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ABSTRACT

LINEAR TOPOLOGICAL STRUCTURE OF SPACES OF
WHITNEY FUNCTIONS DEFINED ON SEQUENCES OF
POINTS

Mustafa Zeki
M.S. in Mathematics
Supervisor: Assist. Prof. Alexander Goncharov
September, 2002

In this work we consider the spaces of Whitney functions defined on con-
vergent sequences of points.By means of linear topological invariants we ana-
lyze linear topological structure of these spaces .Using diametral dimension we
found a continuum of pairwise non-isomorphic spaces for so called regular type
and proved that more refined invariant compound invariants are not stronger

than diametral dimension in this case .

On the other hand, we get the same diametral dimension for the spaces of

Whitney functions defined on irregular compact sets.

Keywords: Linear Topological Invariants, Whitney Functions, Diametral Di-

MENSIon.
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OZET

DIZI NOKTALARI UZERINDE TANIMLI WHITNEY
FONKSIYON UZAYLARININ TOPOLOJIK YAPISI

Mustafa Zeki
Matematik Bolimii Yiiksek Lisans
Tez Yoneticisi: Yard. Dog¢. Dr. Alexander Goncharov

Eyliil, 2002

Bu cgalismada yakinsak dizi noktalari tizerinde tanmlanmig Whitney
fonksiyon uzaylarmmi ele aldik. Lineer topolojik invariantlar vasitasi ile
bu uzaylarin topolojik yapisini inceledik. Diametral dimension1 kullanarak
diizglin tiirdeki dizi noktalar1 iizerinde tanimh sonsuz c¢oklukta karsilikl
izomorfik olmayan uzaylar bulduk ve bu durum igin bilegik invariantlarin daha
kuvvetli olmadigin1  gosterdik.

Bununla beraber, diizgiin olmayan kompakt kiimeler iizerinde taniml

Whitney fonksiyon uzaylari icinde aym1  diametral dimensionu elde ettik.

Anahtar kelimeler: Lineer topolojik invariantlar, Whitney fonksiyonlar,

Diametral dimension.
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Chapter 1

Introduction

1.1 Linear Topological Invariants

We begin with a short summary of invariants which are distinct characteris-
tics of linear topological spaces; that is in order to show two linear topological
spaces are not isomorphic, it is enough to prove that these characteristics of

spaces differs from each other. More precisely,

If @ is a class of linear topological spaces, ¢ is a set with a equivalence

relation ~ and 7 : & — ¢ is a mapping, such that
XY =71X)~7(Y)

then 7 is called linear topological invariant and 7 is said to be complete

invariant on the class ® if for any X,Y € ¢

T(X)~7(Y)=X>Y.

We restrict our attention to Fréchet spaces.



Definition 1.1 A K-vector space F, equipped with a metric, is called a met-
ric linear space, if in E addition is uniformly continuous and scalar multipli-
cation is continuous. A metric linear space E is said to be locally convez, if
for each zero neighborhood V there exists a convex zero neighborhood U with
UuclVv.

A complete metric locally convex space is called a Fréchet space.

Definition 1.2 Let FE be a locally convex space. A collection U of zero neigh-
borhoods in E is called a fundamental system of zero neighborhoods, if for

every zero neighborhood U there exists a V€ U and € > 0 with eV C U.

A family (||.||a)aca of continuous seminorms on E is called a fundamental

system of seminorms, if the sets
Uy ={z e E:|zl]]a <1}, acA,

form a fundamental system of neighborhoods.
Let E be a locally convex space which has countable fundamental system

of neighborhoods (U, )nen. Without lose of generality one can assume that

Upr CU,, VneN.

1.1.1 Counting invariants.

First of this kind of invariants, Approximative dimension, was introduced by
A.N. Kolmogorov [13] and A.Pelczynski [19] and they proved A(D) 2 A(G)
if the domains D € C*",G C C™, n # m and A(D") 2 A(C") where D" is

the unit polydisc in C" and A(ID) is the space of all analytic functions on D.



Later on the so called diametral dimension I'(X) and dual diametral
dimension I''(X) were introduced ( definition see below ) by C. Bessaga, A.
Pelczynsky and S. Rolewicz [2]. These kind of invariants turn to be more

strong then approximative dimensions (see [16]).

Characterization of nuclear spaces in terms of diametral dimension was
given by Mitiagin (see e.g. [16]).
In [5] Dragilev has shown that the invariants I'(X), (X)) are very useful

for distinguishing some special classes of spaces with regular absolute basis.

Moreover Crone and Robinson [4], Kondakov [14] proved that the invari-

ant (X)) is complete on the class of all nuclear spaces with regular basis.

It must be remarked here that I'(X),I"(X) are not effective invariants
for consideration of distinguishing spaces without regular absolute basis as

it can be seen by the following proposition (see ([6], [17], [20])).

Proposition 1.1 The spaces A(U) and A(U) x A(C) are not isomorphic,
although T"(A(U)) = T"(A(U) x A(C)).

Definition 1.3 Let U be an absolutely convex absorbent set and V be any
set in the locally convex space X. Then n'* Kolmogorov diameters of V with

respect to U is defined as

d,(V,U) = inf sup inf ||z —
(V.U) ngcnig%gLHx yllu

where infimum is taken over the collection L, of all subspaces of X of

dimension < n. Here ||.||y is the gauge functional of the set U (see definition

(1.6)).



It is easy to see that definition of d,(V,U) can also be given as:

d,(V,U) = inf inf{6: V C 6U + L}.

Lely

The diametral dimension is given as follows,

and

'X)={y=(v):3V YU ;ﬁ%Oasn%oo}

We consider the counting function corresponding to the diametral dimen-

sion I'(X),
B(t) == B(U,, Up,t) = min{dim L : tU, C U, + L}, t > 0.

One can show that

3(t) = {0 £ (U, T3) > 7.
where |K| denotes the cardinality of the set K, and (Uy), is the basis of
neighborhoods of X.
If X is a Schwartz space (that is Vp 3¢ such that U, is precom-
pact in X, :=X/Z, Z,={r € X :|z|, =0} ) and p,q are sufficiently

apart from each other, then 3(U,, U,,t) takes finite values.

The following well-known propositions express the direct relation between

['(X) and B(t):



Proposition 1.2 (y,) e I'(X) <= Vp 3Jq ;VC Inyg:

6(Uq7 Up7 C’)/n) <n fOT n > ng.

Proposition 1.3 If Fréchet spaces X and Y are isomorphic, then
Vpidp Vedq, C
B (Vay, Vpy, 1) < BX(U,, Up, Ct),  t >0,
and vice-versa.

Here (V,)52,, (Uy)p2, are bases of neighborhoods of spaces X and Y re-

spectively.

1.1.2 Interpolating Invariants.

There are certain interpolating properties of seminorms which are invariant

under isomorphisms. Various forms of such invariants were introduced by

Dragilev [5], Zahariuta [26], Vogt [24] and others. As an example we can
present here only Dominating Norm (DN) property which will be mentioned

in the sequel.

A Fréchet space X with a fundamental system of seminorms (||.||4)o2, is

said to have the DN property [24](also Dy in [25]), if

C
VeI, C > 0l lg < tllflp + [l t>0

with p,q,m € Ng=0,1,2,....



1.1.3 Compound Invariants.

In [27] Zahariuta suggested a method of combining possibilities of both count-
ing and interpolating invariants, to produce new characteristics which are
considered as the invariants based on the asymptotic behavior of classical n-
diameters of pairs of “synthetic” neighborhoods of zero, built in an invariant

way for a given pair, triple and so on of neighborhoods.

We give here two of these, namely 3; and fy, in what follows t — oo and

T=7(t)—0;for 0<p<g<rletU=1U,NtU,

G(U,U,) = Bi(1,t,Up, Uy, Uy) = inf{dim L : U C U, + L} (1.1)

= |{n:d,(U,U,) > 1}, (1.2)

Bu(Uy, V) = Bu(r,t,U,, Uy, Uy) =inf{dim L : U, CV + L}, (1.3)

where V' = conv(tU, UtU,) and infumum is taken over all finite dimensional

subspaces of X; (here conv(K) denotes the convex hull of the set K).

Proposition 1.4 Let the spaces X and Y be isomorphic Fréchet spaces with

fundamental systems of neigborhoods (U,)°and(V,)® respectively. Then

Vp3apVq1dqVrar,, 3C
such that
BY (1., Viys Vi, Vi) < B5(C,Ct, U, Uy, U, Vt>0,Y7>0 (1.4)

and vice-versa.



Proposition 1.5 Let the spaces X and Y be isomorphic Fréchet spaces with

fundamental systems of neigborhoods (U,)°and(V,)® respectively. Then
Vp1dpVqdq, Vridr, de
such that
B (T, t, Vi, Vi, Vi) < Bif (€7, et, Uy, Uy, U, vVt >0,vr >0  (1.5)
and vice-versa.

Proofs are similar, so we give the proof of the second one.

Proof: Assume 7 : X — Y is an isomorphism. Then according to the

above order of quantifiers, for some C' > 1 we have

1
UP - 07_1(%1) = aT(Up) C V;Jl
Vql C CT(Uq)
1
U, C CTﬁl(Vrl) = ET(UT) c Vi,

then according to the definition of [y, it follows that,

1 1
ﬁl}_I/(T’ tv ‘/;017 V;h? ‘/;“1) < ﬁfl( (T7 tv ET(Up)v OT(UQ)v ET(UT’D

1
t.U, U, U) O

1
S /8]3[((@7-7 E

1.2 Continuous Norm and Tikhomirov’s The-
orem for Spaces Without Continuous Norm

In this section we will consider the continuous norm property of spaces and

Tikhomirov’s theorem which is used for finding lower bound for the counting

7



functions 3, 41 and so on.

Definition 1.4 A Fréchet space X is said to have continuous norm, if one
of its seminorms is a norm. Similarly, X has no continuous norm if every

neighborhood contains a line.

THEOREM 1.1 (Tikhomirov [16,Prop.6]) Let X be linear space with con-
tinuous norm. If U is an absolutely convex set in X then for any set V € X,
if
aUNLyy CVN Ly
i1s satisfied for some n+1 dimensional subspace L,1 of X and for a > 0,
then
d,(V,U) = a.

We remark here that, Tikhomirov’s theorem which is given in [16] can

not be applied to the spaces without continuous norm.

For example let us consider w, the space of all sequences with the topology

given by the seminorms

|z|, = sup |z, with  z = (z,) € w.
n<

It is clear that for L = span(e,)p2,; we get L C U, Vp and w has no

continuous norm.
Thus, Vn € N we have

Uy Lysy C Uy N Ly

8



for some n+1 dimensional subspace in w;

In fact we can choose L = span(e); ", r > ¢ > p. But that would

mean to get

d. (U, Up) > 1, Vn,

which is impossible, as for ¢ > p we get trivially

d. (U, Up) =1 for n<p

and

d.(Ug, Up) =0 for n>p.

We continue with the following definitions which are necessary for this

subject.

Definition 1.5 If F is a subspace of K-vector space E, then the set E/F of
all so-called cosets [x]p :=x+ F, x € E, becomes a linear space with respect
to the addition and the scalar multiplication defined by (x + F) + (y+ F) :=
r+y+F and k(z+ F) .= kx+ F, Ve,y € E, Vk € K. This is the
quotient vector space of E modulo F. The map 7 : E — E/F,7(x) := x + F,

1s called the quotient map and it 1s linear.

Definition 1.6 Let X be a locally convex space and U be absolutely convex
absorbent set in X, define the gauge (or Minkowski) functional of the set U
[z]v: X — R by

||| = inf{d > 0:x € dU}.



It is clear that the kernel of ||.||y, Zy := {x € X : ||z]jy = 0}, is a closed

subspace of X. Let Xy be the completion of X/Z;; with respect to the norm

-l
After small modification we present here the following version of Tikhomirov’s

theorem which is valid for any locally convex space X.

THEOREM 1.2 Let U be absolutely conver absorbent set and V be any set

in X; if for some a > 0 and for (n+1)-dimensional subspace Ly,.1 in Xy
OéU/ZU N Ln+1 C V/ZU N Ln+1 (16)

then
d,(V,U) > a. (L.7)

Proof: It is clear that, if the space has continuous norm, then
OéU/ZU N Ln+1 C V/ZU N Ln+1

implies

oaUNL, ., CVNL, .,

for some (m+1) dimensional subspace L, ; in X with m > n, it follows that
dn(V.U) > a

by the previous theorem. Since Kolmogorov diameters are decreasing, we
obtain

d,(V,U) > a.

If the space has no continuous norm, then for the Banach space Xy with

the norm ||.||¢

10



OéU/ZU NL,1 C V/ZU N L,
implies
dn(V/ZU, U/ZU> Z «

by Theorem 1.1.

Then it is enough to show
dn(V, U) 2 dn(V/ZUa U/ZU)

which will imply the result.

Let
do :=d,(V,U) = Li&fn inf{d: V C 6U + L}.
Then
Ve > 0, dL e L, and 36 € (do, 9o + €)
such that

VcpU+ L=V C(d+e)U+L

Then (V) C (6o + €)7(U) + 7(L) .

But as dim(7(L)) < dim L = n and say dim(7(L)) =m <n
Then
V/ZU C (50+€)U/ZU+T(L) Ve

So according to the definition of m*™ Kolmogorov diameter
dn(V/Zy, U] Zy) < 6o+ € Ve.
Since m < n, we get
dn(V/ 20, U/ Zy) < d(V/ 2y, U/ Zy) <o +€ Ve

11



That is  d,(V/Zy,U/Zy) < d,(V,U) , which gives us the result that

d,(V,U) > « O

1.3 Whitney Functions and Whitney Jets

Let K be a perfect ( that is without isolated points ) compact set on the line.
By £(K) we denote the space of Whitney functions on K; that is functions

f: K — R which are extendable to a C™®-function f onR.

E(K) is a Fréchet space with the topology defined by the family of semi-

norms

|(Ry ) ()]

|z — y|p~

1l = sup | £ ()] + sup Veye K, x#y, (18)
0<i<p

where

Rf(@) = fa) — 3 19 T

is the p'* Taylor remainder, p € Ny.

Here, given values of the function f on K, using perfectness of the com-
pact set K we can define the values of all its derivatives on K. In other words

the compact set K is C'"*°-determining in this case.

Definition 1.7 K C R™ is C"*°-determining if for any extendable function

f on K with f|x =0 we obtain f9|r =0, VjecN™.

12



On the other hand, suppose that a compact set K contains an isolated
point, let it be 0. Then in order to define an extendable function f completely
with all derivatives at 0, we have to give not only the values of f at 0, but

also the values of all its derivatives a; = f(0),j € Ny.

Moreover, since the Borel problem (given sequence (a;) construct a func-
tion f € C*®[—1,1] such that fU)(0) = a;,Vj € Ny ) has a solution for any
sequence (a;), we have no restriction on the growth of “derivatives” of f.

That is if K = K7 U{0} then E(K) ~ E(K;) Pw. In particular £({0}) ~ w.

But since the space w has no continuous norm, we get the following trivial

proposition in accordance.

Proposition 1.6 Let K C R be a compact set; then E(K) has no continuous

norm if and only if K has an isolated point.

So in general, for a compact set K C R, we will define the space of Whit-
ney jets £(K) to be the space of all infinite sequences f = (f9(2))ien,, = €
K, for which there exists an extension F' € C*°(R) such that f(x) =
FO(x) Vz € K,Vi € Ny.

E(K) is Fréchet space with the topology defined by the seminorm family
|l.Ilp,  p € No, as defined in (1.8).
It is clear that a compact set K with isolated point does not have the

Extension property.

Definition 1.8 For K C R", K has the Extension property if there exists

a linear continuous extension operator L : £(K) — C>*(R").

13



Mitiagin [16] proved that K = [—1,1] C R has the Extension property
whereas K = 0 does not.

In [21] Tidten has shown that the property DN of the space £(K) is
equivalent to the Extension property for the compact set K. We give the

following trivial proof that the singleton has no Extension property .

Assume there exists an extension operator L : £({0}) — C>*(R). Then
Vp, AC, q such that

ILf ]l < Cllfllq for all f € E({0}).

Then for p = 0 there exists g, Cy such that, ||Lf]lo < Col|fllg for all
f € &({0}). Consider f = (f(j));?‘;o =1 for j = ¢+ 1, and zero otherwise.

Clearly ||f|l, = 0 and we get

ILfllo < Col| fllg = 0.

This is contradiction as Lf # 0.

Clear that it is not possible to use the interpolating invariants for the
spaces E(K), if K has an isolated point.

The problem of isomorphic classification of spaces of C'* and Whitney
functions was considered in several cases. As a result the families having the
cardinality of the continuum of pairwise non-isomorphic spaces were given.
In [7] and [22] it was done for the spaces of C'*°—functions on the sharp
cusp, in [10] for the spaces of Whitney functions given on so-called “running
duck” set and in [11] and [1] for the spaces of Whitney functions defined on
Cantor-type sets by using counting, interpolating and compound invariants.

It must be remarked here that the diametral dimension can not be applied

to distinguish the spaces of the type C* or £(K) with K° # 0. In fact,

14



these spaces contain a subspace which is isomorphic to the space s of rapidly
decreasing sequences. Since for a subspace Y in X we have I'(Y) D I'(X)
[16-prop 7], and all these spaces contain a subspace isomorphic to the space
s, we get that their diametral dimension is not larger than I'(s).

On the other hand, the space s has the minimal possible diametral dimen-
sion in the class of nuclear spaces [see 16|, thus we obtain I'(E(K)) = I['(s).

Here we restrict our attention to the following model case of compact sets

K ={0}uu {a,} with a, — 0.

15



Chapter 2

Regular Case

Let £(K) be a space of Whitney jets, defined on the set K = {0}UU {a,}

such that a,, — 0 monotonically.

Definition 2.1 We say that a compact set K = {0} U {a,} is of reqular

type if

3Q > 1 such that  |a,_i —an| > a9 ,n > ng for some ng € N. (2.1)

2.1 Counting Function ()

THEOREM 2.1 Let K = {0} UUX a, be of regular type with the corre-
sponding constant QQ,. Then for the counting function corresponding to the
diametral dimension of the space E(K) and for ¢ > p > 0 with ¢ — pQ, > 0,
we get

N2§ﬁ<t7Up7Uq)§<q+1>Nla t24

16



where

: | R
Ny =min{n : a, < (26.[:)1171)(?} (2.2)
and
8, 1
Ny = max{n : |a, — api1| > (;)CI*P} . (2.3)

Proof: Upper bound for (3
From definition of 3 we see that 3(t) < dim L for any subspace L satis-

fying
tU, U, + L.

Let us consider the following functions

il ifxel0,an,|NK

Hy =1 7 0wl (24)

otherwise
and

(=ar) frz=a,€ K

hy=4 7 * (2.5)
0 otherwise

and define

then dim L = Ny(q + 1).
For any f € U, choose g € L such that

q j Ni—-1 ¢ . T —a)
o) = S 108 + 33 0 g )
=0 7= =0 J:

Now let us show that with above choice of the subspace L, U, C 1U,+L

is satisfied; that is to show that [|f — g, < 1.
a. Upper bound for |f—gl, = sup,cse |f@(2)—g¥(x)] i=0,...,p.

17



a.l r < an,
q ‘ 33j
= gl =D 05

i then  [f(z) — g(z)| = Ry f(x)

j=0
i i i —i - 1
= (@) =g" (@) = [(Rof) (@) < I fllglel™™ = aiy” < oo by (2.1).
a.2 x> ap, and let z 1= @

= =@ e 0@ @) =0 < o
=1 '

b Upper bound for b; .

Here b, = LB O @) Ve,ye K, x#y and i=0,1...p.

A
b.1 T >an, Y>an,.
= (B(=0) () = £9(0)=30)= 31 )= ) T =0
= bi,p =0< %
b.2 r<ay, andy <ay,.
> g =Y f<j><o>j%f = /() - g(2)| = Rif()
i=0 '
then |
RY(f = g)(x) = Rif(x) = > (R§))V(y) & ;uy)J
j=0 ’
L < EO@) | SN0 G

|z — y|p— |z — y|P~

p j—
—i i— Silr—yP?
= bip < I llal2l™ e = g7+ D 1 llglyl? G-

j=i

18



b.3 x> an, and y < ap;.
Then  f9(z) — g¥(z) = 0 and fY(y) — ¢V (y) = (RES)V(y)

j—i

| — |
= |Ry(f — 9) ()] < Z| REf)9( W

ile =yl
< [l E |
! = (7 —1)!

’]p

\x y\ i !Sc
= zp_Z\y!‘” —y"r = Z!y\“ T

Qj—Qp
<3 fay, o “Nl‘ E o [y 2y
= (7 - —)!
q—Qp Qj—j
Z [, | Jaw| , since @ >1,
(j —i)!
—pQ 1
= bi,p S ]aNl\q Pee < Q_t by (22)
b.4 r <apn, and y > ap;.

= |f2%) —¢“()|=0  then

(R (f = 9)P(@)] < [F9(2) = gW ()| = [(RG /)P ()]
= by S BNV (@) =y < I fllgle|" o — y[TP
similar to (b.3),

1
b@p S |aN1| |aN1 1= aN1|Z P S 2_t

19



Therefore ||f — g, < 1 and U, C 1U, + L, that is

B(t, Uy, U,) <dimL = (¢ + 1)N;.

Lower bound for (.
Here we are going to use Tikhomirov’s theorem (see thm (1.2)) and the

second definition of (# as a tool. That is

aU,/Z,N L,y C U,/Z, with dim L,,.1 =n+1
implies d,,(Uy,, U,) > a. Then

B(t, Uy, U,) > sup{dim L : 2U,/Z,N L C tU,/Z,},

where supremum is taken over all finite dimensional subspaces L of EP(K),

which is the space of Whitney jets of order p,
EP(K) = {f € CP(K) : 3F € CP(R) such that FO |, = fO i < p}
and Z, is defined as
Zy ={f € &(K) || fllp = 0}

Define L = span {[hn], : n =1, ..., No}.
Let us show with the above choice of subspace L, the following embedding
is satisfied:

2U,/Z, N L C tU,/Z,

Take f € 2U,/Z, N L, then

A (z—a)”
fla) =Y a——+2Z,=f+2,
k=1 p:

20



where

then f € 20,

= 22| fllp > ()] = Jaul
= |Oék| <2 Vk=1,...,Ns.

Clearly, in order to show f € tU,/Z, it is sufficient to show fe tUy,, that
is |fll,<t, t>0.

a. Upper bound for |f|, =sup|fO(z)] ,i<q zeK.

a.l x<apn,.

- t
Then f9(z)=0< 3 Vi < g.

a.2 x> ay, and let z := q;.

- —a)?
Then  f(x) :alu
p!

) _ (x —a)P" <9< t

> @) = o <2 < ]
_ p—i
as M #0 only for i =np.
(p—1)!
b.  Upper bound for b;, .
Rq £ (@) T
Here b, = W , 1=0,1,....,q, T, ye K ,x#uy.

r—y|

Remark. For p <1 <gq
fO@) =0 Vae K =b,=0

then, without lose of generality it is enough to take : = 0,1, ...., p.
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b.l1 z <an, and y > ay,.Let y := a,

S fla)= 0 and f(y) = 0, 2"

T (p—)!

) )k i

then |(RSf)(x r<|Zf o
— p—1
SQSM
(p—a)!

since f®)(y) # 0 only for k = p
2 : , 2
= by < —lr -y -yl = ——lr —y[?

< 2ay, —amul TS5 by (23).

N |+

b.2 x>apn, and y > ay,. Let z := qjand y := a,

a A\ . (a:—al)p_i d (y_as)p_k (x_y)k_i
> @) = o = > e T

(y—as)®P—

where (p—k # 0 only for p = k.

q a(l’—al)p_i a(x—y)p_i
= (R f)(x) < | P T P T |

2 4 , 2 , .
= by < ——le—q| ey + —lr—yPr—y|"Y (2.6
< gl al =yl e =yl 20

o i. If i < p, then first term of (2.6) is “0”

2
= big < =i o=yl < 2z—y[" < 2an,—am [ < 5 by (23).
p—1)!

N |
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o ii. If i=np,

t
then 2|z —y|" 42z —y|"? < A4|an, —an,+1|777 < 3 by (2.3).
b.3 x>an, and y < ap,. Let v :=q
~ ~ — p
then flyy=0 and f(x)= OAZM
p!
- — ;|9
L (RO ()] — | [Tl
(B f)™ ()] = oy =) |
|z — a i—q P—q
= big < ’alwhf —y|7 <20z -y

S 2|CLN2 - aN2|p_q S

N | o+

b4 z<apn, and y <ay,

then  fO(x) = f(y) =0

= |(RH)O@] = 170) = 37 M) (1@_ - 2;' =0
= bi,q =0< %

Thus || f||, < t, which implies f € tU,/Z,.

= ﬁ(t, Up, Uq) > N2 ]

2.1.1 Geometric Criterion.

Here we give geometric condition of being isomorphic for the spaces X :=
E(K,) and YV := &(K,), K, and K, are of regular type, in terms of the

elements of sequences and by means of Proposition 1.3, where
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Ko ={0}uuUpZ{an} and Ky = {0} U U2, {bn}

and define f(n) := a, and g(n) := b,. Suppose without loss of generality

that the functions f, ¢ are monotonic and g is differentiable.

Proposition 2.1 If X ~ Y then;

Vpr dp VYq dqi, ICsuch that

(g1 ()7) 1) < @+ DG (o)™ +1) (@7)

where @, 1is the constant from Definition 2.1.

Proof: We will first estimate counting function corresponding to an or-
dinary space £(K4) in terms of the general term of the sequence d,, and use

the Proposition 1.3 to get above result.

Let us given Z = E(K,) such that K, := {0} U U2 {d,} which is of

regular type. Then,
N2 < ﬁ(t, Up, Uq> < (q + 1).N1, such that N1 and NQ

are defined as in Theorem 2.1 .
Let h be monotone function with h(n) := d,,, then N; can also be given

as:

1 1
Ny =max{n:d, 1 > (26t)"7de}
1 . 1 1
_ . _ — )a—pQg l — : - (= 1=PQd
max{n : h(n —1) > (Qet) p=max{n:(n—1)<h ((26t> )

1 1
= N1 < h_1(<2—6t)q7de) —+ 1
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Thus

1

Bults Uy, Uy) < (07 () 7) + 1)

Now we find the lower bound for §,(t,U,,U,) in terms of the function
h(n).
Ny can be given as :
8
t

No+1=min{n : |ap — anei| < (=)77}

that is

Ny + 1 =min{n : |h(n) — h(n+ 1)| < (%)qlp}.

On the other hand by the mean value theorem we have

dx € (n,n + 1) such that |h/(z)| = |h(n) — h(n + 1)| and we obtain
. , 8, 1
Ny + 1 =min{[z] : |W/(2)| < (g)q—p}

where [z] is the greatest integer at x.

8 1
= Ny + 1 = min{int(z) : z > ]h’\_l(z)ﬁ}
then,
-1 8, 1L
N> W) 1
that is

1,81
Ba(t,U,, U,) > |I| 1(¥)q-p 1

Thus for the space £(K,) we get,

1

(K G)75 = 1) < Bult, Uy, U) < (g + (™ (55)790) + 1)

| GO

Now we can combine this inequality with the Proposition 1.3 to obtain

the criterion in terms of the general terms of the sequences.
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If X ~Y then

Vpr dp Vq dg¢, FJCsuch that

1

(g1 )7 —1) < (0 + (™ () 7%) + 1)

and vice-versa. [

2.1.2 Example of a Continuum of Pairwise Non-Isomorphic

Spaces
Here we consider the spaces X, := £(K,), a > 1. Such that,
K,={0tuu2 {ar} , an = exp(—1n®n)
and define
fa(n) :==ag.
First let us show show that K, is of regular type.
1 1 exp(In®n) — exp(In®(n — 1))

exp(In®(n — 1)) exp(In®n)

exp(In®(n — 1)) exp(In® n)
But if we choose () = 2

exp(In®n) — exp(In“(n — 1)) 1,
exp(In®(n — 1)) e (explna") ’

since | exp(In® n) —exp(In“(n—1))| > 1 for large enough n , the inequality
(2.1) is realized .
Now let us find the upper and the lower bounds of §,(t), Yo > 1. Such

that [3,(t) is the counting function corresponding to the space X,.
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That is, according to the previous proposition we need to estimate f*

and |f/|~! from below and from above respectively for arbitrary a > 1.

fa(n) =exp(—In“n) =m

1 1,1
In“(n) = In(— Inn =Ina(—
= In%(n) n(m):> nn =In (m)
1,1 11
= In=(—)), th -1 = Ina(—)).
S n=exp(nt (L)), then £ (m) = exp(tnd ()
On the other hand,
! « a—1 1
fl(n) =—aexp(—In“n)In“"" n— n=1,2,...

n

1 — In®
= |f (n)] = aexp(—=In“n)In* 'n= > OzLﬁ”)
n expln®n

= aexp(—21n“n). Define k(n) := aexp(—21n“n)
= k() - 1< |fol T = 1<fa
then
k' (n) = exp20a) 1né(

3|e

)

Thus for any o we obtain,
t, 1 1
exp 2(-a) Ina (a(g)w) —1 < Ba(t, Uy, Uy) < (g+ 1)(exp(lni((26t) =2 )) —1).

Now we apply criterion to the spaces X, and X, Va,v > 1,a # v are
fixed constants;

if Xo > X, then,
Vp1 dp Vg d¢, dCsuch that
1

exp2d) mimg)w) —1 < (g +1)(exp(In& ((2et)75)) — 1).

But for p; =0, g =1+ 2p, a >~ > 1 and for large ¢, this inequality is

impossible .
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2.2 Compound Invariant Over £(K)

In this part we will consider the invariant effect of 3; (¢, 7) which is known to

be more refined invariant then counting function (3(t).

In what follows we will focus on the question that whether (¢, 7) is
strictly more refined then the invariant 5(t) for spaces £(K’) where the set

K is of regular type.

THEOREM 2.2 Let K ={0}UUX {a,} be of the reqular type. Then the
invariant B1(t, T) is not strictly more refined than the invariant (3(t) for the

spaces E(K).

Proof: Let us show that §;(¢,7) and ((¢) have the same upper and the
lower bounds asymptotically.

For upper bound we remark the following. Consider

B(U,V)=min{dimL: U CV + L}

It is clear that if U; C Uy and V; D V5, then B(Ul,Vl) < B(UQ,VQ).

It turns out that,
By(r,t,U,, U, U,) = B(rU, NtU,, U,)

3(t,U,, Uy) = B(tU,, U,)

then
ﬁl (Ta ta Up7 Uq7 Ur) S B(tv U?“) Uq)

and by Theorem 2.1 we have
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B, U, Uy) < (r+1)N; with Ny =min{n:a, <( ! )r—qu}

- et

thus

Bi(r,t,Up, Uy, Uy) < (1 + 1)Ny.

Lower bound for 3y (t, T)

We use theorem (1.2) for lower bound which implies,
Bi(1,t,U,, U, Uy) > sup{dim L : 2U,/Z, N L C (tU,NtU,)/Z,}

where supremum is taken over all finite dimensional subspaces of £9(K). We

define

Ny
n=1

L = span{[hng|,

where

=3 (2.8)

Ny = max{n : |a, — api1| > (;)

then dimL = N,. Now let us show with the above choice of subspace L the

following embedding is satisfied:
20,/Z,NL C (tU,NtU,)/Z,.

Let f € 2U,/Z, N L be arbitrary. Then

No N2
= Zak[hkq]q = Zo‘khkq +Zy=f+ 2,
k=1

k=1
where
N2
f= Z ghigg,
k=1
that is

29



Fa) = fv(x)—l—Zq:ozk(x_q%)q-i—Zq if = ai, > ap,

0 otherwise
Since f € 2U,/Z,

2> [1Flly = lowl = loul < 2.

Now let’s show

f e (rU,NtU,)/Z,. (2.9)

On the other hand, it is clear that to show f € (U, NtU,) is sufficient
for (2.9). That is to show

Ifll, <7 and ||f]|, <t.

Bound for ||f||, <. Here b;, = % i <p.
a Upper bound for |fO(z)] , i <p.
a.l r <ay,, Then fO(z)=0< 5
a.2 T >an, T:i=aq.
Then f(z) = al%
S @) = o= o< T asi<yp

b Upper bound for b;,

b.l z<ap, and y < ap,.

\]

= (R0f)(2) =0= b, =0 <

[\
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b.2  x<apn, and y > an,. Let v :=q; and y := as.
k) )’“
(Ry f) (e Zﬂ |
here f@(z) =0 Vi, since z < ay,.

—k (g — o) (k=)
= |(RLF)( |<|Zas =0

since (y —as)? F=0ask <p<gq,

b.3 x>an, and y > an,. Let v :=q; and y := as.

Then f(gj) = |alw| and ]E(y) _ |045 (1' —q!aS)Q|

($ _ a’l)qii . i . ([L’ B as)qik (ZL‘ B y)kiz| =0

P~(i)x oy — [0
= (B ()] < | (q—i) T (q— k) (k—1i)

since(z — )7 = (y —a,) 7" =0 as ,k<p<gq Vi k<p.

b4 x> an, and y < ay,Let v :=q; and y := a,.

= fly)=0asy<ay, and f(z)= @'—q_'al)q

Since f(y) = 0 for y < an,,

(x —a)?™"

(g —1)!

= |(Ry )P ()] = | I—O as 1< p<yq,
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T YO (g .
Bound for || f||.. Here b, = % , i<,

a  Upper bound for |fO(z)| i <.
al z<ay, =f0)=0 Vi<r=|fO@) <.

a.2 z>ay,Let x:=q

— al)q

70 ()] = [ =) ly for i=
= |fY@)] = | (G i) | # 0 only for i=q ,

then for i=g¢q, [fOx)]<|al<2<

N | o+

b Upper bound for b;., i <r.

b.l x<ap, and y < ap,.

o t
= (R} f)(z) =0 Vi, then b, =0 < 5
b.2 x<apn, and y > an,. Let z := q; andy := a;.
~ . - — q
= fOx)=0 Viand fO(y) = as—(y as)

q

~ (y—a)"F @yt i—r
k=i

here  (y —ag )" #0 only for k=gq

= by < og|lz —y|"" S 202 —y|T" <lan, —an1|T" < 5 by (2.8).

DN |+

b.3 x>an, and y > an,. Let v :=q; and y := as.

(x —a)?"

= |(R;f)(z)($)| = |041W

N, e @y
; PR

similar to previous case



< 2lx — al|q*i + 2|z — y\q’i
= b, <2z — |z -y + 20—y —y[ "
=2z — ||z —y|"" + 2z —ylPT

here the first term (# 0) only for i = ¢

by (2.8).

NN

= by <Az —y|T" <Adlan, —an, 1|7 <

b4 x>an, and y < ay,.Let 2 :=q; and y := a,.
= fOy)=0 Vi
— q e
% # 0 only for i=gq,
q—1)!

< 2|aN2 - aN2+1|q_T <

= (RN (@) =V (2)] <2

DO | ~+

T ey

Thus
N2 < ﬁl(T,t, Up, Uq, UT-) < (T -+ 1)N1

That is 8(t, Uy, U,) and 5 (7,t, Uy, Uy, U,) have the same upper and the lower

bounds.
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Chapter 3

Irregular Case

For irregular case we restrict ourselves to the case

K, ={0}uu {a,} suchthat VQ, Ing: |an—ap1|<a¥ Vn>ng.
And we see with the following theorem that the spaces £(K'), where K is of

irregular type, are not distinguishable by means of the function 3(¢).

THEOREM 3.1 Given the space X = E(K,,), K, of irreqular type, we have

ﬁX(ta Upv Uq) ~ ﬁs(tv V;Dv Vq)

Where s is the space of rapidly decreasing sequences and (Uy,)22 1, (Vi)52,

are the bases of neighborhoods of the spaces X and s respectively.

Proof. We know what (3, is and we will just show here that it is the

same as [Jx asymptotically.
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For the space s we have §4(t, V), V,) ~ t7 and (s is maximal among all
nuclear Fréchet spaces (see [16]).

Thus we naturally obtain the upper bound for Bx.That is

Bx(t, U, U,) < tis.

On the other hand, lower bound is done exactly the same way with regular
case (see Theorem 2.1), since estimating lower bound has nothing to do with

regularity of the set K,. Thus
Bx(t,U,,U,) > Ny where N is defined as in (2.3).
And using (2.7) we obtain
Uiln 1<< Jam) — 1) < Bx(t, Uy, U,) < t77,

where f(n) := a,.
To obtain asymptotic equivalence we use the irregularity of the set K,.

That is

V Q>1 fn)>|f(n)— fn+1)| forn>ng

and it follows from here that

f( )>% YV oe>0,
it is because Ve 3Q = Q(¢) (njl)g > ()¢
1.
= > =5 Ve = I m > (S e
S BT, UY) > P > (e D))
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so we get as a result

(e + D)) < Bx(1,0,, 1) < 10

and the desired result follows from this inequality

36
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