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ABSTRACT

SCATTERING AND RADIATION

PROBLEMS OF ARBITRARILY SHAPED

CONDUCTING BODIES ABOVE THE

GROUND PLANE

Cemal C. Yıldırım

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Levent Gürel

October 2002

A method of moment solution is applied for the scattering and radiation problems

of arbitrarily shaped conducting bodies placed close to an infinite ground plane.

An equivalent problem is produced by using image theory and solved by two

methods. Free-space Green’s function is used for the first method, and modified

free-space Green’s function is used for the second. The conducting bodies excited

with either an incident plane-wave or a delta-gap source. Moreover, the definition

method of the basis functions is explained when multiple unknowns occur at a

single edge.

Keywords: Method of moments, image theory, radar cross section (RCS), delta-

gap source.
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ÖZET

SONSUZ İLETKEN DÜZLEM ORTAMINDA GELİŞİGÜZEL

ŞEKİLLİ İLETKEN CİSİMLERİN SAÇINIM VE IŞINIM

PROBLEMLERİ

Cemal C. Yıldırım

Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Levent Gürel

Ekim 2002

Sonsuz iletken düzlem üzerinde bulunan gelişigüzel şekilli iletken cisimlerin

elektromanyetik saçınım karasteriklerini belirlemek için momentler metodu kul-

lanılmıştır. İletken düzlem imaj teorisi kullanılarak kaldırılmış ve eşdeğer prob-

lem üretilmiştir. Eşdeğer problem iki yöntemle çözülmüştür. İlk yöntemde

serbest uzay Green fonksiyonu, ikincisinde cismin yüzeyinde indüklenmiş gerçek

ve kurgusal akımların arasindaki eşitlik kullanılarak değiştirilen Green fonksiyonu

kullanılmıştır. Saçınım çözümlerinde gelen düzlem dalga, ışınım çözümlerinde

voltaj beslemesi kaynak olarak kullanılmıştır. Ayrıca gelişigüzel yüzeyli cisim-

lerin üçgenlenmesi sonrasında ikiden fazla üçgenin bağlı olduğu kenarlarda temel

fonksiyonların nasıl tanımlanacağı açıklanmıştır.

Anahtar kelimeler: Momentler metodu, imaj teorisi, radar kesit alanı (RKA).
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Chapter 1

Introduction

The prediction and reduction of radar cross section (RCS) of arbitrary shapes

is one of the most popular topics for researchers in electromagnetics. From the

military requirements aspect, these studies are carried out to design stealthy ob-

jects or to reduce the RCS of existing targets by using radar absorbing materials

(RAMs). Upon successful construction of low-observable aircrafts, similar stud-

ies are initiated for warships. However, the problems encountered during these

studies have become more challenging due to the large bodies of ships and the

effects of sea surface.

RCS reduction techniques are generally classified as body shaping, using

RAMs, and active/passive cancellation. In most applications, the transmitter

and receiver of radars are on the same location which is called as monostatic

radars. Therefore the term “RCS reduction” can be considered as reduction of

monostatic RCS. Body shaping is based on to steer the electromagnetic energy

from the scatterer to directions excluding the direction of incident energy. Espe-

cially at frequencies which scattering property of a typical target approximates

the quasi-optical character, shaping becomes the most important key to reduce
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the monostatic RCS. In order to prevent backscattering, all smooth elements on

the target which are perpendicular to the direction of incident electromagnetic

energy must be removed [1]. Furthermore, numerical analysis of such problems

is carried out by using asymptotic methods like physical optics (PO), physi-

cal theory of diffraction (PTD), geometrical optics (GO), and general theory of

diffracted rays (GTD).

Coating RAMs on the surface of the target is another technique used for

the reduction of not only monostatic but also bistatic RCS. The term “bistatic”

expresses that the locations of transmitter and receiver of a radar are differ-

ent. RAMs transforms electromagnetic energy into heat and is categorized as

materials with electric losses and materials with magnetic losses.

In order to computationally solve electrically large problems, new techniques

have been developed, such as the multi-level fast multipole algorithm (MLFMA),

shooting and bouncing ray (SBR) method, and hybridization of different meth-

ods. Modeling the sea surface is another computational requirement. An infinite

ground plane can be considered as the very basic model of the sea surface.

In this thesis, a method of moment (MoM) solution is applied for the scat-

tering and radiation problems of arbitrarily shaped conducting bodies above an

infinite ground plane. Method of moments is a well-known technique used to

solve integral equations by reducing the integral equation to a set of linearly in-

dependent equations [2]. This method requires the discretization of the surface.

In our numerical solutions, the surfaces are meshed with triangles, since the basis

functions used to expand the induced currents are defined on triangle pairs.

The image theory is used to take the effect of the ground plane into account,

and an equivalent problem is formed. In Chapters 2 and 3, two different formula-

tions of the problem are carried out by considering whether the conducting body

is touching the ground plane or not. Furthermore, two different excitation types
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are employed: scattering problems involve incident plane-wave excitation, and

radiation problems involve delta-gap source excitation. Different applications of

delta-gap sources are illustrated in Chapter 4.

Finally, the difficulties emerging from the definition of basis functions for

complex geometries are considered. The MoM relies on the properly defined basis

functions to expand the induced currents on the surface of the body. Complex

bodies involve multiple structures joining at the same edge. Chapter 5 provides

detailed explanations for the definition of the basis functions for these types of

edges.
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Chapter 2

Scattering from a Conducting

Body above an Infinite Ground

Plane

In order to solve the scattering problem of a conducting body in the pres-

ence of an infinite ground plane, the method of images [3] is used to obtain an

equivalent problem. Then, we can solve the problem numerically by using the

method of moments [2]. Figure 2.1 demonstrates the original and the equivalent

problems. In the original problem, a conducting body with an arbitrary shape is

illuminated by an external source. Therefore, we take into account the images of

both the conducting body and the external source. There are two approaches to

solve the equivalent problem. One of them is to solve the problem by applying

the free-space Green’s function after employing the method of images explicitly.

The second one is to solve the problem by applying a modified free-space Green’s

function, which is derived by using the properties of method of images inherently,
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but not explicitly. We use both of the methods in our numerical solutions and

compare the results.

k

i

Ground
Plane

k

E iE

H i H i

Ei

H i

k

(a) (b)

Figure 2.1: (a) A conducting body over a ground plane illuminated by an elec-
tromagnetic source. (b) The equivalent problem.

2.1 An Overview of the Method of Moments

(MoM)

Method of moments (MoM) [2] transforms linear integral equations to linear

algebraic equations. Radiation and scattering problems can be formulated in

terms of integral equations, and discretized for numerical solutions. By using

MoM, the electric field integral equation (EFIE) can be reduced to a matrix

equation. We use Rao, Wilton, and Glisson (RWG) basis functions [4] for the

discretization of the EFIE.
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2.2 Formulation of the Scattering Problem

The induced current J(r′) on the surface of conducting body can be repre-

sented as a group of small dipoles with arbitrary directions. Assume that we

have a rectangular plate above the ground plane at z = 0. Figure 2.2 shows

some of the samples of induced currents over the triangulated surface of a rect-

angular plate in terms of electric dipoles and the equivalent problem. After this

step, formulation of the problem can be carried out by considering the relation

between the real and image dipoles.

Original   Problem :

Equivalent   Problem :

Figure 2.2: Samples of induced currents on the triangulated surface of the rect-
angular plate above the ground plane and the equivalent problem.

According to the method of images, real and image electric dipoles are equal

to each other in terms of magnitude,their parallel components are in opposite

6



directions, and their normal components are in the same direction, as shown in

Figure 2.3.

Equivalent   Problem :

Original   Problem :

Figure 2.3: The relation between the real and image electric dipoles.

We can define the induced current on the surface of conducting body in

Figure 2.1 in terms of real and image currents by using the equivalent problem:

Jtot(r′) = Jreal(r′) + Jimage(r′). (2.1)

Assume that the ground plane is at z = 0, and we have an electric dipole at

point p (xp, yp, zp):

Jreal(r′) = δ(x′ − xp)δ(y
′ − yp)δ(z

′ − zp){x̂Jx + ŷJy + ẑJz},

Jimage(r′) = δ(x′ − xp)δ(y
′ − yp)δ(z

′ + zp){−x̂Jx − ŷJy + ẑJz}. (2.2)

In Eq. (2.2), Jx, Jy, and Jz are the magnitudes of the electric dipole. We can

express the scattered field as follows:

Escat(r) = iwµ
[

Ī + 1
k2∇∇

]

·
∫

s′
ds′g(r, r′)Jtot(r′). (2.3)
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We can rewrite the integrand of the inner integral in Eq. (2.3) by using the

definitions in Eq. (2.2):

Jtot(r′)g(r, r′) = δ(x′ − xp)δ(y
′ − yp)δ(z

′ − zp){x̂Jx + ŷJy + ẑJz}g(r, r′)

+ δ(x′ − xp)δ(y
′ − yp)δ(z

′ + zp){−x̂Jx − ŷJy + ẑJz}g(r, r′)

= {x̂Jx + ŷJy + ẑJz}
eik

√
(x−xp)2+(y−yp)2+(z−zp)2

4π
√

(x − xp)2 + (y − yp)2 + (z − zp)2

+ {−x̂Jx − ŷJy + ẑJz}
eik

√
(x−xp)2+(y−yp)2+(z+zp)2

4π
√

(x − xp)2 + (y − yp)2 + (z + zp)2
.

(2.4)

Since the primed coordinates are used for the source (induced currents on the

surface), we can replace (xp, yp, zp) with (x′, y′, z′).

Jtot(r′)g(r, r′) = {x̂Jx + ŷJy + ẑJz}
eik

√
(x−x′)2+(y−y′)2+(z−z′)2

4π
√

(x − x′)2 + (y − y′)2 + (z − z′)2

︸ ︷︷ ︸

greal(r,r′)

+ {−x̂Jx − ŷJy + ẑJz}
eik

√
(x−x′)2+(y−y′)2+(z+z′)2

4π
√

(x − x′)2 + (y − y′)2 + (z + z′)2

︸ ︷︷ ︸

gimage(r,r′)

,

(2.5)

After simple manipulations, we obtain

¯̄GGP (r, r′) · J(r′) = (x̂Jx + ŷJy){greal(r, r
′) − gimage(r, r

′)}

+ ẑJz{greal(r, r
′) + gimage(r, r

′)}.

(2.6)

The matrix form of modified Green’s function defined in Eq. (2.6) is as follows:

¯̄GGP (r, r′) =
















greal(r, r
′) − gimage(r, r

′) 0 0

0 greal(r, r
′) − gimage(r, r

′) 0

0 0 greal(r, r
′) + gimage(r, r

′)
















. (2.7)
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Eq. (2.6) is the integrand of the inner integral of Eq. (2.3). Thus, we can

obtain the scattered field produced by the induced currents on the surface of a

conducting body above a ground plane. By using boundary condition on the

surface of conducting body (Etot
tan = Escat

tan + Einc
tan = 0), we can relate the incident

field to the induced current as

t̂ · Einc
tot = −t̂ · iwµ

[

Ī + 1
k2∇∇

]

·
∫

s′
ds′ ¯̄GGP (r, r′) · J(r′), (2.8)

which is the EFIE, where t̂ is one of the two tangential directions on the surface

and

Einc
tot = Einc

real + Einc
image. (2.9)

In Eq. (2.8), we know the incident field, and try to determine the induced cur-

rents. In order to solve for the induced currents, this integral equation is reduced

to a matrix equation by using the method of moments. For this purpose, the

induced currents are expanded in terms of the RWG vector basis functions:

¯̄GGP (r, r′) · J(r′) =
N∑

j=1

αj

[

(x̂bjx + ŷbjy){greal(r, r
′) − gimage(r, r

′)}

+ ẑbjz{greal(r, r
′) + gimage(r, r

′)}
]

=
N∑

j=1

αj
¯̄GGP (r, r′) · bj(r

′) (2.10)

The resulting equation is given by

t̂ · Einc
tot = −t̂ · iwµ

[

Ī + 1
k2∇∇

]

·
∫

s′
ds′ ¯̄GGP (r, r′) ·

N∑

j=1

αjbj(r
′). (2.11)

The above EFIE is tested by the testing functions ti(r), which are chosen to be

the same as the basis functions:

−
∫

s

ds ti(r) · Einc
tot

︸ ︷︷ ︸

Vi

=
N∑

j=1

αj

∫

s

ds ti(r) · iwµ
[

Ī + 1
k2∇∇

]

·
∫

s′
ds′ ¯̄GGP (r, r′) · bj(r

′)

︸ ︷︷ ︸

Zij
(2.12)
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Consequently, we obtain N equations, where N is equal to the number of basis

and testing functions. In these equations, the unknowns are the coefficients of

the basis functions (αj). Then, we have N linearly independent equations for N

unknowns. Matrix form of these equations is given by












Z11 Z12 . . . Z1N

Z21 Z22 . . . Z2N

...
...

. . .
...

ZN1 ZN2 . . . ZNN












·












α1

α2

...

αN












=












V1

V2

...

VN












(2.13)

The matrix is called the impedance matrix. If we use the free-space Green’s

function for the solution of the equivalent problem, we will obtain a similar

matrix of size 2N × 2N .

2.3 Examples

For the examples considered here, the monostatic RCS results obtained by

two different methods are compared. These two methods are as follows:

1. Method 1: By defining the images of the actual basis functions, number of

unknowns is doubled and the free-space Green’s function is employed.

2. Method 2: Image theory is used to derive a modified Green’s function for

the infinite ground plane. In this case, the number of unknowns is not

doubled.

Figures 2.4 and 2.5 present the geometry of a conducting cube whose dimen-

sions are 0.3 × 0.3 × 0.3 meters above the ground plane, and its RCS results

obtained with the two different solution methods. Similarly, Figures 2.6 and 2.7

10



show the geometry and results of a conducting cylinder whose dimensions are

h = 1 m and r = 0.1 m. In the first problem, the numbers of unknowns for the

first and the second methods are 504 and 1008, respectively. In the second one,

the numbers of unknowns are 951 and 1902.

In both problems, the objects are illuminated with a y-polarized plane wave.

The incidence angle of the field measured from x-axis in the x-z plane is varying

between 0o-180o with 5o intervals. Since the left hand side (LHS) of Eq. (2.12)

depends on the incidence angle, 37 different matrix equations are solved. RCS

plots of conducting bodies are calculated in three different planes (xy, xz, and

yz). In order to compute the monostatic RCS results, the direction of scattering

is chosen to be the exactly opposite of the direction of incidence. Since the

results are consistent with each other, we can conclude that the formulation of

the second method is correct.

11



Figure 2.4: (a) A conducting cube above the ground plane. (b) The equivalent
problem.

Figure 2.5: The monostatic RCS results of the cube shown in Figure 2.4 (a).

12



Figure 2.6: (a) A conducting cylinder above the ground plane. (b) The equivalent
problem.

Figure 2.7: The monostatic RCS results of the cylinder shown in Figure 2.6 (a).

13



Chapter 3

Scattering from a Conducting

Body Touching the Ground

Plane

In Chapter 2, a formulation of the scattering problem of a conducting body in

the presence of a ground plane is derived by assuming that the conducting body

does not touch the ground plane. Figure 3.1 shows the original and equivalent

problems when the body touches the ground plane. Since the conducting body

is touching its image at the level of the ground plane, the induced current should

be able to flow among real and image triangles. The formulation derived for

the scattering problem in Chapter 2 remains the same with the exception of

definition of new basis functions on the triangles touching the ground plane. In

addition to the regular basis functions on adjacent triangles (on common edges

where triangles are connected), new basis functions should be defined on those

triangles, whose one of the edges is on the ground plane. Since RWG vector basis

functions are defined on triangle pairs [4], it is not possible to directly use them

14



on single boundary triangles. If we try to reformulate the RWG basis functions

on single triangles, we will be confronted with non-integrable singularities on the

edges of the triangles. However, modifying the triangulated surface as shown in

Figure 3.2 enables new basis functions to be defined on boundary triangles.

(a)

(b)

Figure 3.1: (a) A conducting rectangular plate touching the ground plane. (b)
The equivalent problem.

Figure 3.2: Modified triangulated surface of the rectangular plate.
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3.1 Reformulating RWG Basis Functions

In this section, we examine the pitfalls of the formulation when we try to

construct an RWG basis function (BF) on a single triangle. Figure 3.3 depicts

an RWG BF on a triangle pair, which is defined as

An
+

2
ln

Tn
+ T

p
p

+

nln

2A n

ln

n
th

edge

n

n

Figure 3.3: Definition of an RWG basis function on adjacent triangles.

fn(r′) =







`n

2A+
n
ρ+
n

r′ ∈ T+
n ,

`n

2A−

n
ρ−
n

r′ ∈ T−
n ,

0 otherwise.

(3.1)

We use a shape function S(r′) in order to bound basis function on one triangle:

fn(r′)S(r′) =







`n

2A+
n
ρ+
n

r′ ∈ T+
n ,

0 otherwise,
(3.2)

where

S(r′) =







1 r′ ∈ T+
n ,

0 otherwise.
(3.3)

While transforming the EFIE (2.8) to a matrix equation, we need to take the

divergence of basis (testing) functions. Due to the shape function’s discontinuity
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on edges, divergence of Eq. (3.2) produces delta functions:

∇′ ·
[
fn(r′)S(r′)

]
=

`n

A+
n

S(r′) − n̂′ · fn(r′)δ(r′ − r`n
). (3.4)

In the EFIE, these delta functions convert some surface integrals to line integrals.

By substituting the second term of Eq. (3.4), the following expression is obtained:

∫

s′
ds′

[
− n̂′ · fn(r′)δ(r′ − r`n

)
]
g(r, r′) = −

∫

`′n

d`′n̂′ · fn(r′)
eik|r−r

′|

|r − r′| . (3.5)

Numerical computation of the above integral on adjacent and self triangles re-

quires the extraction and analytical evaluation of the singularity:

∫

`′n

d`′n̂′ · fn(r′)
eik|r−r

′|

|r − r′| =

∫

`′n

d`′n̂′ · fn(r′)
(eik|r−r

′| − 1)

|r − r′| +

∫

`′n

d`′n̂′ · fn(r′)
1

|r − r′| .

(3.6)

Although the integration of 1/|r − r′| is achievable on a surface [5]-[6], it is not

possible to analytically integrate the same singularity on a line. Therefore, we

cannot use the reformulated basis function (3.2) in order to discretize the EFIE.

3.2 Modifying the Triangulated Surface

Firstly, the intersection area between the body and the ground plane should

be removed due to the fact that the tangential electric currents on the ground

plane do not radiate. Then, we obtain modified triangulated surface of the body

by taking images of the boundary triangles. Thus, new basis functions can be

defined on edges where sawtooth-style triangles are connected. Figure 3.4(a), (b)

and (c) show the steps of modifying a conducting cube.
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Figure 3.4: (a) A conducting cube. (b) The same conducting cube with an open
side. (c) Modified form of the conducting cube.

3.3 Interpretation of the Problem in Terms of

Matrices

In free-space solution, each impedance matrix element is obtained from the

interaction of a basis and a testing function, or in other words, from the interac-

tion of four triangles. Since testing and basis functions are the same, there is a

diagonal symmetry in the impedance matrix:

Zij = Zji. (3.7)

This property is used in order to minimize the computational load. In Chap-

ter 2, two solution methods are explained for the scattering problem of a body

above the ground plane. Here, we focus on the relation between the impedance

18



matrices obtained from these two methods. Assume that we have a square plate

on the ground plane. Figures 3.5(a), (b), and (c) show the original problem, the

equivalent problem, and the modified triangulated surface respectively. When we

apply Eq. (2.12) (free-space Green’s function method) to the equivalent problem

by replacing btot
j (r′) with bj(r

′), we obtain the equation

γ γ 

(c)(b)

(a)
 ε

β

ω

4

3

β

 ε

1

2

Figure 3.5: (a) A conducting square plate on the ground plane. (b) The equiva-
lent problem. (c) The modified triangulated surface.
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α4












=












V1

V2

V3

V4












with the impedance-matrix elements

Z11 = 〈γ, γ〉 + 〈β, β〉 − 2〈γ, β〉

Z12 = 〈γ, β〉 − 〈β, β〉 = Z21

Z13 = 〈β, ε〉 − 〈γ, ε〉 = Z31

Z14 = 〈γ, ε〉 + 〈β, ω〉 − 〈γ, ω〉 − 〈ε, β〉

Z22 = 〈β, β〉

Z23 = −〈β, ε〉 = Z32

Z24 = 〈β, ε〉 − 〈β, ω〉. (3.8)
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Actually, some matrix elements are composed of less than four triangle in-

teractions, as will be explained later in this section. Using image theory, we can

equate the coefficients of the basis functions as

α1 = α4,

α2 = α3. (3.9)

Using the interpretation of the matrix elements in terms of triangles, the size

of impedance matrix can be reduced from 4 × 4 to 2 × 2 by using the equality

between the coefficients:




Z11 + Z14 Z12 + Z13

Z21 + Z24 Z22 + Z23








α1

α2



 =




V1

V2





It is important to note that the reduced matrix is still symmetric since

Z12 + Z13 = 〈γ, β〉 − 〈β, β〉 + 〈β, ε〉 − 〈γ, ε〉

m m m m

Z21 + Z24 = 〈γ, β〉 − 〈β, β〉 + 〈β, ε〉 − 〈β, ω〉. (3.10)

On the other hand, the method derived in Chapter 2 directly produces the same

2 × 2 matrix.

In the above, the triangles are denoted by Greek characters, and the interac-

tion of triangles are expressed with inner products. The matrix element Z11 is

given by

Z11 =

∫

s

ds t1(r) · iwµ
[

Ī + 1
k2∇∇

]

·
∫

s′
ds′g(r, r′)b1(r

′). (3.11)
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Both of the integrals are taken on a pair of triangles denoted by γ and β. Then

Eq. (3.11) can also be expressed as follows:

Z11 =

∫

γ

ds t1(r) · iwµ
[

Ī + 1
k2∇∇

]

·
∫

γ

ds′g(r, r′)b1(r
′)

︸ ︷︷ ︸

〈γ, γ〉
+

∫

β

ds t1(r) · iwµ
[

Ī + 1
k2∇∇

]

·
∫

β

ds′g(r, r′)b1(r
′)

︸ ︷︷ ︸

〈β, β〉

(3.12)

−2

∫

γ

ds t1(r) · iwµ
[

Ī + 1
k2∇∇

]

·
∫

β

ds′g(r, r′)b1(r
′)

︸ ︷︷ ︸

〈γ, β〉

.

(b)

β

1

2
(a)

γ

Figure 3.6: (a) A conducting triangle on the ground plane. (b) The equivalent
problem.

Finally, we consider why some matrix elements are composed of less than four

triangle interactions. In Figures 3.6 (a) and (b), a single triangle on the ground

plane and its equivalent problem are shown. Since one basis function can be

defined on these two triangles, the impedance matrix includes only one element:

[

Z11

] [

α1

]

=
[

V1

]

, (3.13)

where

Z11 = 〈γ, γ〉 + 〈β, β〉 − 2〈γ, β〉. (3.14)
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The equality between the real and image triangles causes self-interactions

(〈γ, γ〉 = 〈β, β〉) to be identical. Thus, we can simplify Eq. (3.13) as

(〈γ, γ〉 − 〈γ, β〉) α1 =
V1

2
. (3.15)

Consequently, it is possible to solve the problem by evaluating less interactions

among the triangles. From the physical point of view, observation point r should

always be on a real triangle, and not on an image triangle in the region below

the ground plane. Therefore, the testing process is carried out only on the real

part of the body.
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Chapter 4

Radiation from a Conducting

Body Excited with a Delta-Gap

Source

In earlier chapters, the induced current on the body was produced by an

incident electromagnetic plane wave, and the scattering problem was considered.

In this chapter, we focus on delta-gap source model, which is mainly used to

obtain radiation characteristic of conducting bodies. This source type can be

thought as an impressed electric field on a limited region of the conducting body.

After the triangulation of the surface, we can easily implement a delta-gap source

between adjacent triangles by using a feeding voltage as shown in Figure 4.1. On

this conducting strip, electric field is zero everywhere except in the gap between

the two triangles. Although the excitation type is different for the radiation

problems, the formulation derived in Chapter 2 can still be used. Furthermore,

the evaluation of the LHS of Eq. (2.12) becomes quite simple when we use a

delta-gap voltage source. Assume that the magnitude of the impressed electric
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field is given by

E(r) = n̂
V

δ
. (4.1)

Then, the integration of the electric field with a testing function over the trian-

gular pair covering the gap will be

lim
δ→0

∫

s

ds ti(r) · E(r) = lim
δ→0

∫

gap

ds ti(r) · E(r) = ± lim
δ→0

V

δ
δ`i = ±V `i. (4.2)

Since the electric field and the testing function can be in the same or opposite

directions, the result of integration Eq.(4.2) becomes +V `i or −V `i.

In this study, we consider two types of implementation of delta-gap sources.

One of them is on the connections of triangulated surfaces of the conducting

body, the other one is between the ground plane and the conducting body.

gapδ

n

Figure 4.1: Implementation of a delta-gap source between adjacent triangles on
a strip.
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4.1 Infinitesimal Electric Dipole Above the

Ground Plane

In order to construct a dipole for numerical solution, we use a thin conducting

strip, whose length is less than 1/10 of the wavelength, excited with a delta-gap

source as shown in Figure 4.2(a). Formulation in Chapter 2 can be directly used

for the computation of induced currents on this strip. Morever, the analytical

solution of the problem illustrated in Figure 4.2(b) is available [7], and is given

by

Eθ(r) '







jη
kI0le

−jkr

4πr
sin θ

(
2 cos(kh cos θ)

)
z ≥ 0,

0 z < 0,
(4.3)

where I0, l, and h are respectively the magnitude of the current, the length of the

dipole, and the height of the dipole from the ground plane. Figure 4.3 presents

a comparison of the radiated fields computed by the analytical expression of

Eq. (4.3) and the numerical technique. The remarkable agreement of the two

sets of data testifies to the accuracy of the numerical solution.

(a)

h

λ/10

(b)

Figure 4.2: (a) A conducting strip approximating an infinitesimal dipole. (b) An
infinitesimal electric dipole above the ground plane.
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Figure 4.3: Comparison of radiation patterns of a dipole at a height of 0.4585λ
above the ground plane.

4.2 A Delta-Gap Source Between Ground

Plane and Conducting Body

A delta-gap source can also be defined between the ground plane and the

conducting body, as shown in Figure 4.4. In this case, the result of integration

in Eq. (4.2) will be exactly the same. However, the result of integration for the

equivalent problem will be two times of the original result, since the width of the

gap becomes 2δ:

2δδ

2VoVo

(b)

1

2

α

β

(a)

Figure 4.4: (a) Delta-gap source between a single conducting triangle and the
ground plane. (b) The equivalent problem.
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lim
δ→0

−
∫

s

ds ti(r) · E(r) = ∓2V `i. (4.4)

A quarter-wavelength monopole on a ground plane is equivalent to a half-

wavelength dipole in free space, as shown in Figure 4.5. Since the dipole touches

the ground plane, we can define a delta-gap source between the ground plane

and the dipole as in Figure 4.4. In the example of Section 4.1, the magnitudes

of the voltages produced by the impressed electric fields were the same for both

the original and the equivalent problems. However, when a delta-gap source is

defined between the monopole and the ground plane, the magnitude of the voltage

for the equivalent problem is twice the original result, according to Eq. (4.4).

z

λ/2

z

λ/4

(b)

(a)

Figure 4.5: (a) A quarter-wavelength monopole on the ground plane. (b) The
equivalent problem.

In Figure 4.6, the first method represents the solution of a half-wavelength

dipole in free space. In this solution, a delta-gap source is employed at z = 0.

On the other hand, the second method represents the solution of a monopole in

the presence of the ground plane according to the formulation in Chapter 2 by

employing a delta-gap source between the monopole and the ground plane.
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Figure 4.6: Comparison of radiation patterns of the original and the equivalent
problems defined in Figure 4.5.
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Chapter 5

Multiple Unknowns at a Single

Edge

Triangular meshing of some complex geometries may contain cases of more

than two triangles connected to the same edge. For this type of edges, multiple

basis functions should be defined.

In this work, the cases of three-triangle and four-triangle connections to the

same edge are examined. The total numbers of possible basis functions defined

are three and six for three-triangle and four-triangle connections, respectively.

However, defining all possible basis functions produces linearly dependent equa-

tions causing a rank-deficient matrix equation. A methodology used to determine

the basis functions to be selected is explained here. Choosing any two of the three

possible basis functions is adequate to yield linearly independent equations for

the three-triangle connection case. Similarly, choosing three of the six possible

basis functions becomes sufficient for the four-triangle connection case. However,

there is another constraint regarding the selection of three basis functions. There

are twenty different combinations, and in some combinations, all basis functions
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are defined on three triangles leaving one triangle empty. These types of com-

binations give erroneous results since they do not consider the current on one

triangle. Therefore, the selected basis functions should cover all of the connected

triangles.

5.1 Three-Triangle Connections

Figure 5.1 shows the three possible basis functions on a three-triangle connec-

tion. The directions of basis functions can be determined arbitrarily, but all the

computations should be consistently carried out by retaining these predetermined

directions.

BF1

BF2

BF3

E1
E2

E3

Figure 5.1: Three possible basis functions on a three-triangle connection.

5.1.1 Linear Dependence of Defined Currents

Each element of the impedance matrix is evaluated by considering four

triangle-triangle interactions. According to combinations shown in Figure 5.1,
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the interpretations of nine matrix elements in the form of triangle-triangle inter-

actions are given by

Z11 = 〈1, 1〉 + 〈2, 2〉 − 2〈1, 2〉

Z12 = 〈1, 1〉 + 〈2, 3〉 − 〈1, 3〉 − 〈1, 2〉 = Z21

Z13 = 〈1, 2〉 + 〈2, 3〉 − 〈1, 3〉 − 〈2, 2〉 = Z31

Z22 = 〈1, 1〉 + 〈3, 3〉 − 2〈1, 3〉 (5.1)

Z23 = 〈1, 2〉 + 〈3, 3〉 − 〈1, 3〉 − 〈2, 3〉 = Z32

Z33 = 〈2, 2〉 + 〈3, 3〉 − 2〈2, 3〉.

Any row of the impedance matrix can be obtained by adding or subtracting the

other two rows. For instance, the elements of the last row can be obtained by

subtracting the first row from the second row:

Z31 = Z21 − Z11

Z32 = Z22 − Z12 (5.2)

Z33 = Z23 − Z13.

Thus, the third row is linearly dependent, and the rank of this 3 × 3 matrix is

equal to 2. In order to overcome this problem, any two of the three possible basis

functions should be selected for the solution of the matrix equation.

5.1.2 Selection of the Basis Functions

There are three different possible combinations of basis functions, and these

combinations are shown in Figure 5.2. All three basis functions satisfy Kirchhoff’s

current law (KCL) individually. Therefore, all three of these combinations should

produce the same results, such as the overall current distribution and the RCS

values.
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Figure 5.2: Three different combinations of basis functions.

As an example, in order to verify that all three choices of the configurations

shown in Figure 5.2 produce the same results, we will compare the RCS results

obtained for the geometry shown in Figure 5.3. Figure 5.4 shows that the three

different RCS results obtained by employing the three different choices of basis-

function combinations of Figure 5.2 give exactly the same results.

Figure 5.3: A triangulated conducting structure containing three-triangle con-
nections.
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Figure 5.4: The RCS results of the geometry shown in Figure 5.3 using three
different combinations of the basis functions.
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5.2 Four-Triangle Connections

A similar procedure is applied for the four-triangle connections. There are

six possible definitions of current basis functions on four-triangle connections as

shown in Figure 5.5. However, three of them are sufficient in order to solve the

problem uniquely. The number of all possible combinations of basis functions is

equal to 20. However, four of the combinations are not acceptable since they do

not cover all four triangles. These invalid combinations are shown in Figure 5.6.

Any one of the remaining 16 combinations is valid for a correct formulation of

the problem. Figure 5.8 shows the RCS results of the conducting structure whose

geometry is presented in Figure 5.7. The legends; “first combination”, “second

combination”, and “third combination” represent different valid combinations of

basis functions.

Figure 5.5: Six possible basis functions on a four-triangle connection.

Figure 5.6: Four invalid combinations of current basis functions.
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Figure 5.7: A triangulated conducting structure having four-triangle connections.

Figure 5.8: The RCS results of the geometry shown in Figure 5.7 using three
different combinations from a set of 16 acceptable choices
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5.3 Delta-Gap Sources on Four-Triangle Con-

nections

Up to three delta-gap sources can be employed on the edges, where four-

triangles are connected as in Figure 5.9(a). The solution of problem is performed

by using a combination of three valid basis functions. Figure 5.10 shows a tri-

angulated geometry where delta-gap sources are defined at the center, and the

radiation patterns of this geometry on three different planes. Three different

results are obtained by employing three different valid configurations of the basis

functions. The results agree well with each other.

Evaluation of the LHS of Eq. (2.12) for this type of excitation is implemented

differently. In the example of Figure 5.9(a), assume that we use the three valid

combinations shown in Figure 5.9(b). If we assume that the potential of the delta-

gap source is equal to 1, then the normalized entries of the LHS of Eq. (2.12)

for the testing functions 1, 2, and 3 will be 1, 0.5, and 0.5, respectively. From a

physical point of view, the potential difference between the two triangles, where

a delta-gap source is defined, is equal to 1, and the potential differences between

these two and the remaining triangles are equal to 0.5.

(a) (b)

1

2

3

Figure 5.9: (a) The implementation of a delta-gap source on a four-triangles
connection. (b) One of the valid combinations of basis functions.
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Figure 5.10: A conducting structure containing four-triangle connections and its
radiation patterns on three different planes.
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5.4 Data Structures for Multiple Connections

After triangulating the surface of the geometry, common edges between the

triangles are classified with respect to the number of triangles connected to each

edge. In our implementation, two-triangle, three-triangle, and four-triangle con-

nections are considered, and the data comprising the number of triangles con-

nected to the common edges is stored in a matrix. Then, basis functions are

defined on connected triangles. The number of basis functions defined is decided

according to the number of triangles connected. For the two-triangle case, one

basis function is defined on the adjacent triangles, and for the other cases, which

are explained in the previous sections of this chapter, two or three basis functions

are defined. Two nine-columned connectivity matrices, named CONNECTIVITY1

and CONNECTIVITY2, are used in order to store the defined basis function data.

In Table 5.1, filling method of the connectivity matrices is illustrated.

There is no difference between CONNECTIVITY1 and CONNECTIVITY2 ma-

trices in terms of the filling method. However, CONNECTIVITY1 matrix consists

of basis functions defined on two-triangle connections, and CONNECTIVITY2 ma-

trix consists of basis functions defined on three-triangle and four-triangle connec-

tions. Tables 5.2 and 5.3 show the connectivity matrices of triangulated surfaces

shown in Figure 5.11.
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Row 1 2 3 4 5 6 7 8 9
T BF1 BF2 BF3 N1 N2 N3 D1 D2 D3

T: Row index of the CONNECTIVITY matrix, which is also the index

of the triangular element.

BFi : Indices of the basis functions defined on the three edges of the

triangle T; 0 if no BF is defined on a particular edge.

Ni : Index of the node across the edge, on which BFi is defined; 0 if no

BF is defined.

Di : Reference direction of BFi: 1 if BFi is emerging from Ni, 2 if BFi

is flowing into Ni, 0 if no BF is defined.

Table 5.1: Elements of the CONNECTIVITY matrix.

BF1 BF2 BF3 N1 N2 N3 D1 D2 D3
1 2 0 1 2 0 1 1 0
2 3 0 4 1 0 2 1 0
1 4 0 3 2 0 2 1 0
3 4 0 3 4 0 2 2 0

Table 5.2: CONNECTIVITY1 matrix of triangulated surface shown in Fig-
ure 5.11(a).

BF1 BF2 BF3 N1 N2 N3 D1 D2 D3
1 2 3 3 3 3 1 1 1
1 0 0 4 0 0 2 0 0
2 0 0 5 0 0 2 0 0
3 0 0 6 0 0 2 0 0

Table 5.3: CONNECTIVITY2 matrix of triangulated surface shown in Fig-
ure 5.11(b).
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(a)

(b)

Figure 5.11: (a) A triangulated surface having only two-triangle connections.
(b) A triangulated surface having four-triangle connections.
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5.5 Scattering from a Complicated Target with

Multiple Connections

Formulation and solution of scattering problems in the presence of a ground

plane were illustrated in Chapter 2. However, those geometries used did not

contain any multiple connections. Although multiple connections complicates

the problem in terms of the definitions of the basis functions, solution of the

scattering problems involving geometries with multiple connections is exactly

the same as in Chapter 2. Figure 5.13 shows the monostatic RCS results, which

means that the receiver and the source are in the same location, obtained by

employing a ship model, geometry of which is shown in Figure 5.12.

In this problem a y-polarized incident field is used for excitation. Since the

y-axis is parallel to the ground plane, it can also be called the horizontal polar-

ization. Furthermore, the equivalent problem is solved by using the geometry in

Figure 5.14. The consistency of the results in Figure 5.13 verifies the formulation

in Chapter 2. Although the latter method seems straightforward, it produces re-

dundantly large matrix equations. For instance, the first method produces a

matrix equation with 959 unknowns, compared to 2145 unknowns of the second

method. As the number of unknowns increases, the second method becomes

prohibitively expensive compared to the first one.
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Figure 5.12: A ship model having three-triangle connections.
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Figure 5.13: The monostatic RCS results of ship model shown in Figure 5.12.
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Figure 5.14: The geometry of the equivalent problem, used in the second method.
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Chapter 6

Conclusions

In this thesis, method of moments in conjunction with the image theory is

applied to analyze the electromagnetic scattering from arbitrarily shaped con-

ducting bodies above the ground plane. Two solution methods are presented

with their formulations. A special attention is given for the formulation of the

second method, which concentrates on the modification of the free-space Green’s

function. We obtain same numerical results using both of these two methods.

Both scattering and radiation phenomena are considered by using two different

excitation types.

Complex bodies consisting of multiple connections at single edges are exam-

ined. A methodology applied for the definition of the basis functions on these

types of edges is developed, and its accuracy is verified by using different valid

combinations of basis functions.

As a future work, the same problem can be solved in the presence of a coating

over the conducting body. In this case, a MoM solution based on impedance

boundary condition (IBC) can be applied for the solution of the problem.
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