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ABSTRACT

LINEAR TOPOLOGICAL STRUCTURE OF SPACES OF
WHITNEY FUNCTIONS DEFINED ON SEQUENCES OF

POINTS

Mustafa Zeki
M.S. in Mathematics

Supervisor: Assist. Prof. Alexander Goncharov
September, 2002

In this work we consider the spaces of Whitney functions defined on con-

vergent sequences of points.By means of linear topological invariants we ana-

lyze linear topological structure of these spaces .Using diametral dimension we

found a continuum of pairwise non-isomorphic spaces for so called regular type

and proved that more refined invariant compound invariants are not stronger

than diametral dimension in this case .

On the other hand, we get the same diametral dimension for the spaces of

Whitney functions defined on irregular compact sets.

Keywords: Linear Topological Invariants,Whitney Functions,Diametral Di-

mension.
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ÖZET

DİZİ NOKTALARI ÜZERİNDE TANIMLI WHITNEY
FONKSİYON UZAYLARININ TOPOLOJİK YAPISI

Mustafa Zeki
Matematik Bölümü Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Alexander Goncharov
Eylül, 2002

Bu çalışmada yakınsak dizi noktaları üzerinde tanmlanmış Whitney

fonksiyon uzaylarını ele aldık. Lineer topolojik invariantlar vasıtası ile

bu uzayların topolojik yapısını inceledik. Diametral dimensionı kullanarak

düzgün türdeki dizi noktaları üzerinde tanımlı sonsuz çoklukta karşılıklı

izomorfik olmayan uzaylar bulduk ve bu durum için bileşik invariantların daha

kuvvetli olmadıg̃ını gösterdik.

Bununla beraber, düzgün olmayan kompakt kümeler üzerinde tanımlı

Whitney fonksiyon uzayları içinde aynı diametral dimensionu elde ettik.

Anahtar kelimeler: Lineer topolojik invariantlar, Whitney fonksiyonları,

Diametral dimension.
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Chapter 1

Introduction

1.1 Linear Topological Invariants

We begin with a short summary of invariants which are distinct characteris-

tics of linear topological spaces; that is in order to show two linear topological

spaces are not isomorphic, it is enough to prove that these characteristics of

spaces differs from each other. More precisely,

If Φ is a class of linear topological spaces, ϕ is a set with a equivalence

relation ∼ and τ : Φ → ϕ is a mapping, such that

X ' Y ⇒ τ(X) ∼ τ(Y )

then τ is called linear topological invariant and τ is said to be complete

invariant on the class Φ if for any X, Y ∈ Φ

τ(X) ∼ τ(Y ) ⇒ X ' Y.

We restrict our attention to Fréchet spaces.
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Definition 1.1 A K-vector space F, equipped with a metric, is called a met-

ric linear space, if in E addition is uniformly continuous and scalar multipli-

cation is continuous. A metric linear space E is said to be locally convex, if

for each zero neighborhood V there exists a convex zero neighborhood U with

U ⊂ V .

A complete metric locally convex space is called a Fréchet space.

Definition 1.2 Let E be a locally convex space. A collection U of zero neigh-

borhoods in E is called a fundamental system of zero neighborhoods, if for

every zero neighborhood U there exists a V ∈ U and ε > 0 with εV ⊂ U.

A family (‖.‖α)α∈A of continuous seminorms on E is called a fundamental

system of seminorms, if the sets

Uα := {x ∈ E : ‖x‖α ≤ 1}, α ∈ A,

form a fundamental system of neighborhoods.

Let E be a locally convex space which has countable fundamental system

of neighborhoods (Un)n∈N. Without lose of generality one can assume that

Un+1 ⊂ Un, ∀n ∈ N.

1.1.1 Counting invariants.

First of this kind of invariants, Approximative dimension, was introduced by

A.N. Kolmogorov [13] and A.Pelczynski [19] and they proved A(D) � A(G)

if the domains D ⊂ Cn, G ⊂ Cm, n 6= m and A(Dn) � A(Cn) where Dn is

the unit polydisc in Cn and A(D) is the space of all analytic functions on D.
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Later on the so called diametral dimension Γ(X) and dual diametral

dimension Γ′(X) were introduced ( definition see below ) by C. Bessaga, A.

Pelczynsky and S. Rolewicz [2]. These kind of invariants turn to be more

strong then approximative dimensions (see [16]).

Characterization of nuclear spaces in terms of diametral dimension was

given by Mitiagin (see e.g. [16]).

In [5] Dragilev has shown that the invariants Γ(X), Γ′(X) are very useful

for distinguishing some special classes of spaces with regular absolute basis.

Moreover Crone and Robinson [4], Kondakov [14] proved that the invari-

ant Γ′(X) is complete on the class of all nuclear spaces with regular basis.

It must be remarked here that Γ(X), Γ′(X) are not effective invariants

for consideration of distinguishing spaces without regular absolute basis as

it can be seen by the following proposition (see ([6], [17], [20])).

Proposition 1.1 The spaces A(U) and A(U) × A(C) are not isomorphic,

although Γ′(A(U)) = Γ′(A(U)× A(C)).

Definition 1.3 Let U be an absolutely convex absorbent set and V be any

set in the locally convex space X. Then nth Kolmogorov diameters of V with

respect to U is defined as

dn(V, U) = inf
L∈Ln

sup
x∈V

inf
y∈L

‖x− y‖U

where infimum is taken over the collection Ln of all subspaces of X of

dimension ≤ n. Here ‖.‖U is the gauge functional of the set U (see definition

(1.6)).
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It is easy to see that definition of dn(V, U) can also be given as:

dn(V, U) = inf
L∈Ln

inf{δ : V ⊂ δU + L}.

The diametral dimension is given as follows,

Γ(X) = {γ = (γn) : ∀U ∃V ; γndn(V, U) → 0 as n →∞}

and

Γ′(X) = {γ = (γn) : ∃V ∀U ;
γn

dn(V, U)
→ 0 as n →∞}

We consider the counting function corresponding to the diametral dimen-

sion Γ(X),

β(t) := β(Uq, Up, t) = min{dim L : tUq ⊂ Up + L}, t > 0.

One can show that

β(t) = |{n : dn(Uq, Up) >
1

t
}|,

where |K| denotes the cardinality of the set K, and (Uk)
∞
k=1 is the basis of

neighborhoods of X.

If X is a Schwartz space (that is ∀p ∃q such that Uq is precom-

pact in Xp := X/Zp, Zp = {x ∈ X : ‖x‖p = 0} ) and p,q are sufficiently

apart from each other, then β(Uq, Up, t) takes finite values.

The following well-known propositions express the direct relation between

Γ(X) and β(t):
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Proposition 1.2 (γn) ∈ Γ(X) ⇐⇒ ∀p ∃q ;∀C ∃n0:

β(Uq, Up, Cγn) ≤ n for n ≥ n0.

Proposition 1.3 If Fréchet spaces X and Y are isomorphic, then

∀p1∃p ∀q∃q1, C :

βY (Vq1 , Vp1 , t) ≤ βX(Uq, Up, Ct), t > 0,

and vice-versa.

Here (Vp)
∞
p=1, (Uq)

∞
p=1 are bases of neighborhoods of spaces X and Y re-

spectively.

1.1.2 Interpolating Invariants.

There are certain interpolating properties of seminorms which are invariant

under isomorphisms. Various forms of such invariants were introduced by

Dragilev [5], Zahariuta [26], Vogt [24] and others. As an example we can

present here only Dominating Norm (DN) property which will be mentioned

in the sequel.

A Fréchet space X with a fundamental system of seminorms (‖.‖q)
∞
q=o is

said to have the DN property [24](also D1 in [25]), if

∃p∀q∃r, C > 0 : ‖.‖q ≤ t‖.‖p +
C

t
‖.‖r, t > o

with p, q, r ∈ N0 = 0, 1, 2, . . ..
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1.1.3 Compound Invariants.

In [27] Zahariuta suggested a method of combining possibilities of both count-

ing and interpolating invariants, to produce new characteristics which are

considered as the invariants based on the asymptotic behavior of classical n-

diameters of pairs of “synthetic” neighborhoods of zero, built in an invariant

way for a given pair, triple and so on of neighborhoods.

We give here two of these, namely β1 and βq, in what follows t →∞ and

τ = τ(t) → 0; for 0 ≤ p < q < r let U = τUp ∩ tUr

β1(U,Uq) = β1(τ, t, Up, Uq, Ur) = inf{dim L : U ⊂ Uq + L} (1.1)

= |{n : dn(U,Uq) > 1}|, (1.2)

βq(Uq, V ) = βq(τ, t, Up, Uq, Ur) = inf{dim L : Uq ⊂ V + L}, (1.3)

where V = conv(τUp ∪ tUr) and infumum is taken over all finite dimensional

subspaces of X; (here conv(K) denotes the convex hull of the set K).

Proposition 1.4 Let the spaces X and Y be isomorphic Fréchet spaces with

fundamental systems of neigborhoods (Up)
∞
1 and(Vp)

∞
1 respectively.Then

∀p∃p1∀q1∃q∀r∃r1,∃C

such that

βY
1 (τ, t, Vp1 , Vq1 , Vr1) ≤ βX

1 (Cτ, Ct, Up, Uq, Ur), ∀t > 0,∀τ > 0 (1.4)

and vice-versa.
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Proposition 1.5 Let the spaces X and Y be isomorphic Fréchet spaces with

fundamental systems of neigborhoods (Up)
∞
1 and(Vp)

∞
1 respectively.Then

∀p1∃p∀q∃q1∀r1∃r,∃ε

such that

βY
q (τ, t, Vp1 , Vq1 , Vr1) ≤ βX

q (ετ, εt, Up, Uq, Ur), ∀t > 0,∀τ > 0 (1.5)

and vice-versa.

Proofs are similar, so we give the proof of the second one.

Proof : Assume τ : X → Y is an isomorphism. Then according to the

above order of quantifiers, for some C ≥ 1 we have

Up ⊂ Cτ−1(Vp1) ⇒ 1

C
τ(Up) ⊂ Vp1

Vq1 ⊂ Cτ(Uq)

Ur ⊂ Cτ−1(Vr1) ⇒ 1

C
τ(Ur) ⊂ Vr1

then according to the definition of βq, it follows that,

βY
q (τ, t, Vp1 , Vq1 , Vr1) ≤ βX

q (τ, t,
1

C
τ(Up), Cτ(Uq),

1

C
τ(Ur))

≤ βX
q (

1

C2
τ,

1

C2
t, Up, Uq, Ur) �

1.2 Continuous Norm and Tikhomirov’s The-

orem for Spaces Without Continuous Norm

In this section we will consider the continuous norm property of spaces and

Tikhomirov’s theorem which is used for finding lower bound for the counting
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functions β, β1 and so on.

Definition 1.4 A Fréchet space X is said to have continuous norm, if one

of its seminorms is a norm. Similarly, X has no continuous norm if every

neighborhood contains a line.

THEOREM 1.1 (Tikhomirov [16,Prop.6]) Let X be linear space with con-

tinuous norm. If U is an absolutely convex set in X then for any set V ∈ X,

if

αU ∩ Ln+1 ⊂ V ∩ Ln+1

is satisfied for some n+1 dimensional subspace Ln+1 of X and for α > 0,

then

dn(V, U) ≥ α.

We remark here that, Tikhomirov’s theorem which is given in [16] can

not be applied to the spaces without continuous norm.

For example let us consider ω, the space of all sequences with the topology

given by the seminorms

|x|p = sup
n≤p

|xn| with x = (xn) ∈ ω.

It is clear that for L = span(en)∞n=p+1 we get L ⊂ Up ∀p and ω has no

continuous norm.

Thus, ∀n ∈ N we have

Up ∩ Ln+1 ⊂ Uq ∩ Ln+1

8



for some n+1 dimensional subspace in ω;

In fact we can choose L = span(ek)
r+n
k=r , r > q > p. But that would

mean to get

dn(Uq, Up) ≥ 1, ∀n,

which is impossible, as for q > p we get trivially

dn(Uq, Up) = 1 for n < p

and

dn(Uq, Up) = 0 for n ≥ p.

We continue with the following definitions which are necessary for this

subject.

Definition 1.5 If F is a subspace of K-vector space E, then the set E/F of

all so-called cosets [x]F := x + F , x ∈ E, becomes a linear space with respect

to the addition and the scalar multiplication defined by (x + F ) + (y + F ) :=

x + y + F and k(x + F ) := kx + F, ∀x, y ∈ E, ∀k ∈ K. This is the

quotient vector space of E modulo F. The map τ : E → E/F, τ(x) := x + F,

is called the quotient map and it is linear.

Definition 1.6 Let X be a locally convex space and U be absolutely convex

absorbent set in X, define the gauge (or Minkowski) functional of the set U

‖x‖U : X → R by

‖x‖U = inf{δ > 0 : x ∈ δU}.
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It is clear that the kernel of ‖.‖U , ZU := {x ∈ X : ‖x‖U = 0}, is a closed

subspace of X. Let XU be the completion of X/ZU with respect to the norm

‖.‖U .

After small modification we present here the following version of Tikhomirov’s

theorem which is valid for any locally convex space X.

THEOREM 1.2 Let U be absolutely convex absorbent set and V be any set

in X; if for some α > 0 and for (n+1)-dimensional subspace Ln+1 in XU

αU/ZU ∩ Ln+1 ⊂ V/ZU ∩ Ln+1 (1.6)

then

dn(V, U) ≥ α. (1.7)

Proof : It is clear that, if the space has continuous norm, then

αU/ZU ∩ Ln+1 ⊂ V/ZU ∩ Ln+1

implies

αU ∩ L′
m+1 ⊂ V ∩ L′

m+1

for some (m+1) dimensional subspace L′
m+1 in X with m ≥ n, it follows that

dm(V, U) ≥ α

by the previous theorem. Since Kolmogorov diameters are decreasing, we

obtain

dn(V, U) ≥ α.

If the space has no continuous norm, then for the Banach space XU with

the norm ‖.‖U
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αU/ZU ∩ Ln+1 ⊂ V/ZU ∩ Ln+1

implies

dn(V/ZU , U/ZU) ≥ α

by Theorem 1.1.

Then it is enough to show

dn(V, U) ≥ dn(V/ZU , U/ZU)

which will imply the result.

Let

δ0 := dn(V, U) = inf
L∈Ln

inf{δ : V ⊂ δU + L}.

Then

∀ε > 0, ∃L ∈ Ln and ∃β ∈ (δ0, δ0 + ε)

such that

V ⊂ βU + L ⇒ V ⊂ (δ0 + ε)U + L

Then τ(V ) ⊂ (δ0 + ε)τ(U) + τ(L) .

But as dim(τ(L)) ≤ dim L = n and say dim(τ(L)) = m ≤ n

Then

V/ZU ⊂ (δ0 + ε)U/ZU + τ(L) ∀ε

So according to the definition of mth Kolmogorov diameter

dm(V/ZU , U/ZU) ≤ δ0 + ε ∀ε.

Since m ≤ n, we get

dn(V/ZU , U/ZU) ≤ dm(V/ZU , U/ZU) ≤ δ0 + ε ∀ε.
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That is dn(V/ZU , U/ZU) ≤ dn(V, U) , which gives us the result that

dn(V, U) ≥ α �

1.3 Whitney Functions and Whitney Jets

Let K be a perfect ( that is without isolated points ) compact set on the line.

By E(K) we denote the space of Whitney functions on K; that is functions

f : K → R which are extendable to a C∞-function f̃ onR.

E(K) is a Fréchet space with the topology defined by the family of semi-

norms

‖f‖p = sup
0≤i≤p

|f (i)(x)|+ sup
|(Rp

yf)(i)(x)|
|x− y|p−i

∀x, y ∈ K, x 6= y, (1.8)

where

Rp
yf(x) = f(x)−

p∑
k=0

f (k)(y)
(x− y)k

k!

is the pth Taylor remainder, p ∈ N0.

Here, given values of the function f on K, using perfectness of the com-

pact set K we can define the values of all its derivatives on K. In other words

the compact set K is C∞-determining in this case.

Definition 1.7 K ⊂ Rm is C∞-determining if for any extendable function

f on K with f |K = 0 we obtain f (j)|K = 0, ∀j ∈ Nm.
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On the other hand, suppose that a compact set K contains an isolated

point, let it be 0. Then in order to define an extendable function f completely

with all derivatives at 0, we have to give not only the values of f at 0, but

also the values of all its derivatives aj = f (j)(0), j ∈ N0.

Moreover, since the Borel problem (given sequence (aj) construct a func-

tion f ∈ C∞[−1, 1] such that f (j)(0) = aj,∀j ∈ N0 ) has a solution for any

sequence (aj), we have no restriction on the growth of “derivatives” of f .

That is if K = K1 ∪{0} then E(K) ' E(K1)
⊕

ω. In particular E({0}) ' ω.

But since the space ω has no continuous norm, we get the following trivial

proposition in accordance.

Proposition 1.6 Let K ⊂ R be a compact set; then E(K) has no continuous

norm if and only if K has an isolated point.

So in general, for a compact set K ⊂ R, we will define the space of Whit-

ney jets E(K) to be the space of all infinite sequences f = (f (i)(x))i∈N0 , x ∈

K, for which there exists an extension F ∈ C∞(R) such that f (i)(x) =

F (i)(x) ∀x ∈ K, ∀i ∈ N0.

E(K) is Fréchet space with the topology defined by the seminorm family

‖.‖p, p ∈ N0, as defined in (1.8).

It is clear that a compact set K with isolated point does not have the

Extension property.

Definition 1.8 For K ⊂ Rn, K has the Extension property if there exists

a linear continuous extension operator L : E(K) → C∞(Rn).
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Mitiagin [16] proved that K = [−1, 1] ⊂ R has the Extension property

whereas K = 0 does not.

In [21] Tidten has shown that the property DN of the space E(K) is

equivalent to the Extension property for the compact set K. We give the

following trivial proof that the singleton has no Extension property .

Assume there exists an extension operator L : E({0}) → C∞(R). Then

∀p, ∃C, q such that

‖Lf‖p ≤ C‖f‖q for all f ∈ E({0}).

Then for p = 0 there exists q0, C0 such that, ‖Lf‖0 ≤ C0‖f‖q0 for all

f ∈ E({0}). Consider f = (f (j))∞j=0 = 1 for j = q + 1, and zero otherwise.

Clearly ‖f‖q = 0 and we get

‖Lf‖0 ≤ C0‖f‖q0 = 0.

This is contradiction as Lf 6= 0.

Clear that it is not possible to use the interpolating invariants for the

spaces E(K), if K has an isolated point.

The problem of isomorphic classification of spaces of C∞ and Whitney

functions was considered in several cases. As a result the families having the

cardinality of the continuum of pairwise non-isomorphic spaces were given.

In [7] and [22] it was done for the spaces of C∞−functions on the sharp

cusp, in [10] for the spaces of Whitney functions given on so-called “running

duck” set and in [11] and [1] for the spaces of Whitney functions defined on

Cantor-type sets by using counting, interpolating and compound invariants.

It must be remarked here that the diametral dimension can not be applied

to distinguish the spaces of the type C∞ or E(K) with K0 6= 0. In fact,

14



these spaces contain a subspace which is isomorphic to the space s of rapidly

decreasing sequences. Since for a subspace Y in X we have Γ(Y ) ⊃ Γ(X)

[16-prop 7], and all these spaces contain a subspace isomorphic to the space

s, we get that their diametral dimension is not larger than Γ(s).

On the other hand, the space s has the minimal possible diametral dimen-

sion in the class of nuclear spaces [see 16], thus we obtain Γ(E(K)) = Γ(s).

Here we restrict our attention to the following model case of compact sets

K = {0} ∪ ∪∞n=1{an} with an → 0.
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Chapter 2

Regular Case

Let E(K) be a space of Whitney jets, defined on the set K = {0}∪∪∞n=1{an}

such that an → 0 monotonically.

Definition 2.1 We say that a compact set K = {0}∪∪∞n=1{an} is of regular

type if

∃Q ≥ 1 such that |an−1 − an| ≥ aQ
n , n ≥ n0 for some n0 ∈ N. (2.1)

2.1 Counting Function β(t)

THEOREM 2.1 Let K = {0} ∪ ∪∞n=1an be of regular type with the corre-

sponding constant Qa. Then for the counting function corresponding to the

diametral dimension of the space E(K) and for q > p > 0 with q − pQa > 0,

we get

N2 ≤ β(t, Up, Uq) ≤ (q + 1)N1, t ≥ 4

16



where

N1 = min{n : an ≤ (
1

2et
)

1
q−pQ} (2.2)

and

N2 = max{n : |an − an+1| ≥ (
8

t
)

1
q−p} . (2.3)

Proof : Upper bound for β

From definition of β we see that β(t) ≤ dim L for any subspace L satis-

fying

tUq ⊂ Up + L.

Let us consider the following functions

H0j =


xj

j!
if x ∈ [0, aN1 ] ∩K

0 otherwise
(2.4)

and

hnj =


(x−ak)j

j!
if x = ak ∈ K

0 otherwise
(2.5)

and define

L = span{H0j ∪ hnj : n = 1....N1; j = 0....q}

then dim L = N1(q + 1).

For any f ∈ Uq choose g ∈ L such that

g(x) =

q∑
j=0

f (j)(0)
xj

j!
+

N1−1∑
k=1

q∑
j=0

f (j)(ak)
(x− ak)

j

j!

Now let us show that with above choice of the subspace L, Uq ⊂ 1
t
Up+L

is satisfied; that is to show that ‖f − g‖p ≤ 1
t
.

a. Upper bound for |f−g|p = supx∈K |f (i)(x)−g(i)(x)| i = 0, ..., p.

17



a.1 x ≤ aN1

⇒ g(x) =

q∑
j=0

f (j)(0)
xj

j!
then |f(x)− g(x)| = Rq

0f(x)

⇒ |f i(x)−gi(x)| = |(Rq
0f)i(x)| ≤ ‖f‖q|x|q−i ⇒ aq−p

N1
≤ 1

2t
by (2.1).

a.2 x > aN1 and let x := al

⇒ g(x) =

q∑
j=1

f (i)(al)
(x− al)

j

j!
then |f (i)(x)−g(i)(x)| = 0 <

1

2t
.

b Upper bound for bi,p.

Here bi,p =
|(Rp

y(f−g))(i)(x)|
|x−y|p−i ∀x, y ∈ K, x 6= y and i = 0, 1...p.

b.1 x > aN1 , y > aN1 .

⇒ (Rp
y(f−g))(i)(x) = f (i)(x)−g(i)(x)−

p∑
j=1

(f (j)(y)−g(j)(y))
(x− y)j−i

(j − i)!
= 0

⇒ bi,p = 0 < 1
2t

b.2 x ≤ aN1 and y ≤ aN1 .

⇒ g(x) =

q∑
j=0

f (j)(0)
xj

j!
⇒ |f(x)− g(x)| = Rq

of(x)

then

Rp
y(f − g)(x) = Rq

of(x)−
p∑

j=0

(Rq
0f)(j)(y)

(x− y)j

j!

⇒ bi,p ≤
|(Rq

0(f))(i)(x)|
|x− y|p−i

+

∑p
j=i(R

q
0f)(j)(y) |x−y|j−i

(j−i)!

|x− y|p−i

⇒ bi,p ≤ ‖f‖q|x|q−i|x− y|i−p +

p∑
j=i

‖f‖q|y|q−i |x− y|j−p

(j − i)!
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≤ aq−p
N1

+ aq−p
N1

p∑
j=i

1

(j − i)!

≤ aq−p
N1

(e + 1) ≤ (
1

2et
)

q−p
q−pQ .e ≤ 1

2t
by (2.2).

b.3 x > aN1 and y ≤ aN1 .

Then f (i)(x)− g(i)(x) = 0 and f (j)(y)− g(j)(y) = (Rq
0f)(j)(y)

⇒ |Rp
y(f − g)(i)(x)| ≤

p∑
j=i

|(Rq
0f)(j)(y)

|x− y|j−i

(j − i)!
|

≤ ‖f‖q

p∑
j=i

|y|q−j |x− y|j−i

(j − i)!

⇒ bi,p ≤
p∑

j=i

|y|q−j |x− y|j−i

(j − i)!
|x− y|i−p =

p∑
j=i

|y|q−j |x− y|j−p

(j − i)!

≤
p∑

j=i

|aN1|q−j |aN1−1 − aN1|j−p

(j − i)!
≤

p∑
j=i

|aN1|q−j |aN1|Qj−Qp

(j − i)!
by (2.1)

≤
p∑

j=i

|aN1 |q−Qp.|aN1|Qj−j

(j − i)!
, since Q ≥ 1,

⇒ bi,p ≤ |aN1|q−pQe ≤ 1

2t
by (2.2).

b.4 x ≤ aN1 and y > aN1 .

⇒ |f (i)(y)− g(i)(y)| = 0 then

|(Rp
y(f − g))(i)(x)| ≤ |f (i)(x)− g(i)(x)| = |(Rq

0f)(i)(x)|

⇒ bi,p ≤ |(Rq
0f)(i)(x)|.|x− y|i−p ≤ ‖f‖q|x|q−i|x− y|i−p

similar to (b.3),

bi,p ≤ |aN1|q−i|aN1−1 − aN1|i−p ≤ 1

2t
.
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Therefore ‖f − g‖p ≤ 1
t

and Uq ⊂ 1
t
Up + L, that is

β(t, Up, Uq) ≤ dim L = (q + 1)N1.

Lower bound for β.

Here we are going to use Tikhomirov’s theorem (see thm (1.2)) and the

second definition of β as a tool. That is

αUp/Zp ∩ Ln+1 ⊂ Uq/Zp with dim Ln+1 = n + 1

implies dn(Uq, Up) ≥ α. Then

β(t, Up, Uq) ≥ sup{dim L : 2Up/Zp ∩ L ⊂ tUq/Zp},

where supremum is taken over all finite dimensional subspaces L of Ep(K),

which is the space of Whitney jets of order p,

Ep(K) = {f ∈ Cp(K) : ∃F ∈ Cp(R) such that F (i)|K = f (i), i ≤ p}

and Zp is defined as

Zp = {f ∈ E(K) : ‖f‖p = 0}.

Define L = span {[hnp]p : n = 1, ..., N2}.

Let us show with the above choice of subspace L, the following embedding

is satisfied:

2Up/Zp ∩ L ⊂ tUq/Zp.

Take f ∈ 2Up/Zp ∩ L, then

f(x) =

N2∑
k=1

αk
(x− ak)

p

p!
+ Zp = f̃ + Zp
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where

f̃ =

N2∑
k=1

αk
(x− ak)

p

p!

then f̃ ∈ 2Up

⇒ 2 ≥ ‖f̃‖p > |f̃p(x)| ≥ |αk|

⇒ |αk| ≤ 2 ∀k = 1, ..., N2.

Clearly, in order to show f ∈ tUq/Zp it is sufficient to show f̃ ∈ tUq, that

is ‖f̃‖q ≤ t, t > 0.

a. Upper bound for |f̃ |q = sup |f̃ (i)(x)| , i ≤ q x ∈ K.

a.1 x < aN2 .

Then f̃ (i)(x) = 0 <
t

2
∀i ≤ q.

a.2 x ≥ aN2 and let x := al.

Then f̃(x) = αl
(x− al)

p

p!

⇒ |f̃ (i)(x)| = |αl
(x− al)

p−i

(p− i)!
| ≤ 2 ≤ t

2

as
(x− ak)

p−i

(p− i)!
6= 0 only for i = p.

b. Upper bound for biq .

Here biq =
|(Rq

yf̃)(i)(x)|
|x− y|q−i

, i = 0, 1, ..., q, x, y ∈ K , x 6= y.

Remark. For p < i ≤ q

f̃ (i)(x) = 0 ∀x ∈ K ⇒ bi,q = 0

then, without lose of generality it is enough to take i = 0, 1, ...., p.
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b.1 x < aN2 and y ≥ aN2 .Let y := as

⇒ f̃(x) = 0 and f̃(y) = αs
(y − as)

p−i

(p− i)!

then |(Rq
yf̃)(i)(x)| ≤ |

q∑
k=i

f̃ (k)(y)
(x− y)k−i

(k − i)!
|

≤ αs
|x− y|p−i

(p− i)!

since f̃ (k)(y) 6= 0 only for k = p

⇒ bi,q ≤
2

(p− i)!
|x− y|p−i|x− y|i−q =

2

(p− i)!
|x− y|p−q

≤ 2|aN2 − aN2+1|p−q ≤ t

2
by (2.3).

b.2 x ≥ aN2 and y ≥ aN2 . Let x := aland y := as

⇒ |(Rq
yf̃)(i)(x)| = |αl

(x− al)
p−i

(p− i)!
−

q∑
k=i

αs
(y − as)

p−k

(p− k)!

(x− y)k−i

(k − i)!
|

where (y−as)(p−k)

(p−k)!
6= 0 only for p = k.

⇒ |(Rq
yf̃)(i)(x)| ≤ |αl

(x− al)
p−i

(p− i)!
− αs

(x− y)p−i

(p− i)!
|

≤ 2
|x− al|p−i

(p− i)!
+ 2

|x− y|p−i

(p− i)!

⇒ bi,q ≤
2

(p− i)!
|x−al|p−i|x−y|i−q +

2

(p− i)!
|x−y|p−i|x−y|i−q; (2.6)

• i. If i < p, then first term of (2.6) is “0”

⇒ bi,q ≤
2

(p− i)!
|x−y|p−q ≤ 2|x−y|p−q ≤ 2|aN2−aN2+1|p−q ≤ t

2
by (2.3).
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• ii. If i = p,

then 2|x− y|p−q +2|x− y|p−q ≤ 4|aN2 −aN2+1|p−q ≤ t

2
by (2.3).

b.3 x ≥ aN2 and y < aN2 . Let x := al

then f̃(y) = 0 and f̃(x) = αl
(x− al)

p

p!

⇒ |(Rq
yf̃)(i)(x)| = |αl

|x− al|(p−i)

(p− i)!
|

⇒ bi,q ≤ |αl
|x− al|p−i

(p− i)!
|x− y|i−q ≤ 2|x− y|p−q

≤ 2|aN2 − aN2|p−q ≤ t

2
.

b.4 x < aN2 and y < aN2

then f̃ (i)(x) = f̃ (i)(y) = 0

⇒ |(Rq
yf̃)(i)(x)| = |f̃ (i)(x)−

q∑
k=i

f (k)(y)
(x− y)k−i

(k − i)!
| = 0

⇒ bi,q = 0 <
t

2
.

Thus ‖f̄‖q ≤ t, which implies f ∈ tUq/Zp.

⇒ β(t, Up, Uq) ≥ N2 �

2.1.1 Geometric Criterion.

Here we give geometric condition of being isomorphic for the spaces X :=

E(Ka) and Y := E(Kb), Ka and Kb are of regular type, in terms of the

elements of sequences and by means of Proposition 1.3, where
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Ka = {0} ∪ ∪∞n=1{an} and Kb = {0} ∪ ∪∞n=1{bn}

and define f(n) := an and g(n) := bn. Suppose without loss of generality

that the functions f, g are monotonic and g is differentiable.

Proposition 2.1 If X ' Y then;

∀p1 ∃p ∀q ∃q1, ∃Csuch that

(|g′|−1((
8

t
)

1
q1−p1 )− 1) ≤ (q + 1)(f−1((

1

2et
)

1
q−pQa ) + 1) (2.7)

where Qa is the constant from Definition 2.1.

Proof : We will first estimate counting function corresponding to an or-

dinary space E(Kd) in terms of the general term of the sequence dn and use

the Proposition 1.3 to get above result.

Let us given Z = E(Kd) such that Kd := {0} ∪ ∪∞n=1{dn} which is of

regular type. Then,

N2 ≤ β(t, Up, Uq) ≤ (q + 1).N1, such that N1 and N2

are defined as in Theorem 2.1 .

Let h be monotone function with h(n) := dn, then N1 can also be given

as:

N1 = max{n : dn−1 > (
1

2et
)

1
q−pQd }

= max{n : h(n− 1) > (
1

2et
)

1
q−pQd } = max{n : (n− 1) < h−1((

1

2et
)

1
q−pQd )}

⇒ N1 < h−1((
1

2et
)

1
q−pQd ) + 1
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Thus

βd(t, Up, Uq) < (h−1((
1

2et
)

1
q−pQd ) + 1)q

Now we find the lower bound for βd(t, Up, Uq) in terms of the function

h(n).

N2 can be given as :

N2 + 1 = min{n : |an − an+1| < (
8

t
)

1
q−p}

that is

N2 + 1 = min{n : |h(n)− h(n + 1)| < (
8

t
)

1
q−p}.

On the other hand by the mean value theorem we have

∃x ∈ (n, n + 1) such that |h′(x)| = |h(n)− h(n + 1)| and we obtain

N2 + 1 = min{[x] : |h′(x)| < (
8

t
)

1
q−p}

where [x] is the greatest integer at x.

⇒ N2 + 1 = min{int(x) : x > |h′|−1(
8

t
)

1
q−p}

then,

N2 > |h′|−1(
8

t
)

1
q−p − 1

that is

βd(t, Up, Uq) > |h′|−1(
8

t
)

1
q−p − 1.

Thus for the space E(Kd) we get,

(|h′|−1(
8

t
)

1
q−p − 1) < βd(t, Up, Uq) < (q + 1)(f−1((

1

2et
)

1
q−pQd ) + 1).

Now we can combine this inequality with the Proposition 1.3 to obtain

the criterion in terms of the general terms of the sequences.
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If X ' Y then

∀p1 ∃p ∀q ∃q1, ∃Csuch that

(|g′|−1(
8

t
)

1
q1−p1 − 1) < (q + 1)(f−1((

1

2et
)

1
q−pQa ) + 1)

and vice-versa. �

2.1.2 Example of a Continuum of Pairwise Non-Isomorphic

Spaces

Here we consider the spaces Xα := E(Kα), α > 1. Such that,

Kα = {0} ∪ ∪∞n=1{aα
n} , aα

n = exp(− lnα n)

and define

fα(n) := aα
n.

First let us show show that Kα is of regular type.

|aα
n−1−aα

n| = | 1

exp(lnα(n− 1))
− 1

exp(lnα n)
| = |exp(lnα n)− exp(lnα(n− 1))

exp(lnα(n− 1)) exp(lnα n)
|

But if we choose Q = 2

|exp(lnα n)− exp(lnα(n− 1))

exp(lnα(n− 1))
| ≥ (

1

explnα n
)2,

since | exp(lnα n)−exp(lnα(n−1))| ≥ 1 for large enough n , the inequality

(2.1) is realized .

Now let us find the upper and the lower bounds of βα(t), ∀α > 1. Such

that βα(t) is the counting function corresponding to the space Xα.
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That is, according to the previous proposition we need to estimate f−1
α

and |f ′α|−1 from below and from above respectively for arbitrary α > 1.

fα(n) = exp(− lnα n) = m

⇒ lnα(n) = ln(
1

m
) ⇒ ln n = ln

1
α (

1

m
)

⇒ n = exp(ln
1
α (

1

m
)), then f−1(m) = exp(ln

1
α (

1

m
)).

On the other hand,

f ′α(n) = −α exp(− lnα n) lnα−1 n
1

n
n = 1, 2, .....

⇒ |f ′α(n)| = α exp(− lnα n) lnα−1 n
1

n
> α

exp(− lnα n)

exp lnα n

= α exp(−2 lnα n). Define k(n) := α exp(−2 lnα n)

⇒ k−1(n)− 1 < |f ′α|−1 − 1 < βα

then

k−1(n) = exp 2(− 1
α

) ln
1
α (

α

n
)

Thus for any α we obtain,

exp 2(− 1
α

) ln
1
α (α(

t

8
)

1
q−p )−1 < βα(t, Up, Uq) < (q+1)(exp(ln

1
α ((2et)

1
q−2p ))−1).

Now we apply criterion to the spaces Xα and Xγ, ∀α, γ > 1, α 6= γ are

fixed constants;

if Xα ' Xγ then,

∀p1 ∃p ∀q ∃q1, ∃Csuch that

exp 2(− 1
γ
) ln

1
γ (γ(

t

8
)

1
q1−p1 )− 1 < (q + 1)(exp(ln

1
α ((2et)

1
q−2p ))− 1).

But for p1 = 0, q = 1 + 2p, α > γ > 1 and for large t, this inequality is

impossible .
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2.2 Compound Invariant Over E(K)

In this part we will consider the invariant effect of β1(t, τ) which is known to

be more refined invariant then counting function β(t).

In what follows we will focus on the question that whether β1(t, τ) is

strictly more refined then the invariant β(t) for spaces E(K) where the set

K is of regular type.

THEOREM 2.2 Let K = {0} ∪ ∪∞n=1{an} be of the regular type. Then the

invariant β1(t, τ) is not strictly more refined than the invariant β(t) for the

spaces E(K).

Proof : Let us show that β1(t, τ) and β(t) have the same upper and the

lower bounds asymptotically.

For upper bound we remark the following. Consider

β̃(U, V ) = min{dim L : U ⊂ V + L}

It is clear that if U1 ⊂ U2 and V1 ⊃ V2 , then β̃(U1, V1) ≤ β̃(U2, V2).

It turns out that,

β1(τ, t, Up, Uq, Ur) = β̃(τUp ∩ tUr, Uq)

β(t, Ur, Uq) = β̃(tUr, Uq)

then

β1(τ, t, Up, Uq, Ur) ≤ β(t, Ur, Uq)

and by Theorem 2.1 we have
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β(t, Ur, Uq) < (r + 1)N1 with N1 = min{n : an ≤ (
1

2et
)

1
r−qQ}

thus

β1(τ, t, Up, Uq, Ur) < (r + 1)N1.

Lower bound for β1(t, τ)

We use theorem (1.2) for lower bound which implies,

β1(τ, t, Up, Uq, Ur) ≥ sup{dim L : 2Uq/Zq ∩ L ⊂ (τUp ∩ tUr)/Zq}

where supremum is taken over all finite dimensional subspaces of Eq(K). We

define

L = span{[hnq]q}N2
n=1

where

N2 = max{n : |an − an+1| ≥ (
8

t
)

1
r−q } (2.8)

then dimL = N2. Now let us show with the above choice of subspace L the

following embedding is satisfied:

2Uq/Zq ∩ L ⊂ (τUp ∩ tUr)/Zq.

Let f ∈ 2Uq/Zq ∩ L be arbitrary. Then

f =

N2∑
k=1

αk[hkq]q =

N2∑
k=1

αkhkq + Zq = f̃ + Zq

where

f̃ :=

N2∑
k=1

αkhkq,

that is
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f(x) =

 f̃(x) + Zq = αk
(x−ak)q

q!
+ Zq if x = ak ≥ aN2

0 otherwise

Since f ∈ 2Uq/Zq

2 ≥ ‖f̃‖q ≥ |αk| ⇒ |αk| ≤ 2.

Now let’s show

f ∈ (τUp ∩ tUr)/Zq. (2.9)

On the other hand, it is clear that to show f̃ ∈ (τUp ∩ tUr) is sufficient

for (2.9). That is to show

‖f̃‖p ≤ τ and ‖f̃‖r ≤ t.

Bound for ‖f̃‖p ≤. Here bi,p =
|(Rp

y f̃)(i)(x)|
|x−y|p−i i ≤ p.

a Upper bound for |f̃ (i)(x)| , i ≤ p.

a.1 x < aN2 . Then f̃ (i)(x) = 0 < τ
2
.

a.2 x ≥ aN2 x := al.

Then f̃(x) = αl
(x− al)

q

q!

⇒ |f̃ (i)(x)| = |αl
(x− al)

q−i

(q − i)!
| = 0 <

τ

2
as i ≤ p.

b Upper bound for bi,p

b.1 x < aN2 and y < aN2 .

⇒ (Rp
yf̃)(i)(x) = 0 ⇒ bi,p = 0 <

τ

2
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b.2 x < aN2 and y ≥ aN2 . Let x := al and y := as.

|(Rp
yf̃)(x)| = |f̃(x)−

p∑
k=0

f̃ (k)(y)
(x− y)k

k!
|

here f̃ (i)(x) = 0 ∀i, since x < aN2 .

⇒ |(Rp
yf̃)(i)(x)| ≤ |

p∑
k=i

αs
(y − as)

q−k

(q − k)!

(x− y)(k−i)

(k − i)!
| = 0

since (y − as)
q−k = 0 as k ≤ p < q,

⇒ bip <
τ

2
.

b.3 x ≥ aN2 and y ≥ aN2 . Let x := al and y := as.

Then f̃(x) = |αl
(x− al)

q

q!
| and f̃(y) = |αs

(x− as)
q

q!
|

⇒ |(Rp
yf̃)(i)(x)| ≤ |αl

(x− al)
q−i

(q − i)!
−

p∑
k=0

αs
(x− as)

q−k

(q − k)!

(x− y)k−i

(k − i)!
| = 0

since(x− al)
q−i = (y − as)

q−k = 0 as i, k ≤ p < q ∀i, k ≤ p.

⇒ bip <
τ

2

b.4 x ≥ aN2 and y < aN2Let x := al and y := as.

⇒ f̃(y) = 0 as y < aN2 and f̃(x) = αl
(x− al)

q

q!

Since f̃(y) = 0 for y < aN2 ,

⇒ |(Rp
yf̃)(i)(x)| = |αl

(x− al)
q−i

(q − i)!
| = 0 as i ≤ p < q,

⇒ bi,p <
τ

2
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Bound for ‖f‖r. Here bir =
|(Rr

y f̃)(i)(x)|
|(x−y)r−i| , i ≤ r.

a Upper bound for |f̃ (i)(x)| ,i ≤ r.

a.1 x < aN2 ⇒ f̃ (i)(x) = 0 ∀i ≤ r ⇒ |f̃ (i)(x)| < t
2
.

a.2 x ≥ aN2 .Let x := al

⇒ |f̃ (i)(x)| = |αl
(x− al)

q−i

(q − i)!
| 6= 0 only for i=q ,

then for i = q, |f̃ (i)(x)| ≤ |αl| ≤ 2 ≤ t

2
.

b Upper bound for bir, i ≤ r.

b.1 x < aN2 and y < aN2 .

⇒ (Rr
yf̃)(i)(x) = 0 ∀i, then bir = 0 <

t

2
.

b.2 x < aN2 and y ≥ aN2 . Let x := al andy := as.

⇒ f̃ (i)(x) = 0 ∀i and f̃ (i)(y) = αs
(y − as)

q

q!

⇒ bi,r ≤ |
r∑

k=i

αs
(y − as)

q−k

(q − k)!

(x− y)k−i

(k − i)!
||x− y|i−r

here (y − as)
q−k 6= 0 only for k = q

⇒ bi,r ≤ |αs||x−y|q−r ≤ 2|x−y|q−r < |aN2−aN2+1|q−r ≤ t

2
by (2.8).

b.3 x ≥ aN2 and y ≥ aN2 . Let x := al and y := as.

⇒ |(Rr
yf̃)(i)(x)| = |αl

(x− al)
q−i

(q − i)!
−

r∑
k=i

αs
(y − as)

q−k

(q − k)!

(x− y)k−i

(k − i)!
|

similar to previous case

≤ |αl
(x− al)

q−i

(q − i)!
− αs

(x− y)q−i

(q − i)!
|
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≤ 2|x− al|q−i + 2|x− y|q−i

⇒ bi,r ≤ 2|x− al|q−i|x− y|i−r + 2|x− y|q−i|x− y|i−r

= 2|x− al|q−i|x− y|i−r + 2|x− y|q−r

here the first term ( 6= 0) only for i = q

⇒ bir ≤ 4|x− y|q−r ≤ 4|aN2 − aN2+1|q−r ≤ t

2
by (2.8).

b.4 x ≥ aN2 and y < aN2 .Let x := al and y := as.

⇒ f̃ (i)(y) = 0 ∀i.

⇒ |(Rr
yf̃)(i)(x)| = |f̃ (i)(x)| ≤ 2

|x− al|q−i

(q − i)!
6= 0 only for i=q ,

⇒ bir ≤
2

|x− y|r−i
≤ 2|aN2 − aN2+1|q−r ≤ t

2
.

Thus

N2 < β1(τ, t, Up, Uq, Ur) < (r + 1)N1.

That is β(t, Uq, Ur) and β1(τ, t, Up, Uq, Ur) have the same upper and the lower

bounds.
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Chapter 3

Irregular Case

For irregular case we restrict ourselves to the case

Ka = {0}∪∪∞n=1{an} such that ∀Q, ∃n0 : |an−an+1| ≤ aQ
n ∀n ≥ n0.

And we see with the following theorem that the spaces E(K), where K is of

irregular type, are not distinguishable by means of the function β(t).

THEOREM 3.1 Given the space X = E(Ka), Ka of irregular type, we have

βX(t, Up, Uq) ∼ βs(t, Vp, Vq)

Where s is the space of rapidly decreasing sequences and (Un)∞n=1, (Vk)
∞
k=1

are the bases of neighborhoods of the spaces X and s respectively.

Proof. We know what βs is and we will just show here that it is the

same as βX asymptotically.
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For the space s we have βs(t, Vp, Vq) ∼ t
1

q−p and βs is maximal among all

nuclear Fréchet spaces (see [16]).

Thus we naturally obtain the upper bound for βX .That is

βX(t, Up, Uq) < t
1

q−p .

On the other hand, lower bound is done exactly the same way with regular

case (see Theorem 2.1), since estimating lower bound has nothing to do with

regularity of the set Ka. Thus

βX(t, Up, Uq) > N2 where N2 is defined as in (2.3).

And using (2.7) we obtain

(|f ′|−1((
8

t
)

1
q1−p1 )− 1) < βX(t, Up, Uq) < t

1
q−p ,

where f(n) := an.

To obtain asymptotic equivalence we use the irregularity of the set Ka.

That is

∀ Q > 1 fQ(n) > |f(n)− f(n + 1)| for n ≥ n0

and it follows from here that

f(n) >
1

nε
∀ ε > 0,

it is because ∀ε ∃Q = Q(ε) such that | 1
nε − 1

(n+1)ε | > ( 1
nε )

Q.

⇒ |f ′|(n) > (| 1

nε
|)′ = ε

nε+1
∀ε ⇒ |f ′|−1(m) > (

ε + 1

m
)

1
ε+1 ∀ε

⇒ βX(t, Up, Uq) > |f ′|−1((
8

t
)

1
q−p ) > ((ε + 1)(

8

t
)

1
q−p

1
ε+1 )
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so we get as a result

((ε + 1)(
8

t
)

1
q−p

1
ε+1 ) < βX(t, Up, Uq) < t

1
q−p ∀ε

and the desired result follows from this inequality �.
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