
ROBUSTNESS and STABILITY MEASURES for

SCHEDULING POLICIES in a SINGLE MACHINE

ENVIRONMENT

A THESIS

SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL

 ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFULLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

 MASTER OF SCIENCE

By

Selçuk Gören

September 2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52939568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

I certýfy that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Prof. Ýhsan Sabuncuoðlu (Principal Advisor)

I certýfy that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. M. Selim Aktürk

I certýfy that I have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Prof. Erdal Erel

Approved for the Institute of Engineering and Sciences:

Prof. Mehmet Baray

Director of Institute of Engineering and Sciences

iii

ABSTRACT

ROBUSTNESS and STABILITY MEASURES for SCHEDULING

POLICIES in a SINGLE MACHINE SCHEDULING ENVIRONMENT

Selçuk Gören

M.S. in Industrial Engineering

Supervisor: Prof. Ýhsan Sabuncuoðlu

September 2002

Scheduling is a decision making process that concerns allocation of limited

resources (machines, material handling equipment, operators, tools, fixtures, etc.) to

competing tasks (operations of jobs) over time with the goal of optimizing one or more

objectives. The output of this decision process is time/machine/operation assignments.

In classical scheduling theory, the objective is generally maximizing some measure of

system performance. In addition to classical performance measures two new criteria are

used in modern scheduling literature: "robustness" and "stability". In this thesis, we

propose several robustness and stability measures and policies. Two new surrogate

measures are also developed since the exact measures are difficult to calculate. These

surrogate measures are embedded in a tabu search algorithm to generate robust and

stable schedules for a single machine subject to random machine breakdowns. We show

that our surrogate measures are better than well-known and commonly used average

slack method.

Keywords : Robustness, Stability, Single Machine Scheduling

iv

ÖZET

TEK MAKINALI ORTAMDA ÇÝZELGELEME POLÝTÝKALARI ÝÇÝN

SAÐLAMLIK ve KARARLILIK ÖLÇÜTLERÝ

Selçuk Gören

Endüstri Mühendisliði Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ýhsan Sabuncuoðlu

Eylül 2002

Çizelgeleme sýnýrlý kaynaklarýn (makinalar, malzeme taþýnmasý donanýmý,

operatörler, kesici uçlar, vb.) ayný kaynaklara ihtiyacý olan deðiþik iþlere tahsis

edilmesini ilgilendiren bir karar verme sürecidir. Çizelgeleme, bir veya daha fazla amaç

fonksiyonunu eniyilemek için yapýlýr. Bu karar verme sürecinin sonucu olarak zaman /

makina / iþ atamalarý elde edilir. Klasik çizelgeleme teorisinde amaç fonksiyonu

genellikle herhangi bir sistem performans ölçütünü eniyilemektir. Modern çizelgeleme

literatüründe ise klasik sistem performans ölçütlerine ek olarak iki yeni kriter daha ele

alýnmaktadýr: “saðlamlýk” ve “kararlýlýk”. Bu tezde saðlamlýk ve kararlýlýðý

tanýmlayarak çeþitli ölçütler ve saðlam ve kararlý çizelgeleme politikalarý

geliºtirmekteyiz. Çoðu durumlarda bu ölçütlerin tam olarak hesaplanmasý mümkün

olmadýðý için bunlarýn yerine geçebilecek iki ölçüt geliþtirildi. Bu ölçütler bir tabu

arama algoritmasý ile birlikte kullanýlarak rassal arýzalanmalara tabi olan tek makinalý

çizelgeleme problemi için saðlam ve kararlý çizelgeler oluþturduk. Yeni ölçütlerimizin,

literatürde ayný amaç için sýkça kullanýlan “ortalama gevþeklik” yönteminden daha iyi

sonuçlar verdiðini gördük.

Anahtar Sözcükler: Saðlamlýk, Kararlýlýk, Tek Makinalý Çizelgeleme

v

To my family…

vi

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Prof. Ýhsan Sabuncuoðlu for his

invaluable guidance, remarks and recommendations during my graduate study. He has

been supervising me with patience and his great helps bring this thesis to an end.

I am also indebted to Assoc. Prof. M. Selim Aktürk and Prof. Erdal Erel for

accepting to read and review this thesis and for their suggestions.

I would like to thank to Hakan Gültekin, Pýnar Zarif Tan and Hakan Ümit for

their friendships. Without their academic and most importantly morale support I would

not be able to bear all.

I also would like to thank to Hüseyin Bilal Pandül for his friendship since our

undergradute years. I am so grateful for his support.

Finally, I would like to express my deepest gratitude to my family for their

continuous morale support.

vii

Contents

1. Introduction... 1

2. Problem Definition and Research Methodology .. 4

 2.1. Definition of Reactive Scheduling Problem, Notations and Terms........................ 4

 2.2. Robustness and Stability Policies and Measures... 6

 2.2.1. Robustness Policies and Measures.. 6

 2.2.1.1. Robustness Policies and Measures

 Based on Realized Performances .. 6

 2.2.1.2. Robustness Policies and Measures

 Based on Differences between Actual and Optimal Performances......... 7

 2.2.2. Stability Policies and Measures... 8

 2.3. Frequencey and Method of Scheduling... 11

 2.4. Disruptions and Possible Responses ... 16

3. Literature Review.. 20

4. Observations and Proposed Methods .. 35

 4.1. Observations .. 35

 4.2. Proposed Methods... 36

 4.2.1. The Proposed Algorithm... 37

 4.2.2. Tabu Search... 39

 4.2.3. Neighbourhood Evaluation Methods .. 41

 4.2.3.1. Method 1 ... 41

 4.2.3.2. Method 2 ... 43

viii

 4.2.4. A Numerical Example ... 44

5. Experimental Study... 49

 5.1. Experimental Environment ... 49

 5.1.1. Problem Parameters... 49

 5.1.2. Breakdown Parameters.. 51

 5.2. Fine Tuning Algorithm Parameters.. 52

 5.3. Comparison of Method 1 with Other Approaches ... 56

 5.3.1. Robustness.. 56

 5.3.2. Stability.. 59

 5.3.3. Bicriterion Approach.. 62

 5.3.4. Robustness vs Stability... 65

 5.4. Comparison of Method 2 with Other Approaches .. 67

6. Conclusion.. 72

Bibliography .. 75

Appendix .. 79

ix

List of Figures

 1. Scenario Based Representation of Disruptions ... 5

 2. The Possibilities for Number of Scenarios.. 10

 3. Full/partial Scheduling .. 13

 4. Illustration of Proposed Algorithm.. 39

 5. Parameters of Method 1 .. 42

 6. Estimation of Realization under Method 1 ... 43

 7. Parameters of Method 2 .. 44

 8. L and U Parameters of Method 1 .. 46

 9. Illustration for Numerical Example... 47

10. Estimate vs Realized Performance Measure plots (Robustness) 57

11. Estimate vs Realized Performance Measure plots (Stability) 61

12. Estimate vs Realized Performance Measure plots (Bicriterion) 63

13. Robustness vs Stability.. 66

14. Estimate vs Realized Performance Measure Plots (Continuous Scheduling) 69

x

List of Tables

 1. Scheduling Policies.. 14

 2. Disruptions and Possible Responses .. 18

 3. Cross Table for Type of Response/When to Schedule... 19

 4. Classification of Studies... 33

 5. Job Parameters for the Numerical Example... 44

 6. Evaluation of Neighbourhood .. 48

 7. Calculation of Average System Slack.. 48

 8. Calculation of Robustness Measure of Method 2 .. 48

 9. Test Problem Parameters.. 51

10. Breakdown Parameters.. 52

11. The Maximum Number of Iterations between Best Solution Improvements 53

12. Tabu Tenure Comparisons .. 54

13. Summary table for robustness results.. 58

14. Summary table for stability results.. 60

15. Summary table for bicriterion approach results .. 64

16. Composite Objective Function (0.85*Robustness + 0.15*Stability) Values................ 65

17. Realized Performance Measures under Method 1 (Summary) 65

18. Stability Measures under Method 1 (Summary) ... 66

19. Summary Table for Continuous Scheduling Results (Robustness) 68

20. Comparison of λ Values - Total Tardiness Case.. 80

21. Comparison of λ Values - Total Tardiness Case (Error Percentage - R2 values) 82

22. Comparison of λ Values - Total Flow Time Case ... 84

23. Comparison of λ Values - Total Flow Time Case (Error Percentage - R2 values)...... 86

24. Makespan Results (Robustness).. 88

25. Total Tardiness Results (Robustness)... 89

26. Total Flow Time Results (Robustness) ... 90

xi

27. Makespan Results (Stability) .. 91

28. Total Tardiness Results (Stability).. 92

29. Total Flow Time Results (Stability).. 93

30. Makespan Results (Bicriterion)... 94

31. Total Tardiness Results (Bicriterion) .. 95

32. Total Flow Time Results (Bicriterion).. 96

33. Makespan Results (Continuous Scheduling)... 97

34. Total Tardiness Results (Continuous Scheduling) .. 98

35. Total Flow Time Results (Continuous Scheduling).. 99

1

Chapter 1

Introduction

Scheduling is a decision making process that concerns allocation of limited resources

(machines, material handling equipment, operators, tools, fixtures, etc.) to competing

tasks (operations of jobs) over time with the goal of optimizing one or more objectives

(Pinedo, 1995). The output of this decision process is time/machine/operation

assignments.

In classical scheduling theory, the objective is generally optimizing system

performance. The performance of a given schedule is generally assessed by some

measures based on completion times or due-dates of the jobs. Among these are

maximum flow time, maximum completion time (or makespan), mean flow time, mean

completion time, maximum lateness, total tardiness, mean lateness, mean tardiness, etc.

These performance measures are all regular. A regular performance measure is non-

decreasing in completion times; that is, if any job is made to finish later, the measure

stays the same or increases but never decreases. In classical approach, a schedule is

generated with the objective of optimizing one or more of these performance measures.

Recently, Kempf, Uzsoy, Smith, and Gary (2000) propose a different approach:

segmentation and then aggregation of the metrics that are used to measure the

performance of a schedule. Segmentation is specifying classes of scheduling objects

that form a meaningful unit (e.g. all drilling machines in a plant can form a segment).

Once the segmentation of the scheduling objects has been specified (i.e. the scheduling

systems is divided into several segments), the metrics for each segment (e.g.. utilization

of machines in that segment) can be aggregated into one segment-wide metric. The

2

authors propose to use different metrics for each segment, rather than using a single

metric for the whole schedule. For example, a schedule that maximizes utilization of

the machines throughout the whole system may be of poor quality, because this

schedule would increase work-in-progress inventory levels. Instead, a good schedule

should maximize utilization of only the bottleneck machines (where high utilization is

needed).

In practice due to unexpected disruptions (breakdowns, order cancellations, etc.),

schedules either become infeasible or invalid so quickly that they need to be modified

in an appropriate manner. In fact, the ignorance of these inevitable disruptions in

scheduling process can be viewed as the major source of the gap between scheduling

theory and practice. During the last decade, several authors investigate possible ways to

cope with disruptions in the scheduling process. In general, this approach is called as

reactive scheduling. In the reactive scheduling literature, in addition to classical

performance measures there are two new criteria used in scheduling decisions,

"robustness" and "stability". A schedule whose performance does not degrade much in

the face of disruptions is called robust. The performance of a robust schedule should be

insensitive to disruptions. When evaluating schedules, performance of the realized

schedule is more important than planned or estimated performance of initial schedule,

because the former is the reality while the latter is just an anticipated course of actions.

A schedule whose realized schedule does not deviate from the original schedule in the

face of disruptions is called stable. Beside allocating machines to competing jobs, a

schedule also serves as a plan for other activities, such as determining shipments dates,

releasing orders to suppliers, planning requirements for secondary resources such as

tools, fixtures, etc. Deviations from the planned schedule disrupt these secondary plans

and create system nervousness. Thus, adhering to the original schedule during the

execution (i.e. stability of the schedule) is desirable.

In summary, random disruptions make two types of hazards to the schedules

during the execution: degrading schedule performance, and increasing system

nervousness by causing deviations from the planned schedule. In the literature, there

are some researchers who have attempted to generate robust and stable initial schedules

3

when the response method to disruptions is known (Leon, Wu and Storer (1994), Mehta

and Uzsoy (1998), etc.). On the other hand, some authors have developed good

response methods to disruptions (Wu, Storer, and Chang (1993), Wu, Byeon, and Storer

(1999), etc.).

In this study, we propose several robustness and stability measures and policies.

Since the exact measures are difficult to calculate, we also develop two new surrogate

measures as an alternative to well-known and commonly used average slack method.

These new surrogate measures are embedded into a Tabu Search algorithm to generate

robust and stable schedules for a single machine subject to stochastic breakdowns. Our

extensive computational experiments indicate that the new surrogate measures are

better than the average slack method.

The remainder of this study is organized as follows: In the next chapter, we

provide some definitions and notations. Chapter 3 is devoted to an extensive review of

the literature. In Chapter 4 we consider the single-machine scheduling environment

subject to random machine breakdowns, and provide a solution methodology that

involves two new surrogate measures for this problem. In Chapter 5 we conduct

extensive computational experiments to assess the performance of our methodology,

whereas the last chapter is devoted to the concluding remarks and future research

directions.

4

Chapter 2

Problem Definition and Research

Methodology

2.1 Definition of Reactive Scheduling Problem, Notations and

Terms

Let P0 be our original scheduling problem. Suppose we have m feasible solutions or

schedule alternatives, S1 through Sm. In most of the scheduling problems, m is quite

large (infinitely many). In classical scheduling theory, our aim is to find the optimal

schedule, *
0S , according to a performance measure such as maximum lateness,

maximum completion time, average flow time, etc. Let f(S) denote the value of this

performance measure for schedule S. Then, we select the schedule *
0S such that

)()(*
0 iSfSf ≤ for i = 1, 2 . . .m, without loss of generality. In what follows, we

consider possible disruptions during the schedule generation process.

Suppose that there are n scenarios corresponding to possible disruptions in the

course of execution. The original problem P0 changes into Pj for scenario j with

probability aj. Accordingly, schedule Si changes into schedule Sij under jth scenario.

That is, Sij is the realized schedule of the initial schedule Si, if the disruptions in

scenario j occur. Let *
jS be the optimal solution to the problem Pj, with the objective

function value of)(*
jSf . Figure 1 illustrates all these ideas.

5

a0

(S0
*, f(S0

*)

a1

(S1
*, f(S1

*) . . .

an

(Sn
*, f(Sn

*)

S1 S10(=S1) S11 . . . S1n

S2 S20(=S2) S21 . . . S2n

. . .

.

. . .

Sm Sm0(=Sm) Sm1 . . . Smn

Figure 1. Scenario Based Representation of Disruptions

If we knew that scenario j would occur, we would try to find schedule *
jS .

However, we do not know which scenario will actually occur. The problem is further

complicated by the fact that it may be extremely difficult to find *
jS for Pj due to the

complexity of scheduling problems. As explained before, there are numerous

performance measures used in the scheduling literature (tardiness, flow time,

makespan, etc.). In the next section, we introduce possible robustness and stability

measures.

P0 P1 Pn

P0

6

2.2. Robustness and Stability Policies and Measures

2.2.1. Robustness Policies and Measures

Some robustness measures are based on the actual performances of the realized

schedules, f(Sij), and some are based on the differences between actual and optimal

performances,)()(*
jij SfSf − . The former aims at selecting a schedule with a good

realized performance, whereas the latter tries to select a schedule whose performance is

not bad relative to the best performance.

2.2.1.1. Robustness Policies and Measures Based on Realized Performances

1. Select Si that minimizes the expected realized performance,)]([r
iSfE , where

.,...,2,1,)()]([
0

mi for SfaSfE
n

j ijj
r
i == ∑ =

 This method selects the schedule

whose performance measure is the best on the average. This is a risk neutral

approach. (Wu et al., 1999)

2. Select Si that minimizes the worst-case scenario performance. That is select Si

such that)}({max ij
j

Sf is minimized over all i (i.e)}}({max{min ij
ji

Sf). This

policy selects the schedule whose worst-case performance measure is better

than all others' are. This is a risk-averse approach.

3. If the decision-maker can identify the worst case scenario, say Pk, k ∈ {1,2…n},

selecting the schedule that performs the best in Pk can be an appropriate policy.

Thus, this policy selects Si with)}({min iki
Sf where Pk is the worst case

scenario.

4. Similarly, if the decision-maker can identify the most probable scenario, that is

the scenario Pm where }{maxarg i
i

am = , for i = 1, 2, . . . n, then selecting the

schedule whose performance measure is the best under Pm can be an appropriate

7

policy. Thus, this policy selects Si with)}({min imi
Sf where Pm is the most

probable scenario.

5. Another policy is to select the schedule such that expected deviation of realized

schedule's performance from the initial anticipated performance is minimized.

That is, select Si with minimum |)]([)(| 0
r
iii SfESf −=σ , for i = 1,2, . . . m.

This policy emphasizes the definiton "robust schedule is the schedule whose

performance does not degrade much in the face of disruptions".

6. Another policy is to select the schedule that minimizes a measure that is a

convex combination of aforementioned measures. For example, selecting the

schedule which minimizes r.E[f(Si
r)] + (1-r).σi, where r is a real number

between 0 and 1. The first part of above measure emphasizes that a robust

schedule should perform well in the face of disruptions. The second part

emphasizes that a robust schedule's performance should not degrade much in

the face of disruptions. By varying r between 0 and 1, different weights can be

given to these two points of view of robustness. (Leon et al., 1994)

2.2.1.2. Robustness Policies and Measures Based on Differences between Actual

and Optimal Performances

First, construct the differences matrix, ∆ = [δij]mxn, where |)()(| *
jijij SfSf −=δ , for i =

1, 2 . . . n and j = 1, 2 . . . n. The ijth element of this matrix is the difference between

optimal performance of jth scenario and the realized performance of ith schedule in this

scenario.

1. Select Si that minimizes expectation of differences, E[δi], where

[] ∑ =
= n

j ijji aE
1

δδ , for i = 1,2, . . . m. This method selects a schedule whose

performance measure degradation is the least on the average. This is a risk

neutral approach.

8

2. Select Si that minimizes the worst case scenario performance degradation, that is

select Si such that }{max ij
j

δ is minimized over all i (i.e. }}{max{min ij
ji

δ). This

policy selects the schedule whose worst-case performance measure degradation

is less than all others. This is a risk-averse approach (Daniels and Kouvelis,

1995).

3. If the decision maker may identify the worst case scenario, say Pk, k ∈ {1,2...n},

selecting the schedule whose performance degrades the least in Pk can be an

appropriate policy. Thus, this policy selects Si with }{min iki
δ , where Pk is the

worst case scenario.

4. If the decision-maker can identify the most probable scenario, that is the

scenario Pm where }{maxarg i
i

am = , for i = 1, 2, . . . n, then selecting the

scenario whose performance degradation is the least under Pm can be an

appropriate policy Thus, this policy selects Si with }{min imi
δ , where Pm is the

most probable scenario.

2.2.2. Stability Policies and Measures

Determining the impacts of schedule change is a difficult task. As often suggested in

the literature, we use completion time differences to account the impact of schedule

change (i.e stability). Let Ck
S be the completion time of job k under schedule S. Let N

be the number of jobs. Construct the completion time differences matrix D = [dij]

where ∑ =
−= N

k

S
k

S
kij

iij CCd
1

|| 0 .

1. Select schedule Si that minimizes the expectation of differences, E[di], where

∑ =
= n

j ijji dadE
1

][. This method selects a schedule whose stability is the best on

the average. This is a risk neutral approach. (Mehta and Uzsoy (1998), Mehta

and Uzsoy (1999), O'Donovan, Uzsoy, and McKay (1999)).

9

2. Select Si that minimizes the worst case scenario completion time differences,

that is select Si such that }{max ij
j

d is minimized over all i. This policy selects a

schedule whose worst case stability is greater than all others. This is a risk-

averse approach.

3. If the decision-maker can identify the worst-case scenario, say Pk, k ∈ {1,2, . . .

n}, selecting the scenario whose stability is the best in Pk. can be an appropriate

policy. Thus, this policy selects Si with }{min iki
d , where Pk is the worst case

scenario.

4. If the decision maker may clearly identify the most probable scenario, that is the

scenario Pm where }{maxarg i
i

am = , for i = 1, 2, . . . n, then selecting the

scenario whose stability is the best under Pm can be an appropriate policy. Thus,

this policy selects Si with }{min imi
d , where Pm is the most probable scenario.

If the number of scenarios is finite, then calculation of robustness and stability

measures, and thus application of the above policies is easy. However, in practice, the

scenarios cannot be easily defined, or known in advance. In addition, the number of

scenarios can be infinitely many. Moreover, the number of alternative schedules are too

many in practice. Thus, computational burden of calculating robustness or

predictability measures can be quite high. In this case one reasonable alternative is to

find a good surrogate measure and an efficient scheduling algorithm should be

constructed so that the selected schedule optimizes this surrogate measure. Sometimes,

although the number of the scenarios is infinitely many, a procedure to generate the

best/worst case scenario can be available. In such cases, there is no need to define a

surrogate measure (See Daniels and Kouvelis 1995, for such an example). Figure 2

illustrates these possibilities of number of scenarios.

10

Figure 2. The Possibilities for Number of Scenarios

SCENARIOS

INFINITELY
MANY

FINITE

FULLY UNDEFINED

Use a surrogate for robustness
or stability measure.

• Wu et al. (1993)
• Leon et al. (1994)
• Mehta and Uzsoy (1998)
• Mehta and Uzsoy (1999)
• O'Donovan et al. (1999)
• Wu et al. (1999)

PARTIALLY UNDEFINED

Worst/best scenario can be
generated. Use robustness or
stability measure itself.

• Daniels and Kouvelis (1995)

11

2.3. Rescheduling Frequency and Methods of Scheduling

Schedules generated in practice cannot be used for a long time period because of

unexpected disruptions and random events. Thus, it is necessary to revise the existing

schedule at some points in time. Two immediate questions arise: when-to-schedule, and

how-to-schedule?

When-to-schedule decision determines the system responsiveness to various

kinds of disruptions. As scheduling frequency increases, the system responsiveness also

increases. There are several alternative ways to decide on timing of schedule decisions.

The first alternative is to schedule the system periodically; this is called as periodic

scheduling. Here, the period length can be constant or variable. In the constant case,

which is quite often used in practice, revisions are made at constant or fixed time

intervals. However, according to the variable time interval method, scheduling

decisions are made after a certain amount of schedule is realized (See Sabuncuoglu and

Karabuk, 1999). Another alternative could be to revise the schedule after a number of

events that change system state occur. For example, the schedule can be updated after

each machine breakdown, or a new job arrival, etc. This method is usually called as

continuous scheduling. Another method is adaptive scheduling, which may also be

called as controlled response. According to this policy, a scheduling decision is

triggered after a predetermined amount of deviation from the original schedule is

observed. For example, revisions can be made when completion time differences

between the initial and realized schedules exceeds a threshold value, say 30 minutes, or

a predetermined percentage of the assumed makespan. Similarly, the schedules can be

revised after a certain amount of deviation from the planned throughput, or flow time.

In addition, several hybrid methods, which are combinations of above, can be

considered. For example, Yamamoto and Nof (1985) propose a scheduling policy that

is called as the event-driven scheduling, where revisions are made at the end of fixed

time intervals (periodic scheduling), but scheduling is also triggered in response to

important events that changes the system state (continuous scheduling).

12

How-to-schedule decision determines the ways that the schedules are revised or

updated. There are also three related issues: The first issue has to do with the

scheduling scheme used. Off-line scheduling refers to scheduling all operations of

available jobs for the entire scheduling period, before execution of schedule, whereas

on-line scheduling is to take scheduling decisions one at a time, during execution of

schedule (See Sabuncuoglu and Hommertzheim, 1992). A good example for on-line

scheduling is using well-known priority dispatching rules. Between these two extremes,

another alternative could be quasi-online scheduling, in which a subset of the

operations of the job set are scheduled and the rest is left for future time periods.

The second issue is the amount of data used during the schedule generation

process. Kutanoglu and Sabuncuoglu (2001), define forecasting horizon (FH) as the

time span of job release data. It represents the maximum time period for which we have

enough information to generate the schedule. They define look-ahead window (LW) as

the portion of FH for which a new schedule is generated or a revision is made. It can be

smaller than FH or equal to FH. If it is smaller than FH, only a part of the available

information is used. This is generally due to low confidence about the accuracy of the

far-future information. In this case only near-future information is used. If LW is equal

to FH, all available information is used. The approach where LW=FH is called as full

scheduling. The other approach where LW<FH is called as partial scheduling. Full and

partial scheduling is illustrated in Figure 3.

13

Figure 3. Full/Partial Scheduling

Note that if a full scheduling is employed with periodic review, and if FH is equal

to period length, this policy corresponds to doing nothing as type of the response (i.e.,

leaving the system alone and letting it the recover from the disruptions by itself).

Another issue to be discussed is the type of response. One can identify the

following two extreme cases: 1) reschedule the operations of all the remaining jobs

from scratch, and 2) take no corrective action and let the system recover itself from the

negative effects of disruptions. Between these two extremes, one can prefer to repair

schedules. One method of repairing could be to generate a match-up schedule, where at

some point in future, the new schedule and the original one are the same (i.e. they

match with each other). Another method is right/left shifting the remaining jobs

altogether in the time horizon so that the disruption length is accommodated. This

method does not change the sequence of the jobs. Another minor revision could be to

change only a small number of jobs' positions in the schedule. All these when-to-

schedule and how-to-schedule alternatives are summarized in Table 1.

Time

Scheduling
point

LW

LW

FH

FH

14

Table 1. Scheduling Policies

When to Schedule (Type and Level of Responsiveness)

• Periodic Scheduling (Response)

• Fixed Time Interval

• Variable Time Interval (based on amount of the schedule realized)

• Continuous Scheduling (Response)

• Breakdowns (BR)

• Rush Orders (RO)

• Job Arrivals (ARR)

• Job Completions (JC)

• Adaptive Scheduling (Controlled Response)

• ∆S (Deviation from the previous schedule)

• absolute completion times deviations (percentage)

• throughput or flow time deviations

• Combinations of Above

• Event Driven Scheduling (Yamamoto and Nof, 1985)

• Periodic (Fixed Time Interval) + Continuous

15

Table 1. (Cont’d)

How To Schedule(Type and Method of Response)

• Scheduling Scheme

• off-line

• quasi-online

• On-line(dispatching)

• Amount of Data

• Full

• Partial

• Type of Response

• Do nothing

• Rescheduling

• Repair

• Match-up

• Right-shift/Left-shift

• Other minor revisions (insert, append, etc.)

• Performance Metrics

• Planned (initial) performance measure

• Stability

• Robustness

16

2.4. Disruptions and Possible Responses

In practice, there may be various random or unexpected events that can affect the

performance of system. These disruptions are: unexpected job arrivals, machine

breakdowns, processing time variability, due-date changes, order cancellations, ready

time changes, rush orders and scrap jobs.

In Table 2, we give a list of disruptions and possible responses that can be used to

cope with these unexpected events. The first column is the list of disruptions. We

classify responses in three categories: Do nothing - taking no corrective action,

Reschedule - rescheduling all operations of available jobs from scratch, and Repair -

making minor modifications on the existing schedule. In this table, we also present

response types for each disruption.

Table 3 cross checks these policies with when-to-schedule decisions. The "X"

entry in the cell means that this combination of when-to-schedule and response type can

be used together, otherwise the cell is left empty. For example, according to periodic

scheduling, revisions are made only after a fixed or variable time period pass after the

previous scheduling point. So, if some disruption occurs in between, we take no

corrective action and wait for the next scheduling point. Therefore, only ARR1 (Do

nothing) response is applicable if the when-to-schedule decision is periodic scheduling.

The corresponding cell has an "X" entry and other cells corresponding to responses to

unexpected arrivals (ARR2, ARR3 and ARR4) are left empty. As an another example

RO2 response inserts the rush order to the first available position in the existing

schedule. Again, if our when-to-schedule policy is periodic scheduling, we take no

corrective action and wait for the next scheduling point. Thus, RO2 cannot be used with

periodic scheduling, so the corresponding cell is left empty. However, if when-to-

schedule policy is continuous/RO scheduling (which responds to every rush order) or

adaptive scheduling (which reacts after a certain amount of deviation from the planned

17

schedule is realized) RO2 can be used to react to rush order(s). Hence, the

corresponding cells are marked with an “X” character.

18

Table 2. Disruptions and Possible Responses

Disruptions Do nothing Repair Reschedule

Unexpected
Arrivals

Wait until the next scheduling point
(ARR1)

• Append at the end of existing schedule
(ARR2)

• Insert in a suitable position in the
existing schedule (ARR3)

Reschedule all the available jobs
from scratch (ARR4)

Machine
Breakdowns Right Shift (BR1) • match-up schedule (BR2) Reschedule all the available jobs

from scratch (BR3)
Processing time
variability

Right Shift/Left-Shift (PV1) Reschedule all the available jobs
from scratch (PV2)

Due-Date
changes Wait until the next scheduling point (DD1) • Find a suitable position for the job

whose due-date has been changes (DD2)
Reschedule all the available jobs
from scratch (DD3)

Order
cancellations Make to stock (OC1)

• Delete the job that is cancelled in the
existing schedule, left shift the portion
after the deleted job (OC2)

Reschedule all the available jobs
from scratch(OC3)

Ready-time
changes Left or Right Shift (RC1)

• Find a suitable position whose ready
time has been changed in the existing
schedule (RC2)

Reschedule all the available jobs
from scratch (RC3)

Rush orders

• Add the rush order to the beginning of
the existing schedule (RO1)

• Insert the rush order to the first available
position in the existing schedule (RO2)

Reschedule all the available jobs
from scratch (RO3)

Scraps and
waste

Wait until the next scheduling point,
consider a new job in place of the
scrap/waste then (SW1)

• Append a new job in place of the
scrap/waste at the end of the existing
schedule (SW2)

• Insert a new job in place of the
scrap/waste into the existing schedule
(SW3)

Reschedule all the available jobs
from scratch (SW4)

19

Table 3. Cross Table for Type of Response/When to Schedule

When To
ContinuousType of Response

How To Periodic Adaptive
BR RO ARR JC

ARR1 X X X X X X

ARR2 X

ARR3 X

ARR4 X

BR1 X X X X X X

BR2 X X

BR3 X X

PV1 X X X X X X
PV2 X

DD1 X X X X X X
DD2 X
DD3 X

OC1 X X X X X X
OC2 X
OC3 X

RC1 X X X X X X
RC2 X
RC3 X

RO1 X X X X X X

RO2 X X

RO3 X X

SW1 X X X X X X
SW2 X
SW3 X
SW4 X

20

Chapter 3

Literature Review

Aytug, Lawley, McKay, Mohan, and Uzsoy (2001) provides a literature review of last

decade on scheduling in the face of uncertainties. The authors begin by stating different

purposes scheduling. They continue by giving a four-dimensional taxonomy of the

uncertainty faced in scheduling environments: cause, context, impact, and inclusion of

disruptions. Cause can be viewed as object (e.g. machine) and state (e.g. not ready).

Context refers to the environmental situation, that is the factors that can alter

expectations for processing time, yield, or any other performance measure. Impact

refers to the result of the disruption. Inclusion refers to the type of handling the

disruptions; if the disruptions are considered while generating the schedule, the

inclusion is predictive. On the other hand, if the disruptions are responded after they

occur, the inclusion is reactive. On reviewing the existing studies, the authors make

some observations: in most of the existing literature, the cause is often machine

availability, and the context is ignored. The inclusion is generally predictive/reactive.

The reconfiguration cost of the system after a disruption is not included. The authors

show inclusion of impact and context of uncertainty as well as estimation of

reconfiguration costs as future research directions. They also declare using available

information on the nature of disruptions, such as using distributions of machine

failures, as a fruitful topic for further research.

In what follows, we make our own brief review of the the relevant studies in the

literature. Table 4 is prepared to summarize these studies using our classification

framework.

21

 Wu et al. 's (1993) objective is to reschedule the system (a single machine) after

a single disruption (machine failure) such that makespan of the new schedule and

stability (e.g. deviation of new schedule from the original schedule in terms of job

starting times) are optimized. The authors use pairwise swapping methods and a genetic

algorithm to obtain non-dominated solution sets (i.e. a set of non-dominated schedules).

Their computational experiments indicated that it is quite possible to improve the

stability substantially with slight increases in makespan. The details of this study are

given below:

Wu et al. (1993) study single machine rescheduling problem under machine

disruptions. They reschedule the jobs in response to each machine failure so that

minimum makespan is achieved with high schedule stability. Note that these two goals

often conflict; minimizing makespan usually requires some changes in the schedule, but

high schedule stability can be achieved by minimizing the number of changes. Unlike a

typical system performance such as makespan, measuring schedule stability is a

difficult task. They consider two criteria for stability. The first one is the deviation of

revised schedule in terms of job starting times. This criterion is useful if secondary

resources such as tooling, fixtures are delivered according to the original schedule. The

second one is the deviation of revised schedule from the original schedule in terms of

sequence of the jobs. This criterion is useful if there are sequence dependent tooling,

fixtures, set-ups, etc. The measure for the first criterion is the average absolute

deviation from the original job starting times, which can be easily calculated. However,

the second criterion is difficult to measure. One possible surrogate measure for second

criteria can be the sum of absolute deviations of job starting times from the right-shift

schedule. Recall that right-shift schedule maintains the original sequence and represent

minimal disruption to the original schedule when job sequence is important. Therefore,

they have two problem types that differ from one another with respect to the stability

criterion in use. Since the problem is NP-hard even without stability considerations,

they use some heuristic algorithms to solve it (i.e. generate a new schedule in response

to a machine breakdown). First type of heuristics is based on the pairwise swapping

methods. The second type is local search that utilizes genetic algorithms. All heuristics

22

results in a list of non-dominated schedules. In pairwise swapping methods, they start

with an efficient schedule (that minimizes makespan) without taking stability into

account and a stable schedule (that minimizes cost impact of schedule changes) without

taking makespan into account. The aim is to find the schedules between these two

extremes, thus finding an efficiency frontier.

In the first one of pairwise swapping algorithms (called r-grid search), the

objective function is defined as a convex combination of makespan and the relevant

deviation measure. That is, the objective function is Z = (r).M(π) + (1-r).D(π), where π

is a schedule, r is a real number between 0 and 1, M(π) is the makespan of schedule π,

and D(π) is the deviation measure of schedule π. They begin with the efficient schedule

by using Carlier’s algorithm (Carlier, 1982) and r = 0.05. At each step, they generate

neighbors from current sequence at hand by swapping places of two jobs. They find the

best neighbor and add it to global non-dominated schedules list if it is not dominated by

any schedule in the list. After that, any dominated solutions that are currently in the list

are deleted. The value of r increases by 0.05 at the next step and the neighborhood

evaluation is performed again. The procedure continues in this way until r = 1.0. Then

they start with the stable schedule and r = 0.95. At each step r decreases by 0.05, and

the neighborhood evaluation mechanism is the same. At the end, a list of non-

dominated schedules is obtained. The second algorithm of swapping methods (called

bicriterion steepest descent) uses a bicriterion objective function rather than the convex

combination of makespan and the relevant deviation measure. Here again, neighboring

solutions are generated with the same method as in r-grid search. However, due to the

bicriterion objective, it is not possible to identify the “best” neighboring solution.

Rather a set of non-dominated solutions is identified. Each solution in this set is a node

in a search tree that should be further expanded. The expansion stops when a node

dominates all its neighboring solutions. The leaves of this search tree are a list of non-

dominated schedules. The initial schedules for this algorithm are taken as the schedules

in the list found by r-grid search method.

23

For GA type local search, the initial population is generated by an algorithm,

which the authors call as α−ε search procedure. Another alternative for the initial

population is the output list of r-grid search method. At each iteration, a number of

chromosomes are installed directly to the next population (asexual reproduction). The

rest of the next population is obtained by selecting the most-fit chromosomes. The

fitness measure of a given solution i is defined as follows:

[]
[]

[] []
[] []2

1
2

1

2

1

2

1

)()(

)()(

iii

cdMAX

Pj

k
jMAX

k
iMAX

i

MMI

MMI

 where
II

II
f

πβπβ

πβπβ

+=

+=

−
−

=
∑ ∈

β1 and β2 are the normalization constants that unify the scale of the makespan and

relevant deviation measure; πd, πc, and π i are the Carlier’s, the minimum deviation and

the ith schedule, respectively; k is a constant used for tuning purposes. For chromosome

encoding a string of "dummy tails" are used because this type of encoding ensures

feasible schedules result after mutations and crossovers.

For testing the performances of these algorithms, they commit two sets of

experiments. In the first set, they generate small problems and compare their solutions

with the optimal solution obtained by a mixed integer-programming model. In the

second set, they measure the effectiveness of their heuristics in large problems. As the

result of the first set of experimentation, all heuristics were able to find optimal

solutions. As a result of the second set of experiments, they confirmed that stability of

the schedules could be improved significantly with little sacrifices in makespan. No

significant difference is observed between algorithms but computational burden of all

pairwise swapping heuristic is more than that of adjacent pairwise swapping heuristic

and genetic algorithm is in between.

Leon et al.'s (1994) objective is to find an initial schedule for a job shop system

such that expected makespan and expected deviation from the initial makespan are

optimized under the machine breakdowns. They use a genetic algorithm to find the best

schedule. The authors also employ average slack in the system as a surrogate measure

24

for expected deviation. Expected makespan is equal to makespan of the initial schedule

plus this deviation. The computational experiments indicated that the proposed method

is effective in the high processing time variability and machine breakdowns. The

uninterested user may skip the following paragraph, which gives the details of this

study, without loss of continuity.

Leon et al. (1994) study robustness measures and robust scheduling in a job shop

environment. Their aim is to construct a robust initial schedule. Given a response

policy, an a priori off-line schedule that maintains high performance in the presence of

disruptions is said to be robust. They assume a "right-shift" response policy. In their

model, the disruptions are machine failures. The times to failure and repair distributions

are assumed to be known. The shop floor performance measure is taken as makespan.

The robustness measure for a given schedule is represented as a convex combination of

expected makespan of the realized schedule and expected deviation from the original

deterministic makespan. That is the objective is to find a schedule S, that minimizes

R(S) = r.E[M(S)] + (1-r).E[δ(S)], where r is a real number between 0 and 1, M(S) is

realized makespan of schedule S and δ(S) is deviation of realized makespan from

anticipated deterministic makespan. The authors calculate E[δ(S)] analytically for the

single machine case with a single machine failure. Note that E[M(S)] can be calculated

easily if E[δ(S)] is known, thus R(S) can be calculated. However, in a job shop

environment in the face of multiple machine failures, calculation of δ(S) analytically is

intractable. Under the insight they gain for the single machine single disruption case,

they propose several surrogate measures for E[δ(S)] for job shop systems. With a

correlation study, they determine the best surrogate measure for E[δ(S)] and hence

R(S). Then, they propose a genetic algorithm to minimize this surrogate measure of

R(S). They conduct two sets of experiments to test the performance of their algorithm

under disruptions. In the first set of experiments, they examine the effects of machine

breakdowns whereas under the second set of experiments, the effects of processing time

variability are examined. The results indicate that under machine breakdowns, robust

schedules outperform the schedules that are generated to minimize makespan only. As a

25

result of the second set of experiments, they find out that robust schedules are better

than makespan schedules only processing time variability is relatively high.

Daniels and Kouvelis's (1995) objective is to find a robust job sequence for a

single machine under processing time variability such that performance measure

degradation under the worst possible scenario is the least. They use a branch-and-bound

method and two approximating heuristics to find such a schedule. The computational

experiments indicated that the proposed heuristics are efficient and the sequences found

by their algorithms are more robust than the sequences that are found by priority

dispatching rules that only consider system performance. Following two paragraphs

give the details of this paper.

Daniels and Kouvelis (1995) generate initial robust schedules to hedge against

processing time variability in a single machine environment. They argue that either

deterministic or stochastic models developed up-to-date fail to accommodate several

factors that are relevant in many scheduling environments properly. Deterministic

models assume all scheduling parameters can be specified precisely in advance of

scheduling, allowing the outcome of any scheduling decision to be determined exactly,

which is generally not the case in practice. On the other hand, stochastic models adopt a

probabilistic viewpoint and treat job attributes as independent random variables with

given distributions. In practice, distributions can only be specified imprecisely. They

state that a few factors determine the uncertainty of attributes of many jobs, so imposed

distributional independence assumptions for the sake of mathematical tractability are

not justified. Hence, they propose a scenario-based representation and analysis of

uncertainty rather than using stochastic models. They use second measure and policy of

section 3.1.2 for robustness. Recall that this policy finds the schedule whose

performance degradation under its worst case scenario is the least.

They study a single machine problem where the performance measure is total

flow time, and the source of uncertainty is processing time variability. They formulate

mathematical programs (called as absolute deviation robust scheduling problem

ADRSP and relative deviation robust scheduling RDRSP) whose solutions gives the

26

robust schedules, when the number of scenarios is finite (Policy 3 of Section 3.1.2).

ADRSP and RDRSP differ from one another only in the definition of robustness. The

first one measures the deviations from optimal absolutely, whereas the other measures

relatively (similar to percentage deviation). They prove that this problem is NP hard.

Besides, in practice, the number of scenarios is infinite, because possible processing

time values for jobs are given as ranges, for example processing time of job 1, P1 ∈ [a,

b]. Hence, this problem is expected to be more difficult. However, they prove that

properly selected finite set of scenarios are enough to determine the worst-case absolute

deviation of a given sequence and construct a procedure that does the worst case

evaluation in polynomial time. They develop a branch and bound algorithm and two

O(n log n) surrogate relaxation heuristics that utilize this procedure to generate a robust

sequence. They test the efficiency of these algorithms. As expected, computational

burden of branch and bound algorithm, which solves the problem to optimality, grows

rapidly with problem size. Still the number of sequences evaluated is small as

compared to total number of sequences, n!, where n is the number of jobs. The

heuristics require far less computational time because they evaluate much less

permutations of jobs to determine approximate robust sequences. Their computational

burden grows only modestly as problem size increases. Moreover, they closely

approximate the optimal absolute deviations. They compare their solutions to SEPT

(shortest expected processing time) solutions, which is used in practice to generate

optimal sequence of jobs. They observe SEPT performs poorly in terms of robustness.

Similar to the study of Wu et al. (1993), Mehta and Uzsoy (1998, 1999) work on

generating a stable schedule. Unlike the previous study, they use the maximum lateness

(instead of makespan) as a performance measure and apply their approach both to the

single machine and the job shop systems. Their major difference from the previous

study is that Mehta and Uzsoy aim at finding an initial stable schedule before the

disruptions as compared to Wu et al. (1993) find the new schedule after disruptions.

They generate the stable initial schedules by inserting idle times to the schedules that

optimizes sysytem performance. What follows is the details of these studies.

27

Mehta and Uzsoy (1998, 1999) generate initial stable schedules under random

machine breakdowns. They call initial schedules as predictable schedules. Like Wu et

al. (1993), Mehta and Uzsoy argue that a good predictable schedule should not only

have a good shop floor performance, but at the same time should take predictability

(i.e. stability) into account. That is, deviations from the original schedule should also be

at a minimum level, because many other decisions (such as purchasing, tooling, etc.) in

shop floor are planned according to this initial schedule. The authors use the term

"predictable scheduling" as an alternative approach to what is known as

scheduling/rescheduling in the classical scheduling literature. The objective of this

approach is to generate an initial schedule such that deviations from initial schedule

during execution is minimized while keeping shop floor performance degradation in an

acceptable level. The specific problem they study in the first paper is the single

machine scheduling problem where jobs have nonzero ready times and random

machine breakdowns are present. The time-to-failure and repair duration distributions

are assumed to be known a priori. In the second paper they study the job shop

scheduling problem with random machine breakdowns. In both studies, they use

maximum lateness as shop floor performance measure. Unlike Wu at al. (1993), they

consider the minimization of deviations while generating an initial schedule, not when

rescheduling after a breakdown. Deviations from the initial schedule is measured in

terms of expected absolute deviation of job completion times. The authors offer a two

stage approach: in the first stage a job sequence is determined to minimize the

maximum lateness. They use Carlier's algorithm and shifting bottleneck algorithm for

the single machine case and the job shop case, respectively. In the second stage, they

insert some idle times in this sequence. The amount of idle times are determined in

such a way that they are large enough to provide enough protection against machine

breakdowns but they are small enough so that maximum lateness does not increase

much. Since minimizing expected absolute job completion times deviations explicitly is

too difficult, they develop five alternative surrogate measures that are correlated with

the original objective. After a detailed correlation analysis, they choose the best

surrogate measure and use in the rest of the paper. The authors propose basically two

28

algorithms to determine the amount of idle times. The first one is called as optimized

surrogate measure heuristic (OSMH). In this heuristic, the amount of idle times are

determined as expected machine repair durations during the processing of an operation.

The second algorithm is a linear-program, where increase in maximum lateness is

restricted by adding it as a constraint to the program. The solution of this program gives

start time of each operation. This linear program (LPH) yields the same result as

OSMH if maximum lateness degradation level is not restricted. In the single machine

case, they also develop a tabu-search algorithm to determine the effects of changing job

sequence but found that changing the job sequence does not significantly improve the

performance. In the computation experiments, they compare OSMH and LPH

schedules with classical maximum lateness algorithms and conclude that predictability

is can be easily improved while slightly increasing maximum lateness.

Similar to the study of Mehta and Uzsoy (1999), O'Donovan et al. (1999) work

on generating stable schedules. Unlike the previous study, they use the total tardiness

(instead of maximum lateness) as a performance measure and beside generating a stable

initial schedule, they also work on rescheduling policies in response to machine

breakdowns. Another difference from the previous study is that O'Donovan et al.

(1999) also consider sensitive jobs. They develop a model where machine breakdowns

affects the processing times of jobs (the effect decreases gradually as time passes and

degree of the effect varies from job to job) and study scheduling/rescheduling policies

on this model. The details of this paper are as follows.

O’Donovan et al. (1999) examine the scheduling/rescheduling policy using

stability and efficiency measures in a single machine environment. The schedule

efficiency is measured by total tardiness. The stability is measured by absolute

completion time deviations from the initial schedule. The system under study has

nonzero job ready times and random machine breakdowns. This study is similar to the

one by Mehta and Uzsoy (1999) except that total tardiness is used instead of maximum

lateness as the system performance measure. They consider ATC(1) and ATC(1) +

OSMH for initial schedule generation. According to the ATC(1) heuristic

(Rachamadugu and Morton, 1982), whenever the machine becomes free, the job with

29

the highest priority index is scheduled next, where the priority index of job i at time t is

given by

)]/}0),(max{)[exp(/1()(aviiii kpptdpt +−−=π .

Here pi is the processing time of job i, di is the due date of job i, pav is the average

processing time of all jobs (computed at the start of the procedure), and k is a look-

ahead parameter that governs how fast the job's priority increases as its slack decreases.

ATC(1) + OSMH heuristic generates initial sequence with ATC(1) and additional idle

times are inserted according to the OSMH heuristic described previously (Mehta and

Uzsoy, 1999). Rescheduling alternatives are ATC(1), ATC(2) and right-shift

scheduling. Instead of using due date as in ATC(1), ATC(2) calculates the slack of each

job based on its predicted completion time, Ci(Sp). The priority index of job i is given

by

)]/}0),()(max{)[exp(/1()(avipiii kpptSCpt +−−=π .

Experimental results indicate that ATC(1) + OSMH for scheduling and ATC(2) for

rescheduling is the best for stability. The authors also consider sensitive jobs. They

argue that in some production environments, jobs are sensitive to disturbances that have

just occurred, and the degree of sensitivity differs from job to job (the impact of a

disruption is not felt equally by all jobs). In their proposed model, they estimate

expected increase in job processing time as

])][[exp(][* TEppE iii ατ −= ,

where E[T] is the expected time between breakdowns, α is the recovery rate of

machine, and τi is the impact factor of job i. In this model, they again study scheduling

and rescheduling alternatives and propose ATC(1) + OSMH for scheduling and Smart

ATC(2) for rescheduling. Smart ATC(2) is similar to ATC(2), but it uses estimated

affected processing time instead of processing time for job i.

Finally, Wu et al. (1999) proposes a quasi-online method to generate robust

schedules. They study the job shop scheduling problem under disruptions (processing

time variability). Their approach (called as PFSL - Process First Schedule Later -

approach) combines the global viewpoint of off-line methods and adaptability of on-

30

line methods. A small number of major scheduling decisions are made by a branch-and-

bound algorithm and the rest of the schedule is filled dynamically by the ATC heuristic

during execution. Their computational experiments indicate that their quasi-online

method is superior to traditional off-line and on-line methods in terms of schedule

robustness. The following paragraph gives the details of this study.

Wu et al. (1999) propose a graph-theoretic decomposition to the job shop

scheduling problem to achieve schedule robustness. They use the schedule robustness

in the sense of adaptability to system disturbances. They state that off-line methods to

scheduling assume perfect information, hence the generated schedules are not adaptable

to external disturbances. On the other hand, on-line methods are very adaptive due to

their dynamic nature, but lack the view in a global perspective. In this study, the

authors combine good properties of both approaches and propose a quasi-online method

for the job shop scheduling problem. The robustness measure is expected average

weighted tardiness. They use graph representation of this problem, in which

conjunctive arcs represent precedence constraints and disjunctive arcs join the

operations competing for the same resource. They propose a branch and bound

algorithm that assigns directions some of these disjunctive arcs, and hence changing

them into conjunctive arcs, and effectively give some of the scheduling decisions. The

remaining scheduling decisions are made dynamically by applying ATC heuristic. In

their paper, this approach is called as process first schedule later (PFSL) scheme. They

compare their approach with the off-line algorithm (IATC) and online algorithm

(ATC). Their computational experiments show that PFSL scheme yields more robust

performance under a wide range of disturbances (various levels of processing time

variability) as compared to traditional off-line and on-line methods.

In reactive scheduling literature, several other authors develop schedules in the

face of disruptions without considering disruption in the decision making phase. Here

we review some of the recent studies to give the reader a flavor of this line of research.

The interested reader is referred to Sabuncuoglu and Bayiz (2000) for a broader

literature review.

31

Church and Uzsoy (1992) analyze the performance of event-driven scheduling in

a single machine environment with dynamic job arrivals. They classify the events that

change the system state into two categories: 1) the events that require immediate

response (exceptions) and 2) the events that can be ignored until the next rescheduling

point. The schedule is revised periodically but scheduling is also triggered when an

exception occurs. In their model, the exceptions are arrivals of jobs with tight due dates.

For each job i arriving between times (k-1)T and T, they calculate the slack

si = di - ri

where di is the due-date ri is the ready time of job i and T is the period length. If this

value is smaller than a constant w (window length), then the arrival of job i is

considered as an exception and a scheduling decision is triggered. A schedule is also

generated at the beginning of each period (at the times kT). The authors use EDD

dispatching rule to generate schedules at each revision. The performance measure is

maximum lateness. Their computational experiments indicated that benefits of extra

scheduling diminish rapidly. They conclude a well-designed event-driven policy can

achieve good system performances with less computational burden as compared to

scheduling in response to every event that change the system state.

Akturk and Gorgulu (1999) study on the rescheduling of operations in a modified

flow shop environment in response to a machine breakdown. In a modified flow shop,

jobs can enter the system at one of the several machines, can progress through the

system by a limited number of paths and can exit the system on one of the several

machines. Hence, it falls somewhere between a flow shop and a job shop. The authors

assume that an initial schedule is available and it is followed until a single machine

breakdown occurs. In response to the machine breakdown, they reschedule the

operations to match up with the initial schedule at a point in the future. In the first

stage, they determine a match-up point for each machine. Then the authors decompose

the rescheduling problem into three parts: 1) the scheduling of the down machine, 2)

the scheduling of the machines in the upward direction of the down machine and 3) the

scheduling of the machines in the downward direction of the down machine. If a

resulting schedule is not feasible, then the match-up point is changed to enlarge the set

32

of jobs that are rescheduled. Their experimental results indicate that the proposed

algorithm is very effective in terms of schedule efficiency, computational times and

schedule stability.

In another study, Sabuncuoglu and Karabuk (1999) investigate the

scheduling/rescheduling problem in an FMS environment. The authors propose a

filtered beam search heuristic for FMS environment. For several reactive scheduling

policies in response to machine breakdowns and processing time variability, the authors

compare off-line and on-line scheduling algorithms. The performance of the system is

measured in terms of makespan and mean tardiness. Their computational experiments

indicate that the proposed off-line algorithm performs better than on-line machine and

AGV scheduling rules, under all experimental conditions for the makespan, mean flow

time and mean tardiness criteria. They also show that it is not always beneficial to

reschedule the operations in response to every unexpected event. They conclude that

the periodic response with an appropriate period length can be effective to cope with

the interruptions.

Sabuncuoglu and Bayiz (2000) study the reactive scheduling problem in a job

shop environment. The authors measure the effect of shop floor configuration (system

size and load allocation) on the performance of the scheduling methods (off-line and

on-line). Their performance criteria are makespan and mean tardiness. In the first part

of the study, they compare a beam search based heuristic to other well-known

algorithms including Lawrance (1984), Adams, Balas, and Zawack. (1988) and

Applegate and Cook (1990). In the second part, they study on different reactive policies

such as partial scheduling versus full scheduling, etc. Their computational experiments

indicated that beam search is quite promising for the job shop problem and partial off-

line scheduling can be a very practical tool in a highly dynamic and stochastic

environment.

33

Table 4. Classification of Studies

Environment Schedule Generation
How toAuthor

Shop Floor Sta./Dyn. Stoch./Det. Method Objective When to Scheme Response

Wu et al.
(1993)

Single Machine Static
Stochastic
(Machine
breakdown)

GA
Pairwise swapping
methods

Minimize deviation
between start times or
between sequences
(stability)
Minimize makespan

Continuous
(Machine
Breakdowns
with BR=1)

Off-line Reschedule
(same method)

Leon et al.
(1994) Job Shop Static

Stochastic
(Machine
breakdown,
processing
time
variability)

GA

Minimize expected
makespan and expected
deviation from original
makespan using surrogate
measures (robustness)

Continuous
(Machine
Breakdowns with
BR=1)

Off-line Right Shift

Daniels et al. (1995) Single Machine Static

Stochastic
(Processing
time
variability)

B&B, other
heuristics

Minimize absolute worst
case total flow time
difference (robustness)

Periodic Off-line
Do nothing (left or
right shift)

Mehta and Uzsoy
(1998)

Job Shop Static
Stochastic
(machine
breakdown)

OSMH/LP

Minimize deviations
between completion times
while keeping LMAX low
using surrogate
measures(stability)

Continuous
(Machine
Breakdowns with
BR=1)

Off-line Right Shift

Mehta and Uzsoy
(1999) Single Machine

Static with
nonzero
ready times

Stochastic
(Machine
breakdown)

OSMH/LP

Minimize deviations
between completion times
while keeping LMAX low
using surrogate
measures(stability)

Continuous
(Machine
Breakdowns with
BR=1)

Off-line Right Shift

34

Table 4. (Cont’d)

O'Donovan et al.
(1999) Single Machine

Static with
nonzero
ready times

Stochastic
(Machine
breakdown,
processing
time
variability)

OSMH and ATC
derivatives in
combination

Minimize deviations
between completion times
while keeping total
tardiness low (stability)

Continuous
(Machine
Breakdowns with
BR=1)

Off-line
Right Shift
ATC derivatives

Wu et al.
(1999) Job Shop Static

Stochastic
(Processing
time
variability)

B&B/ATC

Minimize expected
weighted total tardiness
using surrogate
measures(robustness)

Periodic Quasi on-line Right-Shift

Church and Uzsoy
(1992) Single Machine

Static with
nonzero
ready times

Deterministic EDD
Minimize maximum
lateness (efficiency)

Event-
driven(Periodic +
Urgent jobs)

On-line Reschedule

Akturk and Gorgulu
(1999)

Modified Flow
Shop Static

Stochastic
(Machine
breakdown)

RHSA
Minimize tardiness,
earliness (efficiency)

Continuous(Machine
Breakdowns with
BR=1)

Off-line Match-up

Sabuncuoglu and
Karabuk
(1999)

FMS Static

Stochastic
(Machine
breakdown,
processing
time
variability)

Filtered beam search
Minimize mean tardiness,
mean flow time and
makespan (efficiency)

Continuous(Machine
Breakdowns with
BR=1)

Off-line Reschedule

Sabuncuoglu and
Bayiz
(2000)

Job Shop Static
Stochastic
(Machine
breakdown)

Filtered beam search
Minimize mean tardiness,
and makespan (efficiency)

Continuous(Machine
Breakdowns with
BR=1)
Periodic

Off-line Reschedule

35

Chapter 4

Observations and Proposed Methods

4.1. Observations

On reviewing the existing literature, the following observations are made:

1. We know that in a static and deterministic environment off-line scheduling is

superior to on-line scheduling. In a static and dynamic environment, off-line

scheduling is still better, but the difference between the performances of off-line

and on-line scheduling is not as large as in the static case (Sabuncuoglu and

Karabuk, 1999). The comparison of off-line scheduling and on-line scheduling

methods is needed in a dynamic and stochastic environment.

2. It is also known that full scheduling is superior to partial scheduling in a static

environment. (Sabuncuoglu and Bayiz, 2000). The relative performance of full

scheduling and partial scheduling in a dynamic and stochastic environment is

also an open research question.

3. The type of response issue (scheduling/rescheduling, or repairing) has not been

thoroughly studied in the literature. Even though there are some studies that

focus on rescheduling frequency, their relative weaknesses and strengths are not

generally known.

4. When-to-schedule policies (periodic, continuous, or adaptive) needs a further

research. Specifically, we do not know the conditions under which each method

is better than others.

36

5. Should practitioners consider robustness or stability or both? What is the trade-

off between these performance metrics (stability, robustness, and efficiency)? It

should also be investigated.

6. Along the same lines, can one develop a bicriterion approach that considers both

the stability and robustness measures simultaneously?

7. As stated in Mehta and Uzsoy (1998), can one develop better surrogate

measures for stability (and/or robustness)?

8. As also questioned by Leon et al. (1994), can one extend the existing studies for

other performance measures?

9. As stated in Daniels and Kouvelis (1995), can one apply the existing concepts to

other realistic scheduling environments?

Each of these observations can be identified as a further direction of research. In

this study, we decided to focus on development of alternative surrogate measures for

robustness and stability (item 7 in the above list). The details of the proposed methods

can be found in the next section. Our computational experiments show that the

proposed methods are better than the average slack method, which is commonly used as

a surrogate measure in the literature. Moreover, as a by-product of our study, we also

obtained some partial answers to items 5 and 6 in the above list, as explained later.

4.2. Proposed Methods

From the viewpoint of robustness, what really matters is the performance of the

realized schedule rather than the performance of the initial schedule generated on a

piece of paper beforehand. In terms of stability, a good realized schedule should deviate

minimally from the initial (or planned) schedule. In a way, both measures (robustness

and stability) are the performance metrics on the realized schedule, which cannot be

known in advance. It seems that one can only predict the realized schedule and estimate

its performance by using surrogate measures. Most of the studies in the literature

employ average slack method to generate robust and/or stable schedules. This method

37

is developed by Leon et al. (1994) to generate robust schedules for the job shop

scheduling problem. They use makespan as the performance measure. They estimate

 the expected realized makespan of a schedule by SESfSfE)]([)()]([0 δ+= where

E[f(S)] is the expectation of the realized performance measure;)(0Sf is the initial (or

planned) performance measure (makespan) of S, and)]([SE δ is the degradation in the

performance measure because of the disruptions, which is estimated by using –(average

system slack) as a surrogate measure. For each operation the difference between the

earliest start time and the latest time at which that operation can start without causing

delay is called as the slack of that operation. Average system slack is calculated by

summing slacks of all operations and dividing that number to the total number of

operations. The authors’ experimental studies indicate that there is a high correlation

between the robustness of a given schedule and the average slack of the schedule.

The use of average slack method to generate stable schedules comprises similar

ideas: a stable schedule should have a large average slack value to increase the

probabilty that the schedule will absorb the negative affects of a disruption. The

experimetal studies indicate that there is a hihg correlation between the stability of a

given schedule and the average slack of the schedule.

In this study, we propose two new surrogate measures to estimate the realization

of a given schedule for the single machine system with random machine breakdowns.

We use an algorithm that is based on tabu search methodology to efficiently evaluate a

large number of sequences in search space. We assume that arrival times, processing

times and due-dates are known in advance. The distributions of busy time (f(t)) and

repair duration (g(t)) are assumed to be known a priori.

4.2.1. The Proposed Scheduling Algorithm

In this study, our objective is to construct robust and stable schedules. The robustness

measure is expectation of the realized schedule performance (Measure 1 of Section

38

2.2.1.1 of Chapter 2). The stability measure that we use is the expected absolute

deviation of job completion times (Measure 1 of Section 2.2.2 of Chapter 2).

In the proposed algorithm we start with an initial job sequence and use tabu

search to scan the solution space efficiently. At each iteration, we assess the quality of

a number of alternative sequences and adopt the best sequence as the current solution.

The details of the tabu search are presented in the next section. We use two surrogate

measures to assess the quality of a sequence. Instead of using an indirect surrogate

measure such as average system slack, we quickly estimate the performance of a

candidate sequence by two different methods. We use the values of the estimated

performance as a surrogate measure for robustness. Similarly, the sum of absolute

deviations of the job completion times in the initial sequence from the job completion

times in the estimated realization is used as a surrogate measure for stability. As

explained later in Chapter 5, we also include the average slack method and the classical

approach (which does not consider robustness or stability) to asssess the quality of a

given schedule as benchmarks in our experimental study. Note that the average slack

method for robustness is devised for the job shop scheduling problem and the makespan

criterion. We adopted the method to the single machine scheduling problem by

calculating the slacks of the jobs (rather than the operations) and taking the average.

We also included total tardiness and total flow time criteria to our study. The reason

why we use this modified method (and accept the risk of deteriorating the performance

of the original method) as a benchmark is that there is no robustness procedures

spesifically developed for the single machine problem in the literature.

The details of the estimation methods are presented in Section 4.2.3. Figure 4

illustrates the basic idea behind the proposed algorithm.

39

Figure 4. Illustration of Proposed Algorithm

4.2.2. Tabu Search

Tabu Search (TS) was developed by Fred Glover as a search technique for solving a

wide variety of combinatorial optimization problems. TS has been applied in many

areas including scheduling, layout design and location, allocation, telecommunications,

production, inventory and investment, routing, and graph optimization (Glover and

Laguna, 1997).

Tabu Search method was partly motivated by the observation that human

behavior operates with a random element that leads to different courses of actions under

similar circumstances. The resulting tendency to deviate from a planned course might

lead to errors but can also be source of gain. TS method operates in this way with the

exception that new courses are not chosen randomly. Instead, TS assumes that there is

Sequence in
current

neighborhood

Estimated
Realization

Estimate
performance
via Method1
or Method2

Jump to best
neighbor that
is not tabu

Use the
average
slack
method or
classical
approach

40

no point in accepting a new (poor) solution unless it is to avoid a path already

investigated. This insures new regions of a problems solution space are investigated

with the goal of avoiding local minima and ultimately finding the global minimum.

The search mechanism of TS is very similar to that of steepest ascend method: at

each step the neighborhood of the current solution is generated and the best one among

them is adopted as the new current solution. The neighborhood consists of all the

solutions that can be generated from the current one via a single move (pairwise

swapping, inserting, etc.). To prevent immediate backtracking, most recently executed

moves (i.e. tabus) are kept out of consideration for a certain number of iterations. This

number is called as tabu tenure. A move can be executed even if it is in tabu list if the

resulting solution is better than the best one found so far. This is known as aspiration.

Laguna, Barnes, and Glover (1991) discuss the use of three tabu search strategies

for the approximate solution of a single machine scheduling problem with sequence

dependent set-up costs. The objective is to minimize the sum of set-up costs and linear

delay penalties for N jobs, all arriving at time zero. They first consider a TS method

that use the common approach of making swaps to move from one trial solution to

another. Next, they consider the use of insert moves. Finally, they construct a TS

method that employs both swap and insert moves. Computational experiments show

that there is an advantage of using this hybrid approach, but the improvement is not

substantial. In addition, our primary goal is to find out how different methods of

evaluating neighbourhood (using average slack, Method 1, and Method 2) compare

with each other. Therefore, in our implementation we stick to the common approach of

using swap moves, whose implementation is easier.

As stated before, in our implementation, we use swap moves to generate a

schedule in the neighbourhood of the current schedule, that is, the neighborhood of a

solution is generated by all pairwise swaps of jobs. Therefore, the neighbourhood of a

schedule with n jobs consists of
2

)1(−nn
schedules. The performances of the sequences

in the neighborhood are evaluated by our proposed surrogate measures that we

calculate via Method 1 or Method 2, which are discussed in the next section. The

41

neighborhood is then sorted according to their performances. Tabu list consists of

triples of numbers (x, y, z), where x is the job identification number (id), y is the

position in the sequence and z is the remaining tabu tenure. If (x, y, z) is in the tabu list,

job x cannot move to position y during next z iterations. A swap is identified as tabu if

one of the corresponding moves are in tabu list. For example suppose our current

sequence is "a b c d e…” The swap of job a with job e is tabu if one of (a, 5, .) or

(e, 1, .) is in the tabu list. Beginning with the best sequence in the neighborhood,

corresponding swaps are tested. If the swap is not tabu, then it is executed. If the swap

is tabu but the resulting sequence performs better than the best sequence found so far, it

is still executed (this is known as aspiration). Otherwise, the swap that gives the next

best solution in the neighborhood is tested. Continuing in this way, if all possible swaps

are found tabu, the swap that gives the best one in the neighborhood is executed. After

execution of a swap, corresponding two moves are added into the tabu list, if they are

not already in. For example, assume that the current candidate is “a b c d e …”. If swap

of job a with job c is executed, then (a, 1, .) and (c, 3, .) entries are added to the tabu

list. The sequence resulting after this swap is adopted as the new current solution. This

solution is compared with the current best solution found so far. If it is better, the best

solution found so far is set to the current solution. Tabu tenures in the tabu list are

decreased, and the moves with 0 remaining tabu tenures are deleted. If the stopping

criterion is not satisfied, the next iteration is executed.

4.2.3. Proposed Neighbourhood Evaluation Methods

4.2.3.1. Method 1

In our opinion, the well-known and commonly used average slack method fails to

incorporate the information that can be inferred from the probability distributions of

busy time and repair-time. In contrast, the proposed method, Method 1 estimates the

performance of the realized schedule using the relevant distributions themselves. This

is explained next.

42

The essence of Method 1 is to quickly estimate the realized schedule that

corresponds to a given sequence. The related performance measure of this estimated

realization is then used to measure the quality of a given sequence in the search space.

Assume that the machine fails after every busy time period of length λL + (1-λ)U,

where λ is a real number between 0 and 1, and L and U are points on the left and right

tails of f(t), respectively. As shown in Figure 5, the probability that a machine

breakdown will occur between L and U is 0.95 (i.e, α = 0.05). We further assume that

the repair activity lasts E[g(t)] time units (i.e. the expectation of the repair-time

distribution).

Figure 5: Parameters of Method 1

The parameter λ is to be determined from the correlation study, in which a

number of pilot schedules are to be estimated using λ values of 0.2, 0.4, 0.6, and 0.8

along with the alternative of using E[f(t)] instead of λL + (1-λ)U as busy time period.

Figure 6 illustrates the estimation of realized schedule.

f(t)

tL U

α/2 α/2

1-α

43

Figure 6. Estimation of Realization under Method 1

4.2.3.2. Method 2

Like Method 1, Method 2 estimates the realization of a given schedule. This approach,

however, assumes that there is only one machine failure during any scheduling period.

Because of this restrictive assumption, it is better to use this approach with a continuous

rescheduling scheme. Given a sequence of n jobs, S, and busy time distribution, f(t),

the expected realized performance is estimated in three steps:

1. Calculate the probability that the machine fails during the processing of ith job. As

seen in Figure 7, ai is the probability that the machine fails during the processing of

ith job.

2. Determine the performance of the sequence assuming that machine actually fails

during the processing of job i. Use E[g(t)] as the repair duration. Let fi be the value

of this performance measure.

3. Calculate the estimated realized performance measure of the sequence S as

∑ =

n

i ii fa
1

.

Time to failure
λL + (1 - λ)U

Repair Time
E[g(t)]

End of repair End of repair

UP DOWN UP

44

Figure 7. Parameters of Method 2

4.2.4. A Numerial Example

In this section, we give a hypothetical example to clarify the mechanics of the proposed

scheduling algorithm.

Assume that we want to generate a robust schedule for the single machine

problem with 3 jobs, whose arrival times, processing times, and due-dates are given in

Table 5.

Table 5. Job Parameters for the Numerical Example

Job Arrival Time
(hr)

Processing Time
(hr)

Due Date
(hr)

J1 5 1 6
J2 2 1 5
J3 1 1 4

Assume that busy time distribution of the machine is Uniform(0, 3) and repair

duration distribution is Uniform(0, 2) for the sake of simplicity. Let total tardiness

t

f(t)

Job 1 Job 2 Job n-1 Job n

a1

a2

an-1

Sequence

an

45

criterion be the performance measure. Thus, we want to generate such a schedule that

expected total tardiness of its realization is minimized.

Suppose our algorithm begins with the initial schedule “J1-J2-J3”. The algorithm

first generates the neighbourhood of this schedule by all-pairwise swapping. Hence,

there are 3
2

3x2 = schedules in the neighbourhood of the schedule “J1-J2-J3”. These are

“J2-J1-J3”, “J3-J2-J1”, and “J1-J3-J2”. Let us call them as S1, S2, and S3 ,

respectively. Next the algorithm evaluate the quality of S1, S2, and S3 by using the

appropriate surrogate measure according to the method in use:

Classical Approach: If the classical approach is in use, the algorithm calculates

the initial total tardiness of each candidate schedule (i.e., S1, S2, and S3). The initial

schedules are given in Figure 9-a. The total tardiness values of these initial schedules

can be found in the second column of Table 6.

Average Slack Method: As explained before in section 4.2, this method use

(initial tardiness – average system slack) as the surrogate measure for robustness. Third

column of Table 6 gives the values of this measure. The calculation of average system

slack can be found in Table 7.

Method 1: Method 1 calculates the total tardiness of realized versions of each

candidate schedule (i.e., S1’, S2’, and S3’). The L parameter of Method 1 is 0.075 and

the value of U is 2.925 if we take α = 0.05 (See Figure 8). Assume that the value of λ is

0.5. Then, as explained in Section 4.2.3.1, when estimating realization according to

Method 1, the algorithm inserts E[g(t)] = 1 hour of idle time as repair duration after

every 0.5*0.075 + 0.5*2.925 = 1.5 hours of busy time period. These estimated

realizations can be seen in Figure 9-b. Fourth column of Table 6 lists the total tardiness

values of these realizations.

Method 2: As explained in Section 4.2.3.2, Method 2 assumes a single machine

breakdown and calculates the expected total tardiness of the realization of each

candidate schedule. For each candidate, the probability that the machine fails during the

processing of any job (J1, J2, or J3) is 1/3. Method 2 first calculates the total tardiness

of the realized schedule assuming that single machine failure is during the processing of

46

J1, and then J2, and finally J3. These total tardiness values can be found in Table 8. The

weighted average of these values (weights being the corresponding probabilities, all 1/3

in this case) gives us the surrogate measure of Method 2. The fifth column of Table 6

presents the values of this surrogate measure. Figure 9-c illustrates the above

calculation for candidate S1 as an example.

Figure 8. L and U Parameters of Method 1

0 3

1/3

L U

0.95

f(t)

t

47

a) Candidate schedules S1, S2, and S3

b) Estimated Realization (S1’, S2’, and S3’) under Method 1

c) Calculation of expectation for S1 under Method 2

Figure 9. Illustration for Numerical Example

0 4 8

S1’

S2’

S3’

J2 J3

J3 J1

J1 J2

J1 J1

J2 J2

J3 J3

0 4 8

J1

J2

J3

J2 J3J1 J1

J3J2 J2 J1

J2 J1 J3 J3

M/C Fails during
the Processing of …

Probability of
that failure

1/3

1/3

1/3

S1

S2

S3

J1

0 4 8

J2 J3

J3 J2 J1

J1 J3 J2

48

Table 6. Evaluation of Neighbourhood

Evaluated Candidate Qualities

Schedule in the
neighbourhood Classical

Approach

Average
Slack Method Method 1 Method 2

J2-J1-J3 3 2.33 4 4
J3-J2-J1 0 -1.33 0 0.33
J1-J3-J2 6 6 8 7

Table 7. Calculation of Average System Slack

S1 S2 S3Job
Earliest Latest Slack Earliest Latest Slack Earliest Latest Slack

J1 5 5 0 5 5 0 5 5 0
J2 2 4 2 2 4 2 7 7 0
J3 6 6 0 1 3 2 6 6 0

Average Slack 0.67 Average Slack 1.33 Average Slack 0

Table 8. Calculation of Robustness Measure of Method 2

Schedule Total Tardiness of Realization
If Machine Fail Fails during

Processing of …
Job1 Job2 Job3

Expectation

S1 5 3 4 4
S2 1 0 0 0.33
S3 9 4 8 7

Next, the algorithm selects the best schedule in the neighbourhood. As seen in Table 6,

S2 (J3-J2-J1) happens to be the best solution in the neighbourhood for all evaluation

methods. Therefore, S2 is chosen as the new current schedule. This move involves the

swap of J3 with J1. Assume that tabu tenure is 12. Then, (J1, 1, 12) and (J3, 3, 12)

entries are added to the tabu list (which was empty). The algorithm continues iterating

like this until the stopping criterion is satisfied.

49

Chapter 5

Experimental Study

We have conducted extensive computational experiments to tune up and evaluate our

heuristic algorithm. We use an experimental design, whose details are given in the

following section, that involves a broad range of test problems. Then, we set the

parameters of our tabu search algorithm. Finally, we compare the proposed methods

with the other commonly used approaches. We assume a periodic scheduling scheme

and type of response is to right shift the remaining jobs (Response BR1 of Table 2),

unless otherwise stated. The scheduling program is coded in the C language, which

reads the problem parameters from an input file and generates desired schedules. The

program (schedule.c) can be found in appendix.

5.1. Experimental Environment

5.1.1. Problem Parameters

In this section, we present the data generation scheme, which is previously proposed by

Mehta and Uzsoy (1999), to create test problems.

Number of Jobs (n): There are five levels for number of jobs (n = 10, 30, 50, 70,

90). The number of jobs designates the size of the problem. As number of jobs

50

increases, computational burden, and hence time needed to find the optimal solution,

increases.

Processing Time (pi): Job processing times are generated from discrete uniform

distributions. There are two such distributions used – Uniform (1, 11) and Uniform

(4, 8), which are referred to as P1 and P2, respectively. P1 and P2 schemes have the

same mean, but the variance of P1 is higher than that of P2.

Arrival times (ai): Job arrival times are generated from a discrete uniform

distribution between 0 and αnE[pi], where E[pi] is the expected job processing time

(=6 time units). Therefore nE[pi] is the expected makespan of the schedule. A low level

for α makes the jobs arrive over a shorter time horizon. Note that if α = 0 means all

jobs are ready at time 0.

Job due dates (di): Job due dates are generated as di = ai + γpi, where γ is

generated from a continuous uniform distribution, between a and b. Different a and b

levels determines the tightness and the range of the due dates. Four levels of (a, b) are

considered as shown in Table 9. D1 and D2 have tighter mean due dates than D3 and

D4 have. The range of due dates are higher for D1 and D4 and lower for D2 and D3.

Note that we have 200 possible combinations from the above parameters for test

problems (Table 9).

51

Table 9. Test Problem Parameters

Parameter Values used in experimentation Total Values

Number of jobs (n) 10, 30, 50, 70, 90 5

Processing times (pi)
Uniform[1, 11]) (P1)

Uniform[4, 8] (P2)
2

Arrival times (ai)
ai = Uniform (0, amax)
where amax = αE[Cmax]

α = 0.25, 0.5, 0.75, 1.25, 1.75
5

Job due date (di)

di = ai + γpi

where γ = Uniform [a, b]
where values of (a, b) are taken as

(-1, 3) (D1)
(0, 2) (D2)
(2, 4) (D3)
(1, 5) (D4)

4

5.1.2. Breakdown Parameters

The scheme for machine breakdown generation is given in Table 10. In the

absence of real data, Law and Kelton (1991) recommends the Gamma distribution as a

busy time distribution with a shape parameter of 0.7, and a scale parameter to be

specified. The authors also state that the Gamma distribution with a shape parameter of

1.4 is appropriate for down time distribution. The scale parameter of the busy time

distribution is arranged so that the mean is θ.E[pi]. We consider θ values of 10 and 3

(Mehta and Uzsoy (1999) use the same scheme with the exception that the distribution

is exponential instead of Gamma). The scale parameter of the down time distribution is

arranged so that the mean is β.E[pi]. We consider β values of 1.5 and 0.5.

Consequently our experimental design consists of 200 problem combinations (Table 9)

x 4 breakdown combinations (Table 10) = 800 problem classes as a whole.

52

Table 10. Breakdown Parameters

Parameter Values used in experimentation Total Values

Busy time

Gamma distribution with a shape parameter
of 0.7 and mean of θ.E[pI]

θ.= 10.0 (Long busy time) (B1, B2)
θ.= 3.0 (Short busy time) (B3, B4)

2

Down time

Gamma distribution with a shape parameter
of 1.4 and mean of β.E[pI]

β = 1.5 (Long repair time) (B1, B3)
β.= 0.5 (Short repair time) (B2, B4)

2

5.2. Fine Tuning Algorithm Parameters

We conduct pilot runs to determine the levels of the following parameters of the

scheduling algorithm:

Stopping criterion: This parameter dictates when the algorithm should cease

searching the solution space. We decided to stop the algorithm when there is no

improvement for the last 20 iterations. This result will be explained by the help of

Table 11 later.

Tabu tenure : This parameter dictates the number of iterations for which a move

should remain in the tabu list after inclusion. We considered 5 levels of tabu tenure in

our pilot runs that are conducted for fine tuning purposes: 1, 5, 7, 10, and 15.

We considered five objective functions in our pilot runs. Total tardiness, total

flow time, and total system slack of the initial schedule; total tardiness and total flow

time of the estimated realization of initial schedule by using Method 1. Note that

Method 1 uses the breakdown distributions. Instead of using the breakdown parameters

presented above, which would lead to four Method 1 variants, we used an average

breakdown scheme to keep the pilot runs simple: we set θ = 6 and β = 1. Similarly we

used just the expectation instead of µL + (1-µ)U as busy time period, because the

optimal level for µ is not determined yet (which will be done next).

We generate a single instance from each problem class, resulting in 5000 runs

(200 problem combinations (See Table 9) x 5 tabu tenure levels x 5 objective

53

functions). We run the proposed tabu search algorithm on each problem for 1000

iterations. We deliberately did not include Method 2 in our pilot runs because the

numerical integration of the density function of Gamma distribution for a lot times

(needed to calculate relevant probabilities of Method 2) was too time demanding for

1000 iterations. We observed the number of iterations between best solution

improvements and recorded the maximum one (M) for each problem. We also observed

the best objective value attained for each problem. The results are presented in Table 11

and Table 12.

Table 11. The Maximum Number of Iterations between Best Solution Improvements

M Coverage Percentage
10 87.26
20 96.26
30 97.44
40 97.96
50 98.3
60 98.48
70 98.6
80 98.76
90 98.82
100 98.96
150 99.22
200 99.48

In Table 11, M column lists the maximum number of iterations between best

solution improvements. The coverage percentage gives the percentage of the problems

that reach the optimal solution (the best solution found so far at the end of 1000

iterations) for corresponding M value. For example, if we stop the algorithm when there

is no improvement for last 10 iterations, we still find the “so far best” solution (i.e. the

best solution obtained within 1000 iterations) for the 87.26 percent of the 5000 pilot

problems. Upon investigation of Table 11, we decided to use 20 iterations for the value

of M.

54

Table 12. Tabu Tenure Comparisons

Objective Type

Tenure Tardiness Flow Time Slack* Tardiness
(Method 1)

Flow time
(Method 1)

1 1873.985 2506.48 3723.615 2543.03 3147.135
5 1879.59 2481.985 3816.555 2491.02 3071.08
7 1884.035 2482.245 3963.945 2533.325 3164.69
10 1852.58 2502.47 3999.325 2456.855 3105.915
15 1857.605 2447.335 4087.06 2495.42 3076.48

Objective Type

Rankings Tardiness Flow Time Slack* Tardiness
(Method 1)

Flow time
(Method 1)

1st 10 15 15 10 5
2nd 15 5 10 5 15
3rd 1 7 7 15 10
4th 5 10 5 1 1
5th 7 1 1 7 7

* = Higher slack values are better

First part of Table 12 presents the average value of the objective function used for

the tabu tenure – neighborhood evaluation combination. Second part ranks the tabu

tenures for each neighborhood evaluation mechanism, from the best to the worst. The

best two alternatives for the tabu tenure are 10 and 15. It is difficult to choose a clear

winner. Hence, we decided to use random tabu tenures that are uniformly distributed

between 10 and 15 for the future tests.

Determining the best λλ value: We generated five instances for each of the 800

possible parameter combination (Table 9 and 10) for determining λ value of Method 1.

We have two objective functions in TS: total tardiness and total flow time of the

estimated realizations. We used 0.2, 0.4, 0.6 and 0.8 as candidate λ values. We also

used E[f(t)] instead of. λL + (1-λ)U as the busy time period of the machine, for the

sake of comparison. We simulated the “so far best” schedule for 5 times, and recorded

the average objective function values as well as the average of Method 1 estimates for

these values. We also conducted a simple linear regression analysis. The dependent

variable is average of average objective value of 5 simulation replications of 5 problem

instances that have the same problem parameters. The independent variable is the

55

average Method 1 estimates of objective values. The R2 (coefficient of determination)

values are also recorded. Tables 20-21 (in appendix) and Tables 22-23 (in appendix)

present the results for total tardiness and total flow time, respectively.

Since coefficients of determinations are very close to 1.0 and to each other, we

focus on error percentages as we assess the quality of different λ levels. The following

observations are true for both total tardiness total flow time, for all levels of λ.

� The percentage errors for B1 and B3 (long repair duration) are greater than the

percentage errors for B2 and B4 (short repair duration). This means that the

estimation error is greater in the case of major breakdowns.

� As number of jobs increases, the percentage errors decrease. This is an expected

result. As the number of jobs increases, we expect the number of machine failures

to increase, i.e., we get more observations from the breakdown distribution,

consequently variance of observations decreases and prediction quality increases

(similar to the notion of Law of Large Numbers).

� As arrival parameter α increases (as the range of jobs arrival times gets wider) the

quality of prediction gets worse.

� As the processing time variability increases, the percentage errors also increase, but

the difference is not so significant.

� When the system performance of interest is total tardiness, due date schemes with

low tightness variation (D2 and D3) tend to increase the quality of prediction, but

the difference is not too much.

As seen in the Tables 20-23, although λ = 0.8 gives the best overall prediction

(both, in terms of coefficient of determination and in terms of percentage error) for both

objective functions, its quality is the worst in terms of realized schedule performance.

λ = 0.4 for total tardiness and λ = 0.6 for total flow time are the best in terms of

realized schedule quality. The performance of λ = 0.6 for the total tardiness case is very

close to that of λ = 0.4, so λ = 0.6 is chosen as the overall best value.

56

5.3. Comparison of Method 1 with Other Approaches

5.3.1. Robustness

We compared the performance of Method 1, from the viewpoint of robustness, to the

approach of using average system slack. We also used classical approach, which

minimizes planned (initial) performance measure, as a benchmark. Leon et al. (1994)

estimates the realized performance measure as follows:

 SfE whereSESfSfE)]([)]([)()]([0 δ+= is the expectation of the realized

performance measure (our robustness measure);)(0Sf is the initial (or planned)

performance measure of S, and)]([SE δ is the degradation in the performance measure

because of the disruptions, which is estimated by using –(average system slack) as a

surrogate measure.

We generated five instances for each of 800 possible problem classes (see Tables

9-10), leading to 4000 experimental design points. We run our TS algorithm with 3

different neighbourhood evaluation functions (classical approach, slack method, and

Method 1) for 3 performance measures (makespan, total tardiness, and total flow time).

This resulted in 4000 x 3 x 3 = 36000 runs. We recorded the estimated performance

measures, the realized performance measures (taken as the average of 5 Monte-Carlo

simulations), and stability measures (total absolute job completion time differences).

The results are presented in Tables 24, 25, and 26 (in appendix) for makespan, total

tardiness, and total flow time performance measures, respectively. Figure 10 is also

prepared to display estimated and realized performance measures for makespan, total

tardiness, and total flow time, respectively. Table 13 presents a summary of the results.

Note that the stability values are also given even though our objective is to optimize

robustness. The figures marked with + sign are the worst in their group, whereas the

figures marked with a * sign are the best according to the paired-t tests with α = 0.05.

57

 a) Makespan Estimate-Realized Graph

 b) Total Tardiness Estimate-Realized Graph

 c) Total Flow Time Estimate-Realized Graph

 Figure 10. Estimate vs Realized Performance Measure Plots (Robustness)

Makespan

0.00

100.00

200.00

300.00

400.00

500.00

Estimate Realized

Classical

Slack

Method 1

Total Tardiness

0.00

1000.00

2000.00

3000.00

4000.00

Estimate Realized

Classical

Slack

Method 1

Total Flowtime

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

Estimate Realized

Classical

Slack

Method 1

58

Table 13. Summary Table for Robustness Results

Makespan Total Tardiness Total Flow Time

Classical Approach 391.08 3134.52 3712.21

Slack Method 474.97+ 3509.84+ 4058.31+

R
ob

us
tn

es
s

Method 1 390.65 3083.87* 3697.60

Classical Approach 1472.48 1316.40+ 1338.23+

Slack Method 1030.04* 1051.61 1054.15

St
ab

ili
ty

Method 1 1452.09 1044.33 1035.42*

After careful analysis of the results presented in these tables and Figure 10, we

can make the following observations:

In terms of robustness, the average slack method is not good at all (it is

statistically significantly worse than Method 1 and classical approach) for all three

performance measures. The proposed method (Method 1) is better than both the

average slack method and the classical approach. However, the difference between the

proposed method and other two methods are significant for only the total tardiness

criterion (i.e., Method 1 yields smaller numerical values than these two methods but the

difference is not statistically significant for makespan and total flow time criteria).

In terms of stability the classical approach is the worst (the difference is

significant for total flow time and total tardiness criteria). In general Method 1 and the

average slack method are very competitive. Even though the average slack method is

better than Method 1 for makespan criterion, Method 1 is better when the other two

criteria are considered (total tardiness and total flow time). The improved performance

of the average slack method over Method 1 can be attributed due to the following fact:

as stated before, the average slack method estimates expected makespan (the robustness

measure) as)]([)()]([0 SESfSfE δ+= . The initial makespan of any acceptable

schedule (i.e., a schedule that does not keep machine idle when there is a job waiting in

the queue) is constant. Therefore, minimizing)]([)()]([0 SESfSfE δ+= is equivalent

59

to minimizing)]([SE δ , which is estimated by –(average system slack). As a result,

the average system slack method optimizes robustness by maximizing average system

slack for makespan criterion, which is exactly the same approach that is used to

optimize stability by this method. This fact can be confirmed by comparing the average

slack method – makespan critetion cells in Table 13 with the ones in Table 14, which

presents a summary when the primary goal is to optimize stability. The average slack

method (hopefully) optimizes stability inherently while (hopefully) minimizing

expected makespan (robustness measure), whereas Method 1 does not consider stability

when it is used to optimize robustness. This is why the average slack method is better

than Method 1 in terms of stability for the makespan criterion when the primary

concern is robustness.

In short, we conclude that the proposed method (Method 1) is generally

competitive for both robustness and stability.

5.3.2. Stability

In this section, we compare the performance of Method 1 and the average system slack

method. Again, we used classical approach (which only minimizes planned or initial

performance measure, and does not consider stability) as a benchmark.

As in the case of robustness we have 800 possible problem classes resulted in

4000 design points. We run our TS algorithm for 3 different neighbourhood evaluation

functions (classical approach, slack method, and Method 1). We recorded the estimated

performance measures, the realized performance measures (taken as the average of 5

Monte-Carlo simulations), and stability measures (total absolute job completion time

differences). The results are presented in Tables 27, 28 and 29 (in appendix) for

makespan, total tardiness, and total flow time performance measures, respectively.

Table 14 presents a summary of the results. The figures marked with + sign are the

worst in their group, whereas the figures marked with a * sign are the best according to

the paired-t tests with α = 0.05. Figure 11 depicts estimated and realized performance

60

measures for makespan, total tardiness, and total flow time. We make the following

observations from the results:

In terms of stability, which is the primary goal in these experiments, the

proposed method (Method 1) is significantly better than the average slack method and

the classical approach. Hence, it is the winner. When we look at the secondary goal

(robustness), however, the classical approach is significantly better than the other two

methods (the average slack method and Method 1). This can be explained as follows: as

it is discussed in the previous section, the classical approach performs well when the

primary objective is to optimize robustness. We see that the robustness performance of

average slack method and Method 1 deteriorate when we change the primary goal to

optimizing stability. However the classical approach does not suffer this deterioration,

as it does not consider stability at all. As a result, it keeps it high robustness

performance. These observations give us an evidence of the existence of a trade-off

between robustness and stability. This trade-off is further discussed in section 5.3.4.

Table 14. Summary table for stability results

Makespan Total Tardiness Total Flow Time

Classical Approach 391.13* 3131.31* 3713.44*

Slack Method 478.05+ 6843.11+ 7400.27+

R
ob

us
tn

es
s

Method 1 408.36 4070.64 4614.69

Classical Approach 1480.48+ 1321.59+ 1320.97+

Slack Method 1040.26 1040.26 1040.26

St
ab

ili
ty

Method 1 916.03* 916.03* 916.03*

61

 a) Makespan Estimate-Realized Graph

 b) Total Tardiness Estimate-Realized Graph

 c) Total Flow Time Estimate-Realized Graph

Figure 11. Estimate vs Realized Performance Measure Plots (Stability)

Makespan

0.00
100.00
200.00
300.00
400.00
500.00
600.00

Estimate Realized

Classical

Slack

Method 1

Total Tardiness

0.00

2000.00

4000.00

6000.00

8000.00

Estimate Realized

Classical

Slack

Method 1

Total Flowtime

0.00

2000.00

4000.00

6000.00

8000.00

Estimate Realized

Classical

Slack

Method 1

62

5.3.3. Bicriterion Approach

In fact, the objective function that we minimize can be viewed as

w*robustness measure + (1-w)*stability measure, where w is a real number between 0

and 1 that represents the weight given to a particular measure. For section 5.3.1, w is

equal to 1 (pure robustness) and for section 5.3.2, w is equal to 0 (pure stability). We

set up an experimental study to check if it is possible to maintain good expected

realized schedule performance (robustness) while increasing schedule stability

significantly when w is close to 1. As Leon et al. (1994) did for a similar study, we take

w = 0.85. Hence, we used 0.85*(Robustness measure) + 0.15*(Stability measure) as the

neighbourhood evaluation function of TS algorithm for both, slack method and Method

1. We also included classical approach in our study for the benchmark purposes.

We generated five instances for each of 800 possible problem classes. We

recorded the estimated performance measures, the realized performance measures

(taken as the average of 5 Monte-Carlo simulations), and stability measures (total

absolute job completion time differences). The results are presented in Tables 30, 31

and 32 (in appendix) for makespan, total tardiness, and total flow time performance

measures, respectively. Table 15 presents a summary of the results. Table 16 gives

(0.85 * robustness + 0.15 * stability) values. The figures marked with + sign are the

worst in their group, whereas the figures marked with a * sign are the best according to

the paired-t tests with α = 0.05 in both tables. Figure 12 depicts estimated and realized

performance measures for makespan, total tardiness, and total flow time.

63

 a) Makespan Estimate-Realized Graph

b) Total Tardiness Estimate-Realized Graph

c) Total Flow Time Estimate-Realized Graph

Figure 12. Estimate vs Realized Performance Measure Plots (Bicriterion)

Makespan

0

100

200

300

400

500

E s t i m a t e R e a l i z e d

C l a s s i c a l

S l a c k

M e t h o d 1

Total Tardiness

0

1000

2000

3000

4000

E s t i m a t e R e a l i z e d

C l a s s i c a l

S l a c k

M e t h o d 1

Total Flowtime

0

1000

2000

3000

4000

5000

E s t i m a t e R e a l i z e d

C l a s s i c a l

S l a c k

M e t h o d 1

64

Table 15. Summary Table for Bicriterion Approach Results

Makespan Total Tardiness Total Flow Time

Classical Approach 390.76 3116.18* 3718.98

Slack Method 475.08+ 3590.70+ 4144.81+

R
ob

us
tn

es
s

Method 1 392.64 3169.73 3728.50

Classical Approach 1473.71+ 1312.24+ 1333.37+

Slack Method 1023.92 1011.84 1012.18

St
ab

ili
ty

Method 1 1033.53 1015.76 1010.21

Having carefully analyzed these results, we make the following observations:

In terms of robustness, the average slack method is statistically the worst for all

three performance measures. The classical approach is slightly better than the proposed

method (Method 1) for all three performance measures, but the difference is statistically

significant for only the total tardiness criterion (i.e., the classical approach yields

smaller numerical values for the makespan and total flow time criteria, but the

difference is not statistically significant).

In terms of stability, the classical approach is not good at all (it is significantly

worse than the average slack method and Method 1). In general, Method 1 and the

average slack method are very competitive. Even though the average slack method is

better than Method 1 for the makespan and total tardiness criteria, Method 1 is better

when the total flow time criterion is considered. The differences between these two

methods are not statistically significant for all three performance measures.

We see that the proposed Method (Method 1) is not better than the other methods

(the classical approach and the average slack method) if robustness and stability are

considered separately. However, when we look at values of composite objective

function (Table 16), we see that the proposed method (Method 1) performs well. It is

better than other two methods (the average slack method and the classical approach) for

the makespan and total flow time criteria, and the differences are statistically

65

significant. Although the classical approach yields slightly better a numerical value for

total tardiness criteria, the difference is not significant.

Table 16. Composite Objective Function (0.85*Robustness + 0.15*Stability) Values

Makespan Total Tardiness Total Flow Time

Classical Approach 553.20 2845.59 3361.14

Slack Method 557.41 3203.87+ 3674.92+

Method 1 488.77* 2846.63 3320.76*

To summarize, we conclude that Method 1 is generally better than the average

slack method and the classical approach when a bicriterion approach that considers

both the stability and robustness measures is used. Further, we see that it is possible to

maintain high realized performance values (robustness) while increasing stability

significantly by using a bicritetion approach that gives slight weights to stability. The

relationship between robustness and stability is further discussed in the next section.

5.3.4. Robustness vs Stability

In this section, we further elaborate (or discuss) the performance of Method 1 for

varying values of r. Our experimental results indicate that Method 1 performs generally

better than the other methods the concern is to minimize (r * robustness + (1-r) *

stability) measure, for r=0, r=0.85, and r=1.0 (Sections 5.3.1, 5.3.2, and 5.3.3).

Tables 17-18, and Figure 13 summarize the experimental results.

Table 17. Robustness under Method 1 (Summary)

Robustness Values
r=0 r=0 r=0.85

Makespan 408.36 408.36 392.64
Total Tardiness 4070.64 4070.64 3169.73
Total Flow Time 4614.69 4614.69 3728.50

66

Table 18. Stability Values under Method 1 (Summary)

Stability Values
r=0 r=0.85 r=1.0

Makespan 916.03 1033.53 1452.09
Total Tardiness 916.03 1015.76 1044.33
Total Flow Time 916.03 1010.21 1035.42

a) Realized Performance Measures

b) Stability Values

Figure 13. Robustness vs Stability

Realized Performance Measures

0

1000

2000

3000

4000

5000

0 0.5 1 1.5

Makespan

Total Tardiness

Total Flow Time

Stability Values

0
200
400
600
800

1000
1200
1400
1600

0 0.5 1 1.5

Makespan

Total Tardiness

Total Flow
Time

67

The following observations can be made from the results:

For the makespan criterion, realized performance measure (robustness) is fairly

constant, (i.e., the robustness curve is nearly horizontal). That is, as we change the

value of r, we do not affect realized makespan at all. Similarly as we examine the

stability curve, we see that it abruptly deteriorates at r = 0.85.

For the remaining two performance measures (total tardiness, and total flow time

criteria) we see that the curves for both, robustness and stability are nearly linear. That

is, as we gradually increase r, we gradually improve robustness, whereas stability

gradually deteriorates. The absolute value of slope of robustness line (≈ 990) is greater

than the slope of stability line (≈ 120). We see that robustness is more sensitive to the

changes in r. Moreover, the lines are nearly parallel to each other; that is, the trade-off

between robustness and stability is independent from performance measures.

From the above two observations, we conclude that the practitioners should

emphasis on stability, rather than robustness for the makespan criterion. For the

remaining two performance measures (i.e., total tardiness and total flow time) there is a

linear trade-off (e.g., if we increase r by ∆r, we gain 990∆r units of robustness, whereas

we loose 120∆r units of stability for our problem set).

5.4. Comparison of Method 2 with Other Approaches

We compared the performance of Method 2, from the viewpoint of robustness, to the

average system slack and Method 1. We also used classical approach, which minimizes

planned (initial) performance measure, as a benchmark. As stated in Section 4.2.3.2,

Method 2 assumes a single machine breakdown for the whole scheduling period.

Because of this restrictive assumption, we decided to use a continuous scheduling

scheme that reschedules the system from scratch after each machine breakdown

(Response BR3 of Table 2).

We excluded 70-job and 90-job problems due to high computational burden of

Method 2. We generated five instances for each of the remaining 480 possible problem

68

classes (see Tables 9-10), leading to 2400 experimental design points. We run our TS

algorithm with 4 different neighbourhood evaluation functions (classical approach,

slack method, Method 1, and Method 2) for 3 performance measures (makespan, total

tardiness, and total flow time). This resulted in 2400 x 4 x 3 = 28800 runs. After a

machine breakdown remaining jobs are rescheduled from scratch. We recorded the

estimated performance measures, the realized performance measures, and stability

measures (total absolute job completion time differences). The results are presented in

Tables 33, 34, and 35 (in appendix) for makespan, total tardiness, and total flow time

performance measures, respectively. Figure 14 is also prepared to display estimated and

realized performance measures for makespan, total tardiness, and total flow time,

respectively. Table 19 presents a summary of the results. Note that the stability values

are also given even though our objective is to optimize robustness. We compared the

best two methods with each other for each group of Table 18. If the difference is

statistically significant according to paired-t test with α = 0.05, the figure that

summarizes the performance of that method is marked with a * sign. Similarly, if the

difference between the wost two methods is statistically significant, we marked the

corresponding figure with a + sign.

Table 19. Summary Table for Continuous Scheduling Results (Robustness)

Makespan Total Tardiness Total Flow Time

Classical Approach 232.81 961.24* 1278.14

Slack Method 262.86+ 1026.97 1328.53

Method 1 234.21 1000.80 1317.87

R
ob

us
tn

es
s

Method 2 237.61 1012.00 1296.14

Classical Approach 487.06 414.10 455.25

Slack Method 912.15 479.40+ 481.08

Method 1 494.85 401.06 437.12

St
ab

ili
ty

Method 2 1096.83+ 426.03 439.19

69

a) Makespan Estime-Realized Plot (Continuos Scheduling)

b) Total Tardiness Estimate-Realized Plot (Continuous Scheduling)

c) Total Flow Time Estimate-Realized Graph (Continuous Scheduling)

Figure 14. Estimate vs Realized Performance Measure Plots (Continuous Scheduling)

Makespan

0.00
50.00

100.00
150.00
200.00
250.00
300.00

Estimate Realized

Classical

Slack

Method 1

Method 2

Total Tardiness

0.00
200.00
400.00
600.00
800.00

1000.00
1200.00

Estimate Realized

Classical

Slack

Method 1

Method 2

Total Flow Time

0.00

500.00

1000.00

1500.00

Estimate Realized

Classical

Slack

Method 1

Method 2

70

After careful analysis of the results presented in these tables and Figure 14, we

can make the following observations:

In terms of robustness, the average slack method is not good at all for all three

performance measures. It yields the worst numerical results, but this is statistically

significant for only the makespan criterion. The classical approach yields the best

numerical values for all the three performance measures, and it is statistically the best

for the total tardiness criterion. The performance of the proposed methods, Method 1

and Method 2, lies in between. Method 1 is better than Method 2 when the makespan

and total tardiness criteria are considered, whereas Method 2 is better than Method 1 for

the total flow time criteria. Nonetheless, the difference between Method 1 and Method

2 is statistically significant for only the makespan criterion. The performance

degradation of Method 1 and inefficiency of Method 2 can be attributed to the fact that

both methods inherently assume right shift response to machine breakdowns, whereas

in reality after each machine breakdown the system is rescheduled from the scratch.

In terms of stability, Method 2 and the average slack method do not perform well.

Method 2 is statistically the worst for the makespan criterion, and the average slack

method is statistically worst for the total tardiness criterion. The average slack method

is also numerically the worst for total flow time criterion, but this is not statistically

significant. Method 1 and the classical approach seem to perform well, and these two

methods are competitive. The classical approach is better for the makespan criterion

whereas Method 1 yields better numerical results for the remaining two performance

measures (total tardiness and total flow time). Nonetheless, none of these differences is

statistically significant.

In short, we conclude that the classical approach is better and the both proposed

methods are inefficient for continuous scheduling scheme. Thus, better surrogate

measures should be developed for continuous scheduling environment. Note that, as

Church and Uzsoy (1992) discuss, the benefit of extra scheduling diminish rapidly.

Moreover scheduling after each machine breakdown creates system nervousness. We

believe that continuous scheduling under an adaptive scheduling approach (where

scheduling process is triggered after a certain amount of deviation from the initial

71

schedule) the proposed methods, especially Method 1, can maintain its high

performance. This topic requires investigation, and can be viewed as a further research

direction.

72

Chapter 6

Conclusion

In this thesis, we first addressed the notions of robustness and stability. We defined the

reactive scheduling problem with our notations and terms. Then, we defined some

measures for robustness (and stability) and pointed out some possible policies. After

that, an extensive literature review takes place. On seeing the exact measures are

difficult to calculate, we developed two new surrogate measures. Finally, we embedded

these surrogate measures into a TS algorithm to generate robust and stable schedules

for a single machine subject to random machine breakdowns.

We compared Method 1 with the other approaches (the average slack method and

the classical approach) using a periodic scheduling where type of response to machine

breakdowns is to right shift the remaining jobs. We first compared the alternative

approaches for a viewpoint of robustness, taking stability as a secondary goal. Our

experimental results show that the average slack method is not good at all, and Method

1 is generally better than the classical approach. In addition, it yields significantly more

stable schedules than the average slack method for the total tardiness and total flow

time criteria.

Next, we compared the alternatives approach from a viewpoint of stability, taking

robustness as a secondary objective. We see that Method 1 generates more stable

schedules than its alternatives for all three performance measures. We also observed

that the classical approach does not perform well in terms of stability (statistically the

worst alternative), however it is statistically the best alternative in terms of robustness.

73

Then, we wondered if it is possible to maintain high robustness and improve

stability significantly when we use a bicriterion approach that considers both robustness

and stability. We used 0.85 * robustness + 0.15 * stability as the neighbourhood

evaluation function in TS algorithm. We observed that the classical approach is

generally better in terms of robustness and the average slack method is generally better

in terms of stability although in both robustness and stability Method 1 is competitive.

However, we observe that when we evaluate the composite objection function, which

considers both robustness and stability simultaneously, Method 1 is generally better. In

addition we found out that it is possible to maintain high robustness while improving

stability significantly by means of this bicriterion approach, even when the weight of

the stability is as small as 0.15.

Next, we further analyze the performance of Method 1 with varying weights (r)

given to robustness. We observed that for the makespan criterion, the practitioners

should emphasize on stability because robustness is insensitive to the values of r. We

also observed that there is a linear trade-off between robustness and stability (i.e.,

improving one deteriorates the other). Our experimental results show that stability is

less sensitive to the changes in r than robustness (i.e, the absolute value of the slope of

the line that plots stability values against varying values of r is less than that of

robustness).

Finally, we compared the performance of Method 2 with the other alternatives

(the classical approach, the average slack method and Method 1) from the viewpoint of

robustness, taking stability as the secondary goal. Since Method 2 assumes a single

machine breakdown through the whole scheduling period, we compared the alternatives

in a continuos scheduling environment where the whole system is rescheduled from the

scratch after a machine breakdown. Our computational experiments indicate that the

performance of Method 1 deteriorates in a continuous scheduling environment, and

Method 2 is rather inefficient. In terms of robustness the classical approach yields the

best numerical values and this fact is statistically significant for the total tardiness

criterion. In terms of stability, which is the secondary goal, Method 1 and the classical

74

approach are competitive. The classical approach is better for the makespan criterion,

whereas Method 1 is better for the total tardiness and total flow time criteria.

We completed this study under a static environment with nonzero jobs arrival

times (can be called as semi-dynamic). We do not know the performance of our

proposed methods in a true dynamic environment. We also do not know the stability

performance of the proposed methods in a continuous scheduling environment, and

better surrogate measures for robustness should be developed for the same

environment. These three topics can be viewed as further research directions from

where we stand.

75

Bibliography

 [1] Adams, J., Balas, E., and Zawack, D. “The Shifting Bottleneck Procedure for Job

Shop Scheduling,” Management Science, 34 (1988), 391-401

 [2] Akturk, M. S., and Gorgulu, E., “Match-up Scheduling under a Machine

Breakdown,” European Journal of Operational Research, 112 (1999), 81-97

 [3] Aytug, H., Lawley, M., McKay, K., Mohan, S., and Uzsoy, R. “Executing

Production Schedules in the Face of Uncertainties: A Review and Some Future

Directions,” Technical Report, Purdue University, 2001.

 [4] Church, L. K., and Uzsoy, R., “Analysis of Periodic and Event-Driven

Rescheduling Policies in Dynamic Shops,” Internation Journal of Computer

Integrated Manufacturing, 5 (1992), 153-163

 [5] Applegate, D., and Cook, W., “A Computational Study of Job Shop Scheduling,”

Technical Report, CMU-CS-90-145, Carnegie Mellon University, School of

Computer Science, Pittsburgh, PA, (1990).

 [6] Carlier, J., “The One-Machine Sequencing Problem,” European Journal of

Operational Research, 11 (1982), 42-47

 [7] Daniels, R. L, and Kouvelis, P., “Robust Scheduling to Hedge Against Processing

Time Uncertainty in Single-Stage Production,” Management Science, 41.2 (1995),

363-376

76

 [8] Glover, F. W., and Laguna M., Tabu Search., Kluwer Academic Publishers, Boston,
1997.

 [9] Kempf, K., Uzsoy, R., Smith, S., and Gary, K. “Evaluation and Comparison of

Production Schedules,” Computers in Industry, 42 (2000), 203-220

 [10] Kutanoglu, E., and Sabuncuoglu, I. “Experimental Investigation of Iterative

Simulation-Based Scheduling in a Dynamic and Stochastic Job Shop,” Journal of

Manufacturing Systems, 20.4 (2001), 264-279

 [11] Laguna, M., Barnes, J. W., and Glover, F. W. “Tabu Search Methods for a Single

Machine Scheduling Problem,” Journal of Intelligent Manufacturing, 2 (1991),

63-74

 [12] Law, A. M., Kelton, W. D., Simulation Modeling and Analysis. 2nd ed., McGraw-

Hill, Inc., Singapore, 1991.

 [13] Lawrance, S., “Resource Constrained Project Scheduling: An Experimental

Investigation of Heuristic Scheduling Techniques,” GSIA, Carnegie Mellon

University, (1984).

 [14] Leon, V. J., Wu, S. D., and Storer, R. H., “Robustness Measures and Robust

Scheduling for Job Shops,” IIE Transactions, 26.5 (1994), 32-43

 [15] Mehta, S. V., and Uzsoy, R., “Predictable Scheduling of a Job Shop Subject to

Breakdowns,” IEEE Transactions on Robotics and Automation, 14.3 (1998), 365-

378

77

 [16] Mehta, S. V., and Uzsoy, R., “Predictable Scheduling of a Single Machine Subject

to Breakdowns,” Int. J. Computer Integrated Manufacturing, 12.1 (1999), 15-38

 [17] O’Donovan, R., Uzsoy, R., and McKay, K. N., “Predictable Scheduling of a Single

Machine with Breakdowns and Sensitive Jobs,” Int. J. Prod. Res., 37.18 (1999),

4217-4233

 [18] Pinedo, M., Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Inc., New

Jersey, 1995.

 [19] Rachamadugu, R. V., and Morton, T. E., “Myopic Heuristics for the Single

Machine Weighted Tardiness Problem,” Working Paper 30-82-83, Graduate School

of Industrial Administration, Carnegie Mellon University, (1982).

 [20] Sabuncuoglu, I., and Bayiz, M., “Analysis of Reactive Scheduling Problems in a

Job Shop Environment,” European Journal of Operational Research, 126 (2000),

567-586

 [21] Sabuncuoglu, I., and Hommertzheim, D. L., “Dynamic Dispatching Algorithm for

Scheduling Machines and AGVs in a Flexible Manufacturing System,”

International Journal of Production Research, 30 (1992), 1059-1080

 [22] Sabuncuoglu, I., and Karabuk, S., “Rescheduling Frequency in an FMS with

Uncertain Processing Times and Unreliable Machines,” Journal of Manufacturing

Systems, 18.4 (1999), 1-16

 [23] Wu, S. D., Byeon, E., and Storer, R. H., “A Graph-Theoretic Decomposition of the

Job Shop Scheduling Problem to Achieve Scheduling Robustness,” Operations

Research, 47.1 (1999), 113-124

78

 [24] Wu, S. D., Storer, R. N., and Chang P., “One-Machine Rescheduling Heuristics

with Efficiency and Stability as Criteria,” Computers Ops Res., 20.1 (1993), 1-14

 [25] Yamamoto, M., and Nof, S. Y., “Scheduling/Rescheduling in a Manufacturing

Operating System Environment,” International Journal of Production Research,

23.4 (1985), 705-722

79

Appendix

80

Table 20. Comparison of λλ Values - Total Tardiness Case

Use λλL + (1-λλ)UUse mean
λλ = 0.2 λλ = 0.4 λλ = 0.6 λλ = 0.8Parameter

Sim. Result Estimate Sim. Result Estimate Sim. Result Estimate Sim. Result Estimate Sim. Result Estimate
Breakdown

B1 2754.77 2428.57 2694.11 1982.04 2691.25 2039.42 2693.71 2162.13 2780.47 2541.50
B2 2080.04 2019.88 2075.30 1908.07 2074.96 1920.43 2078.28 1953.15 2087.51 2044.91
B3 4905.10 4160.70 3178.05 2485.31 4727.22 2649.24 4716.50 3103.20 5008.04 4740.85
B4 2536.08 2412.52 2519.90 2012.87 2507.06 2072.47 2516.25 2179.85 2555.77 2529.09

Number of Jobs
10 89.85 62.06 90.24 45.32 88.48 48.35 88.29 52.30 89.13 70.16
30 826.38 701.64 804.86 512.53 813.36 539.49 806.54 588.80 828.65 757.60
50 2316.70 2055.74 2290.58 1541.79 2247.56 1602.54 2272.87 1739.38 2354.70 2212.00
70 4550.99 4076.67 4442.40 3084.39 4457.42 3213.88 4444.71 3482.90 4617.67 4397.59
90 7561.07 6880.99 7455.63 5230.48 7393.79 5447.68 7393.52 5884.54 7649.58 7383.08

81

Table 20. (Cont’d)

Arrival parameter αα
0.25 6528.37 6214.33 6481.94 5194.58 6447.14 5332.71 6470.32 5609.63 6540.48 6491.04
0.50 4695.69 4310.33 4610.82 3314.72 4619.36 3452.23 4592.97 3729.03 4747.29 4596.94
0.75 2946.52 2499.01 2848.66 1560.35 2801.48 1688.24 2810.39 1945.30 3006.75 2782.52
1.25 837.63 545.60 811.49 223.74 801.14 249.13 807.86 314.98 881.51 698.37
1.75 336.77 207.82 330.79 121.13 331.48 129.64 324.38 148.97 363.71 251.56

Process Time
P1 2772.61 2449.06 2759.46 1854.72 2734.15 1931.83 2720.15 2085.05 2807.32 2624.58
P2 3365.39 3061.78 3274.02 2311.08 3266.09 2408.95 3282.22 2614.11 3408.57 3303.59

Due Date
D1 3393.83 3043.31 3337.69 2361.68 3314.88 2449.86 3298.89 2630.18 3433.99 3262.93
D2 3370.61 3047.28 3315.24 2349.08 3317.26 2442.18 3290.63 2627.67 3437.72 3256.15
D3 2663.79 2389.93 2616.12 1751.74 2595.56 1835.61 2626.24 2003.67 2677.80 2585.48
D4 2847.76 2541.16 2797.91 1869.11 2772.77 1953.91 2788.98 2136.81 2882.27 2751.78

Overall 3069.00 2755.42 3016.74 2082.90 3000.12 2170.39 3001.18 2349.58 3107.95 2964.09

82

Table 21. Comparison of λλ Values - Total Tardiness Case (Error Percentage - R2 values)

Use λλL + (1-λλ)U
Use mean

λλ = 0.2 λλ = 0.4 λλ= 0.6 λλ = 0.8Parameter
Error Perc. Coeff. Det. Error Perc. Coeff. Det. Error Perc. Coeff. Det. Error Perc. Coeff. Det. Error Perc. Coeff. Det.

Breakdown
B1 11.84 0.9969 26.43 0.9868 24.22 0.9888 19.73 0.9929 8.59 0.9969
B2 2.89 0.9997 8.06 0.9989 7.45 0.9992 6.02 0.9992 2.04 0.9997
B3 15.18 0.9926 21.80 0.9472 43.96 0.9611 34.21 0.9753 5.34 0.9959
B4 4.87 0.9991 20.12 0.9927 17.33 0.9950 13.37 0.9974 1.04 0.9993

Number of Jobs
10 30.93 0.9093 49.78 0.6545 45.35 0.7489 40.76 0.8209 21.28 0.9333
30 15.10 0.9714 36.32 0.8423 33.67 0.8639 27.00 0.9190 8.57 0.9845
50 11.26 0.9852 32.69 0.8707 28.70 0.9048 23.47 0.9433 6.06 0.9915
70 10.42 0.9872 30.57 0.8813 27.90 0.9106 21.64 0.9497 4.77 0.9944
90 8.99 0.9912 29.85 0.8856 26.32 0.9154 20.41 0.9554 3.48 0.9959

83

Table 21. (Cont’d)

Arrival parameter αα
0.25 4.81 0.9980 19.86 0.9527 17.29 0.9660 13.30 0.9843 0.76 0.9984
0.50 8.21 0.9961 28.11 0.9255 25.27 0.9458 18.81 0.9750 3.17 0.9972
0.75 15.19 0.9923 45.23 0.8555 39.74 0.9095 30.78 0.9616 7.46 0.9955
1.25 34.86 0.9733 72.43 0.4760 68.90 0.5796 61.01 0.7670 20.78 0.9904
1.75 38.29 0.9044 63.38 0.4984 60.89 0.5690 54.08 0.7130 30.84 0.9398

Process Time
P1 11.67 0.9914 32.79 0.9102 29.34 0.9325 23.35 0.9633 6.51 0.9964
P2 9.02 0.9943 29.41 0.9281 26.24 0.9472 20.36 0.9717 3.08 0.9970

Due Date
D1 10.33 0.9933 29.24 0.9261 26.10 0.9404 20.27 0.9711 4.98 0.9968
D2 9.59 0.9938 29.14 0.9204 26.38 0.9414 20.15 0.9696 5.28 0.9960
D3 10.28 0.9931 33.04 0.9189 29.28 0.9429 23.71 0.9667 3.45 0.9972
D4 10.77 0.9918 33.20 0.9164 29.53 0.9401 23.38 0.9653 4.53 0.9966

Overall 10.22 0.9930 30.96 0.9208 27.66 0.9414 21.71 0.9683 4.63 0.9965

84

Table 22. Comparison of λλ Values - Total Tardiness Case

Use λλL + (1-λλ)U
Use mean

λλ = 0.2 λλ = 0.4 λλ = 0.6 λλ = 0.8Parameter
Sim. Result Estimate Sim. Result Estimate Sim. Result Estimate Sim. Result Estimate Sim. Result Estimate

Breakdown
B1 3373.30 3029.25 3322.13 2571.79 3344.54 2642.70 3347.93 2762.81 3414.67 3147.96
B2 2700.01 2624.63 2687.07 2503.02 2683.70 2519.19 2689.58 2552.84 2705.14 2651.24
B3 5526.36 4803.55 5470.46 3027.90 5458.64 3260.96 5370.67 3730.22 5720.83 5416.69
B4 3165.22 3014.87 3172.44 2627.48 3163.72 2681.59 3146.64 2783.35 3210.79 3150.90

Number of Jobs
10 182.26 150.82 175.76 129.01 177.90 133.70 181.87 138.57 178.30 160.80
30 1154.50 1027.54 1137.87 820.28 1138.99 849.21 1142.19 903.74 1167.51 1088.34
50 2922.86 2638.73 2889.59 2096.57 2874.37 2159.15 2881.75 2309.28 2975.44 2807.71
70 5390.25 4917.82 5338.47 3903.24 5342.82 4037.22 5302.38 4308.36 5484.88 5240.96
90 8806.23 8105.46 8773.44 6463.64 8779.17 6701.27 8685.34 7126.58 9008.15 8660.67

85

Table 22. (Cont’d)

Arrival parameter αα
0.25 7248.90 6933.22 7243.61 5965.50 7245.41 6102.11 7226.83 6367.07 7313.27 7243.09
0.50 5482.04 5100.10 5498.10 4143.72 5471.94 4277.28 5449.92 4536.03 5570.92 5384.57
0.75 3658.79 3207.38 3575.67 2241.61 3595.29 2382.00 3539.80 2644.01 3770.24 3513.89
1.25 1325.81 1016.43 1290.82 614.31 1282.97 655.27 1263.64 742.97 1405.01 1172.74
1.75 740.56 583.25 706.93 447.59 717.64 463.90 713.33 496.45 754.85 644.19

Process Time
P1 3387.03 3064.55 3411.19 2467.22 3395.88 2549.17 3356.95 2702.71 3443.60 3256.75
P2 3995.41 3671.60 3914.86 2897.87 3929.42 3003.05 3920.46 3211.90 4082.11 3926.64

Due Date
D1 3712.63 3380.58 3677.55 2688.53 3680.33 2784.81 3640.66 2969.84 3772.09 3609.73
D2 3682.74 3371.58 3628.55 2694.32 3679.55 2788.76 3639.65 2965.65 3761.25 3592.53
D3 3677.55 3353.10 3680.67 2677.23 3639.81 2767.80 3647.99 2954.18 3748.58 3575.33
D4 3691.95 3367.03 3665.33 2670.11 3650.91 2763.07 3626.52 2939.56 3769.50 3589.18

Overall 3691.22 3368.07 3663.03 2682.55 3662.65 2776.11 3638.70 2957.31 3762.86 3591.70

86

Table 23. Comparison of λλ Values - Total Flow Time Case (Error Percentage - R2 values)

Use λλL + (1-λλ)U
Use mean

λλ = 0.2 λλ = 0.4 λλ = 0.6 λλ = 0.8Parameter
Error Perc. Coeff. Det. Error Perc. Coeff. Det. Error Perc. Coeff. Det. Error Perc. Coeff. Det. Error Perc. Coeff. Det.

Breakdown
B1 10.20 0.9967 22.59 0.9903 20.98 0.9911 17.48 0.9943 7.81 0.9980
B2 2.79 0.9998 6.85 0.9991 6.13 0.9994 5.08 0.9996 1.99 0.9998
B3 13.08 0.9942 44.65 0.9558 40.26 0.9635 30.54 0.9824 5.32 0.9953
B4 4.75 0.9995 17.18 0.9950 15.24 0.9958 11.55 0.9978 1.87 0.9995

Number of Jobs
10,00 17.25 0.9169 26.60 0.6732 24.84 0.7711 23.81 0.8111 9.82 0.9471
30,00 11.00 0.9787 27.91 0.8441 25.44 0.8774 20.88 0.9324 6.78 0.9897
50,00 9.72 0.9851 27.44 0.8672 24.88 0.9004 19.87 0.9402 5.64 0.9918
70,00 8.76 0.9896 26.88 0.8824 24.44 0.9101 18.75 0.9544 4.45 0.9942
90,00 7.96 0.9929 26.33 0.8945 23.67 0.9158 17.95 0.9615 3.86 0.9958

87

Table 23. (Cont’d)

Arrival parameter αα
0,25 4.35 0.9984 17.64 0.9619 15.78 0.9714 11.90 0.9876 0.96 0.9982
0,50 6.97 0.9979 24.63 0.9273 21.83 0.9531 16.77 0.9768 3.35 0.9983
0,75 12.34 0.9939 37.31 0.8886 33.75 0.9193 25.31 0.9715 6.80 0.9971
1,25 23.34 0.9846 52.41 0.6296 48.93 0.6961 41.20 0.8708 16.53 0.9913
1,75 21.24 0.9313 36.69 0.6972 35.36 0.7391 30.40 0.8275 14.66 0.9764

Process Time
P1 9.52 0.9937 27.67 0.9247 24.93 0.9438 19.49 0.9716 5.43 0.9967
P2 8.10 0.9953 25.98 0.9362 23.58 0.9482 18.07 0.9762 3.81 0.9968

Due Date
D1 8.94 0.9947 26.89 0.9314 24.33 0.9435 18.43 0.9733 4.30 0.9971
D2 8.45 0.9949 25.75 0.9405 24.21 0.9507 18.52 0.9771 4.49 0.9966
D3 8.82 0.9942 27.26 0.9268 23.96 0.9469 19.02 0.9736 4.62 0.9968
D4 8.80 0.9946 27.15 0.9281 24.32 0.9448 18.94 0.9734 4.78 0.9963

Overall 8.75 0.9946 26.77 0.9315 24.20 0.9465 18.73 0.9744 4.55 0.9967

88

Table 24. Makespan Results (Robustness)

Classical Slack Method 1Problem
Parameters

Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 348.08 376.88 997.01 437.29 464.07 720.83 347.87 376.55 1010.35
B2 348.48 357.75 315.49 438.32 447.10 228.11 347.49 356.64 321.19
B3 348.77 451.00 3519.56 436.84 523.79 2418.46 350.96 450.84 3454.10
B4 348.31 378.68 1057.86 436.20 464.92 752.74 348.82 378.59 1022.73

Number of Jobs
10 71.51 83.75 70.18 84.06 92.29 45.93 71.27 82.73 70.38
30 210.21 237.76 463.81 260.23 283.55 304.61 211.88 238.60 458.25
50 348.93 391.48 1174.14 436.33 473.72 799.23 348.53 390.67 1153.48
70 486.78 545.08 2187.82 614.18 666.77 1512.57 487.14 544.59 2151.46
90 624.63 697.31 3466.46 791.02 858.52 2487.85 625.11 696.67 3426.88

Arrival parameter αα
0.25 275.94 336.35 2061.56 317.43 371.42 1541.05 276.65 337.00 2016.97
0.5 277.94 336.79 2023.79 358.84 404.80 1284.53 279.18 338.52 2001.91
0.75 284.87 345.71 2013.91 398.04 436.60 1101.65 285.43 344.81 2019.24
1.25 380.10 404.57 908.32 494.88 523.60 751.01 379.44 402.08 859.24
1.75 523.20 531.96 354.83 616.62 638.43 471.95 523.22 530.87 363.09

Process time
P1 348.65 392.17 1490.34 442.37 481.35 1037.61 349.38 391.42 1454.56
P2 348.17 389.98 1454.62 431.95 468.59 1022.46 348.19 389.89 1449.62

Due Date
D1 349.71 392.86 1489.41 437.27 475.33 1032.37 348.59 391.97 1488.87
D2 348.05 390.46 1457.62 436.58 474.41 1024.80 348.51 389.81 1433.23
D3 347.82 389.84 1456.78 437.27 474.98 1030.56 348.68 389.64 1445.43
D4 348.05 391.15 1486.11 437.52 475.15 1032.42 349.36 391.19 1440.83

Overall 348.41 391.08 1472.48 437.16 474.97 1030.04 348.78 390.65 1452.09

89

Table 25. Total Tardiness Results (Robustness)

Problem
Parameters Classical Slack Method 1

Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 1852.86 2735.19 915.20 2491.19 3179.16 722.04 1976.09 2731.02 796.81
B2 1880.56 2144.13 278.98 2533.15 2722.89 204.76 1881.12 2114.06 251.54
B3 1839.23 4896.51 3134.87 2495.26 5013.85 2592.56 2456.47 4767.02 2407.38
B4 1865.37 2762.25 936.56 2473.72 3123.47 687.08 2056.34 2723.38 721.59

Number of Jobs
10 47.41 100.46 62.20 58.30 106.65 56.51 47.00 95.16 58.03
30 467.59 838.15 394.43 642.03 970.46 351.63 503.43 827.93 353.75
50 1364.56 2374.75 1051.65 1834.84 2643.94 849.39 1512.09 2303.45 843.70
70 2773.92 4663.76 1947.77 3721.26 5194.05 1528.52 3116.59 4600.80 1559.50
90 4644.04 7695.48 3125.96 6235.21 8634.11 2472.00 5283.42 7592.00 2406.68

Arrival parameter αα
0.25 4790.96 6535.08 1751.66 4681.17 6398.17 1725.28 4943.69 6477.75 1549.05
0.5 2937.00 4765.64 1843.90 3396.94 4756.40 1382.29 3356.02 4721.61 1400.71
0.75 1297.56 3125.23 1858.75 2532.80 3663.86 1169.85 1777.24 2981.14 1262.38
1.25 174.34 890.11 800.87 1064.49 1633.42 639.43 270.15 885.63 701.42
1.75 97.66 356.55 326.82 816.25 1097.36 341.20 115.43 353.22 308.09

Process time
P1 1655.13 2888.61 1276.38 2319.76 3232.11 955.16 1878.20 2798.19 968.98
P2 2063.88 3380.43 1356.42 2676.90 3787.57 1148.06 2306.80 3369.55 1119.68

Due Date
D1 2124.73 3427.29 1316.65 2755.81 3801.33 1059.40 2399.94 3385.17 1001.19
D2 2113.25 3450.47 1344.82 2724.93 3753.44 1036.09 2354.81 3368.96 1023.41
D3 1558.56 2788.74 1312.73 2205.60 3170.32 1044.54 1734.50 2711.28 1088.71
D4 1641.47 2871.59 1291.40 2306.97 3314.28 1066.43 1880.76 2870.07 1064.01

Overall 1859.50 3134.52 1316.40 2498.33 3509.84 1051.61 2092.50 3083.87 1044.33

90

Table 26. Total Flow Time Results (Robustness)

Problem
Parameters

Classical Slack Method 1

Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 2348.81 3273.53 924.72 2980.60 3666.37 685.77 2548.43 3335.51 787.08
B2 2382.96 2672.80 289.84 3021.90 3224.09 202.19 2446.21 2683.32 237.12
B3 2377.67 5581.48 3203.81 3017.62 5635.94 2618.32 3056.60 5490.58 2433.99
B4 2386.46 3321.03 934.57 2996.54 3706.85 710.31 2597.47 3280.97 683.50

Number of Jobs
10 129.22 178.23 49.01 142.31 191.02 48.71 132.03 186.97 54.94
30 748.10 1150.60 402.49 917.16 1260.37 343.21 793.22 1141.24 348.02
50 1853.53 2897.08 1043.55 2343.23 3191.87 848.63 2079.92 2935.13 855.21
70 3471.82 5459.03 1987.22 4405.80 5956.88 1551.08 3875.29 5412.71 1537.42
90 5667.20 8876.11 3208.90 7212.32 9691.44 2479.12 6430.42 8811.93 2381.51

Arrival parameter αα
0.25 5450.40 7241.08 1790.68 5355.62 7110.10 1754.49 5693.22 7233.02 1539.80
0.5 3617.07 5472.06 1854.99 3998.73 5415.22 1416.49 4079.39 5439.05 1359.66
0.75 1843.78 3690.71 1846.93 3034.99 4158.08 1123.09 2426.59 3667.22 1240.62
1.25 551.75 1423.98 872.22 1476.80 2118.98 642.18 671.73 1373.91 702.18
1.75 406.87 733.22 326.35 1154.69 1489.19 334.50 439.94 774.78 334.83

Process time
P1 2168.23 3463.04 1294.81 2832.85 3784.43 951.58 2429.00 3403.32 974.33
P2 2579.72 3961.38 1381.66 3175.48 4332.20 1156.72 2895.35 3991.87 1096.52

Due Date
D1 2382.29 3720.27 1337.98 2982.84 4030.47 1047.63 2669.22 3703.06 1033.83
D2 2376.84 3718.89 1342.05 3057.06 4103.01 1045.95 2672.12 3736.74 1064.62
D3 2379.55 3698.55 1318.99 2971.35 4025.82 1054.47 2650.98 3644.90 993.91
D4 2357.22 3711.14 1353.92 3005.42 4073.97 1068.55 2656.38 3705.69 1049.31

Overall 2373.97 3712.21 1338.23 3004.17 4058.31 1054.15 2662.18 3697.60 1035.42

91

Table 27. Makespan Results (Stability)

Problem
Parameters Classical Slack Method 1

Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 349.31 377.59 1003.31 438.87 465.58 714.96 378.75 401.67 678.74
B2 348.38 357.55 323.33 440.57 449.38 232.02 374.90 381.84 196.21
B3 348.44 450.90 3558.47 438.53 528.90 2451.96 379.86 461.02 2246.87
B4 348.15 378.47 1036.82 438.86 468.36 762.09 367.84 388.89 542.31

Number of Jobs
10 71.44 83.37 71.85 86.74 98.01 58.16 87.92 98.06 57.20
30 211.01 237.70 465.91 263.48 287.35 303.68 230.43 253.14 330.65
50 348.66 391.23 1167.71 438.93 478.15 822.49 375.60 409.18 746.29
70 485.88 543.85 2171.46 613.43 665.44 1516.27 523.43 567.22 1333.15
90 625.86 699.48 3525.50 793.46 861.32 2500.70 659.32 714.19 2112.86

Arrival parameter a
0.25 276.68 338.18 2129.52 320.37 375.70 1575.86 306.01 360.89 1465.76
0.5 279.11 340.19 2076.84 361.13 408.31 1298.94 314.14 360.41 1191.66
0.75 283.80 342.47 1981.11 398.99 439.20 1107.18 329.36 366.54 986.35
1.25 379.41 402.38 860.22 497.38 525.98 741.15 394.92 413.60 630.34
1.75 523.85 532.42 354.72 618.17 641.08 478.16 532.25 540.34 306.05

Process time
P1 349.04 391.54 1476.88 444.90 484.84 1045.98 379.05 411.83 854.13
P2 348.10 390.71 1484.09 433.52 471.27 1034.54 371.63 404.89 977.93

Due Date
D1 348.59 391.00 1486.24 439.83 478.67 1037.12 374.85 408.49 929.94
D2 349.43 392.44 1499.72 440.51 479.56 1047.61 375.65 408.53 924.37
D3 348.64 391.33 1493.01 437.57 475.90 1025.38 376.01 408.77 898.55
D4 347.61 389.74 1442.96 438.93 478.08 1050.91 374.85 407.64 911.27

Overall 348.57 391.13 1480.48 439.21 478.05 1040.26 375.34 408.36 916.03

92

Table 28. Total Tardiness Results (Stability)

Problem
Parameters

Classical Slack Method 1

Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 1858.57 2727.02 903.24 5824.41 6515.73 714.96 3274.47 3909.96 678.74
B2 1872.31 2145.02 288.99 5919.43 6140.72 232.02 3173.17 3347.33 196.21
B3 1849.60 4918.25 3145.30 5807.78 8186.62 2451.96 3428.98 5642.64 2246.87
B4 1826.34 2734.97 948.83 5804.11 6529.36 762.09 2862.31 3382.61 542.31

Number of Jobs
10 47.46 100.12 61.25 141.57 186.58 58.16 224.84 277.36 57.20
30 477.06 851.24 398.71 1472.87 1761.30 303.68 995.98 1313.45 330.65
50 1361.84 2350.31 1030.14 4297.54 5078.58 822.49 2490.32 3220.64 746.29
70 2732.97 4607.72 1934.38 8652.75 10140.43 1516.27 4926.17 6222.52 1333.15
90 4639.20 7747.18 3183.48 14629.92 17048.64 2500.70 7286.34 9319.20 2112.86

Arrival parameter a
0.25 4794.98 6544.49 1756.77 8186.63 9740.14 1575.86 6692.40 8125.71 1465.76
0.5 2936.46 4760.01 1838.90 7541.08 8824.66 1298.94 4888.83 6080.26 1191.66
0.75 1248.88 3080.65 1862.68 6177.81 7241.29 1107.18 3267.78 4225.96 986.35
1.25 178.39 904.49 813.47 4105.41 4794.23 741.15 680.01 1272.12 630.34
1.75 99.83 366.93 336.13 3183.72 3615.23 478.16 394.64 649.12 306.05

Process time
P1 1640.11 2871.50 1275.95 5908.81 6919.60 1045.98 3101.55 3917.45 854.13
P2 2063.30 3391.13 1367.23 5769.05 6766.61 1034.54 3267.91 4223.82 977.93

Due Date
D1 2117.34 3431.31 1328.22 6131.46 7160.10 1037.12 3431.46 4337.53 929.94
D2 2109.13 3440.86 1339.42 6121.87 7145.97 1047.61 3417.64 4342.29 924.37
D3 1548.17 2771.33 1307.65 5493.08 6468.65 1025.38 2906.36 3768.29 898.55
D4 1632.18 2881.76 1311.07 5609.31 6597.72 1050.91 2983.46 3834.43 911.27

Overall 1851.70 3131.31 1321.59 5838.93 6843.11 1040.26 3184.73 4070.64 916.03

93

Table 29. Total Flow Time Results (Stability)

Problem
Parameters Classical Slack Method 1

Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 2397.55 3306.12 908.57 6351.34 7055.97 714.96 3796.80 4468.65 678.74
B2 2417.06 2699.26 282.20 6449.37 6680.20 232.02 3690.68 3879.87 196.21
B3 2390.13 5541.98 3151.85 6334.86 8778.58 2451.96 3964.98 6172.51 2246.87
B4 2365.15 3306.39 941.25 6329.30 7086.32 762.09 3379.38 3937.72 542.31

Number of Jobs
10 130.18 185.63 55.44 234.85 279.16 58.16 328.10 395.19 57.20
30 759.42 1153.90 394.48 1778.98 2080.71 303.68 1298.97 1628.34 330.65
50 1868.94 2903.80 1034.86 4822.88 5610.67 822.49 3012.99 3763.77 746.29
70 3503.39 5455.05 1951.66 9393.97 10923.47 1516.27 5659.12 6969.51 1333.15
90 5700.43 8868.82 3168.39 15600.42 18107.33 2500.70 8240.63 10316.63 2112.86

Arrival parameter a
0.25 5498.51 7267.47 1768.96 8783.04 10344.66 1575.86 7307.55 8754.05 1465.76
0.5 3652.61 5502.95 1850.35 8122.12 9420.47 1298.94 5486.61 6688.68 1191.66
0.75 1844.46 3660.61 1816.14 6736.19 7837.53 1107.18 3839.50 4801.80 986.35
1.25 553.73 1377.96 824.24 4586.03 5324.64 741.15 1133.16 1743.58 630.34
1.75 413.05 758.19 345.14 3603.72 4074.06 478.16 772.98 1085.33 306.05

Process time
P1 2181.38 3433.25 1251.87 6438.10 7490.46 1045.98 3629.27 4468.51 854.13
P2 2603.56 3993.62 1390.06 6294.34 7310.08 1034.54 3786.65 4760.87 977.93

Due Date
D1 2399.42 3700.98 1301.55 6395.03 7420.25 1037.12 3695.49 4599.65 929.94
D2 2409.45 3741.23 1331.79 6405.11 7471.78 1047.61 3700.53 4611.37 924.37
D3 2390.20 3724.56 1334.37 6328.78 7359.83 1025.38 3729.74 4631.40 898.55
D4 2370.82 3686.97 1316.15 6335.95 7349.22 1050.91 3706.09 4616.33 911.27

Overall 2392.47 3713.44 1320.97 6366.22 7400.27 1040.26 3707.96 4614.69 916.03

94

Table 30. Makespan Results (Bicriterion)

Problem
Parameters Classical Slack Method 1

Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 348.23 377.29 1018.56 436.99 463.78 710.02 354.02 379.43 808.17
B2 348.31 357.42 311.58 437.31 446.05 226.25 349.68 357.54 244.95
B3 348.14 448.99 3507.81 437.68 525.05 2410.97 369.34 453.49 2384.19
B4 349.15 379.36 1056.89 437.02 465.44 748.44 355.64 380.11 696.82

Number of Jobs
10 71.25 82.49 67.12 84.33 94.33 55.00 72.02 83.00 65.66
30 210.11 237.45 465.34 260.73 283.47 299.55 215.07 238.56 355.22
50 349.22 392.04 1190.43 437.36 474.99 795.37 357.08 392.54 847.54
70 487.04 544.53 2199.57 613.49 665.93 1521.52 499.50 547.72 1531.87
90 624.66 697.30 3446.11 790.35 856.68 2448.16 642.18 701.40 2367.38

Arrival parameter a
0.25 276.47 338.49 2080.20 317.44 371.03 1528.31 281.84 337.58 1584.65
0.5 277.99 339.04 2070.08 358.98 405.50 1288.84 290.37 340.26 1393.33
0.75 284.74 343.24 1971.94 396.55 435.52 1103.28 304.65 347.45 1226.68
1.25 378.81 401.60 891.08 495.43 523.04 736.71 384.74 405.66 663.55
1.75 524.26 531.45 355.26 617.85 640.31 462.45 524.24 532.27 299.46

Process time
P1 348.73 390.84 1487.95 442.26 481.51 1036.38 357.75 393.35 980.68
P2 348.18 390.69 1459.48 432.24 468.65 1011.46 356.58 391.94 1086.39

Due Date
D1 348.91 391.66 1495.14 437.72 475.62 1030.24 357.02 392.71 1039.47
D2 348.23 390.93 1481.14 436.74 474.83 1029.74 356.69 391.64 1018.39
D3 348.19 390.70 1478.74 437.30 474.86 1002.15 357.52 393.20 1042.39
D4 348.50 389.77 1439.82 437.25 475.02 1033.55 357.46 393.02 1033.88

Overall 348.46 390.76 1473.71 437.25 475.08 1023.92 357.17 392.64 1033.53

95

Table 31. Total Tardiness Results (Bicriterion)

Problem
Parameters

Classical Slack Method 1

Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 1845.35 2716.65 905.44 2625.74 3263.01 669.35 2048.63 2789.16 774.41
B2 1852.68 2119.50 282.54 2613.61 2795.59 196.93 1916.33 2139.94 239.43
B3 1834.82 4874.08 3117.74 2645.83 5088.26 2513.66 2654.67 4950.64 2372.74
B4 1852.24 2754.51 943.26 2586.75 3215.92 667.44 2165.41 2799.16 676.44

Number of Jobs
10 47.70 99.61 59.85 60.57 107.03 53.00 47.20 94.77 56.95
30 468.44 849.52 407.72 673.25 985.62 335.55 531.50 850.07 345.11
50 1362.53 2356.58 1036.43 1935.03 2704.15 807.76 1570.60 2350.60 822.51
70 2771.91 4673.23 1961.31 3902.17 5340.13 1494.55 3253.02 4701.08 1508.66
90 4580.79 7601.98 3095.91 6518.89 8816.56 2368.35 5578.96 7852.10 2345.55

Arrival parameter a
0.25 4776.21 6495.76 1727.27 4669.26 6362.93 1702.33 5094.32 6600.59 1516.12
0.5 2924.17 4728.07 1819.39 3619.27 4895.74 1298.64 3558.37 4881.21 1342.84
0.75 1262.02 3088.36 1858.15 2658.27 3698.16 1077.01 1922.91 3084.91 1199.90
1.25 172.74 905.80 820.31 1218.72 1807.47 657.78 287.37 908.68 695.90
1.75 96.24 362.93 336.10 924.38 1189.19 323.46 118.32 373.24 324.03

Process time
P1 1638.12 2854.65 1261.57 2440.67 3326.22 926.25 1977.52 2901.69 966.46
P2 2054.42 3377.71 1362.92 2795.29 3855.17 1097.43 2415.00 3437.76 1065.05

Due Date
D1 2109.93 3386.56 1290.11 2883.52 3873.82 1003.16 2460.31 3467.77 1021.88
D2 2121.49 3438.00 1324.47 2815.58 3820.49 1012.20 2435.76 3430.54 1003.48
D3 1534.12 2754.81 1306.22 2350.90 3288.05 1015.05 1906.88 2844.02 1022.28
D4 1619.56 2885.37 1328.18 2421.94 3380.42 1016.96 1982.08 2936.57 1015.39

Overall 1846.27 3116.18 1312.24 2617.98 3590.70 1011.84 2196.26 3169.73 1015.76

96

Table 32. Total Flow Time Results (Bicriterion)

Problem
Parameters Classical Slack Method 1

Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 2389.24 3314.06 924.82 3123.75 3778.06 654.31 2588.88 3357.20 768.33
B2 2371.22 2647.62 276.41 3140.95 3340.85 199.90 2439.77 2675.87 236.10
B3 2404.65 5597.43 3192.78 3153.49 5665.02 2511.53 3173.50 5533.00 2359.50
B4 2377.33 3316.80 939.48 3112.31 3795.30 682.98 2671.02 3347.92 676.90

Number of Jobs
10 129.51 191.87 62.36 147.30 194.06 46.76 129.22 188.33 59.11
30 748.12 1152.80 404.69 950.01 1281.39 331.39 818.65 1163.35 344.70
50 1857.56 2903.60 1046.04 2423.41 3220.64 797.23 2076.91 2900.25 823.35
70 3516.37 5505.19 1988.83 4584.30 6065.19 1480.89 3984.13 5471.99 1487.86
90 5676.50 8841.43 3164.93 7558.11 9962.75 2404.64 6582.55 8918.57 2336.02

Arrival parameter a
0.25 5488.90 7274.45 1785.54 5351.47 7049.50 1698.03 5739.66 7258.66 1519.00
0.5 3609.69 5460.73 1851.04 4212.03 5522.83 1310.80 4177.20 5524.38 1347.18
0.75 1877.06 3740.51 1863.45 3232.12 4300.61 1068.49 2515.34 3694.19 1178.85
1.25 542.87 1362.02 819.15 1601.21 2233.08 631.87 715.06 1421.96 706.90
1.75 409.52 757.19 347.66 1266.30 1618.01 351.71 444.21 743.31 299.10

Process time
P1 2169.19 3444.00 1274.81 2944.45 3868.41 923.96 2480.53 3441.63 961.10
P2 2602.03 3993.96 1391.93 3320.80 4421.21 1100.40 2956.06 4015.37 1059.31

Due Date
D1 2383.30 3708.58 1325.28 3137.89 4134.12 996.23 2726.94 3734.07 1007.14
D2 2378.10 3720.77 1342.67 3106.88 4113.44 1006.56 2743.21 3773.56 1030.35
D3 2395.98 3742.02 1346.04 3164.68 4181.37 1016.69 2706.13 3727.94 1021.81
D4 2385.05 3704.54 1319.49 3121.05 4150.30 1029.25 2696.89 3678.42 981.53

Overall 2385.61 3718.98 1333.37 3132.63 4144.81 1012.18 2718.29 3728.50 1010.21

97

Table 33. Makespan Results (Continuous Scheduling)

Classical Slack Method 1 Method 2Problem
Parameters Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 210.33 225.12 340.46 261.47 264.41 704.81 210.32 226.43 347.69 209.40 228.58 831.64
B2 209.92 214.52 97.06 261.00 251.95 598.42 210.10 214.56 101.70 210.37 215.48 577.23
B3 210.11 266.72 1195.57 260.18 287.10 1346.78 211.40 270.25 1211.90 210.33 278.28 1929.84
B4 210.17 224.89 315.15 260.46 247.99 998.57 209.95 225.59 318.10 210.39 228.08 1048.62

Number of Jobs
10 71.76 77.80 36.56 84.10 89.01 47.18 71.39 79.63 46.26 71.24 80.69 75.47
30 210.74 235.33 403.09 261.54 267.01 647.72 210.46 235.34 415.57 209.91 238.25 882.19
50 347.89 385.30 1021.52 436.69 432.56 2041.53 349.47 387.65 1022.71 349.21 393.88 2332.84

Arrival parameter a
0.25 166.06 198.62 661.24 188.44 214.44 707.20 166.23 199.59 670.68 165.68 196.33 1329.33
0.5 168.45 199.95 669.14 214.08 232.08 1000.63 168.50 201.46 650.48 168.18 202.65 1202.58
0.75 173.76 203.30 633.98 237.21 243.71 976.35 173.85 202.76 628.49 173.94 207.56 942.56
1.25 228.95 242.09 287.02 296.44 279.26 1007.04 230.16 244.28 324.40 229.21 250.15 802.27
1.75 313.44 320.10 183.91 367.73 344.82 869.50 313.46 322.94 200.20 313.60 331.34 1207.42

Process time
P1 210.16 234.14 512.09 264.12 267.65 906.81 210.85 234.70 502.18 210.17 237.40 1095.67
P2 210.10 231.48 462.03 257.43 258.08 917.48 210.02 233.71 487.52 210.07 237.81 1097.99

Due Date
D1 210.81 232.95 491.40 260.56 261.72 921.02 210.73 234.36 485.63 210.56 236.07 1069.76
D2 209.54 232.91 477.32 260.96 262.46 905.39 210.62 233.83 499.53 210.12 237.70 1084.58
D3 209.71 232.44 489.01 260.43 261.92 928.70 210.07 234.44 516.68 209.62 238.19 1122.88
D4 210.48 232.94 490.50 261.17 265.35 893.48 210.35 234.19 477.56 210.19 238.47 1110.11

Overall 210.13 232.81 487.06 260.78 262.86 912.15 210.44 234.21 494.85 210.12 237.61 1096.83

98

Table 34. Total Tardiness Results (Continuous Scheduling)

Classical Slack Method 1 Method 2Problem
Parameters Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 618.60 866.15 315.67 846.58 972.41 375.02 664.65 903.88 312.54 674.59 936.21 314.68
B2 616.78 683.24 129.10 852.27 760.44 235.94 638.18 704.68 146.14 642.95 710.07 132.25
B3 629.91 1455.63 912.25 860.52 1526.51 924.01 811.82 1534.58 852.00 669.09 1535.97 946.98
B4 630.78 839.95 299.37 838.89 848.51 382.64 678.29 860.05 293.54 640.63 865.75 310.19

Number of Jobs
10 47.74 85.05 49.11 58.74 84.12 37.27 46.41 80.71 44.67 49.53 79.05 39.06
30 470.66 746.86 321.23 635.14 800.64 365.36 508.21 766.58 316.40 494.93 781.64 334.95
50 1353.66 2051.83 871.95 1854.81 2196.15 1035.58 1540.08 2155.10 842.09 1425.98 2175.31 904.07

Arrival parameter a
0.25 1569.75 2047.30 534.77 1567.04 2111.62 574.86 1619.24 2105.02 543.30 1617.77 2122.68 546.97
0.5 962.29 1425.49 605.21 1110.37 1495.89 505.33 1088.75 1512.32 590.31 1020.22 1492.41 575.85
0.75 440.91 880.92 530.46 821.81 971.08 533.04 586.91 926.33 478.94 491.80 959.90 566.19
1.25 90.18 298.30 264.04 421.44 353.69 444.20 129.22 311.45 258.53 96.16 326.07 290.55
1.75 56.97 154.21 136.00 327.16 202.56 339.59 67.05 148.86 134.20 58.11 158.95 150.57

Process time
P1 548.97 845.59 383.68 800.49 930.78 448.19 628.44 888.16 373.08 585.07 892.93 392.34
P2 699.06 1076.90 444.51 898.64 1123.16 510.62 768.03 1113.43 429.03 728.56 1131.07 459.71

Due Date
D1 763.10 1103.82 424.87 970.72 1173.07 496.51 857.53 1165.81 414.33 802.74 1154.92 418.93
D2 750.36 1126.06 458.80 985.93 1194.48 489.80 812.41 1139.97 427.60 780.92 1161.85 451.43
D3 474.48 776.79 374.49 694.58 861.28 489.78 533.12 827.41 392.52 496.55 843.18 422.09
D4 508.13 838.31 398.23 747.03 879.05 441.51 589.88 869.99 369.78 547.05 888.06 411.66

Overall 624.02 961.24 414.10 849.57 1026.97 479.40 698.24 1000.80 401.06 656.81 1012.00 426.03

99

Table 35. Total Flow Time Results (Continuous Scheduling)

Classical Slack Method 1 Method 2Problem
Parameters Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability Estimate Realized Stability
Breakdown

B1 911.05 1171.03 330.27 1141.24 1258.22 363.57 952.98 1219.73 359.54 907.19 1194.38 324.17
B2 912.13 980.27 165.71 1144.05 1058.04 236.06 913.67 974.14 155.53 913.57 986.18 140.53
B3 901.23 1807.14 974.52 1125.72 1849.58 934.00 1122.48 1905.64 900.64 904.82 1856.69 978.32
B4 928.85 1154.14 350.51 1122.95 1148.28 390.68 987.16 1171.96 332.75 909.34 1147.29 313.73

Number of Jobs
10 129.65 179.19 52.90 143.78 183.10 45.11 128.91 173.59 47.18 128.03 163.72 37.12
30 750.96 1039.47 319.95 918.27 1120.27 380.83 801.34 1071.64 320.27 746.12 1069.64 347.55
50 1859.34 2615.77 992.90 2338.42 2682.21 1017.29 2051.96 2708.37 943.90 1852.03 2655.05 932.90

Arrival parameter a
0.25 1957.58 2467.99 597.66 1924.43 2464.32 604.02 1988.68 2500.66 595.07 1927.52 2494.71 621.91
0.5 1305.10 1756.20 664.94 1445.45 1804.43 501.25 1447.65 1873.45 669.34 1294.89 1809.39 600.09
0.75 760.96 1246.63 613.00 1134.87 1325.12 541.35 918.67 1258.23 510.99 766.77 1241.67 564.93
1.25 304.24 565.14 277.97 637.53 631.81 440.05 358.37 575.46 264.51 312.90 558.63 266.76
1.75 238.70 354.76 122.70 525.17 416.95 318.70 256.98 381.53 145.68 241.55 376.28 142.25

Process time
P1 844.20 1159.30 412.14 1064.27 1208.85 437.99 902.82 1181.71 393.98 824.42 1158.13 390.88
P2 982.43 1396.99 498.37 1202.71 1448.20 524.16 1085.32 1454.02 480.25 993.04 1434.14 487.49

Due Date
D1 917.84 1278.28 458.75 1146.52 1348.58 490.35 993.65 1325.07 454.44 915.43 1288.20 420.24
D2 916.28 1268.89 445.66 1131.13 1312.78 470.27 997.30 1304.14 422.69 914.58 1309.92 447.55
D3 915.66 1288.60 455.22 1141.38 1326.77 477.12 984.19 1296.17 425.98 894.77 1287.40 447.94
D4 903.48 1276.81 461.38 1114.93 1325.98 486.56 1001.14 1346.08 445.35 910.13 1299.02 441.02

Overall 913.31 1278.14 455.25 1133.49 1328.53 481.08 994.07 1317.87 437.12 908.73 1296.14 439.19

100

SCHEDULE.C

#include <ctype.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define GAMMA_07 1.298055F
#define GAMMA_14 0.887264F
#define TAIL1 0.00455F
#define TAIL2 3.02769F

/* type definitions*/

typedef struct
 {
 int id;
 double completion_time;
 } schedule;

typedef struct
 {
 int id;
 int arrival_time;
 int process_time;
 int due_date;
 } job;

typedef struct
 {
 int first_job_id;
 int first_job_from_position;
 int first_job_to_position;
 int second_job_id;
 int second_job_from_position;
 int second_job_to_position;
 } movetype;

typedef struct node
 {
 int job_id;
 int to_position;
 int remaining_tenure;
 struct node *next;
 } tabu;

101

typedef struct
 {
 movetype moves;
 job *sequence;
 double obj_value;
 } element;

/* global variables */

const char *program_name; /* name of this program */
FILE *f, *g; /* input and output file handlers */
int nremainingjobs; /* number of remaining jobs */
int breakdown; /* breakdown scheme */
int tenure; /* tenure */
int objective; /* objective function to be used */
int performance_measure; /* performance measure to be used */
double best_obj; /* best objective value */
double current_obj; /* current objective value */
double (*obj_array[14])(job *, int weight); /* objective function table */
int verbose = 0; /* Shall we reveal details? */
int continuous = 0; /* Reschedule after m/c breakdown? */
int improve = 0; /* Shall we prompt when current best improves */
double lambda = 0; /* scale parameter of the gamma distribution */
tabu *tabu_list = NULL; /* points to the head of the tabu list */
tabu *tail = NULL; /* points to the last element in the tabu list */
job *jobs; /* job list */
element *neighbourhood; /* current solutions neighbourhood */
job *current_solution; /* current solution */
job *best_solution; /* best solution found so far */
int iIter, counter; /* number of current iteration */
double *cdf; /* cdf values for gamma distribution */
int interval = 0;
int last_improved = 0;
double mean_time_to_failure = 0;
double mean_repair_duration = 0;
double stabil;
int weight;

/* function decleration of external getopt() */
int getopt(int argc, char * const *argv, const char *optstring);

double power(double x, double y)
{
 if (x == 0) return 0;
 else if (y == 0) return 1;
 else return pow(x,y);
}

102

int fread_number (FILE * fp)
{
 int number;
 int sign;
 int c;

 do
 {
 c = getc (fp);
 }
 while (isspace (c));
 number = 0;
 sign = 0;
 if (c == '-')
 {
 sign = 1;
 c = getc (fp);
 }
 while (isdigit (c))
 {
 number = number * 10 + c - '0';
 c = getc (fp);
 }
 if (sign)
 number = 0 - number;
 return number;
}

double integrate(double (*f)(double), double lower, double upper)
{
 double increment = 0.01;
 double sum = 0;
 double index;

 for (index = lower; index < upper; index += increment)
 sum += (((f(index) + f(index + increment)) / 2.0) * increment);
 return sum;
}

double failure_dist(double x)
{
 return (power(lambda, 0.7) * power(x, -0.3) * exp(-lambda * x) / GAMMA_07);
}

double repair_dist(double x)
{
 return (power(lambda, 1.4) * power(x, 0.4) * exp(-lambda * x) / GAMMA_14);
}

103

double makespan(job *sequence, int r)
{
 int *completion_times;
 int i;
 int cmax;

 completion_times = (int *) malloc(nremainingjobs * sizeof(int));

 completion_times[0] = sequence[0].arrival_time + sequence[0].process_time;
 for (i = 1; i < nremainingjobs; i++)
 completion_times[i] = sequence[i].process_time +
 ((completion_times[i - 1] < sequence[i].arrival_time) ?
 sequence[i].arrival_time :
 completion_times[i - 1]);

 cmax = completion_times[nremainingjobs - 1];
 free(completion_times);
 return cmax;
}

double tardiness(job *sequence, int r)
{
 int *completion_times;
 int i;
 int tardy;
 int sum = 0;

 completion_times = (int *) malloc(nremainingjobs * sizeof(int));

 completion_times[0] = sequence[0].arrival_time + sequence[0].process_time;
 for (i = 1; i < nremainingjobs; i++)
 completion_times[i] = sequence[i].process_time +
 ((completion_times[i - 1] < sequence[i].arrival_time) ?
 sequence[i].arrival_time :
 completion_times[i - 1]);

 for (i = 0; i < nremainingjobs; i++)
 sum += ((tardy = completion_times[i] - sequence[i].due_date) > 0 ? tardy : 0);
 free(completion_times);
 return sum;
}

double flowtime(job *sequence, int r)
{
 int *completion_times;
 int i;
 int sum = 0;

 completion_times = (int *) malloc(nremainingjobs * sizeof(int));

 completion_times[0] = sequence[0].arrival_time + sequence[0].process_time;
 for (i = 1; i < nremainingjobs; i++)
 completion_times[i] = sequence[i].process_time +
 ((completion_times[i - 1] < sequence[i].arrival_time) ?

104

 sequence[i].arrival_time :
 completion_times[i - 1]);

 for (i = 0; i < nremainingjobs; i++)
 sum += (completion_times[i] - sequence[i].arrival_time);
 free(completion_times);
 return sum;
}

int get_total_idle_time(double *start_times, double *completion_times, int index, int
job)
{
 int i;
 double sum = 0;

 for (i = index; i < job; i++)
 sum += ((completion_times[i] < start_times[i + 1]) ?
 (start_times[i + 1] - completion_times[i]) : 0);
 return sum;
}

double method1_stability(job *sequence, int r)
{
 double *completion_times;
 double *completion_times1;
 int i;
 double tnow = 0;
 int job_completed;
 double busy_time = 0;
 double remaining_process;
 double mean_busy_time;
 double sum = 0;
 double tail1, tail2;

 tail1 = (mean_time_to_failure / 0.7) * TAIL1;
 tail2 = (mean_time_to_failure / 0.7) * TAIL2;
 mean_busy_time = 0.6 * tail1 + 0.4 * tail2;
 completion_times = (double *) malloc(nremainingjobs * sizeof(double));
 completion_times1 = (double *) malloc(nremainingjobs * sizeof(double));

 completion_times[0] = sequence[0].arrival_time + sequence[0].process_time;
 for (i = 1; i < nremainingjobs; i++)
 completion_times[i] = sequence[i].process_time +
 ((completion_times[i - 1] < sequence[i].arrival_time) ?
 sequence[i].arrival_time :
 completion_times[i - 1]);

 tnow = sequence[0].arrival_time;
 for (i = 0; i < nremainingjobs; i++)
 {
 job_completed = 0;
 remaining_process = sequence[i].process_time;
 if (busy_time == mean_busy_time)
 {

105

 tnow += mean_repair_duration;
 busy_time = 0;
 }
 if (tnow < sequence[i].arrival_time) tnow = sequence[i].arrival_time;
 do
 {
 if (remaining_process > mean_busy_time - busy_time)
 {
 tnow += (mean_repair_duration + mean_busy_time - busy_time);
 remaining_process -= mean_busy_time - busy_time;
 busy_time = 0;
 }
 else
 {
 busy_time += remaining_process;
 tnow += remaining_process;
 job_completed = 1;
 }
 }
 while (!job_completed);
 completion_times1[i] = tnow;
 }
 for (i = 0; i < nremainingjobs; i++)
 sum += (completion_times[i] < completion_times1[i] ?
 completion_times1[i] - completion_times[i] :
 completion_times[i] - completion_times1[i]);
 free(completion_times);
 free(completion_times1);
 return (sum);
}

double method2_stability(job *sequence, int r)
{
 double *start_times;
 double *completion_times;
 double *stability_values;
 double *temp_completion_times;
 double *probabilities;
 int i, j, k;
 double idle;
 double sum = 0;
 int total_busy_time_before;

 start_times = (double *) malloc (nremainingjobs * sizeof(double));
 completion_times = (double *) malloc (nremainingjobs * sizeof(double));
 stability_values = (double *) malloc (nremainingjobs * sizeof(double));
 temp_completion_times = (double *) malloc (nremainingjobs * sizeof(double));
 probabilities = (double *) malloc (nremainingjobs * sizeof(double));
 start_times[0] = sequence[0].arrival_time;
 completion_times[0] = start_times[0] + sequence[0].process_time;
 for (i = 1; i < nremainingjobs; i++)
 {
 start_times[i] = sequence[i].arrival_time < completion_times[i-1] ?
 completion_times[i-1] :

106

 sequence[i].arrival_time;
 completion_times[i] = start_times[i] + sequence[i].process_time;
 }
 for (i = 0; i < nremainingjobs; i++)
 {
 sum = 0;
 for (j = 0; j < nremainingjobs; j++)
 {
 if (j < i) temp_completion_times[j] = completion_times[j];
 else temp_completion_times[j] = completion_times[j] +
 ((idle = get_total_idle_time(start_times, completion_times, i, j)) >
 mean_repair_duration ? 0 : (mean_repair_duration - idle));
 }
 for (k = 0; k < nremainingjobs; k++)
 sum += (temp_completion_times[k] - completion_times[k]);
 stability_values[i] = sum;
 total_busy_time_before = 0;
 for (k = 0; k < i; k++) total_busy_time_before += sequence[k].process_time;
 probabilities[i] = cdf[total_busy_time_before + sequence[i].process_time]
 - cdf[total_busy_time_before];
 }

 for (i = 0; i < nremainingjobs; i++)
 sum += (probabilities[i] * stability_values[i]);

 free (start_times);
 free (completion_times);
 free (stability_values);
 free (temp_completion_times);
 free (probabilities);
 return (sum);
}

double slack_makespan (job *sequence, int r)
{
 int i, j;
 int *completion_times;
 int *start_times;
 int sum, slack = 0;

 start_times = (int *) malloc (nremainingjobs * sizeof(int));
 completion_times = (int *) malloc (nremainingjobs * sizeof(int));
 start_times[0] = sequence[0].arrival_time;
 completion_times[0] = start_times[0] + sequence[0].process_time;
 for (i = 1; i < nremainingjobs; i++)
 {
 start_times[i] = sequence[i].arrival_time < completion_times[i-1] ?
 completion_times[i-1] :
 sequence[i].arrival_time;
 completion_times[i] = start_times[i] + sequence[i].process_time;
 }

107

 for (i = 0; i < nremainingjobs; i++)
 {
 sum = 0;
 for (j = i + 1; j < nremainingjobs; j++) sum += sequence[j].process_time;
 slack += (completion_times[nremainingjobs -1] - sum - completion_times[i]);
 }
 free(start_times);
 free(completion_times);
 return (r * (makespan(sequence, r) - slack) / 100.0 + (r - 100) * slack / 100.0);
}

double slack_tardiness (job *sequence, int r)
{
 int i, j;
 int *completion_times;
 int *start_times;
 int sum, slack = 0;

 start_times = (int *) malloc (nremainingjobs * sizeof(int));
 completion_times = (int *) malloc (nremainingjobs * sizeof(int));
 start_times[0] = sequence[0].arrival_time;
 completion_times[0] = start_times[0] + sequence[0].process_time;
 for (i = 1; i < nremainingjobs; i++)
 {
 start_times[i] = sequence[i].arrival_time < completion_times[i-1] ?
 completion_times[i-1] :
 sequence[i].arrival_time;
 completion_times[i] = start_times[i] + sequence[i].process_time;
 }
 for (i = 0; i < nremainingjobs; i++)
 {
 sum = 0;
 for (j = i + 1; j < nremainingjobs; j++) sum += sequence[j].process_time;
 slack += (completion_times[nremainingjobs -1] - sum - completion_times[i]);
 }
 free(start_times);
 free(completion_times);
 return (r * (tardiness(sequence, r) - slack) / 100.0 + (r - 100) * slack / 100.0);
}

double slack_flowtime (job *sequence, int r)
{
 int i, j;
 int *completion_times;
 int *start_times;
 int sum, slack = 0;

 start_times = (int *) malloc (nremainingjobs * sizeof(int));
 completion_times = (int *) malloc (nremainingjobs * sizeof(int));
 start_times[0] = sequence[0].arrival_time;
 completion_times[0] = start_times[0] + sequence[0].process_time;

108

 for (i = 1; i < nremainingjobs; i++)
 {
 start_times[i] = sequence[i].arrival_time < completion_times[i-1] ?
 completion_times[i-1] :
 sequence[i].arrival_time;
 completion_times[i] = start_times[i] + sequence[i].process_time;
 }
 for (i = 0; i < nremainingjobs; i++)
 {
 sum = 0;
 for (j = i + 1; j < nremainingjobs; j++) sum += sequence[j].process_time;
 slack += (completion_times[nremainingjobs -1] - sum - completion_times[i]);
 }
 free(start_times);
 free(completion_times);
 return (r * (flowtime(sequence, r) - slack) / 100.0 + (r - 100) * slack / 100.0);
}

double method1_makespan(job *sequence, int r)
{
 double *completion_times;
 int i;
 double tnow = 0;
 int job_completed;
 double busy_time = 0;
 double remaining_process;
 double mean_busy_time;
 double cmax;
 double tail1, tail2;

 tail1 = (mean_time_to_failure / 0.7) * TAIL1;
 tail2 = (mean_time_to_failure / 0.7) * TAIL2;
 mean_busy_time = 0.6 * tail1 + 0.4 * tail2;
 completion_times = (double *) malloc(nremainingjobs * sizeof(double));

 tnow = sequence[0].arrival_time;
 for (i = 0; i < nremainingjobs; i++)
 {
 job_completed = 0;
 remaining_process = sequence[i].process_time;
 if (busy_time == mean_busy_time)
 {
 tnow += mean_repair_duration;
 busy_time = 0;
 }
 if (tnow < sequence[i].arrival_time) tnow = sequence[i].arrival_time;
 do
 {
 if (remaining_process > mean_busy_time - busy_time)
 {
 tnow += (mean_repair_duration + mean_busy_time - busy_time);
 remaining_process -= mean_busy_time - busy_time;
 busy_time = 0;
 }

109

 else
 {
 busy_time += remaining_process;
 tnow += remaining_process;
 job_completed = 1;
 }
 }
 while (!job_completed);
 completion_times[i] = tnow;
 }
 cmax = completion_times[nremainingjobs - 1];
 free(completion_times);
 return (r * cmax / 100.0 + (100 - r) * method1_stability(sequence, r) / 100.0);
}

double method1_tardiness(job *sequence, int r)
{
 double *completion_times;
 int i;
 double tnow = 0;
 int job_completed;
 double busy_time = 0;
 double remaining_process;
 double sum = 0, tardy;
 double mean_busy_time;
 double tail1, tail2;

 tail1 = (mean_time_to_failure / 0.7) * TAIL1;
 tail2 = (mean_time_to_failure / 0.7) * TAIL2;
 mean_busy_time = 0.6 * tail1 + 0.4 * tail2;
 completion_times = (double *) malloc(nremainingjobs * sizeof(double));

 tnow = sequence[0].arrival_time;
 for (i = 0; i < nremainingjobs; i++)
 {
 job_completed = 0;
 remaining_process = sequence[i].process_time;
 if (busy_time == mean_busy_time)
 {
 tnow += mean_repair_duration;
 busy_time = 0;
 }
 if (tnow < sequence[i].arrival_time) tnow = sequence[i].arrival_time;
 do
 {
 if (remaining_process > mean_busy_time - busy_time)
 {
 tnow += (mean_repair_duration + mean_busy_time - busy_time);
 remaining_process -= mean_busy_time - busy_time;
 busy_time = 0;
 }

110

 else
 {
 busy_time += remaining_process;
 tnow += remaining_process;
 job_completed = 1;
 }
 }
 while (!job_completed);
 completion_times[i] = tnow;
 }
 for (i = 0; i < nremainingjobs; i++)
 sum += ((tardy = completion_times[i] - sequence[i].due_date) > 0 ? tardy : 0);
 free(completion_times);
 return (r * sum / 100.0 + (100 - r) * method1_stability(sequence, r) / 100.0);
}

double method1_flowtime(job *sequence, int r)
{
 double *completion_times;
 int i;
 double tnow = 0;
 int job_completed;
 double busy_time = 0;
 double remaining_process;
 double sum = 0;
 double mean_busy_time;
 double tail1, tail2;

 tail1 = (mean_time_to_failure / 0.7) * TAIL1;
 tail2 = (mean_time_to_failure / 0.7) * TAIL2;
 mean_busy_time = 0.6 * tail1 + 0.4 * tail2;
 completion_times = (double *) malloc(nremainingjobs * sizeof(double));

 tnow = sequence[0].arrival_time;
 for (i = 0; i < nremainingjobs; i++)
 {
 job_completed = 0;
 remaining_process = sequence[i].process_time;
 if (busy_time == mean_busy_time)
 {
 tnow += mean_repair_duration;
 busy_time = 0;
 }
 if (tnow < sequence[i].arrival_time) tnow = sequence[i].arrival_time;
 do
 {
 if (remaining_process > mean_busy_time - busy_time)
 {
 tnow += (mean_repair_duration + mean_busy_time - busy_time);
 remaining_process -= mean_busy_time - busy_time;
 busy_time = 0;
 }

111

 else
 {
 busy_time += remaining_process;
 tnow += remaining_process;
 job_completed = 1;
 }
 }
 while (!job_completed);
 completion_times[i] = tnow;
 }
 for (i = 0; i < nremainingjobs; i++)
 sum += (completion_times[i] - sequence[i].arrival_time);
 free(completion_times);
 return (r * sum / 100.0 + (100 - r) * method1_stability(sequence, r) / 100.0);
}

double method2_makespan(job *sequence, int r)
{
 double *start_times;
 double *completion_times;
 double *makespan_values;
 double *temp_completion_times;
 double *probabilities;
 int i, j, k;
 double idle;
 double sum = 0;
 int total_busy_time_before;

 start_times = (double *) malloc (nremainingjobs * sizeof(double));
 completion_times = (double *) malloc (nremainingjobs * sizeof(double));
 makespan_values = (double *) malloc (nremainingjobs * sizeof(double));
 temp_completion_times = (double *) malloc (nremainingjobs * sizeof(double));
 probabilities = (double *) malloc (nremainingjobs * sizeof(double));
 start_times[0] = sequence[0].arrival_time;
 completion_times[0] = start_times[0] + sequence[0].process_time;
 for (i = 1; i < nremainingjobs; i++)
 {
 start_times[i] = sequence[i].arrival_time < completion_times[i-1] ?
 completion_times[i-1] :
 sequence[i].arrival_time;
 completion_times[i] = start_times[i] + sequence[i].process_time;
 }
 for (i = 0; i < nremainingjobs; i++)
 {
 sum = 0;
 for (j = 0; j < nremainingjobs; j++)
 {
 if (j < i) temp_completion_times[j] = completion_times[j];
 else temp_completion_times[j] = completion_times[j] +
 ((idle = get_total_idle_time(start_times, completion_times, i, j)) >
 mean_repair_duration ? 0 : (mean_repair_duration - idle));
 }
 makespan_values[i] = temp_completion_times[nremainingjobs - 1];
 total_busy_time_before = 0;

112

 for (k = 0; k < i; k++) total_busy_time_before += sequence[k].process_time;
 probabilities[i] = cdf[total_busy_time_before + sequence[i].process_time]
 - cdf[total_busy_time_before];
 }

 for (i = 0; i < nremainingjobs; i++)
 sum += (probabilities[i] * makespan_values[i]);

 free (start_times);
 free (completion_times);
 free (makespan_values);
 free (temp_completion_times);
 free (probabilities);
 return (r * sum / 100.0 + (100 - r) * method2_stability(sequence, r) / 100.0);
}

double method2_tardiness (job *sequence, int r)
{
 double *start_times;
 double *completion_times;
 double *tardiness_values;
 double *temp_completion_times;
 double *probabilities;
 int i, j, k;
 double tardy, idle, sum;
 int total_busy_time_before;

 start_times = (double *) malloc (nremainingjobs * sizeof(double));
 completion_times = (double *) malloc (nremainingjobs * sizeof(double));
 tardiness_values = (double *) malloc (nremainingjobs * sizeof(double));
 temp_completion_times = (double *) malloc (nremainingjobs * sizeof(double));
 probabilities = (double *) malloc (nremainingjobs * sizeof(double));
 start_times[0] = sequence[0].arrival_time;
 completion_times[0] = start_times[0] + sequence[0].process_time;
 for (i = 1; i < nremainingjobs; i++)
 {
 start_times[i] = sequence[i].arrival_time < completion_times[i-1] ?
 completion_times[i-1] :
 sequence[i].arrival_time;
 completion_times[i] = start_times[i] + sequence[i].process_time;
 }
 for (i = 0; i < nremainingjobs; i++)
 {
 tardy = sum = 0;
 for (j = 0; j < nremainingjobs; j++)
 {
 if (j < i) temp_completion_times[j] = completion_times[j];
 else temp_completion_times[j] = completion_times[j] +
 ((idle = get_total_idle_time(start_times, completion_times, i, j)) >
 mean_repair_duration ? 0 : (mean_repair_duration - idle));
 }
 for (k = 0; k < nremainingjobs; k++)
 sum += ((tardy = temp_completion_times[k] - sequence[k].due_date) > 0 ? tardy :
0);

113

 tardiness_values[i] = sum;
 total_busy_time_before = 0;
 for (k = 0; k < i; k++) total_busy_time_before += sequence[k].process_time;
 probabilities[i] = cdf[total_busy_time_before + sequence[i].process_time]
 - cdf[total_busy_time_before];
 }
 sum = 0;
 for (i = 0; i < nremainingjobs; i++)
 sum += (probabilities[i] * tardiness_values[i]);
 free (start_times);
 free (completion_times);
 free (tardiness_values);
 free (temp_completion_times);
 free (probabilities);
 return (r * sum / 100.0 + (100 - r) * method2_stability(sequence, r) / 100.0);
}

double method2_flowtime(job *sequence, int r)
{
 double *start_times;
 double *completion_times;
 double *flowtime_values;
 double *temp_completion_times;
 double *probabilities;
 int i, j, k;
 double idle;
 double sum = 0;
 int total_busy_time_before;

 start_times = (double *) malloc (nremainingjobs * sizeof(double));
 completion_times = (double *) malloc (nremainingjobs * sizeof(double));
 flowtime_values = (double *) malloc (nremainingjobs * sizeof(double));
 temp_completion_times = (double *) malloc (nremainingjobs * sizeof(double));
 probabilities = (double *) malloc (nremainingjobs * sizeof(double));
 start_times[0] = sequence[0].arrival_time;
 completion_times[0] = start_times[0] + sequence[0].process_time;
 for (i = 1; i < nremainingjobs; i++)
 {
 start_times[i] = sequence[i].arrival_time < completion_times[i-1] ?
 completion_times[i-1] :
 sequence[i].arrival_time;
 completion_times[i] = start_times[i] + sequence[i].process_time;
 }
 for (i = 0; i < nremainingjobs; i++)
 {
 sum = 0;
 for (j = 0; j < nremainingjobs; j++)
 {
 if (j < i) temp_completion_times[j] = completion_times[j];
 else temp_completion_times[j] = completion_times[j] +
 ((idle = get_total_idle_time(start_times, completion_times, i, j)) >
 mean_repair_duration ? 0 : (mean_repair_duration - idle));
 }
 for (k = 0; k < nremainingjobs; k++)

114

 sum += (temp_completion_times[k] - sequence[k].arrival_time);
 flowtime_values[i] = sum;
 total_busy_time_before = 0;
 for (k = 0; k < i; k++) total_busy_time_before += sequence[k].process_time;
 probabilities[i] = cdf[total_busy_time_before + sequence[i].process_time]
 - cdf[total_busy_time_before];
 }

 for (i = 0; i < nremainingjobs; i++)
 sum += (probabilities[i] * flowtime_values[i]);

 free (start_times);
 free (completion_times);
 free (flowtime_values);
 free (temp_completion_times);
 free (probabilities);
 return (r * sum / 100.0 + (100 - r) * method2_stability(sequence, r) / 100.0);
}

double get_failure()
{
 double b, e, u1, u2, p, y, x;
 e = exp(1);
 b = (e + 0.7) / e;
 for (;;)
 {
 u1 = (double) rand() / RAND_MAX;
 p = b * u1;
 if (p > 1)
 {
 y = -log((b - p) / 0.7);
 u2 = (double) rand() / RAND_MAX;
 if (u2 <= pow (y, -0.3))
 {
 x = y;
 break;
 }
 }
 else
 {
 y = pow(p, 1.0 / 0.7);
 u2 = (double) rand() / RAND_MAX;
 if (u2 <= exp(-y))
 {
 x = y;
 break;
 }
 }
 }
 return ((mean_time_to_failure / 0.7) * x);
}

115

double get_repair()
{
 double a, b, q, teta, d, u1, u2, v, y, z, w, x;

 a = 1.0 / sqrt(1.8);
 b = 1.4 - log(4);
 q = 1.4 + 1.0 / a;
 teta = 4.5;
 d = 1 + log(teta);

 for (;;)
 {
 u1 = (double) rand() / RAND_MAX;
 u2 = (double) rand() / RAND_MAX;
 v = a * log(u1 / (1 - u1));
 y = 1.4 * exp(v);
 z = u1 * u1 * u2;
 w = b + q * v - y;
 if (w + d - teta * z >= 0)
 {
 x = y;
 break;
 }
 else
 {
 if (w >= log (z))
 {
 x = y;
 break;
 }
 }
 }
 return ((mean_repair_duration / 1.4) * x);
}

double simulate_makespan(job *sequence)
{
 double stability_values[5];
 double makespan_values[5];
 double *completion_times;
 double *completion_times1;
 int i, counter;
 double tnow;
 int job_completed;
 double busy_time;
 double remaining_process;
 double cmax = 0;
 double next_failure;

 completion_times = (double *) malloc(nremainingjobs * sizeof(double));
 completion_times1 = (double *) malloc(nremainingjobs * sizeof(double));

116

 for (counter = 0; counter < 5; counter++)
 {
 busy_time = 0;
 next_failure = get_failure();
 tnow = sequence[0].arrival_time;
 for (i = 0; i < nremainingjobs; i++)
 {
 job_completed = 0;
 remaining_process = sequence[i].process_time;
 if (busy_time == next_failure)
 {
 tnow += get_repair();
 busy_time = 0;
 next_failure = get_failure();
 }
 if (tnow < sequence[i].arrival_time) tnow = sequence[i].arrival_time;
 do
 {
 if (remaining_process > next_failure - busy_time)
 {
 tnow += (get_repair() + next_failure - busy_time);
 remaining_process -= (next_failure - busy_time);
 busy_time = 0;
 next_failure = get_failure();
 }
 else
 {
 busy_time += remaining_process;
 tnow += remaining_process;
 job_completed = 1;
 }
 }
 while (!job_completed);
 completion_times[i] = tnow;
 }
 completion_times1[0] = sequence[0].process_time + sequence[0].arrival_time;
 for (i = 1; i < nremainingjobs; i++)
 {
 completion_times1[i] = sequence[i].process_time +
 (sequence[i].arrival_time < completion_times1[i-1] ?
 completion_times1[i-1] : sequence[i].arrival_time);
 }
 stability_values[counter] = 0;
 for (i = 0; i < nremainingjobs; i++)
 stability_values[counter] += (completion_times[i] < completion_times1[i] ?
 completion_times1[i] - completion_times[i] :
 completion_times[i] - completion_times1[i]);

 makespan_values[counter] = completion_times[nremainingjobs - 1];
 }
 stabil = 0;

117

 for (counter = 0; counter < 5; counter++)
 {
 stabil += stability_values[counter];
 cmax += makespan_values[counter];
 }
 free(completion_times);
 free(completion_times1);
 stabil = stabil / 5.0;
 return (cmax / 5.0);
}

double simulate_tardiness(job *sequence)
{
 double stability_values[5];
 double tardiness_values[5];
 double *completion_times;
 double *completion_times1;
 int i, counter;
 double tnow;
 int job_completed;
 double busy_time;
 double remaining_process;
 double sum, tardy;
 double next_failure;

 completion_times = (double *) malloc(nremainingjobs * sizeof(double));
 completion_times1 = (double *) malloc(nremainingjobs * sizeof(double));
 for (counter = 0; counter < 5; counter++)
 {
 busy_time = 0;
 sum = 0;
 next_failure = get_failure();
 tnow = sequence[0].arrival_time;
 for (i = 0; i < nremainingjobs; i++)
 {
 job_completed = 0;
 remaining_process = sequence[i].process_time;
 if (busy_time == next_failure)
 {
 tnow += get_repair();
 busy_time = 0;
 next_failure = get_failure();
 }
 if (tnow < sequence[i].arrival_time) tnow = sequence[i].arrival_time;
 do
 {
 if (remaining_process > next_failure - busy_time)
 {
 tnow += (get_repair() + next_failure - busy_time);
 remaining_process -= (next_failure - busy_time);
 busy_time = 0;
 next_failure = get_failure();
 }

118

 else
 {
 busy_time += remaining_process;
 tnow += remaining_process;
 job_completed = 1;
 }
 }
 while (!job_completed);
 completion_times[i] = tnow;
 }
 completion_times1[0] = sequence[0].process_time + sequence[0].arrival_time;
 for (i = 1; i < nremainingjobs; i++)
 {
 completion_times1[i] = sequence[i].process_time +
 (sequence[i].arrival_time < completion_times1[i-1] ?
 completion_times1[i-1] : sequence[i].arrival_time);
 }
 stability_values[counter] = 0;
 for (i = 0; i < nremainingjobs; i++)
 stability_values[counter] += (completion_times[i] < completion_times1[i] ?
 completion_times1[i] - completion_times[i] :
 completion_times[i] - completion_times1[i]);
 for (i = 0; i < nremainingjobs; i++)
 sum += ((tardy = completion_times[i] - sequence[i].due_date) > 0 ? tardy : 0);
 tardiness_values[counter] = sum;
 }
 stabil = 0;
 sum = 0;
 for (counter = 0; counter < 5; counter++)
 {
 stabil += stability_values[counter];
 sum += tardiness_values[counter];
 }
 free(completion_times);
 free(completion_times1);
 stabil = stabil / 5.0;
 return (sum / 5.0);
}

double simulate_flowtime(job *sequence)
{
 double stability_values[5];
 double flowtime_values[5];
 double *completion_times;
 double *completion_times1;
 int i, counter;
 double tnow;
 int job_completed;
 double busy_time;
 double remaining_process;
 double sum;
 double next_failure;

 completion_times = (double *) malloc(nremainingjobs * sizeof(double));

119

 completion_times1 = (double *) malloc(nremainingjobs * sizeof(double));
 for (counter = 0; counter < 5; counter++)
 {
 busy_time = 0;
 sum = 0;
 next_failure = get_failure();
 tnow = sequence[0].arrival_time;
 for (i = 0; i < nremainingjobs; i++)
 {
 job_completed = 0;
 remaining_process = sequence[i].process_time;
 if (busy_time == next_failure)
 {
 tnow += get_repair();
 busy_time = 0;
 next_failure = get_failure();
 }
 if (tnow < sequence[i].arrival_time) tnow = sequence[i].arrival_time;
 do
 {
 if (remaining_process > next_failure - busy_time)
 {
 tnow += (get_repair() + next_failure - busy_time);
 remaining_process -= (next_failure - busy_time);
 busy_time = 0;
 next_failure = get_failure();
 }
 else
 {
 busy_time += remaining_process;
 tnow += remaining_process;
 job_completed = 1;
 }
 }
 while (!job_completed);
 completion_times[i] = tnow;
 }
 completion_times1[0] = sequence[0].process_time + sequence[0].arrival_time;
 for (i = 1; i < nremainingjobs; i++)
 {
 completion_times1[i] = sequence[i].process_time +
 (sequence[i].arrival_time < completion_times1[i-1] ?
 completion_times1[i-1] : sequence[i].arrival_time);
 }
 stability_values[counter] = 0;
 for (i = 0; i < nremainingjobs; i++)
 stability_values[counter] += (completion_times[i] < completion_times1[i] ?
 completion_times1[i] - completion_times[i] :
 completion_times[i] - completion_times1[i]);
 for (i = 0; i < nremainingjobs; i++)
 sum += (completion_times[i] - sequence[i].arrival_time);
 flowtime_values[counter] = sum;
 }
 sum = 0;

120

 stabil = 0;
 for (counter = 0; counter < 5; counter++)
 {
 stabil += stability_values[counter];
 sum += flowtime_values[counter];
 }
 free(completion_times);
 free(completion_times1);
 stabil = stabil / 5.0;
 return (sum / 5.0);
}

int is_tabu(int job, int position)
{
 tabu *tp;
 int found = 0;

 for (tp = tabu_list; tp != NULL; tp = tp->next)
 if (tp->job_id == job && tp->to_position == position)
 {
 found = 1;
 break;
 }
 return found;
}

void generate_neighbourhood(void)
{
 int i, j, k = 0;
 job temp, *sequence;

 sequence = (job *) malloc(nremainingjobs * sizeof(job));
 for (i = 0; i < nremainingjobs; i++)
 for (j = i + 1; j < nremainingjobs; j++)
 {
 memcpy(sequence, current_solution, nremainingjobs * sizeof(job));
 neighbourhood[k].moves.first_job_id = sequence[i].id;
 neighbourhood[k].moves.first_job_from_position = i;
 neighbourhood[k].moves.first_job_to_position = j;
 neighbourhood[k].moves.second_job_id = sequence[j].id;
 neighbourhood[k].moves.second_job_from_position = j;
 neighbourhood[k].moves.second_job_to_position = i;
 temp = sequence[i];
 sequence[i] = sequence[j];
 sequence[j] = temp;
 memcpy(neighbourhood[k].sequence, sequence, nremainingjobs * sizeof(job));
 neighbourhood[k].obj_value = (*obj_array[objective])(sequence, weight);
 k++;
 }
 free(sequence);
}

121

int compar(element *i, element *j)
{
 return i->obj_value < j->obj_value ? -1 : i->obj_value > j->obj_value ? 1 : 0;
}

int compar_id(job *i, job *j)
{
 return i->id < j->id ? -1 : i->id > j->id ? 1 : 0;
}

int compar_arr(job *i, job *j)
{
 return i->arrival_time < j->arrival_time ? -1 : i->arrival_time > j->arrival_time ? 1
: 0;
}

int compar_edd(job *i, job *j)
{
 return i->due_date < j->due_date ? -1 : i->due_date > j->due_date ? 1 : 0;
}

int compar_spt(job *i, job *j)
{
 return i->process_time < j->process_time ? -1 : i->process_time > j->process_time ? 1
: 0;
}

void update(void)
{
 tabu *tp, *ip;

 for (tp = tabu_list; tp != NULL; tp = tp->next)
 --(tp->remaining_tenure);
 tp = tabu_list;
 while (tp != NULL)
 {
 if(tp->remaining_tenure < 1)
 {
 if (tp == tabu_list)
 {
 tabu_list = tp->next;
 free(tp);
 }
 else if (tp == tail)
 {
 for(ip = tabu_list; ip != NULL; ip = ip->next)
 if(ip->next == tp)
 {
 tail = ip;
 free(tp);
 }
 }

122

 else
 {
 for(ip = tabu_list; ip != NULL; ip = ip->next)
 if(ip->next == tp)
 {
 ip->next = tp->next;
 free(tp);
 }
 }
 tp = tabu_list;
 }
 else tp = tp->next;
 }
}

void process_neighbourhood(void)
{
 int i = 0;
 int found = 0;

 qsort(neighbourhood, nremainingjobs * (nremainingjobs -1) / 2, sizeof(element), (void
*) compar);
 if (verbose) fprintf(g, "\nSearching current neighbourhood...\n");
 if (tabu_list == NULL)
 {

 if (verbose)
 {
 fprintf(g, "Tabu list is empty now. Jumping to the best neighbour.\n");
 fprintf(g, "\tSwapping job %d with job %d\n",
 neighbourhood[0].moves.first_job_id,
 neighbourhood[0].moves.second_job_id);
 }
 tabu_list = (tabu *) malloc (sizeof(tabu));
 tail = tabu_list;
 tail->job_id = neighbourhood[0].moves.first_job_id;
 tail->to_position = neighbourhood[0].moves.first_job_from_position;
 tail->remaining_tenure = tenure;
 tail->next = (tabu *) malloc(sizeof(tabu));
 tail = tail->next;
 tail->job_id = neighbourhood[0].moves.second_job_id;
 tail->to_position = neighbourhood[0].moves.second_job_from_position;
 tail->remaining_tenure = tenure;
 tail->next = NULL;
 memcpy(current_solution, neighbourhood[0].sequence, nremainingjobs * sizeof(job));
 current_obj = neighbourhood[0].obj_value;
 if (neighbourhood[0].obj_value < best_obj)
 {
 if (improve)
 fprintf(g, "Iteration: %d, New best solution with objective %f\n"
 , iIter + 1, neighbourhood[0].obj_value);
 if (iIter - last_improved > interval) interval = iIter - last_improved;
 last_improved = iIter;
 counter = 0;

123

 memcpy(best_solution, current_solution, nremainingjobs * sizeof(job));
 best_obj = neighbourhood[0].obj_value;
 }
 return;
 }
 else
 {
 for(i=0; i < nremainingjobs * (nremainingjobs - 1) / 2; i++)
 {
 if(is_tabu(neighbourhood[i].moves.first_job_id,
 neighbourhood[i].moves.first_job_to_position)
 || is_tabu(neighbourhood[i].moves.second_job_id,
 neighbourhood[i].moves.second_job_to_position))
 {
 if(neighbourhood[i].obj_value < best_obj)
 {
 if (verbose)
 {
 found = 1;
 fprintf(g, "\tSwap job %d with job %d\t(Tabu but better than the best "
 "schedule found upto now)\n",
 neighbourhood[i].moves.first_job_id,
 neighbourhood[i].moves.second_job_id);
 }
 break;
 }
 else
 {
 if (verbose)
 {
 fprintf(g, "\tSwap job %d with job %d\t(Tabu, skipping it)\n",
 neighbourhood[i].moves.first_job_id,
 neighbourhood[i].moves.second_job_id);
 }
 continue;
 }
 }
 else
 {
 found = 1;
 if (verbose)
 {
 fprintf(g,"\tSwap job %d with job %d\t(OK...)\n",
 neighbourhood[i].moves.first_job_id,
 neighbourhood[i].moves.second_job_id);
 }
 break;
 }
 }
 if(found)
 {
 if(!is_tabu(neighbourhood[i].moves.first_job_id,
 neighbourhood[i].moves.first_job_from_position))

124

 {
 tail->next = (tabu *) malloc (sizeof(tabu));
 tail = tail->next;
 tail->job_id = neighbourhood[i].moves.first_job_id;
 tail->to_position = neighbourhood[i].moves.first_job_from_position;
 tail->remaining_tenure = tenure + 1;
 tail->next = NULL;
 }
 if(!is_tabu(neighbourhood[i].moves.second_job_id,
 neighbourhood[i].moves.second_job_from_position))
 {
 tail->next = (tabu *) malloc (sizeof(tabu));
 tail = tail->next;
 tail->job_id = neighbourhood[i].moves.second_job_id;
 tail->to_position = neighbourhood[i].moves.second_job_from_position;
 tail->remaining_tenure = tenure + 1;
 tail->next = NULL;
 }
 memcpy(current_solution, neighbourhood[i].sequence, nremainingjobs *
sizeof(job));
 current_obj = neighbourhood[i].obj_value;
 if (neighbourhood[i].obj_value < best_obj)
 {
 if (improve)
 fprintf(g, "Iteration: %d, New best solution with objective %f\n"
 , iIter + 1, neighbourhood[0].obj_value);
 if (iIter - last_improved > interval) interval = iIter - last_improved;
 last_improved = iIter;
 counter = 0;
 memcpy(best_solution, current_solution, nremainingjobs * sizeof(job));
 best_obj = neighbourhood[i].obj_value;
 }
 }
 else
 {
 if (verbose)
 {
 fprintf(g,"All neighbouring solutions move involves tabu moves so"
 " jumping to the best neighbouring solution.\n");
 fprintf(g,"\tSwap job %d with job %d\n",
 neighbourhood[0].moves.first_job_id,
 neighbourhood[0].moves.second_job_id);
 }
 memcpy(current_solution, neighbourhood[0].sequence, nremainingjobs *
sizeof(job));
 current_obj = neighbourhood[0].obj_value;
 if (neighbourhood[0].obj_value < best_obj)
 {
 if (improve)
 fprintf(g, "Iteration: %d, New best solution with objective %f\n"
 , iIter + 1, neighbourhood[0].obj_value);
 if (iIter - last_improved > interval) interval = iIter - last_improved;
 last_improved = iIter;
 counter = 0;

125

 memcpy(best_solution, current_solution, nremainingjobs * sizeof(job));
 best_obj = neighbourhood[0].obj_value;
 }
 }
 update();
 }
}

void print_usage (FILE *stream, int exit_code)
{
 fprintf(stream, "Usage: %s [-hivc] [-o <filename>] <input file>\n", program_name);
 fprintf(stream, "where available options are:\n"
 " -h Display this usage information\n"
 " -o <filename> Write output to file\n"
 " -i Prints a message when current best is improved\n"
 " -v Print verbose messages.\n"
 " -c Continuous scheduling (after every m/c breakdown).\n");
 exit(exit_code);
}

job *ts(job *sequence)
{
 job *arr;
 job *edd;
 job *spt;
 tabu *tp;
 int i;

 arr = (job *) malloc(nremainingjobs * sizeof(job));
 edd = (job *) malloc(nremainingjobs * sizeof(job));
 spt = (job *) malloc(nremainingjobs * sizeof(job));
 memcpy(arr, sequence, nremainingjobs * sizeof(job));
 memcpy(edd, sequence, nremainingjobs * sizeof(job));
 memcpy(spt, sequence, nremainingjobs * sizeof(job));
 qsort(arr, nremainingjobs, sizeof(job), (void *) compar_arr);
 qsort(edd, nremainingjobs, sizeof(job), (void *) compar_edd);
 qsort(spt, nremainingjobs, sizeof(job), (void *) compar_spt);
 current_solution = (job *) malloc(nremainingjobs * sizeof(job));
 memcpy(current_solution, sequence, nremainingjobs * sizeof(job));
 current_obj = (*obj_array[objective])(current_solution, weight);
 memcpy(best_solution, sequence, nremainingjobs * sizeof(job));
 best_obj = current_obj;
 neighbourhood = (element *) malloc(nremainingjobs * (nremainingjobs - 1) *
sizeof(element) / 2);
 for (i = 0; i < (nremainingjobs - 1) * nremainingjobs / 2; i++)
 neighbourhood[i].sequence = (job *) malloc(nremainingjobs * sizeof(job));
 iIter = 0;
 for (counter = 0;; iIter++, counter++)
 {
 if (verbose)
 {
 fprintf(g, "ITERATION %d\n", iIter+1);
 fprintf(g, "\nCurrent sequence: ");
 for (i = 0; i < nremainingjobs; i++)

126

 fprintf(g, "%d ", current_solution[i].id);
 fprintf(g, "\tObjective: %f.\n", current_obj);
 }
 generate_neighbourhood();
 process_neighbourhood();
 if (verbose)
 {
 fprintf(g, "\nCurrent tabu list:\n");
 for(tp = tabu_list; tp != NULL; tp = tp->next)
 fprintf(g, "\tJob %d to position %d for %d %s.\n",
 tp->job_id, tp->to_position + 1, tp->remaining_tenure,
 tp->remaining_tenure > 1 ? "iterations" : "iteration");
 fprintf(g, "\n");
 }
 if (counter >= 20) break;
 }

 memcpy(current_solution, arr, nremainingjobs * sizeof(job));
 current_obj = (*obj_array[objective])(current_solution, weight);
 for (counter = 0;; iIter++, counter++)
 {
 if (verbose)
 {
 fprintf(g, "ITERATION %d\n", iIter+1);
 fprintf(g, "\nCurrent sequence: ");
 for (i = 0; i < nremainingjobs; i++)
 fprintf(g, "%d ", current_solution[i].id);
 fprintf(g, "\tObjective: %f.\n", current_obj);
 }
 generate_neighbourhood();
 process_neighbourhood();
 if (verbose)
 {
 fprintf(g, "\nCurrent tabu list:\n");
 for(tp = tabu_list; tp != NULL; tp = tp->next)
 fprintf(g, "\tJob %d to position %d for %d %s.\n",
 tp->job_id, tp->to_position + 1, tp->remaining_tenure,
 tp->remaining_tenure > 1 ? "iterations" : "iteration");
 fprintf(g, "\n");
 }
 if (counter >= 20) break;
 }
 memcpy(current_solution, edd, nremainingjobs * sizeof(job));
 current_obj = (*obj_array[objective])(current_solution, weight);
 for (counter = 0;; iIter++, counter++)
 {
 if (verbose)
 {
 fprintf(g, "ITERATION %d\n", iIter+1);
 fprintf(g, "\nCurrent sequence: ");
 for (i = 0; i < nremainingjobs; i++)
 fprintf(g, "%d ", current_solution[i].id);
 fprintf(g, "\tObjective: %f.\n", current_obj);
 }

127

 generate_neighbourhood();
 process_neighbourhood();
 if (verbose)
 {
 fprintf(g, "\nCurrent tabu list:\n");
 for(tp = tabu_list; tp != NULL; tp = tp->next)
 fprintf(g, "\tJob %d to position %d for %d %s.\n",
 tp->job_id, tp->to_position + 1, tp->remaining_tenure,
 tp->remaining_tenure > 1 ? "iterations" : "iteration");
 fprintf(g, "\n");
 }
 if (counter >= 20) break;
 }
 memcpy(current_solution, spt, nremainingjobs * sizeof(job));
 current_obj = (*obj_array[objective])(current_solution, weight);
 for (counter = 0;; iIter++, counter++)
 {
 if (verbose)
 {
 fprintf(g, "ITERATION %d\n", iIter+1);
 fprintf(g, "\nCurrent sequence: ");
 for (i = 0; i < nremainingjobs; i++)
 fprintf(g, "%d ", current_solution[i].id);
 fprintf(g, "\tObjective: %f.\n", current_obj);
 }
 generate_neighbourhood();
 process_neighbourhood();
 if (verbose)
 {
 fprintf(g, "\nCurrent tabu list:\n");
 for(tp = tabu_list; tp != NULL; tp = tp->next)
 fprintf(g, "\tJob %d to position %d for %d %s.\n",
 tp->job_id, tp->to_position + 1, tp->remaining_tenure,
 tp->remaining_tenure > 1 ? "iterations" : "iteration");
 fprintf(g, "\n");
 }
 if (counter >= 20) break;
 }
 for (tp = tabu_list; tp != NULL; tp = tp->next)
 tp->remaining_tenure = 1;
 update();
 free(current_solution);
 free(arr);
 free(edd);
 free(spt);
 for (i = 0; i < (nremainingjobs - 1) * nremainingjobs / 2; i++)
 free(neighbourhood[i].sequence);
 free(neighbourhood);
 return (best_solution);
}

128

int main(int argc, char *argv[])
{
 double yedek;

 int c;
 int totalproc = 0;
 extern char *optarg;
 extern int optind;
 const char *output_filename = NULL;
 schedule *initial_schedule;
 schedule *realized_schedule;
 job *alias, *head;
 job *temp_sequence;
 int i;
 double sum, tardy;
 int ntotaljobs, next_one;
 double tnow, busy_time, next_failure;

 srand(time(NULL));
 program_name = argv[0];
 while ((c = getopt(argc, argv, "hivco:")) != EOF)
 switch (c)
 {
 case 'h': print_usage(stdout, 0);
 case 'i': improve = 1; break;
 case 'v': verbose = 1; break;
 case 'c': continuous = 1; break;
 case 'o': output_filename = optarg; break;
 case '?': print_usage(stderr, 1);
 }

 if (argv[optind] == NULL) print_usage(stderr, 1);

 if ((f = fopen(argv[optind], "rt")) == NULL)
 {
 char buffer[80];
 sprintf(buffer, "Cannot open %s", argv[optind]);
 perror(buffer);
 exit(1);
 }

 if (output_filename == NULL) g = stdout;
 else if ((g = fopen(output_filename, "wt")) == NULL)
 {
 char buffer[80];
 sprintf(buffer, "Cannot open %s", output_filename);
 perror(buffer);
 exit(1);
 }

 /* memory initializations */

 obj_array[0] = makespan;
 obj_array[1] = tardiness;

129

 obj_array[2] = flowtime;
 obj_array[3] = slack_makespan;
 obj_array[4] = slack_tardiness;
 obj_array[5] = slack_flowtime;
 obj_array[6] = method1_makespan;
 obj_array[7] = method1_tardiness;
 obj_array[8] = method1_flowtime;
 obj_array[9] = method2_makespan;
 obj_array[10] = method2_tardiness;
 obj_array[11] = method2_flowtime;
 obj_array[12] = method1_stability;
 obj_array[13] = method2_stability;

 nremainingjobs = fread_number(f);
 ntotaljobs = nremainingjobs;
 jobs = (job *) malloc(ntotaljobs * sizeof(job));
 for (i = 0; i < ntotaljobs; jobs[i].id = ++i)
 jobs[i].process_time = fread_number(f);
 for (i = 0; i < ntotaljobs; jobs[i].id = ++i)
 jobs[i].arrival_time = fread_number(f);
 for (i = 0; i < ntotaljobs; i++)
 jobs[i].due_date = fread_number(f);
 objective = fread_number(f);
 performance_measure = fread_number(f);
 weight = fread_number(f);
 tenure = fread_number(f);
 breakdown = fread_number(f);
 fclose(f);
 switch(breakdown)
 {
 case 0: mean_time_to_failure = 60.0;
 mean_repair_duration = 9.0;
 break;
 case 1: mean_time_to_failure = 60.0;
 mean_repair_duration = 3.0;
 break;
 case 2: mean_time_to_failure = 18.0;
 mean_repair_duration = 9.0;
 break;
 case 3: mean_time_to_failure = 18.0;
 mean_repair_duration = 3.0;
 break;
 }
 lambda = 0.7 / mean_repair_duration;
 for (i = 0; i < ntotaljobs; i++) totalproc += jobs[i].process_time;
 cdf = (double *) malloc((totalproc + 1) * sizeof(double));
 best_solution = (job *) malloc(ntotaljobs * sizeof(job));
 if (continuous && (objective > 8))
 {
 cdf[0] = 0.0;
 for (i = 1; i <= totalproc; i++)
 cdf[i] = cdf[i - 1] + integrate(failure_dist, i - 1, i);
 }

130

 /* main work */

 alias = ts(jobs);

 if (!continuous)
 {
 fprintf(g, "%s\t%f\t%f\t", argv[optind],
 (*obj_array[performance_measure])(best_solution, weight)
 ,((performance_measure == 0)? simulate_makespan(best_solution)
 :(performance_measure == 1)? simulate_tardiness(best_solution)
 : simulate_flowtime(best_solution)));
 fprintf(g, "%f\n", stabil);
 free(jobs);
 free(best_solution);
 free(cdf);
 return 0;
 }
 yedek = (*obj_array[performance_measure])(best_solution, weight);
 initial_schedule = (schedule *) malloc(ntotaljobs * sizeof(schedule));
 initial_schedule[0].id = best_solution[0].id;
 initial_schedule[0].completion_time = best_solution[0].arrival_time +
best_solution[0].process_time;
 for (i = 1; i < ntotaljobs; i++)
 {
 initial_schedule[i].id = best_solution[i].id;
 initial_schedule[i].completion_time = best_solution[i].process_time +
 ((initial_schedule[i-1].completion_time < best_solution[i].arrival_time) ?
 best_solution[i].arrival_time : initial_schedule[i-1].completion_time);
 }
 realized_schedule = (schedule *) malloc(ntotaljobs * sizeof(schedule));
 tnow = best_solution[0].arrival_time;
 busy_time = 0;
 next_one = 0;
 while (nremainingjobs > 0)
 {
 if (tnow < alias->arrival_time) tnow = alias->arrival_time;
 next_failure = get_failure();
 while (nremainingjobs > 0)
 {
 if (tnow < alias->arrival_time) tnow = alias->arrival_time;
 if (busy_time + alias->process_time < next_failure)
 {
 busy_time += alias->process_time;
 tnow += alias->process_time;
 nremainingjobs--;
 realized_schedule[next_one].id = alias->id;
 realized_schedule[next_one++].completion_time = tnow;
 alias++;
 }
 else if (busy_time + alias->process_time > next_failure)
 {
 tnow += (next_failure - busy_time + get_repair());
 (alias->process_time) -= (next_failure - busy_time);

131

 busy_time = 0;
 head = alias;
 for (i = 0; i < nremainingjobs; i++)
 {
 alias->arrival_time = (alias->arrival_time < tnow ? 0 : (int)
(alias->arrival_time - tnow));
 alias->due_date = (int)(alias->due_date - tnow);
 alias++;
 }
 temp_sequence = (job *) malloc (nremainingjobs * sizeof(job));
 memcpy(temp_sequence, head, nremainingjobs * sizeof(job));
 free(best_solution);
 best_solution = (job *) malloc(nremainingjobs * sizeof(job));
 if (nremainingjobs > 1) alias = ts(temp_sequence);
 else
 {
 alias = best_solution;
 memcpy(best_solution, temp_sequence, sizeof(job));
 }
 for (i = 0; i < nremainingjobs; i++)
 {
 best_solution[i].arrival_time = jobs[best_solution[i].id-1].arrival_time;
 best_solution[i].due_date = jobs[best_solution[i].id-1].due_date;
 }
 free(temp_sequence);
 break;
 }
 else
 {
 tnow += alias->process_time;
 busy_time = 0;
 nremainingjobs--;
 realized_schedule[next_one].id = alias->id;
 realized_schedule[next_one++].completion_time = tnow;
 alias++;
 head = alias;
 for (i =0; i < nremainingjobs; i++)
 {
 alias->arrival_time = alias->arrival_time < tnow ? 0 : (int) (alias-
>arrival_time - tnow);
 alias->due_date = (int)(alias->due_date - tnow);
 alias++;
 }
 temp_sequence = (job *) malloc (nremainingjobs * sizeof(job));
 memcpy(temp_sequence, head, nremainingjobs * sizeof(job));
 free(best_solution);
 best_solution = (job *) malloc(nremainingjobs * sizeof(job));
 if (nremainingjobs > 1) alias = ts(temp_sequence);
 else
 {
 alias = best_solution;
 memcpy(best_solution, temp_sequence, sizeof(job));
 }
 free(temp_sequence);

132

 for (i = 0; i < nremainingjobs; i++)
 {
 best_solution[i].arrival_time = jobs[best_solution[i].id-1].arrival_time;
 best_solution[i].due_date = jobs[best_solution[i].id-1].due_date;
 }
 break;
 }
 }
 }

 sum = 0;
 switch(performance_measure)
 {
 case 0 : sum = realized_schedule[ntotaljobs - 1].completion_time;
 break;
 case 1 : for (i = 0; i < ntotaljobs; i++)
 sum += ((tardy = realized_schedule[i].completion_time
 - jobs[realized_schedule[i].id-1].due_date) > 0 ? tardy : 0);
 break;
 case 2 : for (i = 0; i < ntotaljobs; i++)
 sum += (realized_schedule[i].completion_time -
jobs[realized_schedule[i].id-1].arrival_time);
 break;
 }
 stabil = 0;
 qsort(initial_schedule, ntotaljobs, sizeof(schedule), (void *) compar_id);
 qsort(realized_schedule, ntotaljobs, sizeof(schedule), (void *) compar_id);
 for (i = 0; i < ntotaljobs; i++)
 stabil += (realized_schedule[i].completion_time >
initial_schedule[i].completion_time ?
 (realized_schedule[i].completion_time -
initial_schedule[i].completion_time) :
 (initial_schedule[i].completion_time -
realized_schedule[i].completion_time));
 fprintf(g, "%s\t%f\t%f\t%f\n", argv[optind], yedek, sum, stabil);

 /* memory clean-up before exit */

 free(jobs);
 free(best_solution);
 free(cdf);
 free(initial_schedule);
 return 0;
}

