line with no intermediate storage. 

 2. 2. 2. Reversibility and Duality 

 Consider a flow line Lr, which is obtained from flow line L by reversing the 

flow of parts. The first machine in Lr is the same as the last machine in L. More 

generally, Mi in line Lr is the same as MN-i+1 in line L. Also buffers are reversed in line 

Lr. Then the production rate of the reversed line Lr is the same as the production rate of 

original line L if both lines� blocking mechanism is BAS. This is reversibility property. 

Proof of this property is based on the comparison of the sample paths of the two 

systems again using the evolution equations.  

Consider now the case of BBS. In that case, there is a much stronger 

equivalence between the two systems (Lr and L). This equivalence is based on the 

concept of job/hole (or part/hole) duality. The idea is that in line L, whenever a part 

moves in one direction, a hole (empty space) moves in the other direction. In the case 

of BBS, it is easy to check that the behaviour of parts in the reversed system is the same 

as the behaviour of holes in the original system. Indeed, starvation in the reversed 

system corresponds to blocking in the original system and vice-versa. As a result, the 

steady-state distribution of parts in the reversed line is exactly the same as the steady-

state distribution of holes in the original line. This equivalence especially implies that 

these two systems have the same production rate. 

The concept of job/hole duality still makes sense in the case of BAS. However, 

the behaviour of parts in the reversed system is no longer the same as the behaviour of 

holes in the original system. 

In this chapter we give the brief background of the production lines. It is worth 

to give this background since all researches on the production lines in the literature use 

any of these classes and features of production lines as the framework while modelling 

them and introduce new derivations by basically using the general results pertaining to 
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flow lines. Therefore, the content of this chapter will help the reader understand the 

next chapter easily where we will introduce the researches on production lines in the 

literature.  
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Chapter 3 

 

LITERATURE SURVEY 
 

Over the years, a large amount of research has been devoted to the analysis of 

production lines. This body of research can be classified as evaluative and generative. 

Evaluative studies focused on the performance evaluation of the production lines such 

as production rate, average WIP and average sojourn time in the system. Generative 

studies dealt with the optimization of these performance measures of the production 

lines. Since there is vast amount of work on production lines, we will only deal with the 

ones that are directly related to our problem, buffer allocation. However, the review of 

production lines written by Gershwin and Dallery[8] can be given as a guide to the 

readers who are interested in finding about evaluative studies.  

In serial production lines, one of the key questions that the designers face is the 

buffer allocation problem, i.e., how much buffer storage to allow and where to place it 

in the line. This is an important question because buffers can have a great impact on the 

efficiency of the production line. They compensate blocking of the upstream stations 

and the starvation of the downstream stations. Unfortunately, buffer storage is 

expensive both due to its direct cost and the increase of the work-in-process inventories 

it causes. Therefore, there is a trade-off between performance and cost. Thus, the 
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determination of buffer capacity requirement and the allocation of the buffer capacities 

is an important issue. 

While solving the buffer allocation problem, determination of the objective and 

the assumptions of the models that are worked on are also important for some reasons 

such as the tractability, fidelity to reality etc. Objectives that were used in the literature 

are basically maximizing throughput, minimizing work-in-process, minimizing sojourn 

time and minimizing cost or maximizing profit based on the user defined cost or profit 

functions. Minimization of WIP and average sojourn time are positively correlated, 

meaning that minimization of one produces the minimization of the other, while these 

objectives are negatively correlated with the objective of maximizing throughput. There 

are also multi-objective studies aiming to achieve two or more objectives, which were 

stated above, at the same time. You can see various studies with these objectives in the 

proceeding section. Unless otherwise stated, all proceeding researches used the basic 

assumption stated below due to simplicity and tractability; 

1. The first machine is never starved and the last machine is never blocked 

(Saturated Systems). 

2. All random variables (processing times, uptimes, downtimes) are 

independent random variables. 

3. The transfer through the buffers takes zero time. 

4. Manufacturing blocking (BAS) is the blocking criterion, meaning that any 

machine can pass the completed part as long as a buffer space is available 

(or, when no buffer exists, the downstream machine is idle).  

5. Failures are operation dependent failures (ODFs) meaning that any machine 

can fail only when it is processing a part. In other words, a machine can not 

fail when it is idle (starved or blocked). 

6. When a failure occurs, the part stays on the machine; it can be reworked 

when the machine is up again; the work resumes exactly at the point it 

stops(no scrapping of parts) 

Conway et al.[5] analyzed both balanced and unbalanced serial lines with 

stations having uniform and exponential processing times via simulation and reported a 

number of useful generalizations about the effect of buffers on serial lines. These can 

be summarized as follows: 
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• Diminishing returns: Throughput increases at a decreasing rate when 

successive buffer are placed at a single buffer site, or when successive sets 

of buffers are placed at all sites. 

• Non-concavity: Throughput increases in a non-concave fashion when 

successive buffers are placed optimally. 

• Sufficiency of small numbers: For lines with low coefficient of variations, 

small numbers of buffers at each site are sufficient to recover most of the 

throughput lost to stochastic interference. 

• Bowl-phenomenon: Buffers should be allocated evenly to all sites if 

possible, with any remaining buffers allocated symmetrically around the 

centre of the line. 

• Reversibility principle: Any line has the same throughput as its mirror 

image. 

• Decomposition principle: A single buffer should be placed where an 

unlimited buffer would be most effective.    

• Built-up property: The optimal allocation of (n+1) buffers can be built upon 

the optimal allocation of n without moving any of the first n. 

 Anderson and Moodie[2] analyzed the balanced production lines with normal 

and exponential operation times to estimate the coefficients for buffer locations that 

satisfies the optimal production cost modeled. Multi-product production lines with 

equal storage capacity for all buffer locations were considered. Anderson and Moodie 

derived mathematical expression for the operation cost of the line for both cases: 

normal and exponential service times, and developed minimum cost buffer models 

from these expressions. Transient behavior of the line was also considered in order to 

observe whether it is beneficial to control the buffer capacities during this period or not. 

However, it was observed that there was no cost advantage in controlling the inventory 

during the transient period.   

In his study, Helber[12] defined the problem of buffer space allocation in 

production lines as an investment problem. A model was developed and solution 

techniques were described that could be used to determine buffer allocations that 

maximize the expected net present value of the investment, including machines, buffers 

and inventory. Several examples of flow lines as well as assembly / disassembly 
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systems and flow lines with rework loops were analyzed. Optimal buffer allocation was 

determined via gradient algorithm based on the assumption of concavity of the function 

of the expected net present value of the investment with respect to the buffer capacity 

vector. Basic result of this study was that as product quality in a system with a rework 

loop improves, an optimally designed system can receive more buffer spaces and may 

use more inventory. 

A flow-shop type production line where the stations were subject to breakdown 

was studied by Altiok and Stidham[1]. The objective was to find the allocation of inter-

stage buffer capacities that maximizes the total profit. The stations, which are modeled 

as single-server queuing systems, had completion time distribution of two-stage Coxian 

type. After a standard transformation to a phase-type state representation, the new 

system gave rise to a Markov chain. The balance equations for this chain were solved 

by successive approximations to find the steady-state probability distribution of the 

number of items at each station, once the buffer capacities were given. A search 

procedure has been employed to find the optimal buffer capacities. 

Seong et al.[36] studied the same objective function as Altiok and Stidham[1] 

with general linear constraints on buffer sizes and continuous-type product assumption. 

Operation times were assumed to be deterministic and equal, while the repairs and 

failures were exponentially distributed. They solved the problem with a gradient 

projection algorithm. 

While allocating the fixed total number of buffers among intermediate buffer 

locations optimally, Andijani and Anwarul[3] considered and investigated the trade-off 

between three conflicting objectives: maximizing the average throughput rate, 

minimizing the average WIP and minimizing the average system time. They used lines 

with three and four identical reliable machines with exponential and uniform service 

times. Stochastic system simulation was used to generate and construct an efficient set 

of buffer allocations which maximizes the average throughput rate and minimizes both 

the average WIP and the average system time. Based on these simulation results, 

Analytical Hierarchy Process (AHP) was utilized to identify the most preferred 

allocation. The objective of this process was to find, for the line, the best buffer 

allocation solution to the trade-off between the three conflicting objectives stated. 
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Papadopoulos et.al.[25] also tried to allocate the fixed-number of buffers, 

servers and fixed amount of workload  at the same time as well as individually and in 

couples in order to maximize the throughput with minimum average WIP by using 

simulated annealing approach. Decision variables considered were the sizes of the 

buffers placed between successive workstations of the lines, the number of servers 

operating parallel allocated to each workstation and the amount of workload allocated 

to each workstation. The study was extended up to 60 stations with 120 buffer capacity 

and 120 servers, and it was observed that the approach worked very well compared 

with complete enumeration whenever possible as well as produced near-optimal 

configurations for relatively large lines in reasonable time.   

So[38] studied the buffer allocation problem with the objective of minimizing 

the average work-in-process (WIP) subject to a minimum required throughput and a 

constraint on the total buffer space. Both the balanced and the unbalanced lines up to 

five reliable machines were considered in this study. Exponential and non-exponential 

(Erlang-2, Coxian etc.) operation times were assumed in balanced lines while only 

exponential operation times were taken into account in the unbalanced lines. So�s 

results showed that the optimal strategy of allocating buffer size for this problem 

exhibited a rather interesting pattern that was different from the buffer allocation 

problem of maximizing the throughput subject to a constraint on the total buffer space. 

Specifically, monotonically increasing allocations, where an increasing amount of 

buffer space is assigned toward the end of the line, were shown to be optimal for the 

most cases investigated. Furthermore, empirical results obtained in this study suggest 

that when the line is unbalanced, the slowest operations should be assigned to the 

beginning of the line to provide the best throughput and the average work-in-process 

trade-off. On the basis of these results, a good heuristic for selecting the optimal buffer 

allocations for minimization of work-in-process inventory while achieving minimum 

required throughput with constant total buffer space was developed. 

 Papadopoulos and Vidalis[28] worked on the same optimization problem, 

minimizing the work-in-process inventory while achieving the required throughput with 

constant total buffer capacity. However, they only focused on the short reliable 

balanced production lines with Erlang-k ( k ≥ 2 ) operation times. More specifically, 

they studied the average WIP and throughput for all the ordered buffer allocations of a 

certain total number of buffer slots among the intermediate buffer locations. The 
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vectors of the buffer allocations were classified systematically into equivalence classes, 

something that facilitated a lot in the analysis of the evolution of the average WIP and 

the throughput as a function of these ordered allocations. Papadopoulos and Vidalis� 

results were very similar to the ones So[38] derived. According to these results, each 

buffer location takes at least as much buffer slot as the preceding one for the required 

throughput levels small relative to the theoretical maximum throughput that is attained 

when the buffer slots at hand are placed in order to maximize the throughput of the 

whole line. However, while the desired throughput level is increasing to the theoretical 

maximum level, buffer slots are transferred to the inner locations gradually resulting in 

well-known bowl phenomenon. Also a heuristic algorithm was proposed to find the 

optimal buffer allocation (OBA), which reduces the search space by 50% compared to 

enumeration in this study. 

 Another study on the OBA in order to minimize WIP by Kim and Lee[20] 

proposed an efficient heuristic algorithm. This algorithm named MNS (Modified Non-

SEVA) is the modified version of the Non-SEVA algorithm (Non-Standard Exchange 

Vector Algorithm) which was originally proposed by Seong et al.[35] for the 

throughput maximization problem. However, since some useful structural properties 

such as monotonicity and concavity which hold for the throughput function and are the 

basic assumptions of the Non-SEVA algorithm, do not hold for the average WIP. 

Therefore, Kim and Lee used the results of Seong et al.[35] in order to obtain a initial 

solution which close to the global optimum. Kim and Lee worked on the unreliable 

production lines with up to ten machines. The failure rate, the repair rate and the 

production rate of each machine were obtained from the same uniform distributions. In 

order to compare the efficiency of MNS in the computational tests, also another 

heuristic, which was based on one buffer assignment at a time, was proposed called 

Simple Heuristic Algorithm (SHA) in this study. The two algorithms were compared 

with the solutions obtained by enumeration for short lines with up to 3 or 4 machines 

and compared against each other for longer lines with 8 and 10 machines where 

complete enumeration is inefficient. For all cases, MNS outperformed SHA in terms of 

average WIP levels with reasonable number of iterations. MNS also gave average WIP 

levels very close to the optimal solution achieved by enumeration for the cases where 

enumeration technique was used. 
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Papadopoulos and Vouros[29] presented a prototype model management system 

(MMS) for the design and operation of manufacturing systems. The model management 

system classifies different models according to the type of the manufacturing system to 

which they apply and according to the particular technique employed. The system 

comprises three different techniques, namely, analytical, simulation and artificial 

intelligence (AI) based techniques for production lines. The first two are evaluative 

methods, whereas the last one is a generative (optimization) method that solves the 

buffer allocation problem in a production line. Papadopoulos and Vouros studied on 

both balanced and unbalanced production lines with reliable stations having 

exponential operation times aiming to minimize average WIP by allocating fixed 

number of buffer capacity. First contribution of this work was that the development of a 

flexible MMS, which provides a simple and intelligible framework for classifying 

different, modeling techniques, enables the interaction among these models and does 

not restrict the developers to follow a particular model development task. Second one is 

the development of a knowledge based system, called Advisor System for Buffer 

Allocation (ASBA), which solves the buffer allocation problem in the production lines 

with very satisfactory results. 

Papadopoulos and Vouros[30] also introduced ASBA2, a knowledge based 

system that solves the buffer allocation problem in production lines as an extension of 

ASBA. ASBA allocates buffer space in reliable both balanced and unbalanced 

production lines, aiming at reducing average WIP subject to a given total buffer space 

and a required throughput. However, ASBA2 aims to extend the functionality of ASBA 

to unreliable, balanced and unbalanced production lines and allocates the fixed total 

buffer space in order to achieve the objective of maximizing throughput. The results 

showed that ASBA2 allocates the buffers very close to the optimal ones in a 

computationally efficient way by using specific types of knowledge. 

Hillier and So[15] also provided a study of the effect of machine breakdowns 

and inter-stage storage on the efficiency of production lines. Based on the results they 

obtained, Hillier and So developed a simple heuristic method to estimate the amount of 

storage space required to compensate for the decrease in throughput due to machine 

breakdowns. The study focused on four and five machine production lines with again 

operation times from two-stage Coxian distribution. Hillier and So used Coxian 

distribution for operation times due to useful interpretation of this distribution. Stage 1 
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can be interpreted as corresponding to the normal service for an item at a machine, 

whereas Stage 2 corresponds to downtime at the station for whatever reason (e.g. 

breakdown of the machine) that interrupts this service where the probability of having 

Stage 2 corresponds to the probability that the service is interrupted by down time. 

Therefore, their model can be used to study the effect of breakdowns on the allocation 

of storage space in a production line. First basic result of this study was that the 

throughput of the production line is inversely proportional to the coefficient of variation 

of the operation times meaning that increase in coefficient of variation will reduce the 

throughput of the line. Secondly, percentage increase in the throughput achieved by 

adding one extra unit of buffer space decreases as the buffer capacities increase. Lastly, 

while the throughput of a line depends heavily on the average amount of downtime 

during one service, the mean length of downtimes can affect the throughput 

significantly for fixed average amount of downtime during one service; smaller mean 

length of downtimes gives higher throughput than larger mean length of downtimes.  

Yamashita and Altiok[41] were concerned with finding the minimum total 

buffer number required and its allocation for a desired throughput in both balanced and 

unbalanced production lines with three and five stations having phase-type processing 

times. One significant difference of this study from others was that the capacity of each 

buffer was assumed to be bounded above by a constant value, say Ci. They have 

implemented a dynamic programming algorithm that uses a decomposition method to 

approximate the line throughput at every stage. 

Lutz et. al.[21] addressed the problem of buffer location and the storage size in 

a manufacturing lines. The question was what buffer sizes should be employed and 

where the buffers should be located. Hence, the objectives of Lutz et.al. were to 

determine the minimum number of storage spaces needed and the allocation of these 

storage spaces among the buffers, so as to maximize the overall throughput of the line. 

To achieve these objectives, simulation-search heuristic procedure based on tabu search 

was developed. Simulation was used to model the manufacturing process and the tabu 

search was used to guide the search to overcome the problem of being trapped at local 

optimal solutions. The procedure employs a Swap Search routine and a Global Search 

routine. With the Swap Search routine, the procedure identifies good performing buffer 

profiles and determines the maximum output level for any given storage level. With the 

Global Search routine, the procedure can locate promising neighborhood of buffer 
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profiles quickly. The procedure is capable of modeling a variety of manufacturing 

processes with a variety of scheduling policies and dispatching rules. 

Park[31] presented characteristics of the buffer design problem associated with 

the production lines and discussed some drawbacks related to the optimization methods 

thus far his study applied to the buffer allocation problem. An efficient two-phase 

heuristic method, using a dimension reduction strategy and a buffer utilization-based 

beam search method, was developed to minimize total buffer storage required while 

satisfying a desired throughput rate in unreliable balanced production lines with stations 

having deterministic processing times, and geometric failure and repair times. While 

Phase I attempts to accelerate the finding of an initial solution by reducing the 

combinatorial search dimension to one, Phase II reduces the total buffer storage 

required as much as possible while maintaining a desired throughput rate. 

Gershwin and Schor [9] described efficient algorithms for determining how 

buffer space should be allocated in a flow line. They considered unreliable lines with 

deterministic operation times. Two problems were analyzed: a primal and a dual 

problem. The goal of the primal problem is to minimize total buffer space required for 

the line to meet or exceed a given average production rate, and the goal of dual problem 

is to maximize the production rate achievable with a given total buffer space. The dual 

problem is solved by means of a gradient method, and the primal problem is solved 

using the dual solution. It was also showed how buffer allocation problems with profit 

maximization objective could be solved by using essentially the same algorithms.   

Sheskin[37] studied the allocation of buffer spaces in systems like Gershwin and 

Schor[9]: those with unreliable machines with equal deterministic processing times. In 

addition, he assumed time-dependent failures. A decomposition method was used to 

produce numerical results for small systems with small buffer capacities. These results 

led to some rules of thumb on the allocation of buffer spaces to maximize production 

rate. 

Soyster et.al.[39] used the same model with Sheskin[37] to study the 

maximization of production rate subject to general linear inequality constraints on 

buffer sizes. They approximated the production rate for small systems and used an 

integer programming package to find optimal allocation of buffer spaces.  
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El-Rayah[6] attempted to study the effect of unequal allocation of fixed number 

buffer storage and the imbalance in the operation time variabilities on the throughput 

and average WIP. He simulated balanced lines in terms of mean operation times where 

operation times were assumed to be normal. In the first section of the study, he only 

investigated the effect of unequal buffer allocation on the output rate and average WIP 

of the lines up to four machines which were also CV-balanced (where all machines 

have same coefficient of variation). On the basis of simulation results for this section, 

El-Rayah concluded that the output rate of a production line where the buffer capacity 

is allocated equally cannot be significantly improved by deliberately unbalancing buffer 

allocation. However, if imbalance is unavoidable, throughput is maximized by 

assigning larger buffer capacities to the middle buffer locations and smaller capacities 

to the end buffer locations on the line. He also observed from the results of the first 

section that increasing order of buffer capacities encourages the reduction of average 

WIP significantly while affecting the throughput in the decreasing direction so this 

knowledge should be taken into account while the objective is to minimize WIP. In the 

second section of his study, El-Rayah investigated the effect of imbalance of operation 

time variabilities on the output rate of the balanced production lines in terms of mean 

operation times with no storage buffers and he observed that bowl phenomenon holds 

meaning that assigning stations with more variable operation times to the ends of the 

line while assigning the ones with less variable operation times to the middle of the line 

in order to maximize output rate.       

Hillier and So[14] studied the effect of coefficient of variation of operation 

times on the optimal allocation of storage space in production lines. They worked on 

both µ-balanced and CV-balanced lines with operation times having two-stage Coxian 

type distributions and considered the throughput as the only performance measure. 

Their study showed that the optimal buffer allocation depends on the degree of 

variability in the operation times. Specifically, the results showed that the inverted bowl 

effect is more pronounced with higher variability in the operation times. Higher 

variability meaning increasing coefficient of variations generally increases the 

imbalance in the optimal allocation. 

  Powell[32] provided a detailed study of the unbalanced three-station serial lines 

with reliable stations having log-normal processing times with the objective of 

maximizing throughput. In this study, imbalances in both means and variances were 
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considered. The study established a rule, Alternation Rule, for buffer allocation in 

unbalanced lines. It was observed that the optimal sequential allocation of buffers to 

lines in which one station had a higher mean or variance was to place the first buffer 

next to the bottleneck, but then to place subsequent buffers alternately at the two 

available sites. In effect, this rule suggests that a balanced allocation is optimal unless 

the imbalance in processing times is extreme. Powell also observed that imbalances in 

means have stronger effect than imbalances in variances, so that when a line is 

unbalanced in both senses one can buffer the bottleneck with the high mean in 

preference to that with the high variance unless the imbalances are extreme.    

Chow[4] pursued a simple and practical solution for the optimal allocation of 

buffers with the objective of maximizing throughput. He adopted an approach similar to 

that used in Anderson and Moodie[2] except that the operation times were not 

necessarily identical and the number of stations in the line could be arbitrary. At the 

end, Chow constructed a dynamic programming procedure for buffer design for optimal 

throughput which generates results that consolidates the bowl-phenomenon. 

Yamashina and Okamura[42] dealt with the role of buffer stocks in multi-stage 

transfer lines by presenting computer simulation results. Lines with unreliable stations 

were investigated. Breakdown and repair times were assumed to have geometric 

distributions. It was also assumed that breakdown results in the destruction or damage 

of the production unit at the affected stage so that the production unit must be removed 

from the line as scrap. Yamashina and Okamura observed that bowl phenomenon, 

which was stated for balanced lines with reliable stations, also holds for the balanced 

lines with unreliable stations. They also obtained the result that uniform buffer storage 

capacity allocation does not guarantee the optimum allocation even for balanced 

identical lines, but this postulate may be accepted for balanced identical lines in the 

sense that the throughput for uniform capacity allocation does not differ very much 

from the throughput for optimum allocation. It was also shown that an N-stage line 

should be designed such that the lowest stage production rate occurs in the Nth stage, 

the second lowest in the first stage, the third lowest in the (N-1)th stage, the fourth 

lowest in the second stage and so on, to maximize the line throughput. This study also 

demonstrates that the total buffer capacity should be allocated such that the difference 

between the production rates of the stages on either side of a storage point is minimized 
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and the production rate of the stages before the storage point is slightly greater than that 

of the stages following the storage point.     

Papadopoulos and Spinellis[23] described a simulated annealing approach for 

solving the buffer allocation problem with the objective of maximizing throughput for 

fixed amount of buffer slots in reliable production lines with exponential operation 

times. Performance of the simulated annealing approach was evaluated by comparing 

the results of it with the results of complete enumeration whenever practical for short 

lines and the results of the reduced enumeration which is widely used in literature for 

the cases of longer lines. Obtained throughput rates by the simulated annealing 

approach were quite close to the solutions obtained by complete and reduced 

enumerations. However, evaluated configurations in simulated annealing approach 

nearly did not change while asymptotically increasing in complete enumeration and 

reduced enumeration with respect to the increase in the total buffer slots that will be 

allocated among the buffer locations. For this reason, simulated annealing approach is 

superior over both enumerative techniques for the lines with large total buffer slots.   

Papadopoulos and Spinellis[24] broaden their research[23] by also taking 

genetic algorithm into account near simulated annealing and obtained interesting 

results. Genetic algorithm showed similar properties to simulated annealing. However, 

it gave slightly worse throughput rates than simulated annealing approach with less 

evaluative configurations where the difference between the throughput rates decreased 

with the increasing total buffer capacity and line length. The most interesting result that 

makes genetic algorithm superior to simulated annealing was that the number of 

evaluative configurations for simulated annealing is increasing linearly but with 

significantly higher rate than the case of genetic algorithm with respect to the increase 

in the number of stations in the line. 

Hillier et.al.[16] investigated the problem of  the optimal allocation of fixed to 

total buffer capacity for maximizing the throughput of the whole line. They used 

enumeration on balanced lines with identical exponential service times. Their 

conclusion was that storage bowl phenomenon holds meaning that interior buffer 

locations are given preferential treatment (more buffer slots) over the end buffer 

locations. The other key conclusion of this study was the hypothesis that, when the total 

amount of storage space also is a decision variable, the overall optimal solution 



CHAPTER 3 : LITERATURE SURVEY 22 

 

commonly follows a storage bowl phenomenon whereby the allocation of buffer 

storage space fits an inverted buffer pattern meaning that optimal allocation would have 

one additional storage space at each of the internal buffer locations. 

Hillier[13] investigated the hypothesis in Hillier et al.[16] with a simple cost 

model including a linear revenue function and a linear cost per buffer space. The 

objective was to maximize profit with the total buffer space being decision variable in 

this study. Hillier worked with balanced and unbalanced four- and five-stations 

production lines with a single bottleneck in terms of mean processing times. 

Exponential, Erlang-2 and Erlang-4 processing times were used. Hillier observed that 

inverted bowl phenomenon was typically optimal for balanced lines but shape became 

more and more pronounced with larger numbers of buffer spaces. However, in 

unbalanced lines the buffer space pattern deviates from the bowl pattern by reducing 

the number of buffer spaces in buffer locations that are not adjacent to the bottleneck 

station. Also it was stated that the processing time variability measured by coefficient 

of variation was shown to have very little impact on the pattern of buffer space 

allocation while the total number of buffer spaces was significantly affected by (being 

roughly proportional) coefficient of variation of processing times.  

Ho et.al.[17] presented a design algorithm based on the gradient vector of the 

throughput with respect to the buffer sizes, and aiming to maximize throughput via 

allocation of fixed amount of buffer capacity in transfer lines. They studied the effect of 

allocating an additional buffer space at a certain location along the line and predicted 

the improvement in the production rate. Proceedingly, they introduced simulation-based 

gradient algorithm which solves the buffer allocation problem for unreliable lines 

having Markovian property effectively. 

Gurkan[11] used simulation-based optimization, sample path optimization, to 

find the optimal buffer allocation in serial production lines where machines were 

subject to random breakdowns and repairs in contrast to deterministic operation times. 

Gurkan�s objective was to maximize throughput with given total buffer capacity but she 

used fluid-type single product instead of discrete-type. Gurkan decided to work with 

continuous type production line instead of discrete-type since continuous type line 

simulation are substantially faster than discrete type line simulations meaning 

considerable increase in computational efficiency, the approximations of discrete 
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product transfer lines via continuous product transfer lines are quite accurate and she 

interested in optimizing systems of large size. Obtained results showed that her method 

performed quite well even for very long lines.   

 Papadopoulos and Vidalis[26] dealt with the optimal fixed amount of buffer 

allocation problem with the objective of maximizing throughput in balanced production 

lines with reliable workstations having exponential or Erlang-k ( k = 2,3,4 ) processing 

times. They presented two basic design rules that were extracted for the optimal buffer 

allocation in these types of lines using enumeration and developed a search technique 

that gives the optimal buffer allocation very fast. 

Papadopoulos and Vidalis[27] also investigated the optimal buffer allocation 

giving the maximum throughput in short (with 3,4,5,6 and 7 stations) production lines 

with unreliable stations balanced in mean processing times. Repair and failure times 

were assumed to be exponential whereas operation times were assumed to have Erlang-

k ( k = 1,2,4 and 8 ) distribution. They answered the critical questions such as the effect 

of the distribution of the service and repair times, the availability of the stations and the 

repair rates on the optimal buffer allocation and the throughput of these types of lines. 

Papadopoulos and Vidalis also confirmed the validity of reversibility property for 

unreliable lines in this work.    

Powell and Pyke [34] studied the problem of buffering reliable serial lines with 

moderate variability and a single bottleneck in terms of processing time for the 

maximization of throughput. Processing times were assumed to have log-normal 

distribution. Their analysis showed that bottleneck station drew buffers toward itself, 

but the optimal allocation was dependent on the location and the severity of the 

bottleneck, as well as the number of buffers available. It was also observed that 

relatively large imbalances in mean processing times are required to shift the optimal 

buffer allocation away from an equal allocation and line length appeared to have a 

relatively small effect on the optimal allocation with a given bottleneck. Furthermore, 

in severely unbalanced lines, throughput appeared to be insensitive to the allocation of 

buffers. Based on these results, Powell and Pyke suggested that equal buffer allocations 

might be optimal except in severely unbalanced lines. 
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Jafari and Shanthikumar[19] also aimed to solve the problem of allocation of 

given total buffer storage with the objective of maximizing throughput subject to local 

buffer storage constraints (i.e. buffer slots no more than Ci  could be assigned to the 

buffer location Bi) in transfer lines. They worked on the synchronized transfer lines 

with unreliable stations having geometric up- and down-times. It was also assumed that 

when station i breaks down, the part being processed by it is either scrapped with 

probability βi or it will be completed with probability 1- βi , at the end of the cycle 

where the station is repaired. Jafari and Shanthikumar presented a heuristic solution 

which was based on dynamic programming and an approximate procedure to compute 

the production rate of the transfer line and which was producing quite reasonable 

results. 

It is worth to conclude this chapter with summary of researches on the optimal 

buffer allocation in the literature. Below table named Table 3.1 gives the related 

researches with their objectives and types of lines on which they focus on briefly. 
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AUTHOR TYPES OF LINES OBJECTIVE 
THROUGHPUT 
ESTIMATION 

METHOD 

Conway et al.[5] Balanced, Unbalanced Analyzing the effect of buffers on 
serial lines Simulation 

Anderson and Moodie[2] Balanced Analyzing the optimal production cost 
modeled Simulation 

Helber[12] Several examples of flow 
lines 

Maximizing net present value of the 
investment Simulation 

Altiok and Stidham[1]. Unreliable Maximizing the total profit Analytical 
approximation 

Seong et al.[36] Unreliable Maximizing the total profit  

Andijani and Anwarul[3] Balanced  Reliable Maximizing throughput, minimizing 
WIP and minimizing time in system Simulation 

So[38] Balanced and Unbalanced 
Reliable Minimizing WIP Exact analytical 

solutions(Markovian ) 
Papadopoulos and 
Vidalis[28] Balanced Reliable Minimizing WIP Exact analytical 

solutions(Markovian) 

Kim and Lee[20] Unreliable Minimizing WIP Analytical 
approximation 

Papadopoulos and 
Vouros[29] Balanced, Unbalanced Minimizing WIP 

Exact analytical 
solutions(Markovian), 

Simulation 

Papadopoulos and 
Vouros[30] 

Balanced and Unbalanced 
Unreliable Maximizing throughput 

Exact analytical 
solutions(Markovian), 

Simulation 

Hillier and So[15] Unreliable Analyzing the effect of breakdowns 
and buffers on the efficiency of line 

Exact analytical 
solutions(Markovian) 

Yamashita and 
Altiok[41] Balanced, Unbalanced Minimizing total buffer slots for 

desired throughput 
Dynamic programming 

algorithm 

Lutz et. al.[21] Several examples of flow 
lines 

Minimizing total buffer slots for 
desired throughput Simulation 

Park[31] Balanced Unreliable Minimizing total buffer slots for 
desired throughput 

Analytical 
approximation 

Gershwin and Schor [9] Unreliable Minimizing total buffer slots for 
desired throughput 

Analytical 
approximation 

Sheskin[37] Unreliable Maximizing throughput Analytical 
approximation 

El-Rayah[6] Balanced 
Analyzing the effect of unequal 

allocation of buffers on throughput 
and WIP 

Simulation 

Hillier and So[14] Balanced Analyzing the effect of CV of 
operation times on OBA of buffer  

Exact analytical 
solutions(Markovian ) 

Powell[32] Unbalanced Reliable Maximizing throughput Simulation 

Chow[4] Balanced, Unbalanced Maximizing throughput 
Analytical 

approximation, 
Simulation 

Yamashina and 
Okamura[42] Unreliable Maximizing throughput Simulation 

Papadopoulos and 
Spinellis[23],[24] Reliable Maximizing throughput Analytical 

approximation 

Hillier et.al.[16] Balanced Maximizing throughput Exact analytical 
solutions(Markovian) 

Hillier[13] Balanced, Unbalanced Maximizing profit Exact analytical 
solutions(Markovian) 

Ho et.al.[17] Unreliable Maximizing throughput Simulation 
Gurkan[11] Unreliable Maximizing throughput Simulation 
Papadopoulos and 
Vidalis[26] Balanced  Reliable Maximizing throughput Exact analytical 

solutions(Markovian) 
Papadopoulos and 
Vidalis[27] Balanced  Unreliable Maximizing throughput Exact analytical 

solutions(Markovian) 
Powell and Pyke [34] Reliable Maximizing throughput Simulation 
Jafari and 
Shanthikumar[19] Unreliable Maximizing throughput Analytical 

approximation 
Table 3. 1. Summary of Literature Survey 
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Chapter 4 

 

TWO RELATED ALGORITHMS 
 
Most of the studies, reviewed in the previous chapter, about the optimal buffer 

allocation in production lines with the objective of maximizing throughput do not solve 

the problem directly. Instead, some generalizations and intuitive ideas about the 

characteristic of the optimal buffer allocation or the effects of some parameters (i.e. 

repair rate, failure rate etc.) on it are introduced. On the other hand, the ones that solve 

the optimal buffer allocation problem are not applicable to all types of production lines. 

These types of studies focus on the specific production lines (i.e. balanced lines) or 

production lines with special features such as reliable machines etc. However, on the 

contrary to these studies, Seong et.al.[35] and Powell and Harris [33] introduced new 

heuristic algorithms applicable to all types of production lines.   

4. 1. Standard and Non-Standard Exchange Vector 

Algorithms (SEVA and Non-SEVA)  

Seong et al.[35] worked on unbalanced lines with unreliable machines having 

exponential failure and repair times whereas operation times are deterministic or 

exponential with different rates. They focused on the optimal buffer allocation problem 

(OBAP) with the objective of maximizing throughput with the concavity assumption of
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objective function. In their study, OBAP, a non-linear integer-programming problem, is 

presented as below mathematical structure; 

OBAP:     max E(K) 
                   K 

                  s.t.    eTK = C 

                          Kj is a non-negative integer 

where     E(K) is the throughput with K, 

      e is a unit column vector, 

     K is a buffer allocation ( = ( K1 , ��.. , K(N-1) )T ), and 

     C is the fixed total buffer capacity available. 

Two different versions of the heuristic algorithm for solving OBAP based on 

the idea of the local search are presented in this study. Namely, first of all, it is needed 

to define a specific neighborhood with respect to a given solution. The best solution in 

this defined neighborhood is determined and becomes the next solution. This process is 

repeated until no better solution is found. The process of defining the specific 

neighborhood is called the line segment selection and the process of finding and 

moving to the best solution in the neighborhood is called the point search.   

The line segment selection yields a line segment L which is specified by two 

integer vectors L1, L2 and two integer parameters θ1 and θ2 ( θ1 < θ2 ) as below: 

L ( L1, L2 , θ1 , θ2 ) = { L | L = L1+ θL2 , θ = θ1 , θ1 + 1, � , θ2 } 

where L1, L2 , θ1 and θ2 are selected in such a way that all points in the set L ( 

L1, L2 , θ1 , θ2 ) are within the feasible region. 

In the point search, an optimization problem given below is solved: 

             max E(L) 

                s.t.  L in L ( L1, L2 , θ1 , θ2 )  

 which is denoted by  PS( E: L1, L2 , θ1 , θ2 ).  

 At this point, it is worthwhile to explain the point search and the line segment 

selection in more detail: 
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 The point search is a process of finding the best integer solution among a set of 

integer solutions defined on a straight line. In PS( E: L1, L2 , θ1 , θ2 ), there are (θ2 - θ1 + 

1) integer vector points in L. If (θ2 - θ1 + 1) is less than or equal to 4, objective function 

is evaluated at each point and the optimum solution can be obtained. However, if (θ2 - 

θ1 + 1) is greater than 4, solving this problem becomes equivalent to finding an interval 

containing 4 consecutive integer vector points defined by an integer value θ* satisfying 

the following conditions:  

                                     E ( L1 + θ*L2 )  ≤  E ( L1 + (θ* + 1)L2 )   

                                  E ( L1 + (θ* + 2)L2 )  ≥  E ( L1 + (θ* + 3)L2 )   

Such an interval can be found in O(log M) time where M ( = θ2 - θ1 + 1 ) is the 

number of integer vector points on the line segment L by using modified bisecting 

method. Optimum solution is among the one ( L1 + (θ* + 1)L2  ) , ( L1 + (θ* + 2)L2 ) with 

higher objective value of E(L). 

 Throughout the algorithm, since the sum of the components of each solution is 

equal due to the fixed amount of total given buffer slots, moving from one solution to 

the other can be considered as the movement along an integer directional vector h 

whose entries sum up to zero meaning that eTh = 0. Such vector is defined as �exchange 

vector�. If a certain exchange vector yields the better production rate, it is called 

�improving exchange vector�. Hence, the line segment selection can be thought of as a 

process of choosing a line segment along an improving exchange vector.  

Two propositions are presented below that are necessary to develop heuristic 

algorithms, which differ only in the line segment selection procedure and that are based 

on the interesting properties of the feasible region K which is given as 

K = {K | eTK = C,  K ≥ 0 , K Є R(N-1), Kj integer for all j = 1, � , (N-1)}. 

Proposition I: For an arbitrary pair of points K1 and K2 in the set K, K2 � K1 

can be represented as a unique integer linear combination of vectors {X 1 , � ,  X (N-2)} 

defined as 
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                     1          if  j = i 

            i
jX  =           -1          if  j = i + 1                 for all i = 1, � , (N-2). 

                                 0          otherwise                                     

Proposition II: The vector Z satisfies eTZ = 0, if and only if Z is a linear 

combination of vectors {X 1 , � ,  X (N-2) }. 

X i is called �standard exchange vector� since it represents an exchange between 

two adjacent buffers, i.e. ith and (i+1)th  buffers.  

 4. 1. 1. Standard Exchange Vector Algorithm (SEVA) 

 Proposition I gives the basis for setting up a line segment selection procedure 

used for developing the first algorithm, Standard Exchange Vector Algorithm (SEVA). 

The basic derivation from Proposition I is the simple fact that all possible exchanges 

among the buffers can be represented as a unique linear combination of standard 

exchange vectors. In other words, any exchange among buffer allocations can be 

achieved by a set of exchanges between adjacent pairs of buffers. This idea is used for 

developing SEVA. 

 In the Figure 4.1, it can be seen how SEVA proceeds for 4-machine production 

line with three buffer locations where totally seven buffer slots will be allocated. The 

initial solution is K 0,0 (= K 0). At this point, two point search procedures are performed, 

generating K 0,1 and K 0,2. Then K 0,2 is assigned to K 1(= K 1,0) and again two more 

point search procedure is applied, yielding K 1,1 and K 1,2 where K 1,2 is set to the third 

point  K 2 (= K 2,0) and the algorithm proceeds.   
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Figure 4. 1. The illustration of SEVA 

 

SEVA can be summarized as follows; 

Step 0:  (Initialization) Set m = 0.  

 Choose an initial feasible allocation K 0, which is in the feasible region K.  

Step 1: Set K m,0 = K m . 

Step 2: For i = 1, � , (N-2) , set  K m,i to be an optimal solution to  

 PS( E: K m,(i-1), X i , θi
1 , θi

2 )  

 where   θ i
1 = 1)(im, −− iK  and     θi

2 = 1)(im,
)1(
−

+iK .  

Step 3: Set K(m+1) =Km,(N-2)  . 

Step 4: (Termination)   

 If | E ( K(m+1) ) - E ( Km ) | < ε (ε is set to 10-6 in the applications ), then STOP.                          

           Otherwise set m = m + 1 and go to Step 1. 

K0,0

K0,1

K1,1

K1,0 = K0,2

K2,0 = K1,2

(0,0,7)

V2

V3

V1 

(0,7,0) (7,0,0) 
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4. 1. 2. Non-Standard Exchange Vector Algorithm (Non- SEVA) 

The number of elements of the feasible region K becomes huge with the 

dramatic increase in the total fixed amount of buffer slots C and the number of 

machines N. In such cases, SEVA might have to go through too many point search 

procedures and each point search procedure can be slowed down significantly due to 

the large number of integer vector points on each selected line segment. Based on the 

observation that the selection of a non-standard exchange vector pointing toward the 

region with better solutions can improve the efficiency of the algorithm, second 

algorithm called Non-Standard Exchange Vector Algorithm (Non-SEVA) is developed.  

 
 

Figure 4. 2. The procedure how to obtain non-standard integer exchange vector 

approximating the gradient vector in Non-SEVA 

Proposition II, which is the consequence of Proposition I, is the basis for Non-

SEVA. Proposition II implies a simple fact, that an arbitrary exchange vector can be 

represented as a linear combination of the standard exchange vectors, which is used to 

develop heuristic procedure for finding a good non-standard integer exchange vector 

approximating the gradient of the throughput function. 

g 

d

p

V1 V2

V3

(7,0,0)

(0,7,0) 

(0,0,7)
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Non- SEVA starts with a point in the feasible region K as SEVA does and 

improving non-standard exchange vector is obtained which is the approximation of the 

gradient of the throughput. However, since the objective function is not differentiable, 

pseudo-gradient g is obtained which is the approximation of the gradient of the 

throughput function first by finite differencing: 

g( mK ) =  T
)2( ))(),....,(( m

N
m
1 KgKg −  

                                 E( � , m
jK )1( −

 , m
jK  + 1 , m

jK )1( + , � ) - E(� , m
jK )1( −

 , m
jK  - 1 , m

jK )1( + , � ) 

            g ( m
jK  ) =  

                                                           ( m
jK  + 1 ) � ( m

jK  - 1 ) 

                      E( � , m
jK )1( −

 , m
jK  + 1 , m

jK )1( + , � ) - E(� , m
jK )1( −

 , m
jK  - 1 , m

jK )1( + , � ) 
             = 
                                                                            

               2 

The projection of pseudo-gradient g on the hyper plane eTZ = 0 is a non-

standard exchange vector (not necessarily an integer vector) satisfying eTd = 0 and it is 

given as 

d = ( I � e(eTe)-1 eT ) g .            (*) 

Due to Proposition II, d can be represented as a linear combination of the 

standard exchange vectors satisfying 

d
~ = S * d = α1 X 1 + α2 X 2 + � + α(N-2) X (N-2) , where S is the scale factor. 

By rounding off αi�s to get γi�s, we get an integer vector p approximating the 

pseudo-gradient vector g: 

p = γ1 X 1 + γ2 X 2 + � + γ(N-2) X (N-2)  

The illustration of how Non-SEVA obtains a non-standard integer exchange 

vector can be seen in Figure 4.2. 

Two different procedures for the round-off are developed. One is for making 

�big� steps and the other is for making �small� steps. 
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In the big step round-off procedure, γi�s are defined to be as the following: 

 For a given allocation K, calculate d using the equation (*).  

Let dj  be the jth entry of d: 

)1(,...,1,0
min }min{

−=≠

=
Njd
j

j

dd  

 

d
d

d
min

1~ =  

 

∑
=

=
j

k
kj d

1

~α  for all j = 1, � ,(N-2) 

 Finally, γi�s are determined by rounding off αi�s. 

 

In the small step round-off procedure, γi�s are defined to be as the following: 

 

 For a given allocation K, calculate d using the equation (*).  

Let dj be the jth entry of d: 

)1(,...,1
max }max{

−=

=
Nj

jdd  

 

 d
d

d
max

1~ =  

 

∑
=

=
j

k
kj d

1

~α  for all j = 1, � ,(N-2) 

 Finally, γi�s are determined by rounding off αi�s. 

 

While Non-SEVA yields a significant improvement, the point search procedure 

along the non-standard exchange vectors are performed making �big� steps. However, 

if the reverse is the case meaning that Non-SEVA does not yield a significant 

improvement, making �small� steps is invoked during the point search along the non-

standard exchange vectors. 

(**)
 

(***) 
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The systematic representation of Non-SEVA is as follows:  

Step 0: (Initialization)  

 Set m=0. Choose an initial feasible allocation Km, which is in feasible region K.  

Step 1: (Big Step) 

 Obtain a non-standard exchange vector p from Km by using equation (**). 

    If p = 0 then go to Step 3. 

 Otherwise, let Km+1 be the optimal solution to PS( E: Km, p, θ , θ2 ) 

                        where 

θ2 =
)1(,...,1

}�min{
−= Nj
jp  

             and 

                                                           
j

m
j

p

KC −
         if    pj  > 0 

 

         =jp�         
j

m
j

p

K
−1            if    pj  < 0 

 

 

                                                              ∞                if    pj  = 0. 

 

Step 2: If | E (K(m+1)) - E (Km) | < δ (δ is set to 10-4 in the applications) then go to Step 3. 

 Otherwise, set m = m + 1 and go to Step 1. 

Step 3: (Small Step) 

 Obtain a non-standard exchange vector p from Km by using equation (***). 

 If p = 0 then stop here. Km is optimal solution. 

 Otherwise, let Km+1 be the optimal solution to PS( E: Km, p, 0 , θ2 ) where θ2 

     is defined as in Step 1. 
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Step 4: (Termination) 

 If | E ( K(m+1) ) - E ( Km ) | < ε (ε is set to 10-6 in the applications ) then there 

exists no improvement and Km is optimal solution. Stop here.                               

            Otherwise set m = m + 1 and go to Step 1. 

Same balanced initial allocation procedure which is proposed by Hillier and 

So[14] is used for both SEVA and Non-SEVA in the study of Seong et.al[35]. 

According to this procedure, the initial allocation, K0, is set as follows: 









−

=
)2(

0

N

C
K j    for   j = 1, � , (N-2) 

∑
−

=
− −=

2

1

00
)1(

N

j
jN KCK      where  x is the largest integer that does not exceed x. 

4. 2. Simple Search Algorithm (SSA) 

Powell and Harris [33] developed an efficient simple search algorithm for 

determining the optimal allocation of a fixed amount of buffer capacity giving the 

maximum throughput in both balanced and unbalanced serial production lines with 

reliable stations having log-normal processing times. Simulation was used to obtain the 

throughput for every allocation considered in the algorithm. Simple Search Algorithm 

is based on two important observations grasped in the execution of Non-SEVA. First 

observation is that information on the throughput gradient at any point in the feasible 

region is tedious to determine since the central difference approximation to the gradient 

requires two simulations for each of the (N-1) buffer locations. Second one is that the 

estimated gradient may not suggest a useful search direction either because it leads out 

of the feasible region or because its projection onto the feasible region is not itself an 

integer vector, so information is lost in approximating the projected gradient with an 

integer vector.  For these reasons, a simple search procedure that maintains, at each 

stage, a collection of feasible buffer allocations that are sorted in order of throughput 

values is introduced. The search direction is determined by moving from the point with 

the lowest throughput in the current candidates to the one with the highest throughput. 
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The Simple Search Algorithm (SSA) has its origins in the sequential search 

procedures given by Spendley and Hext [40] and Nelder and Mead [22]. The Spendley-

Hext algorithm starts with a set of candidate solutions that form a regular simplex. 

Then, this algorithm identifies a search direction by moving from the centre of the 

simplex out through the face opposite the worst candidate solution. A new candidate 

called reflection is identified in this search direction while the old worst solution is 

discarded and the procedure starts again.  The shape of the simplex does not change 

from stage to stage, so it may move slowly even when the gradient is steep. In the 

Nelder-Mead algorithm, the centroid of all solutions in the simplex except the worst is 

determined and the search direction is the one from the worst solution through the 

centroid and out beyond the simplex. However, in contrast to Spendley-Hext algorithm, 

the algorithm introduced by Nelder and Mead accelerates when the gradient is steep 

and decelerates when it flattens out. While adapting these algorithms to the Simple 

Search Algorithm, two problems are faced: to ensure that the search can move quickly 

when the current candidate allocations are far from the optimal and to ensure that the 

new candidate allocation that is determined from the search direction is feasible 

meaning that it is an integer vector with entries sum up to total fixed number of buffer 

slots.  

Firstly, an initial candidate allocation K = (K1 , K2 , � , K(N-1) ) is selected. This 

selection is done based on the studies of Powell[32] and Powell and Pyke[34]. This 

initial allocation will be balanced or as close to balanced as possible since these two 

studies show that balanced allocations tend to be optimal except for highly unbalanced 

lines. Then, (N-2) additional allocations from the closest neighbours to K1 are generated 

by transferring one unit of buffer slot from the buffer location with the largest capacity 

to the each of other buffer locations successively to form the initial simplex. These 

candidates are sorted from the best to the worst according to their throughput values 

estimated via simulation. In order to find the search direction, the Spendley-Hext 

reflection procedure is adapted and, after some experimentation, a reflection procedure 

that computes the difference between the double of the buffer allocation vector with the 

best throughput and the buffer allocation vector with the worst throughput is 

introduced. By this way the second one of the pre-stated problems faced during the 

adaptation is overcome. The resulting allocation is always an integer vector with entries 

sum up to the total fixed number of buffer slots and can be expected to lie in the 
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direction of improving throughput. To make these more understandable, let the vector 

(0,0,0,0,5) be the initial buffer allocation for six station production line with the 5 

buffer slots. Then the generated neighbours that form the initial simplex with the initial 

buffer vector (0,0,0,0,5) become (1,0,0,0,4), (0,1,0,0,4), (0,0,1,0,4), (0,0,0,1,4). Say that 

the best allocation is (0,1,0,0,4) and the worst is (0,0,0,0,5). By using these, new 

allocation, the reflection point, is obtained as follows: 

2*(0,1,0,0,4) � (0,0,0,0,5) = (0,2,0,0,3) 

 If the estimated throughput of the new allocation is better than the current 

worst, it is replaced with the worst allocation and the search procedure begins again on 

the new simplex. If the other is the case meaning that the estimated throughput of the 

new allocation is worse than the current worst allocation, the search is restarted by 

generating an initial simplex via the same method (transferring one buffer slot from the 

buffer location with highest capacity to each of the other buffer locations successively) 

around the best of the current allocations.  

The simplex usually grows as it proceeds, in the sense that new allocations are 

farther and farther away from the existing allocations. This feature of the simplex 

solves the first pre-stated problem during the adaptation procedure since it allows the 

algorithm to accelerate when a good direction is identified.  

The reflection may be infeasible. In other words, the reflection may have 

negative entries. This is undesirable situation since any buffer location cannot have 

negative capacity. If this is the case, reflection is produced from the second worst 

allocation in the current candidates. If again an infeasible reflection is obtained by the 

second worst, the third worst allocation is used in the reflection procedure and this goes 

on until a feasible reflection is achieved. If no feasible reflection is achieved by all 

candidates, restarting option is employed which is operated in the case of reflection 

with less throughput than the current worst allocation in the simplex.  

An important feature of this algorithm is that the simulation run length was 

adjusted during the implementation of the algorithm to save simulation run time when 

high precision in throughput estimates was not needed, and to ensure the adequate 

precision when it was needed. In the first step, based on some judgment and experience, 

a minimum (also initial) run length Rmin is determined in a way that the search never 
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uses inappropriately short runs and a maximum run length Rmax is determined in a way 

that the search will not continue long after an optimal or near optimal allocation is 

found. In other words, Rmax is chosen to balance the trade-off between accuracy level 

and the desire for short runs.  

Secondly, in adjusting the simulation run lengths, the height, H, of the simplex 

is computed in order to estimate how close the simplex to the optimal solution at each 

step of the algorithm by 

H = (Pbest � Pworst ) / Pbest . 

In the above equation, Pbest and Pworst are the estimated throughput values of the 

best and the worst of the current candidates respectively. 

In the next step, a run length constant k is chosen (empirically a value of 100-

200 for k performs well) and run length R is set to 

R = k / H2 . 

The closer the simplex is to the optimum, the smaller the height of the simplex 

H is expected to be and as a consequence of this the larger the run length R is. 

However, this calculated R value is not directly used in the next step. Since large errors 

in throughput estimates may make H either increase or decrease substantially, and thus 

lead to inappropriately large changes in R, a weighted average of the previous run 

length and the current value of R is taken at each stage of the algorithm and the larger 

of this weighted sum and current value R is selected as the current run length. By this 

way, failing to decline or incline in run length in need of less or more precision 

respectively is prevented.  

  Two conditions must hold simultaneously in order to stop the Simple Search 

Algorithm. These conditions are 

1. The current reflection must have a lower throughput value than the worst 

allocation. 

2. Te best allocation must be the initial point in the simplex from which (N-2) 

neighbours are generated. 
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Since it is probable for the algorithm to stop at inappropriately short run length, 

an additional condition of doubling the run length at each iteration until Rmax is reached 

is integrated as the third stopping condition.  

 The Simple Search Algorithm can be summarized as below: 

Step 0: Choose an initial candidate. (Balanced or as close to balanced as is practical) 

Step 1: Generate (N-2) adjacent candidate solutions from the current best candidate to 

form a   new simplex. (Initial simplex is formed from the initial candidate) 

Step 2: Simulate all candidate solutions. (Simulation run length is Rmin for initial 

simplex) 

Step 3: Sort candidate solutions by their estimated throughput values. 

Step 4: Determine the feasible reflection. (Reflection procedure was given before) 

 If no feasible reflection is found  

  Go to the Step 1. 

 Else 

  Simulate reflection point. 

  If the throughput of reflection is better than the worst�s 

   Replace the worst candidate with the reflection. 

              Calculate the run length. (Technique was stated before) 

  Go to Step 2. 

            Else  

  If the best candidate is same as the initial candidate 

    If the run length is less than Rmax . 

     Double run length. 

     Go to the Step 2. 

    Else 

     Stop.  

     Initial vertex in the final simplex is the optimum. 

Else  

    Go to Step 1. 
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Chapter 5 

 

LINE BALANCING ALGORITHM (LIBA) 
 

5. 1. Introduction 

Before introducing our algorithm for solving OBAP, it is worthwhile to state 

some important observations related to production lines. Let L be the N-machine 

production line with (N-1) buffers as depicted in Figure 5.1 that we are trying to 

allocate the total fixed number of buffer slots among the buffer locations with the 

objective of maximizing throughput. 

 
                                                          �..            
 
          M1           B1            M2           B2                                    B(N-2)     M(N-1)     B(N-1)     MN 

 
Figure 5. 1. The N-machine production line L 

 

Now, let L1, L2 be two independently operating sub-lines obtained by dividing 

the line L into two from the buffer location Bi. Then L1 and L2 are given as below: 

 
                                  �                                            � 

 
 M1            B1           M2             B2                             Mi             Bi            M(i+1)                        B(N-2)     M(N-1)     B(N-1)     MN 

 
 
               Sub-line L1                                                                                      Sub-line L2 
 

Figure 5. 2. Two sub-lines L1  , L2   obtained by decoupling L from the buffer i
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The output of L1 is the input of L2 , so if the throughput of L1 is less than the 

throughput of L2 , L2 will starve and if the opposite is the case meaning that the 

throughput of L1 is more than the throughput of L2 , L1 will be blocked where both 

situations are undesirable. To be able to cope with this unbalance problem between two 

sides of buffer Bi of the whole line L, we should increase the throughput of the slower 

sub-line while not decreasing the throughput of the faster sub-line under the value of 

the throughput of the slower one, since we know in advance that the throughput P of the 

whole line L is bounded by the minimum of the throughput of these two sub-lines and 

given as 

P ≤ min(P1 , P2)    where P1 and P2 are the production rates of L1 and L2   

respectively. 

The way of achieving this goal is to transfer buffer slots from the buffer 

locations belonging to faster sub-line to the buffer locations belonging to slower sub-

line. Applying this procedure, we may increase the production rate of the slower sub-

line with the possibility of decreasing the production rate of the faster one. Hence, we 

decrease the difference between the production rates of the two sub-lines, which results 

in obtaining more balanced line around the buffer where two sub-lines are separated. In 

addition to this, upper limit for the throughput of the whole line is raised to higher 

value, since the minimum of P1 and P2 increases. The idea of separating the whole line 

from a buffer location and obtaining more balanced line around it by the buffer slot 

transfer from the faster sub-line to the slower one is defined as �Buffer Centric Line 

Balance�. 

By implementing the Buffer Centric Line Balance concept to each buffer 

location consecutively, we expect to obtain a more balanced line with increasing 

production rate at each step. However, it may not be possible to obtain a production line 

with exact balance around each buffer location simultaneously, which is an interesting 

property of production lines. There may most probably be imbalance around any other 

buffer location even though we achieve an exact balance around any specific one. To 

make this property more apparent, think of the below line:   
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                      M1               B1           M2               B2            M3               B3            M4 

 

 

                                  sub-line L12      ( P12 = P34 )      sub-line L34   

 
                 sub-line L11       ( P11 ≥ P24 )         sub-line L24  
  
 
                                                sub-line L13     ( P13 ≤ P44 )      sub-line L44   

      Figure 5. 3. Illustration of the property of imbalance around any other buffer 

locations even though the exact balance around any specific one in production lines 

In the above line, although we have an exact balance around the buffer location 

B2  (P12 = P34 ), we may not reach an exact balance around the other buffer locations B1 

(P11 ≥ P24) and B3 (P13 ≤ P44) due to the fact that the expectation of decrease in the 

production rate of the line when adding a new machine to it. Based on this fact, the 

production rate of the sub-line L11 is expected to be greater than the production rate of 

the sub-line L12(P11 ≥ P12) while the production rate of the sub-line L24 is expected to be 

less than the production rate of the sub-line L34(P24 ≤ P34). Consequently, the production 

rate of the sub-line L11 is expected to be greater than the production rate of the sub-line 

L24 due to the exact balance around buffer location B2 (P11 ≥ P12 = P34 ≥ P24). Therefore, 

exact balance around the buffer location B2 may most probably produce an imbalance 

around the buffer location B1 as well as B3, which can be shown by the same logic.  

Based on this property and the observations introduced, we develop a new 

algorithm called �Line Balancing Algorithm (LIBA)�. The logic behind this algorithm is 

the minimization of the sum of the production rate differences between two sub-lines 

obtained by dividing the whole line around each buffer location. Thereby, we aim to 

increase the throughput of the whole line. The correctness of this logic is supported by 

the Table A.4 given in the Appendix A.4. In Table A.4, total imbalance and throughput 

value for each feasible allocation for 3-station production line with total fixed number 

of buffer slots equal to 15 which is studied in Seong et.al.[35]. The way of decreasing 

the total imbalance is to break the initial line into two sub-lines and to apply the buffer 
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slot transfer from faster side to slower side that will improve the throughput of the line 

we focus on. It should be kept in mind that transfer of the buffer slots from the faster 

side to slower side of the line does not always improve the efficiency. The reason is that 

to make the whole line more balanced around any arbitrary buffer, will usually increase 

the imbalance around some other buffers, which may also result in increase in the sum 

of imbalance in the whole line. Hence, we continue to find the improving transfers 

during the execution of the algorithm until no more improving transfer condition is 

reached. 

5. 2. The Algorithm 

First of all, throughput of the whole line is obtained. Then the line is divided 

into two sub-lines from the buffer location in the centre of the line. However, if the 

number of the machines is odd, there will be two central buffer locations since there is 

even number of buffer locations in the whole line. In this case, the one towards the end 

of the line, in other words the right one, is selected. This buffer location is called the 

main division buffer. In the second step, production rates of the two sub-lines are 

evaluated and the one with higher production rate is determined as the potential buffer 

slot giver, while the slower one is determined as the potential buffer slot receiver. After 

determining the potential giver and potential receiver sides of the line, determination of 

the buffer locations that are receiver and the giver is the order that we follow. While 

determining these locations, bisection technique is used. This bisection can be 

visualized as below figure: 

 
     ..                                  ..                                  ..                                  .. 
 

 M1       B1                  Mi/2     Bi/2      M(i/2)+1           Mi        Bi        M(i+1)           M(3i/2) B(3i/2)M(3i/2)+1       B(N-1)  MN  
 
 

             Sub-line L1   (P1)              (P1 > P2)                    Sub-line L2 (P2)                                          
 
 

   Sub-line L11  (P11)   (P11 > P12)   Sub-line L12 ( P12)          Sub-line L21(P21)   (P21 < P22)   Sub-line L22 (P22)     
        

  Sub-line L111  (P111)                                                                                                                Sub-line L212(P212)    

 

Figure 5. 4. Bisection procedure for determination of potential giver and receiver 
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For determining the potential giver buffer location, the initial sub-line with 

higher throughput will again be divided into two independently working sub-lines from 

the central buffer location of the initial sub-line. Among the sub-lines of the initial sub-

line, the one with higher rate is again decoupled from its centre and this procedure will 

go until we obtain two sub-lines with at most one buffer location. Among these final 

sub-lines, the one with higher rate is potential giver. If this line has two machines, the 

buffer location between these two machines is the one we are looking for. However, if 

this line has only one machine, the potential giver buffer location is the final division 

buffer location, which is just in front of this machine.       

Same procedure used while determining the potential giver buffer location is 

applied to determine the potential receiver buffer location. Decoupling from the center 

of obtained sub-lines with lower rates continues until reaching the final sub-lines that 

have at most one buffer location and potential receiver is assigned to the buffer location 

between the machines if the lower rate final sub-lie has two machines or to the final 

division buffer location which is just in front of the machine if the lower rate final sub-

lie has only one machine.  

Buffer slot transfer between these two determined buffer locations has the 

highest likelihood to improve the efficiency of the whole line since decoupling 

sequence is based on the observation that we mentioned as the basis of our algorithm. 

This basis is to decrease the unbalance between two sub-lines obtained. This procedure 

supports the imbalance reduction between each sub-line pair formed. To see this more 

clearly, let�s take N-machine production line with N equal to 8: 

 
                                                                                                                                          
 

         M1       B1      M2       B2       M3       B3        M4      B4        M5      B5       M6       B6       M7       B7       M8              
 
 
             Sub-line L1   (P1)              (P1 > P2)                    Sub-line L2 (P2)                                          
 
  

        Sub-line L11  (P11)   (P11 > P12)   Sub-line L12 ( P12)     Sub-line L21(P21)  (P21 < P22)  Sub-line L22 (P22) 
 
 

Figure 5. 5. Bisection of 8-machine production line until its final sub-lines 

 

 



CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA) 

 

45

As can be seen from a simple example given above in Figure 5.5, shaded buffer 

locations are potential giver and potential receiver. B1 is the potential giver and B5 is the 

potential receiver. By the buffer slot transfer from   B1 to B5, we hope to decrease the 

unbalance between the sub-lines L11 and L12 for the sub-line L1 as well as the unbalance 

between the sub-lines L21 and L22 for the upper sub-line L2 since the production rate of 

the sub-lines L11 may decrease while the production rate of the sub-line L12 remains the 

same and the production rate of the sub-lines L21 may increase while the production rate 

of the sub-line L22 remains the same. Moreover, the unbalance between the upper sub-

lines L1 and L2 is expected to be decreased, since the possible decrease in the 

production rate of L1 is accompanied with the possible increase in the production rate of 

the L2 with this buffer slot transfer. Hence, this transfer option has the highest 

likelihood to improve the throughput of the whole line due to the expectation of 

achieving maximum imbalance reduction.  

After determining the potential giver and receiver buffer locations, buffer slots 

are transferred from the potential giver to the potential receiver until no improvement is 

achieved in the efficiency of the whole line and we restart the algorithm from the same 

main division buffer. However, if any transfer does not increase the throughput of the 

whole line, potential receiver is changed to just previous division buffer and it is 

checked whether there will be increase in the throughput of the whole line. If this 

transfer, from the initial potential giver to the new potential receiver, improves the rate 

of the whole line, buffer slots is transferred again until no improvement is achieved. On 

the other hand, if no improvement in the throughput of the whole line is achieved, the 

potential receiver is assigned to the next division buffer, which is just before the 

existing potential receiver. This goes on until the first division point, which is the main 

division buffer, in the slower part of the line. If there is still no improvement in the 

throughput of the whole line, the potential giver is changed to the just previous division 

buffer and potential receiver is assigned to the initial potential receiver buffer location. 

If, again, no improvement in the efficiency of the whole line is achieved for this 

potential giver after applying the same potential receiver sequence, the potential giver is 

changed to the division buffer for the one upper sub-line. This sequence of changing 

potential giver continues until the first division point, which is the main division buffer, 

in the faster part of the line.  
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To make it more understandable, consider the 8-machine production line 

example again. Transfer sequence will be as the below order until any improvement of 

overall throughput is reached: 

1. B1 to B5   

2. B1 to B6 

3. B1 to B4 

4. B2 to B5 

5. B2 to B6 

6. B2 to B4 

7. B4 to B5 

8. B4 to B6 

If there is still no improvement in throughput although all transfer options are 

checked for that main division buffer (it is B4 in our example), we change the main 

division buffer to one left buffer location (B3 in our case) and restart bisection. If, again, 

we cannot increase the production rate for this main division buffer, we will change the 

main division buffer to one right of the first main division buffer. The next main 

division buffer will be two left of the first one and then two right of it if no 

improvement is the case. Changing of the main division buffer can be seen as an 

oscillation around the center of the whole line. The order of the main division points in 

our 8-machine case given in Figure 5.5 is 

   B4        B3        B5        B2            B6        B1        B7 .  

Up to this point, we assume that each sub-line pair has unequal production rates. 

When opposite situation, meaning that the production rates of formed sub-lines are 

equal, occurs around the main division buffer, we progress to the next main division 

buffer. On the other hand if it occurs around any division buffer obtained during 

bisection process, we stop the bisection at that division point and determine that 

division buffer as first potential giver if it appears in the faster side of the line or first 

potential receiver if it occurs in the slower side.  

The stopping criterion for this heuristic algorithm is the failure in the 

improvement of the overall throughput for (N-1) consecutive main division buffer since 

we return to the same point where we restart the algorithm.  
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5. 2. 1. Initial Allocation Procedure 

Initial allocation may be any feasible point in our feasible region. The feasible 

region is given below as the one stated in the study of Seong et al. [35]; 

K={K | eTK = C,  K ≥ 0 , K Є R(N-1), Kj integer for all j = 1, � , (N-1)} 

The number of elements of the above feasible region namely the number of all 

feasible allocations of C buffer slots among the (N-1) buffer locations in an N-machine 

serial production line is given by the formula below: 
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2)!(N2N
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C
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In our heuristic algorithm, based on many trials, we have observed that we 

might reach different final allocations by starting with different initial allocations. We 

also observed that initial allocation has an effect on the number of iterations ( # 

iterations is equal to the number of N-machine throughput estimation in our case ) 

during the implementation of the algorithm. Therefore, we came to the conclusion that 

we should try to start with a good initial point, which is close to global optimum, in 

order to reach this global optimum with less iteration.  

After comprehending the importance of efficient initial allocation, we focused 

on how we succeed in realizing our purpose. Before proceeding to the stage of 

determination of efficient initial allocation, it may be useful to state some relationships 

for production lines that we benefit from: 
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where  Ti : average processing time of Mi  

  λi : processing rate of Mi  

  MTTFi : mean time to failure for Mi  

  MTTRi : mean time to repair for Mi  

  µi : average failure rate of Mi  

  ri : average repair rate of Mi  

  ei : efficiency of Mi in isolation 

 ρi : production rate of machine Mi  in isolation 

The isolated efficiency, ei, is the average fraction of time that Mi would be 

operational if it were operated in isolation (never starved or blocked). This quantity is 

also seen as the availability of Mi. (Note that ei = 1 for reliable machines and ei < 1 for 

unreliable machines.) 

In addition to these relationships, we make use of the set of generalizations 

given by Freeman [7] in his study. These generalizations can be paraphrased as follows: 

1. Avoid extreme buffer allocation, even in highly unbalanced lines. 

2. Allocate more buffer capacity to the station with highest mean downtime. 

3. Allocate more buffer capacity between a bad and a mediocre station than a 

bad     and a good station. 

4. The optimum allocation of buffers to the various potential buffer locations is 

relatively unaffected by the total number of buffers available. 

5. The end of the line is more critical than the front, so if a bad station is 

located toward the end it should get more of the available buffer capacity 

than if it is toward the front. 

Despite the early date of this study and its limited scope, these rules have been 

borne out studies except the last one, which violates the reversibility principle. 

It can be deduced from the generalization 4 that each buffer location should 

have capacities whose ratios to each other are constant. In other words, any change in 

the amount of buffer slots that will be allocated should not affect the capacity ratios of 

buffer locations to one another. Based on this derivation, as an initial step of the initial 

allocation procedure, we assign criticalities to each buffer location, that are independent 

on any change in the amount of buffer slots allocated. In the second step, we determine 
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the initial capacities of all buffer locations according to their criticalities. By this way, 

relative capacities of buffer locations will be independent of the total number of buffer 

slots available meaning that any change in the total number of buffer slots available 

will not change the ratio of capacities of any of two buffer locations.  

During the process of the determination of these criticalities for each buffer 

location, we use the information that the capacity Ki of any buffer location Bi between 

two machines Mi and Mi+1 is inverse proportional with the production rate of these 

machines in isolation ρi and ρi+1. Therefore, the criticality of any buffer location that 

will be determined is the monotonically decreasing function of the production rates of 

adjacent machines in isolation. We have three candidates for the criticality function 

initially. These are 

f1(ρi , ρi+1)  =  
}ρ,min{ρ

1

1ii +

 

f2(ρi , ρi+1)  =  
1ii ρ

1
ρ
1

+

+  

f3(ρi , ρi+1)  =  
1ii ρρ

1

++
. 

While selecting the most efficient one among these functions, we took the first 

three of the above generalizations.  

First of all, the first function f1(ρi , ρi+1) = 1 / min{ρi , ρi+1} fails to conform the 

third generalization while the others conform. To make this clear, consider the example 

below: 

                        Mi                Bi                M(i+1)          B(i+1)          M(i+2)   
  
       �                                                                                         � 
 
                      ρi=5         Ki        ρi+1=2        Ki+1      ρi+2=8 
 

Figure 5. 6. Illustration of determination of criticality function 

According to the criticality function f1(ρi , ρi+1) = 1 / min{ρi , ρi+1}, both buffer 

location Bi and B(i+1) will have equal criticalities since 
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min{ρi=5 , ρi+1=2 } = min{ ρi+1=2 , ρi+2=8 } = 2 

f1(ρi=5, ρi+1=2)  =  
min{5,2}

1  =  
2
1   =   f1(ρi+1=2, ρi+2=8)  =  

min{2,8}
1 . 

Hence, our first candidate is eliminated since it contradicts with the third 

generalization, which favors more buffer slots to Bi than to Bi+1. For the second and 

third candidates, this generalization holds which can be proved by below inequalities: 

f2(ρi=5,ρi+1=2) = 5
1  + 2

1   = 10
7    >    f2(ρi+1=2,ρi+2=8)  = 2

1  + 8
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These remaining candidates conform to the second generalization. However, the 

second one contradicts with the first generalization. To see this, let�s rewrite these 

functions: 
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As mean downtime (Mean Time To Repair) increases production rate in 

isolation ρ decreases which results in increase in both criticality function candidates. 

Increase in criticality function means increase in both side buffer location of that 

machine which complies with the second generalization.  

However, as mean downtime (MTTR) goes to infinity, the second candidate f2 

diverges to infinity since it is linear function of mean downtime (MTTR). Increase in 

mean downtime also means increase in imbalance. Since the second candidate supports 

the extreme allocation in the sense of high imbalance, it becomes against the first 

generalization.     

On the other hand, as mean downtime (MTTR) goes to infinity the third 

criticality function candidate f3 converges, so this candidate is consistent with the first 

generalization since it does not support extreme allocation despite high imbalance. 

Since the third candidate is the only one that conforms to all generalizations, 

among these three candidates, it is the most efficient one. This derivation is supported 

by the results we obtained in the cases that we worked on so we select this candidate as 

the criticality function in our initial allocation procedure.  

Based on this derivation, we determine the relative criticality RCi of any 

arbitrary buffer location Bi by defining the criticalities cri as below: 

 cri = f3(ρi , ρi+1)       →      cri =  
)ρ(ρ

1

1ii ++
  

 RCi = 
)1(21 ... −+++ N

i

crcrcr

cr
          

After determining these criticalities, we calculate the amount of buffer slots KIi 

that will be allocated initially to the buffer location Bi by multiplying the relative 

criticality RCi by the total fixed number of buffer slots allocated C: 

KIi = RCi * C    for i = 1,2, � ,(N-1)  

However, KIi�s may not be integer. If this is the case, we first assign the largest 

integer value that is smaller than KIi�s (integer part of KIi�s) as the capacity of each 
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buffer location. The remaining buffer slots are assigned to the buffer locations 

according to decimal part of their KIi values in decreasing order by starting from the 

highest until the last remaining buffer slot allocation is completed. During the second 

part of this allocation process pertaining to the remaining buffer slots equality of the 

decimal parts may be faced. If such an exception arises, buffer location with higher 

integer part in KIi value has higher priority. In the situation of exact equality of KIi 

values meaning that the equality of both decimal and integer parts is the condition, 

higher priority is given to the buffer location closer to the centre of the system. 

Moreover, exact equality of KIi values and equal closeness to the centre of the line at 

the same time is the case; the buffer location closer to the end of the line has higher 

priority for the remaining buffer slot. 

5. 2. 2. A Simple Example for Line Balancing Algorithm (LIBA) 

In order to understand how LIBA works, we consider the flow line consisting of 

four machines that are prone to failure. Processing, failure and repair times for each 

machine have independent exponential distributions. This is the case on which is 

worked in the study of Seong et.al[35]. Processing, failure and repair rates for each 

machine are given in the table below: 

 Processing rate(λi) Failure rate(µi) Repair rate(ri) 
MC#1 3.7 0.07 0.17 
MC#2 1.5 0.11 0.37 
MC#3 1.1 0.49 0.78 
MC#4 3.0 0.19 0.50 

Table 5. 1. Processing, failure and repair rates for each machine 

From the above table, availabilities and production rates in isolation for all 

machines are computed: 

Table 5. 2. Availabilities and production rates in isolation for all machines 

 

 Availability (ei) Prod.rate in isolation (ρi) 
MC#1 0.70833 2.62083 
MC#2 0.77083 1.15625 
MC#3 0.61417 0.67559 
MC#4 0.72464 2.17391 
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By using production rates in isolation (ρi�s) obtained in the above table, we 

determine the initial allocation of buffer slots among the buffer locations. This process 

is illustrated in the Table 5.3 given below: 

 

Table 5. 3. Initial buffer allocation where   cri =  1/(ρ i+ ρ i+1) 

Even though we showed that last one that we use is the most efficient among the 

three pre-stated candidates of criticality function, we determine the initial allocation by 

means of the other two criticality function candidates in order to show that our selected 

candidate is superior and introduce extra examples to the initial allocation procedure. 

These procedures are given in Table 5.4 and Table 5.5 respectively: 

 cri KIi 
Integer 

part of KIi

Remaining 
buffer slots 

Initial 
allocation 

Buffer 1 0.864865 2.260944 2  2 
Buffer 2 1.480186 3.869528 3 1* 4 
Buffer 3 1.480186 3.869528 3 1** 4 

      
Total 3.825238 10 8 2 10 

                                      

                                      Note: *  First Remaining Buffer Slot  

                                              ** Second Remaining Buffer Slot 

Table 5. 4. Initial buffer allocation where   cri =1 / min{ρ i , ρ i+1} 

 
 cri KIi 

Integer part 
of KIi 

Remaining 
buffer slots 

Initial 
allocation 

Buffer 1 1.246423 2.253253 2  2 
Buffer 2 2.345051 4.239326 4  4 
Buffer 3 1.940186 3.507421 3 1 4 

      
Total 5.531661 10 9 1 10 

 
Table 5. 5. Initial buffer allocation where   cri =  (1/ρ i ) +  (1/ρ i+1) 

 cri KIi 
Integer 

part of KIi

Remaining 
buffer slots

Initial 
allocation 

Buffer 1 0.264755 2.279239 2  2 
Buffer 2 0.545899 4.699577 4 1 5 
Buffer 3 0.350938 3.021184 3  3 

      
Total 1.161592 10 9 1 10 
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We estimate the throughput for each of these initial allocations via simulation. 

We simulate the system for 45000 parts. Since we want to estimate the steady-state 

throughput value for any buffer allocation, observations during the warm-up period will 

have an effect of increasing bias in the estimated throughput value. Therefore, we 

should decide the length of warm-up period and we should not take the observations 

pertaining to this period into account during the estimation of the throughput. While 

predicting the warm-up period, we should achieve two conflicting objectives. The more 

data we discard belonging to the warm-up period, the less bias we will have in the 

estimation of throughput. On the other hand, the more data we discard belonging to the 

warm-up period, the more variability we will have in our estimated throughput value. 

Hence, we should compromise between reducing bias and increasing variance for our 

throughput estimation.  

During the estimation of the warm-up period we use the simplest and the most 

practical and the most popular technique named Cumulative Moving Averages 

Technique and we come to a conclusion of the warm-up period of 5000 parts. 

We use Replication�Deletion Technique while obtaining the estimation of 

throughput and variance of this estimation since it is the best-suited technique for the 

systems with minimal warm-up period. This technique is also very simple and enables 

us to direct use of statistical procedures such as constructing confidence intervals for 

the estimation of throughput values. While estimating the throughput value and its 

variance, we have two sources of observations: individual observations within each 

replication and mean of these individual observations for each replication. Although the 

observations within a given replication are dependent, averages of these observations 

are independent of each other and it is reasonable to assume that these average values 

have normal distributions based on the Central Limit Theorem. By means of these 

results, we can construct confidence interval for the throughput. Let Xi denote the mean 

of individual observations in ith replication for throughput. We can compute the sample 

mean Xbar and sample variance S2 of Xi�s and Xbar from n replications as follows: 

barX  =  ∑
=

n

1i n
Xi  
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S2(X)  =  ∑
=

n

1i 1)(n
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S2( barX )  =  
n
(X)S2

 

Since Xi�s are normally distributed, the half-width, h, of the 100(1-α)% CI for 

throughput is given as 

       h  =  
 )2

α( - 1 , 1)-(n
t  *  S( barX ). 

Consequently 100(1-α)% CI for throughput is centered at Xbar and it is given as 

      Xbar ±  
 )2

α( - 1 , 1)-(n
t  *  S( barX ). 

At this point, we should decide the number of replications. The smaller the 

number of replications is, the fewer the amount of data we discard belonging to the 

warm-up period. However, as n decreases, the degrees of freedom for t- statistics will 

be smaller, resulting in a larger value for t-statistics and an increasing half-width for the 

confidence interval. The next chart, named Chart 1, which is the graph of t-statistics 

versus the degrees of freedom for α = 0.05 confidence level that we used in our cases, 

shows this trade-off obviously: 
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Chart5. 1.  t-statistics versus the degrees of freedom for α =  0.05 confidence level 
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As can be easily seen from the above chart, the most reasonable number of 

replications to use is 10, since improvements in the t-statistics diminish beyond this 

point. Based on this fact, we choose the number of replications as 10.   

After explaining techniques that we use and the reasons why we use these 

techniques, we return to the throughput estimation for the candidates for the 

comparison step and we see that the third candidate gives the largest throughput value. 

These throughput values are given in the below table with 95% confidence levels: 

Case Average(Xbar) Half- width(h) (h / Xbar) % Xbar - h Xbar + h 
(2,4,4) 0,6457656 0,002151472 0,33316606 0,643614128 0,64791707 
(2,5,3) 0,6490498 0,001997834 0,30780903 0,647051966 0,65104763 

 
Table 5. 6. Throughput values and related computations for the candidate initials 

To reach more healthy results, we also use paired-t test for two allocation 

alternatives. Below table gives the throughput values for two alternatives and the 

throughput differences between them for each replication in the simulation: 

Replication Throughput of Throughput of Throughput 
Number Allocation (2,5,3) Allocation (2,4,4) Difference(Di) 

1 0.645809 0.642097 0.003712 
2 0.650929 0.647573 0.003356 
3 0.647366 0.644907 0.002459 
4 0.651672 0.648316 0.003356 
5 0.644689 0.640807 0.003882 
6 0.651590 0.647887 0.003703 
7 0.646329 0.643114 0.003215 
8 0.651822 0.649662 0.002160 
9 0.648823 0.645130 0.003693 

10 0.651469 0.648163 0.003306 
    

Table 5. 7. Throughput values and differences for two initial allocation alternatives for 

each replication 

Based on the values given Table 5.7, we obtain the paired-t confidence interval 

for the throughput differences as below: 

Average(Xbar) Half- width(h) (h / Xbar) % Xbar - h Xbar + h 

0.0032842 0.000402048 12.24189878 0.002882 0.003686 
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The superiority of the third candidate can also be seen from the paired-t 

confidence interval for the throughput differences for each replication. All these 

findings support our design for initial allocation procedure. 

Moreover, it is worth to state that our estimation of throughput is extremely 

accurate, since the half-width value is very small itself as well as relative to the 

estimated throughput value. This can be observed from the column representing the 

half-width and its percent ratio to the estimated throughput. Due to this reason, with 

contentment, we use the estimated throughput as the exact value of throughput without 

focusing on the confidence intervals in the cases we study.  

During the implementation of LIBA, we compare the throughput values for any 

allocation with each other in order to decide whether to proceed to the better solution or 

not. In these steps, to achieve more convenient comparisons of alternative allocations 

and more accurate results, we use common random numbers. This means that random 

numbers generated for the same operations in the line for each solution will be same. 

More clearly, consecutive processing, repair and failure times of any machine will be 

equal to each other for every alternative allocation during the simulation. Consequently, 

the difference between the alternatives comes only from the capacities assigned to the 

buffer locations, which enables us to reach healthier comparisons.     

Now, let�s return to our line with initial allocation of (2,5,3) and throughput 

P*(2,5,3) = 0.6490498. Execution of the algorithm is given step by step as; 

1. Decompose the line into two sub-lines from the buffer location B2 : 

                      M1            B1 = 2       M2         B2  = 5        M3          B3  = 3        M4 

 
ρ1 261.2≅               ρ2 156.1≅              ρ3 676.0≅              ρ4 174.2≅  

 
 

P12(2,5,3) = 1.0617437          P34 (2,5,3) = 0.6683699 
 

Figure 5. 7. Initial decomposition of the line during the execution of LIBA 
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1.1. P12(2,5,3) ≥ P34 (2,5,3) 

1.1.1. Try to transfer from B1 to B3 . 

P(1,5,4) = 0.649035 < P*(2,5,3) = 0.6490498 not an improving direction. 

1.1.2. Try to transfer from B1 to B2 . 

P(1,6,3) = 0.651497 > P*(2,5,3) = 0.6490498 improving direction, 

continue to transfer from  B1 to B2. 

P (0,7,3) = 0.653132 improving direction. 

Cannot continue to transfer from B1 to B2 since no buffer slot in B1. 

New point is (0,7,3) with P*(0,7,3) = 0.653132.  

2. Decompose the line from the buffer location B2 : 

                      M1            B1 = 0       M2         B2  = 7        M3          B3  = 3        M4 

 
ρ1 261.2≅               ρ2 156.1≅              ρ3 676.0≅              ρ4 174.2≅  

 
 

P12(0,7,3) = 1.0365077               P34 (0,7,3) = 0.6683699 
 

Figure 5. 8. Restart of LIBA from the second buffer location B2   

2.1. P12(0,7,3) ≥ P34 (0,7,3) 

2.1.1. Transfer from B1 to B3 is infeasible. 

2.1.2. Transfer from B1 to B2 is infeasible. 

2.1.3. Try to transfer from B2 to B3 . 

P(0,6,4) = 0.651336 <  P*(0,7,3) =  0.653132 not an improving direction. 

No improvement for the main buffer division point B2 .  

3. Decompose the line from the main division buffer location B1: 
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                      M1            B1 = 0       M2         B2  = 7        M3          B3  = 3        M4 

 
ρ1 261.2≅               ρ2 156.1≅              ρ3 676.0≅              ρ4 174.2≅  

 
P11(0,7,3) = 2.261              P24 (0,7,3) = 0.663712 

 
                         P23(0,7,3) = 0.6702106       P44 (0,7,3) = 2.174 

 
Figure 5. 9. LIBA proceeds to the first buffer location 

3.1. P11(0,7,3) ≥ P24 (0,7,3)  

3.1.1. P23(0,7,3) ≤ P44 (0,7,3)  

3.1.1.1. Transfer from B1 to B2 is infeasible. 

3.1.1.2. Transfer from B1 to B3 is infeasible. 

No improvement for the main buffer division point B1 .  

4. Decompose the line from the main division buffer location B3: 

 M1           B1 = 0        M2         B2  = 7        M3          B3  = 3        M4 

 
ρ1 261.2≅               ρ2 156.1≅              ρ3 676.0≅              ρ4 174.2≅  

 
      P13(0,7,3) = 0.6590614                P44 (0,7,3) = 2.174 

 

                           P12(0,7,3) = 1.0365077       P33 (0,7,3) = 0.676 
Figure 5. 10. Termination of LIBA 

4.1. P44(0,7,3) ≥ P13 (0,7,3) 

4.1.1. P12(0,7,3) ≥ P33 (0,7,3) 

4.1.1.1. Try to transfer from B3 to B2 . 



CHAPTER 5 : LINE BALANCING ALGORITHM (LIBA) 

 

60

P(0,8,2) = 0.651612 < P*(0,7,3) = 0.653132 not an improving direction. 

No improvement for the main buffer division point B3. 

5. Stop since no improvement is achieved for every main division point consecutively 

and we return to the same point where we restarted. 

6.  Our optimal solution is (0,7,3) with throughput P*(0,7,3) = 0.653132. 

There are 66 feasible points in this example and we obtained the throughput 

values of all these feasible points. Results can be seen in the Appendix A.5. By the 

algorithm, we reached the global optimum with 5 iterations. Number of iterations in our 

case is the number of N-machine simulations where N is the number of machines in the 

whole line. 

 5. 3. Comparison of Algorithms 

Any buffer allocation in an N-machine production line with (N-1) buffer 

locations and total fixed number of buffer slots C can be described by a vector K = (K1, 

K2, � , K(N-1)) with non-negative integer entries summing up to the total buffer slots C. 

Thus, any alternative solution satisfies the equality ∑ −

=
= )1(

1

N

i iKC . The set of all points 

in (N-1)-dimensional space for which this equality holds is an (N-2)-dimensional 

hyperplane. Since the buffer allocations must be non-negative integers, the feasible 

region, K, is set to the integer lattice including the vectors whose entries are non-

negative on this hyperplane: 

K = {K | eTK = C,  K ≥ 0 , K Є R(N-1), Kj integer for all j = 1, � , (N-1)} 

The algorithms (SEVA, Non-SEVA, SSA and LIBA) are all based on the idea 

of local search. In other words, the algorithms define a specific neighborhood with 

respect to the given solution, find the best solution in this neighborhood and move to 

this solution. This procedure repeats until no better solution is obtained. Since the sum 

of the components of each solution is equal due to the fixed amount of total given 

buffer slots, moving from one solution to the other can be considered as the movement 

along an integer directional vector h whose entries sum up to zero meaning that eTh = 0. 
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Such vector is defined as �exchange vector� in Seong et.al.[35]. If a certain exchange 

vector yields the better production rate, it is called �improving exchange vector�.  

All algorithms that we focus on define a neighborhood and determine the best 

solution in this neighborhood. The difference between the algorithms comes from the 

determination of the neighborhood and the selection procedure of improving exchange 

vectors through which the algorithms will proceed. The process of defining the specific 

neighborhood in SEVA, Non-SEVA and LIBA is based on the selection of line 

segment along an improving exchange vector and containing at least one or more 

integer solutions. This process is defined as line segment selection in Seong et.al[35]. 

However, in SSA, the specific neighborhood from the existing neighborhood is defined 

either by the transfer of one buffer slot from the largest capacity buffer location to each 

of the other buffer locations for the best allocation in the existing neighborhood or by 

replacing the worst allocation with the one obtained by subtracting it from twice the 

best one in the existing neighborhood. The new neighborhood has (N-1) allocations 

where they do not have to lie along the same line as in SEVA, Non-SEVA and LIBA. 

SSA also differs from SEVA, Non-SEVA and LIBA in the selection procedure of 

improving exchange vector. In SSA, the improving exchange vector is directly set to 

the twofold of the vector obtained by the subtraction of the worst allocation from the 

best one in the existing neighborhood. However, SEVA, Non-SEVA and LIBA select a 

line segment firstly along the improving exchange vector and extend the improving 

exchange vector until maximum throughput is achieved along the line segment. 

Although the line segment selection concept is valid for all SEVA, Non-SEVA 

and LIBA, the procedures of selecting line segments are different. Both SEVA and 

LIBA are based on the concept of the buffer slots transfer between two different buffer 

locations, while there may be multiple buffer slot transfer between more than two 

buffer locations in Non- SEVA simultaneously. Although the transfer of buffer slots 

between two different buffer locations is the case for both SEVA and LIBA, SEVA 

uses two adjacent buffer locations for the transfer whereas LIBA does not have to use 

adjacent buffer locations for this transfer. The buffer slot transfer occurs in only one 

direction from the pre-determined giver to the pre-determined receiver in LIBA. 

However, in contrast to LIBA, the buffer slot transfer can be done in two directions, 

between two adjacent buffer locations in SEVA.  
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Like SEVA, the improving exchange vector in LIBA has only two non-zero 

entries which differ in sign only. If we re-introduce the standard exchange vectors 

stated in Seong et.al.[35], we can show the improving exchange vector in LIBA as a 

linear combination of standard exchange vectors as 

                (-1)*Q*( Xi + X(i+1) + � + X(j-1) )    if i < j 

P =      

                       Q*( Xi + X(i+1) + � + X(j-1) )    if i > j  

where Q stands for the amount of buffer slot transferred and Bi ,Bj are the giver 

and receiver buffer locations respectively. 

5. 3. 1. Numerical Results 

After mentioning the logical and methodological differences between the 

algorithms presented, the numerical implementation will be the next step in the 

comparison of the relative efficiencies. To see the efficiency of Line Balancing 

Algorithm (LIBA), we first focus on the cases that are worked in the study of Seong 

et.al[35]. There are 18 cases in this study. The first eight of these cases are synchronous 

production lines with deterministic processing times while the others are asynchronous 

with independent exponential processing times. In all cases, production lines consist of 

unreliable machines with independent exponential failure and repair times. All related 

data including the number of machines N, total fixed number of buffer slots C and 

processing, failure and repair rates for each machine are given in the Table A.6 given in 

the Appendix A.6.  

First of all, we determine the upper bound for throughput for each case by 

obtaining throughput of each line with the assumption of infinite buffer in each buffer 

location. Then, we determine the initial allocations and the throughput of each line with 

these initial allocations. Throughput values for each line with initial allocations 

determined by the initial allocation procedure of LIBA and infinite buffer can be seen 

in the Table 5.8 given below: 
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CASE Throughput with 
Initial Allocation 

Throughput with 
Infinite Buffer 

Efficiency 
Percentage 

1 0.5806027 0.7341491 79.0851205 
2 0.6633516 0.6657005 99.6471536 
3 0.6451765 0.7650795 84.3280339 
4 0.1725131 0.4382678 39.3624857 
5 0.6495863 0.6623969 98.0660236 
6 0.5664700 0.5698288 99.4105600 
7 0.6637694 0.6662338 99.6300998 
8 0.6270106 0.6313999 99.3048304 
9 0.6490498 0.6754868 96.0862300 
10 0.6359135 0.6453851 98.5324111 
11 0.3459187 0.5974446 57.8997115 
12 0.9629590 1.1461459 84.0171395 
13 1.1207174 1.1210134 99.9735953 
14 0.4749513 0.4982646 95.3211005 
15 0.6755334 0.6759900 99.9324546 
16 1.2726538 1.2754591 99.7800557 
17 0.9786912 0.9819490 99.6682312 
18 0.5423842 0.5424653 99.9850497 

 

Table 5. 8. Throughput values and efficiency of initial allocations determined by LIBA 

initial allocation procedure 

The last column in the above table shows the percent ratio of the throughput 

with our initial allocation to the one with infinite buffer. This ratio displays the yield of 

the line with the allocation of given total fixed number of buffer slots with the proposed 

technique. In half of the cases ( i.e. case 2,6,7,8,13,15,16,17,18)  above the 99% of 

throughput value for infinite buffer slots for each buffer locations are satisfied. Due to 

this reason, to work with these cases will not contribute us about the efficiency of our 

algorithm since increase in the throughput value can be insignificant and so it is not 

worth to implement the algorithm for a negligible increase. Therefore, we skip these 

cases except Case 2 in the comparison step. We hold the second case, since we want to 

see whether LIBA finds better allocation despite the great efficiency of its initial 

allocation procedure. The results can be seen in the Appendix A.7.  

Although throughput values for the lines are evaluated by the algorithms 

developed by Glassey and Hong[10] and Hong et.al.[18] in the study of Seong et.al[35], 

we do not use the given throughput values directly. Instead, we determine the 

throughput values for given optimal allocations via simulation. The results for LIBA as 

well as SEVA and Non-SEVA in the Table A.7 in the Appendix A.7, are obtained via 
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simulation with Replication-Deletion Technique. We use 10 replications for each 

simulation and 45000 parts for each replication for all cases we focused on. 

Surprisingly, in all cases, we decide that 5000 parts as a warm-up period is the most 

suitable value.  

In order to make healthy comparison, we also execute LIBA with initial 

allocation determined by the procedure presented in Seong et.al[35]. Final allocations 

and optimal throughputs obtained by starting with the initial allocation determined by 

the procedure of Seong et.al[35] are also given in the Appendix A.7 with the title LIBA 

1 in the sub rows.  The last column with the title ITERATION in the Appendix A.7 

denotes the number of N-machine throughput evaluation during the execution of the 

algorithms. The number of iterations is the measure of time spent during the execution 

of the algorithm and so it is another comparison field for the performance of the 

algorithms.  

With the expectation of decreasing the number iterations during the execution of 

LIBA, we introduce a step size concept, where step size stands for the number of buffer 

slots that will be transferred during each transfer. Empirically, we decide the step 

size, w , as 









−

=
)1(5 N

C
w  

where  x  means the smallest integer that is greater than x . 

Step sizes for the cases we worked on are given in the below table: 

CASE 1 2 3 4 5 9 10 11 12 14 
N 3 4 5 10 5 4 4 5 5 6 
C 15 30 12 47 110 10 30 10 15 130 
w 2 2 1 2 6 1 2 1 1 6 

 
Table 5. 9. Step sizes for the cases studied 

N: Number machines in the line 
C: Total fixed number of buffer slots that will be allocated 
w : Step size 

When we determine the giving and receiving buffer location, we transfer w  

number of buffer slots from the giver to the receiver. If there is no increase in the 
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throughput, instead of transferring w , we transfer 1w  ( =  2/w  ) amount of buffer slots 

where  x  means the largest integer that is smaller than x . If, again, we could not 

reach an improvement by this transfer, we reduce the transfer amount from 1w to 2w  ( = 

 2/1w  ). This reduction procedure for the transfer amount goes on with 1+iw equal to 

 2/iw  in the (i+1)th trial until an improvement is reached in the throughput value for 

the candidate giver and receiver buffer locations or the transfer amount becomes zero.  

By this way, we hope to proceed in the increasing direction faster and reach the 

optimum with less iteration, which improves the performance and speed of the 

algorithm.  

Before proceeding to the comparison of LIBA with SEVA and Non-SEVA, it is 

worth to mention how the performance of and the results of LIBA if effected by distinct 

initial allocations. LIBA may reach to different optimal solutions with different initial 

allocation. This can be observed from the Appendix A.7. There are only three cases 

(cases 1, 9 and 11) that LIBA achieves to the same final allocation with different 

initials. Surprisingly, it is proven by complete enumeration that these final allocations 

are the global optima. The only difference between LIBA with its original allocation, 

LIBA 2, and LIBA with initial allocation of Seong et.al[35], LIBA 1, is the number of 

iterations for reaching the optimal values for these three cases. LIBA with its original 

allocation, LIBA 2, reaches the optimal with less iteration. The number of iterations for 

LIBA 2 is approximately the half of the number of the iterations done in LIBA 1. For 

five cases, LIBA 2 gives better results than LIBA 1, whereas LIBA 1 is better than 

LIBA 2 in remaining two cases that we study. Since the initial allocation of LIBA 1 

gives worse throughput than the initial allocation of LIBA 2 in all cases we study and 

despite this fact in some cases LIBA 1 finds better solutions, we can conclude that the 

performance of LIBA is dependent on the initial allocation. In addition to this, LIBA 

may reach better solutions with worse initial allocation. However, the likelihood of 

reaching better final allocation with better initial allocation is higher than with the 

worse one. Interestingly, in all these seven cases better solutions, independently of 

whichever LIBA finds, are achieved with more iteration. Hence, we can say that the 

more the number of iteration, the better solution LIBA obtains.  

When we analyze the results in the Appendix A.7, we observe that LIBA 2 finds 

better solutions than both SEVA and Non-SEVA in most of the cases. There are only 
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four cases (Case 1, 3, 9, 11)that the equality of solutions occurs for LIBA 2, SEVA and 

Non-SEVA where it is shown by complete enumeration that three (Case 1, 9, 11)of 

these four solutions are already global optima. Briefly, among the cases we worked on, 

there is no one that SEVA or Non-SEVA could overcome LIBA 2. Hence, it can be 

said that LIBA 2 is superior to SEVA and Non-SEVA in terms of optimal throughput 

value. 

On the other hand, there are three cases (Case 2, 10, 12) that LIBA 1 has worse 

solution than both SEVA and Non-SEVA. For the cases 1, 9 and 11, LIBA 1 also 

reaches the global optimum solution as SEVA, Non-SEVA and LIBA 2. In the 

remaining four cases, LIBA 1 finds better results than SEVA and Non-SEVA. Hence, it 

can be misleading to claim that LIBA 1 is superior to SEVA and Non-SEVA or vice 

versa as we do for LIBA 2. 

However, the optimal throughput values are not the only comparison criterion. 

The numbers of iterations done for reaching these optimal values are also important. 

Therefore, we should take the number of iterations for attaining the optimal allocations 

into account during the comparison of the algorithms. From this point of view, LIBA 

for both initial allocation procedures uses less number of iterations than both SEVA and 

Non-SEVA for less complex cases. The complexity of the case is direct proportional to 

the number of machines in the line and the number of buffers slots that will be 

allocated, meaning that when the number of machines or the total fixed number of 

buffer slots or both increases, solving the allocation problem for that line becomes more 

complex. For more complex problems, the number of iterations increases for LIBA 

whatever the initial allocation is. This situation is obvious for the cases 4, 5 and 14. 

SEVA and Non-SEVA reaches their optimal solutions with less iteration. However, 

these are the cases that both LIBA 1 and LIBA 2 find better solutions than SEVA and 

Non-SEVA and it should be denoted that the number of iterations for LIBA for 

achieving the throughput at least equal to the optimal throughput values of SEVA and 

Non-SEVA is approximately the half of the number of iterations for LIBA to achieve 

its optimal. Therefore, the number of iterations necessary for LIBA to achieve at worst 

the same solution with SEVA or Non-SEVA and the number of iterations for SEVA 

and Non-SEVA for optimal solution are approximately the same except Case 4. When 

we sum up all these findings, we can conclude that LIBA is superior to both SEVA and 
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Non-SEVA for less complex cases, while this superiority diminishes as the complexity 

increases. 

We also check how much increase is obtained by LIBA until reaching to the 

optimum. Below tables, Table 5.10 and Table 5.11 give these increases in the 

percentage form: 

CASE Throughput with Initial 
Allocation 

Throughput with Final 
Allocation 

Percent 
Increase 

1 0.5806027 0.5806027 0 
2 0.6633516 0.6648211 0.2215266 
3 0.6451765 0.6458731 0.1079705 
4 0.1725131 0.1764558 2.2854497 
5 0.6495863 0.6498637 0.0427041 
9 0.6490498 0.6531318 0.6289196 
10 0.6359135 0.6381569 0.3527860 
11 0.3459187 0.3479317 0.5819287 
12 0.9629590 0.9727568 1.0174680 
14 0.4749513 0.4794121 0.9392121 

Table 5. 10.  Increase in the throughput value in LIBA 2 

Table 5. 11. Increase in the throughput value in LIBA 1 

All the percent increases in the throughput values seem reasonable for LIBA 1 

except two cases (Case 2 and 12). However, the optimal solutions found in these cases, 

are over the 99 percent of the optimal values obtained by LIBA 2, SEVA and Non-

SEVA. Moreover, the number of iterations for reaching the optimum in these cases is 

very small compared to the ones pertaining to the other algorithms in question. On the 

other hand, interestingly, the percent increases in the throughput values in LIBA 2 are 

very small. Based on this result and the knowledge that LIBA 2 attains throughput at 

CASE Throughput with Initial 
Allocation 

Throughput with Final 
Allocation 

Percent 
Increase 

1 0.5666616 0.5806027 2.4602161 
2 0.6630851 0.6631803 0.0143571 
3 0.6218006 0.6459400 3.8821770 
4 0.1703881 0.1765216 3.5997232 
5 0.6015092 0.6497500 8.0199605 
9 0.6281393 0.6531318 3.9788149 

10 0.6277183 0.6375757 1.5703541 
11 0.3391255 0.3479317 2.5967378 
12 0.9573224 0.9630241 0.5955888 
14 0.4400651 0.4793024 8.9162490 
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least equal to the ones reached by SEVA and Non-SEVA, we also examine the ratio of 

the throughput values for initial allocations determined by our own procedure to the 

optimal throughput values of SEVA and Non-SEVA. These ratios can be seen from the 

percentage column of Table A.8 in the Appendix A.8.    

Surprisingly, the percent ratios are very high meaning that we can attain 

allocation with throughput very close to the optimal throughput of SEVA and Non-

SEVA. Moreover, as occurred in Case 14, we can reach an allocation with higher 

throughput than the optimal value of SEVA and Non-SEVA via the initial allocation 

procedure of LIBA itself. By combining the results related to the percent increases in 

the throughput values and the percent ratios of throughput values to the optimal 

throughputs for SEVA and Non-SEVA, we can claim that the initial allocation 

procedure that we introduced is very powerful and it can attain very good allocations 

close to the optimal solutions by itself without implementing any algorithm.   

After comparing the performance of LIBA with SEVA and Non-SEVA, we also 

want to see the relative efficiency of LIBA with respect to the Simple Search Algorithm 

(SSA) of Powell and Harris[33]. Even though they developed a new heuristic algorithm 

for optimal buffer allocation in their study, Powell and Harris[33] basically focused on 

some characteristics of the production lines such as the effects of bottleneck stations on 

the optimal buffer allocation and bowl phenomenon instead of demonstrating the 

performance their algorithm. Hence, the cases that were studied in Powell and 

Harris[33] were selected according to this goal. Due to this reason, instead of studying 

the all cases in Powell and Harris[33], we selected a small sample of cases which are 

more likely to help us to make a healthier comparison and applied LIBA to this sample.  

We studied six cases from Powel and Harris[33]. As mentioned before, Powell 

and Harris[33] worked with serial production lines with reliable stations having 

independent log-normal processing times. The first three of these cases consists of four 

machines with a single bottleneck in the third machine, while the last three cases 

consist of six machines with a single bottleneck in the fourth machine. The table given 

below summarizes the related data including the number of machines N, total fixed 

number of buffer slots, C, that will be allocated: 
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CASE 1 2 3 4 5 6 
N 4 4 4 6 6 6 
C 3 6 9 5 10 15 

Table 5. 12. Data of the cases that we study in Powell and Harris[33] 

NOTE: All Machines are reliable having lognormal processing times with 

mean = 1 and standard deviation = 0.5 unless otherwise stated 

* Mean of MC#3 in first three cases is equal to 1.25 

* Mean of MC#4 in last three cases is equal to 1.25 

In contrast to Seong et.al.[35], throughput values is the only comparison 

criterion for SSA and LIBA since Powell and Harris[33] did not mention any other one 

such as the number of iteration for these cases. It should also be noted that our initial 

allocation procedure gave the same initial allocations for all cases with SSA so we do 

not need to execute LIBA two times as we did in SEVA and Non-SEVA.   

CASE METHOD ALLOCATION THROUGHPUT 

SSA (1,1,1) 0.751123 1 
LIBA (1,1,1) 0.751123 

SSA (1,3,2) 0.785928 2 
LIBA (1,3,2) 0.785928 

SSA (2,3,4) 0.794758 
3 

LIBA (1,5,3) 0.796687 
SSA (1,1,1,1,1) 0.743104 4 

LIBA (1,1,1,1,1) 0.743104 
SSA (1,2,3,2,2) 0.784251 5 

LIBA (1,2,3,2,2) 0.784251 

SSA (1,3,4,5,2) 0.796078 
6 

LIBA (2,3,3,5,2) 0.797372 

Table 5. 13. Optimal allocations with estimated throughput values via 

simulation for SSA and LIBA 

 

In the above table, the allocations with the estimated throughput values for both 

algorithms for each case are given. When we analyze the results, we observe that SSA 

and LIBA both find the same solutions for the cases 1,2,4,5 where it is verified by 

complete enumeration that these solutions are global optima. However, LIBA finds 
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better solutions than SSA in the third and sixth cases. It is worth to state that the lines in 

first three cases are the same. The only difference among these three cases is the total 

number of buffer slots, C, to be allocated. The same situation also holds for the last 

three cases meaning that they have the same system with different total number of 

buffer slots. Case 3 and Case 6 are the ones having the most total number of buffer slots 

available among the first and last three cases respectively. There is no case that SSA 

reaches better solution than LIBA. As a result, we can say that LIBA is superior to SSA 

in terms of optimal throughput value and this superiority becomes more apparent as the 

number of buffer slots to be allocated increases. 
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Chapter 6 

 

CONCLUSION 
 

Buffer allocation is a challenging design problem in serial production lines that 

is often faced in the industry. Effective use of buffers (i.e. how much buffer storage to 

allow and where to place it) in production lines is important since buffers can have a 

great impact on the efficiency of the production line. Buffers reduce the blocking of the 

upstream station and the starvation of the downstream station. However, buffer storage 

is expensive both due to its direct cost and the increase of the work-in-process 

inventories it causes. Thus, there is a trade-off between performance and cost. This 

means that the optimal buffer capacity and the allocation of this capacity have to be 

determined by analysis.  

In this thesis, we studied the optimal buffer allocation problem. The objective 

was to maximize the throughput of the serial production line by allocating the total 

fixed number of buffer slots among the buffer locations and in order to achieve this aim 

we introduced a new heuristic algorithm called �Line Balancing Algorithm 

(LIBA)�applicable to all types of serial production lines meaning that there is no 

restriction for the distributions of processing, failure and repair times of any machine, 

the disciplines such as blocking, failure etc. and the assumptions during the application 

of LIBA in the line. 

The aim of LIBA is to make the line more balanced. To obtain more balanced 

line. LIBA tries to minimize the total imbalance, which is equal to the sum production 
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rate differences of the sub-lines obtained by dividing the whole line into two from each 

buffer location, by buffer slot transfer between only two different buffer locations.  

Although LIBA can be started by any arbitrary initial allocation of buffer slots 

among the buffer locations, we observed that LIBA may reach different final 

allocations with different initials. Based on this observation, we also integrated to LIBA 

a new efficient initial allocation procedure which conforms to generalizations about 

optimal buffer allocation in order to reach better solutions.  

To see the power of LIBA, we applied it to some of the cases where SEVA, 

Non-SEVA and SSA had applied. Even though in some cases LIBA obtains worse 

solutions than SEVA and Non-SEVA with same initial allocations determined by 

procedure in the study of Seong et. al.[35], it outperforms SEVA and Non-SEVA in all 

cases studied with its original initial allocation procedure except the cases where every 

algorithm finds the global optima.  

Besides the optimal throughput value, the number of iterations done for 

reaching the optimal solution is another comparison criterion. The number of iterations 

is the number of throughput estimation of the whole line for achieving the optimal 

solution. From this point of view, LIBA for both initial allocation procedures uses less 

number of iterations than both SEVA and Non-SEVA for less complex cases. The 

complexity of the case is proportional to the number of machines in the line and the 

number of buffers slots that will be allocated, meaning that when the number of 

machines or the total fixed number of buffer slots or both increases, solving the 

allocation problem for that line becomes more difficult. For more complex problems, 

the number of iterations increases for LIBA whatever the initial allocation is. Briefly, 

we came to a conclusion that LIBA is superior to both SEVA and Non-SEVA for less 

complex cases, while this superiority diminishes as the complexity increases. 

As a final observation, it is worth to state that the initial allocation procedure we 

introduced is extremely useful. Interestingly, as an indicator of this power, 

improvement in the production rate of the line after the execution of LIBA did not 

exceed 2.3 % for all cases that we study. In addition to this, we obtained approximately 

same production rates with SEVA and Non-SEVA optimal values, even better results in 

some cases, by only implementing our initial allocation procedure. Therefore, we can 
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say that our initial allocation procedure by itself, without the execution of LIBA, can be 

enough for the systems where the effect of small increase in the throughput is 

negligible. 

In contrast to SEVA and Non-SEVA, throughput values is the only criterion 

which we take into account during the comparison of SSA and LIBA since Powell and 

Harris[33] did not mention any other one such as the number of iteration for these cases 

in their study. In all cases studied, LIBA also outperforms SSA in terms of throughput 

values except the cases where both algorithms find the global optima. The cases that 

LIBA gives better solutions are the ones having the most total number of buffer slots 

available among the first and last three cases respectively. Therefore, we can say that 

LIBA is superior to SSA in terms of optimal throughput value and this superiority 

becomes more observable as the number of buffer slots that will be allocated increases. 

Finally, although it is the case in the industry, we observed that currently 

available algorithms as well as LIBA do not consider the production lines with stations 

consisting of parallel machines having individual upstream and/or downstream buffers. 

It should be possible to adapt currently available algorithms to or new algorithms can 

be introduced for these types of production systems.  

Assembly / Disassembly (A/D) operations, which are also the parts of the 

manufacturing systems, have been neglected so far. Unlike the machines in the flow 

lines, A/D operations have more than one upstream and downstream buffer including 

different part types. Starvation or blocking of these operations occurs when one of these 

upstream/downstream buffers is empty. Therefore, more investigation is needed on this 

issue to see how it affects the performance measure of interest and to provide optimal 

buffer allocation generalizations or algorithms of such systems. We believe in that our 

algorithm can easily be extended to these types of settings.  

Buffer issues may be investigated more. The general assumption on the 

behaviour of buffers is that transfer times of the parts both from machines to buffers 

and from buffers to machines are zero. However, in real life, these transfer times are 

not zero. There are not many studies investigating this issue. Another assumption on the 

buffer behaviour is the perfect reliability of buffers. However, buffers may be prone to 

failure as machines. This issue has also been neglected. Few papers have been 
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published on this issue. Although our algorithm can be readily used by incorporating 

these changes in the simulation of the production line, more investigation is required on 

this issue. 
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APPENDIX 

A. 1. The Pseudo-Code LIBA 

Line Balancing Algorithm (LIBA) can be given in a systematic way as below: 

Step 0: Start with an initial allocation of buffer slots. 

Step 1: Evaluate the production rate P of line L. 

Step 2: Set �k = 0� and �N = #machines in line L�. 

Step 3: (Initial decoupling of the whole from the main division buffer location) 

3.1. If �N is even� then 

3.1.1. Decouple the line into two sub-lines L1 and L2 from the buffer 

location k)2
N( + , which is the main division buffer

k)2
N(

B
+

. 

3.2. If �N is odd� then 

3.2.1. Decouple the line into two sub-lines L1 and L2 from the buffer 

location k)
2

1)(N( ++ , which is the main division buffer
k)

2
1)(N(

B
++ . 

Step 4: Evaluate the production rates P1
 and P2 of L1 and L2. 

Step 5: (Proceeding to the next main division buffer location in case of throughput 

equality around the existing one) 

5.1. If �P1
 = P2� then 

5.1.1. If �k ≥ 0� then  
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5.1.1.1. If �N is even� and �k = 1)2
N( − � then 

5.1.1.1.1. Set �k = 0�. 

5.1.1.1.2. Return to Step 3. 

5.1.1.2. Set �k = - (k+1)�. 

5.1.1.3. Return to Step 3. 

5.1.2. If �k < 0� then 

5.1.2.1. If �N is odd� and �k = - ( 1
2

1)(N −+ ) � then 

5.1.2.1.1. Set �k = 0�. 

5.1.2.1.2. Return to Step 3. 

5.1.2.2. Set �k = -k�. 

5.1.2.3. Return to Step 3. 

Step 6: (Determination of the potential giver and receiver initial sub-lines) 

6.1. If �P1
 > P2� then  

6.1.1. L1 is the potential giver line with N1 machines.  

6.1.2. L2 is the potential receiver line with N2 machines. 

6.1.3. Set �N1(1) = N1� and �L1(1) = L1�. 

6.1.4. Set �N2(1) = N2� and �L2(1) = L2�. 

6.2. If �P1
 < P2� then  

6.2.1. L1 is the potential receiver line with N1 machines. 

6.2.2. L2 is the potential giver line with N2 machines. 

6.2.3. Set �N1(1) = N2� and �L1(1) = L2�. 

6.2.4. Set �N2(1) = N1� and �L2(1) = L1�. 

6.3. Go to Step 7. 

Step 7:  (Determination of the potential buffer slot giver candidate sequence) 

7.1. Set �I =1�. 

7.2. While �I ≤ 



 −

−
1

ln2
1)(1)ln(N1 � do 

7.2.1. If �N1(I) is even� then  
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7.2.1.1. Decouple the line L1(I) into two sub-lines L1 (I,1) and L1(I,2) with 

N1 (I,1) and N1(I,2)  machines respectively from the buffer location N1(I), 

which is the  Ith division buffer location. 

7.2.2. If �N1(I) is odd� then  

7.2.2.1. Decouple the line L1(I) into two sub-lines L1(I,1) and L1(I,2) with 

N1(I,1) and N1(I,2)  machines respectively from the buffer location 

2
1)(I)(N1 +

, which is the  Ith division buffer location. 

7.2.3. Evaluate the production rates P1(I,1) and P1(I,2)  of the sub-lines L1(I,1) 

and L1(I,2) respectively. 

7.2.4. If �P1 (I,1) > P1(I,2)� then 

7.2.4.1. Set �N1(I+1) = N1 (I,1)� and �L1(I+1) = L1( I,1)�. 

7.2.5. If �P1(I,1) < P1(I,2)� then  

7.2.5.1. Set �N1(I+1) = N1 (I,2)� and �L1(I+1) = L1( I,2)�. 

7.2.6. If �P1(I,1) = P1(I,2)� then  

7.2.6.1. Set initial potential giver to the Ith division buffer location of line 

L1(I). 

7.2.6.2. Go to Step 8. 

7.2.7. Set �I = I +1�. 

7.3. If �N1(I) = 2� then  

7.3.1. Set initial potential giver to the buffer location of the line L1(I). 

7.3.2. Go to Step 8.  

7.4. If �N1(I) = 1� then 

7.4.1. Set initial potential giver to the buffer location, which is the Ith division 

buffer location just in front of the machine. 

7.4.2. Go to Step 8.  

Step 8:  (Determination of the potential buffer slot receiver candidate sequence) 

8.1. Set �J =1�. 

8.2. While �J ≤ 



 −

−
1

ln2
1)(1)ln(N2 � do 

8.2.1. If �N2(J) is even� then  
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8.2.1.1. Decouple the line L2(J) into two sub-lines L2(J,1) and L2 (J,2) with 

N2(J,1) and N2(J,2)  machines respectively from the buffer location N1(J), 

which is the  Jth division buffer location. 

8.2.2. If �N2(J) is odd� then  

8.2.2.1. Decouple the line L2(J) into two sub-lines L2(J,1) and L2(J,2) with 

N2(J,1) and N2(J,2)  machines respectively from the buffer location 

2
1)(J)(N2 +

, which is the  Jth division buffer location. 

8.2.3. Evaluate the production rates P2(J,1) and P2 (J,2)  of the sub-lines 

L2(J,1) and L2 (J,2) respectively. 

8.2.4. If �P2 (J,1) > P2 (J,2)� then 

8.2.4.1. Set �N2(J+1) = N2 (J,1)� and �L2(J+1) = L2( J,1)�. 

8.2.5. If �P2 (J,1) < P2 (J,2)� then 

8.2.5.1. Set �N2(J+1) = N2 (J,2)� and �L2(J+1) = L2( J,2)�. 

8.2.6. If �P2 (J,1) = P2 (J,2)� then 

8.2.6.1. Set initial potential receiver to the Jth division buffer location of 

the line L2(J). 

8.2.6.2. Go to Step 9. 

8.2.7. Set �J = J +1�. 

8.3. If �N2(J) = 2� then 

8.3.1. Set initial potential receiver to the buffer location of the line L2(J). 

8.3.2. Go to Step 8. 

8.4. If �N2(J) = 1� then 

8.4.1. Set initial potential giver to the buffer location, which is the Jth division 

buffer location just in front of the machine. 

8.4.2. Go to Step 8. 

Step 9:   (Determination of transfer locations) 

9.1. If �improvement occurs with transfer between existing potential giver and 

receiver� then 

9.1.1. Transfer the buffer slots from the potential giver to potential receiver 

until no improvement.  

9.1.2. Set �M = 0�. 

9.1.3. Go to Step 3. 
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9.2. Set �Jmax = J�. 

9.3. While �I > 0� and �no improvement with transfer between existing potential 

giver and receiver� do 

9.3.1. Set potential giver to the Ith division buffer location of the line L1(I). 

9.3.2. While �J > 0� and �no improvement with transfer between existing 

potential giver and receiver� do 

9.3.2.1. Set potential receiver to the Jth division buffer location of the line 

L2(J). 

9.3.2.2. If �improvement occurs with transfer between existing potential 

giver and receiver� then 

9.3.2.2.1. Transfer the buffer slots from the potential giver to potential 

receiver until no improvement. 

9.3.2.2.2. Set �M = 0�. 

9.3.2.2.3. Go to Step 3. 

9.3.2.3. If �no improvement with transfer between existing potential giver 

and receiver� then 

9.3.2.3.1. Set �J = J � 1�. 

9.3.3. If �J = 0� then 

9.3.3.1. Set potential receiver to the main division buffer location. 

9.3.3.2. If �improvement occurs with transfer between existing potential 

giver and receiver� then 

9.3.3.2.1. Transfer the buffer slots from the potential giver to potential 

receiver until no improvement. 

9.3.3.2.2. Set �M = 0�. 

9.3.3.2.3. Go to Step 3. 

9.3.3.3. If �no improvement with transfer between existing potential giver 

and receiver� then 

9.3.3.3.1. Set �J = Jmax�. 

9.3.3.3.2. Set potential receiver to the Jth division buffer location of the 

line L2(J). 

9.3.3.3.3. Set �I = I � 1�. 

9.4. If �I = 0� then 

9.4.1. Set potential giver to the main division buffer location. 
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9.4.2. While �J > 0� and �no improvement with transfer between existing 

potential giver and receiver� do 

9.4.2.1. Set potential receiver to the Jth division buffer location of the line 

L2(J). 

9.4.2.2. If �improvement occurs with transfer between existing potential 

giver and receiver� then 

9.4.2.2.1. Transfer the buffer slots from the potential giver to potential 

receiver until no improvement. 

9.4.2.2.2. Set �M = 0�. 

9.4.2.2.3. Go to Step 3. 

9.4.2.3. If �no improvement with transfer between existing potential giver 

and receiver� then 

9.4.2.3.1. Set �J = J � 1�. 

9.4.3. Set �M = M + 1� 

9.4.4. If �k ≥ 0� then 

9.4.4.1. If �N is even� and �k = 1)2
N( − � then 

9.4.4.1.1. Set �k = 0�. 

9.4.4.1.2. Return to Step 3. 

9.4.4.2. Set �k = - (k+1)�. 

9.4.4.3. Return to Step 3. 

9.4.5. If �k < 0� then 

9.4.5.1. If �N is odd� and �k = - ( 1
2

1)(N −+ )� then 

9.4.5.1.1. Set �k = 0�. 

9.4.5.1.2. Return to Step 3. 

9.4.5.2. Set �k = - k�. 

9.4.5.3. Return to Step 3. 
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A.2. General Model frame for the simulation of the production lines in 

SIMAN V 

BEGIN; 

CREATE; 

ASSIGN:M=ILK+1; 

ENTRY  QUEUE,INITIAL;  

               SCAN:NQ(M-1).EQ.0; 

               DUPLICATE:1,ENTRY; 

               ROUTE:0,M; 

STATION,STATIONSET; 

QUEUE,M-1; 

SCAN:(NQ(M+numstat).EQ.0).and.(NR(M).EQ.0).and.(MR(M).NE.0); 

SEIZE:M; 

ASSIGN:PROCESSTIME(M)=1/PROCESS_RATE(M): 

               FAILTIME(M)=EXPO(1/FAILURE_RATE(M),M-1); 

REPAIR IF:(MR(M).EQ.0).AND.(NQ(M+1+(2*numstat)).EQ.1); 

                   DELAY:EXPO(1/RERAIR_RATE(M),M-1); 

                   ALTER:M,1; 

                   DISPOSE; 

               ENDIF; 

WHILE:PROCESSTIME(M).GT.FAILTIME(M); 

      DELAY:FAILTIME(M); 

      RELEASE:M; 

      ALTER:M,-1; 

      ASSIGN:PROCESSTIME(M)=PROCESSTIME(M)-FAILTIME(M); 

      ASSIGN:FAILTIME(M)=EXPO(1/FAILURE_RATE(M),M-1); 

      DUPLICATE:1,REPAIR; 

      QUEUE,M+1+(2*numstat); 

      SEIZE:M; 

ENDWHILE; 
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IF:PROCESSTIME(M).LE.FAILTIME(M); 

    DELAY:PROCESSTIME(M); 

ENDIF; 

RELEASE:M; 

IF:BUFFERCAPACITY(M).EQ.0; 

    QUEUE,M+numstat; 

    SCAN:(NR(M+1).EQ.0).and.(NQ(M+1+numstat).EQ.0).and.(MR(M+1).NE.0); 

ENDIF; 

IF:BUFFERCAPACITY(M).EQ.1; 

    IF:NQ(M).EQ.1; 

        ASSIGN:HESITATE(M)=0.0000000001; 

    ELSEIF:NQ(M).EQ.0; 

        ASSIGN:HESITATE(M)=0; 

   ENDIF; 

   QUEUE,M+numstat; 

   SCAN:(NQ(M).LT.BUFFERCAPACITY(M)); 

   DELAY:HESITATE(M); 

ENDIF; 

IF:BUFFERCAPACITY(M).GT.1; 

    QUEUE,M+numstat; 

    SCAN:(NQ(M).LT.BUFFERCAPACITY(M)); 

ENDIF; 

IF:M.EQ.MEMBER(STATIONSET,SON+1); 

    ROUTE:0,EXITSYSTEM; 

ENDIF; 

ROUTE:0,M+1; 

STATION,EXITSYSTEM; 

ASSIGN:PART=PART+1: 

                RATE=PART/TNOW; 

IF:PART.GT.WARMUP; 

    ASSIGN:CSUM=CSUM+RATE; 

ENDIF; 

IF:PART.EQ.MC(1); 

    WRITE,AVGRATE:CSUM/(PART-WARMUP); 

ENDIF; 
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COUNT:OUTPUT,1; 

DISPOSE; 

END; 
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A.3. Experimental frame of the production line given in Seong 

et.al.[35] as Case 9 for the simulation in SIMAN V 
 

BEGIN;THESIS,CASE 9,SEONG ET.AL.[35]; 

VARIABLES:BUFFERCAPACITY(11),1000,1,5,4,0,0,0,0,0,0,1000: 

          FAILURE_RATE(12),1000,0.07,0.11,0.49,0.19,0,0,0,0,0,0,1000: 

          REPAIR_RATE(12),1000,0.17,0.37,0.78,0.5,0,0,0,0,0,0,1000: 

          PROCESS_RATE(12),1000,3.7,1.5,1.1,3,0,0,0,0,0,0,1000: 

          PROCESSTIME(12):FAILTIME(12):HESITATE(12): 

          PART:RATE:CSUM: 

          numstat,10:WARMUP,5000: 

          ILK,1: SON,4; 

STATIONS:MC0:MC1:MC2:MC3:MC4:MC5:MC6: 

                    MC7:MC8:MC9:MC10:EXITSYSTEM; 

SETS:STATIONSET,MC0,MC1,MC2,MC3,MC4,MC5,MC6,MC7,MC8,MC9,MC10; 

QUEUES:BUFFER0:BUFFER1:BUFFER2:BUFFER3:BUFFER4:BUFFER5: 

                 BUFFER6:BUFFER7:BUFFER8:BUFFER9:BUFFER10: 

                 DUMMY1:DUMMY2:DUMMY3:DUMMY4:DUMMY5: 

                 DUMMY6:DUMMY7:DUMMY8:DUMMY9:DUMMY10: 

                 RESUME0:RESUME1:RESUME2:RESUME3:RESUME4:RESUME5: 

                 RESUME6:RESUME7:RESUME8:RESUME9:RESUME10:INITIAL; 

RESOURCES:MACHINE0:MACHINE1:MACHINE2:MACHINE3: 

                        MACHINE4:MACHINE5:MACHINE6:MACHINE7: 

                        MACHINE8:MACHINE9:MACHINE10; 

FILES:AVGRATE,"out.txt",SEQ,FOR; 

COUNTERS:OUTPUT,45000,YES; 

REPLICATE,10; 

END; 
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A.5. Throughput values for all feasible allocations in the sample problem given as Case 9 in Seong et. al.[35] 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table.A.5. Throughput values for all feasible allocations in the sample problem given as Case 9 in Seong et. al.[35] 

BUFFER  BUFFER BUFFER   PRODUCTION 
LOCATION #1 LOCATION #2 LOCATION #3  RATE 

0 7 3  0.6531318 
0 8 2  0.6516116 
1 6 3  0.6514968 
0 6 4  0.6513359 
1 7 2  0.6506884 
2 6 2  0.6491286 
2 5 3  0.6490498 
1 5 4  0.6490348 
0 5 5  0.6474089 
3 5 2  0.6466561 
0 9 1  0.6459260 
2 4 4  0.6457656 
3 4 3  0.6456720 
1 8 1  0.6455040 
2 7 1  0.6445656 
1 4 5  0.6443031 
4 4 2  0.6430809 
3 6 1  0.6430230 
0 4 6  0.6419335 
3 3 4  0.6406850 
4 5 1  0.6403728 
4 3 3  0.6403363 
2 3 5  0.6393603 
5 3 2  0.6379511 
5 4 1  0.6369806 
1 3 6  0.6368844 
0 10 0  0.6336940 
0 3 7  0.6336293 
1 9 0  0.6335532 
2 8 0  0.6329160 
4 2 4  0.6327535 
5 2 3  0.6324114 
3 7 0  0.6321167 
6 3 1  0.6318294 
3 2 5  0.6315741 
4 6 0  0.6304804 
6 2 2  0.6299246 
2 2 6  0.6294050 
5 5 0  0.6281393 
1 2 7  0.6262134 
6 4 0  0.6246663 
7 2 1  0.6237570 
0 2 8  0.6220849 
5 1 4  0.6203103 
6 1 3  0.6198679 
7 3 0  0.6195772 
4 1 5  0.6193777 
7 1 2  0.6171390 
3 1 6  0.6170826 
2 1 7  0.6146056 
8 2 0  0.6119668 
8 1 1  0.6113383 
1 1 8  0.6106461 
0 1 9  0.6056569 
6 0 4  0.6005731 
7 0 3  0.6000120 
9 1 0  0.5999668 
5 0 5  0.5998935 
4 0 6  0.5981102 
8 0 2  0.5975358 
3 0 7  0.5956128 
2 0 8  0.5921852 
9 0 1  0.5920033 
1 0 9  0.5875122 
0 0 10  0.5815684 

10 0 0  0.5810414 
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A.6. Processing, failure and repair rates for production lines in 
Seong et.al.[35] 

 
 CASE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
 N 3 4 5 10 5 5 8 9 4 4 5 5 5 6 8 9 10 10 
 C 15 30 12 47 110 200 110 155 10 30 10 15 115 130 125 200 310 315 

                                       

  λ1 1 1 1 1 1 1 1 1 3,7 3 1,2 2,8 2,6 3 1 2,5 2,7 2,4 

MC#1 µ1 0 0,4 0,2 0 0,1 0,1 0 0,3 0,1 0,4 0,1 0,3 0,1 0,3 0,3 0,2 0,1 0,4 
  r1 0,1 0,7 0,7 0 0,3 0,2 1 0,7 0,2 0,5 0,3 0,6 0,4 0,2 0,5 0,7 0,8 0,5 

  λ2 1 1 1 1 1 1 1 1 1,5 1 1 1,7 3 1 3,6 1,5 1,8 1,7 
MC#2 µ2 0 0,2 0,2 0 0,1 0,2 0,1 0,2 0,1 0,3 0,3 0,4 0,2 0,5 0,2 0,1 0,2 0,2 

  r2 0,1 0,8 0,7 0 0,4 0,3 0,9 0,6 0,4 0,6 0,5 0,8 0,4 0,5 0,5 0,6 0,3 0,6 
  λ3 1 1 1 1 1 1 1 1 1,1 2 3 2,5 3,4 1,2 1,7 2,8 2,1 2,8 

MC#3 µ3 0 0,2 0,2 0 0,2 0,3 0,1 0,4 0,5 0,4 0,5 0,5 0,2 0,1 0,2 0,3 0,3 0,3 
  r3 0,1 0,7 0,7 0 0,4 0,4 0,9 0,7 0,8 0,5 0,2 0,8 0,6 0,3 0,6 0,8 0,5 0,5 

  λ4   1 1 1 1 1 1 1 3 3,6 2 3,4 4,7 1,8 1,4 3,6 2,3 2,2 

MC#4 µ4   0,1 0,2 0 0,2 0,2 0 0,2 0,2 0,5 0,4 0,4 0,2 0,2 0,3 0,2 0,2 0,4 
  r4   0,6 0,7 0 0,5 0,4 1 0,5 0,5 0,4 0,3 0,9 0,5 0,1 0,5 0,8 0,5 0,5 

  λ5     1 1 1 1 1 1     1,8 1,9 1,5 1,5 2,8 2,1 1,6 2,1 
MC#5 µ5     0,2 0 0,2 0,1 0,2 0,2     0,2 0,1 0,1 0,3 0,2 0,1 0,3 0,3 

  r5     0,7 0 0,4 0,3 0,7 0,6     0,1 0,7 0,3 0,2 0,5 0,7 0,8 0,5 
  λ6       1     1 1           2 2,7 1,9 2,7 2,5 

MC#6 µ6       0     0,2 0,1           0,4 0,4 0,1 0,3 0,4 
  r6       0     0,6 0,5           0,3 0,5 0,6 0,7 0,4 

  λ7       1     1 1             1,6 2,7 1,5 1,1 
MC#7 µ7       0     0,3 0,4             0,3 0,3 0,1 0,3 

  r7       0     0,5 0,7             0,7 0,8 0,6 0,5 
  λ8       1     1 1             1,2 3 1,5 1,3 

MC#8 µ8       0     0,1 0,3             0,2 0,2 0,2 0,3 

  r8       0     0,9 0,8             0,4 0,5 0,6 0,5 
  λ9       1       1               2 1,2 1,6 

MC#9 µ9       0       0,2               0,3 0,1 0,3 
  r9       0       0,5               0,6 0,6 0,5 

  Λ10       1                         2,6 0,8 
MC#10 µ10       0                         0,3 0,2 

  R10       0                         0,4 0,5 

 
Table A.6. Processing, failure and repair rates for production lines in Seong et.al.[35] 

         λ i: processing rate for machine i   

         µi: failure rate for machine i 

         ri: repair rate for machine i 

         C: total fixed number of buffer slots that will be allocated 

         N: number of machines in the production line 

NOTE: Processing times are deterministic for the cases from Case#1 to Case#8 

        Processing times are exponential for the cases from Case# 9 to Case#18 

        Failure and Repair times are all exponential for all cases 
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A.7. Optimal allocations with estimated throughput values via 
simulation for SEVA, Non-SEVA and LIBA 

Table A.7. Optimal allocations with estimated throughput values via simulation for 
SEVA, Non-SEVA and LIBA 

  
 A: SEVA 
 B: Non-SEVA with both big and small steps 
 C: Non-SEVA with only small steps 
 LIBA 1: LIBA with initial allocation determined in Song et.al.[35] 
 LIBA 2: LIBA with initial allocation determined by its original procedure 
 
 NOTE: SEVA was not applied to Case 14 

CASE N K METHOD ALLOCATION THROUGHPUT ITERATION 
      A (7,8) 0.5806027 8 
      B (7,8) 0.5806027 8 
1 3 15 C (7,8) 0.5806027 8 
      LIBA 1 (7,8) 0.5806027 7 
      LIBA 2 (7,8) 0.5806027 4 
      A (20,8,2) 0.6646476 48 
      B (19,9,2) 0.6647446 25 
2 4 30 C (20,8,2) 0.6646476 29 
      LIBA 1 (19,11,0) 0.6631803 4 
      LIBA 2 (18,9,3) 0.6648211 15 
      A (2,4,4,2) 0.6458731 34 
      B (2,4,4,2) 0.6458731 25 
3 5 12 C (2,4,4,2) 0.6458731 30 
      LIBA 1 (3,3,4,2) 0.6459400 19 
      LIBA 2 (2,4,4,2) 0.6458731 17 
      A (0,3,8,8,9,8,8,3,0) 0.1756255 333 
      B (0,5,5,10,10,5,5,5,2) 0.1752594 41 
4 10 47 C (0,4,7,8,9,8,6,4,1) 0.1757494 58 
      LIBA 1 (0,4,8,8,8,9,5,5,0) 0.1765216 407 
      LIBA 2 (0,5,6,9,8,9,4,6,0) 0.1764558 274 
      A (22,27,38,23) 0.6494134 141 
      B (22,28,36,24) 0.6497027 36 
5 5 110 C (22,28,36,24) 0.6497027 43 
      LIBA 1 (19,35,34,22) 0.6497500 77 
      LIBA 2 (23,30,35,22) 0.6498637 81 
      A (0,7,3) 0.6531318 26 
      B (0,6,4) 0.6513359 16 
9 4 10 C (0,7,3) 0.6531318 24 
      LIBA 1 (0,7,3) 0.6531318 8 
      LIBA 2 (0,7,3) 0.6531318 5 
      A (11,16,3) 0.6380394 53 
      B (11,16,3) 0.6380394 37 

10 4 30 C (11,16,3) 0.6380394 24 
      LIBA 1 (10,18,2) 0.6375757 23 
      LIBA 2 (10,16,4) 0.6381569 28 
      A (1,3,4,2) 0.3479317 31 
      B (1,3,4,2) 0.3479317 48 

11 5 10 C (1,3,4,2) 0.3479317 48 
      LIBA 1 (1,3,4,2) 0.3479317 24 
      LIBA 2 (1,3,4,2) 0.3479317 15 
      A (4,6,3,2) 0.9719334 74 
      B (4,6,4,1) 0.9708824 25 

12 5 15 C (4,6,4,1) 0.9708824 25 
      LIBA 1 (4,7,4,0) 0.9630241 8 
      LIBA 2 (4,7,3,1) 0.9727568 14 
      B (26,45,26,16,17) 0.4611404 58 

14 6 130 C (23,38,47,14,8) 0.4448229 83 
      LIBA 1 (15,36,23,42,14) 0.4793024 177 
      LIBA 2 (15,31,28,42,14) 0.4794121 178 
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  A.8. Efficiency evaluation of initial allocation procedure of LIBA 

CASE N K METHOD ALLOCATION THROUGHPUT PERCENTAGE 
      A (7,8) 0.5806027 100 
      B (7,8) 0.5806027 100 
1 3 15 C (7,8) 0.5806027 100 
      initial (7,8) 0.5806027 - 
      A (20,8,2) 0.6646476 99.81 
      B (19,9,2) 0.6647446 99.79 
2 4 30 C (20,8,2) 0.6646476 99.81 
      initial (11,10,9) 0.6633516 - 
      A (2,4,4,2) 0.6458731 99.89 
      B (2,4,4,2) 0.6458731 99.89 
3 5 12 C (2,4,4,2) 0.6458731 99.89 
      initial (3,3,3,3) 0.6451765 - 
      A (0,3,8,8,9,8,8,3,0) 0.1756255 98.23 
      B (0,5,5,10,10,5,5,5,2) 0.1752594 98.43 
4 10 47 C (0,4,7,8,9,8,6,4,1) 0.1757494 98.16 
      initial (5,5,5,5,6,6,5,5,5) 0.1725131 - 
      A (22,27,38,23) 0.6494134 100.03 
      B (22,28,36,24) 0.6497027 99.98 
5 5 110 C (22,28,36,24) 0.6497027 99.98 
      initial (27,27,28,28) 0.6495863 - 
      A (0,7,3) 0.6531318 99.38 
      B (0,6,4) 0.6513359 99.65 
9 4 10 C (0,7,3) 0.6531318 99.38 
      initial (2,5,3) 0.6490498 - 
      A (11,16,3) 0.6380394 99.67 
      B (11,16,3) 0.6380394 99.67 

10 4 30 C (11,16,3) 0.6380394 99.67 
      initial (10,12,8) 0.6359135 - 
      A (1,3,4,2) 0.3479317 99.42 
      B (1,3,4,2) 0.3479317 99.42 

11 5 10 C (1,3,4,2) 0.3479317 99.42 
      initial (2,3,2,3) 0.3459187 - 
      A (4,6,3,2) 0.9719334 99.08 
      B (4,6,4,1) 0.9708824 99.18 

12 5 15 C (4,6,4,1) 0.9708824 99.18 
      initial (4,5,3,3) 0.9629590 - 
      B (26,45,26,16,17) 0.4611404 102.99 

14 6 130 C (23,38,47,14,8) 0.4448229 106.77 
      initial (22,27,25,31,25) 0.4749513 - 

 

Table A.8. Efficiency evaluation of initial allocation procedure of LIBA 

      A: SEVA 

      B: Non-SEVA with both big and small steps 

      C: Non-SEVA with only small steps 

      Initial:  Initial allocation determined by our own procedure 

      N: Number of machines in the production line 

      K: Total fixed number of buffer slots that are to be allocated 

     

   NOTE: SEVA was not applied to Case 14 


