

IMPLEMENTATION OF A TOPIC MAP DATA
MODEL FOR A WEB-BASED INFORMATION

RESOURCE

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCE

OF BİLKENT UNIVERSITY

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Mustafa Kutlutürk

August, 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52939582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Özgür Ulusoy (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. İbrahim Körpeoğlu

I certify that I have read this thesis and that in my opinion it is fully adequate, in

scope and in quality, as a thesis for the degree of Master of Science.

 Assist. Prof. Dr. Uğur Güdükbay

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

iii

ABSTRACT

IMPLEMENTATION OF A TOPIC MAP DATA
MODEL FOR A WEB-BASED INFORMATION

RESOURCE

Mustafa Kutlutürk
M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Özgür Ulusoy
August, 2002

The Web has become a vast information resource in recent years. Millions of

people use the Web on a regular basis and the number is increasing rapidly. The

Web is the largest center in the world presenting almost all of the social,

economical, educational, etc. activities and anyone from all over the word can

visit this huge place even though he does not have to stand up from his sit. Due to

its hugeness, finding desired data on the Web in a timely and cost effective way is

a problem of wide interest. In the last several years, many search engines have

been created to help Web users find desired information. However, most of these

search engines employ topic-independent search methods that rely heavily on

keyword-based approaches where the users are presented with a lot of

unnecessary search results.

In this thesis, we present a data model using topic maps standards for Web-

based information resources. In this model, topics, topic associations and topic

occurrences (called as topic metalinks and topic sources in this study) are the

fundamental concepts. In fact, the presented model is a metadata model that

describes the content of the Web-based information resource and creates virtual

knowledge maps over the modeled information resource. Thus, semantic indexing

of the Web-based information resource is performed for allowing efficient search

and querying the data on the resource.

iv

Additionally, we employ full text indexing in the presented model by using a

widely accepted method that is inverted file index. Due to the rapid increase of

data, the dynamic update of the inverted file index during the addition of new

documents is inevitable. We have implemented an efficient dynamic update

scheme in the presented model for the employed inverted file index method.

The presented topic map data model provides combining the powers of both

keyword-based search and topic-centric search methods. We also provide a

prototype search engine verifying that our presented model contributes very much

to the problem of efficient and effective search and querying of the Web-based

information resources.

Keywords: Metadata, XML, topic maps, Web-based information resource, Web

search, inverted file index, dynamic update, Web data modeling, semantic

indexing.

v

ÖZET

WEB TABANLI BİLGİ KAYNAKLARI İÇİN
BİR KAVRAM HARİTASI VERİ MODELİ

GERÇEKLEŞTİRİMİ

Mustafa Kutlutürk
Bilgisayar Mühendisliği, Yüksek Lisans
Tez Yöneticisi: Doç. Dr. Özgür Ulusoy

Ağustos, 2002

Web son yıllarda yoğun bir bilgi kaynağı olmuştur. Milyonlarca insan düzenli

olarak Web’i kullanmaktadır ve kullanıcı sayısı hızla artmaktadır. Web hemen

hemen tüm sosyal, ekonomik, eğitimsel v.b. alanlardaki uğraşları sunan

dünyadaki en geniş bilgi merkezidir ve dünyanın herhangibir yerinden bir kişi bu

büyük merkezi yerinden kalkmak zorunda bile kalmadan ziyaret edebilir. Çok

büyük olmasından dolayı, istenilen veriye Web’de zaman ve maliyet açısından

verimli bir yolla erişebilmek, önemli bir araştırma konusudur. Web kullanıcılarına

istedikleri bilgiye erişebilme konusunda yardımcı olmak için, son birkaç yılda bir

çok arama motoru üretilmiştir. Bununla beraber, bu arama motorlarının birçoğu

kavram bağımsız arama metodları kullanmaktadır ve kullanıcılara birçok gereksiz

arama sonuçları sunan anahtar kelime tabanlı yaklaşımlara dayanmaktadır.

Bu tezde, Web tabanlı bilgi kaynakları için kavram haritaları standartlarını

kullanan bir veri modeli sunulmaktadır. Bu modelde, kavramlar, kavram ilişkileri

ve kavram oluşumları (bu çalışmada kavram metalinkleri ve kavram kaynakları

olarak anılacaklar) temel unsurlardır. Aslında, sunulan model bir “metaveri”

model olup Web tabanlı bilgi kaynağının içeriğini tanımlayarak modellenen bilgi

kaynağı üzerinde “gerçek bilgi haritaları” üretmektedir. Böylece, verimli bir veri

araması ve sorgulaması için Web tabanlı bilgi kaynağının kavramsal endeksi

oluşturulur.

vi

Ayrıca geniş kabul gören ters çevrilmiş dosya endeksi kullanılarak, sunulan

modelde tam kelime endeksi de uygulanmıştır. Verinin hızlı artışına bağlı olarak,

yeni dökümanlar eklenmesi ve ters çevrilmiş dosya endeksinin dinamik olarak

güncellenmesi kaçınılmazdır. Sunulan modelde, kullanılan ters çevrilmiş dosya

endeksi için verimli bir dinamik güncelleme metodu uygulanmıştır.

Sunulan kavram haritası veri modeli, anahtar kelime tabanlı arama ve kavram

merkezli arama metodlarının güçlerini birleştirmektedir. Sunulan modelin Web

tabanlı bilgi kaynaklarının verimli ve etkin bir şekilde aranması ve sorgulanması

problemine büyük katkıda bulunduğunu gösteren bir prototip arama motoru da

sunulmaktadır.

Anahtar sözcükler: Metadata, XML, Web tabanlı bilgi kaynağı, Web araması, ters

çevrilmiş dosya endeksi, dinamik güncelleme, Web veri modellemesi, kavramsal

endeksleme.

vii

Eşime ve Kızıma.

viii

ACKNOWLEDGEMENTS

I would like to express my special thanks and gratitude to Assoc. Prof. Dr.

Özgür Ulusoy, from whom I have learned a lot, due to his supervision,

suggestions, and support. I would like especially thank to him for his

understanding and patience in the critical moments.

I am also indebted to Assist. Prof. Dr. İbrahim Körpeoğlu and Assist. Prof.

Dr. Uğur Güdükbay for showing keen interest to the subject matter and accepting

to read and review this thesis.

I would like to especially thank to my wife and my parents for their morale

support and for many things.

I am grateful to all the honorable faculty members of the department, who

actually played an important role in my life to reaching the place where I am here

today.

I would like to individually thank all my colleagues and dear friends for their

help and support especially to İsmail Sengör Altıngövde, Barla Cambazoğlu and

Ayşe Selma Özel.

I would also like to thank all my commanders, especially Alb. Levent

Altuncu, Bnb. Kenan Dinç and Bnb. Nuri Boyacı, Yzb. Can Güldüren, Yzb Ferhat

Gündoğdu in YBS headquarters, for their motivation, advices and supports.

ix

Contents

1 Introduction ... 1

2 Background and Related Work ... 6

2.1 Turning the Web into Database: XML... 6

2.2 Metadata: Data about Data ... 7

2.2.1 Semantic Web... 8

2.2.2 Resource Description Framework (RDF)................................... 10

2.2.3 Topic Maps... 12

2.3 Indexing Documents on the Web ...16

2.3.1 Overview of Vector-Space Retrieval Model18

2.3.2 Inverted File Index ...19

2.3.3 Dynamic update of Inverted Indexes.. 20

2.3.4 Citation Indexing.. 22

2.4 DBLP: Computer Science Bibliography .. 24

3 Topic Map Data Model ... 26

3.1 Structure of DBLP Data ... 26

3.2 The Presented Data Model ... 30

x

3.2.1 Topics ... 30

3.2.2 Topic Sources ... 33

3.2.3 Topic Metalinks.. 35

3.3 Inverted File Index ... 39

3.4 A Complete Example ... 44

4 Implementation Details ... 49

4.1 Implementation platform.. 49

4.2 Initial Collection... 50

4.2.1 Construction of Inverted File Index ... 50

4.2.2 RelatedToPapers and PrerequisitePapers Metalinks 55

4.3 Dynamic Sets.. 59

4.3.1 Dynamic Update of Inverted File ... 60

4.3.2 RelatedToPapers and PrerequisitePapers Metalinks 64

5 Experimental Results .. 67

5.1 Employed Dynamic Update Scheme.. 67

5.2 Updates on the Topic Map Database.. 73

6 A Prototype Search Engine .. 77

6.1 Outlines of Visual Interface.. 77

6.2 Search Process with an Illustration .. 79

7 Conclusion and Future Work... 84

Bibliography... 87

xi

Appendicies .. 91

A DTD for DBLP Data.. 91

B NLoopSim-SVT Algorithm.. 96

xii

List of Figures

Figure 2.1: A Sample DBLP bibliographic record ..26

Figure 3.1: Part of DTD for DBLP data ..28

Figure 3.2: A fragment of DBLP data file ...30

Figure 3.3: Realization of index organization in initial dataset.......................43

Figure 3.4: Realization of index organization after dynamic update...............44

Figure 3.5: The XML file containing DBLP bibliographic entries45

Figure 3.6: Mapping M ..46

Figure 4.1: Snapshot of the in-memory wordlist after the first pass52

Figure 4.2: The view of in-memory wordlist and its pointers54

Figure 4.3: Visualization of BufR and InvertedListR at any time....................57

Figure 5.1: Cumulative number of new terms after each dynamic set69

Figure 5.2: The size of the old_inverted file after each dynamic set70

Figure 5.3: The fraction of terms in each category per dynamic set................72

Figure 5.4: The cumulative time needed to build final index..........................72

Figure 5.5: Update time per posting in each dynamic set................................73

xiii

Figure 6.1: The snapshot of the search page for the example.........................82

Figure 6.2: The snapshot of the result page for the example83

Figure 6.3: The snapshot of the last page for the example84

xiv

List of Tables

Table 3.1: Topic types for the DBLP bibliography data 33

Table 3.2: Metalink types for the DBLP bibliography data 37

Table 3.3: Instances of topics .. 47

Table 3.4: Instances of metalinks .. 48

Table 3.5: Instances of sources.. 49

Table 3.6: Instances of tsources .. 49

Table 4.1: Initial DBLP dataset ... 51

Table 4.2: Extracted topics, sources and metalinks from the initial collection.

... 59

Table 4.3: Characteristics of the inverted and index files................................ 60

Table 4.4: Properties of title collections in Dynamic Sets 61

Table 5.1: Characteristics of the extracted instances from each dynamic set. 75

Table 5.2: The details of the extracted metalink instances from each dynamic

set...………………………………………………………………76

1

Chapter 1

Introduction

The amount of information available on line has been doubling in size every six

months for the last three years. Due to this enormous growth, the World Wide

Web (WWW) has grown to encompass diverse information resources such as

personal home pages, online digital libraries, products and service catalogues, and

research publications, etc. On the other hand, the ability to search and retrieve

information from the Web efficiently and effectively is an enabling technology for

realizing its full potential. Unfortunately, the sheer volumes of data on these Web-

based information resources are not in a fixed format whereas the textual data is

riddle and the resources usually contain non-textual multimedia data. Thus, there

is a lack of a strict schema characterizing data on the Web.

XML-the eXtensible Markup Language- [1], adopted as a standard by the

Word Wide Web Consortium (W3C), is the ideal format for structuring the

information and enabling reuse and application independence. Once it becomes

pervasive, it is not hard to imagine that many information resources will structure

their external view as a repository of XML data [43]. But when it comes to

retrieving information, XML on its own can only provide part of the solution [16].

Users are not interested in receiving megabytes of raw information as the result of

a query; they want fast access to selected information in a given context; they look

CHAPTER 1. INTRODUCTION 2

for intelligent navigation in the information pool while exploring the subject of

their interest.

However, most of the traditional Web search engines employ topic-

independent search methods that rely heavily on matching terms in a user’s

natural language query with terms appearing in a document (i.e., data-centric)

[44]. So, they do not work as expected and are insufficient to improve retrieval

effectiveness. Different approaches are under study to overcome the poor

efficiency of Web search engines; one of those is the adoption of a metadata

format and inclusion of metadata on that format in Web documents to describe the

content. This means that, metadata may be a candidate together with other sources

of evidence, such as keyword extracted from document title, and physical and

logical document structures, to index and search Web-based information resources

[45].

The topics maps standard (ISO 13250) [46] is an effort to describe a

metadata model for describing the content of the information resources. A Web-

based information resource, using metadata extracted from it by some techniques,

can be modeled in terms of topics, relationships among topics (topic metalinks),

and topic occurrences (topic sources) within information resources. This emerging

standard provides interchangeable hypertext navigation layer above diverse Web-

based information resources, and enable us to create virtual knowledge maps for

the Web, our intranets, or even print materials. Thus, topic maps allow Web users

to benefit from semantic data modeling that may be employed in a variety of

ways, one of which is to improve the performance of search engines.

In the last several years, many search engines have been created to help Web

users find desired information. Basically, two types of search engines exist:

General-purpose search engines and special-purpose search engines [25]. The

former ones aim at providing the capability to search all pages on the Web

whereas the latter ones focus on documents in confined domains such as

documents in an organization or in a specific subject area. Whatever the type,

CHAPTER 1. INTRODUCTION 3

each search engine has text database that is defined by the set of documents to be

searched and an index for all documents in the database is created in advance.

An indexing structure used by many IR systems is the inverted file index. An

inverted file index consists of an inverted list for each term that appears in the

document collection. A term’s inverted list stores a document identifier and a term

weight for every document in which the term appears. As a rule of thumb, the size

of inverted lists for a full text index is roughly the same size as the text document

database itself [32]. When adding new documents, rebuilding the inverted file and

indexing the entire collection from scratch is expensive in terms of time and disk

space. Therefore, dynamic update of inverted file index should be handled so that

the cost of the update can be proportional to the size of the new documents being

added not to the size of the database.

DBLP (Digital Bibliography & Library project), as an example of Web-based

information resource, is a WWW server with bibliographic information on major

journals and proceedings on computer science [37]. In DBLP, the table of

contents of journals and proceedings may be browsed like in a traditional library.

Browsing is complemented by search engines for author names and titles. In fact,

these search engines are of special-purpose type search engine. The search

mechanism employed in these search engines is very poor in efficiency and

effectiveness. It uses boolean search scheme for titles whereas the author search is

based on a simple sub-string test.

In this thesis, our main aim is modeling a Web-based information resource

with topic maps standard by providing automated topic and metalink extraction

from that resource for querying the modeled information resource effectively. In

this sense, we present a topic map data model for DBLP bibliographic information

in which we define the titles, authors, journals and conferences as topics (e.g.,

“PaperName”, “AuthorName”, “JourConfOrg”, etc.), the URL of the publications

as topic sources, and the relation between these topics as topic metalinks (e.g.,

CHAPTER 1. INTRODUCTION 4

AuthorOf, AuthoredBy, JourConfOf, JourConfPapers, etc.). Thus, we build a

Web-based topic map database of DBLP.

Since the DBLP bibliography collection is presented in a semi-structured

format (as XML documents), extraction of topics, sources and metalinks from

DBLP bibliography is easy and straightforward except RelatedToPapers and

PrerequisitePapers metaliks. These two metalink types can be determined by

using the cosine similarity quotient of the titles. So, full text indexing should be

employed for the titles of the publications. We have implemented inverted file

index for this purpose and employed a dynamic update mechanism for adding new

bibliographic entries without having to re-index the entire collection. We do not

claim that the employed dynamic update scheme is a new and very efficient one in

the field of inverted file indexing. However, it yields good performance both in

time and disk space requirements. Finally, we have developed a prototype search

engine for querying the bibliographic entries of DBLP.

As a result, main contributions of this thesis to the solution of the problem of

effective Web search and querying are as follows:

• The topic map data model provided for a Web-based information

resource (i.e., DBLP) is a semantic data model describing the contents of

the documents (i.e., DBLP bibliography collection) in terms of topics

and topic associations (i.e., topic metalinks), and therefore it constitutes

a metadata model.

• In order to allow keyword-based searching and extraction of some

metalinks (i.e., RelatedToPapers and PrerequisitePapers) in a more

efficient way, we have implemented inverted file index for the titles and

authors, and we have employed a dynamic update scheme for indexing

the new bibliographic entries without having to re-index the entire

collection.

CHAPTER 1. INTRODUCTION 5

• Finally, we have developed a prototype search engine in which a user

can search the publications with the highest similarity to some query

terms. In addition, a complementary search is provided by using the

specified topics. Thus, the presented topic map data model provides

consuming the power of both traditional indexing and knowledge-based

indexing together.

In the second chapter of this thesis, we first briefly summarize XML, RDF

and topic maps standard. Then, we discuss the inverted file index and the earlier

works in the literature that implement full text indexing by using inverted file

index. Also, the dynamic update schemes for inverted file indexing in these works

are presented. The outlines of an automatic citation indexing system, CiteSeer are

given. Finally, the specific Web-based information resource exploited in this

thesis, DBLP is discussed.

In chapter three, firstly the structure of DBLP data is given, and then the

presented topic map data model is described in details. After that, the

implemented inverted file index method and the employed dynamic update

scheme are explained. Then, a complete example is presented for a better

understanding.

In the fourth chapter, the details of implementation applied on initial

collection and dynamic sets are presented one by one. Experimental results for

both the employed dynamic update scheme and the presented data model are

reported in chapter five. In the sixth chapter, the design issues and the search

process of the search engine, developed as a prototype implementation, are given.

Finally, in the seventh chapter we conclude our work.

6

Chapter 2

Background and Related Work

2.1 Turning the Web into Database: XML
XML-the eXtensible Markup Language- [1] has recently emerged as a new

standard for data representation and exchange on the Internet, recommended by

the World Wide Web Consortium (W3C). The basic ideas underlying XML are

very simple: tags on the data elements identify the meaning of the data, rather

than, e.g., specifying how the data should be formatted (as in HTML), and

relationships between data elements are provided via simple nesting and

references [2]. Since it is designed for data representation, XML is simple, easily

parsed, and self-describing. Web data sources have evolved from small collection

of HTML pages into complex platforms for distributed data access and

application development. In this sense, XML promises to impose itself as a more

appropriate format for this new breed of Web sites [3]. Furthermore it brings the

data on the Web closer to databases, thereby making it possible to pose SQL-like

queries and get much better result than from today’s Web search engines. In

contrast to HTML tags that do not describe the content semantics of HTML

documents, as it is stated in [4], XML allows Web document designers to specify

the semantics of data in XML documents.

CHAPTER 2. BACKGROUND AND RELATED WORK 7

2.2 Metadata: Data about Data

Metadata, as stated in [5], is a recent coinage though not a recent concept. It can

be defined as data about data: information that communicates the meaning of

other information. The term metadata has come to appear in the context with the

Web in early 1990’s and can refer to either type: the tagging system that defines a

set of fields and its contents, or the contents of certain fields that act as descriptors

for other resources. Meta-information has two main functions [5]. The first one is

to provide a means to discover that data set exists and how it might be obtained or

accessed. The second function is to document the content, quality, and features of

a data set, indicating its fitness for use. The former function targets resource

discovery where as the latter one, exploited in this thesis, targets resource

description.

Metadata was defined in [6] as superimposed information that is the data

placed over the existing information resources to help organizing, accessing and

reusing the information elements in these resources. It is stated that the need for

metadata over the Web can be justified with three key observations: (i) the

increasing amount of digital information on the Web, (ii) emerging mechanism

allowing to address the information objects in a finer granularity, (iii) the

increasing amount of inaccurate and/or worthless information over the Web.

Managing and exploiting information appearing on the Web was stated as a

problem [7], and four major aspects of it were explained which are data quality,

query quality, answer quality, and integration of the heterogeneous sources. The

solution to this problem is the metadata as one essential and common ingredient

for all of these aspects to be realized. The author proposed that there are three

main kinds of metadata: schema, navigational and associative [7]. Schema

metadata has formal logic relationship to data instances and important in ensuring

data quality. Navigational metadata provides information on how to get to an

information resource (e.g., URL (Uniform Resource Locator), URL + predicate

(query)). Associative metadata, exploited in this thesis, provides additional

CHAPTER 2. BACKGROUND AND RELATED WORK 8

information for application assistance. Furthermore three main kinds of

associative metadata are: (i) descriptive: catalogue record (e.g., Dublin Core), (ii)

restrictive: content rating (e.g., PICS), (iii) supportive: dictionaries, thesauri (e.g.,

PROTÉGÉ).

The principles of metadata are stated as modularity, extensibility, refinement,

and multilingualism [8]. In fact the principles are those concepts judged to be

common to all domains of metadata and which might inform the design of any

metadata schema or application. Metadata modularity is a key organizing

principle for environments characterized by vastly diverse sources of content,

styles of content management, and approaches to resource description [8]. In a

modular metadata world, data elements from different schemas as well as

vocabularies can be combined in a syntactically and semantically interoperable

way. Metadata systems must allow for extensions so that particular needs of a

given application can be accommodated. The refinement principle encapsulates

the specification of particular schemes or value sets that define the range of values

for a given element, usage of controlled vocabularies, and addition of qualifiers

that make the meaning of an element more specific [8]. It is essential to adopt

metadata architecture that respect linguistic and cultural diversity. A basic starting

point in promoting global metadata architecture is to translate relevant

specification and standard documents into a variety of languages.

After a brief discussion of metadata, in the upcoming section we will

describe the two main emerging standards: RDF and Topic Maps that facilitate the

creation and exchange of metadata over the Web. Before that let us have a look at

the concept that has motivated the idea behind RDF standard: The Semantic Web.

2.2.1 Semantic Web

The Web was designed as an information space, with the goal that it should be

useful not only for human-human communication, but also that machines would

be able to participate and help [9]. However one can easily recognize the fact that

CHAPTER 2. BACKGROUND AND RELATED WORK 9

most of the information on the Web is currently for human consumption. Thus,

there can be two basic approaches for browsing the Web; the first approach is to

train the machines to behave like people and the second one is the Semantic Web

approach. The former approach is worked in field of artificial intelligence and is

not in the scope of this thesis. The latter approach, the Semantic Web [9],

develops languages for expressing information in a machine processable form.

Actually, the word semantic comes from the Greek words for sign, signify,

and significant, and today it used as relating to meaning. Semantic Web is an

extension of the current Web in which information is given well defined meaning,

better enabling computers and people to work in cooperation [10]. It is the idea of

having data on the Web defined and linked in a way that it can be used for more

effective discovery, automation, integration, and reuse across various applications.

Semantic Web can also be defined as a mesh of information linked up in such

a way as to be easily processable by machines, on a global scale. It can be thought

as being an efficient way of representing data on the World Wide Web, or as a

globally linked database. The vision of Semantic Web is stated in [11] as the idea

of having data on the Web defined and linked in a way that it can be used by

machines not just for display purposes, but for automation, integration and reuse

of data across various applications. In order to make this vision a reality for the

Web, supporting standards and policies must be designed to enable machines to

make more sense of the Web.

A comparison between the Semantic Web and the object-oriented systems is

made in [12]. Consequently the main difference is that a relationship between two

objects may be stored apart from other information about two objects in the

Semantic Web approach whereas in the object-oriented system information about

an object is stored in an object: the definition of the class of an object defines the

storage implied for its properties. Furthermore Semantic Web, in contrast to

relational databases, is not designed just as a new data model; it is also

appropriate to the linking of data of many different models [12]. One of the great

CHAPTER 2. BACKGROUND AND RELATED WORK 10

things it will allow is to add information relating different databases on the Web,

to allow sophisticated operations to be performed across them.

 For the Web to reach its full potential, it must evolve into a Semantic Web,

providing a universally accessible platform that allows data to be shared and

processed by automated tools as well as by people. In fact the Semantic Web is an

initiative of the World Wide Web Consortium (W3C), with the goal of extending

the current Web to facilitate Web automation, universally accessible content, and

the ‘Web of Trust’ [10]. Meanwhile a particular priority of W3C is to use the Web

to document the meaning of the metadata and their strong interest in metadata and

Semantic Web has prompted development of the Resource Description

Framework (RDF).

2.2.2 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [13] promises an architecture for the

Web metadata and has been advanced as the primary enabling infrastructure of the

Semantic Web activity in W3C. It can be viewed as an additional layer on top of

XML that is intended to simplify the reuse of vocabulary terms across

namespaces. RDF is a declarative language and provides a standard way for using

XML to represent metadata in the form of statements about properties and

relationships of items on the Web.

RDF is a foundation for metadata; it provides interoperability between

applications that exchange machine-understandable information on the Web [13].

It emphasizes facilities to enable automated processing of Web resources. RDF

can be used in a variety of application areas, for example: in resource discovery to

provide better search engine capabilities, in cataloging for describing content and

content relationships available in a particular Web site, page or digital library, in

content rating, in describing collections of pages that represent a single logical

document.

CHAPTER 2. BACKGROUND AND RELATED WORK 11

RDF includes two parts: the “Model and Syntax specification” [13] and the

“Schema Specification” [14]. Model and Syntax Specification part introduces a

model for representing RDF metadata as well as a syntax for encoding and

transporting this metadata in a manner that maximizes the interoperability of

independently developed Web servers and clients. Basic RDF model consists of

three object types: resources, properties, and statements. Resources are the

objects (not necessarily Web accessible) which are identified using Uniform

Resource Identifier (URI). The attributes that are used to describe resources are

called properties. RDF statements associate a property-value pair with a resource;

they are thus triples composed of a subject (resource), a predicate (property), and

an object (property value). A concrete syntax is also needed for creating and

exchanging the metadata that is defined and used by RDF data model. Basic RDF

syntax uses XML encoding and requires XML namespace facility for expressing

RDF statements.

Actually RDF provides a framework in which independent communities can

develop vocabularies that suit their specific needs and share vocabularies with

other communities. The descriptions of these vocabulary sets are called RDF

Schemas [14]. A schema defines the meaning, characteristics, and relationships of

a set of properties. RDF data model, as described in the previous paragraph,

defines a simple model for describing interrelationships among resources in terms

of named properties and values. However RDF data model does not provide any

mechanism for defining these properties and the relationships between these

properties and other resources. That is the role of RDF Schema [14]. More

succinctly, the RDF Schema mechanism provides a basic type system for use in

RDF models. RDF Schemas might be contrasted with XML Document type

Definitions (DTDs) and XML Schemas. Unlike an XML DTD or Schema, which

gives specific constraint on the structure of XML document, an RDF Schema as it

is stated in [14], provides information about the interpretation of the statements

given in an RDF data model. Furthermore, while an XML Schema can be used to

validate the syntax of an RDF/XML expression, since a syntactic schema would

CHAPTER 2. BACKGROUND AND RELATED WORK 12

not be sufficient for RDF purposes, RDF Schemas may also specify constraints

that should be followed by these data models.

2.2.3 Topic Maps

A topic map is a document conforming to a model used to improve information

retrieval and navigation using topics as hubs in an information network [15].

Topic maps are created and used to help people find the information they need

quickly and easily. The Topic Maps model, an international standard (ISO/IEC

13250:2000), is an effort to provide a metadata model for describing the

underlying data in terms of topics, topic associations, and topic occurrences. In

the following, definitions of the key concepts of this model are given as stated in

[16], [17] and [18].

• Topic: A topic can be any “thing” whatsoever – a person, an entity, a

concept, really anything – regardless of whether it exists or has any other

specific characteristics about which anything may be asserted. The topic

map standard defines subject as the term used for the real word “thing”

and by the way the topic itself stands for it. As an example, in the context

of Encyclopedia, the country Italy, or the city Rome are topics.

• Topic type: A topic has a topic type or perhaps multiple topic types. Thus,

Italy would be a topic of type “country” whereas Rome would be of type

“city”. In other words, topic types represent a typical class-instance (or

IS-A) relationship and they are themselves defined as topics by the

standard.

• Topic name: Topics can have a number of characteristics. First of all they

can have a name – or more than one. The standard provides an element

form that consists of at least one base name, and optional display and

sort names.

• Topic occurrence: As a second characteristic, a topic can have one or more

occurrences. An occurrence of a topic is a link to an information

CHAPTER 2. BACKGROUND AND RELATED WORK 13

resource (or more than one) that is deemed to be somehow relevant to the

subject that the topic represents. Occurrences may be of any number of

different types (e.g., “article”, “illustration” and “mention”). Such

distinctions are supported in the standard by the concept of occurrence

role. For example, topic “Italy” is described in an article, “Rome” is

mentioned at a Web site of tourism interest. In this example the “article”

and the “Web site” are topic occurrences whereas “describe” and

“mention” are corresponding occurrence roles. In fact such occurrences

are generally outside the topic map document itself and they are pointed

at using whatever mechanisms the system supports, typically

HyTime[19], Xpointers [20] or Xlink[21].

• Topic association: Up to now, the concepts of topic, topic type, name,

occurrence and occurrence role allow us to organize our information

resources according to topic, and create simple indexes, but not much

more. The key to their true potential lies in their ability to model

relationships between topics. For this purpose topic map standard

provides a construct that is called topic association. A topic association

is (formally) a link element that asserts a relationship between two or

more topics. Just as the topics and the occurrences, the topic associations

can also be grouped according to their type with the concept of

association types that are also regarded as topics. In addition to this, each

topic that participates in an association has a corresponding association

role which states the role played by that topic in the association. The

association roles are also topics. Thus, the assertion “Rome” is-in “Italy”

is an association whereas the is-in is the association type and the

association roles for the player topics “Rome” and “Italy” are

“containee” and “container”, respectively.

Scope, identity (and public subjects), and facets are additional constructs that

enrich the semantics of the model. When we talk about the topic “Paris”, we can

refer to the capital city of France, or the hero of Troy. In order to avoid

CHAPTER 2. BACKGROUND AND RELATED WORK 14

ambiguities like this any assignment of characteristic (name, occurrence, or a role

in association) to a topic must be valid within certain limits. The limit of validity

of such an assignment is called its scope, scope is defined in terms of themes, and

themes are also topics. In this example, topic “Paris” is of type “city” in the scope

of (topic) “geography” and of type “hero” in the scope of “mythology”.

Sometimes the same subject is represented by more than one topic link. This can

be the case when two or more topic maps are merged. The concept that enables

this is that of public subject, and the mechanism used is an attribute (the identity

attribute) on the topic element. The final feature of the topic map standard to be

considered in this thesis is the concept of the facet. Facets basically provide a

mechanism for assigning property-value pairs to information resources and they

are used for applying metadata which can then be used for filtering the

information resources.

A topic map is an SGML (or XML) document that contains a topic map data

model and organizes large set of information resources by building a structured

network of semantic links over the resources [4]. An important aspect of this

standard is that topic associations are completely independent of whatever

information resources may or may not exist as occurrences of those topics. Since a

topic map reveals the organization of knowledge rather than the actual occurrence

of the topics, it allows a separation of information into two domains: the topic

domain and the occurrence (document) domain. Because of this separation,

different topic maps can be overlaid on information pools to provide different

views to different users [4].

Indexes, glossaries and thesauri are all ways of mapping the knowledge

structures that exist implicitly in books and other sources of information. In [16],

it is explained how the topic maps can offer much more facilities than an ordinary

index can do. For instance, any word in an index has one or several references to

its locations in the information source and there is no distinction among these

references. On the other hand topic maps can make references distinguished by

the help of topic occurrence roles (i.e., one reference may point to the

CHAPTER 2. BACKGROUND AND RELATED WORK 15

“description” of the word whereas another one may point to just a “mention” of

it). Additionally a glossary can be implemented using just the bare bones of the

topic map standard too. One advantage of applying the topic map model to

thesauri is that it becomes possible to create hierarchies of association types that

extend the thesaurus schema [16]. Semantic networks are very similar to that of

the topics and associations found in indexes. As it is stated in [17], by adding the

topic/occurrence axis to the topic/association model, topic maps provide a means

of “bridging the gap” between knowledge representation and the field of

information management. This is what the topic map standard achieves.

Another important issue with the topic maps is to determine how to cover

internal representation of the model. Actually there are a number of approaches

whereas the two main ones are object-based and relational [22]. The object-based

approach requires that as structures in a Topic map instance are processed by the

import mechanism, the objects relating to each construct can be created. The

classes used to construct object model are Topic Map, Topic, Occurrence, Topic

Association, Topic Association Role, Name, Facet and Facet Value.

The relational approach requires the creation of tables such as Topic, Topic

Association and Topic Association Role, and construction of many join tables.

One example of this approach, exploited in this thesis, is stated in [23]. A “Web

information space” metadata model was proposed for Web information resources.

In this model, information space is composed of three main parts: (i) information

resources which are XML or HTML documents on the Web, (ii) expert advice

repositories (specified using topics and relationships among topics called as

metalinks) that contain domain expert-specified model of information resources,

modeled as topic maps and stored as XTM documents, (iii) personalized

information about users, captured as user profiles (XML documents), contain

users’ preferences and users’ knowledge about the topics. Furthermore, a query

language SQL-TC (Topic-Centric SQL) was proposed in [23] that is an integrated

SQL-like topic-centric language for querying Web-based information resources,

expert advice repositories and personalized user information. The language is

CHAPTER 2. BACKGROUND AND RELATED WORK 16

general enough to be operational on any underlying expert data model, as long as

the model supports metadata objects and their attributes. SQL-TC queries are

expressed using topics, metalinks, and their sources and produce highly relevant

and semantically related responses to user queries within short amounts of time.

Actually, Topic maps and RDF are similar in that they both attempt to

alleviate the same problem of findability in the age of infoglut, define an abstract

model, and an SGML/XML based interchange syntax [24]. However, there are

some distinctions between these two standards. One of them, as stated in [24]

maybe the key one, is that topic maps take a topic-centric view whereas RDF

takes a resource-centric view. Topic maps start from topics and model a semantic

network layer above the information resources. In contrary, RDF starts from

resources and annotates them directly. Thus, RDF is said to be suitable for

“resource-centric” applications whereas topic maps apply to “topic (knowledge)-

centric” applications [24].

2.3 Indexing Documents on the Web

Finding desired data on the Web in a timely and cost-effective way is a problem

of wide interest. In the last several years, many search engines have been created

to help Web users find desired information. Each search engine has a text

database that is defined by the set of documents that can be searched by the search

engine [25]. Usually, an index for all documents in the database is created in

advance. For each term that represents a content word or a combination of several

content words, this index can identify the documents that contain the term

quickly. The American Heritage Dictionary defines index as follows:

(in • dex) 1. Anything that serves to guide, point out or otherwise facilitate

reference, as: a. An alphabetized listing of names, places, and subjects included in

a printed work that gives for each item the page on which it may be found. b. A

series of notches cut into the edge of a book for easy access to chapters or other

divisions. c. Any table, file, or catalogue.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

Although the term is used in the same spirit in the context of document

retrieval and ranking, it has a specific meaning. Some definitions proposed by

experts are: “The most important of the tools for information retrieval is the

index-a collection of terms with pointers to places where information about

documents can be found”, “Indexing is building a data structure that will allow

quick searching of the text” and “An index term is (document) word whose

semantics helps in remembering the document’s main theme”.

As it is stated in [25], there are basically two types of search engines.

General-purpose search engines aim at providing the capability to search all pages

on the Web. Google, AltaVista, and Excite are the most well known ones of this

type. The other ones, special-purpose search engines, on the other hand, focus on

documents in confined domains such as documents in an organization or in a

specific subject area. ACM Digital Library, Citeseer and DBLP are of this type

that focus on research papers in academic literature.

Actually, as stated in [26], four approaches to indexing documents on the

Web are: (i) human or manual indexing; (ii) automatic indexing; (iii) intelligent or

agent-based indexing; (iv) metadata, RDF, and annotation-based indexing.

Manual indexing is currently used by several commercial, Web-based search

engines, e.g., Galaxy, Infomine, and Yahoo. Since the volume of information on

the Internet increases very rapidly, manual indexing is likely to become obsolete

over the long term. Many search engines rely on automatically generated indices,

either by themselves or in combination with other technologies (e.g., AltaVista,

Excite, HotBot) [26]. In the third approach, intelligent agents are most commonly

referred to as crawlers, but are also known as ants, automatic indexers, bots,

spiders, Web robots, and worms. One of the promising new approaches is the use

of metadata, i.e., summaries of Web page content or sites placed in the page for

aiding automatic indexers. Dublin Core Metadata standard [27] and Warwick

framework [28] are two well-publicized ones among the metadata standards for

Web pages in the scope of fourth approach.

CHAPTER 2. BACKGROUND AND RELATED WORK 18

Different search engines may have different ways to determine what terms

should be used to represent a given document [25]. For example, some may

consider all terms in the document (i.e., full-text indexing) while others may use

only a subset of the terms (i.e., partial-text indexing). Other examples of different

indexing techniques involve whether or not to remove stopwords and whether or

not to perform stemming. Furthermore, different stopword lists and stemming

algorithms may be used by different search engines [25].

Thus, recognizing the concept of indexing documents on the Web, in the

upcoming sections, we will discuss inverted file indexing and citation indexing

methods that are two common ones in the literature. Before that, let us have a look

at one of the most commonly used document weighting and similarity scheme;

Vector-Space retrieval model as stated in [29].

2.3.1 Overview of Vector-Space Retrieval Model

Under the vector-space model, documents and queries are conceptually

represented as vectors. If m distinct words are available for content identification,

document d is represented as a normalized m-dimensional vector D = 〈w1,…,wm〉 ,

where wj is the “weight” assigned to the jth word tj. If tj is not represented in d, then

wj is 0. For example, the document with vector D1 = 〈0.5,0,0.3,…, 〉 contains the

first word in the vocabulary (say, by alphabetical order) with weight 0.5, does not

contain the second word, and so on.

The weight for a document word indicates how statistically important it is.

One common way to compute D is to first obtain an un-normalized vector D′ =

〈w′1,…,w′m〉 , where each w′i is the product of a term frequency (tf) factor and an

inverse document frequency (idf) factor. The tf factor is equal (or proportional) to

the frequency of the ith word within the document. The idf factor corresponds to

the content discriminating power of the ith word: a word that appears rarely in

documents has a high idf, while a word that occurs in a large number of

documents has a low idf. Typically, idf is computed by log(n/di), where n is the

CHAPTER 2. BACKGROUND AND RELATED WORK 19

total number of documents in the collection, and di is the number of document

having the ith word. (If a word appears in every document, its discriminating

power is 0. If a word appears in a single document, its discriminating power is as

large as possible.) Once D′ is computed, the normalized vector D is typically

obtained by dividing each term by √∑m
i=1 (w′i)2.

Queries in the vector-space model are also represented as normalized vectors

over the word space, Q = 〈q1,…,qm〉 , where each entry indicates importance of the

word in the search. Here qj is typically a function of the number of times word tj

appears in the query string times the idf factor for the word. The similarity

between a query q and a document d, sim(q,d), is defined as the inner product of

the query vector Q and the document vector D. That is,

sim(q,d) = Q · D = ∑m
j=1 qj · wj

Notice that similarity values range between zero and one, inclusive, because

Q and D are normalized.

2.3.2 Inverted File Index

An inverted file index has two main parts: a search structure or vocabulary,

containing all of the distinct values being indexed; and for each value an inverted

list, storing the identifiers of the records containing the value [29]. Queries are

evaluated by fetching the inverted lists for the query terms, and then intersecting

them for conjunctive queries and merging them for disjunctive queries. Once the

inverted lists have been processed, the record identifiers must be mapped to

physical record addresses. This is achieved with an address table, which can be

stored in memory or on disk [29].

In [30], inverted index is defined as a data structure that maps a word, or

atomic search item, to the set of documents, or set of indexed units, that contain

that word – its postings. An individual posting may be a binary indication of the

presence of that word in a document, or may contain additional information such

as its frequency in that document and an offset for each occurrence. Since access

CHAPTER 2. BACKGROUND AND RELATED WORK 20

to an inverted index is based on a single key (i.e., the word of interest) efficient

access typically implies that the index, as exploited in this thesis, is either sorted,

or organized as a hash table [30]. In this work, several space and time

optimizations have been developed for maintaining an inverted text index using a

B-Tree and a heap file. They have used a B-tree to store short postings list for

each indexed word. When a posting list becomes too large for the B-Tree,

portions of it are pulsed to a separate heap file. The heap is a binary memory file

with contiguous chunks allocated as necessary for the overflow posting lists. For

very long postings lists, heap chunks are linked together with pointers.

An inverted file indexing scheme based on compression was proposed in

[31]. The only assumption made is that sufficient memory is available to support

an in-memory vocabulary of the words used in the collection. If the search

structure does not fit into memory, it is partitioned with an abridged vocabulary of

common words held in memory and the remainder held on disc. It was declared

that this would still be effective. Since many words only occur once or twice in

the collection for large vocabularies, the cost of going to disc twice for rare words

is offset by the fact that they have dramatically reduced the set of candidate

records [31]. Three methods for indexing word sequences in association with an

inverted file index are considered which are word sequence indexing, word-level

indexing, and use of signature file for word pairs. One of the drawbacks in this

scheme is that insertion of new records is complex and is best handled by

batching, and database creation can be expensive. Also, there is some possibility

of a bottleneck during inverted file entry decoding if long entries must be

processed to obtain a small number of answers to some query.

2.3.3 Dynamic update of Inverted Indexes

An important issue with inverted file indexing is updating the index dynamically

as new documents arrive. Traditional information retrieval systems, of the type

used by libraries assume a relatively static body of documents [32]. Given a body

of documents, these systems build inverted list index from scratch and stores each

CHAPTER 2. BACKGROUND AND RELATED WORK 21

list sequentially and contiguously on disk (with no gaps). Periodically, e.g,, every

weekend, new documents would be added to the database and a brand new index

would be built. In many of today’s environments, such full index reconstruction is

not feasible. One reason is that text document databases are more dynamic. In

place index update is inevitable for this type of systems. Since updating the index

for each individual arriving document is inefficient, the goal is to batch together

small number of documents for each in-place index update [32].

In [32], a new dynamic dual structure is proposed for inverted lists. In this

structure, lists are initially stored in a “short list” data structure and migrated to a

“long list” data structure as they grow. A family of disk allocation policies have

been implemented for long lists whereas each policy dictates where to find space

for a growing list, whether to try to grow a list in place or to migrate all or parts of

it, how much free space to leave at the end of a list, and how to partition a list

across disks. In this work, it is assumed that when a new documents arrives it is

parsed and its words are inserted an in-memory inverted index.

One important fact that is taken into account in [32] is that some inverted

lists (corresponding to frequently appearing words) will expand rapidly with the

arrival of new documents while others (corresponding to infrequently appearing

words) will expand slowly or not at all. In addition, new documents will contain

previously unseen words. Short inverted lists (of infrequently appearing words)

have been implemented in fixed size blocks where each block contains postings

for multiple words. The idea is that every list starts off as a short list; when it gets

“too big” it becomes a long list [32]. They have placed long inverted lists (of

frequently appearing words) in variable length contiguous sequences of blocks on

disk.

An inverted file index is defined in [33] such that it consists of a record, or

inverted list, for each term that appears in the document collection. A term’s

inverted list, as exploited in this thesis, stores a document identifier and weight for

every document in which the term appears. The inverted lists for a multi gigabyte

CHAPTER 2. BACKGROUND AND RELATED WORK 22

document collection will range in size from a few bytes to millions of bytes, and

they are typically laid out contiguously in a flat inverted file with no gaps between

the lists [33]. Thus, adding to inverted lists stored in such a fashion requires

expensive relocation of growing lists and careful management of free-space in the

inverted file.

Actually, inverted index has been implemented on top of a generic persistent

object management system in [33]. The INQUERY full-text information retrieval

system and Mneme persistent object store schemes have been exploited in this

work. In INQUERY, a term dictionary, built as a hash table, contains entries in

which an entry contains collection statistics for the corresponding term and

inverted lists are stored as Mneme objects where a single object of the exact size

is allocated for each inverted list. The basic services provided by Mneme are

storage and retrieval of objects and an object is a chunk of contiguous bytes that

has been assigned a unique identifier.

The main extension made to old inverted file in [33] is that instead of

allocating each inverted list in a single object of exact size, lists are allocated

using a range of fixed size objects in which the sizes range from 16 to 8192 bytes

by powers of 2 (i.e., 16, 32, 64, …, 8192). When a list created, an object of the

smallest size large enough to contain the list is allocated. When it exceeds the

object size, a new object of the next larger size is allocated, the contents of the old

object are copied into new object, and the old object is freed. If a list exceeds the

largest object size (8192 bytes) then a link list is started for these ones. Note that,

the best performance was obtained with this model when documents are added in

largest batches.

2.3.4 Citation Indexing

References contained in academic articles are used to give credit to previous work

in the literature and provide a link between the “citing” and “cited” articles. A

citation index [34] indexes these links between articles that researchers make

CHAPTER 2. BACKGROUND AND RELATED WORK 23

when they cite other articles. As it is stated in [35], citation indexes can be used in

many ways, e.g. (i) it can help to find other publications which may be of interest,

(ii) the context of citations in citing publications may be helpful in judging the

important contributions of a cited paper, (iii) it allows finding out where and how

often a particular article is cited in the literature, thus providing an indication of

the importance of the article, and (iv) a citation index can provide detailed

analyses of research trends. The Institute for Scientific Information (ISI) [36]

produces multidisciplinary citation indexes. One of them is the Science Citation

Index (SCI) that is intended to be a practical, cost-effective tool for indexing the

significant scientific journals.

An automatic citation indexing system (CiteSeer), which indexes academic

literature in electronic format (e.g. postscript and pdf files on the Web), is

presented in [35]. CiteSeer downloads papers that are made available on the Web,

converts the papers to text, parses them to extract the citations and the context in

which the citations are made in the body of the paper, and stores the information

in a database. It provides most of the advantages of traditional (manually

constructed) citation indexes, including: literature retrieval by following citation

links (e.g. by providing a list of papers that cite a given paper), the evaluation and

ranking of papers, authors, journals based on the number of citations, and

identification of research trends [35]. Papers related to a given paper can be

located using common citation information or word vector similarity. Compared

to current commercial citation indexes, main advantage of CiteSeer is that index

process is completely automatic (requiring no human effort) as soon as

publications are available on the Web whereas the main disadvantage is that since

many publications are not currently available on-line, CiteSeer is not able to

provide as comprehensive an index as the traditional systems.

CHAPTER 2. BACKGROUND AND RELATED WORK 24

2.4 DBLP: Computer Science Bibliography

Digital libraries are a field of very active and diverse research. Many institutions

are experimenting with on-line publications, electronic journals, interactive

catalogues, search engines for technical reports, or other form of electronic

publishing [37]. For example, ACM has developed an Electronic Publishing Plan

[38]. The primary goals of BIBWEB project at the University of Trier, as stated in

[37], are the followings:

• Bibliographic information on major CS journals and proceedings should

be available on WWW for everybody (especially for students and

researchers) without a fee.

• Databases often provide sophisticated search facilities, but most systems

lack browsers that allow users to explore the database contents without

knowing what to search for. A bibliographic information system should

support both: searching and browsing.

• BIBTEX is a standard format to exchange bibliographies. The BIBWEB

system will be compatible to BIBTEX (BIBTEX compatibility is currently

restricted).

• The publication process and references between papers form a complex

Web. Hypertext is an interesting tool to model some aspects of this Web.

• The World-Wide Web is used as the main interface to BIBWEB.

DBLP (Digital Bibliography & Library project) is the starting point of the

BIBWEB project at the University of Trier [37]. The DBLP server, which is

initially focused on Database systems and Logic Programming, now provides

bibliographic information on major computer science journals and proceedings

[39]. DBLP is file-system based and managed by some simple homemade tools to

generate the authors’ pages. There is no database management system behind

DBLP; the information is stored in more than 125000 files [40]. The programs

CHAPTER 2. BACKGROUND AND RELATED WORK 25

used to maintain DBLP are written in C, Perl and Java – they are glued together

by shell scripts.

The initial DBLP server was a small collection of tables of contents (TOCs)

of proceedings and journals from the field of database system research and logic

programming [40]. The next idea was to generate “author pages” where an author

page lists all publications (co)authored by a person. The generation of these pages

works in two steps: In the first step all TOCs are parsed and then all bibliographic

information is printed into a huge single text file “TOC_OUT”. After all parsing

has been done, a second program (mkauthors) is started that reads TOC_OUT into

a compact main memory data structure, produces a list of all author pages and the

file AUTHORS which contains all author names. In the search process, the files

AUTHORS and TOC_OUT are inputs to two CGI-programs “author” and “title”

respectively, and a C written program performs “brute force” search (a sequential

search) for each query [40]. Actually, bibliographic records of DBLP fit into the

XML framework. In Figure 2.1, you will find a sample of bibliographic records.

<article key="GottlobSR96">
<author>Georg Gottlob</author>
<author>Michael Schrefl</author>
<author>Brigitte Röck</author>
<title>Extending Object-Oriented Systems with
Roles.</title>
<pages>268-296</pages>
<year>1996</year>
<volume>14</volume>
<journal>TOIS</journal>
<number>3</number>
<url>db/journals/tois/tois14.html#GottlobSR96</url>
</article>

Figure 2.1: A sample DBLP bibliographic record

26

Chapter 3

Topic Map Data Model

In this thesis, our main aim is to model a specific information resource on the web

with topic map standards by employing metadata in the form of topics, topic

associations, and topic sources. Information resources, dealt with in this work, are

generally found on the Web as XML or HTML documents and must be modeled

somehow for an efficient querying of them. The specific Web-based information

resource that we have chosen to model is the DBLP (Digital Bibliography &

Library Project) bibliography collection. We have modeled this source with topic

map standards and maintained a topic map database. This chapter captures the

structure of the presented data model and its details conceptually. Although we

have given the overview of existing approach employed by DBLP in the previous

section, let us first have a look at the structure of DBLP data in more details.

3.1 Structure of DBLP Data

Actually, DBLP bibliography data is a 90 megabyte sized XML document

containing bibliographic entries for approximately 225,000 computer science

publications (e.g., conference and journal papers, books, master and PhD theses,

etc.). The full version of DTD for DBLP data is provided in Appendix A. You

will find a part of this DTD in Figure 3.1.

CHAPTER 3. TOPIC MAP DATA MODEL 27

<dblp>

<!ELEMENT

dblp(article|inproceedings|proceedings|book|

incollection|phdthesis|mastersthesis|www)*>

<!ENTITY % field

"author|editor|title|booktitle|pages|year|address|

journal|volume|number|month|url|ee|cdrom|cite|publis

her|note|crossref|isbn|series|school|chapter">

<!ELEMENT article (%field;)*>

<!ATTLIST article key CDATA #REQUIRED ... >

<!ELEMENT inproceedings (%field;)*>

<!ATTLIST inproceedings key CDATA #REQUIRED>

<!ELEMENT proceedings (%field;)*>

<!ATTLIST proceedings key CDATA #REQUIRED>

...

<!ELEMENT author (#PCDATA)>

<!ELEMENT title (%titlecontents;)*>

<!ELEMENT booktitle (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT journal (#PCDATA)>

<!ELEMENT url (#PCDATA)>

...

</dblp>

Figure 3.1: Part of DTD for DBLP data

As one can easily understand form this DTD, there is a root element (dblp),

delimited by <dblp> and </dblp> tags, and it contains a lot of elements such

as article, inproceedings, proceedings, etc. Each of these

elements has also sub-elements such as author, title, year, etc. In fact,

these sub-elements are bibliographic entries for the element in which they are

CHAPTER 3. TOPIC MAP DATA MODEL 28

included, and can be visualized as metadata for that publication (article,

inproceedings, proceedings, etc.).

In our implementation, we have processed three main record types in DBLP

data (i.e., article, proceedings and inproceedings). Each of these

records has its own sub-elements such as author, title, year, url,

journal, booktitle, etc. All of these sub-elements are descriptive

metadata for the publication they belong to.

In each of these three types of elements, there is a key attribute that

distinguishes it from the other elements. For any article record, title sub-

element contains the name of that article whereas the author sub-element(s)

contains the author(s) of it. The year sub-element states the publication date in

the year format (e.g., 1985, 1998, 1999, etc.). The address of the Web page where

anyone can find that publication is specified in the url sub-element. Almost all

of the article elements have only journal sub-element (not booktitle

element) that contains the name of the journal in which the corresponding article

was published.

Every inproceedings element contains the same sub-elements as any

article element does, except the journal sub-element. Instead of this sub-

element, almost all of the inproceedings elements have the booktitle

sub-element that specifies the name of the conference/symposium in which the

corresponding paper is reported. On the other hand, any proceedings element

contains the information about any conference/symposium and is followed by a

group of inproceedings elements which participated in that

conference/symposium respectively. So, beside journal or booktitle sub-

element, it has publisher sub-element. Additionally, in any proceedings

element, editor sub-element is substituted for author sub element.

A fragment DBLP data file containing the example of the related records is

presented in Figure3.2.

CHAPTER 3. TOPIC MAP DATA MODEL 29

<?xml version="1.0"?>
<!DOCTYPE dblp SYSTEM "dblp.dtd">
<dblp>
<article key="journals/ai/KumarK83">
<author>Vipin Kumar</author>
<author>Laveen N. Kanal</author>
<title>A General Branch and Bound Formulation for Understanding
and Synthesizing And/Or Tree Search Procedures.</title>
<pages>179-198</pages>
<year>1983</year>
<volume>21</volume>
<journal>Artificial Intelligence</journal>
<number>1-2</number>
<url>db/journals/ai/ai21.html#KumarK83</url>
</article>
...
<proceedings key="conf/ssd/95">
<editor>Max J. Egenhofer</editor>
<editor>John R. Herring</editor>
<title>Advances in Spatial Databases, 4th International Symposium,
SSD'95, Portland, Maine, USA, August 6-9, 1995,
Proceedings</title>
<series href="db/journals/lncs.html">Lecture Notes in Computer
Science</series>
<volume>951</volume>
<publisher>Springer</publisher>
<year>1995</year>
<isbn>3-540-60159-7</isbn>
<url>db/conf/ssd/ssd95.html</url>
</proceedings>
<inproceedings key="conf/ssd/KuijpersPB95">
<ee>db/conf/ssd/KuijpersPB95.html</ee>
<author>Bart Kuijpers</author>
<author>Jan Paredaens</author>
<author>Jan Van den Bussche</author>
<title>Lossless Representation of Topological Spatial
Data.</title>
<pages>1-13</pages>
<cdrom>SSD/1995/P001.pdf</cdrom>
<booktitle>SSD</booktitle>
<year>1995</year>
<crossref>conf/ssd/95</crossref>
<url>db/conf/ssd/ssd95.html#KuijpersPB95</url>
</inproceedings>
</dblp>

Figure 3.2: A fragment of DBLP data file

CHAPTER 3. TOPIC MAP DATA MODEL 30

3.2 The Presented Data Model

In fact, the presented topic map data model is a semantic data model describing

the contents of the Web–based information resource (DBLP bibliographic

collection in this work) in terms of topics, relationships among topics (called

metalinks) and topic sources. Therefore, it constitutes a metadata model and

allows much more efficient querying of the modeled information resource. In our

implementation, we have used relational database techniques to organize topic-

based information and maintained a Web-based topic map database. One

advantage of this organization is that database is relatively stable. For example, if

some changes occur in the information resource, our database will not change

greatly and what we have to do is only change some columns of the related tuples.

In the following, you will find the details of the three main entities employed in

the model (i.e., topics, topic sources, and metalinks).

3.2.1 Topics

In the second chapter, the definition of topic in topic map standard was given in

detail. We have assumed that a topic is an object with a certain amount of

information and has the following attributes like the ones in [23] with some

extensions.

Topics (Tid: integer, TName: string, TType: string, TVector: string, TAdvice:

float)

• T(opic)id (of type integer) is a system defined id that uniquely identifies

the corresponding topic. Since the topics are extracted one by one as the

documents come, Tid is assigned in an incrementally manner, internally

used for efficient implementation and not available to users.

• T(opic)Name (of type string) contains either a single word or multiple

words and characterizes the data in the information resources. “I. S.

Altıngövde”, “DEXA”, “2001” and “SQL-TC: A Topic Centric Query

CHAPTER 3. TOPIC MAP DATA MODEL 31

Language for Web-Based Information Resources” are the examples of

topic names.

• T(opic)Type (of type string) specifies the type of the topic. For example,

the topics “I. S. Altıngövde”, “DEXA”, “2001” and “SQL-TC: A Topic

Centric Query Language for Web-Based Information Resources” are of the

type “AuthorName”, “JourConfOrg”, “PublicationDate” and

“PaperName”, respectively.

• T(opic)Vector (of type string) contains pairs of the term-id and term

weight (in the alphabetical order) for each term existing in the TName

field of the corresponding topic. Actually, the term weights are calculated

according to TF/IDF weighting scheme and the chain of them is the vector

of the topic in vector-space retrieval model. It is null for some topics

except the topics of type “AuthorName” and “PaperName”.

• T(opic)Advice (of type float) is the importance value of that topic. If there

is more than one expert modeling the information resource, say n experts

(i.e., Ei, 1≤i≤n), the expert Ei states his/her advice on topics as a Topic-

Advice function TAdvice() that assigns an importance value to topics from

one of [0,1] U {No, Don’t-Care}.

The attributes (TName, TType) constitute a key for the topic entity, and the

Tid attribute is also a key for topics. The main difference of our model from the

one in [23] is that they have maintained the topic-based information as XML topic

map (XTM) documents whereas we have maintained a topic map database.

Another difference is the absence of the T(opic)Domain attribute. Since all of the

topics extracted from DBLP collection have the same domain (i.e, Computer

Science Publication), we have not specified the topic domain attribute for topic

instances. They have also accepted more than one expert assigning a topic

importance value in the range [0,1] and {No, Don’t Care}. However, in this work,

CHAPTER 3. TOPIC MAP DATA MODEL 32

for the sake of simplicity, we have accepted that all topic instances have the same

importance value, namely, one (1).

In our implementation, we have extracted five types of topics from DBLP

data. These types are given in table3.1.

TName TType
Title of the paper PaperName
Name of the author(s) in the form of First
Initial, Second Initial, Last Name
specification.

AuthorName

Name of the journal or conference in
which the paper is published.

JourConfOrg

The date of the journal or conference in
the year format.

PublicationDate

Concatenation of the name and date of the
journal or conference.

JourConf-and-Year

Table 3.1: Topic types for the DBLP bibliography data

The TName attribute of a topic of type “PaperName” is the string that is

delimited by <title> and </title> tags in the article and

inproceedings elements of DBLP bibliography data. Each author is also

considered as a topic of type “AuthorName”. The name of the journal/conference

in which the paper is published is a topic of type “JourConfOrg”. It can be found

between <journal>…</journal> or <booktitle>…</booktitle>

tags of the corresponding paper according to type of the entry (i.e., journal

sub-element for article elements and booktitle sub-element for

inproceedings elements). The topics of type “PublicationDate” are the dates

in YYYY format and they are embedded between <year> and </year> tags.

Finally, the topics of type “JourConf-and-Year” are obtained by concatenating the

name and the date of the journal/conference in which the paper is published.

CHAPTER 3. TOPIC MAP DATA MODEL 33

3.2.2 Topic Sources

Topic source entity corresponds to topic occurrence in the topic map standard and

contains additional information about topic sources. In fact, it refers the

information in the actual Web sites. A source entity has the following attributes.

Sources (Sid: integer, Web-address: string, Role: string, SAdvice: float)

• S(ource)id (of type integer) is a system-defined id that uniquely identifies

a topic source. Since the topic sources are extracted one by one as the

documents come (like topic extraction), Sid is assigned in an

incrementally manner, internally used for efficient implementation and not

available to users.

• Web-address (of type string) is the (URL) of the document that contains

the topic. “db/journals/ai/ai21.html#KumarK83” is an example of Web-

address of a topic source.

• Role (of type string) specifies the source type of topic source. For

example, a topic of type “PaperName” can have more than one source.

One of these sources may be the Web site that contains the full document

(e.g, ps or pdf version), another may be any html page that mentions about

that paper. Here, the “Website” and “Mentions” are examples of the role

of a topic source.

• S(ource)Advice (of type float) is the importance value of that topic source.

Like TAdvice() function, the expert Ei states his/her advice on topic

sources as a Source-Advice function SAdvice() that assigns an importance

value to sources from one of [0,1] U {No, Don’t-Care}.

The attribute Sid is a key for sources. At this point, another difference

between our model and the one in [23] comes out that they have added a Source

attribute to the topic entity that contains the set of Sid(s) specifying the topic

sources of corresponding topic. Instead, we have stored the additional information

about topic sources (Web-address, Role, etc.) in sources entity as described above,

CHAPTER 3. TOPIC MAP DATA MODEL 34

whereas Tsources entity identifies the relation between a topic instance and a

source instance. The Tsources entity has the following attributes.

Tsources (Tsid: integer, Tid:integer, Sid: integer)

• T(opic)s(ource)id (of type integer) is a system-defined id that uniquely

identifies a topic source instance. Since the topic sources are extracted one

by one as the documents come (like topic extraction), Tsid is assigned in

an incrementally manner, internally used for efficient implementation and

not available to users.

• T(opic)id (of type integer) is the id of the topic in topic entity.

• S(ource)id (of type integer) is the id of the topic source in source entity.

We have topic sources only for topics of type “PaperName”. According to

the DTD of the DBLP bibliography data, topic sources for topics of type

“AuthorName” and “JourConfOrg” are not specified in DBLP dataset. If they had

been specified, they might have been the main home page (URL) of the author

and conference organization, respectively. Actually, topic sources for topics of

type “AuthorName” and “JourConfOrg” can be obtained by searching

corresponding topic on the Web. However, this task is beyond the scope of this

work.

Each topic instance of type “PaperName” has at least one source. This source

is the URL of the corresponding paper and contains the abstract, the title as well

as a ps or a pdf copy of the paper. This URL is specified in the <url> sub-

element of the corresponding publication (i.e., <article> or

<inproceedings> element), extracted and stored in the Web-address attribute

of the source entity, and assigned an Sid value. Since all these URLs are the Web-

addresses of the copy of the papers (ps or pdf version), all of the instances in

Sources entity will have the same Role that is “Website”. We have assumed that

all topic sources have the same importance value, namely, one (1). So SAdvice of

CHAPTER 3. TOPIC MAP DATA MODEL 35

all the instances in the Sources entity will also be the same (i.e., 1) like the

TAdvice of topic instances.

Finally, the Tid of the topic and the Sid of the source that belong to that topic

will together build an instance of Tsources entity. Then, a Tsid value will be

assigned to this instance in an incrementally manner.

3.2.3 Topic Metalinks

Topic Metalinks represent the relationships among the topics and correspond to

topic associations in the topic map standard. Topic Metalinks allow Web

designers to define metadata-based navigational pathways on the Web. They are

stable in that, once defined, they will rarely change and be secondary to the

primary link mechanism (i.e., hyperlinks) on the Web. In our model, the

Metalinks entity has the following attributes.

Metalinks(Mid: integer, Mtype:string, Antecedentid: integer, Consequentid:

integer, MAdvice: float)

• M(etalink)id (of type integer) is a system-defined id that uniquely

identifies a metalink instance. Since the metalinks, like the topics, are

extracted one by one as the documents come, Mid is assigned in an

incrementally manner, internally used for efficient implementation and not

available to users.

• M(etalink)Type (of type string) specifies the type of the relation between

topics. For example, assume that a topic T1 of type “AuthorName” is the

author of a topic T2 which is of type “PaperName”. The metalinks

representing the relation between T1 and T2 can be defined by the

signatures “T2 → AuthorOf T1” and “T1 → AuthoredBy T2” respectively.

In this example, AuthorOf and AuthoredBy are the examples of MType

attribute. Note that the signatures are similar to ones defined in [23].

CHAPTER 3. TOPIC MAP DATA MODEL 36

• Antecedentid (of type integer) is the Tid (assigned in Topics entity) of the

topic that participates on the left side of the metalink instance. When the

metalink instance is visualized as a statement, Antecedentid is the object

of this statement.

• Consequentid (of type integer) is the Tid of the topic that participates on

the right side of the metalink instance. When the metalink instance is

visualized as a statement, Consequentid is the subject of this statement.

• MAdvice (of type float), similar to TAdvice and SAdvice, is the

importance value of that metalink instance. Just like the TAdvice and

SAdvice, expert Ei also states his/her advice on topic metalinks as a

Metalink-Advice function MAdvice() that assigns an importance value to

metalinks from one of [0,1] U {No, Don’t-Care}.

For the DBLP dataset, we have defined the metalink types that are specified

in Table 3.2. Note that the TTypes of the topics participating in the metalinks are

shown in parentheses (e.g., PaperName, AuthorName, etc.).

M(etalink)Type Antecedentid Consequentid

AuthorOf Tid (PaperName) Tid (AuthorName)

AuthoredBy Tid (AuthorName) Tid (PaperName)

PublicationDateOf Tid (PaperName) Tid (PublicationDate)

InPublicationDate Tid (PublicationDate) Tid (PaperName)

JourConfOf Tid (PaperName) Tid (JourConf-and-Year)

JourConfPapers Tid (JourConf-and-Year) Tid (PaperName)

RelatedToPapers Tid (PaperName) Tid (PaperName)

PrerequisitePapers Tid (PaperName) Tid (PaperName)

Table 3.2: Metalink types for the DBLP bibliography data

AuthorOf and AuthoredBy metalink instances represent the relationship

between a topic of type “PaperName” and a topic of type “AuthorName” and can

CHAPTER 3. TOPIC MAP DATA MODEL 37

be stated by the signatures “T2 → AuthorOf T1” and “T1 → AuthoreBy T2”

respectively. In other words, it is the relation between a publication (article,

inproceedings) and its author(s). In AuthorOf metalink instance, the Consequentid

is the Tid of the “AuthorName” topic that is the author of the corresponding

“PaperName” topic whereas Antecedentid is the Tid of that “PaperName” topic.

AuthoredBy metalink defines the same relation in the opposite direction.

PublicationDateOf and InPublicationDate metalink instances define the

relation between a paper and the year when the paper is published in. The

signatures “T2 → PublicationDateOf T3” and “T3 → InPublicationDate T2” can

state these two metalinks types. Here T2 and T3 are of types “PaperName” and

“PublicationDate” respectively. In PublicationDateOf metalink instance,

Antecedentid is the Tid of the “PaperName” topic whereas Consequentid is the

Tid of “PublicationDate” topic that states when the paper is published.

InPublicationDate metalink represents the same relation in the opposite direction.

JourConOf and JourConfPapers metalink instances simply define the

relation between a paper and the journal/conference in which the paper is

published. They can be stated by the signatures “T2 → JourConfOf T4” and

“T4 → JourConfPapers T2”, respectively. As defined in topics entity section, a

“JourConf-andYear” topic is the concatenation of the name of the

journal/conference and its date (e.g., DEXA 2001). Thus, in JourConfOf metalink

instances, Consequentid is the Tid of “JourConf-andYear” topic whereas the

Antecedentid is the Tid of the “PaperName” topic that is published in that

journal/conference reported in a specific date. Similarly, JourConfPapers

metalink defines the same relation in the opposite direction too.

Metalink types explained in the previous paragraphs are all easy to

understand and the extraction of them is also straightforward. MAdvice of all

these metalinks will also be the same (i.e., 1.0) like the TAdvice of topic instances

and SAdvice of topic sources.

CHAPTER 3. TOPIC MAP DATA MODEL 38

However, RelatedToPapers and PrerequisitePapers metalinks are not as easy

and straightforward as the other ones. Both of these metalinks represent the

relationships between two “PaperName” topics. Thus, each of Consequentid and

Antecedentid is the Tid of the topic of type “PaperName”.

Instances of RelatedToPapers metalink type represent related (similar) paper

pairs and can be stated by the signature “T2 → RelatedToPapers T1”. We can

determine whether two papers are related by using the cosine similarity quotient

of the TNames of the papers. Actually, the cosine quotient is calculated by sim()

function employed in vector-space retrieval model which is explained in Section

2.3.1. If the value of the cosine quotient is very small (e.g., less than a predefined

threshold Tsim1), we assume that the “PaperName” topics T1 and T2 are not

related to each other. Otherwise (i.e., ≥Tsim1), T1 and T2 are related papers and

the metalink instance T2 → RelatedToPapers T1 is inserted into Metalinks table

that is Consequentid and Antecedentid will be assigned T1 and T2, respectively

and MType will be RelatedToPapers. The value of the cosine quotient becomes

the importance value of the metalink instance (i.e, MAdvice).

PrerequisitePapers metalink instance e.g, T2 → PrerequisitePapers T1,

states that in order to understand the “PaperName” topic T2, the reader should

first read “PaperName” topic T1. For locating PrerequisitePapers metalink

instances, we have defined the following association rules: “PaperName” topic T1

is prerequisite of “PaperName” topic T2 (T2 → PrerequisitePapers T1) (a) if the

two papers T1 and T2 have at least one common author, have the

RelatedToPapers relationship between each other, and the publication date of the

paper T1 is earlier than the publication date of T2, or (b) If the two papers have no

common author, but have a very high similarity (e.g., greater than a predefined

threshold Tsim2) and the publication date of T1 is earlier than the publication date

of T2. Thus, if one of the rules holds the metalink instance is inserted into

metalinks table, that is Consequentid and Antecedentid will be assigned T1 and

T2, respectively and MType will be PrerequisitePapers. The importance value of

CHAPTER 3. TOPIC MAP DATA MODEL 39

the metalink instance will be the cosine similarity quotient of the topics and

MAdvice will be assigned this value.

We have used some information retrieval techniques in order to calculate

cosine similarity quotient of the “PaperName” topics. Once we construct the topic

map database from the initial huge DBLP bibliographic collection, of course our

work will not stop there. New researches on computer science will be conducted

and reported in the journals or conferences, and the database will have to be

updated with these new bibliographic information datasets (called as dynamic sets

throughout this work) relatively much more smaller than the initial dataset. Thus,

the employed IR techniques should not only be efficient and effective but also

they should allow dynamic update mechanism. In our implementation, we have

employed the inverted file index structure that is the most promising technique

used by many IR systems. In the upcoming section, we explain the structure of the

employed indexing mechanism in more details.

3.3 Inverted File Index

An inverted index is a set of document lists, one list for each term or concept in a

document collection [41]. Each list identifies the documents that contain that

term. The entries in the list are called postings, where a posting is a pair of

document identifier and a term weight. An inverted index can drastically improve

query response time because only those documents containing terms in common

with the query need to be considered. Many approaches were proposed for

implementing inverted indexes and we have explained some of them in Section

2.3.2. When the documents need to be added to a collection, re-indexing entire

collection is not desirable. Because the cost of an update is proportional to the size

of the database, not the size of the update. So, dynamic update of the inverted

index is an important issue and should be handled in the index organization.

In our implementation, the topics of type “PaperName” and “AuthorName”

are indexed distinctly. We have defined two distinct collections. One of them

CHAPTER 3. TOPIC MAP DATA MODEL 40

contains the topics of type “PaperName” (i.e., the titles of the papers) and named

as title collection whereas the other one contains the topics of type “AuthorName”

and named as author collection. Actually, the titles and the authors in the

collections correspond to the documents in the definition of inverted index. For

the sake of simplicity, we will describe only the indexing of the title collection.

Note that, we have also implemented the indexing of the author collection.

The first assumption that we have made is that sufficient memory is available

to support an in-memory vocabulary of the words used in the title collection. In

our implementation, we have made two passes over the DBLP dataset. In the first

pass, topics, sources and metalink instances (except the RelatedToPapers and the

PrerequisitePapers metalink instances) are extracted and inserted into the topics,

sources, tsources and metalinks tables, respectively. Actually, these are relational

database tables and the structures of them were explained in details in the

previous section.

During the insertion of the topics in the first pass, the TType of the inserted

topic is controlled. If the inserted topic is “PaperName” topic (i.e., title of the

paper) then it means that it belongs to the title collection. The TName field is

tokenized and processed term by term. After removing stop-words, each term is

stemmed and put into an in-memory wordlist with some additional information.

At the end of the first pass, we have an in-memory wordlist of all the words that

appear in all topic names of type “PaperName”. As well as the term itself, the

wordlist also contains the rank of the term (number of topics containing that

term), the start offset of the allocated block where the postings list for that term is

written on the disk.

In the second pass, each inserted “PaperName” topic is processed one by one.

For each term in the TName field of a “PaperName” topic, the weight of the term

is calculated by employing TF/IDF term-weighting scheme. After calculating all

term weights, unnormalized vector representation of the topic is obtained and then

the term weights are normalized as described in Section 2.3.1. Now we have

CHAPTER 3. TOPIC MAP DATA MODEL 41

normalized vector at hand that contains term index and term weight pairs. After

processing all “PaperName” topics, the postings lists for all terms are obtained. A

posting in the list contains the Tid of the topic containing the term and the weight

of the term in the normalized vector of that topic. Finally, the postings lists of all

terms are written into a file on the disk in an ascending ordered manner with

respect to Tid values.

At the end of these two passes, two main files are created on the disk such

that an index file and an inverted file. Index file is implemented as a text file that

contains the words in the wordlist with additional information such as rank (i.e.,

no of topics containing that term) and start pointer (i.e., start offset of the postings

list of that term in the inverted file). However, inverted file is created as a binary

file so that a postings list for any term can be retrieved in one file access.

In processing initial DBLP dataset, the postings lists are written into the

inverted file in a fixed-sized and contiguous manner. The reason for that is that we

cannot know whether the word will appear in the coming dynamic sets or not. If

the word appears, then a second storage is allocated from the end of inverted file,

this time with blank spaces at the end. The size of this second storage is the

fraction of the initial size of the first storage. By this way, we have optimized

storage organization of the inverted file.

Three additional fields are added at the end of each storage containing the

posting lists. The first two fields specify the start pointer and the size of the next

storage, respectively whereas the third field specifies how much of the next

storage is filled. This storage organization for postings lists in inverted file can be

viewed as a linked list implementation of the lists but with at most two or three

nodes for the most frequent terms. As a result, this organization allows dynamic

update of the inverted file. The example given in the below paragraph explains

realization of our index organization.

CHAPTER 3. TOPIC MAP DATA MODEL 42

For example, assume that in the initial dataset there are 40 topics of type

“PaperName” and number of topics that contain the term “data” is 20 whereas the

term “database” participates in 10 topics. So the ranks of the terms “data” and

“database” are 20 and 10, respectively. The integers preceding the float numbers

in the postings lists of a term are the Tids of the topics containing that term. The

float values are the normalized term weights of that term in the corresponding

topic.

After processing initial dataset, index file and inverted file will have the view

presented in Figure 3.3. Since there is no dynamic set yet, three additional fields

at the end of each postings list will be initially –1, 0 and 0. Notice that the

postings lists are written into the inverted file contiguously.

Figure 3.3: Realization of index organization in initial dataset

Index term Rank Start ptr

…

…

…

…

…

…

.

.

.

.

.

.

.

.

.

.

.

.

data 20

databas 10

…

…

…

…

.

.

.

.

.

.

.

.

23 0.475567 35 0.567509 ... –1 0 0

13 0.634577 32 0.510789 ... –1 0 0

.

.

.

.

.

.

Inverted file

Index file

CHAPTER 3. TOPIC MAP DATA MODEL 43

Now assume that several dynamic sets come, and the topics are extracted and

inserted into database. The term “data” in dynamic sets passes in one topic where

as “database” passes in two topics, so the ranks of these terms are incremented by

one and two, respectively. Since there is no blank space in the first storages,

second storages are allocated in the inverted file in order to write the new postings

lists. The size of the second storage of the term “data” is the half of the first

storage (i.e., 10) and there is only one posting in the second storage. In Figure 3.4,

the second storages for the postings lists of the term “data” and “database” are

shown in dashed style. Now it is time to update three fields (initially –1, 0, 0) at

the end of the first storage with the pointer of the second storage, 10 and 1,

respectively. Similarly, the size of the second storage of the term “database” is the

half of the first one that is 5, and three fields at the end of the first storage are

updated with the corresponding values.

Index term Rank Start ptr

…

…

…

…

…

…

.

.

.

.

.

.

.

.

.

.

.

.

data 21

databas 12

…

…

…

…

.

.

.

.

.

.

.

.

Figure 3.4: Realization of index organization after dynamic update

Index file

23 0.475567 35 0.567509 ... 10 1

45 0.601522 46 0.520130 ... –1 0 0

13 0.634577 32 0.510789 ... 5 2

43 0.664533 ... –1 0 0

Inverted file

CHAPTER 3. TOPIC MAP DATA MODEL 44

3.4 A Complete Example

In this section, we present a part of instances of maintained topic map database for

DBLP dataset. The content of input XML file containing the entries used in this

example is presented in Figure 3.5.

<?xml version="1.0"?>
<!DOCTYPE dblp SYSTEM "dblp.dtd">
<dblp>
...
<inproceedings key="conf/ssd/AbdelmotyWP93">
<ee>db/conf/ssd/AbdelmotyWP93.html</ee>
<author>Alia I. Abdelmoty</author>
<author>M. Howard Williams</author>
<author>Norman W. Paton</author>
<title>Deduction and Deductive Databases for Geographic
Data Handling.</title>
<pages>443-464</pages>
<cdrom>SSD/1993/P443.pdf</cdrom>
<year>1993</year>
<crossref>conf/ssd/93</crossref>
<booktitle>SSD</booktitle>
<url>db/conf/ssd/ssd93.html#AbdelmotyWP93</url>
</inproceedings>
...
<inproceedings key="conf/dexa/AbdelmotyPWFBD94">
<author>Alia I. Abdelmoty</author>
<author>Norman W. Paton</author>
<author>M. Howard Williams</author>
<author>Alvaro A. A. Fernandes</author>
<author>Maria L. Barja</author>
<author>Andrew Dinn</author>
<title>Geographic Data Handling in a Deductive Object-
Oriented Database.</title>
<pages>445-454</pages>
<year>1994</year>
<booktitle>DEXA</booktitle>
<url>db/conf/dexa/dexa94.html#AbdelmotyPWFBD94</url>
</inproceedings>
...
</dblp>

Figure 3.5: The XML file containing DBLP bibliographic entries

CHAPTER 3. TOPIC MAP DATA MODEL 45

Given the dblp.dtd in Appendix A, the rules, applied for extracting topics,

metalinks and sources, in the first pass over the input dataset can be specified as a

mapping M in Figure 3.6.

M = {
//DTD set employed in the mapping
nms1: “http://dblp.uni-trier.de/dblp.dtd”

// Topic generation rules
t1: <nms1, TName = ValueOf (dblp.article.title) OR ValueOf

(dblp.inproceedings.title),
TType = “PaperName”, TAdvice = 1.0>,

t2: <nms1, TName = ValueOf (dblp.article.author) OR ValueOf
(dblp.inproceedings.author),

TType = “AuthorName”, TAdvice = 1.0>,
t3: <nms1, TName = ValueOf (dblp.article.journal) OR ValueOf

(dblp.inproceedings.booktitle),
TType = “JourConfOrg”, TAdvice = 1.0>,

t4: <nms1, TName = ValueOf (dblp.article.year) OR ValueOf
(dblp.inproceedings.year),

TType = “PublicationDate”, TAdvice = 1.0>,
t5: <nms1, TName = ValueOf (dblp.article.journal + dblp.article.year) OR

ValueOf (dblp.inproceedings.booktitle +
dblp.inproceedings.booktitle),

TType = “JourConf-and-Year”, TAdvice = 1.0>,

// Source generation rules
s1: <nms1, Web-address = ValueOf (dblp.article.url) OR ValueOf

(dblp.inproceedings.url),
Role = “Website”, SAdvice = 1.0>

// Metalink generation rules
m1: <AuthorOf: t1 → t2, Madvice = 1.0 >,
m2: <AuthoredBy: t2 → t1, Madvice = 1.0 >,
m3: <JourConfOf: t1 → t5, Madvice = 1.0 >,
m4: <JourConfPapersOf: t5 → t1, Madvice = 1.0 >,
m5: <PublicationDateOf: t1 → t4, Madvice = 1.0 >,
m6: <InPublicationDate: t4 → t1, Madvice = 1.0 >,
m7: <RelatedToPapers: t1 → t1 where Tid(t1) ≠ Tid(t1), Madvice = sim(t1,t1) >,
m8: <PrerequisitePapers: t1 → t1 where Tid(t1) ≠ Tid(t1), Madvice = sim(t1,t1)>

}

Figure 3.6: Mapping M

CHAPTER 3. TOPIC MAP DATA MODEL 46

In this mapping, the first line specifies that the element and attribute names

provided would be in the namespaces of the DTD of DBLP. Note that the use of

word “namespace” is different from the XML-namespaces at it is known in the

literature. The value of a topic may not be the value of a single element or

attribute, but even the concatenation of both (i.e., topic of type “JourConf-and-

Year”). In metalink generation rules, the sim() function used in m7 and m8 is the

text similarity of the two topics which is computed as explained in Section 2.3.1.

Tid TName TType TAdvice TVector
… … … … …
4 SSD JourConfOrg 1.0
… … … … …
86 1993 PublicationDate 1.0
87 SSD1993 JourConf-and-Year 1.0
… … … … …
152 Alia I. Abdelmoty AuthorName 1.0 64 0.658733 348 0.658733 6950

0.363512
153 M. Howard Williams AuthorName 1.0 6803 0.635206 9759 0.321646

17681 0.702180
154 Norman W. Paton AuthorName 1.0 11759 0.597743 12359 0.717458

17316 0.357711
155 Deduction and Deductive

Databases for Geographic
Data Handling

PaperName 1.0 1627 0.228837 1628 0.191497
1737 0.551758 2773 0.576976
2924 0.523091

… … … ... …
581 1994 PublicationDate 1.0
… … … … …
10046 Alvaro A. A. Fernandes AuthorName 1.0 27 0.320597 413 0.659966 4619

0.679457
10047 Maria L. Barja AuthorName 1.0 1146 0.785896 8905 0.326343

10122 0.525231
… … … … …
10282 Andrew Dinn AuthorName 1.0 548 0.516583 3720 0.856237
… … … … …
10553 DEXA JourConfOrg 1.0
… … … … …
11041 DEXA1994 JourConf-and-Year 1.0
… … … … …
11114 Geographic Data

Handling in a Deductive
Object-Oriented
Database.

PaperName 1.0 1627 0.224346 1628 0.187739
1737 0.415771 2773 0.565653
2924 0.512826 4729 0.260953
4871 0.300843

… … … … …

Table 3.3: Instances of topics

CHAPTER 3. TOPIC MAP DATA MODEL 47

In the first pass, applying the rules given in the mapping M over DBLP

dataset, we have extracted topics, metalinks and sources that are presented in

Tables 3.3 to 3.6. We have only shown the extracted instances relating to the

entries in Figure 3.5. Note that RelatedToPapers and PrerequisitePapers metalink

instances were created once the second pass through the dataset ended and the

vector representation of the “PaperName” topics were obtained.

Mid Mtype Antecedentid Consequentid MAdvice
… … … … …
403 AuthorOf 155 152 1.0
404 AuthoredBy 152 155 1.0
405 AuthorOf 155 153 1.0
406 AuthoredBy 153 155 1.0
407 AuthorOf 155 154 1.0
408 AuthoredBy 154 155 1.0
409 JourConfOf 155 87 1.0
410 JourConfPapers 87 155 1.0
411 PublicationDateOf 155 86 1.0
412 InPublicationDate 86 155 1.0
… … … … …
47081 AuthorOf 11114 152 1.0
47082 AuthoredBy 152 11114 1.0
47083 AuthorOf 11114 154 1.0
47084 AuthoredBy 154 11114 1.0
47085 AuthorOf 11114 153 1.0
47086 AuthoredBy 153 11114 1.0
47087 AuthorOf 11114 10046 1.0
47088 AuthoredBy 10046 11114 1.0
47089 AuthorOf 11114 10047 1.0
47090 AuthoredBy 10047 11114 1.0
47091 AuthorOf 11114 10282 1.0
47092 AuthoredBy 10282 11114 1.0
47093 JourConfOf 11114 11041 1.0
47094 JourConfPapers 11041 11114 1.0
47095 PublicationDateOf 11114 581 1.0
47096 InPublicationDate 581 11114 1.0
… … … … …
171635 RelatedToPapers 155 11114 0.911318
171636 PrerequisitePapers 11114 155 0.911318
… … … … …
171958 RelatedToPapers 11114 155 0.911318
… … … … …

Table 3.4: Instances of metalinks

CHAPTER 3. TOPIC MAP DATA MODEL 48

Sid Web-address Role SAdvice

… … … …

46 db/conf/ssd/ssd93.html#AbdelmotyWP93 Website 1.0

… … … …

5736 db/conf/dexa/dexa94.html#AbdelmotyPWFBD94 Website 1.0

… … … …

Table 3.5: Instances of sources

Tsid Tid Sid

… … …

46 155 46

… … …

5736 11114 5736

… … …

Table 3.6: Instances of tsources

49

Chapter 4

Implementation Details

In the previous section, we have explained the outlines of the presented topic map

data model and the employed inverted index scheme. In this section, we describe

the details of our implementation. Since the DBLP dataset containing all the

bibliographic entries was a huge and single XML file, it was not suitable for the

implementation of dynamic update mechanism. Thus, we have rearranged the

dataset so that it allows dynamic updates. For this reason, an initial collection has

been created containing all the publications up to year 2000 by excluding the ones

published in 2000 and 2001. The rest of the entries belonging to year 2000 and

2001 have been contained in dynamic sets. In the following, we first present the

details of processing the initial collection and then go on with the processing of

dynamic datasets.

4.1 Implementation platform

We have constructed topic map database of both initial collection and dynamic

sets on the PC-Windows platform using MS SQL Server Database Management

System, C and C++ programming languages. Firstly, we have created topics,

metalinks, sources and tsources tables on a database server with MS SQL Server

installed on it as DBMS.

CHAPTER 4. IMPLEMENTATION DETAILS 50

In our implementation, two main programs have been used to construct the

data model where the first program is for processing the initial collection and the

second program is for processing the dynamic sets. The first program, written in

C++ language, processing the initial collection, is run on another machine

different from the database server, with 1 GB memory and Pentium III processor

at 800 MHz. The second program, also written in C++ language, processing the

dynamic sets one by one, is run on a client machine with 64 MB memory and

Pentium II processor at 500 MHz.

4.2 Initial Collection

4.2.1 Construction of Inverted File Index

The first program processing the initial collection takes the initial DBLP

XML file as an input and processes the bibliographic entries in that file one by

one. The characteristics of the initial collection are presented in Table 4.1. Notice

that the sum of articles, proceedings and inproceedings is not equal to total

number of publications. This difference is due to the presence of other types of

publications such as books, incollections and phdthesis, etc.

Number of articles 82,802

Number of proceedings 649

Number of inproceedings 113,276

Total number of publications 198,224

Text size (Mb) 80

Table 4.1: Initial DBLP dataset

As we have mentioned in the previous section, there are two passes over the

input dataset in the first program. In the first pass, for each article and

inproceedings element; topic, source and tsource instances are extracted and

CHAPTER 4. IMPLEMENTATION DETAILS 51

inserted into the corresponding tables. The metalink instances, except the

RelatedToPapers and PrerequisitePapers metalinks, are also extracted and put

into database in the first pass. Extraction of these instances has been done in a

straightforward manner by tagging the sub-elements of the entries as defined in

mapping M in the previous section.

Figure 4.1: Snapshot of the in-memory wordlist after the first pass.

At the end of this first pass, the topics, sources, tsources, and metalinks tables

are filled with the corresponding extracted instances, and the in-memory wordlists

of both “PaperName” and “AuthorName” topics are obtained. We have named all

of the “PaperName” topics as title collection and all of the “AuthorName” topics

as author collection. A sample snapshot of in-memory wordlist of “PaperName”

topics is given in Figure 4.1. Notice that the terms in the wordlist are stemmed

and the storages in which the postings will be written into are initially empty and

Term

id

Index

term
Rank

Start

ptr

.

.

.

.

.

.

…

…

…

…

…

…

.

.

.

.

.

.

.

.

.

.

.

.

13478 data 12,503

13479 databas 18,041

…

…

…

…

.

.

.

.

.

.

.

.

 -1 0 0

 -1 0 0

the storages in the inverted file on the disk

in-memory wordlist

CHAPTER 4. IMPLEMENTATION DETAILS 52

the three fields (i.e., start pointer, size and the fullness of the next storage) at the

end of the storages are initialized to –1,0,0 respectively.

Actually, the second pass is required for obtaining the normalized vector

representations of the topics in the title and author collections where the vector

representations of title collection are also used for computing the text similarity of

any two topics in the title collection. The similarity value is compared with the

threshold values Tsim1 and Tsim2 so that it can be decided if those two topics

have RelatedToPapers or PrerequisitePapers or both relationships between each

other.

In the second pass, each topic in both title and author collection is processed

one by one in order to obtain vector representations. For each topic, the weights of

the terms contained in that topic are calculated by employing a widely used term-

weighting scheme that is TF/IDF scheme [29]. In this scheme, the weight of a

term is computed using the formula vt = (log(TFv, t) + 1).log(IDFt), where vt

denotes the vector v element for term t, TFv, t (term frequency) is the number of

occurrences of term t in the topic represented by v, and IDFt is the inverse

document frequency that is defined as the ratio of the number of all topics in the

collection to the number of topics including the term t. Once the weight of all the

terms in a topic is computed, then each term weight is divided by

∑
=

m

t
tv

1

2)(

where vt is the weight of term t and m is the number of distinct terms in the topic.

Finally, the normalized vector of a topic is typically obtained.

Once the normalized vector of a topic is obtained, each term weight together

with the Tid of the topic construct a posting in the postings list of that term. The

postings lists are implemented as a linked list organization in the memory. For

each term, the start pointer of the linked list is allocated dynamically and stored in

the list ptr field of in-memory wordlist. In the linked list, each node contains a

CHAPTER 4. IMPLEMENTATION DETAILS 53

posting and a pointer to the next posting. Each time a topic is processed and a

posting is obtained for a term, a node is appended to the end of the linked list of

the corresponding term. In Figure 4.2, the snapshot of in-memory wordlist at a

time when some postings added to the linked lists is presented. The pointers in the

last nodes of the linked lists show null values.

Figure 4.2: The view of in-memory wordlist and its pointers

Since the memory will not be sufficient for all postings lists of all terms, the

lists are written into the inverted file (on the disk) each time when they have

reached a predefined threshold (Tlist) size. For example, when the amount of

nodes in the linked list for the term “data” reaches Tlist = 25, the postings in the

nodes are written into the corresponding storage in the inverted file. After writing

the list, the program frees the nodes of the linked list of the term “data” and

Term

id

Index

term
Rank

Start

ptr

List

ptr

.

.

.

.

.

.

…

…

…

…

…

…

.

.

.

.

.

.

.

.

.

.

.

.

13478 data 12,503

13479 databas 18,041

…

…

…

…

.

.

.

.

.

.

.

.

in-memory wordlist

 -1 0 0

 -1 0 0

the storages in the inverted file on the disk

12 0.587623 35 0.345694

45 0.507623 56 0.630233

..

..

Linked lists containing each posting

as a node

CHAPTER 4. IMPLEMENTATION DETAILS 54

initializes the list ptr field to null value. By this way, we have optimized memory

consumption in obtaining the inverted lists.

One advantage of implementing the inverted file as a binary file is that the

write operation of an inverted list occurs just in one file access. We have assumed

that a file access consists of both finding the start address of the disk storage (in

the inverted file) where the inverted list will be written and writing the inverted

list into that storage. That is, firstly, an fseek() command moves the file pointer to

the start address of the place in the inverted file where the list will be written, and

then an fwrite() command writes the postings in the link list of the term.

At the end of the second pass, we have two files at hand for each collection

(i.e., title and author collection). One of them is the index file that consists of the

in-memory wordlist with its additional fields such as index term, rank, start ptr.

This file is handled as a text file and when a dynamic set comes, it is read into the

memory with its last updated values. Because the wordlist is obtained from a

collection containing 196,078 “PaperName” topics, the terms participating in the

index file, that is the terms obtained from the initial huge collection can be thought

as the frequent words.

The other file, inverted file contains the postings lists of all the terms in a

contiguous and fix-sized manner. It is implemented as a binary file so that the file

access operations can be handled in an efficient manner in both writing the list to

the file and retrieving the list from the file.

Finally, the normalized vectors of the topics are also stored on the disk as a

text file and named as vector file. For each “PaperName” topic, four entries (i.e.,

Tid of the topic, the normalized topic vector, Tid(s) of the author(s) of the

publication and the publication date) are contained in this vector file to be utilized

during the RelatedToPapers and PrerequisitePapers metalinks extraction.

CHAPTER 4. IMPLEMENTATION DETAILS 55

4.2.2 RelatedToPapers and PrerequisitePapers Metalinks

The last step in the first program is to obtain RelatedToPapers and

PrerequisitePapers metalink instances. For this purpose, in the first program, we

have used the NLoopSim-SVT algorithm presented in [42] with some important

extensions. This algorithm takes two relations R and S as inputs and outputs the

joined tuples according to a join condition. The pseudo code of the NLoopSim-SVT

algorithm is provided in Appendix B.

In our implementation, the title collection can be thought as a relation, and

the vector representations stored in the vector file, can be thought as the tuples of

this relation. Two copies of the vector file are sent as input to the algorithm where

the first copy is sent as collectionR and the second copy is sent as collectionS. So,

we can say that a self-join operation is applied on the title collection.

Two data structures BufR and BufS, implemented as array of structs, are used

to hold the four entries (i.e., Tid of the topic, normalized topic vector, Tid(s) of

the author(s) and publication date) of each topic in memory. The entries in

collectionR are read into BufR starting from the first topic until the buffer is full.

Then, the entries in collectionS are read into BufS again starting from the first

topic until the buffer is full. An in-memory inverted list of BufR is obtained by

tokenizing the vectors with respect to the term indices. Another data structure,

InvertedListR, is used to hold this inverted list.

Each topic in BufS is processed one by one to find the cosine similarity with

the topics in BufR. For each topic in BufS, the topic vector is processed posting by

posting. For each term in a posting, the postings list of the term is accessed in the

InvertedListR. Remember that, the postings list retrieved from InvertedListR

contains pairs of Tid and weight values. The visualization of the data structures

BufR and InvertedListR are presented in Figure 4.3.

CHAPTER 4. IMPLEMENTATION DETAILS 56

Figure 4.3: Visualization of BufR and InvertedListR at any time.

The term weight in a topic vector in BufR is multiplied by each weight value

at each posting in the linked list of that term in InvertedListR. Another data

structure, Candidates, is implemented as an array that contains similarity values

computed by summing up the product values. At any time, the number of

candidate topics to be similar to a topic in BufS can be at most the number of

existing topics in BufR. The product values in Tidth node of Candidates list are

summed up incrementally each time a product is computed for that Tid and finally

stored as similarity value. The same steps are applied for the next term in the topic

vector until all the terms are exploited.

44 0.456732 34 0.650912 5 0.405501 22 0.343309

7534 10345 13654 1998

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

Tids of authors Date

Vector of the topic

87

Tid of the topic

BufR implemented as array of structs

..

..

Term index

5

22

34

44

..

..

..

..

..

..

..

..

15 0.564102

9 0.602143

18 0.321841

29 0.498102

InvertedListR implemented as array of
pointers to the linked lists

CHAPTER 4. IMPLEMENTATION DETAILS 57

Now, we have the Candidates list of a topic with the similarity values at

hand. Note that the idea of creating the in-memory inverted list of all the topics in

BufR is one of the important extensions to the NLoopSim-SVT algorithm. By this

way, determining the Candidates list of a topic in BufS is obtained in a very

efficient pruned manner. The similarity values in the Candidates list are compared

one by one with the threshold values Tsim1 and Tsim2. Finally, the

RelatedToPapers and PrerequisitePapers metalink instances for a topic in BufS

are obtained according to the rules defined in Section 3.2.3. Note that the other

three entries (i.e., Tid, Tid(s) of the author(s) and publication date) of a topic in

BufR are used during the application of these rules. Then the same steps are

applied for all the topics existing in BufS. Once all the topics in BufS are exploited

then next topic vectors in collectionS are read into the BufS and the same steps are

applied to these topics. When the end of the collectionS is reached, all the topics

will have been compared with the topics in the BufR in the sense of text similarity.

Now, it is time to read next topic vectors in collectionR into BufR and to read

the vectors in collectionS into BufS starting from the first topic vector again. The

same steps explained in the previous paragraphs are applied until the topic vectors

in collectionS are exploited. The program goes on like this until exploiting all the

topic vectors in collectionR. Note that this part of the first program runs in a

nested-loop manner where the collectionR is the outer relation and the collectionS

is the inner relation.

Notice that we have not used the postings lists in the inverted file for

determining the Candidates list of a topic. The reason is that, since a topic will be

compared against all of the topics containing the terms in that topic, there will be

so many file accesses for computing the similarity of all the topics. Instead, we

have implemented an in-memory inverted list held in InvertedListR and exploited

all the topic vectors in a block nested loop manner. Thus, we have optimized this

high file access cost by just processing the topics in a nested loop manner (i.e.,

reading the topic vectors into BufR and BufS) and creating an in-memory inverted

CHAPTER 4. IMPLEMENTATION DETAILS 58

list of the outer relation (i.e., InvertedListR). The results of the first program

processing the initial collection are presented in Table 4.2 and Table 4.3.

Entity Type Number of instances Total

PaperName 196,078

AuthorName 130,501

JourConfOrg 1,199

PublicationDate 47

Topics

JourConf-and-Year 4,960

332,786

Sources - 196,078 196,078

Tsources - 196,078 196,078

AuthoredBy 405,691

AuthorOf 405,691

PublicationDateOf 196,078

InPublicationDate 196,078

JourConfOf 196,078

JourConfPapers 196,078

RelatedToPapers 2,303,718

Metalinks

PrerequisitePapers 162,062

4,061,473

Table 4.2: Extracted topics, sources and metalinks from the initial collection.

In this program, the first pass capturing the extraction and the insertion of the

topic, source, tsource and metalink instances takes about 120 minutes totally. In

fact, extraction process takes at most 2 or 3 minutes. Because of the network

latency and the indices employed on the database tables, the insertion of the

instances into the corresponding tables takes too much time. In the second pass,

creation of inverted and vector file takes about 10 minutes whereas determining

the RelatedToPapers and PrerequisitePapers metalink instances takes about 60

minutes. Because of the same reasons presented in the first pass, the insertion of

CHAPTER 4. IMPLEMENTATION DETAILS 59

these two metalink instances takes too much time that is about 130 minutes in the

second pass.

Collection Topics Terms Postings Inverted file (kb)

Title collection 196,078 39,244 1,166,110 20,060

Author collection 130,501 77,098 315,228 8,540

Table 4.3: Characteristics of the inverted and index files

At the end of processing initial collection, the characteristics of created index

file and inverted file are presented in Table 4.3. Number of distinct words

participating in the title collection (i.e., “PaperName” topics) is 39,224. Some of

these terms will be surely more frequent than the others (e.g., rank of the term

“system” is 23,450). However, since these terms are obtained by processing an

initial huge collection containing 196,078 topics, we can say that all of these

terms can be accepted as frequent with respect to the new terms participating in

the dynamic sets.

On the other hand, the size of the inverted file containing 1,166,110 postings

is not so large. The reason for this is that there is no blank space reserved for the

postings that will come out in dynamic sets. In the upcoming section, we explain

the processing of dynamic sets.

4.3 Dynamic Sets

As we have mentioned in the previous section, dynamic sets captures the

bibliographic entries for the publications that are published in 2000 and 2001. In

the real life implementation, each time a list of new publications arrives the

bibliographic entries for these publications will be prepared in the same format as

the initial collection.

CHAPTER 4. IMPLEMENTATION DETAILS 60

4.3.1 Dynamic Update of Inverted File

We have created about 14 dynamic sets by extracting the publications reported in

2000 and 2001 from the original DBLP dataset. The details of dynamic sets are

presented in Table 4.4. Although the author collections are also processed in our

implementation, we have not presented the characteristics and the results of the

author collections for the sake of simplicity.

Dynamic set Text size (kb) Publications Postings Terms

1 850 2,027 11,454 2,663

2 832 2,107 12,798 2,965

3 817 2,006 12,747 3,262

4 980 2,052 12,582 2,532

5 839 2,032 13,038 2,852

6 816 1,991 12,239 2,636

7 806 1,977 12,583 2,857

8 848 1,995 13,195 2,857

9 834 2,003 13,004 2,583

10 823 1,873 12,380 2,761

11 801 2,022 11,637 2,997

12 894 1,998 12,167 2,779

13 940 1,974 13,071 2,669

14 893 1,956 13,226 2,739

Total 11,973 28,013 176,121 39,152

Table 4.4: Properties of title collections in Dynamic Sets

The number of entries in each dynamic set varies from 1,956 to 2,052. We

have created each dynamic set such that no publications published in the same

journal/conference are contained in different dynamic sets, and each dynamic set

has about 1% of the previously indexed collection. All the publications in

CHAPTER 4. IMPLEMENTATION DETAILS 61

dynamic sets are of type article, proceeding or inproceedings. The total number of

publications in dynamic sets corresponds to about 15% of the initial collection.

However, each time a dynamic set is processed and the dynamic update of the

inverted index is constructed, we index about 1% of the previously indexed

collection in an incrementally and dynamic manner.

The second program processing dynamic sets differs from the first program

in determining the RelatedToPapers and PrerequisitePapers metalink instances.

Instead of using the extended NLoopSim-SVT algorithm and creating an in memory

inverted list as in the first program, we have used inverted files in the second

program. The reason for this is that the number of entries in each dynamic set is

not so large to cause very high file access costs during the retrieval of postings

lists.

In the second program, there are two main passes over the input dataset, too.

This time, we have an index file and an inverted file at hand obtained from the

initial collection before starting to process dynamic sets. Now, let us name these

files as old_index and old_inverted, respectively. In the first pass, similar to the

first program, all the topic, metalink and source instances are extracted except

RelatedToPapers and PrerequisitePapers metalink instances. Then, these

extracted instances are inserted into the corresponding tables on the database

server.

Actually, the program firstly reads the old_index file into the memory in the

first pass. The data structure old_wordlist is used to hold the terms read from the

old_index file in the memory. The structure of the old_wordlist is the same as the

in-memory wordlist implemented in the first program. Before inserting an

extracted “PaperName” topic of the input dynamic set, it is processed term by

term. Each term is first searched in the old_wordlist. Since the old_wordlist has

been sorted in alphabetical order after processing initial collection, searching in

old_wordlist is implemented as binary search. Then, the rank field of the term is

incremented by one as each occurrence comes upon. However, if the term is new

CHAPTER 4. IMPLEMENTATION DETAILS 62

to the initial collection, in other words if the term is not in the old_wordlist, then it

is searched in another in-memory wordlist that is new_wordlist. The data structure

new_wordlist is used to hold these new terms and has the same structure with the

old_wordlist. That is, each time processing a term, the term is first searched in the

old_wordlist. If the term is not there then it is searched in the new_wordlist. If the

term is not in the new_wordlist either, then the term is added to the new_wordlist.

Since the old_wordlist is obtained by processing a huge initial collection, the

size of the new_wordlist will not be so large as well as the ranks of the terms in it.

One exception to this assumption may be the ranks of the terms in the

new_wordlist. That is, the terms involving in new concepts occurring in computer

science may have more rank than some of the terms in the old_wordlist. The

new_wordlist is sorted in alphabetical order each time a new word is added to the

list. By this way, the search of a word in new_wordlist is also implemented as

binary search. The cost of sorting the new_wordlist is tolerable because the size of

it will be very small with respect to the size of the old_wordlist.

After having processed the extracted “PaperName” and “AuthorName”

topics term by term and updating the old_wordlist and the new_wordlist, the

second pass starts. In the second pass, the normalized vectors of the topics and

linked lists containing the postings of the corresponding terms are created. The

computations to obtain these vectors and linked lists are the same as in the first

program. Another difference from the first program comes out at this point that

since the postings lists of all the topics extracted in a dynamic set will not be so

large in size to fit into memory, the linked lists containing the postings are held in

memory until finishing to process all the “PaperName” topics in that dynamic set.

Since we have two wordlists (i.e., old_wordlist and new_wordlist) at hand,

we have created another binary file for storing the postings of the terms belonging

to new_wordlist. This file is named as new_inverted file and it has the same

structure with the old_inverted file. Thus, the postings list of a term in the

dynamic sets may be written into one of these two inverted files according to

CHAPTER 4. IMPLEMENTATION DETAILS 63

term. For this purpose, the postings lists are processed one by one, too. One can

think that why a posting of a term is not written at the time it is obtained. This

manner will increase the disk access cost very much. Because, there will be as

many file accesses as the number of total postings in a dynamic set for writing

these postings into the corresponding inverted_file (e.g., there are 11454 postings

in the first dynamic set). By processing the postings lists one by one, we have

decreased this cost to minimum level. Because, this time there will be as many file

accesses as the number of distinct words in a dynamic set (e.g., 2663 terms in the

first dynamic set). Note that, as in the initial collection, we have assumed that a

file access consists of both finding the start address of the disk storage (in the

inverted file) where the inverted list will be written and writing the inverted list

into that storage.

If the postings list is of the term belonging to the old_wordlist then a second

storage is allocated at the end of the old_inverted file such that the size of the

second storage is a fraction of the size of the first storage. This time, the second

storage will have blank spaces reserved for the postings of that term that can be

occur in the upcoming dynamic sets. In our implementation, this fraction is the

half of the first storage. After writing the postings list of the term into the

old_inverted file, the three fields at the end of the first storage are updated with

the start pointer of the second storage, the size of the second storage (i.e., half of

the first storage) and how much space of the second storage is full (i.e., number of

postings written in the dynamic sets up to that time), respectively. Note that three

fields at the end of this allocated second storage are also initialized to –1, 0, 0,

respectively. If the second storage is full then a next storage is allocated in a

similar fashion with the second storage. The postings list is always written starting

from the first blank space in the available storage that is not full yet.

If the postings list is of the term belonging to the new_wordlist and the term

has the first occurrence in the dynamic sets, then a storage is allocated at the end

of new_inverted file in a fixed sized manner, and the postings list is written into

that storage. For other possible occurrences of a term belonging to the

CHAPTER 4. IMPLEMENTATION DETAILS 64

new_wordlist, the same steps are applied as in the old_wordlist and old_inverted

file (i.e., contiguous and fixed sized first storages, second storages with blank

spaces etc.). Note that the only difference is that the postings lists of the terms

belonging to new_wordlist are written into another file that is new_inverted file.

The structure of the employed data structures and the created files of both the old

and new wordlists are all the same.

4.3.2 RelatedToPapers and PrerequisitePapers Metalinks

After updating the old_wordlist and the new_wordlist, and writing the postings

lists of the terms into the corresponding inverted file, now it is time to execute the

last step in the second program processing the dynamic sets. In the last step of the

second program, the RelatedToPapers and PrerequisitePapers metalink instances

are determined by comparing the cosine similarity of the extracted topics in the

dynamic set with the topics inserted into topics table.

At any point, the topics table contains all the extracted “PaperName” topics

up to that time including the ones extracted in that dynamic set. Once a metalink

instance is determined it is inserted into the metalinks tables. One of the main

contributions in processing a dynamic set is that in order to find these two

metalinks (i.e., RelatetToPapers and PrerequisitePapers) for a “PaperName”

topic extracted in a dynamic set, we have only compare it with the “PaperName”

topics in the database that have the terms in common with the topic at hand

instead of comparing it with all of the topics in the database.

Each “PaperName” topic vector, obtained from a dynamic set is processed

one by one. Each topic vector is also processed posting by posting. If the term tj in

a topic vector vi belongs to the old_wordlist then the postings lists of the term tj

are retrieved from the old_inverted file by using the start ptr field of the term tj in

the old_wordlist data structure. However, if the term tj is not in the old_wordlist,

then it means that it is in the new_wordlist and the postings lists are retrieved from

the new_inverted file. Remember that, since each topic vector contains term index

CHAPTER 4. IMPLEMENTATION DETAILS 65

and term weight pairs, the wordlist which the term tj belongs to is determined by

just comparing the term index of tj with the index of the last term in old_wordlist.

The retrieved postings lists of the term tj are stored in a memory buffer. After this

step, the used data structures and the applied computations to obtain the

Candidates list of the topic Ti are all the same as in the first program.

The similarity values in the Candidates list of the topic Ti are compared one

by one with the threshold values Tsim1 and Tsim2. Finally, the RelatedToPapers

and PrerequisitePapers metalink instances for topic Ti are obtained according to

the rules defined in Section 3.2.3. For example, if a topic Tj in the Candidates list

of the topic Ti has a similarity value above Tsim2 (means RelatedToPapers

metalink already exists between Ti and Tj), then there will be no need to look for a

common author between these two topics and the PrerequisitePapers metalink

instance is directly inserted into the metalinks tables where the Consequentid is

the Tid of the topic with an earlier publication date of the two topics. Since the

topic Ti is obtained in that dynamic set, the publication date of this topic is already

at hand. In order to determine the publication date of the topic Tj, firstly, an SQL

select statement is executed which returns the InPublicationDate metalink

instance where the Consequentid is the Tid of Tj. Secondly, another SQL select

statement is executed which returns the TName in topics table where the Tid is the

Antecedentid returned in the previous SQL statement.

However, if Tj has a similarity value below Tsim2 but above Tsim1 (i.e.,

RelatedToPapers metalink again exists between Ti and Tj), the author(s) of the Tj

is obtained by an SQL select statement returning the AuthoredBy metalink

instance(s) where the Consequentid is the Tid of Tj and the Antecedentid(s) is the

Tid of the authors of the topic Tj. Similar to the publication date, the author(s) of

the topic Ti are already at hand. If both topics Ti and Tj have at least one common

author, then there exists a PrerequisitePapers metalink between these two topics

where the Consequentid will be again the Tid of the topic with an earlier

publication date.

CHAPTER 4. IMPLEMENTATION DETAILS 66

In order to retrieve the publication date and the author(s) of a candidate topic

in an efficient manner, the indexes on the topics and metalinks tables should be

managed carefully. We have put a non-clustered index on both the Mtype and

Consequentid columns of the metalinks table. We have also put a non-clustered

index on the TType column of the topics table.

In our implementation, Tsim1 and Tsim2 are assigned 0.5 and 0.7,

respectively. If the two topics Ti and Tj are published in the same year, there will

be no PrerequisitePapers metalink between them. Finally, for the topic Ti, all of

the topics in Candidates list of Ti are exploited in the same manner and the

extraction of the RelatedToPapers and the PrerequisitePapers metalink instances

are finished for the topic Ti. All of the same steps are applied for all the

“PaperName” topics extracted in the dynamic set.

By the way, processing a dynamic set by the second program is ended. The

main difference between the first and the second programs in evaluating the

Candidates list of a topic is that the postings lists of the terms of a topic are

retrieved from an in-memory inverted list (i.e., InvertedListR) in the former one,

whereas the postings lists are retrieved from the disk (i.e., old_inverted file or

new_inverted file) in the latter one. One can think that this disk access cost

decreases the efficiency of the second program processing dynamic sets.

However, since the number of “PaperName” topics to be processed in a dynamic

set is about 2000 (i.e., 1 % of the initial collection) and an in memory inverted list

of all the topics must not be constructed as in the first approach, the disk access

cost is tolerable. In addition to this, only the postings lists of the terms contained

in the extracted topics are retrieved from the corresponding inverted file.

Following the description of the implementation details of processing both

the initial collection and dynamic sets, in the upcoming section, we discuss the

experimental results that are obtained after processing dynamic sets.

67

Chapter 5

Experimental Results

The details of the second program processing the dynamic sets are given in the

previous section. Remember that there are two main passes over the input data set

in the second program where the updates on the old_wordlist and the

new_wordlist are performed in the first pass and the vector representation of the

topics are obtained in the second pass. Finally, RelatedToPapers and

PrerequisitePapers metalinks are determined in the last step of the second

program. This second program is executed 14 times to process all of the dynamic

sets. The characteristics of title collections obtained from these dynamic sets have

been given in Table 4.4 in the previous section.

5.1 Employed Dynamic Update Scheme

The first assumption we made is that sufficient memory is available to support an

in-memory vocabulary of the words used in the title collections. We have

observed that both of the old_wordlist containing 39,244 terms and the

new_wordlist containing at most 3,387 terms have no problem to fit into memory

with the additional fields (e.g., index, rank, start_ptr, etc) even if the size of the

memory is 64 MB. Another assumption is that the size of the new_wordlist

CHAPTER 5. EXPERIMENTAL RESULTS 68

containing the new terms is very small with respect to the size of the old_wordlist.

In Figure 5.1, the size of the new_wordlist after each dynamic set is shown.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14
dynamic set

ne
w

 te
rm

s

 Figure 5.1: Cumulative number of new terms after each dynamic set.

Although the number of new terms added to the new_wordlist in a dynamic

set depends on the content of that dynamic set, we have observed that it increases

linearly not exponentially. The important thing is that the new_wordlist has 3,387

terms after all of the dynamic sets are processed. In other words, the size of the

new_wordlist never exceeds 8.6% of the size of the old_wordlist even during the

processing of the last dynamic set. So, each time a new term is encountered,

instead of adding the term to the old_wordlist and sorting this huge list, we have

added the new terms to the new_wordlist and sorted this relatively very small list.

By this way, the cost of sorting is decreased to minimum. In addition to this, since

each search process of a term involves in binary search, the cost of searching is

decreased to minimum, too.

As we have mentioned in the previous section, once the first occurrence of a

term belonging to either old_wordlist or new_wordlist is encountered, the postings

list of the term is written into a storage (i.e., first storage) allocated at the end of

CHAPTER 5. EXPERIMENTAL RESULTS 69

the corresponding inverted file in a fixed size and contiguous manner. If the term

is encountered in the dynamic sets again, the postings lists obtained after this

occurrence are written into a second storage allocated with blank spaces. In our

implementation, the size of this second storage is the half of the size of the first

storage. When the second storage is full, another storage is allocated where the

size of this third storage will be half of the size of the second storage. The storage

allocation strategy will go on like this.

This storage allocation strategy allows us to use the disk space in an

effectively manner. There will be no blank spaces in the storage of a term that is

not encountered again throughout the processing of the initial collection and the

dynamic sets. However, the blank spaces in the second storages will be filled with

the new postings with the following occurrences of the terms. Therefore, the sizes

of the both old_inverted file and new_inverted file will increase much in the first

dynamic set and little in the following dynamic sets. In Figure 5.2, we show the

increase in the size of the old_inverted file after each dynamic set.

27,600

27,800

28,000

28,200

28,400

28,600

28,800

29,000

29,200

29,400

0 5 10 15
dynamic set

ol
d_

in
ve

rte
d

fil
e

(K
B)

Figure 5.2: The size of the old_inverted file after each dynamic set.

CHAPTER 5. EXPERIMENTAL RESULTS 70

Although average number of postings written into the old_inverted file is

about 12,000 in each dynamic set, the increase in the size of this file is not the

same in each dynamic set. The reason is that the second storages for most of the

frequent terms are allocated with the blank spaces in the first dynamic set. So, the

file size performs a huge jump and increases from 20,060 KB (obtained from

initial collection) to 27,784 KB at the end of the first dynamic set. When the new

postings of these terms are obtained in the following dynamic sets, these postings

are written into these blank spaces in the second storages.

On the other hand, the fraction of the number of terms with more than two-

storages in the total number of terms should not be increased in a highly manner

and most of the frequent terms should not have more than two-storages. If it

happens, retrieving of the inverted lists of these terms from the corresponding

inverted file during the determination of the Candidates list of a topic requires

more than two file accesses (i.e., traversing the storages). We have categorized

each term in one of three types: a term with one-storage, a term with two-

storages, a term with more-storages. The fraction of the terms belonging to each

category is presented in Figure 5.3.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10 12 14 16

dynamic set

fra
ct

io
n

one-storage two-storages more-storages

Figure 5.3: The fraction of terms in each category per dynamic set.

CHAPTER 5. EXPERIMENTAL RESULTS 71

We have observed that the terms dropping into more-storages category are

either the ones which have very small sized first storages (i.e., infrequent terms)

or the ones which involve in the new concepts coming out in computer science.

For example, the infrequent terms such as ‘b2b’, ‘bluetooth’ and ‘fipa’ have six

storages whereas the terms involving in new concepts such as ‘e-commerce’,

‘javacard’ and ‘xml’ have six storages, too. In addition to this, most of the

frequent terms such as ‘data’, ‘database’ and ‘system’ have at most two-storages

as we have assumed. Finally, in 42,631 terms (total number of terms in both of the

old_wordlist and the new_wordlist) obtained at the end of processing dynamic

sets, 33,291 words (i.e., 78% of the total number of words) are in one-storage

category, 8,496 words (i.e., 20% of the total number of words) are in two-storages

category and 844 words (i.e., 2% of the total number of words) are in more-

storages category. Note that since the 15% of the initial collection is dynamically

updated, these fraction values can be accepted as in the suitable ranges.

Now, let us look at the time spent for dynamic updating of the inverted files

for each dynamic set. Figure 5.4 shows the cumulative time required to

incrementally index the postings obtained in each dynamic set and cumulatively

add them to the existing index.

0

100

200

300

400

500

600

12 24 37 50 63 75 87 101 114 126 138 150 163 176

cumulative postings indexed (thousands)

cu
m

ul
at

iv
e

tim
e

(s
ec

on
ds

)

Figure 5.4: The cumulative time needed to build final index.

CHAPTER 5. EXPERIMENTAL RESULTS 72

As it is shown in Figure 5.4, the cumulative time to update the postings

increases linearly as the cumulative number of postings increases. Note that

incrementally indexing the entire dynamic sets (15% of the initial collection)

takes about 557 seconds totally.

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14
dynamic set

tim
e

pe
r p

os
tin

g
(m

illi
se

co
nd

s)

Figure 5.5: Update time per posting in each dynamic set.

We have also computed the average time per posting in each update of

dynamic sets as shown in Figure 5.5. We have observed that, although the size of

the inverted files and the number of terms with two-storages increases as shown in

Figure 5.2 and Figure 5.3, respectively, the time per posting for each dynamic set

update changes in a small range (i.e., from 2.7 milliseconds to 3.6 milliseconds).

In other words, it is almost stable throughout all the dynamic sets and there is no

outstanding increase as the number of dynamically updated sets increase.

In our implementation, dynamic update of inverted files in a dynamic set

process captures; parsing the “PaperName” topics, updating the fields of both

old_wordlist and new_wordlist, computing the weights of the terms, obtaining the

vector representations of the topics and the postings lists of the terms, sorting the

postings lists in ascending Tid order, and finally finding the first blank spaces in

CHAPTER 5. EXPERIMENTAL RESULTS 73

the suitable storages in the inverted files by traversing them (first storage, second

storage, etc.) and writing the postings lists into that storages.

Of course we do not claim that the employed dynamic update mechanism is a

new and very efficient one in the field of inverted file indexing. However, the

results we have presented above show that the employed dynamic update scheme

in our implementation yields good performance in the sense of disk storage usage

and incremental indexing time.

5.2 Updates on the Topic Map Database

The details of the extracted topic, metalink and source instances from the initial

collection were given in Section 4.1. In this section, we give the details of the

updates applied on the topic map database in each dynamic set process. In each

dynamic set, we have processed about 2,000 publications to extract the topic,

metalink and source instances.

In the first pass of the second program, once a topic, except the “PaperName”

topic, is extracted by tagging the elements in the input XML file (i.e., a dynamic

set) it is controlled if it is already in the topics table. Since a “PaperName” topic

cannot be published twice, the topics of type “PaperName” are inserted without

such a control as it is extracted. Actually, this control provides us to eliminate

duplicated topics especially of types “AuthorName”, “PublicationDate”,

“JourConfOrg” and “JourConf-and-Year”. If the topic is not in the database then

it is inserted into the topics table with its attribute values (e.g., TType, Tid, etc.).

Then, the global variable topic_id is incremented by one. However, if it is in the

database then the Tid of the topic is retrieved to use in the extraction of the

metalink instances of type AuthoredBy, AuthorOf, InPublicationDate, etc.

Once all of the sub-elements of a publication are processed, all the topic,

metalink (except the RelatedToPapers and PrerequisitePapers metalinks), source

and tsource instances related to that publication will have been inserted into

CHAPTER 5. EXPERIMENTAL RESULTS 74

corresponding tables. This process takes about 10-12 minutes for each dynamic

set containing about 2,000 publications. As we have mentioned before, the

insertion of instances takes the dominant time because of the network latency and

the indices put on the database tables. The extraction of the instances from the

input file takes very little time with respect to the insertion of the instances.

Topics Dynamic

Set “PaperName” “AuthorName” Total
Metalinks Sources

Time

(minutes)

1 2,027 702 2,729 17,326 2,027 9

2 2,107 1,028 3,135 17,790 2,107 11

3 2,006 1,105 3,111 16,726 2,006 11

4 2,052 1,172 3,224 16,034 2,052 10

5 2,032 1,453 3,485 18,368 2,032 11

6 1,991 1,196 3,187 17,706 1,991 10

7 1,977 1,420 3,397 18,050 1,977 11

8 1,995 1,786 3,781 19,068 1,995 11

9 2,003 1,807 3,810 18,272 2,003 10

10 1,873 2,001 3,874 17,164 1,873 11

11 2,022 794 2,816 16,722 2,022 9

12 1,998 1,001 2,999 17,968 1,998 12

13 1,974 1,774 3,748 18,480 1,974 10

14 1,956 1,892 3,848 17,794 1,956 9

Total 28,013 19,131 47,144 247,468 28,013 145

Table 5.1: Characteristics of the extracted instances from each dynamic set.

In Table 5.1, total number of instances of all types extracted from each

dynamic set excluding RelatedToPapers and PrerequisitePapers metalink types

and the time required to extract and insert these instances are given. At the end of

the last dynamic set, 28,013 “PaperName” topics are extracted and inserted into

the topics table whereas 196,078 “PaperName” topics were extracted from the

CHAPTER 5. EXPERIMENTAL RESULTS 75

initial collection. As we have mentioned before, the size of title collection built

from the dynamic sets is about 15% of the size of the title collection built from

initial collection in the sense of number of topics, too.

As stated in the previous section, the last step of the second program

processing the dynamic sets consists of both determining the RelatedToPapers

and PrerequisitePapers metalink instances and inserting them into the metalinks

table. Table 5.2 shows the details of last step in the second program for each

dynamic set in the sense of number of extracted metalinks, number of file

accesses to retrieve the postings lists, etc.

Metalinks Dynamic

Set RelatedToPapers PrerequisitePapers Total

File

accesses

Comparison

(millions)

Time

(minutes)

1 67,121 5,689 72,810 22,713 27 46

2 59,521 6,637 66,158 25,368 28 45

3 60,727 8,317 69,044 25,066 27 45

4 35,813 1,547 37,360 24,949 31 32

5 28,815 1,022 29,837 25,774 31 26

6 31,164 1,173 32,337 24,266 30 28

7 26,623 881 27,504 24,849 31 25

8 24,307 1,030 25,337 26,120 34 22

9 28,069 734 28,803 25,832 34 24

10 25,589 998 26,587 24,505 32 23

11 66,305 6,269 72,574 23,034 28 45

12 46,129 4,394 50,523 24,110 30 36

13 24,627 812 25,439 25,975 35 22

14 25,744 662 26,406 26,181 34 24

Total 550,554 40,165 590,719 348,742 432 443

Table 5.2: The details of the extracted metalink instances from each dynamic set.

CHAPTER 5. EXPERIMENTAL RESULTS 76

In Table 5.2, file accesses column specifies the number of disk accesses to

retrieve the postings lists of the terms in the extracted topics from the inverted

files. Remember that in order to obtain the Candidates list of a topic Ti in the

sense of text similarity, all the terms were processed one by one and the postings

list of a term tj was retrieved from the corresponding inverted file in a memory

buffer. On the other hand, the comparisons column specifies the total number of

comparisons of the similarity values in the Candidates lists of all the extracted

topics in a dynamic set with Tsim1 and Tsim2 values.

Thus, the values in the tables verifies our expectation in the sense that the

dominant portion of the total time required to extract all the RelatedToPapers and

PrerequisitePapers metalinks in a dynamic set is spent to insert these metalinks

not to determine them. For example, although the number of file accesses and

comparisons performed to determine the metalinks in dynamic set 13 (i.e., about

26,000 file accesses and 35 million comparisons) are much more than those of

dynamic set 1 (i.e., about 22,700 file accesses and 27 million comparisons), the

total amount of time spent in dynamic set 13 (i.e., 22 minutes) is less than the half

of the time spent in dynamic set 1 (i.e., 46 minutes).

As a result, all of the observations presented in the previous and this section

verify that our employed inverted index mechanism and the dynamic update

scheme for incrementally updating of this index yields very good performance.

77

Chapter 6

A Prototype Search Engine

Actually, the basic aim of our work is presenting a more efficient data model than

the one currently in use for DBLP organization to be utilized in the Web site

management of this organization. The details of the model and the architecture of

the search engine that are currently in use by this organization have been

explained in detail in Section 2.4 and Section 3.1. We have also presented the

details of our data model in Section 3.2. The final step of our work is development

of a domain specific Web search engine to be used with the presented topic map

data model for DBLP Web site. For this purpose, we have developed a console

application that provides a visual query interface for querying the bibliographic

information of the publications modelled with the presented topic map data

model.

6.1 Outlines of Visual Interface

When a user is connected to DBLP site and wants to search some publications in

the field of Computer Science with some specific search criteria, the interface will

be presented to the user to allow him or her to access the bibliographic

information about the searched publications in a very efficient way. It will be

efficient because the presented topic map model will index the bibliographic

information semantically and provide alternative navigational pathways through

CHAPTER 6. A PROTOTYPE SEARCH ENGINE 78

the topic metalinks to the user. In addition to this, the model will provide more

meaningful results to users’ queries than simple keyword search based Web

search engines. Actually there are three main pages in this prototype

implementation.

In the search page of the interface, there is a title box in which the user will

enter some terms. These terms are the ones such that at least one of them must be

contained in the tiles of the publications. There is a similarity above box next to

the title box. The user should enter a similarity threshold into this box so that he

can search the publications having similarity (with the query) above a threshold.

There will be also an author(s) box in which the user will enter the names of the

author(s) of the searched publications. The terms entered to this box may be the

first or the second name or both of them.

Note that a boolean search for the terms in the title box and a sub-string

search for the terms in the author box are employed in the current search scheme

of the DBLP Web site. The year box will be a list box and allows the user to

select a publication date for searched publication(s) in the year format. Two

options, such that in or after the selected date, are also provided.

The user may also want to search some publications reported in a specific

journal/conference organization published in a specific date. For this purpose,

there is a journal/conference box also a list box where the user can select the

journal or the conference in which the searched publication(s) are reported.

Finally, there is a top matches box that will facilitate the limitation on the number

of returned results. This box is also a list box.

After entering all the criteria, the search process is started by just clicking on

a search button in the search page. Then, another page, result page, is presented to

the user in which the list of publications according to the entered criteria is

provided. The user can navigate the list and learn the titles of the publications he

searched for. When he selects a publication, related or prerequisite publications to

CHAPTER 6. A PROTOTYPE SEARCH ENGINE 79

a publication in the returned list can also be obtained by just hitting on the related

publications or prerequsite publications button on the result page, respectively.

The Related publications button allows the user to see the list of related

publications with the selected publication in the result set whereas the prerequisite

publications button allows to see the list of publications which are proposed to be

read for easily understanding of the selected publication in the returned set. In

fact, related and prerequisite publications to a selected publication in the returned

set are obtained by using the RelateToPapers and PrerequisitePapers metalink

instances of that publication in the metalinks table. The list of related or

prerequisite publications is presented in the third page of the interface.

6.2 Search Process with an Illustration

Once the search button on the search page is pressed, a dynamic query string is

constructed in which all the criteria are contained as parameters. The metadata-

based criteria are straightforward to process. On the other hand, finding the

documents having a text similarity with the query above a threshold is almost the

same as in extracting a RelatedToPapers metalink instance in the processing

dynamic sets.

Firstly, the old_wordlist and the new_wordlist are read into the memory from

the old_index file and new_index file, respectively. Remember that both of these

index files are implemented as simple text files. The terms entered into the title

box (i.e., query terms) are processed one by one. After removing the stop words

and stemming the terms with the same tools used in the first and second program,

the normalized vector representation of the query is obtained. The calculation of

the weights of the terms and the normalization process are all the same as in the

first and second program.

Once the normalized vector representation of the query in title box is

obtained, it is processed as a vector of the “PaperName” topic extracted in a

CHAPTER 6. A PROTOTYPE SEARCH ENGINE 80

dynamic set. In order to build the Candidates list of the query, the same steps are

applied as in the last step of the second program that extracts the RelatedToPapers

and PrerequisitePapers metalink instances. The index of a term in vector

representation of the query is simply compared with the last index in the

old_wordlist to decide if the term is in the old_wordlist or new_wordlist. If the

index of the term is bigger that the last index then it means that the term is in the

new_wordlist and the postings lists of it will be retrieved from the new_inverted

file. Otherwise, the posting lists of it are retrieved from old_inverted file. Once the

Candidates list is obtained, it is sorted in descending order according to the

similarity values stored for each Tid in the list.

Now we have the Candidates list of the topics at hand in which the topics are

sorted in descending similarity values. This list is limited to the number entered in

the top matches box and added to the dynamically created query string. Then, an

SQL statement is executed which returns the “PaperName” topic(s) with the

Tid(s) in the Candidates list and matching to the other criteria. All the topics in

the returned set are presented to the user in the result page.

In order to illustrate this search process let us look at an example. Assume

that a user who is a graduate student in Computer Science performs a research on

the issue of ‘Real-time transactions in mobile databases’ for his thesis work. So,

he wants to know the publications published on this subject. In this example, we

have also assumed that the user has no restriction about the publication date and

the author(s) of the publications, and also he does not care about the

journal/conference in which the publications are reported. In addition, he wants to

know the publications similar to his query above threshold 0.5 and limit the size

of the returned set to 10 publications (i.e., top matches). The snapshot of the

search page for this example is presented in Figure 6.1.

CHAPTER 6. A PROTOTYPE SEARCH ENGINE 81

Figure 6.1: The snapshot of the search page for the example.

When the user clicks the search button, the result page is presented to the

user with the publications matching to the criteria. The snapshot of the result page

with the returned publications is presented in Figure 6.2. Note that the user can

also restrict the returned set by providing other criteria such as author name,

journal/conference organization and publication date. For instance, if he wants to

see the publications written by some author(s), then the returned set will be

pruned. Actually, the top matches box only prunes the set containing the

publications that have similarity above 0.5 with the query. However, we have

assumed that the user does not care about these criteria for this example.

CHAPTER 6. A PROTOTYPE SEARCH ENGINE 82

Figure 6.2: The snapshot of the result page for the example.

Now, the user gets the list of publications according to entered criteria.

Assume that he certainly wants to read the last publication in the returned set (i.e.,

‘Real-Time Database Management for Mobile Computing’). So, in order to

understand that publication more meaningfully he should see the prerequisite

publications to that publication. For this purpose, he selects that publication in the

returned set and then clicks the prerequisite publications button.

The list of prerequisite publications is presented in another page to the user.

The snapshot of this page is presented in Figure 6.3. According to defined rules

for PrerequsitePapers metalink instance, there are two publications in the

database. As a result, he can learn about the publications that will be helpful in his

research area.

CHAPTER 6. A PROTOTYPE SEARCH ENGINE 83

Figure 6.3: The snapshot of the last page for the example.

Actually, the visual interface presented in this section is a prototype version.

Of course it requires some corrections and arrangements to be more user friendly

and functional. On the other hand, we have planned to develop a full version

which works on the internet and can be used by a browser. The ASP (active server

pages) tool may be used to implement this full version. All these issues are

planned as future works. However, by presenting a prototype implementation, we

have wanted to emphasize the efficiency and the effectiveness of the presented

topic map data model in the sense of modeling and querying a specific Web-based

information resource (i.e., DBLP).

84

Chapter 7

Conclusion and Future Work

In this thesis, a topic map data model is presented for a Web-based information

resource (i.e., DBLP) to allow efficient querying and searching of the information

resource. The presented model is a semantic data model describing the contents of

the documents in terms of topics, metalinks and sources. DBLP (Digital

Bibliography & Library project) is a WWW server with bibliographic information

on major journals and proceedings on computer science.

In our implementation, topic, source and metalink (except RelatedToPapers

and PrerequistePapers metalink types) extractions are easy and straightforward.

On the other hand, in order to determine if the two “PaperName” topics are related

we compare the text similarity (i.e., cosine quotient) of both of the topics. For this

purpose, the weights of the terms are computed as in the vector space model, and

the vector representations of the topics are obtained. Also, an inverted file index is

implemented to index the titles and authors in the bibliographic entries. This index

is used in both finding the text similarity and allowing a keyword-based

searching.

Instead of re-indexing the entire collection at each time new bibliographic

entries added, a dynamic update scheme is developed. We do not declare that the

CHAPTER 7. CONCLUSION AND FUTURE WORK 85

employed dynamic update scheme is a new and very efficient one. But, according

to the results obtained from the experiments presented in the fifth chapter, its

performance is good both in time and space requirements.

In real life, for DBLP, adding a dynamic set containing new bibliographic

entries to the previous collection per month takes about almost 40 minutes

including all topics, sources and metalinks extraction, insertion of them into the

database and dynamic update of the inverted file index. Finally, we develop a

prototype search engine for querying DBLP in which both keyword-based search

and metadata-based search are provided together for an efficient querying of

DBLP.

As a result, the presented topic map data model for DBLP adds new

semantics and metadata information to bibliographic entries contained in it. The

main advantage of our proposal is that we employ metadata in the form of topic

maps for querying DBLP bibliography collection to return more meaningful

results in an efficient and effective way. Another advantage is that we combine

the powers of two basic indexing methods: Inverted file index for keyword-based

searching and semantic indexing of the content of the information resource for

navigational purposes by using the topic maps standard.

The future work will include the following issues:

• Adding an “IndexTerm” topic type into the topics, IndexTermOf and

IndexedBy metalink types into the metalinks, and author sources into the

sources relations, if the keywords in the abstract field of the publications and

the Web addresses of the authors’ home pages (URLs) can be gathered

somehow from the Web,

• Incorporating citation indexing with the existing indexes, if the citation

data is available for all the bibliographic entries,

CHAPTER 7. CONCLUSION AND FUTURE WORK 86

• Developing a full version search engine that employs a more sophisticated

GUI working on the Web so that it can be accessible by a browser and allows

the use of SQL-TC by naive Web surfers.

87

Bibliography
[1] XML-data: World Wide Web Consortium (W3C) Note, January 1998.

Available at http://www.w3.org/TR/1998/NOTE-XML-data-0105/.

[2] J. Widom. Data Management for XML: Research Directions. In IEEE Data
Engineering Bulletin, vol. 22, no 3, pp. 44-52, 1999.

[3] G. Mecca, P. Merialdo, P. Atzeni. Araneous in the Era of XML. In IEEE Data
Engineering Bulletin, vol. 22, no 3, pp. 19-26, 1999.

[4] G. Özsoyoğlu, M. Anderson, and Z. M. Özsoyoğlu. Web Search with
Metadata Links and Multimedia Presentations. In Sixth Int. Workshop on
Multimedia Information Systems, Chicago, October 2000. Available at
http://art.cwru.edu/TOpapers/MIS2000.pdf.

[5] M. Dillon. Metadata for Web Resources: How Metadata Works on the Web. In
Library of Congress, January 23, 2001. Available at
http://www.loc.gov/catdir/bibcontrol/dillon_paper.html.

[6] D. Maier and L. Delcambre. Superimposed Information for the Internet. In
(Informal) Proceedings of WebDB, pp 1-9, 1999.

[7] K. G. Jeffery. Metadata: An Overview and Some Issues. In ERCIM News
Online Edition, News No.35. Available at
http://www.ercim.org/publication/Ercim_News/enw35/intro.html

[8] E. Duval, W. Hodgins, S. Sutton, S. L. Weibel. Metadata Principles and

Practicalities. In D-Lib Magazine, vol. 8, No. 4, April 2002. Available at

http://www.dlib.org/dlib/april02/weibel/04weibel.html.

[9] T. Berners-Lee, Semantic Web Road Map. W3C draft, available at http://

www.w3.org.designissues/semantic.html, January 2000.

BIBLIOGRAPHY 88

[10] E. Miller. Semantic Web Activity Statement. Avaliable at http://www.w3.

org/2001/sw/Activity.

[11] M. S. Lancher and S. Decker. On the Integration of Topic Maps and RDF Data.

In 1st International Semantic Web Working Symposium (SWWS `01), Stanford

University, CA, pp. 467-478, July 29-Aug 1, 2001.

[12] T. Berners-Lee. What the Semantic Web Can Represent. In W3C Note, pp. 1-6,

September 1998. Available at http://www.w3.org/DesignIssues/RDFnot.html.

[13] O. Lassila and R. R. Swick. Resource Description Framework (RDF) Model
and Syntax Specification, W3C Recommendation. Available at
http://www.w3.org/TR/REC-rdf-syntax.

[14] D. Brickley and R. V. Guha. Resource Description Framework (RDF) Schema

Specification, W3C proposed recommendation, October 2002. Avaliable at

http://www.w3.org/TR/PR-rdf-schema.

[15] S. R. Newcomb and M. Biezunski. Topic Maps Go XML. In Proceedings of

the XML Europe 2000, No. 2, Paris, France. Available at
http://www.gca.org/papers/xmleurope2000/pdf/s11-02.pdf

[16] H. H. Rath and S. Pepper. Topic Maps at Work. Chapter 1 in: XML Handbook.

Prentice Hall, 2nd edition, 1999.

[17] S. Pepper. The TAO of Topic Maps: Finding the Way in the Age of Infoglut. In
Proceedings of the XML Europe 2000, No. 1, Paris, France. Available at
http://www.gca.org/papers/xmleurope2000/pdf/s11-01.pdf

[18] İ. S. Altıngövde. Topic-Centric Querying of Web Resources. Master of Science

Thesis, Bilkent University, Dept. of Computer Eng., September 2001.

[19] Hypermedia/time-based Structuring Language (HyTime) Users’ Group Home
Page, http://www.hytime.org.

[20] XML Pointer Language (Xpointer) version 1.0, http://www.w3.org/tr/xptr.

[21] XML Linking Language (XLink) version 1.0, http://www.w3.org.tr/xlink.

BIBLIOGRAPHY 89

[22] G. Moore. Topic Map Technology – the Sate of Art. In Proceedings of the
XML Europe 2000, No. 4 Paris, France. Available at
http://www.gca.org/papers/xmleurope2000/pdf/s22-04.pdf

[23] İ. S. Altıngövde, S. A. Özel, Ö. Ulusoy, G. Özsoyoğlu and Z. M. Özsoyoğlu.

SQL-TC: A Topic-Centric Query Language for Web-Based Information
Resources. In 12th International Conference on Database and Expert Systems
Applications (DEXA) 2001, Munich, Germany, 2001.

[24] S. Pepper. Topic Maps and RDF: A First Cut. Available at http://www.ontopia.

net/topicmaps/learn_more.html.

[25] W. Meng, C. Yu and K. L. Liu. Building Efficient and Effective Metasearch

Engines. In Proceedings of ACM Computing Surveys, Vol. 34, No. 1, March
2002.

[26] M. Kobayashi and K. Takeda. Information Retrieval on the Web. In

Proceedings of ACM Computing Surveys, Vol. 32, No. 2, June 2000.

[27] Dublin Core home page, http://www.dublincore.org

[28] C. Lagoze. The Warwick Framework. In D-Lib Magazine, No. 7, July/August

1996. Available at http://www.dlib.org/dlib/july96/lagoze/07lagoze.html.

[29] L. Gravano, H. Garcia-Molina and A. Tomasic. GIOSS: Text-Source

Discovery over the Internet. In Proceedings of ACM Transactions on
Database Systems, Vol. 24, Issue 2, pp. 229-264, 1999.

[30] D. Cutting and J. Pedersen. Optimizations for Dynamic Inverted Index

Maintenance. In Proceedings of the 13th International Conference on research
and Development in Information Retrieval, pp.405-411, September 1990.

[31] J. Zobel, A. Moffat and R. Sack-Davis. An Efficient Indexing Technique for

Full-Text Database Systems. In Proceedings of 18'th Conference on Very
Large Databases, pp. 352-362, Canada 1992.

[32] A. Tomasic, H. Garcia-Molina and K. Shoens. Incremental Updates of Inverted

Lists for Text Document Retrieval. In Proceedings of the ACM SIGMOD
Inter. Conf. On Management of Data, pp 289-300, Minneapolis, MN, May
1994.

[33] E. W. Brown, J. P. Callan and W. B. Croft. Fast Incremental Indexing for Full-

Text Information Retrieval. In Proceedings of the 20th VLDB Conference, pp
192-202, Santiago, Chile, 1994.

BIBLIOGRAPHY 90

[34] E. Garfield. Citation Indexing: Its Theory and Application in Science,
Technology, and Humanities. Wiley, New York, 1979.

[35] C. L. Giles, K. D. Bolacker and S. Lawrence. CiteSeer: An Automatic Citation
Indexing System. In Digital Libraries 98 – The Third ACM Conference on
Digital Libraries, pp. 89-98, June 1998.

[36] Institute for Scientific Information (ISI) home page http://www.isinet.com.

[37] M. Ley. DB&LP: A WWW Bibliography on Databases and Logic

Programming. Available at http://www.informatik.uni-trier.de/~ley/db/indices/
a-tree/l/Ley:Michael.html.

[38] Digital Libraries. Special Issue of Communications of the ACM 38, No. 4,

April 1995.

[39] DBLP home page, http://dblp.uni-trier.de/.

[40] DBLP FAQ: Which software is behind DBLP? Available at http:// dblp.

unitrier.de/db/about/faq.html.

[41] C. L. Viles and J. C. F. Pedersen. On the Update of Term Weights in Dynamic

Information Retrieval Systems. In Proceedings of the CIKM, Baltimore, MD,
November 1995.

[42] İ. S. Altıngövde, S. A. Özel, Ö. Ulusoy, G. Özsoyoğlu, Z. M. Özsoyoğlu and

Al-Hamdani. Sideway Algebra for Object-Oriented Database Applications. In
Proceedings of International Conference on Very Large Databases
(VLDB'02), August 2002.

[43] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Maier and D. Suciu.

Querying XML Data. In IEEE Data Engineering Bulletin, vol. 22, no 3, pp.
10-18, 1999.

[44] W. Cohen, A. McCallum and D. Quass. Learning to Understand the Web. In

IEEE Data Engineering Bulletin, vol. 23, no 3, pp. 17-24, 2000.

[45] M. Agosti, F. Crivellari and M. Melucci. The Effectiveness of Metadata and

other Content Descriptive Data in Web Information Retrieval. In Proceedings
of the Third IEEE Meta-Data Conference (META-DATA '99), Bethesda MD,
April 1999.

[46] M. Biezunski. Understanding Topic Maps. Available at

http://www.infoloom.com/ whitepaper.htm.

91

Appendix A

DTD for DBLP Data

<!--

DBLP XML Records are available from ftp://ftp.informatik.uni-
trier.de/pub/users/Ley/bib/records.tar.gz

 To use this simple DTD you have to concat the records and to enclose
them into

 <?xml version="1.0"?>
 <!DOCTYPE dblp SYSTEM "dblp.dtd">
 <dblp>

 ... records ...

 </dblp>

 Copyright 2001 by Michael Ley (ley@uni-trier.de)

Copying of the "DBLP" bibliography collection is permitted provided that

the copies are not made or distributed for direct commercial advantage and credit

for the source is given. To copy or republish otherwise requires specific

permission. ACM, IEEE Computer Society, and The VLDB Endowment have the

permission to publish DBLP on CDROM/DVD and on their Web servers.

-->

<!ELEMENT dblp (article|inproceedings|proceedings|book|incollection|
 phdthesis|mastersthesis|www)*>

APPENDIX A. DTD FOR DBLP DATA 92

<!ENTITY%field
"author|editor|title|booktitle|pages|year|address|journal|volume|number|month|url|
ee|cdrom|cite|publisher|note|crossref|isbn|series|school|chapter">

<!ELEMENT article (%field;)*>
<!ATTLIST article
 key CDATA #REQUIRED
 reviewid CDATA #IMPLIED
 rating CDATA #IMPLIED
>

<!ELEMENT inproceedings (%field;)*>
<!ATTLIST inproceedings key CDATA #REQUIRED>

<!ELEMENT proceedings (%field;)*>
<!ATTLIST proceedings key CDATA #REQUIRED>

<!ELEMENT book (%field;)*>
<!ATTLIST book key CDATA #REQUIRED>

<!ELEMENT incollection (%field;)*>
<!ATTLIST incollection key CDATA #REQUIRED>

<!ELEMENT phdthesis (%field;)*>
<!ATTLIST phdthesis key CDATA #REQUIRED>

<!ELEMENT mastersthesis (%field;)*>
<!ATTLIST mastersthesis key CDATA #REQUIRED>

<!ELEMENT www (%field;)*>
<!ATTLIST www key CDATA #REQUIRED>

<!ELEMENT author (#PCDATA)>
<!ELEMENT editor (#PCDATA)>
<!ELEMENT address (#PCDATA)>

<!ENTITY % titlecontents "#PCDATA|sub|sup|i|tt|ref">
<!ELEMENT title (%titlecontents;)*>
<!ELEMENT booktitle (#PCDATA)>
<!ELEMENT pages (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT journal (#PCDATA)>
<!ELEMENT volume (#PCDATA)>
<!ELEMENT number (#PCDATA)>
<!ELEMENT month (#PCDATA)>
<!ELEMENT url (#PCDATA)>

APPENDIX A. DTD FOR DBLP DATA 93

<!ELEMENT ee (#PCDATA)>
<!ELEMENT cdrom (#PCDATA)>
<!ELEMENT cite (#PCDATA)>
<!ELEMENT school (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ATTLIST publisher
 href CDATA #IMPLIED
>
<!ELEMENT note (#PCDATA)>
<!ATTLIST cite
 label CDATA #IMPLIED
>
<!ELEMENT crossref (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
<!ELEMENT chapter (#PCDATA)>
<!ELEMENT series (#PCDATA)>
<!ATTLIST series
 href CDATA #IMPLIED
>

<!ELEMENT ref (#PCDATA)>
<!ATTLIST ref href CDATA #REQUIRED>
<!ELEMENT sup (%titlecontents;)*>
<!ELEMENT sub (%titlecontents;)*>
<!ELEMENT i (%titlecontents;)*>
<!ELEMENT tt (%titlecontents;)*>

<!ENTITY quot """>
<!ENTITY reg "®">
<!ENTITY micro "µ">
<!ENTITY times "×">

<!-- (C) International Organization for Standardization 1986 Permission to copy
in any form is granted for use with conforming SGML systems and applications
as defined in ISO 8879, provided this notice is included in all copies.
-->
<!-- Character entity set. Typical invocation: <!ENTITY % HTMLlat1 PUBLIC
"ISO 8879-1986//ENTITIES Added Latin 1//EN//XML">
-->
<!-- This version of the entity set can be used with any SGML document which
uses ISO 8859-1 or ISO 10646 as its document character set. This includes XML
documents and ISO HTML documents.
-->

<!ENTITY Agrave "À" ><!-- capital A, grave accent -->
<!ENTITY Aacute "Á" ><!-- capital A, acute accent -->

APPENDIX A. DTD FOR DBLP DATA 94

<!ENTITY Acirc "Â" ><!-- capital A, circumflex accent -->
<!ENTITY Atilde "Ã" ><!-- capital A, tilde -->
<!ENTITY Auml "Ä" ><!-- capital A, dieresis or umlaut mark -->
<!ENTITY Aring "Å" ><!-- capital A, ring -->
<!ENTITY AElig "Æ" ><!-- capital AE diphthong (ligature) -->
<!ENTITY Ccedil "Ç" ><!-- capital C, cedilla -->
<!ENTITY Egrave "È" ><!-- capital E, grave accent -->
<!ENTITY Eacute "É" ><!-- capital E, acute accent -->
<!ENTITY Ecirc "Ê" ><!-- capital E, circumflex accent -->
<!ENTITY Euml "Ë" ><!-- capital E, dieresis or umlaut mark -->
<!ENTITY Igrave "Ì" ><!-- capital I, grave accent -->
<!ENTITY Iacute "Í" ><!-- capital I, acute accent -->
<!ENTITY Icirc "Î" ><!-- capital I, circumflex accent -->
<!ENTITY Iuml "Ï" ><!-- capital I, dieresis or umlaut mark -->
<!ENTITY ETH "Ð" ><!-- capital Eth, Icelandic -->
<!ENTITY Ntilde "Ñ" ><!-- capital N, tilde -->
<!ENTITY Ograve "Ò" ><!-- capital O, grave accent -->
<!ENTITY Oacute "Ó" ><!-- capital O, acute accent -->
<!ENTITY Ocirc "Ô" ><!-- capital O, circumflex accent -->
<!ENTITY Otilde "Õ" ><!-- capital O, tilde -->
<!ENTITY Ouml "Ö" ><!-- capital O, dieresis or umlaut mark -->
<!ENTITY Oslash "Ø" ><!-- capital O, slash -->
<!ENTITY Ugrave "Ù" ><!-- capital U, grave accent -->
<!ENTITY Uacute "Ú" ><!-- capital U, acute accent -->
<!ENTITY Ucirc "Û" ><!-- capital U, circumflex accent -->
<!ENTITY Uuml "Ü" ><!-- capital U, dieresis or umlaut mark -->
<!ENTITY Yacute "Ý" ><!-- capital Y, acute accent -->
<!ENTITY THORN "Þ" ><!-- capital THORN, Icelandic -->
<!ENTITY szlig "ß" ><!-- small sharp s, German (sz ligature) -->
<!ENTITY agrave "à" ><!-- small a, grave accent -->
<!ENTITY aacute "á" ><!-- small a, acute accent -->
<!ENTITY acirc "â" ><!-- small a, circumflex accent -->
<!ENTITY atilde "ã" ><!-- small a, tilde -->
<!ENTITY auml "ä" ><!-- small a, dieresis or umlaut mark -->
<!ENTITY aring "å" ><!-- small a, ring -->
<!ENTITY aelig "æ" ><!-- small ae diphthong (ligature) -->
<!ENTITY ccedil "ç" ><!-- small c, cedilla -->
<!ENTITY egrave "è" ><!-- small e, grave accent -->
<!ENTITY eacute "é" ><!-- small e, acute accent -->
<!ENTITY ecirc "ê" ><!-- small e, circumflex accent -->
<!ENTITY euml "ë" ><!-- small e, dieresis or umlaut mark -->
<!ENTITY igrave "ì" ><!-- small i, grave accent -->
<!ENTITY iacute "í" ><!-- small i, acute accent -->
<!ENTITY icirc "î" ><!-- small i, circumflex accent -->
<!ENTITY iuml "ï" ><!-- small i, dieresis or umlaut mark -->
<!ENTITY eth "ð" ><!-- small eth, Icelandic -->

APPENDIX A. DTD FOR DBLP DATA 95

<!ENTITY ntilde "ñ" ><!-- small n, tilde -->
<!ENTITY ograve "ò" ><!-- small o, grave accent -->
<!ENTITY oacute "ó" ><!-- small o, acute accent -->
<!ENTITY ocirc "ô" ><!-- small o, circumflex accent -->
<!ENTITY otilde "õ" ><!-- small o, tilde -->
<!ENTITY ouml "ö" ><!-- small o, dieresis or umlaut mark -->
<!ENTITY oslash "ø" ><!-- small o, slash -->
<!ENTITY ugrave "ù" ><!-- small u, grave accent -->
<!ENTITY uacute "ú" ><!-- small u, acute accent -->
<!ENTITY ucirc "û" ><!-- small u, circumflex accent -->
<!ENTITY uuml "ü" ><!-- small u, dieresis or umlaut mark -->
<!ENTITY yacute "ý" ><!-- small y, acute accent -->
<!ENTITY thorn "þ" ><!-- small thorn, Icelandic -->
<!ENTITY yuml "ÿ" ><!-- small y, dieresis or umlaut mark -->

96

Appendix B

NLoopSim-SVT Algorithm
Algorithm NLoopSim-SVT
Input : Relations R and S;

Text-valued join attributes r.A and s.B;
Buffers BS and BR, each of size BUFSIZE;
Enumerated variables BufR and BufS with two Enumerated values
{NotFull, QuitLoop};
Similarity function sim()=Cosine();
Similarity threshold tsim

Output: {r.s | r∈ R and s∈ S and fout(r, s) ≥ Vt and Cosine(ur , uS) > tsim }
{

Sort R by svr * Cosine(ur , fS); Sort S by svs;
BufR = NotFull, R-tupleCount = 0;
while (R-tupleCount < |R| and BufR=NotFull){

i = 0 ;
while (R-tupleCount < |R| and i < BUFSIZE and BufR=NotFull){

read ri into BR;
if (svri * svs1 * Cosine(uri, fS) < Vt)
 then BufR = QuitLoop;
i++;
R-tupleCount++;

} // read a block of R
BufS = NotFull ; S-tupleCount = 0;
while(S-tupleCount<|S| and BufS=NotEmpty and i>0){

j = 0;
while (S-tupleCount < |S| and j< BUFSIZE and BufS = NotFull){
read sj into BS;
if (svr1* svsj * Cosine(ur1, fS)< Vt)
 then BufS = QuitLoop;
j++;
S-tupleCount++;
} // read a block of S
// compare tuples in the blocks
for each r ∈ BR

 for each s ∈ BS

if (svr * svs * Cosine (ur , us)≥ Vt and Cosine (ur , us)≥ tsim)
 then add r.s into the output;

} // finish reading S
} // finish reading R

}

