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Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet B. Baray
Director of the Institute

ii



ABSTRACT

SCHEDULING WITH CONTROLLABLE PROCESSING
TIMES IN A CNC ENVIRONMENT

Taylan İlhan

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. M. Selim Aktürk

September, 2002

Flexible manufacturing systems give a manufacturer some capabilities to con-

sider and solve different manufacturing problems simultaneously instead of one

by one in a sequential manner. Using those makes her more competitive in the

market. One of those capabilities is controllable processing times. By using this

capability, the due date requirements of customers can be satisfied much more ef-

fectively. Processing times of the jobs in a CNC machine can be easily controlled

via machining conditions such that they can be increased or decreased at the ex-

pense of tooling cost. In this study, we consider the problem of scheduling a set

of jobs by minimizing the sum of total weighted tardiness, tooling and machining

costs on a single CNC machine. This problem is NP-hard since the total weighted

tardiness problem is NP-hard alone. Moreover, the problem is non-linear because

of the nature of the tooling cost. We proposed a DP-based heuristic to solve the

problem for a given sequence and designed a local search algorithm that uses it

as a base heuristic.

Keywords: Scheduling, Single Machine, Total Weighted Tardiness, Machining

Conditions, Controllable Processing Times, Heuristics.
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ÖZET

CNC ORTAMINDA KONTROL EDİLEBİLİR ÜRETİM
ZAMANLARIYLA ÇİZELGELEME

Taylan İlhan

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Assoc. Prof. M. Selim Aktürk

Eylül, 2002

Esnek üretim sistemleri bir üreticiye farklı üretim problemlerini tek tek sırayla

değil aynı anda çözebilmesini sağlayan kabiliyetler verir. Bu kabiliyetleri kullan-

mak onu pazarda çok daha rekabetçi bir hale getirir. Bu kabiliyetlerden birisi

de bilgisayar sistemleri üzerinden kontrol edilebilir üretim zamanlarıdır. Bu

kabiliyeti kullanarak müşterilerin teslim zamanı gereksinimleri daha efektif bir

şekilde karşılanabilir. Bir CNC makinasında işlenecek olan işlerin üretim zaman-

ları işleme koşulları üzerinden kontrol edilebilir, yani kesici uç maliyeti karşılığında

arttırılabilir ya da azaltılabilir. Bu çalışmada, toplam ağırlıklı gecikme, kesici uç

ve işleme maliyetlerini enazlayarak bir grup işin çizelgelenmesini gözönüne aldık.

Tek başına toplam ağırlıklı gecikme problemi NP-zor olmasından dolayı, bizim

incelediğimiz problem de NP-zor’dur. Ayrıca, kesici uç maliyetinin doğasından

dolayı da problem doğrusal değildir. Bu çalışmamızda sırası verilmiş işlerin

çizelgelenmesi için DP temelli bir yöntem ve bu yöntemi temel algoritma olarak

kullanan bir genetik problem uzayı algoritması tasarladık.

Anahtar sözcükler : Çizelgeleme, Toplam Ağırlıklı Gecikme, İşleme Koşulları,

Kontrol Edilebilir Üretim Zamanları, Yordamlama.
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and guidance in his review.

I am indebted to Ayten Türkcan for sharing her creative ideas and comments

with me.

I also would like to thank to my dear Filiz Gürtuna for her invaluable com-
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Chapter 1

Introduction

Buyer-vendor relationship plays an important role in business. Usually, buyers

desire reliable time delivery for meeting their schedules. From the perspective

of the vendors, each buyer has a different priority. All of these require vendors

to consider weighted tardiness problem in their scheduling decisions. If a manu-

facturer has a flexible manufacturing system, in addition to its other capabilities

she also gains a capability to be more competitive in meeting customer due date

requirements. This capability is to be able to control processing times, which is

a readily available feature on modern CNC machines.

Processing times in a CNC machine are controlled by machining conditions,

for example feed rate and cutting speed in a turning machine. We can increase

or decrease the processing time of a job by changing the machining conditions.

However, there is a cost which is incurred when we increase the processing speed.

It is the tooling cost, to which a manufacturer should always pay attention to

use CNC machines effectively. Gray et al. [22] and Veeramani et al. [53] give

extensive surveys on the tool management issues of FMS, and emphasize that

the lack of tooling considerations has resulted in the poor performance of these

systems.

In the literature, the interaction between determining machining conditions

and solving single machine weighted tardiness problem is never analyzed up to

1



CHAPTER 1. INTRODUCTION 2

now. Moreover, in the industry, they are considered as decisions at two different

levels of FMS hierarchy. Machining conditions are determined in the design level

and scheduling problems are solved in the operational level. To convert the

capability of controlling processing times to an advantage for a manufacturer,

instead of solving these problems one by one in a sequential manner we propose

a solution methodology for solving them together by considering the relations

between them.

In this study, we consider the problem of scheduling a set of jobs by minimizing

the sum of total weighted tardiness, tooling and machining costs on a single CNC

machine. This problem is NP-hard since the total weighted tardiness problem is

NP-hard alone. Moreover, the problem is non-linear because of the nature of the

tooling cost. Processing times of the jobs are controllable because they depend

on the machining conditions. Thus, finding an efficient algorithm that solves the

problem exactly is almost impossible.

In our study, we first develop an efficient Dynamic Programming(DP) based

heuristic algorithm that considers interactions among the jobs using a con-

tributed cost function. The proposed algorithm minimizes the summation of

total weighted tardiness, tooling and machining costs over a given sequence. We

then employ a problem space heuristic based on a local search algorithm that

uses the proposed algorithm as a base heuristic to determine the processing time

of each job and the schedule of all jobs simultaneously to minimize the stated

objective function. At each stage of the base algorithm, we generate a set of pro-

cessing time alternatives for each job in a recursive equation (that corresponds to

states in a DP format) in a backward DP algorithm. After finding the optimal

processing time for the first job in the sequence, it generates the optimal process-

ing times for the rest of the jobs by using the recursive equations and alternative

states of each job in a forward DP algorithm.
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We compared computationally our DP-based heuristic with mathematical for-

mulation of the problem for a given sequence, and found that our heuristic de-

creases CPU times dramatically at the expense of losing little from solution qual-

ity. Also the computational results over the original problem show that our pro-

posed local search algorithm produces solutions with much higher quality when

compared to the sequential algorithm that determines machining conditions first

and then solves the scheduling problem for the total weighted tardiness criterion.

Although, CPU times of our algorithm are higher than the ones of the sequen-

tial algorithm, they are in acceptable ranges considering the improvement in the

solution quality.

In the next chapter, we present a literature review on machining conditions

optimization in tool management, controllable processing times and weighted

tardiness concerns in scheduling literature. In Chapter 3, we define the scope of

this study and give the mathematical formulations of the problem. In Chapter 4,

we introduce our proposed heuristic approaches and in Chapter 5 we present an

illustrative example for our proposed DP-based heuristic. Experimental design

and computational results are given in Chapter 6. Finally, we conclude in Chapter

7 giving final remarks and future research directions.



Chapter 2

Literature Review

In literature, both tool management issues and scheduling problems have been

extensively researched. However, they are considered separately. The interaction

between them is ignored. In this section, we give a short literature review related

to tool management, and scheduling with controllable processing times and with

total weighted tardiness criterion, 1||∑ wiTi.

In order to give the related literature in an organized manner, we will start

with the tool management and machining condition issues in the following section.

Then, we will give the literature on scheduling with controllable processing times

and with weighted tardiness criterion. Finally, we will conclude by mentioning

the drawbacks of the current literature that motivate us for this study.

2.1 Tool Management and Machining Condi-

tions

Flexibility is a key requirement in manufacturing systems to cope with modern

market environment which is characterized by diverse products, high quality and

short lead time. Crama and Klundert [12] define the most vital component of

flexibility as “the ability of machines to perform various operations on various

4
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products or parts”. The term “flexible” is generally used to describe two aspects

of the system [44]: (1) the ability to use alternative routings through the machines

to perform a given set of operations, and (2) the ability to simultaneously machine

different part types. This flexibility is achieved by the use of CNC machines which

are capable of carrying multiple tools. Also, the versatility of an FMS is achieved

by equipping each machine with a tool magazine. This magazine can hold a set

of tools which the machine can use to perform a succession of operations while

incurring low setup costs when switching from one tool to another. In reality,

FMSs are only capable of processing a finite family of parts at any given time. The

flexibility or randomness is limited by the allocation of supporting resources such

as pallets, fixture, and tools. As FMSs expand into the low volume, high variety

production environment, the number of pallets, fixture, and tools and the amount

of handling of these resources are increased. The management of these resources,

especially the tooling which accounts for a high percentage of the operating costs

of an automated manufacturing environment, is an absolute must. Therefore the

models including tool management improves the productivity for an FMS.

Due to its direct impact on system performance, its dynamic nature and the

large amount of information involved, the tooling problem has been considered

as one of the most important and complicated issues in automated manufactur-

ing. Proper tool management ensures that the correct tools are on the appro-

priate machines at the right time so that the desired quantities of workpieces

are manufactured and the machine utilizations are maintained. Tool inventory,

maintenance and distribution issues determine the quantity of work produced and

system utilizations.

Tool management is an important area of research which has been extensively

studied for nearly a hundred years, since Taylor [50] first recognized in 1907 that

the machining conditions should be optimized to minimize the machining cost.

Malakooti and Deviprasas [35] list vital contributions on parameter selection in

metal cutting from 1907 up to 1985 in their paper.

It is stated by Stecke [46] and Gray et al. [22] that approximately 50 percent

of U.S. annual expenditures on manufacturing is in the metal working industry,
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and two thirds of metal working is metal cutting. Besides being a critical issue in

factory integration, tool management has direct cost implications. Kouvelis [30]

reports in his study that tooling accounts for 25 percent to 30 percent of both fixed

costs and variable costs of production in an automated machining environment.

The reason for such a high contribution of the tooling to the total manufacturing

cost is related to the high material removal rate in metal cutting processes, and the

consequent increased tool consumption rates and tool replacement frequencies.

Kaighobadi and Venkatesh [27] state that the lack of attention to cutting

tool related issues is a main reason for making an FMS inflexible in practice.

Gray et al. [22] and Veeramani et al. [53] give extensive surveys on the tool

management issues in automated manufacturing systems, and emphasize that

the lack of tool management considerations has resulted in the poor performance

of these systems.

The optimization of the machining conditions for a single operation is a well

known problem, where the decision variables are usually the cutting speed and

the feed rate. These conditions are the key to economical machining operations.

Knowledge of optimal cutting parameters for machining operations is required

for process planning of metal cutting operations. Numerous models have been

developed with the objective of determining optimal machining conditions.

Malakooti and Deviprasas [35] formulate a metal cutting operation, specif-

ically for a turning operation, as a discrete multiple objective problem. The

objectives are to minimize cost per part, production time per part, and rough-

ness of the work surface, simultaneously. They discuss a heuristic gradient-based

multiple criteria decision making approach which they apply to parameter se-

lection in metal cutting. For the metal cutting problem, they show how effi-

cient alternatives can be generated by a discrete variable approach and how the

gradient-based multiple objective approach can be implemented to obtain the

most preferred alternative. They also discuss their software package for micro-

computers as a decision support system for parameter selection. They compare

their computer aided machine parameter selection (CAMPS) package to some of

the computer packages (used in 1987) in the market.
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Duffuaa et al. [15] compare the results of a number of gradient based opti-

mization algorithms with different machining models. Their approach is limited

because of the use of gradient based methods which are not ideal for non-convex

problems. They conclude that the generalized reduced gradient method is the

most suitable for solving machining optimization models.

Petropoulos [39] has used geometric programming for optimization of machin-

ing parameters. Multi-pass turning optimization has been addressed by Ermer

and Kromodihardjo [19]. They use a combination of linear and geometric pro-

gramming.

Iwata et al. [26] use a stochastic approach to solve for optimal machining

parameters. Eskicioglu and Eskicioglu [20] demonstrate the use of non-linear

programming for machining parameter optimization. Hati and Rao [23] use se-

quential unconstrained minimization technique (SUMT) to solve a multi-pass

turning operation.

Khan et al. [29] study machining condition optimization by genetic algorithms

and simulated annealing. Although nonlinear and non-convex machining models

developed with the objective of determining optimal cutting conditions are tra-

ditionally solved using gradient based algorithms, they study three non gradient

based stochastic optimization algorithms and test their efficiency in solving sev-

eral benchmark machining models which are complex because of non-linearities

and non-convexity.

Stori et al. [47] integrate process simulation in machining parameter opti-

mization and propose a methodology for incorporating simulation feedback to

fine-tune analytic models during optimization process. They present a non-linear

programming (NLP) optimization technique used to select process parameters

based on closed-form analytical constraint equations relating to critical design

requirements and execute simulation using these process parameters, providing

predictions of the critical state variables. Then, they dynamically adapt con-

straint equation parameters using the feedback provided by the simulation pre-

dictions. They repeat this sequence until local convergence between simulation

and constraint equation predictions has been achieved.
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Thomas et al. [51] emphasize the importance of choice of optimized cutting

tool parameters to control the required surface quality. Surface finish is an im-

portant requirement for many turned work pieces in machining operation. The

authors dealt with the interactions between the cutting parameters and surface

roughness. They investigated the effects of tool vibration on the resulting surface

roughness in the dry turning operation of carbon steel. They chose a full factorial

design that allowed to consider the three-level interactions between the cutting

parameters (cutting speed, feed rate, tool nose radius, depth of cut, tool length,

and workpiece length) on the two measured dependent variables (surface rough-

ness and tool vibration). Their results show that the factors having the greatest

influence on surface roughness are the second order interactions between cutting

speed and tool nose radius, along with third-order interaction between feed rate,

cutting speed and depth of cut. They had the best surface finish at a low feed

rate, a large tool nose radius and a high cutting speed. They concluded that

feed rate and tool nose radius produced the most important effects on surface

roughness, followed by cutting speed.

Kyoung et al. [32] emphasized the importance of selecting tool size, tool path,

cutting width at each tool path properly and calculating the machining time for

optimal process planning. Since other factors depend on the tool size, it is the

most important factor in their problem. They presented a method for selecting

optimal tools for pocket machining for the components of injection mold. They

applied the branch and bound method to select the optimal tools which minimize

the machining time by using the range of feasible tools and the breadth-first

search.

These models consider only the contribution of machining time and tooling

cost to the total cost of operation, and they usually ignore the contribution of the

non-machining time components to the operating cost, which could be significant

for the multiple operation case. All of the time consuming events except the

actual cutting operation are denoted as non-machining time components. Ba-

sic setup, tool interchanging, tool replacing, workpiece loading-unloading, tool
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tuning, tool approach and stabilization etc., are the typical examples of non-

machining events. Machining conditions are the main determinants of these non-

machining time components. These studies also exclude the tooling issues such as

the tool availability and the tool life capacity limitations. Therefore, their results

might lead to infeasibilities due to tool contention among operations for a limited

number of tool types [37].

Aktürk and Avcı [4] proposed a solution procedure to make tool allocation

and machining conditions selection decisions simultaneously. They also take into

account the related tooling considerations of tool wear, tool availability, and

tool replacing and loading times, since they affect both the machining and non-

machining time components, hence the total cost of manufacturing. In their

study, they extend single machining operation problem (SMOP) formulation by

adding a new tool life constraint which enables them to include tooling issues like

tool wear and tool availability. Furthermore, they propose a new cost measure to

exploit the interaction between the number of tools required with the machining,

tool replacing and loading times, and tool waste cost in conjunction with the

optimum machining conditions for alternative operation-tool pairs. Consequently,

they prevent any infeasibility that might occur for the tool allocation problem

at the system level due to tool contention among tool life restrictions through a

feedback mechanism.

Aktürk and Önen [6] proposed a new algorithm to solve lot sizing, tool alloca-

tion and machining conditions optimization problems simultaneously to minimize

the total production cost in a CNC environment. They integrated the system,

machine and tool level decisions for production of multiple parts consisting of

multiple operations. This way, they avoid any infeasibility that may occur due

to tool and machine hour availability limitations.

In a recent study, Aktürk [3] developed an exact approach to determine the

optimum machining conditions and tool allocation decisions simultaneously to

minimize the total production cost on a CNC turning machine where alternative

tools can be used for each operation. He emphasized the tool management issues
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at the tool level such as the optimum machining conditions and tool selection-

allocation decisions considering the tool life, machining operations and tool avail-

ability constraints. He presented a new mathematical model and proposed an

efficient solution procedure to determine concurrently the optimal machining con-

ditions of cutting speed and feed rate, the optimal operation-tool assignment and

optimal allocation of tools.

2.2 Scheduling

Scheduling is concerned with determining the sequence in which available work

should be processed to optimize system performance.

Standard formulations of the scheduling problem assume that job processing

times are fixed and known in advance of scheduling. In practice, processing

times are often a function of the amount and mix of resource inputs allocated

to a job. These resources can vary depending on the system. For instance, in a

production facility composed of CNC machines, machine cutting speed and feed

rate are effective parameters changing the processing times and tool usage rates.

In a relatively labor-intensive systems, processing time typically depend on the

number and type of the workers allocated to the system (Daniels et al. [13]).

2.2.1 Controllable Processing Times

Processing time control and its impact on sequencing decisions and operational

performance have received limited attention in the scheduling literature. Some

models for single-processor systems have been developed and studied concerning

controllable processing times. Extensions to parallel-machine environments are

also addressed by researchers. A survey of the literature up to 1990 can be found

in Nowicki and Zdrzalka [36].

Daniels and Sarin [14] consider the problem of joint sequencing and resource

allocation when the scheduling criterion of interest is the number of tardy jobs
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and derive theoretical results that aid in developing the trade-off curve between

the number of tardy jobs and the total amount of allocated resource.

Panwalker and Rajagopalan [38] consider the static single machine sequencing

problem with a common due date for all jobs in which job processing times are

controllable with linear costs. They develop a method to find optimal processing

times and an optimal sequence to minimize a cost function containing earliness

cost, tardiness cost and total processing cost.

Adiri and Yehudai [2] study the problem of scheduling identical parallel proces-

sors whose service rates can change between jobs. Trick [52] focuses on assigning

single-operation jobs to identical machines while simultaneously controlling the

processing speed of each machine.

Zdrzalka [57] deals with the problem of scheduling jobs on a single machine in

which each job has a release date, a delivery time and a controllable processing

time, having its own associated linearly varying cost and propose an approxima-

tion algorithm for minimizing the overall schedule cost.

Ishii et al. [25] consider the problem with parallel uniform machines in which

the speed of a machine is a continuous nonnegative variable and the compression

cost is a function of the speed of the machine.

Cheng et al. [10] consider a parallel machine scheduling problem with control-

lable processing times, where the job processing times can be compressed through

incurring an additional cost, which is a convex function of the amount of com-

pression. They formulate two problems, one to minimize the total compression

cost plus the total flow time, and the other to minimize the total compression cost

plus the sum of earliness and tardiness costs for the common due date schedule

problem.

Daniels et al. [13] investigate the improvements in manufacturing perfor-

mance that can be realized by broadening the scope of the production scheduling

function to include both job sequencing and processing-time control through the

deployment of a flexible resource. They consider an environment in which a set of
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jobs must be scheduled over a set of parallel manufacturing cells, each consisting

of a single machine, where the processing time of each job depends on the amount

of resource allocated to the associated cell.

Karabati and Kouvelis [28] solve the simultaneous scheduling and optimal

processing-times selection problem in a flow line operated under a cyclic schedul-

ing policy. They address the simultaneous scheduling and optimal-processing-

times selection problem in a multi-product deterministic flow line operated under

a cyclic scheduling approach. They provide a modeling framework for cyclic

scheduling decisions that incorporate processing-times selection considerations.

After presenting a linear program solving the optimal-processing-times selection

problem for a given cyclic sequence, they demonstrate for large problems, how the

use of a row generation scheme allows them to solve it more efficiently than stan-

dard linear programming codes. For the solution of the simultaneous scheduling

and optimal-processing-times selection problem, they propose a simple procedure

that iteratively solves cyclic scheduling and optimal-processing-times selection

subproblems for given sequences.

Cheng and Shakhlevich [11] present two polynomial algorithms for the pro-

portionate flow-shop problem with controllable processing times minimizing the

makespan and compression cost. Sodhi et al. [45] develop models for determining

economic processing speeds and tool loading to minimize the makespan required

to produce a given set of parts in a flexible manufacturing system composed of

several machines.

The concept of controllable processing times can also be observed in project

management with controllable activity durations. In 1980, Vickson treats the

problem of minimizing the total weighted flow cost plus job processing cost in

a single machine sequencing problem for jobs having processing costs which are

linear functions of processing times in his first study [55]. In his second study

[56], he extends his initial study and presents simple methods for solving two

single machine sequencing problems when job processing times are themselves

decision variables having their own linearly varying costs. The objectives studied

are minimizing the total processing cost plus either the average flow cost or the
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maximum tardiness cost. He treats only the problems with zero ready time and

no precedence constraints.

Lee and Lei [34] present efficient algorithms for solving several special cases

of multi-project scheduling problems with controllable project duration and hard

resource constraints. Two types of problems are considered. In type I, the dura-

tion of each project includes a constant and a term that is inversely proportional

to the amount of resource allocated. In type II, the duration of each individual

project is a continuous decreasing function of the amount of resource allocated.

Erenguc et al. [18] give a formulation and an exact solution method for

a nonpreemptive resource constrained project scheduling problem in which the

duration/cost of an activity is determined by the mode selection and the duration

reduction (crashing) within the mode.

2.2.2 The Total Weighted Tardiness

One of the first results in tardiness scheduling is the well known Elmaghraby

lemma ([16]) which states that if a job’s due date is greater than the total com-

pletion time of all jobs, then there is an optimal schedule in which that job is

scheduled last.

Lawler [33] shows that total weighted tardiness problem, 1||∑ wiTi, is strongly

NP-hard and gives a pseudo polynomial algorithm for the total tardiness problem.

Various enumerative solution methods have been proposed. In 1969, Emmons

[17] derives several dominance rules for total tardiness problem that restrict the

search for an optimal solution. Emmons’ rules are used both branch and bound

and dynamic programming algorithms (Fisher and Potts and Van Wassenhove

[21, 40]). Rinnooy Kan et al. [43] extended these results to the weighted tardiness

problem. Rachamadugu [41] identifies a condition characterizing adjacent jobs

in an optimal sequence for 1||∑ wiTi. Chambers et al. [9] develop new heuristic

dominance rules and flexible decomposition heuristics. The exact approaches

used in solving the total weighted tardiness problem are tested by Abdul-Razaq
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et al. [1] and they use Emmons’ dominance rules to form a precedence graph

for finding upper and lower bounds. They show that the most promising lower

bound both in quality and time consumption is the linear lower bound method

by Potts and Van Wassenhove [40], which obtained from Lagrangian relaxation of

machine capacity constraints. Hoogeveen and Van de Velde [24] reformulate the

problem by using slack variables and show that better Lagragian lower bounds

can be obtained.

Szwarc [48] proves the existence of a special ordering for the single machine

earliness-tardiness (E/T) problem with independent job penalties where the ar-

rangement of two adjacent jobs in an optimal schedule depends on their start time.

Szwarc and Liu [49] present a two-stage decomposition mechanism to 1||∑ wiTi

when tardiness penalties are proportional to the processing times which proves

to be powerful in solving the problem completely or reducing it to a smaller

problem. Also, Aktürk and Yıldırım [7, 8] propose a new dominance rule and a

lower bounding scheme that provides a sufficient condition for local optimality,

which can be used in reducing the number of alternatives in any exact approach.

Their proposed rule covers and extends the Emmons’ results and generalizations

of Rinnooy Kan et al. by considering the time dependent orderings between each

pair of jobs.

Since the implicit enumerative algorithms may require considerable resources

both in terms of computation times and memory, several heuristics and dispatch-

ing rules have been proposed. They are logical rules for choosing which available

job to select for processing at a particular work center. In using dispatching

rules, usually scheduling decisions are made sequentially rather than once. For

static dispatching rules, the job priorities do not change over time while priori-

ties might change over time for the dynamic dispatching rules. Vepsalainen and

Morton [54] develop and test efficient dispatching rules for the weighted tardiness

problem with specified due dates and delay penalties. They show that Apparent

Tardiness Cost (ATC) rule outperforms many existing heuristic rules.

ATC is a composite dispatching rule that combines the weighted shortest

processing time and minimum slack rules. Under the ATC rule jobs are scheduled



CHAPTER 2. LITERATURE REVIEW 15

one at a time; the job with highest ranking index is then selected to be processed

next. The ranking index is a function of time t, processing times pi, delay penalties

wi, and due dates ddi of the remaining jobs. The ATC index can be defined as:

ai =
wi

pi

exp(
−max(0, ddi − t− pi)

Kp
)

where p is the average processing time of the remaining jobs at time t and K

is the look-ahead parameter. It trades off job’s urgency (slack) against machine

utilization, but due to the more complex weighted criterion, an additional look

ahead parameter is needed to assimilate the competing jobs which have different

weights. In computational tests performed by Rachamadugu and Morton [42] an

exponential function of the slack was found somewhat more efficient. Intuitively,

the exponential look ahead works by ensuring timely completion of short jobs

(steep increase of priority close to due date), and by extending the look ahead

far enough to prevent long tardy jobs from overshadowing clusters of short jobs.

2.3 Summary

In the literature of scheduling with controllable processing times, to the best

of our knowledge there is no study that considers the total weighted tardiness

problem. Moreover, most of the studies assume that the processing times can be

crashed in a range with linear compression cost. But, for our case, the processing

times are closely related with tool and operation parameters.

In the literature related to the weighted tardiness problem, processing times

are taken as constant, either deterministic or probabilistic. However, they are

closely related with the machining conditions. Hence, the processing times of the

jobs are controllable.

As a result, scheduling jobs which have controllable processing times under

the total weighted tardiness criterion is an untouched topic in the literature. The

objective of the research reported in this thesis is to show how closely machining

conditions optimization and scheduling of the jobs in a CNC machine are related.

These topics have been studied separately by many researches, however there
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is no study that integrates all of these and investigates the interactions among

them.

In this chapter, we introduced a short review of the literature on tool manage-

ment and scheduling issues which are related with our problem in some aspects,

and stated the similarities and diversities of our problem between the problems

studied in the literature.

In the next chapter, we give the definition and underlying assumptions of

the problem, present the mathematical programming formulations of the original

problem and its subproblem.



Chapter 3

Problem Statement and

Modeling

In this chapter, we will first give the detailed definition of the problem, underlying

assumptions and notation used throughout the study. Then, we will construct a

mathematical formulation.

3.1 Problem Definition

We are given N jobs with specified depth of cut, length and diameter of the

generated surface along the maximum allowable surface roughness attributes.

Also, each job corresponds to one cutting operation. The problem is scheduling

these jobs on a CNC machine in order to minimize the total weighted tardiness

cost plus machining and tooling costs. Each job can be performed by a different

tool type. When tool life is over, tool is changed. However, considering rapid

tool change technologies, we assume that tool change times are negligible. The

machining conditions of the CNC machine can be changed, and for each job it can

be adjusted to different cutting speed and feed rate pair and this pair determines

the processing time of the job. However, there are some constraints for these

settings. The speed and feed rate have to satisfy the machining power, surface

17
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finish and tool life constraints. After detecting the feasible region of cutting speed

and feed rate (consequently processing time), we have to make two decisions, what

will the feasible machining setting for each job and what will be the processing

sequence of the jobs.

3.1.1 Assumptions and Notations

The assumptions about the operating policy and characteristics of the system

considered in this study are as follows:

• The CNC machine that is continuously available can process one job at a

time.

• There are N jobs with no precedence relation, all ready at time zero.

• Each job has a different due date and tardiness penalty.

• Depth of cut, length and diameter of the surface, and maximum allowable

surface roughness values for each job are given.

• Tool change times are negligible.

• Total usage of a tool cannot exceed 1.

• Each job corresponds to a single cutting operation.

• Each operation may require a different tool.

• There are unlimited amount of tools.

• Preemption is not allowed.

• Cutting speed and feed rate of the machine constitute the machining con-

ditions and they can easily be adjusted to new settings.
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The notation used throughout the paper is as follows :

αi, βi, γi : speed, feed, depth of cut exponents for operation-tool pair i

Cm,b,c,e : specific coefficient and exponents of the machine power constraint

Cs,g,h,l : specific coefficient and exponents of the surface roughness constraint

vi : cutting speed for operation-tool pair i

fi : feed rate for operation-tool pair i

Di : diameter of the generated surface for the job i

di : depth of cut for job i

Cti : cost of tooling for operation-tool pair i

Li : length of the generated surface for the job i

Sri
: maximum allowable surface roughness for the operation i

Ci : Taylor s tool life constant for operation-tool pair i

C0 : operating cost of the CNC machine ($/min)

H : maximum available horse power for all jobs

pi : processing time of job i

pu
i ,p

l
i : upper and lower bounds for the processing time of job i

wi : weight of job i

ddi : due date of job i

si : starting time of job i

Ti : Tardiness of job i
Since each job has one operation, we use the same index for both operation and

job. Now, we are ready to construct the mathematical model.

3.2 Mathematical Modeling

In the last part of this section we will give the mathematical formulation of the

problem. However before presenting it, we will first give how lower and upper

bounds of processing times, which are used in formulating the problem, can be

found and second define the cost items depending on processing times of jobs in

the objective function of the formulation.
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3.2.1 SMOP and Lower & Upper Bounds for Processing

Times

Single Machine Operation Problem (SMOP) is the problem of determining op-

timal machining conditions for an operation considering machining and tooling

costs. This problem is formulated and solved optimally by Akturk and Avci [4].

The mathematical model of SMOP is given below:

Minimize C1v
−1
i f−1

i + C2v
(αi−1)
i f

(βi−1)
i

subject to

C ′
tv

(αi−1)
i f

(βi−1)
i ≤ 1 i = 1 . . . N (3.1)

C ′
mvb

i f
c
i ≤ 1 i = 1 . . . N (3.2)

C ′
sv

g
i f

h
i ≤ 1 i = 1 . . . N (3.3)

vi, fi > 0 (3.4)

where

C1 =
πDiLiC0

12
C2 =

πDiLid
γi
i Cti

12Ci

C ′
t =

πDiLid
γi
i ρi

12Ci

C ′
m =

Cmde
i

H

C ′
s =

Csd
l
i

Sri

The first term in the objective function is machining cost and the second

one is the tooling cost. The constraints are tool life, machine power and surface

finishing constraints, respectively.

Koylu [31] showed that the surface roughness constraint in SMOP is always

binding. This means that in SMOP v, f pairs on the surface roughness constraint

are dominant over all other v, f points with respect to tooling and machining

costs. Thus, there is only one optimal v, f pair for SMOP and there is a one to

one relation between machining conditions and processing time.
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As we stated before, our objective is minimizing the sum of total weighted tar-

diness, machining, and tooling costs. SMOP contains two terms of our objective:

tooling and machining. For this reason, the processing time that corresponds

to the optimal solution of SMOP gives an upper bound for our problem. If we

increase the processing time above that value, the sum of tooling and machining

will increase and we know that tardiness cost will not decrease. Thus, there is

no gain to assign a processing time to a job which is greater than the optimal

solution of SMOP.

Also there is a lower bound for the processing time of job due to the power

of the machine or life of a tool. It is the intersection point of surface roughness

(SR) and tool life (TL) or machine power (MP) constraints. This point can be

found as follows:

If the v and f values at the intersection of TL and SR constraints

From SR constraint (inequality 3.3)vi = (C ′
sf

h
i )−

1
g

put it into TL constraint (inequality 3.1) C ′
t(C

′
sf

h
i )

1−α
g f

(βi−1)
i = 1

fi = (C ′
t(C

′
s)

1−α
g )−

g
h(1−α)+g(β−1)

= (C ′
t)
− g

h(1−α)+g(β−1) (C ′
s)

α−1
h(1−α)+g(β−1)

vi = (C ′
s(C

′
t)
− hg

h(1−α)+g(β−1) (C ′
s)

h(α−1)
h(1−α)+g(β−1) )−

1
g

= (C ′
t)

h
h(1−α)+g(β−1) (C ′

s)
(1−β)

h(1−α)+g(β−1)

(vifi)
I = (C ′

t)
h

h(1−α)+g(β−1) (C ′
s)

(1−β)
h(1−α)+g(β−1) (C ′

t)
− g

h(1−α)+g(β−1) (C ′
s)

α−1
h(1−α)+g(β−1)

(vifi)
I = (C ′

t)
h−g

h(1−α)+g(β−1) (C ′
s)

(α−β)
h(1−α)+g(β−1) (3.5)

If the vi and fi values at the intersection of TL and SR constraints

From SR constraint (inequality 3.3)vi = (C ′
sf

h
i )−

1
g

put it into MP constraint (inequality 3.2) C ′
m(C ′

s)
− b

g f
cg−hb

g

i = 1

fi = (C ′
m)

g
hb−cg (C ′

s)
b

cg−hb

vi = (C ′
s(C

′
m)

hg
hb−cg (C ′

s)
hb

cg−hb )−
1
g

= (C ′
s)

c
hb−cg (C ′

m)
−h

hb−cg

(vifi)
II = (C ′

s)
c

hb−cg (C ′
m)

−h
hb−cg (C ′

m)
g

hb−cg (C ′
s)

1
cg−hb

(vifi)
II = (C ′

s)
c−1

hb−cg (C ′
m)

g−h
hb−cg (3.6)
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We choose the minimum of the vifi values calculated by equation 3.5 and 3.6 since

the other one must be infeasible. By using the processing time equation below,

we can calculate the lower bound for the processing time of a job as follows:

pi =
πDiLi

12vifi

(3.7)

pl
i =

πDiLi

12min{(vifi)I , (vifi)II}

3.2.2 Cost Items of the Problem

In this section, we give the cost items included in our objective function and

show that all of them can be written depending on processing time. Actually,

showing this for machining and tardiness costs is trivial. However, it requires

more attention for tooling cost.

• Tooling cost of job i depending on vi and fi:

Tooli(vi, fi) =
πDiLid

γi
i Cti

12Ci

v
(αi−1)
i f

(βi−1)
i

Since, optimal machining conditions vi and fi are on surface roughness

constraint we can write down the tooling cost depending on only processing

time of job i.

From Surface Roughness constraint, we can find vi depending on fi and

using processing time equation 3.7 we can derive tooling cost that depends

on processing time.

C ′
sv

g
i f

h
i = 1 =⇒ vi = (C ′

s(vifi)
h)

1
h−g

Tooli(vi, fi) =
πDiLid

γi
i Cti

12Ci

v
(αi−1)
i f

(βi−1)
i

=
πDiLid

γi
i Cti

12Ci

v
(αi−βi)
i (vifi)

(βi−1)

=
πDiLid

γi
i Cti

12Ci

((C ′
s(vifi)

h)
(αi−βi)

h−g )(vifi)
(βi−1)

=
πDiLid

γi
i Cti

12Ci

(C ′
s)

(αi−βi)

h−g (vifi)
h(αi−βi)

h−g (vifi)
(βi−1)
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=
πDiLid

γi
i Cti

12Ci

(C ′
s)

(αi−βi)

h−g (vifi)
h(αi−1)−g(βi−1)

h−g

= (
πDiLi

12vifi

)
h(1−αi)−g(1−βi)

h−g (
πDiLi

12
)

hαi−gβi
h−g dγi

i CtiC
−1
i (C ′

s)
(αi−βi)

h−g

Tooli(pi) =
cai

(pi)
cbi

where

cai
=

(
πDiLi

12

)hαi−gβi
h−g

dγi
i CtiC

−1
i (C ′

s)
(αi−βi)

h−g

cbi
= −h(1− αi)− g(1− βi)

h− g

The critical point here is that cai
and cbi

are always positive because of

possible values of the technical coefficients such that α > β > 1, h > 0

and g < 0. Thus, the tooling cost is a convex function that is negatively

proportional to the processing time.

• Machining Cost of job i depending on processing time:

Machi(pi) = C0pi

• The Weighted Tardiness Cost of job i depending on processing time:

Tardi(si, pi) = wiMax{0, si + pi − ddi}

After showing that the objective function of our problem can be written de-

pending on just processing times, we can formulate the problem.

3.2.3 Mathematical Formulation

Now, we will give the non-linear formulation of the problem. Actually, the con-

straints of the problem are not nonlinear. However the tooling cost item in the

objective function adds the nonlinearity.

Minimize Total Cost =
N∑

i=1

(wiTi + Machi(pi) + Tooli(pi))
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subject to

si − sj ≥ pi − (M + pi)(1−Xij) i, j = 1 . . . N (3.8)

sj − si ≥ pj − (M + pi)Xij i, j = 1 . . . N (3.9)

Ti ≥ si + pi − ddi i, j = 1 . . . N (3.10)

pl
i ≤ pi ≤ pu

i i = 1 . . . N (3.11)

Xij = 0 or 1 i = 1 . . . N (3.12)

Ti, si ≥ 0 (3.13)

pi > 0 (3.14)

The M in the formulation represents a big number. The decision variables

in this formulation are pi, si, Ti, Xij. The objective function is the summation

of three cost terms defined in the previous section. The first three constraint

sets are the ones that comes from total weighted tardiness problem. The next

constraint set defines the lower and upper bounds for the processing times which

are calculated by using the SMOP formulation developed by Akturk and Avci

[4].

As we stated in the previous chapter, 1||∑ wiTi is NP-hard. Actually it is

a subproblem of our problem. It is the case where processing times are fixed.

Thus, our problem is extremely hard to solve. To reduce the complexity in the

problem and to develop efficient algorithms, as we have done in the next chapter,

we formulate the problem for a given sequence. In this way, we are free from

the sequencing problem, but there is still a scheduling problem. To convert the

formulation above to one for a given sequence, it is enough to throw out the

binary variable equation 3.12 and replace the sets of inequalities 3.8 and 3.9 with

the one below:

si + pi ≤ si+1 i = 1 . . . (N − 1) (3.15)

Solving the problem just for a sequence possibly will not produce good solu-

tions, however it gives an initial point and an insight to deal with the problem.
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3.3 Summary

In this chapter, we have given the definition and the underlying assumptions

of the problem of finding machining conditions and scheduling jobs considering

total weighted tardiness. We have presented that our objective is the sum of total

weighted tardiness, tooling and machining costs. We showed that all of them can

be formulated in the form of their own processing times of which upper and lower

bounds can also be found by using the SMOP formulation. Lastly, we presented

the mathematical formulations of the original problem and the problem for a

given sequence.

In the following chapter, we will present the local search algorithm for the

original problem and the DP-based algorithm for the subproblem.



Chapter 4

Proposed Heuristic Algorithms

In the previous chapter, we state our problem and give the underlying assump-

tions. We also present the mathematical programming formulations for the orig-

inal problem and for the problem with a given sequence. Lawler [33] has showed

that the single machine total weighted tardiness problem is strongly NP-hard.

Actually, it is a subproblem of our problem. When we fixed the processing times

in our problem, our problem reduces to 1||∑ wiTi. Therefore, no algorithm is

likely to be proposed to solve the problem optimally in polynomial time. Hence,

it is justifiable to try heuristic approaches to solve our problem.

Weighted tardiness problem and determination of machining conditions are

generally considered as separate problems and solved at different levels of factory

management. Machining conditions are determined at the design and develop-

ment level and the weighted tardiness problem is solved at the operational level.

By considering this perspective, in this chapter, we will first present an algorithm

for our problem that uses the usual sequential approach in the industry. Then,

we will give our approach that solves the machining condition and the weighted

tardiness problems simultaneously. In the last section, we describe in detail the

DP-based heuristic that is used to solve the subproblem where the job sequence

is given.

26
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4.1 The Sequential Algorithm

The sequential algorithm consists of two levels. In the first level machining con-

ditions, which are cutting speed and feed rate of the turning machine, are deter-

mined. Both cutting speed and feed rate specify the processing time of a job.

By using the processing times determined in the first level, single machine to-

tal weighted tardiness problem is solved in the second level. As we design the

algorithm, we use the best known procedures in each level and they are as follows:

1. The machining conditions considering tooling and machining costs are found

by using the SMOP, whose mathematical model is given and explained in

section 3.2.1. The procedure developed by Akturk and Avci [4] solves SMOP

optimally.

2. To solve 1||∑ wiTi problem where the processing times are calculated in the

first level, a Problem Space Genetic Algorithm (PSGA), designed by Avci

et al. [5], is employed. This is the best published algorithm in the literature

as stated by Avci et al. for the single machine weighted tardiness problem.

Although the sequential algorithm solves the subproblems in each level opti-

mally or almost optimally, its drawback is obvious. The interaction between two

levels is ignored. By using the flexibilities provided by a CNC machine, the due

date requirement can be satisfied better or operation cost due to machining and

tooling costs can be decreased. In the next section, we give an algorithm that

exploits the interaction between two levels to generate better solutions.

4.2 The Proposed Simultaneous Algorithm

The proposed algorithm for our problem is a Problem Space Genetic Algorithm

(PSGA) that determines the machining conditions and solve the total weighted

tardiness problem simultaneously. PSGAs are basically local search algorithms.
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To develop a PSGA, it is necessary to define an initial feasible solution, a base

heuristic and a neighborhood structure.

The overall quality of the base heuristic affects the overall effectiveness of the

problem space approach. Thus, it is very critical to use a relatively fast base

heuristic which generates a relatively good solution.

The neighborhood is constructed through perturbation of the problem data

and the search is performed in the space of these perturbations. A genetic al-

gorithm (GA), which is based on a formalization of natural genetics, is used to

search that space. Some characteristics of GAs are as follows:

• There is a coding scheme for possible solutions of the problem and these

solutions are stored as strings. Each string is called a chromosome and each

variable is referred to as gene.

• An evaluation function that estimates the quality of each solution (each

string) in the set of solutions (called the population) is used.

• An initial set of solutions to the problem (the initial population) is randomly

obtained or based on prior knowledge.

• A set of genetic operations that, using the information contained in a certain

population (referred to as generation G(t)) and a set of genetic operators,

creates a new population (the next generation, G(t + 1)).

• A termination condition is defined at the end of the genetic process.

There are three main genetic operators: reproduction, crossover and mutation.

The reproduction (or selection) operator creates a mating pool where strings

are copied from G(t) and await the action of crossover and mutation. Those

strings from G(t) with higher fitness values create a large number of copies in

the mating pool. The crossover operator provides a mechanism for strings to

mix attributes through a random process. The mutation operator produces the

occasional alteration of a bit at a certain position in a string. Each bit is a

candidate for mutation and will be selected according to the mutation probability.
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In problem space search, the chromosomes represent the perturbation vectors

and genes represent the perturbation amount for a single job. The original prob-

lem data is perturbed and the problem with perturbed data is solved by using the

base heuristic to obtain a solution. Although the heuristic is applied on the per-

turbed values, the objective function is calculated with the original data values

as expected. The new perturbation values are generated from the previous pop-

ulation by using the genetic algorithm instead of a random generation. Asexual

and sexual reproduction and mutation operators are used in generations.

In this study, sequencing priorities of jobs, which are calculated with Apparent

Tardiness Cost (ATC) dispatching rule, are perturbed.

In every generation, a population of chromosomes (perturbation vectors) is

created. One of the important parameters of PSGA is the POPSIZE which gives

the number of perturbation vectors in a population. The perturbation magnitude

θ is the second parameter. The genes of the chromosomes can take values in a

range of (−θ, θ). The generation of initial population is done by taking random

numbers in this range. Genetic algorithm operators are used in the forthcoming

generations.

Fitness value shows the probability that the population member will be se-

lected for breeding. The parameter φ determines the selectivity of the algorithm.

The selection probability of better solutions increase as φ increases. The pop-

ulation loose diversity and converge to a population in which all members are

identical in high values of φ. However, if φ is too small, the algorithm will con-

verge very slowly using excessive computation time. We will use these fitness

values in asexual and sexual reproduction.

In asexual reproduction, select a member from the current population ran-

domly according to selectivity (fitness) values (a random number in (0,1) is taken,

and if fitness of the member is greater than this number, it is selected). This

member is directly passed to the next generation. In sexual reproduction, two

parents are selected in the same selectivity logic, and combined through crossover

to produce an offspring which is passed to the next generation. We work on a well

known single point crossover operator. In single point crossover, a point is chosen
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randomly and the genes of the offspring up to that point is taken from the first

parent and the following genes are copied from the second. %SEXUAL shows the

percentage of sexual reproduction in the new generation. %SEXUAL·POPSIZE

number of members are generated by sexual reproduction while the remaining

are of asexual.

MUTPROB is the probability of mutation, and each gene has this probability

to be mutated. If the gene is selected, then it is replaced by a newly generated

random value taken in (−θ, θ). After mutation operation, we get the new popu-

lation. Now, go to step 3 as discussed below to perturb the data with the genes

of this population and calculate the objective values of the POPSIZE number of

solutions produced with this data.

The whole procedure of PSGA can be summarized as follows:

Step 1. Find the lower and upper bounds on processing times, pl
i and pu

i , for all

jobs from their SMOP formulations as stated in §3.2.1.

Step 2. Create an initial population at random from a range of (−θ, θ).

Step 3. For each member (chromosome) of the population do

Step 3.1. set the current time t = 0 and number of jobs scheduled k = 0

and calculate average of averages of processing times as follows:

pavg =
N∑

i=1

(pu
i + pl

i)/2

N

Step 3.2. For each job i at time t, calculate the ATC priorities as follows:

ai =
wi

pavgi

exp(−max(0, ddi − t− pavgi
)/Kpavg)

Step 3.3. ATC priorities are normalized into interval [0,1] yielding ηi(t) as

follows, let amin(t) = mini ai(t) and amax(t) = maxi ai(t):

ηi(t) =
ai(t)− amin(t)

amax(t)− amin(t)
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Step 3.4. Perturb the priorities of the jobs with this member by adding

the perturbation vector δi to the priorities as follows:

ηi(t) = ηi(t) + δi

Step 3.5. Select the job with the highest perturbed priority and schedule

it next in the sequence. Set t = t + pavgi
and k = k + 1. If there are

any unscheduled jobs, k < N , then go to step 2.1.

Step 3.6. For newly generated sequence, find the schedule by the base

heuristic, which is the mathematical formulation given below or the

DP-based heuristic explained in the next section, and calculate the

objective function value for the given perturbation vector, denoted by

V (i).

Minimize Total Cost =
N∑

j=1

(wjTj + Machj(pj) + Toolj(pj))

subject to

sj + pj ≤ sj+1 j = 1 . . . (N − 1) (4.1)

pl
j ≤ pj ≤ pu

j j = 1 . . . N (4.2)

sj ≥ 0 (4.3)

pj > 0 (4.4)

where Tj = max{0, sj + pj − ddj}

Step 4. After finishing all members in the population, save the best and worst

solutions. If the number of generations reaches the limit, then stop and

report the best solution, else go to step 4 to generate a new population.

Step 5. Compute the fitness f(i) of each member as follows, Let Vmax be the

maximum objective value in the population:

fi =
(Vmax − Vi)

φ

∑
i(Vmax − Vi)φ

Step 6. Apply crossover and mutation to get the next generation using the

fitness distribution and update perturbation vectors, then go to step 2.
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The algorithm above presents a single-start PSGA. It proceeds until the num-

ber of generations reaches MAXGEN. However, in multi-start, after generating

that much populations, the algorithm restarts itself from the first step for NUM-

START times. The PSGA generates as many as the multiplication of POPSIZE,

MAXGEN, and NUMSTART for each run.

4.3 The Proposed DP-based Heuristic

In this section, we present the proposed heuristic to solve the problem for a given

sequence, for which we already gave the mathematical formulation in §3.2.3. This

algorithm is to be used as an evaluation function (step 3.6) in the problem space

genetic algorithm described in the previous section.

The motivation behind this algorithm was that if we can minimize the con-

tribution of each job to the total cost, we can minimize the total cost. Thus we

defined a contributed cost function for each job as follows:

ContCosti(pi) = Tooli(pi) + Mach(pi) +
N∑

j=i

wj∆Tardj(pi) (4.5)

Each cost item in this function can be defined as the tooling cost, machining

cost, and the deviation in the tardiness costs of itself and all jobs after itself

depending on its own processing time. In constructing this function, we assumed

that pk = pl
k for k = 1 . . . i− 1, since otherwise we cannot define the contributed

cost just depending on the processing time of job i because ∆Tardj, which is

the deviation in the tardiness cost of job j, is also affected from the change in

processing times of those jobs. By fixing them, we define ∆Tardi over just pi.

In our algorithm, finding this contributed cost is named as Graph Generation,

which corresponds to steps 2 and 3 below, since we generate a graph that shows

how the contributed cost of job i changes.

For each job, we can easily construct the function above. However we cannot

directly get the processing time that minimizes it and then use them to find

the final schedule. The reason is that we assumed that processing times of the
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previous jobs are in their lower bounds as we constructed the contributed cost

function. However their processing times may differ from the lower bounds. To

deal with this problem we first define ∆i, which is the total change deviation in

the sum of processing times of jobs before job i:

∆i =
i−1∑

k=1

pk − pl
k (4.6)

Machining and tooling cost of a job is independent from ∆i. However ∆Tardi is

dependent on it. What we do in the algorithm is that for all possible values of ∆i

we find the corresponding processing times of each job. Actually, this corresponds

to the State Generation step in our algorithm. It is called so because we find the

states, in other words ranges, of ∆i and processing times for these states.

The proposed algorithm is similar to a backward DP. Beginning from the last

job processed, for each job, generating graphs and states iteratively, it defines a

function for each job that gives how the processing times of the jobs processed

after that job depend on the deviation of processing time of that job. After

finding the processing time of the first job, the algorithm finds the processing

time of the second job, third job and so on. It is an approximation algorithm

since the defined contributed cost considers the interaction between jobs on the

basis of just tardiness costs. There is also an interaction through the tooling cost.

However, due to the nonlinearity of tooling cost, developing a practical solution

procedure is almost impossible by considering also that interaction. The step by

step definition of the algorithm is as follows:

Step 1. set i = N .

Step 2.(Graph Generation) for j = i to j = N do:

Step 2.1 Set pk = pl
k for k = 1, . . . , i− 1 and construct the function Pj(pi)

that shows how the processing time of job j depends on the processing

time of job i.

Step 3.(Graph Generation) Construct the contributed cost for job i which is

defined in equation 4.5.
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Step 4. If i > 1 goto step 5, else goto step 7.

Step 5.(State Generation) Generate the function Pi(∆i), where ∆i is the total

deviation of processing times of jobs 1 to i−1 from their corresponding lower

bounds as defined in equation 4.6.

Step 6. Generate the function Pi(pi−1) from Pi(∆i) by replacing ∆i with pi−1−
pl

i−1, then set i = i− 1 and goto step 2.

Step 7. Find the minimum of the following total cost function for job 1:

ContCost1(p1) =
N∑

i=1

wj∆Tardi(pi) + Tool1(p1) + Mach1(p1)

Step 8. Calculate Pi(p
?
1) for i = 2 . . . N . This gives the processing times of all

jobs in the sequence.

In the following two subsections, we will give further explanation about the

steps 2, 3 and 5 of the proposed algorithm that are named as graph generation

and state generation, respectively. These are the critical steps of the algorithm

since most of the computational effort in the algorithm is spent in these steps.

4.3.1 Explanation of Graph Generation

In steps 2 and 3, our objective is to find the contributed cost of job i. For

that purpose, we will first find how processing times of jobs processed after job

i depend on the processing time of job i. Then, we will find how the tardiness

costs of job i to job N deviate depending on the increase in the processing time

of job i. By using this information, we will construct the contributed cost.

As we stated before, the machining and tooling costs of a job are only a

function of its own processing time. However, the deviations in tardiness’ of the

other jobs are dependent on both starting time and their processing times. The

problem in constructing the contributed cost of job i arises from calculating how

we find the deviations of the tardiness costs of job j for j = i . . . N considering

the changes in the processing times of job l for l = i . . . j.
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To find ∆Tardj for j = i . . . N , we have to first construct the function Pj(pi)

that shows how the processing time of job j depends on processing time of job i

while pk = pl
k for k = 1 . . . i− 1. This is a piecewise linear function which can be

discontinuous. For kth state of pi,which is defined as rk
j,i ≤ pi < rk+1

j,i , it returns

a value by a function in the form of ck
j,i − xk

j,ipi. In this function, ci
j,i symbol-

izes a parameter whose superscript k indicates which state it corresponds, and

subscript j, i indicates which P function it corresponds. xk
j,i is 0 or 1 parameter

which indicates pj either decreases in the same magnitude as pi increases or it

remains the same in the kthstate. rk
j,i and rk+1

j,i are also parameters that show the

boundaries of states. The number of states in all functions are also finite. The

reason for that is explained in the next section.

For i = N , it is obvious that PN(pN) = pN pu
N ≥ pN ≥ pl

N . For i < N , when

we come to this step we have already known Pj(pi+1) for j = (i + 2) . . . N and

they are in the following form :

Pj(pi+1) =





c1
j,i+1 r1

j,i+1 ≤ pi+1 < r2
j,i+1

c2
j,i+1 − pi+1 r2

j,i+1 ≤ pi+1 < r3
j,i+1

c3
j,i+1 r3

j,i+1 ≤ pi+1 < r4
j,i+1

c4
j,i+1 − pi+1 r4

j,i+1 ≤ pi+1 < r5
j,i+1

...

cY j,i+1

j,i+1 rY j,i+1

j,i+1 ≤ pi+1 < rY j,i+1+1
j,i+1

(4.7)

This function is generated by setting pk = pl
k for k = 1 . . . i and making pi+1

variable. Thus, for

∆i+1 =
i+1∑

k=1

pk − pl
k (4.8)

the function 4.7 above and the function 4.9 below are equivalent:

Pj(∆i+1) =





c1
j,i+1 r1

j,i+1 − pl
i+1 ≤ ∆i+1 < r2

j,i+1 − pl
i+1

c2
j,i+1 − pl

i+1 −∆i+1 r2
j,i+1 − pl

i+1 ≤ ∆i+1 < r3
j,i+1 − pl

i+1

c3
j,i+1 r3

j,i+1 − pl
i+1 ≤ ∆i+1 < r4

j,i+1 − pl
i+1

c4
j,i+1 − pl

i+1 −∆i+1 r4
j,i+1 − pl

i+1 ≤ ∆i+1 < r5
j,i+1 − pl

i+1
...

cY j,i+1

j,i+1 rY j,i+1

j,i+1 − pl
i+1 ≤ ∆i+1 < rY j,i+1+1

j,i+1 − pl
i+1

(4.9)
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From the previous iteration, we know how the processing time of job i + 1

depends on pi:

Pi+1(pi) =





c1
i+1,i r1

i+1,i ≤ pi < r2
i+1,i

c2
i+1,i − pi r2

i+1,i ≤ pi < r3
i+1,i

c3
i+1,i r3

i+1,i ≤ pi < r4
i+1,i

c4
i+1,i − pi r4

i+1,i ≤ pi < r5
i+1,i

...

cY i,i+1

i+1,i rY i,i+1

i+1,i ≤ pi < rY i,i+1+1
i+1,i

(4.10)

Now, in equation 4.8, we put the Pi+1(pi) in place of pi+1, make pi a variable

and set pk = pl
k for k = 1 . . . i − 1. As a result we obtain following function for

∆i+1:

∆i+1 = Pi+1(pi)− pl
i+1 + pi − pl

i =





c1
i+1,i − pl

i+1 + pi − pl
i r1

i+1,i ≤ pi < r2
i+1,i

c2
i+1,i − pl

i+1 − pl
i r2

i+1,i ≤ pi < r3
i+1,i

c3
i+1,i − pl

i+1 + pi − pl
i r3

i+1,i ≤ pi < r4
i+1,i

c4
i+1,i − pl

i+1 − pl
i r4

i+1,i ≤ pi < r5
i+1,i

...

cY i,i+1

i+1,i − pl
i+1 + pi − pl

i rY i,i+1

i+1,i ≤ pi < rY i,i+1+1
i+1,i

(4.11)

When we put the ∆i+1, which is defined with function 4.11, in its place in

function 4.9 we find how the processing time of job j, j = (i + 2) . . . N , depends

on pi.

After finding Pj(pi) for j = i . . . N , and knowing that pk = pl
k for k = 1 . . . i−1,

we can construct
∑N

j=i wj∆Tardj(pi). For this purpose, we use the following

algorithm:

Step 1. From functions Pj(pi) for j = i . . . N collect all rk
j,i for k = 1, . . . , ωj,i +1

where ωj,i is the number of states of function Pj(pi). Call the set of them

as Ωi. Then eliminate duplicate entries in Ωi and name remaining ones as

r
[k]
i for k = 1 . . .Wi such that r

[1]
i < r

[2]
i < . . . < r

[Wi]
i .

Step 2. Set p0
j = Pj(p

l
i), where p0

j is the processing time of job j when there is
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no deviation in pi from pl
i. We can formulate it as follows,

p0
j = c

[0]
j,i − x

[0]
j,ipi r

[0]
i ≤ pi ≤ r

[1]
i

Step 3. For k = 1 to Wi − 1 do,

Step 3.1. Find the pj for j = i + 1 . . . N by using Pj(pi) over r
[k]
i ≤ pi ≤

r
[k+1]
i , it is defined as follows:

pj = c
[k]
j,i − x

[k]
j,ipi r

[k]
i ≤ pi ≤ r

[k+1]
i

Step 3.2. Set si−1 =
∑i−2

t=1 pl
t and for j = i to N do

Step 3.2.1. Calculate starting time of job j

sj = sj−1 + pj−1

Step 3.2.2. Calculate the deviation in the tardiness cost of job j

∆Tardj(pi) = max{0, sj + (pj − pl
j)− ddj} r

[k]
i ≤ pi ≤ r

[k+1]
i

Step 3.3. Sum up all wj∆Tardj(pi) and find total weighted deviation in

tardiness’

TotalTardi(pi) =
N∑

j=i

wj∆Tardj(pi) = mk
i pi + nk

i r
[k]
i ≤ pi ≤ r

[k+1]
i

mk
i and nk

i are just constants that come from the weighted summation

of the constants in the ∆Tardj functions. If we define Π as the set of

jobs whose Tardj > 0 for j = i . . . N :

mk
i =

∑

j∈Π

wj(x
[k]
j,i − x

[0]
j,i) and nk

i =
∑

j∈Π

(sj + (c
[k]
j,i − c

[0]
j,i)− ddj)

At the end of this algorithm, we reach the function that shows the total deviation

in tardiness costs of job i to job N depending on pi. It is a piecewise linear function

in the following form as in the Figure 4.1:

TotalTardi(pi) =





m1
i pi + n1

i r
[1]
i ≤ pi < r

[2]
i

m2
i pi + n2

i r
[2]
i ≤ pi < r

[3]
i

...

uW i

i pi + nW i

i r
[Wi]
i ≤ pi < r

[Wi+1]
i

(4.12)
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When we sum up this function with Tooli(pi) and Machi(pi), the Graph Gen-

eration steps finish, this means that we generated the contributed cost function.

After checking whether we reached the first job, the algorithm either continues to

the State Generation step or to the Step 7 of main algorithm where the processing

time of the first job is found.

4.3.2 Explanation of State Generation

Our objective in this step is, by using the contributed cost function given in

equation 4.5, to construct the function that gives the processing time of job i

over the different states, or ranges, of ∆i.

In steps 2 and 3 of the main algorithm, we generated the contributed cost for

job i defined in the equation 4.5. As we stated before, while constructing this

cost function, we set pk = pl
k for k = 1 . . . i− 1 and the processing time obtained

by minimizing this function does not produce good solutions since most probably

there will be jobs whose processing times are not in their lower bounds. We give

the sum of the variations in the processing times jobs in equation 4.8 for job i.

We have to include these variations in our total cost function and the cost item

that we modify by including ∆i is the total tardiness function which is stated in

(4.12) above because the others are not dependent on ∆i. The modified tardiness

cost function is given below:

TotalTard′i(pi, ∆i) =





m1
i pi + n1

i + m1
i ∆i r

[1]
i ≤ pi + ∆ < r

[2]
i

m2
i pi + n2

i + m2
i ∆i r

[2]
i ≤ pi + ∆ < r

[3]
i

...

mW
i pi + nW

i + mW
i ∆i r

[W ]
i ≤ pi + ∆ < r

[W+1]
i

(4.13)

To find Pi(∆i), we have to solve the following minimization problem:

Pi(∆i) = {pi ∈ argmin{TotalTard′i(pi, ∆i)+Tooli(pi)+Machi(pi) : pl
i ≤ pi < pu

i }}

For ∆i = 0, TotalTard′i(pi, ∆i) is equivalent to TotalTardi(pi) function and
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Tooling CostCost

Machining Cost

pi

Tardiness
      Cost

Figure 4.1: The cost items for each job

its example shape can be seen from the Figure 4.1. Obviously, as ∆i increases, the

total tardiness cost function moves towards to the y-axis. The reason for that, if a

job has a tardiness value t for the state of (∆i = D, pi = p) and we increase the ∆i

by δ, now that job has a tardiness value t for the state of (∆i = D+δ, pi = p−δ).

The other cost items, tooling and machining costs remain constant with respect

to ∆i since they are independent from the deviations in the processing times of

the previous jobs in the sequence. For each ∆i value, there is only one minimum

value of the total cost function. Moreover there is a range of x ≤ ∆i ≤ y such

that that minimum point still remains as the minimum. Our purpose is to find

the minimum values and corresponding “∆-ranges” defined in the function Pi(∆)

and by this way to solve the minimization problem above.

To find the minimum of the total cost, we present the following algorithm:

Step 1. Set Pi(∆i) = 0 for 0 ≤ ∆i < ∆max
i where ∆max

i =
∑i−1

k=1(p
u
k − pl

k).

Step 2. For k = 1 to W − 1 do

Step 2.1. Consider kth and (k + 1)th pieces in the TotalTard′j(pi, ∆i) (line
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k and k + 1), which are:

Lk
i (pi, ∆i) =





mk
i pi + nk

i + mk
i ∆i r

[k]
i ≤ pi + ∆i < r

[k+1]
i

∞ o.w.

Lk+1
i (pi, ∆i) =





mk+1
i pi + nk+1

i + mk
i ∆i r

[k+1]
i ≤ pi + ∆i < r

[k+2]
i

∞ o.w.

Step 2.2. Generate the function Ri(∆i) which is:

Ri(∆i) = {pi ∈ Argmin{Min{CLk
i (∆i, pi), CLk+1

i (∆i, pi)} : pl
i ≤ pi < pu

i }}

where

CLk
i (∆i, pi) = Lk

i (pi, ∆i) + Tool(pi) + Mach(pi)

CLk+1
i (∆i, pi) = Lk+1

i (pi, ∆i) + Tool(pi) + Mach(pi)

Step 2.3. Find P ′
i (∆i) by combining Ri(∆i) and Pi(∆i) as follows:

P ′
i (∆i) = {pi ∈ Argmin{Min{ContCosti(Ri(∆i)), ContCosti(Pi(∆i))}}}

Step 2.4. Set Pi(∆i) = P ′
i (∆i)

The algorithm is very simple. We take two adjacent pieces and analyze the

contributed cost function that corresponds to these two pieces.

In step 2.2, if these two lines form a convex shape (as in Figure 4.2), to find

Ri(∆) we use UseConvex subroutine, else we use UseConcave subroutine. For

readability, in the next two subsections, we will drop the subscript i from all

parameters, functions and variables except for pi and ∆i.

4.3.2.1 UseConvex Subroutine

Two consecutive tardiness cost lines may form a convex shape as in the Figure

4.2. The reason for this is obvious, when a job becomes tardy at a point with-

out affecting the other jobs, the slope of the function after that point increases.
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R(∆i) has a direct formulation in this case which we call UseConvex subroutine.

Consider Lk and Lk+1, R(∆i) is formulated as follows:

R(∆i) =





r[k] −∆i 0 ≤ ∆i < r[k] −mink

mink r[k] −mink ≤ ∆i < r[k+1] −mink

r[k+1] −∆i r[k+1] −mink ≤ ∆i < r[k+1] −mink+1

mink+1 r[k+1] −mink+1 ≤ ∆i < r[k+2] −mink+1

r[k+2] −∆i r[k+2] −mink ≤ ∆i < ∆max
i

where
mink = argmin{CLk(0, pi) : pl

i ≤ pi < pu
i }

mink+1 = argmin{CLk+1(0, pi) : pl
i ≤ p < pu

i }

In this formulation r[k] is greater than mink. In other cases, for example

r[k] ≤ mink , r[k+1] ≤ mink+1 and so on, the formulation is modified by deleting

ranges in which both sides of ∆i are non-positive and by changing left side of the

∆i,whose left side is negative but right size is positive,to zero.

The construction of this formula is based on graphical observations. Firstly,

if we take the partial derivatives of CLk and CLk+1 over their defined regions for

∆i we see that mink+1 ≤ mink since:

∂

∂pi

CLk(∆i, pi) = mk − cacb

pcb−1
i

+ C0 = 0 =⇒ pi = (
cacb

mkC0

)
1

cb−1 = mink

∂

∂pi

CLk+1(∆i, pi) = mk+1 − cacb

(pi)cb+1
+ C0 = 0 =⇒ pi = (

cacb

mk+1C0

)
1

cb+1 = mink+1

mk < mk+1 =⇒ mink+1 ≤ mink

Initially, let r[k+2] ≥ r[k+1] ≥ r[k] ≥ mink ≥ mink+1 as in Figure 4.2. In this

case, R(∆i) = r[k] −∆i, and this case is valid for 0 ≤ ∆i < r[k] −mink.

When r[k] −mink ≤ ∆i < r[k+1] −mink, the tardiness cost function becomes

as in Figure 4.3. In this case, the minimum for L1 is the minimum of total cost

function(considering only L1 and L2).

When rk+1−mink ≤ ∆i < r[k+1]−mink+1, the tardiness cost function becomes

as in Figure 4.4. In this case, the break point between two lines bp2 = r[k+1]−∆i

is the minimum of total cost function.
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Figure 4.2: 0 ≤ ∆i < r[k] −mink
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p
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Tardiness Cost

rkmin minkk+1

Lk

Figure 4.3: r[k+1] −mink ≤ ∆i < r[k+1] −mink+1
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Cost
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Tardiness Cost

L

L

k

k+1

Figure 4.4: r[k] −mink ≤ ∆i < r[k+1] −mink

The rest of the function R(∆i) can be derived in a similar way.

4.3.2.2 UseConcave Subroutine

Sometimes, two consecutive tardiness cost lines form a concave shape as in Figure

4.5. To explain the reason of this situation, let us consider 3 jobs i, j, and k whose

processing order is job i, job j, and job k. Also let job k be tardy and have a

constant processing time. While pj is constant and as pi increases tardiness of job

k increases. However if at a point, say t, pj may start to decrease as pi increases,

at that point, the tardiness of job k equals to a constant value and remains at

that value as long as pj decreases. This causes concavity because the slope of

the total tardiness cost function falls down after point t. In such a case, R(∆i)

requires a detailed algorithm. We developed an algorithm that can be used also

for non-consecutive lines since we need it in step 2.3 of the State Generation

algorithm (when two lines are not consecutive the formulation for convex case

cannot be used and this algorithm is used again). Two tardiness lines for which
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Figure 4.5: Two lines that form concave shape

we want to generate R(∆i) are the followings:

Lk(pi, ∆i) =





mk ∗ pi + nk + mk∆i r[k] ≤ pi + ∆i < r[k+1]

∞ o.w.

Ls(pi, ∆i) =





ms ∗ pi + ns + ms∆i r[s] ≤ pi + ∆i < r[s+1]

∞ o.w.

where r[s] ≥ r[k+1].
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Now consider the following simplified versions of Lk and Ls:

Lk(pi) =





mk ∗ pi + (nk)′ b1 ≤ pi < b2

∞ o.w.

Ls(pi) =





ms ∗ pi + (ns)′ b3 ≤ pi < b4

∞ o.w.

where

b1 = r[k] −∆i

b2 = r[k+1] −∆i

b3 = r[s] −∆i

b4 = r[s+1] −∆i

(nk)′ = nk + mk∆i

(ns)′ = ns + mk∆i

Corresponding total cost functions CLk and CLs are similar to the ones in

Figure 4.6. The possible locations of b1, b2, b3, b4, mink, and mins relative to

each other change depending on the value of ∆i and values of r[k], r[s], r[k+1],

r[s+1]. The possible ordering of them for each line as follows:

for Lk

〈 (A) mink ≤ b1 < b2 for 0 ≤ ∆i ≤ r[k] −mink

(B) b1 ≤ mink ≤ b2 for r[k] −mink ≤ ∆i ≤ r[k+1] −mink

(C) b1 < b2 ≤ mink for r[k+1] −mink ≤ ∆i ≤ ∆max
i

for Ls

〈 (1) mins ≤ b3 < b4 for 0 ≤ ∆i ≤ r[s] −mins

(2) b3 ≤ mins ≤ b4 for r[s] −mins ≤ ∆i ≤ r[s+1] −mins

(3) b3 < b4 ≤ mins for r[s+1] −mins ≤ ∆i ≤ ∆max
i

Graphically, (A), (B) and (C) indicate the position of the line Lk, as ∆i

increases, (1), (2) and (3) do the same thing for Ls. The positions of Lk and

Ls are important for us. We can explain the reason of that with an example,

consider the case that both of these lines position over minimums of contributed

cost lines corresponding to them for a defined range of ∆i. This provides us an

important advantage: now we know that for these two pieces of contributed cost,
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the processing time of job j that minimizes the ContCost′ is either ms or mk

over this range of ∆i. All of the combinations of these cases give us this kind of

advantages and a way for constructing R(∆).

b1 b4b3b2

CLk

sCL

Cost

p
i

k smin min

Figure 4.6: The illustration of possible total costs for two tardiness lines

In our algorithm we construct the R(∆i) for each possible combinations of A,

B, C and 1, 2, 3 over defined ranges of ∆i. The figure for possible combinations

and the flow between these combinations and some information about cost items

are given in Figure4.7. For example, (A, 1) corresponds to mink ≤ b1 < b2 and

mins ≤ b3 < b4; (A, 2) corresponds to mink ≤ b1 < b2 and b3 ≤ mins < b4; and

so on. The outgoing arcs from (A, 1) means that from (A, 1) we can go either

(A, 2) or (B, 1). If r[k] − mink > r[s] − mins then we go from (A, 1) to (A, 2),

else we go from (A, 1) to (B, 1). We discuss how to construct R(∆i) from these

combinations in appendix A.
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B,1 C,1A,1

A,2

B,3A,3 C,3

C,2B,2

for Lk is fixed

s is fixedfor L

for Lk is fixed

tardiness cost

Tooling cost

tardiness cost Tooling cost
for Ls is fixed

Figure 4.7: Possible combinations of locations of ranges for two tardiness lines
and information about cost items corresponding to each line

4.4 Complexity Analysis

In the main algorithm, for each job, a number of operations are performed such

as graph generation and state generation. Since the number of jobs is N , the

complexity of the algorithm is determined by the complexity of these operations.

In the state generation step, we should determine the maximum number of

break points on the contributed cost function for a job. If there is no concavity,

which is explained previously, then the maximum number of break points is N.

Each such point represents when a job becomes tardy. On the other hand, each

job can cause concavity once on each line segment. Therefore, the total number

of line segments is at most (N2). Since we determine states using break points

and the minimum of the line segments, the total number of states for any job

can be at most (2N2). In state generation, for job i, we use the total number of

line segments for (N − i) jobs. As a result, W , in step 2 of the state generation

algorithm, is at most (2N3−2N2). In step 2.2, while comparing two line segments,
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we can get at most 6 states (4 end points and 2 minimums of lines) for Ri(∆i),

which implies that the total number of comparisons in step 2.3 is at most (6N2).

Therefore, state generation performs O(N5).

In the graph generation steps, we combine equation 4.11 and equation 4.9.

Since the number of comparisons are at most (N2 ∗ N2) and since we perform

this (N − i) times, the step 2 of the main algorithm performs O(N5). In step

3 of the main algorithm, contributed cost performs O(N4) since W is at most

(2N3 − 2N2) and while determining total tardiness we sum up (N − i) times

∆Tard. As a result, the graph generation performs O(N5).

Since we use state and graph generation once for each job, the algorithm

performs O(N6).

4.5 Summary

In this chapter, we first presented the sequential algorithm that reflects the general

approach in the factory management. Then we gave our proposed simultaneous

algorithm, which is a problem space genetic algorithm that uses the proposed DP-

based heuristic or mathematical formulation of the problem. Lastly, we presented

the DP-based heuristic in detail.

In the next chapter, we will give an illustrative example over a toy problem

to clarify some of the steps of the proposed DP-based heuristic.



Chapter 5

An Illustrative Example

In this chapter, we will solve a small scheduling problem for a given sequence to

show how the proposed DP-based heuristic works. We construct an example for

four jobs with the sequence of 1, 2, 3, 4 and job 1 is processed first. Machining

cost, C0, is 1. The data for each job is given in table 5.1.

Job # w dd pl pu ca cb

1 3 2 0.1 6 4 1
2 1 3 0.2 5 4 2
3 2 1 0.1 6 4 0.5
4 3 6 0.3 7 4 1.5

Table 5.1: Problem data

Job 4:

We start with generating Total Tardiness Function of job 4. Since there is no job

49
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after job 4, its TotalTard′ function includes only its own tardiness cost:

s4 = pl
1 + pl

2 + pl
3 = 0.4

∆max
4 = (6− 0.1) + (5− 0.2) + (6− 0.1) = 16.6

P4(p4) = p4

TotalTard4(p4) =





0 0.3 ≤ p4 < 5.6

3(p4 − 5.6) 5.6 ≤ p4 < 7

TotalTard′4(p4, ∆4) =





0 0.3 ≤ p4 + ∆4 < 5.6

3(p4 + ∆4 − 5.6) 5.6 ≤ p4 + ∆4 < 7 + 16.6 = 23.6

This function gives how tardiness cost value changes according to the change

in the processing times of job 1 to job 4. Now we have to generate P4(∆4). The

total contributed cost lines that correspond to each tardiness cost range is as

follows:

CL1(∆4, p4) =





p4 + 4/(p4)
1.5 0.3 ≤ p4 + ∆4 < 5.6

∞ o.w.

CL2(∆4, p4) =





4p4 − 16.8 + 3∆4 + 4/(p4)
1.5 5.6 ≤ p4 + ∆4 < 23.6

∞ o.w.

The points that give minimums of lines CL1 and CL2 are min1 = 2.05 and

min2 = 1.18, respectively.

We construct R(∆4) by using UseConvex subroutine. Since there is no more

line P4(∆4) = R(∆4):

P4(∆4) = R(∆4) =





2.05 0.00 ≤ ∆4 < 3.55

5.60−∆4 3.55 ≤ ∆4 < 4.42

1.18 4.42 ≤ ∆4 < 23.60

Then we reduce P4(∆4) to P4(p3) by setting ∆4 = p3 − 0.1:

P4(p3) =





2.05 0.10 ≤ p3 < 3.65

5.70− p3 3.65 ≤ p3 < 4.52

1.18 4.52 ≤ p3 < 23.60
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Job 3:

We have to generate TotalTard function of job 3. The only job after job 3 is

job 4 and we already know how its processing time changes with respect to the

processing time of job 3 from P4(p3). We calculate the tardiness costs for each

job and sum them up:

s4 = pl
1 + pl

2 + p3 = 0.3 + p3

Tard4(p3) = Max{0, p3 + P4(p3)− 5.7} =





0 0.1 ≤ p3 < 4.52

p3 − 4.52 4.52 ≤ p3 < 6

s3 = pl
1 + pl

2 = 0.3

∆max
3 = (5− 0.2) + (6− 0.1) = 10.7

Tard3(p3) = Max{0, s3 + p3 − 1} =





0 0.1 ≤ p3 < 0.7

p3 − 0.7 0.7 ≤ p3 < 6

TotalTard(p3) = w3Tard3(p3) + w4Tard4(p3) =





0 0.10 ≤ p3 < 0.70

2(p− 0.70) 0.70 ≤ p3 < 4.52

5(p− 2.99) 4.52 ≤ p3 < 6

TotalTard′3(∆3, p3) =





0 0.10 ≤ p3 + ∆3 < 0.70

2(p + ∆3 − 0.70) 0.70 ≤ p3 + ∆3 < 4.52

5(p + ∆3 − 2.99) 4.52 ≤ p3 + ∆3 < 6 + 10.7 = 16.7

Now we have to calculate P3(∆3). We have 3 piecewise parts in total cost

function of job 3:

CL1(∆3, p3) =





p3 + 4/(p3)
0.5 0.10 ≤ p3 + ∆3 < 0.70

∞ o.w.

CL2(∆3, p3) =





3p3 − 1.40 + 2∆3 + 4/(p3)
0.5 0.70 ≤ p3 + ∆3 < 4.52

∞ o.w.

CL3(∆3, p3) =





6p− 14.95 + 5∆3 + 4/(p3)
0.5 4.52 ≤ p3 + ∆3 < 16.7

∞ o.w.

The processing times that minimizes CL1, CL2 and CL3 are min1 = 1.59,

min2 = 0.76, and min3 = 0.48, respectively.

As it is seen all consecutive lines form a convex shape. Thus we can use
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UseConvex subroutine and find the P3(∆3) easily:

P3(∆3) =





0.76 0.00 ≤ ∆3 < 3.76

4.52−∆3 3.76 ≤ ∆3 < 4.04

0.48 4.04 ≤ ∆3 < 10.7

Then convert P3(∆3) to P3(p2):

P3(p2) =





0.76 0.20 ≤ p2 < 3.96

4.72− p2 3.96 ≤ p2 < 4.24

0.48 4.24 ≤ p2 < 10.7

Job 2:

We know P3(p2) and P2(p2) but do not know P4(p2). We have to calculate it by

using P4(p3) and P3(p2):

P4(∆3) =





2.05 0.00 ≤ ∆3 < 3.55

5.60−∆3 3.55 ≤ ∆3 < 4.42

1.18 4.42 ≤ ∆3 < 10.7

∆3 = P3(p2) + p2 − 0.3 =





0.46 + p2 0.20 ≤ p2 < 3.96

4.42 3.96 ≤ p2 < 4.24

0.18 + p2 4.24 ≤ p2 < 5

When we inserted ∆3 into P4(∆3) we obtain P4(p2):

P4(p2) =





2.05 0.20 ≤ p2 < 3.09

5.14− p2 3.09 ≤ p2 < 3.96

1.18 3.96 ≤ p2 < 5

Now, we can calculate the TotalTard function of job 2:

s4 = pl
1 + p2 + P3(p2) =





0.86 + p2 0.20 ≤ p2 < 3.96

4.82 3.96 ≤ p2 < 4.24

0.58 + p2 4.24 ≤ p2 < 6

Tard4(p2) = Max{0, s4 + P4(p2)− 6} =





0 0.2 ≤ p2 < 4.24

p2 − 4.24 4.24 ≤ p2 < 5
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s3 = 0.1 + p2

Tard3(p2) = Max{0, s3 + P3(p2)− 1} =





p2 − 0.14 0.2 ≤ p2 < 3.96

3.82 3.96 ≤ p2 < 4.24

p2 − 0.42 4.24 ≤ p2 < 5

s2 = pl
1 = 0.1

∆max
2 = 6− 0.1 = 5.9

Tard2(p2) = Max{0, s2 + p2 − 3} =





0 0.2 ≤ p2 < 2.9

p2 − 2.9 2.9 ≤ p2 < 5

TotalTard2(p2) =
4∑

i=2

wiTardi(p2) =





2(p2 − 0.14) 0.20 ≤ p2 < 2.90

3(p2 − 1.06) 2.90 ≤ p2 < 3.96

1(p2 + 4.75) 3.96 ≤ p2 < 4.24

6(p2 − 2.74) 4.24 ≤ p2 < 5

TotalTard′2(∆2, p2) =





2(p2 + ∆2 − 0.14) 0.20 ≤ p2 + ∆2 < 2.90

3(p2 + ∆2 − 1.06) 2.90 ≤ p2 + ∆2 < 3.96

1(p2 + ∆2 + 4.75) 3.96 ≤ p2 + ∆2 < 4.24

6(p2 + ∆2 − 2.74) 4.24 ≤ p2 + ∆2 < 10.9

As it is seen the first and the second pieces in Total Tardiness function form a

concave shape. Now, we have to also use UseConcave function to calculate P2(∆).

CL1(∆2, p2) =





3p2 + 2∆2 − 0.28 + 4/(p2)
2 0.20 ≤ p2 + ∆2 < 2.90

∞ o.w.

CL2(∆2, p2) =





4p2 + 3∆2 − 3.18 + 4/(p2)
2 2.90 ≤ p2 + ∆2 < 3.96

∞ o.w.

CL3(∆2, p2) =





2p2 + ∆2 + 4.75 + 4/(p2)
2 3.96 ≤ p2 + ∆2 < 4.24

∞ o.w.

CL4(∆2, p2) =





7p2 + 6∆2 − 16.44 + 4/(p2)
2 4.24 ≤ p2 + ∆2 < 10.9

∞ o.w.

The processing times that minimizes CL1, CL2, CL3, and CL4 are min1 =

1.39, min2 = 1.26, min3 = 1.59, and min4 = 1.05, respectively.

L1 and L2 form a convex shape. Thus R(∆2) for CL1 and CL2 is constructed
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by UseConvex subroutine:

R(∆2) =





1.39 0.00 ≤ p2 < 1.51

2.90− p2 1.51 ≤ p2 < 1.64

1.26 1.64 ≤ p2 < 2.70

3.96− p2 2.70 ≤ p2 < 5

Initially P2(∆2) = R(∆2). L1 and L2 form a concave shape. Thus R(∆2) for CL1

and CL2 is constructed by UseConcave subroutine. The initial values of b1, b2,

b3, b4 are for ∆2 = 0 as follows:

b1 = 2.9 b2 = 3.96 b3 = 3.96 b4 = 4.24

The initial order of them with respect to min2 and min3 as follows:

min2 < b1 < b2 min3 < b3 < b4

This order corresponds to state (A, 1) in figure 4.7. Since b3 − min3 = 2.37 >

1.64 = b1 −min2, the next state is (B, 1) and the current state is valid as long

as ∆2 is in the interval (0,1.64).

F (∆2) = CL2(r[2] −∆2, ∆2)− CL3(r[3] −∆2, ∆2)

= 4(2.90−∆2) + 3∆2 − 3.18 + 4
(2.90−∆2)2

−(2(3.96−∆2) + ∆2 + 4.75 + 4
(3.96−∆2)2

)

= −4.25 + 4
(2.90−∆2)2

− 4
(3.96−∆2)2

∆?
2 = 2.03 such that F (∆?

2) = 0. Since ∆?
2 is not in the interval (0, 1.64):

R(∆2) = 2.90−∆2 0 ≤ ∆2 ≤ 1.64

We have to find the R(∆2) for other possible ∆2 ranges. For ∆2 = 1.64, values

of b1, b2, b3, b4 are as follows:

b1 = 1.26 b2 = 2.32 b3 = 2.32 b4 = 2.0

We are now in state (B, 1). Since b3−min3 = 0.73 < 1.06 = b2−min2, the next

state is (B, 2) and the current state is valid as long as ∆2 is in the interval (1.64,
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2.37).

F (∆2) = CL2(min2, ∆2)− CL3(r[s] −∆2, ∆2)

= 4(1.26) + 3∆2 − 3.18 + 4
(1.26)2

−(2(3.96−∆2) + ∆2 + 4.75 + 4
(3.96−∆2)2

)

= 4∆2 − 4
(3.96−∆2)2

− 8.29

Over the defined interval (1.64, 2.37), F (∆2) is always less than zero. This means

that CL2 < CL3 and the minimum point of CL2 is less than the minimum point

of CL3. It follows that

R(∆2) =





2.90−∆2 0 ≤ ∆2 ≤ 1.64

1.26 1.64 ≤ ∆2 ≤ 2.37

For ∆2 = 2.37, values of b1, b2, b3, b4 are as follows:

b1 = 0.53 b2 = 1.59 b3 = 1.59 b4 = 1.87

We are now in state (B, 2). The next states are (C, 2) and then (C, 3). We make

calculations similar to above and construct the R(∆2) fully as follows:

R(∆2) =





2.90−∆2 0 ≤ ∆2 < 1.64

1.26 1.64 ≤ ∆2 < 2.56

1.59 2.56 ≤ ∆2 < 2.66

4.24−∆2 2.66 ≤ ∆2 < 5.9

Since the rest of graph is convex, we can again use UseConvex subroutine and

combine it with the R(∆2) functions generated up to now. This gives P2(∆2)

function.

P2(∆2) =





1.39 0.00 ≤ ∆2 < 1.51

2.90−∆2 1.51 ≤ ∆2 < 1.64

1.26 1.64 ≤ ∆2 < 2.56

1.59 2.56 ≤ ∆2 < 2.66

4.24−∆2 2.66 ≤ ∆2 < 3.20

1.05 3.20 ≤ ∆2 < 5.9

Job 1:

The rest of the algorithm is trivial. We find P4(p1), P3(p1) and P2(p1) by using
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P2(∆2). They are as follows:

P4(p1) =





2.05 0.10 ≤ p1 < 1.62

3.67− p1 1.62 ≤ p1 < 2.49

1.18 2.49 ≤ p1 < 6

P3(p1) =





0.76 0.10 ≤ p1 < 3.24

0.48 3.24 ≤ p1 < 6

P2(p1) =





1.39 0.10 ≤ p1 < 1.53

1.57 1.53 ≤ p1 < 2.49

4.06− p1 2.49 ≤ p1 < 3.24

4.34− p1 3.24 ≤ p1 < 3.30

1.05 3.30 ≤ p1 < 6

From them, we generate the Total Tardiness cost function for job 1. It is as

follows:

TotalTard1(p1) =





0 0.10 ≤ p1 < 1.95

3(p1 − 0.30) 1.95 ≤ p1 < 2.00

6(p1 − 1.15) 2.00 ≤ p1 < 3.30

9(p1 − 1.87) 3.30 ≤ p1 < 6

Then, we minimize the total contributed cost function directly. Its minimum

is 1.15 and this is the processing time of job 1. We can now obtain the processing

times of the job 2,3 and 4 form functions P2, P3 and P4, respectively. They are

as follows:

p2 = 1.39 p3 = 0.76 and p4 = 2.05

The objective function value is 21.45 and this is the optimal solution which is

also found with mathematical formulation.

In the next chapter we describe and discuss the experimental design of our

problem and the computational results.



Chapter 6

Experimental Design

In this chapter, the experimental factors of the problem are specified and the

performance of both the proposed DP-based heuristic and local search algorithm

are tested and compared with bench-mark algorithms. Both local search and

DP-based heuristic are coded in C language and compiled with GNU compiler.

The nonlinear model of the original problem for a given sequence is formulated

in GAMS 2.25 and solved by MINOS 5.3. All problems are solved on a sparc

station (Sun Enterprize 4000) under SunOS 5.7.

The experimental settings of the problem is explained in §6.1. The compu-

tational results of the proposed DP-based heuristic for the problem for a given

sequence are presented in §6.2. The appropriate values for PSGA parameters and

the two-stage benchmark algorithm are given and discussed in §6.3. Finally in

§6.4, the results of the algorithms are evaluated.

6.1 Experimental Settings

We developed a four-factorial experimental design to test both proposed DP-

based heuristic and PSGA. In Table 6.1 these factors are listed where UN stands

for uniform distribution. Two factors, number of jobs and tooling cost, can take

57
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values in two levels and the remaining two, tardiness factor and range of due date,

can take values in three levels . Thus the experimental design is a 2 ∗ 2 ∗ 3 ∗ 3 full

factorial design.

Factors Definition Level 1 Level 2 Level 3
N Number of jobs 40 80 -
Ct Tooling cost UN[0.5,1.5] UN[3.5,4.5] -
TF Tardiness factor 0.2 0.5 0.8

RDD Range of due date 0.2 0.5 0.8

Table 6.1: Experimental design factors

The experimental factors are explained briefly below:

• N : Number of jobs processed on the machine. Just considering the

weighted tardiness cost item, the difficulty of the problem increases ex-

ponentially when we increase the number of jobs. Also, as the number of

job increases, the decision on the processing times of the jobs becomes more

critical since an increase in the processing time of a job has greater effect

on the tardiness cost value.

• Cti : Cost of tool assigned to job i. As tooling cost increases, the tradeoff

between tooling cost and the tardiness + machining cost increases. This

increases the difficulty of the problem.

• TF and RDD : Tardiness factor and Range of Due Date. These two factors

are used to assign due dates of jobs. Due dates of jobs are determined by

using the following formula:

ddi = UN [(1− TF −RDD/2), (1− TF + RDD/2)] ∗ Σp̄i

where p̄i is the average processing time of job i and Σp̄i is the sum of average

processing times of all jobs. As it can be realized from the formula, as RDD

increases the range that due dates of jobs are assigned from increases. As

TF increases the mean of due dates decreases and this causes due dates to

become tighter.
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The technological coefficients of the tools are given in Table 6.2 below with

the other parameters which are given appropriate values after some trial runs.

α = UN[3.60,4.30]
β = UN[1.20,1.60]
γ = UN[1.05,1.20]
C = UN[10000000,60000000]
b = UN[0.80,0.96]
c = UN[0.70,0.83]
e = UN[0.65,0.75]

Cm = UN[1.50,2.50]
g = -UN[1.45,1.69]
h = UN[1.005,1.104]
l = UN[0.18,0.40]

Cs = UN[20000,25000]*10000
D = UN[1.5,3.0]
d = UN[0.2,0.3]
S = UN[300,500]

C0 = 0.5

Table 6.2: Technical coefficients and parameters

6.2 Results for the Problem for a Given Se-

quence

By using our full factorial design, we first tested our DP-based algorithm. For

the benchmark, we used the mathematical formulation given in the §3.2.3 (p.

24). We coded this formulation in commercial package GAMS that uses MINOS

solver and applied the same factorial design. For each factor combination, we

took 25 replications by using 25 different seeds. Therefore, for each algorithm we

took 900 runs. The results of these runs are given in Appendix B, which contain

the sum and individual values of cost items and the run times. The summary

of these runs are listed in the Table 6.3 showing the minimum, maximum and

average results.
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The averages of 25 replications for each factor combination are given in Table

6.4. “% Deviations ” in this table shows what percent the value of the optimal

solution is less than the value of the solution heuristic for “Obj” and what percent

the CPU time (in seconds) of our heuristic is less than the one of the mathematical

formulation for “CPU”.

The results show that our proposed heuristic deviates from the optimal solu-

tion about only 2% on the average. However, we gain about 82% improvement

in the CPU time on the average. The most difficult case of the problem is the

factor combination of (1 1 0 2) where the number of jobs, tooling cost and the

range of due date are at their highest level and the tardiness factor is at its lowest

level. This can be observed from the CPU times for this combination in Table

6.4. Even in the worst case our algorithm deviates only 17% on the average.

Objective Runtimes (in CPU seconds)
Algoritms Min Average Max Min Average Max

DP-Based Algorithm 25.54 134.41 410.16 0.03 0.14 0.82
Math. Model in GAMS 25.12 131.40 410.05 0.40 0.73 1.48

Table 6.3: Summary results for the problem with given sequence

Even if the average CPU times for the mathematical model in TableDpGams

may seem too small. However, if we consider that it is a base algorithm called

hundreds of times, its effect in the main algorithm is significant. The paired sam-

ples statistics, correlations, test results, and estimated marginal grand means by

each factor for both objective values and CPU times of the compared algorithms

are given in appendix D.1. In the next section, we present the results of proposed

PSGAs that use these solution procedures as their base heuristics and compare

them with a benchmark algorithm.
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DP-based Algo. Math. Model Deviations
N Ct TF RDD Obj CPU Obj CPU Obj CPU
0 0 0 0 31.68 0.09 30.90 0.54 0.02 0.83
0 0 0 1 32.03 0.11 31.15 0.57 0.03 0.81
0 0 0 2 35.23 0.13 33.74 0.59 0.04 0.79
0 0 1 0 46.91 0.06 46.78 0.52 0.00 0.88
0 0 1 1 47.18 0.06 47.03 0.52 0.00 0.88
0 0 1 2 49.65 0.07 49.41 0.53 0.00 0.87
0 0 2 0 72.05 0.06 72.05 0.46 0.00 0.88
0 0 2 1 72.40 0.06 72.39 0.47 0.00 0.88
0 0 2 2 71.35 0.06 71.34 0.49 0.00 0.89
0 1 0 0 77.34 0.14 73.51 0.62 0.05 0.77
0 1 0 1 77.86 0.15 73.61 0.63 0.05 0.77
0 1 0 2 82.31 0.16 75.53 0.65 0.08 0.75
0 1 1 0 94.39 0.08 93.71 0.56 0.01 0.86
0 1 1 1 95.10 0.08 93.92 0.58 0.01 0.86
0 1 1 2 98.87 0.10 95.91 0.58 0.03 0.83
0 1 2 0 121.10 0.06 121.07 0.53 0.00 0.89
0 1 2 1 121.30 0.06 121.25 0.53 0.00 0.89
0 1 2 2 120.31 0.06 119.97 0.54 0.00 0.88
1 0 0 0 68.59 0.18 67.50 0.82 0.02 0.78
1 0 0 1 72.04 0.26 70.16 0.91 0.03 0.71
1 0 0 2 83.20 0.43 78.78 1.02 0.05 0.58
1 0 1 0 119.83 0.13 119.74 0.68 0.00 0.80
1 0 1 1 121.96 0.14 121.87 0.73 0.00 0.81
1 0 1 2 131.53 0.15 131.43 0.79 0.00 0.82
1 0 2 0 210.87 0.10 210.87 0.61 0.00 0.83
1 0 2 1 212.40 0.11 212.40 0.60 0.00 0.82
1 0 2 2 210.29 0.11 210.28 0.61 0.00 0.81
1 1 0 0 177.69 0.31 166.90 1.15 0.06 0.73
1 1 0 1 189.32 0.35 167.90 1.27 0.11 0.72
1 1 0 2 211.56 0.46 176.29 1.31 0.17 0.65
1 1 1 0 230.80 0.15 229.31 1.01 0.01 0.85
1 1 1 1 234.51 0.15 231.20 1.05 0.01 0.85
1 1 1 2 244.08 0.17 239.93 1.09 0.02 0.84
1 1 2 0 324.23 0.11 324.15 0.81 0.00 0.86
1 1 2 1 325.58 0.11 325.48 0.81 0.00 0.86
1 1 2 2 323.13 0.12 322.96 0.87 0.00 0.87

Table 6.4: Comparison of DP-based heuristic with Math model in GAMS
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6.3 Local Search Parameters and Results

In this section, we give, discuss and compare the results of the following three

algorithms:

• The Proposed Simultaneous Algorithms: This is the proposed algo-

rithm which is explained in § 4.2. We run this PSGA for two different base

heuristics:

– PSGA[DP-based]: It uses the DP-based algorithm explained in

§ 4.3.

– PSGA[Math Model]: It uses the math formulation of the problem

for given sequences which is modeled in GAMS.

• Sequential Algorithm: As explained in § 4.1, this is the algorithm that

reflects the general approach in the industry towards our problem.

The parameters used in these PSGAs are given in Table 6.5. For the sequen-

tial PSGA, we assigned parameters to values which give the best results for the

total weighted tardiness problem stated by Avci et al.[5]. As choosing the values

of parameters for our proposed PSGAs, we used the same values for %SEXUAL,

π, θ, MUTPROB, CROSSOVER. We chose the values of MAXGEN and POP-

SIZE by considering the time constraint. Since as we increase the MAXGEN the

solution quality increases, we decided to employ a single start for our proposed

PSGAs.

The same factorial design in the previous section is used for all PSGAs listed

above. However, this time, we take 5 replications for each factor combination

since CPU times are much higher for PSGAs when compared to the algorithms

in the previous section.Therefore, for each algorithm we took 180 runs and in

total 540 runs. The results of these runs are given in Appendix C, in which the

first section contains the sum and individual values of cost items and the second

section contains the CPU times.
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Definitions of Parameters Sequential Simultaneous
POPSIZE : size of the population in a generation 50 20
MAXGEN : number of generations 100 30

% SEXUAL : probability of sexual reproduction 0.8 0.8
CROSSOVER : crossover type in sexual reproduction single single

MUTPROB : mutation probability for each gene 0.05 0.05
φ : selectivity of the algorithm 4 4
θ : perturbation magnitude 1 1

NUMSTART : number of restarts 5 1

Table 6.5: Definitions and levels of PSGA parameters for the sequential and the
proposed simultaneous algorithms

The summary of the results are given in Table 6.6. On the average, the pro-

posed PSGA[Dp-based] provides 62% improvement in solution quality over the

sequential algorithm. The time-wise loss that corresponds to this improvement is

only 86 CPU seconds. The results of PSGA[Dp-based] and PSGA[Math Model]

are as expected. Since the only difference between these two PSGAs are their

base heuristics, their time and solution quality comparison results are not much

different from the comparison results of DP-based heuristic and Mathematical

Formulation for a given sequence. On the average, the loss in solution qual-

ity in PSGA[Dp-based] is just 3% compared to PSGA[Math Model]. However,

time-wise gain is about 361 seconds or 75%. Time-wise and cost-wise deviations

of algorithms with respect to each other are given in Table 6.7, the ratios are

calculated as (high-low)/(high).

Objective Runtimes (CPU seconds)
Algorithms Min Average Max Min Average Max
Sequential 26.39 246.40 984.15 8.48 33.71 79.83

PSGA[DP-based] 20.75 93.36 282.33 10.15 119.29 476.29
PSGA[Math Model] 20.75 90.42 282.87 300.55 480.23 859.81

Table 6.6: Summary results of PSGA’s for the problem

The averages of 5 replications for each factor combination can be seen in

Table 6.8. For all factor combinations, there is an obvious cost-wise improvement.

The runtime of PSGA[Dp-based] can decrease up to 10 seconds and increase up
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to 476 seconds, while runtime of PSGA[Math Model] is between 300 and 859

seconds and seem more stable. This means that the commercial solver MINOS

cannot properly catch some characteristics of the problem while our proposed

PSGA[Dp-based] manages to exploit them very well. When the factor of N ,

Time-wise Comparison Cost-wise Comparison
Sequential PSGA[DP-based] sequential PSGA[DP-based]

vs vs vs vs
N Ct TF RDD PSGA[DP-based] PSGA[Math Model] PSGA[DP-based] PSGA[Math Model]
0 0 0 0 0.88 0.71 0.49 0.00
0 0 0 1 0.86 0.74 0.63 0.02
0 0 0 2 0.90 0.73 0.68 0.01
0 0 1 0 0.76 0.84 0.56 0.01
0 0 1 1 0.79 0.82 0.63 0.02
0 0 1 2 0.81 0.82 0.69 0.04
0 0 2 0 0.65 0.88 0.56 0.00
0 0 2 1 0.66 0.88 0.57 0.00
0 0 2 2 0.69 0.88 0.61 0.03
0 1 0 0 0.89 0.71 0.58 0.02
0 1 0 1 0.87 0.75 0.60 0.04
0 1 0 2 0.88 0.75 0.67 0.02
0 1 1 0 0.81 0.82 0.59 0.00
0 1 1 1 0.83 0.80 0.59 0.03
0 1 1 2 0.83 0.81 0.65 0.03
0 1 2 0 0.67 0.89 0.57 0.00
0 1 2 1 0.71 0.89 0.56 0.02
0 1 2 2 0.75 0.87 0.60 0.02
1 0 0 0 0.73 0.56 0.54 0.03
1 0 0 1 0.82 0.56 0.62 0.06
1 0 0 2 0.86 0.43 0.64 0.11
1 0 1 0 0.37 0.80 0.59 0.02
1 0 1 1 0.57 0.77 0.65 0.02
1 0 1 2 0.55 0.73 0.68 0.02
1 0 2 0 0.15 0.83 0.57 0.01
1 0 2 1 0.31 0.83 0.55 0.02
1 0 2 2 0.30 0.83 0.59 0.01
1 1 0 0 0.80 0.63 0.63 0.08
1 1 0 1 0.82 0.63 0.65 0.09
1 1 0 2 0.83 0.57 0.68 0.12
1 1 1 0 0.57 0.81 0.65 0.03
1 1 1 1 0.59 0.82 0.64 0.05
1 1 1 2 0.49 0.82 0.67 0.05
1 1 2 0 0.22 0.87 0.62 0.02
1 1 2 1 0.41 0.87 0.59 0.01
1 1 2 2 0.38 0.86 0.64 0.00

Averages 0.67 0.77 0.61 0.03

Table 6.7: Deviations of Algorithms for the original problem with respect to each
other

number of jobs, is fixed, deviation in solution times of the sequential algorithm

and PSGA[Math Model] are not much when compared to PSGA[Dp-based]. The

reason for this is that the sequential algorithm and PSGA[Math Model] do not

exploit the problem structure to improve the solution quality, and to improve the
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run time, respectively. However, our DP-based heuristic behaves according to the

structure of the problem.

Sequential PSGA[DP-based] PSGA[GAMS]
N Ct TF RDD Obj CPU Obj CPU Obj CPU
0 0 0 0 49.15 10.89 24.96 83.31 24.92 296.97
0 0 0 1 64.50 10.70 23.73 71.88 23.35 304.92
0 0 0 2 70.37 9.11 22.48 77.61 22.19 308.27
0 0 1 0 72.86 10.55 32.21 41.96 31.93 275.96
0 0 1 1 81.74 10.62 30.49 46.12 29.80 285.26
0 0 1 2 95.46 9.52 29.87 46.12 28.71 274.66
0 0 2 0 106.97 10.37 47.00 28.56 46.80 251.13
0 0 2 1 106.18 10.14 45.56 28.74 45.58 250.20
0 0 2 2 118.00 9.52 46.37 29.47 45.03 249.41
0 1 0 0 138.71 10.95 58.90 88.38 57.96 322.38
0 1 0 1 148.32 10.83 59.02 71.08 56.47 325.26
0 1 0 2 166.80 9.88 55.63 72.49 54.40 327.03
0 1 1 0 170.78 11.07 70.66 52.35 70.38 306.79
0 1 1 1 172.67 10.96 70.44 57.65 68.14 307.30
0 1 1 2 198.70 9.82 69.88 48.69 67.48 303.50
0 1 2 0 210.21 9.92 89.54 29.20 89.26 282.63
0 1 2 1 202.72 9.38 89.23 31.43 87.68 279.76
0 1 2 2 223.46 9.02 89.03 32.85 87.14 276.51
1 0 0 0 114.11 54.61 52.90 197.85 51.41 475.91
1 0 0 1 134.36 40.38 50.55 229.91 47.64 540.17
1 0 0 2 142.78 45.14 51.24 313.44 45.70 584.54
1 0 1 0 185.31 51.63 75.16 80.60 73.34 410.46
1 0 1 1 201.67 37.00 70.33 86.83 69.07 405.22
1 0 1 2 226.78 47.83 73.00 99.29 71.68 397.48
1 0 2 0 294.62 47.70 128.13 56.08 127.46 326.97
1 0 2 1 299.13 39.32 135.96 56.19 132.90 330.88
1 0 2 2 341.28 40.46 140.09 56.58 138.90 339.80
1 1 0 0 374.20 47.29 137.15 226.80 125.96 653.18
1 1 0 1 377.78 41.37 133.31 232.28 121.27 658.71
1 1 0 2 427.82 47.03 135.17 268.00 119.05 661.15
1 1 1 0 476.72 46.88 166.16 99.82 161.54 568.34
1 1 1 1 469.41 41.83 169.34 94.78 160.84 570.60
1 1 1 2 541.59 45.45 177.17 85.90 169.00 498.64
1 1 2 0 606.89 47.12 233.04 57.85 229.17 457.64
1 1 2 1 586.60 36.38 237.79 58.30 234.60 446.81
1 1 2 2 671.74 39.67 239.37 61.71 238.47 461.38

Table 6.8: Comparison of the sequential and the proposed simultaneous algo-
rithms

One other interesting point is that the results of the problem for the different

RDD factors, holding other factors fixed, do not change much. Both PSGA[Dp-

based] and PSGA[Math Model] tend to solve problems in a way that the sum of

three cost items do not change too much depending on RDD.

The most of the improvements in solutions comes from a decrease in the tar-

diness cost in the expense of tooling cost. This is expected since a decrease in

processing time of a job at the beginning of the sequence decreases the tardiness
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of all tardy jobs, however it increases just its own tooling cost. These improve-

ments can be clearly seen in Appendix C. Also, The paired samples statistics,

correlations, test results and estimated marginal grand means by each factor for

both objective cost values and CPU times of the compared algorithms are given

in appendix D.2.

6.4 Summary

In this section, we presented the experimental results of our proposed heuristic

and the PSGAs. We compared both with a benchmark solution method. Our

proposed PSGA that uses the proposed DP-based base heuristic gives the best

performance considering time/cost ratio.

In the next section, we will give our concluding remarks about this study and

related future research areas on this subject.



Chapter 7

Conclusion

This chapter provides a brief summary of the contributions of this thesis and

addresses some possible extensions of this study for future research. We consid-

ered the scheduling problem of jobs with controllable machining times on a single

CNC machine. The objective is minimizing the summation of total weighted

tardiness, machining and tooling costs. We defined and formulated the problem

mathematically and proposed a PSGA for the original problem and a DP-based

heuristic for the problem for a given sequence. In the next section, we will make

a short summary of the contributions we made to this problem and in § 7.2 we

will suggest some future research directions.

7.1 Contributions

The integration of scheduling and tool management literature produces more

realistic problems. There is no study in the literature considering the machin-

ing condition optimization and total weighted tardiness problem simultaneously.

From this perspective, our study is the first one that considers both problems

simultaneously.

We first formulate the nonlinear mathematical model of the problem. For this
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purpose, we presented a formulation showing that the tooling cost of a job can be

written depending on its processing time and moreover this function is convex.

Since the problem is NP-hard, we developed a problem space genetic algo-

rithm that uses the mathematical model of the problem or proposed dynamic

programming based heuristic as its base algorithm. Also, we presented an algo-

rithm that reflects the current approach in the industry for the problem and used

it as a benchmark.

The proposed DP-based heuristic is designed to solve the problem for a given

sequence. It is backward DP-based since it starts from the last job processed

and goes until the first job collecting the information required to determine the

processing time of a job depending on the processing times of the jobs before that

job. When it reaches to the beginning, since there is no job before the first job,

its processing time is calculated easily and then the processing time of other jobs

are determined according to its processing time.

The DP-based heuristic is a strong one since it embraces the problem char-

acteristics that arise from the interaction between the machining conditions and

weighted tardiness criterion. The defined contributed cost function for each job

make generating very good solutions highly possible since it manages to reflect

the tradeoff between the tooling cost and total weighted cost.

The computational results confirm the strong relation between the machining

conditions and total weighted tardiness problem. They indicate that when the

interaction between them is ignored and they are solved independently from each

other, the solution quality can be quite poor even if each problem is solved alone

optimally. Our proposed heuristics showed outstanding performance compared

to the benchmark algorithms.



CHAPTER 7. CONCLUSION 69

7.2 Future Research Directions

This thesis showed that the interaction between the decisions on the different

levels of flexible manufacturing system hierarchy has a strong impact on its effi-

ciency. From this perspective, the solution methods for the problems generated

by combining the problems from the different levels of FMS hierarchy is a very

important research direction.

Our approach can be used to find machining conditions and solve some other

traditional scheduling criteria simultaneously, for example earliness or the sum of

earliness and tardiness. The solution method of the DP-based algorithm can be

applied to the problems that have similar characteristics with our problem.

Also, a method to find a lower bound for our problem can be developed. This

way, we can gain more information about the solution quality of our proposed

algorithms.

Lastly, our proposed algorithms can be improved, for example the sequence

generating procedure ATC, which is currently use, can be improved according

to the characteristics of the problem or the contributed cost function can be

reconstructed to make it reflect the interaction between the cost items better.
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Here, we give a formulation for Ri(∆i), which is explained in section 4.3.2,

depending on the possible locations of b1, b2, b3, b4, mink, and mins relative to

each other, which are also defined in section 4.3.2.

A.1 State (A,1)

The corresponding combinations are as in the figure A.1. Let ∆i remains in this

combination while it is in the interval (0, X) such that X ≤ min{r[k], r[s]} . The

minimum points of Lk and Ls are b1 and b3, respectively. While CLk > CLs,

R(∆i) = b3, else R(∆i) = b1. We find which one of b3 and b1 gives the minimum of

the total cost for given values of ∆i by finding the zero point of F = (CLk−CLs):

CLk(b1, ∆i) = Lk(b1, ∆i) + Tool(b1) + Mach(b1)
= Lk(r[k] −∆i, ∆i) + Tool(r[k] −∆i) + Mach(r[k] −∆i)
= mk(r[k] −∆i) + nk + mk∆i + ca

(r[k]−∆i)
cb

+ C0(r
[k] −∆i)

= mkr[k] + nk + ca

(r[k]−∆i)
cb

+ C0(r
[k] −∆i)

CLs(b2, ∆i) = Ls(b2, ∆i) + Tool(b2) + Mach(b2)
= Ls(r[s] −∆i, ∆i) + Tool(r[s] −∆i) + Mach(r[s] −∆i)
= ms(r[s] −∆i) + ns + ms∆i + ca

(r[s]−∆i)
cb

+ C0(r
[s] −∆i)

= msr[s] + ns + ca

(r[s]−∆i)
cb

+ C0(r
[s] −∆i)

F (∆i) = CLk(r[k] −∆i, ∆i)− CLs(r[s] −∆i, ∆i)
= r[k](mk + C0)− r[s](ms + C0) + ca

(r[k]−∆i)
cb
− ca

(r[s]−∆i)
cb

F has at most one root. There are three possible cases and solutions related

to ∆?
i , the root of F, are as follows:

• If there is no ∆?
i > 0 such that F (∆?

i ) = 0, then CLk is always greater than

CLs. Thus

R(∆i) = b3 = r[s] −∆i 0 ≤ ∆i ≤ X

• If there is a ∆?
i but it is not defined on the interval (0, X), then CLk is less

than CLs. Thus

R(∆i) = b1 = r[k] −∆i 0 ≤ ∆i ≤ X
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• If there is a ∆?
i and it is in the interval (0, X) for ∆i > ∆?

i , CLk > CLs

and for ∆i ≤ ∆?
i , CLk ≤ CLs. Thus

R(∆i) =

{
b1 = r[k] −∆i 0 ≤ ∆i ≤ ∆?

i

b3 = r[s] −∆i ∆?
i ≤ ∆i ≤ X

b2kmin b1 b3 b4

CLk

sCL

Cost

p
i

smin

Figure A.1: The illustration of combination (A, 1)

The generation of R(∆i) for other combinations is similar to this one.

A.2 State (A,2)

Let ∆i remains in this combination while it is in the interval (X,Y ). The min-

imum point of Lk and Ls are b1 and mins, respectively. While CLk > CLs,

R(∆i) = b1, else R(∆i) = mins. We find which one of b1 and mins gives the

minimum of the total cost for given values of ∆i by finding the zero point of

F = (CLk − CLs):

CLk(b1, ∆i) = Lk(b1, ∆i) + Tool(b1) + Mach(b1)
= Lk(r[k] −∆i, ∆i) + Tool(r[k] −∆i) + Mach(r[k] −∆i)
= mk(r[k] −∆i) + nk + mk∆i + ca

(r[k]−∆i)
cb

+ C0(r
[k] −∆i)

= mkr[k] + nk + ca

(r[k]−∆i)
cb

+ C0(r
[k] −∆i)
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CLs(mins, ∆i) = Ls(mins, ∆i) + Tool(mins) + Mach(mins)
= msmins + ns + ms∆i + ca

(mins)cb
+ C0mins

= msmins + ns + ca

(mins)cb
+ C0mins

F (∆i) = CLk(r[k] −∆i, ∆i)− CLs(mins, ∆i)
= −C0∆i + ca

(r[k]−∆i)
cb
− ca

(mins)cb
+ C0(r

[k] −mins) + mkr[k] −msmins + nk − ns

F may have at most two roots. There are three possible cases and solutions

related to ∆?
1 and ∆?

2, the roots of F, are as follows:

• F (∆i) has no root, then CLk is always greater than CLs. Thus

R(∆i) = mins X ≤ ∆i ≤ Y

• F (∆i) has roots ∆?
1 and ∆?

2 such that ∆?
1 = ∆?

2, R(∆i) is the same with the

case of no root.

• F (∆i) has roots ∆?
1 and ∆?

2 such that ∆?
1 6= ∆?

2. In this case for

∆?
1 ≤ ∆i ≤ ∆?

2 , CLk ≤ CLs and for otherwise CLk > CLs. Thus we

can write R(∆i) independently from the range (X, Y ) as follows:

R(∆i) =
{

mins ∆?
1 ≤ ∆i ≤ ∆?

2

b1 = r[k] −∆i o.w.

According to order of ∆?
1, ∆?

2,X and Y we can write R(∆i) easily. For

example if X < ∆?
1 < ∆?

2 < Y then:

R(∆i) =





r[k] −∆i X ≤ ∆i < ∆?
1

mins ∆?
1 ≤ ∆i ≤ ∆?

2

r[k] −∆i ∆?
2 < ∆i < Y

A.3 State (B,2)

Let ∆i remains in this combination while it is in the interval (X,Y ). The min-

imum point of Lk and Ls are mink and mins, respectively. While CLk > CLs,
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R(∆i) = mink, else R(∆i) = mins. We find which one of mink and mins gives

the minimum of the total cost for given values of ∆i by finding the zero point of

F = (CLk − CLs):

CLk(mink, ∆i) = Lk(mink, ∆i) + Tool(mink) + Mach(mink)
= mkmink + nk + mk∆i + ca

(mink)cb
+ C0mink

CLs(mins, ∆i) = Ls(mins, ∆i) + Tool(mins) + Mach(mins)
= msmins + ns + ms∆i + ca

(mins)cb
+ C0mins

F (∆i) = CLk(r[k] −∆i, ∆i)− CLs(mins, ∆i)
= ∆i(mink −mins) + ca

(mink)cb
− ca

(mins)cb
+ C0(mink −mins)

+mkmink −msmins + nk − ns

The ∆?
i such that F (∆?

i ) = 0 can be easily derived from the equation above:

∆?
i =

C

mink −mins

where

C =
ca

(mink)cb
− ca

(mins)cb
+ C0(mink −mins) + mkmink −msmins + nk − ns

for ∆i > ∆?
i , CLk > CLs and for ∆i ≤ ∆?

i , CLk ≤ CLs. Thus we can write

R(∆i) independently from the range (X, Y ) as follows:

R(∆i) =
{

mink 0 ≤ ∆i ≤ ∆?
i

mins ∆?
i ≤ ∆i ≤ ∞

According to order of ∆?
1, X and Y we can write R(∆i) easily as in state

(A, 2).

A.4 States (A,3), (C,1), (C,3)

The calculations for these states are very similar to the state (A, 1). The rules

for constructing R(∆i) for them and (A, 1) are the same. F (∆i) function for each
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state as follows:

State (A, 3)

F (∆i) = CLk(r[k] −∆i, ∆i)− CLs(r[s+1] −∆i, ∆i)
= r[k](mk + C0)− r[s+1](ms + C0) + ca

(r[k]−∆i)
cb
− ca

(r[s+1]−∆i)
cb

State (C, 1)

F (∆i) = CLk(r[k+1] −∆i, ∆i)− CLs(r[s] −∆i, ∆i)
= r[k+1](mk + C0)− r[s](ms + C0) + ca

(r[k+1]−∆i)
cb
− ca

(r[s]−∆i)
cb

State (C, 3)

F (∆i) = CLk(r[k+1] −∆i, ∆i)− CLs(r[s+1] −∆i, ∆i)
= r[k+1](mk + C0)− r[s+1](ms + C0) + ca

(r[k+1]−∆i)
cb
− ca

(r[s+1]−∆i)
cb

A.5 States (B,1), (C,2), (B,3)

The calculations for these states are very similar to the state (A, 2). The corre-

sponding F (∆i) for each state as follows :

State (B, 1)

F (∆i) = CLk(mink, ∆i)− CLs(r[s] −∆i, ∆i)
= C0∆i − ca

(r[s]−∆i)
cb

+ ca

(mink)cb
− C0(r

[s] −mink)

−msr[s] + mkmink − ns + nk

State (C, 2)

F (∆i) = CLk(r[k+1] −∆i, ∆i)− CLs(mins, ∆i)
= −C0∆i + ca

(r[k+1]−∆i)
cb
− ca

(mins)cb
+ C0(r

[k+1] −mins)

+mkr[k+1] −msmins + nk − ns
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State (B, 1)

F (∆i) = CLk(mink, ∆i)− CLs(r[s+1] −∆i, ∆i)
= C0∆i − ca

(r[s+1]−∆i)
cb

+ ca

(mink)cb
− C0(r

[s+1] −mink)

−msr[s+1] + mkmink − ns + nk

All of these functions are in the same form and have at most one root. The

rules to find R(∆i) are the same with (A, 2).
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DP-based Heuristic Math. Model
N Ct TF RDD r# Tard Tool Mach Total CPU Tard Tool Mach Total CPU
0 0 0 0 1 4.33 15.75 5.45 25.54 0.13 4.294 15.691 5.448 25.432 0.63
0 0 0 0 2 10.88 18.72 6.85 36.45 0.08 7.395 19.692 6.395 33.481 0.61
0 0 0 0 3 10.51 23.67 7.53 41.71 0.09 11.504 22.163 7.661 41.327 0.55
0 0 0 0 4 3.84 19.07 5.18 28.08 0.11 4.324 18.02 5.241 27.585 0.5
0 0 0 0 5 5.93 20.42 5.9 32.26 0.1 5.604 19.271 5.853 30.728 0.52
0 0 0 0 6 5.44 20.64 7.19 33.27 0.08 5.561 20.458 7.201 33.22 0.5
0 0 0 0 7 6.36 18.47 7.15 31.98 0.09 6.142 18.02 7.111 31.273 0.54
0 0 0 0 8 5.1 18.77 5.57 29.44 0.13 4.704 18.06 5.506 28.27 0.6
0 0 0 0 9 5.62 20.75 5.22 31.6 0.08 6.405 19.713 5.309 31.427 0.54
0 0 0 0 10 6.52 18.32 7.09 31.93 0.13 4.936 18.262 6.818 30.017 0.55
0 0 0 0 11 4.36 15.63 5.73 25.72 0.14 4.042 15.404 5.673 25.119 0.5
0 0 0 0 12 9.74 23.8 9.28 42.83 0.07 10.942 21.914 9.45 42.306 0.5
0 0 0 0 13 6.44 18.97 5.5 30.91 0.08 6.945 18.192 5.566 30.702 0.46
0 0 0 0 14 5.88 17.74 6.81 30.43 0.13 6.074 16.745 6.848 29.667 0.59
0 0 0 0 15 5.4 18.17 6.7 30.27 0.15 5.009 17.579 6.631 29.218 0.64
0 0 0 0 16 6.55 20.81 6.95 34.31 0.08 5.579 20.237 6.848 32.664 0.48
0 0 0 0 17 4.15 18.86 5.57 28.59 0.09 4.562 17.617 5.626 27.805 0.61
0 0 0 0 18 5.89 19.18 5.65 30.72 0.1 6.149 18.844 5.679 30.672 0.57
0 0 0 0 19 6.29 17.01 4.28 27.58 0.08 6.471 16.757 4.304 27.531 0.5
0 0 0 0 20 7.45 17.51 5.15 30.11 0.06 6.893 16.769 5.071 28.733 0.48
0 0 0 0 21 6.53 19.16 4.22 29.91 0.05 7.639 17.693 4.329 29.661 0.5
0 0 0 0 22 6.25 19.86 5.3 31.41 0.09 6.249 19.01 5.299 30.558 0.45
0 0 0 0 23 5.43 24.27 5.81 35.51 0.07 6.86 22.083 5.962 34.904 0.59
0 0 0 0 24 6.8 19.77 5.43 32 0.09 7.002 19.431 5.458 31.891 0.55
0 0 0 0 25 4.36 19.28 5.69 29.32 0.06 4.754 17.787 5.749 28.29 0.56
0 0 0 1 1 6.61 16.86 5.32 28.79 0.08 7.036 16.109 5.388 28.533 0.53
0 0 0 1 2 8.49 19.44 6.46 34.39 0.09 8.534 19.121 6.466 34.122 0.61
0 0 0 1 3 11.74 23.77 7.63 43.15 0.14 11.63 22.521 7.621 41.772 0.54
0 0 0 1 4 5.28 17.56 5.47 28.3 0.15 4.75 16.972 5.41 27.132 0.57
0 0 0 1 5 5.3 19.91 5.8 31.01 0.11 5.565 19.387 5.838 30.79 0.59
0 0 0 1 6 8.7 18.8 7.6 35.11 0.13 7.239 18.963 7.404 33.606 0.6
0 0 0 1 7 7.31 19.83 6.88 34.03 0.07 7.839 18.98 6.96 33.779 0.56
0 0 0 1 8 4.69 18.42 5.53 28.64 0.14 4.242 18.374 5.472 28.087 0.55
0 0 0 1 9 6.09 20.06 5.28 31.43 0.08 6.523 19.538 5.327 31.387 0.58
0 0 0 1 10 5.59 18.32 6.91 30.82 0.13 4.914 18.668 6.768 30.351 0.48
0 0 0 1 11 6.93 17.22 5.72 29.88 0.1 6.111 15.87 5.621 27.602 0.5
0 0 0 1 12 10.16 22.9 9.48 42.55 0.09 10.176 21.63 9.487 41.292 0.59
0 0 0 1 13 6.39 18.58 5.54 30.51 0.08 6.791 17.953 5.599 30.344 0.56
0 0 0 1 14 5.29 18.65 6.63 30.56 0.15 5.839 17.608 6.718 30.165 0.57
0 0 0 1 15 6.45 18.21 6.76 31.43 0.13 5.742 17.59 6.635 29.967 0.58
0 0 0 1 16 5.92 20.83 6.94 33.69 0.08 5.357 19.885 6.895 32.137 0.52
0 0 0 1 17 5.33 18.01 5.62 28.97 0.1 5.101 17.924 5.595 28.62 0.53
0 0 0 1 18 7.89 17.75 6.24 31.88 0.13 7.124 16.23 6.075 29.43 0.66
0 0 0 1 19 4.88 16.5 4.34 25.71 0.12 5.278 16.002 4.393 25.672 0.53
0 0 0 1 20 7.1 18.07 4.96 30.12 0.08 8.259 16.25 5.138 29.647 0.54
0 0 0 1 21 6.78 17.09 4.39 28.27 0.1 6.996 16.835 4.424 28.254 0.58
0 0 0 1 22 7.22 18.63 5.56 31.4 0.14 5.795 18.076 5.414 29.285 0.54
0 0 0 1 23 9.16 23.46 5.87 38.49 0.08 10.119 21.989 5.97 38.079 0.62
0 0 0 1 24 6.8 20.12 5.6 32.52 0.09 5.658 19.4 5.466 30.524 0.63
0 0 0 1 25 5.85 17.35 5.96 29.16 0.1 5.003 17.367 5.82 28.19 0.58
0 0 0 2 1 6.94 14.59 5.94 27.47 0.15 5.995 14.182 5.746 25.923 0.62
0 0 0 2 2 8.26 18.63 6.61 33.5 0.12 8.382 17.942 6.643 32.967 0.59
0 0 0 2 3 12.34 21.5 8.22 42.05 0.18 11.387 19.435 8.077 38.9 0.65
0 0 0 2 4 11.09 18.38 5.21 34.68 0.13 11.094 18.377 5.21 34.682 0.6
0 0 0 2 5 9.59 19.68 5.84 35.11 0.09 9.221 19.866 5.793 34.88 0.52
0 0 0 2 6 8.44 17.71 7.83 33.98 0.17 7.381 17.73 7.625 32.735 0.59
0 0 0 2 7 11.21 18.69 7.02 36.92 0.1 11.196 18.677 7.022 36.896 0.51
0 0 0 2 8 9.73 19.81 5.53 35.07 0.09 8.746 18.511 5.531 32.789 0.6
0 0 0 2 9 10.62 18.91 5.46 34.98 0.09 10.028 18.814 5.417 34.26 0.58
0 0 0 2 10 10.75 19.52 6.79 37.06 0.1 9.743 19.35 6.671 35.764 0.53
0 0 0 2 11 9.15 15.92 5.76 30.84 0.1 7.828 15.847 5.632 29.307 0.63
0 0 0 2 12 16.62 22.27 9.45 48.34 0.1 16.977 21.762 9.502 48.241 0.6
0 0 0 2 13 10.19 17.61 5.73 33.53 0.11 9.929 17.142 5.72 32.792 0.6
0 0 0 2 14 6.61 23.07 6.38 36.06 0.17 8.383 17.394 6.752 32.529 0.65
0 0 0 2 15 9.48 18.42 6.73 34.64 0.16 8.705 17.826 6.59 33.121 0.6
0 0 0 2 16 14.86 18.57 7.29 40.73 0.16 12.756 19.228 7.034 39.018 0.6
0 0 0 2 17 8.9 17.04 5.89 31.82 0.11 7.268 17.052 5.745 30.066 0.57
0 0 0 2 18 7.53 20.78 5.75 34.06 0.14 8.195 17.959 5.801 31.955 0.6
0 0 0 2 19 8.94 16.1 4.58 29.62 0.14 6.924 16.179 4.399 27.502 0.55
0 0 0 2 20 8.9 18.61 4.92 32.43 0.08 10.117 16.772 5.079 31.967 0.64
0 0 0 2 21 8.23 19.16 4.22 31.61 0.07 9.226 17.74 4.33 31.295 0.55
0 0 0 2 22 13.33 19.83 5.31 38.47 0.11 12.965 19.253 5.275 37.493 0.64
0 0 0 2 23 10.53 19.87 6.31 36.71 0.18 9.7 19.994 6.201 35.895 0.6
0 0 0 2 24 10.55 22.21 5.71 38.47 0.15 9.292 18.498 5.613 33.403 0.56
0 0 0 2 25 10.25 15.97 6.44 32.66 0.16 6.486 16.535 6.059 29.08 0.56
0 0 1 0 1 12.59 17.98 5.2 35.77 0.04 12.94 17.475 5.232 35.646 0.45
0 0 1 0 2 20.41 21.9 6.2 48.52 0.07 21.18 20.866 6.276 48.322 0.61
0 0 1 0 3 26.75 25.33 7.39 59.47 0.05 27.701 24.076 7.471 59.248 0.59
0 0 1 0 4 18.05 20.66 5.01 43.73 0.07 18.093 20.614 5.017 43.724 0.47
0 0 1 0 5 17.07 22.82 5.51 45.4 0.07 17.584 22.18 5.549 45.313 0.5
0 0 1 0 6 22.16 22.09 7.06 51.31 0.06 22.653 21.456 7.104 51.213 0.47
0 0 1 0 7 25.15 20.06 6.86 52.07 0.07 25.286 19.893 6.865 52.044 0.49
0 0 1 0 8 15.49 21.01 5.22 41.72 0.06 16.063 20.254 5.272 41.589 0.54
0 0 1 0 9 22.23 20.89 5.21 48.33 0.07 22.376 20.712 5.22 48.308 0.47
0 0 1 0 10 20.23 21.19 6.48 47.91 0.04 20.264 21.154 6.487 47.904 0.45
0 0 1 0 11 14.95 18.7 5.34 38.99 0.07 15.141 18.468 5.351 38.96 0.48
0 0 1 0 12 31.5 23.01 9.34 63.85 0.08 31.555 22.952 9.342 63.849 0.59
0 0 1 0 13 21.06 19.2 5.48 45.74 0.06 21.271 18.921 5.495 45.687 0.54
0 0 1 0 14 15.43 20.22 6.46 42.12 0.04 16.121 19.276 6.529 41.925 0.56
0 0 1 0 15 13.46 20.83 6.33 40.62 0.1 13.509 19.625 6.335 39.468 0.54
0 0 1 0 16 30.07 21.74 6.71 58.51 0.06 30.085 21.721 6.707 58.513 0.57
0 0 1 0 17 18.12 19.36 5.48 42.96 0.07 18.46 18.908 5.502 42.87 0.49
0 0 1 0 18 20.92 21.29 5.49 47.7 0.07 21.78 20.106 5.562 47.449 0.55
0 0 1 0 19 15.79 19.16 4.11 39.05 0.05 16.361 18.412 4.151 38.924 0.47
0 0 1 0 20 18.01 18.61 4.92 41.54 0.05 18.569 17.861 4.963 41.392 0.53
0 0 1 0 21 21.71 19.05 4.23 44.98 0.06 21.747 18.991 4.228 44.965 0.53
0 0 1 0 22 23.66 21.05 5.13 49.85 0.05 23.671 21.047 5.129 49.847 0.5
0 0 1 0 23 24.94 24.27 5.81 55.02 0.08 25.808 23.139 5.875 54.822 0.56
0 0 1 0 24 20.13 21.36 5.29 46.78 0.05 20.56 20.818 5.324 46.702 0.51
0 0 1 0 25 14.68 20.73 5.47 40.88 0.07 15.361 19.841 5.531 40.733 0.52



APPENDIX B. RESULTS FOR THE PROBLEM WITH A GIVEN SEQUENCE85

DP-based Heuristic Math. Model
N Ct TF RDD r# Tard Tool Mach Total CPU Tard Tool Mach Total CPU
0 0 1 1 1 15.92 17.98 5.20 39.09 0.04 16.34 17.39 5.24 38.97 0.54
0 0 1 1 2 19.65 21.90 6.20 47.75 0.06 20.55 20.67 6.29 47.51 0.56
0 0 1 1 3 30.73 25.33 7.39 63.45 0.06 31.62 24.18 7.46 63.27 0.52
0 0 1 1 4 15.61 20.66 5.01 41.29 0.05 16.01 20.18 5.05 41.23 0.51
0 0 1 1 5 16.95 22.82 5.51 45.28 0.06 17.46 22.18 5.55 45.19 0.50
0 0 1 1 6 21.33 22.09 7.06 50.47 0.06 21.80 21.48 7.10 50.38 0.47
0 0 1 1 7 24.21 20.06 6.86 51.12 0.06 24.37 19.86 6.87 51.10 0.51
0 0 1 1 8 15.26 21.01 5.22 41.49 0.07 15.71 20.43 5.26 41.40 0.56
0 0 1 1 9 22.71 20.89 5.21 48.81 0.07 22.85 20.72 5.22 48.79 0.59
0 0 1 1 10 22.65 21.18 6.49 50.31 0.05 22.76 21.05 6.50 50.31 0.46
0 0 1 1 11 20.12 18.70 5.34 44.16 0.07 20.31 18.47 5.35 44.14 0.48
0 0 1 1 12 30.81 23.19 9.32 63.32 0.08 30.97 23.01 9.34 63.31 0.53
0 0 1 1 13 21.36 19.20 5.48 46.03 0.07 21.58 18.90 5.50 45.97 0.44
0 0 1 1 14 18.70 20.22 6.46 45.38 0.07 19.48 19.16 6.54 45.17 0.59
0 0 1 1 15 13.83 20.74 6.37 40.95 0.10 13.71 19.34 6.37 39.42 0.53
0 0 1 1 16 29.14 21.74 6.71 57.58 0.06 29.15 21.72 6.71 57.58 0.53
0 0 1 1 17 20.71 19.36 5.48 45.54 0.06 21.02 18.96 5.50 45.47 0.51
0 0 1 1 18 15.52 21.29 5.49 42.30 0.07 16.44 20.02 5.57 42.03 0.52
0 0 1 1 19 13.79 19.16 4.11 37.06 0.08 14.47 18.25 4.16 36.89 0.48
0 0 1 1 20 19.15 18.61 4.92 42.67 0.06 19.65 17.96 4.96 42.56 0.53
0 0 1 1 21 19.29 19.16 4.22 42.67 0.06 19.60 18.79 4.24 42.63 0.54
0 0 1 1 22 21.84 21.05 5.13 48.02 0.05 21.87 21.03 5.13 48.02 0.46
0 0 1 1 23 26.81 24.27 5.81 56.89 0.06 27.69 23.10 5.88 56.67 0.56
0 0 1 1 24 18.66 21.34 5.29 45.29 0.07 19.20 20.63 5.34 45.17 0.52
0 0 1 1 25 16.49 20.73 5.47 42.69 0.06 16.97 20.13 5.51 42.60 0.47
0 0 1 2 1 14.02 16.72 5.46 36.20 0.06 12.39 16.82 5.32 34.53 0.52
0 0 1 2 2 19.11 21.90 6.20 47.22 0.08 20.11 20.55 6.31 46.96 0.59
0 0 1 2 3 23.81 23.93 7.63 55.37 0.06 22.78 23.46 7.53 53.77 0.63
0 0 1 2 4 25.09 20.66 5.01 50.77 0.06 25.46 20.23 5.04 50.73 0.50
0 0 1 2 5 21.36 22.84 5.51 49.70 0.06 22.15 21.85 5.58 49.58 0.47
0 0 1 2 6 17.10 21.41 7.12 45.63 0.07 17.25 21.11 7.14 45.49 0.49
0 0 1 2 7 27.66 19.83 6.88 54.38 0.08 27.91 19.48 6.91 54.29 0.58
0 0 1 2 8 21.30 21.01 5.22 47.53 0.07 21.76 20.45 5.26 47.46 0.57
0 0 1 2 9 24.95 20.89 5.21 51.05 0.07 25.27 20.51 5.24 51.02 0.50
0 0 1 2 10 26.35 21.15 6.49 53.98 0.07 26.79 20.60 6.53 53.93 0.50
0 0 1 2 11 22.50 18.39 5.36 46.25 0.06 22.59 18.29 5.37 46.24 0.50
0 0 1 2 12 41.99 23.86 9.28 75.13 0.05 42.42 23.34 9.31 75.06 0.55
0 0 1 2 13 24.47 19.20 5.48 49.14 0.10 24.72 18.87 5.50 49.09 0.48
0 0 1 2 14 22.17 20.22 6.46 48.85 0.05 22.73 19.49 6.51 48.73 0.59
0 0 1 2 15 18.91 20.46 6.27 45.65 0.09 19.07 20.29 6.29 45.64 0.58
0 0 1 2 16 31.17 21.74 6.71 59.62 0.05 31.29 21.60 6.72 59.61 0.53
0 0 1 2 17 21.86 19.36 5.48 46.70 0.06 22.22 18.92 5.50 46.64 0.50
0 0 1 2 18 20.50 20.70 5.61 46.81 0.07 20.47 19.53 5.61 45.62 0.52
0 0 1 2 19 18.13 19.16 4.11 41.39 0.06 18.66 18.52 4.15 41.32 0.49
0 0 1 2 20 22.09 18.61 4.92 45.61 0.06 22.69 17.79 4.97 45.46 0.54
0 0 1 2 21 22.39 19.16 4.22 45.77 0.06 22.65 18.87 4.24 45.75 0.48
0 0 1 2 22 30.37 21.05 5.13 56.56 0.07 30.65 20.73 5.15 56.53 0.51
0 0 1 2 23 22.28 24.27 5.81 52.36 0.07 23.26 23.03 5.89 52.17 0.50
0 0 1 2 24 21.25 20.79 5.33 47.37 0.09 21.53 20.43 5.36 47.32 0.58
0 0 1 2 25 16.10 20.73 5.47 42.30 0.06 16.59 20.14 5.51 42.23 0.47
0 0 2 0 1 31.49 18.11 5.19 54.78 0.04 31.54 18.05 5.19 54.78 0.45
0 0 2 0 2 42.68 21.90 6.20 70.79 0.05 42.80 21.77 6.21 70.78 0.52
0 0 2 0 3 54.11 25.33 7.39 86.83 0.08 54.41 24.99 7.41 86.81 0.48
0 0 2 0 4 43.66 20.66 5.01 69.34 0.05 43.66 20.66 5.02 69.34 0.43
0 0 2 0 5 40.70 23.02 5.50 69.21 0.04 40.74 22.97 5.50 69.21 0.46
0 0 2 0 6 49.18 22.09 7.06 78.33 0.06 49.27 21.99 7.07 78.33 0.48
0 0 2 0 7 54.75 20.06 6.86 81.67 0.05 54.82 19.99 6.86 81.67 0.42
0 0 2 0 8 34.29 21.01 5.22 60.52 0.06 34.46 20.81 5.23 60.50 0.52
0 0 2 0 9 44.86 20.89 5.21 70.95 0.05 44.90 20.84 5.21 70.95 0.46
0 0 2 0 10 50.92 21.32 6.48 78.71 0.05 50.92 21.32 6.48 78.71 0.44
0 0 2 0 11 40.86 18.70 5.34 64.90 0.07 40.87 18.69 5.34 64.90 0.42
0 0 2 0 12 67.30 23.86 9.28 100.43 0.05 67.33 23.82 9.28 100.43 0.46
0 0 2 0 13 47.27 19.20 5.48 71.94 0.06 47.31 19.14 5.48 71.94 0.48
0 0 2 0 14 43.71 20.22 6.46 70.40 0.04 43.75 20.18 6.47 70.39 0.45
0 0 2 0 15 32.12 21.80 6.16 60.08 0.06 32.38 21.49 6.18 60.05 0.53
0 0 2 0 16 66.37 21.74 6.71 94.82 0.06 66.37 21.74 6.71 94.82 0.43
0 0 2 0 17 45.15 19.36 5.48 69.98 0.07 45.19 19.32 5.48 69.98 0.50
0 0 2 0 18 44.80 21.29 5.49 71.58 0.04 44.93 21.14 5.50 71.57 0.42
0 0 2 0 19 36.05 19.16 4.11 59.31 0.07 36.14 19.05 4.11 59.31 0.52
0 0 2 0 20 38.92 18.61 4.92 62.44 0.04 39.03 18.48 4.92 62.43 0.48
0 0 2 0 21 41.35 19.13 4.22 64.70 0.07 41.34 19.13 4.22 64.70 0.41
0 0 2 0 22 54.38 21.05 5.13 80.56 0.08 54.38 21.05 5.13 80.56 0.51
0 0 2 0 23 49.14 24.27 5.81 79.22 0.05 49.28 24.12 5.81 79.22 0.45
0 0 2 0 24 40.92 21.43 5.29 67.63 0.06 41.02 21.31 5.29 67.63 0.44
0 0 2 0 25 36.01 20.73 5.47 62.21 0.04 36.05 20.69 5.47 62.21 0.46
0 0 2 1 1 35.58 18.11 5.19 58.88 0.07 35.71 17.96 5.20 58.86 0.49
0 0 2 1 2 43.91 21.90 6.20 72.01 0.05 44.06 21.73 6.21 72.00 0.57
0 0 2 1 3 56.94 25.33 7.39 89.66 0.06 57.42 24.77 7.42 89.62 0.50
0 0 2 1 4 41.29 20.66 5.01 66.97 0.05 41.29 20.66 5.02 66.97 0.50
0 0 2 1 5 40.23 23.02 5.50 68.75 0.06 40.28 22.97 5.50 68.74 0.46
0 0 2 1 6 45.12 22.09 7.06 74.27 0.06 45.23 21.97 7.07 74.27 0.51
0 0 2 1 7 54.00 20.06 6.86 80.92 0.05 54.10 19.96 6.86 80.91 0.48
0 0 2 1 8 36.13 21.01 5.22 62.36 0.07 36.20 20.93 5.23 62.36 0.44
0 0 2 1 9 44.36 20.89 5.21 70.45 0.06 44.43 20.81 5.21 70.45 0.44
0 0 2 1 10 52.89 21.28 6.48 80.64 0.06 52.89 21.28 6.48 80.64 0.41
0 0 2 1 11 46.34 18.70 5.34 70.38 0.06 46.38 18.66 5.34 70.38 0.46
0 0 2 1 12 68.16 23.86 9.28 101.29 0.05 68.25 23.76 9.28 101.28 0.47
0 0 2 1 13 45.93 19.20 5.48 70.61 0.05 46.01 19.12 5.48 70.61 0.49
0 0 2 1 14 45.54 20.22 6.46 72.22 0.06 45.61 20.14 6.47 72.22 0.40
0 0 2 1 15 31.90 21.80 6.16 59.87 0.06 32.21 21.44 6.18 59.84 0.50
0 0 2 1 16 64.90 21.74 6.71 93.34 0.06 64.90 21.74 6.71 93.34 0.49
0 0 2 1 17 45.24 19.36 5.48 70.07 0.05 45.28 19.31 5.48 70.07 0.44
0 0 2 1 18 42.19 21.29 5.49 68.97 0.07 42.49 20.95 5.51 68.95 0.52
0 0 2 1 19 33.47 19.16 4.11 56.73 0.05 33.53 19.09 4.11 56.73 0.40
0 0 2 1 20 38.52 18.61 4.92 62.05 0.04 38.66 18.45 4.92 62.03 0.48
0 0 2 1 21 38.13 19.16 4.22 61.51 0.06 38.17 19.12 4.22 61.51 0.50
0 0 2 1 22 53.97 21.05 5.13 80.15 0.06 53.97 21.05 5.13 80.15 0.43
0 0 2 1 23 54.51 24.27 5.81 84.59 0.06 54.91 23.82 5.83 84.56 0.46
0 0 2 1 24 39.02 21.44 5.29 65.75 0.06 39.07 21.38 5.29 65.74 0.53
0 0 2 1 25 41.29 20.73 5.47 67.49 0.04 41.34 20.68 5.47 67.49 0.50
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DP-based Heuristic Math. Model
N Ct TF RDD r# Tard Tool Mach Total CPU Tard Tool Mach Total CPU
0 0 2 2 1 26.25 18.11 5.19 49.55 0.05 26.42 17.91 5.20 49.52 0.45
0 0 2 2 2 39.59 21.90 6.20 67.69 0.05 39.77 21.70 6.22 67.68 0.55
0 0 2 2 3 44.42 25.33 7.39 77.14 0.05 44.86 24.82 7.42 77.10 0.51
0 0 2 2 4 46.83 20.66 5.01 72.51 0.05 46.85 20.64 5.02 72.51 0.41
0 0 2 2 5 42.36 23.08 5.49 70.93 0.06 42.39 23.05 5.49 70.93 0.48
0 0 2 2 6 40.38 22.09 7.06 69.53 0.05 40.50 21.95 7.07 69.53 0.48
0 0 2 2 7 49.70 19.85 6.87 76.41 0.06 49.62 19.92 6.86 76.41 0.50
0 0 2 2 8 38.53 21.01 5.22 64.76 0.06 38.75 20.75 5.24 64.73 0.46
0 0 2 2 9 43.83 20.89 5.21 69.93 0.06 43.90 20.81 5.21 69.92 0.50
0 0 2 2 10 50.96 21.31 6.48 78.74 0.06 50.96 21.31 6.48 78.74 0.44
0 0 2 2 11 44.88 18.70 5.34 68.92 0.04 44.88 18.70 5.34 68.92 0.43
0 0 2 2 12 76.79 23.86 9.28 109.93 0.06 76.87 23.77 9.28 109.92 0.45
0 0 2 2 13 45.79 19.20 5.48 70.47 0.06 45.85 19.13 5.48 70.46 0.54
0 0 2 2 14 46.27 20.22 6.46 72.95 0.06 46.45 20.01 6.48 72.94 0.56
0 0 2 2 15 39.06 21.80 6.16 67.02 0.07 39.25 21.58 6.18 67.01 0.54
0 0 2 2 16 60.85 21.74 6.71 89.30 0.07 60.86 21.73 6.71 89.30 0.44
0 0 2 2 17 44.82 19.36 5.48 69.65 0.05 44.90 19.27 5.48 69.65 0.51
0 0 2 2 18 39.00 21.29 5.49 65.78 0.06 39.48 20.70 5.52 65.71 0.54
0 0 2 2 19 34.83 19.16 4.11 58.09 0.06 35.05 18.90 4.12 58.07 0.55
0 0 2 2 20 39.86 18.61 4.92 63.38 0.07 40.09 18.34 4.93 63.36 0.44
0 0 2 2 21 39.81 19.16 4.22 63.19 0.06 39.88 19.09 4.22 63.19 0.53
0 0 2 2 22 57.83 21.05 5.13 84.01 0.03 57.83 21.05 5.13 84.01 0.49
0 0 2 2 23 47.30 24.27 5.81 77.38 0.04 47.60 23.92 5.82 77.35 0.54
0 0 2 2 24 38.39 21.41 5.29 65.08 0.06 38.67 21.08 5.31 65.06 0.50
0 0 2 2 25 35.29 20.73 5.47 61.49 0.05 35.46 20.54 5.48 61.48 0.41
0 1 0 0 1 20.23 35.85 8.46 64.55 0.18 16.06 36.28 8.06 60.41 0.62
0 1 0 0 2 19.61 50.96 8.62 79.19 0.16 23.51 42.65 9.05 75.20 0.62
0 1 0 0 3 27.63 56.24 10.38 94.24 0.13 26.26 49.62 10.24 86.12 0.69
0 1 0 0 4 18.44 49.01 7.62 75.07 0.10 18.13 46.31 7.60 72.04 0.64
0 1 0 0 5 20.88 56.32 8.43 85.62 0.15 21.57 47.79 8.49 77.85 0.65
0 1 0 0 6 21.94 58.96 10.20 91.10 0.15 21.56 48.79 10.17 80.52 0.66
0 1 0 0 7 16.07 48.77 9.08 73.92 0.13 16.14 48.45 9.09 73.67 0.60
0 1 0 0 8 23.74 42.55 8.30 74.59 0.15 18.02 44.54 7.82 70.37 0.65
0 1 0 0 9 20.11 48.32 7.17 75.60 0.08 21.49 46.48 7.28 75.26 0.59
0 1 0 0 10 16.30 48.69 8.97 73.97 0.19 15.70 49.25 8.92 73.87 0.57
0 1 0 0 11 19.69 39.93 8.50 68.12 0.15 13.80 38.94 8.02 60.77 0.54
0 1 0 0 12 33.66 61.77 12.89 108.32 0.19 29.33 54.62 12.35 96.30 0.61
0 1 0 0 13 22.10 44.79 7.88 74.77 0.14 21.23 44.25 7.81 73.28 0.64
0 1 0 0 14 20.34 41.17 9.90 71.41 0.19 16.38 41.42 9.44 67.23 0.69
0 1 0 0 15 18.73 41.43 9.90 70.06 0.22 18.71 41.42 9.90 70.03 0.72
0 1 0 0 16 21.06 55.06 8.94 85.05 0.15 17.31 53.50 8.66 79.47 0.60
0 1 0 0 17 19.54 44.21 8.02 71.76 0.12 17.35 43.29 7.81 68.45 0.60
0 1 0 0 18 19.57 45.05 7.87 72.49 0.20 19.57 45.05 7.87 72.49 0.60
0 1 0 0 19 23.90 37.23 6.53 67.66 0.10 20.23 36.85 6.21 63.29 0.60
0 1 0 0 20 25.68 39.70 7.58 72.96 0.14 21.11 39.66 7.16 67.93 0.67
0 1 0 0 21 20.96 47.44 5.80 74.21 0.07 22.13 43.94 5.89 71.96 0.57
0 1 0 0 22 20.91 45.80 7.26 73.96 0.08 18.38 45.92 7.08 71.39 0.59
0 1 0 0 23 21.52 55.71 7.61 84.84 0.09 24.50 51.64 7.84 83.98 0.66
0 1 0 0 24 24.28 46.59 8.14 79.00 0.13 22.19 46.94 7.96 77.09 0.55
0 1 0 0 25 18.88 43.90 8.21 70.99 0.15 18.26 42.40 8.15 68.81 0.59
0 1 0 1 1 19.24 38.67 8.09 66.00 0.17 19.02 36.24 8.07 63.33 0.62
0 1 0 1 2 24.05 47.79 9.18 81.01 0.17 23.35 42.16 9.10 74.61 0.61
0 1 0 1 3 25.54 54.10 9.87 89.52 0.10 26.98 52.22 10.00 89.20 0.64
0 1 0 1 4 17.79 48.71 7.71 74.20 0.11 17.46 45.21 7.68 70.35 0.65
0 1 0 1 5 19.67 49.61 8.35 77.63 0.12 20.34 48.80 8.41 77.55 0.70
0 1 0 1 6 24.64 55.58 10.52 90.74 0.15 21.06 48.79 10.17 80.02 0.63
0 1 0 1 7 24.74 47.27 9.84 81.84 0.17 21.36 44.21 9.49 75.06 0.59
0 1 0 1 8 14.24 59.00 7.52 80.76 0.17 17.62 44.54 7.82 69.98 0.63
0 1 0 1 9 22.80 47.11 7.42 77.32 0.11 20.79 46.79 7.26 74.84 0.60
0 1 0 1 10 17.46 50.13 8.95 76.54 0.15 17.38 49.00 8.94 75.33 0.65
0 1 0 1 11 22.60 39.65 8.37 70.62 0.13 16.26 40.39 7.91 64.56 0.57
0 1 0 1 12 33.32 65.02 12.98 111.33 0.25 26.88 55.52 12.25 94.65 0.64
0 1 0 1 13 24.85 43.66 8.12 76.64 0.16 22.45 43.41 7.88 73.74 0.62
0 1 0 1 14 17.93 42.68 9.37 69.97 0.22 17.05 43.05 9.28 69.38 0.61
0 1 0 1 15 26.73 41.74 10.81 79.28 0.18 19.93 39.82 10.09 69.83 0.68
0 1 0 1 16 19.44 54.99 8.84 83.27 0.13 17.14 53.34 8.67 79.15 0.60
0 1 0 1 17 20.08 45.11 7.89 73.08 0.10 19.22 43.19 7.82 70.23 0.57
0 1 0 1 18 18.14 44.09 8.20 70.43 0.17 16.69 42.91 8.06 67.67 0.69
0 1 0 1 19 17.03 39.72 6.13 62.89 0.11 17.38 37.33 6.17 60.88 0.56
0 1 0 1 20 20.43 42.03 7.06 69.53 0.15 20.36 40.91 7.06 68.33 0.64
0 1 0 1 21 19.89 43.91 5.90 69.70 0.11 20.59 43.02 5.95 69.57 0.61
0 1 0 1 22 15.85 47.17 7.03 70.05 0.13 16.05 46.52 7.04 69.61 0.61
0 1 0 1 23 32.20 51.97 8.31 92.48 0.14 28.55 49.70 7.99 86.25 0.66
0 1 0 1 24 19.87 48.68 7.85 76.39 0.12 21.65 46.47 8.00 76.12 0.64
0 1 0 1 25 22.39 44.61 8.37 75.38 0.15 17.37 44.81 7.93 70.10 0.62
0 1 0 2 1 21.64 34.99 8.80 65.43 0.23 14.46 35.54 8.14 58.14 0.74
0 1 0 2 2 23.19 58.02 9.24 90.45 0.17 21.23 42.63 9.06 72.92 0.61
0 1 0 2 3 28.55 47.94 10.96 87.45 0.16 22.94 48.59 10.35 81.87 0.71
0 1 0 2 4 22.91 48.62 7.47 79.00 0.11 24.28 46.83 7.57 78.68 0.62
0 1 0 2 5 25.41 52.59 8.53 86.54 0.16 26.65 45.91 8.65 81.21 0.63
0 1 0 2 6 20.65 56.70 10.56 87.91 0.16 21.19 44.32 10.63 76.14 0.66
0 1 0 2 7 26.28 45.19 9.60 81.07 0.21 24.18 45.33 9.39 78.89 0.70
0 1 0 2 8 22.67 47.22 7.78 77.68 0.16 22.90 44.69 7.81 75.40 0.61
0 1 0 2 9 24.36 62.94 7.31 94.61 0.15 23.64 45.87 7.35 76.86 0.56
0 1 0 2 10 26.50 46.85 9.35 82.70 0.18 25.61 45.40 9.28 80.28 0.62
0 1 0 2 11 25.31 38.94 8.46 72.71 0.15 19.28 39.32 7.99 66.59 0.54
0 1 0 2 12 33.80 74.55 12.02 120.38 0.19 33.91 57.52 12.05 103.47 0.66
0 1 0 2 13 19.97 55.79 7.46 83.22 0.16 23.82 43.58 7.87 75.26 0.65
0 1 0 2 14 25.32 45.06 9.86 80.25 0.21 19.37 42.51 9.33 71.20 0.68
0 1 0 2 15 26.72 42.62 10.23 79.58 0.18 21.65 42.94 9.74 74.32 0.72
0 1 0 2 16 31.37 60.16 9.48 101.01 0.18 24.99 48.60 9.12 82.71 0.62
0 1 0 2 17 22.82 44.01 8.17 75.01 0.12 20.19 41.52 7.99 69.70 0.67
0 1 0 2 18 21.42 46.27 8.15 75.84 0.21 21.74 41.59 8.19 71.52 0.76
0 1 0 2 19 20.33 39.33 6.15 65.80 0.10 19.82 37.95 6.12 63.89 0.60
0 1 0 2 20 27.13 40.44 7.54 75.11 0.15 23.69 38.74 7.25 69.68 0.68
0 1 0 2 21 27.23 41.55 6.26 75.04 0.12 23.66 42.64 5.98 72.27 0.61
0 1 0 2 22 28.38 44.59 7.31 80.27 0.11 25.94 45.41 7.13 78.48 0.54
0 1 0 2 23 29.60 49.01 8.51 87.13 0.16 23.64 49.63 8.00 81.27 0.63
0 1 0 2 24 26.44 45.01 8.26 79.71 0.14 24.85 45.24 8.11 78.20 0.71
0 1 0 2 25 21.22 44.40 8.35 73.97 0.18 17.94 43.31 8.07 69.31 0.74
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DP-based Heuristic Math. Model
N Ct TF RDD r# Tard Tool Mach Total CPU Tard Tool Mach Total CPU
0 1 1 0 1 28.02 41.27 7.76 77.04 0.10 27.57 40.47 7.72 75.76 0.55
0 1 1 0 2 39.39 46.36 8.86 94.60 0.09 38.41 45.72 8.78 92.91 0.55
0 1 1 0 3 44.79 54.10 9.86 108.74 0.09 45.10 53.75 9.89 108.74 0.55
0 1 1 0 4 33.90 53.19 7.22 94.32 0.06 35.41 51.45 7.30 94.16 0.53
0 1 1 0 5 35.26 54.80 8.05 98.11 0.07 37.02 52.56 8.16 97.74 0.59
0 1 1 0 6 39.48 53.72 9.84 103.05 0.08 39.06 53.32 9.81 102.18 0.52
0 1 1 0 7 36.85 53.61 8.72 99.17 0.07 37.14 53.17 8.74 99.05 0.53
0 1 1 0 8 33.54 47.63 7.71 88.88 0.08 33.42 46.11 7.70 87.22 0.60
0 1 1 0 9 37.50 50.66 7.02 95.18 0.05 39.09 48.66 7.13 94.88 0.54
0 1 1 0 10 35.28 54.50 8.56 98.33 0.07 36.10 53.53 8.61 98.24 0.48
0 1 1 0 11 27.60 45.61 7.59 80.79 0.06 28.87 44.06 7.67 80.59 0.55
0 1 1 0 12 54.25 61.90 12.04 128.18 0.15 48.16 63.13 11.56 122.84 0.61
0 1 1 0 13 36.11 49.67 7.43 93.21 0.08 36.90 48.55 7.48 92.92 0.56
0 1 1 0 14 29.46 47.33 8.98 85.77 0.08 28.88 47.15 8.94 84.97 0.58
0 1 1 0 15 29.85 46.68 9.40 85.94 0.14 29.85 46.68 9.40 85.94 0.59
0 1 1 0 16 41.47 59.36 8.30 109.13 0.06 42.33 58.38 8.35 109.06 0.57
0 1 1 0 17 32.44 47.84 7.49 87.78 0.06 33.80 46.17 7.59 87.56 0.50
0 1 1 0 18 36.49 49.40 7.66 93.55 0.09 36.45 48.03 7.66 92.14 0.62
0 1 1 0 19 30.17 43.63 5.77 79.57 0.05 31.60 41.93 5.85 79.38 0.53
0 1 1 0 20 32.36 45.56 6.75 84.67 0.07 33.07 44.71 6.79 84.57 0.57
0 1 1 0 21 37.18 46.53 5.74 89.45 0.04 38.47 45.03 5.82 89.31 0.55
0 1 1 0 22 36.90 51.37 6.77 95.04 0.05 37.59 50.52 6.81 94.92 0.57
0 1 1 0 23 42.12 56.65 7.54 106.31 0.07 44.91 53.03 7.75 105.68 0.61
0 1 1 0 24 37.73 50.47 7.76 95.96 0.08 37.76 49.81 7.76 95.33 0.59
0 1 1 0 25 30.84 48.44 7.66 86.94 0.09 31.57 47.48 7.72 86.77 0.53
0 1 1 1 1 30.49 42.22 7.62 80.34 0.10 31.19 41.28 7.67 80.13 0.47
0 1 1 1 2 36.47 47.94 8.63 93.04 0.08 36.60 47.52 8.64 92.76 0.65
0 1 1 1 3 48.22 55.00 9.81 113.03 0.09 49.41 53.52 9.90 112.83 0.54
0 1 1 1 4 30.30 53.16 7.22 90.69 0.06 31.95 51.22 7.31 90.48 0.61
0 1 1 1 5 36.30 53.04 8.16 97.50 0.09 37.08 51.68 8.21 96.98 0.56
0 1 1 1 6 39.17 51.97 9.93 101.07 0.08 39.20 51.53 9.94 100.67 0.61
0 1 1 1 7 38.94 52.24 8.95 100.13 0.06 36.99 52.05 8.82 97.85 0.62
0 1 1 1 8 31.49 48.77 7.54 87.80 0.07 33.00 46.96 7.64 87.59 0.59
0 1 1 1 9 39.63 49.30 7.15 96.08 0.09 39.51 48.41 7.15 95.08 0.64
0 1 1 1 10 38.05 54.33 8.57 100.94 0.07 38.59 53.73 8.60 100.92 0.54
0 1 1 1 11 33.04 45.77 7.58 86.39 0.05 33.79 44.88 7.62 86.29 0.65
0 1 1 1 12 56.67 61.05 12.24 129.95 0.13 47.09 63.78 11.51 122.38 0.62
0 1 1 1 13 36.67 49.01 7.46 93.13 0.08 37.22 48.38 7.49 93.09 0.58
0 1 1 1 14 31.47 50.15 8.91 90.53 0.12 32.10 46.84 8.96 87.90 0.61
0 1 1 1 15 36.71 45.41 9.96 92.08 0.15 29.33 46.74 9.40 85.47 0.61
0 1 1 1 16 40.55 59.39 8.29 108.23 0.06 41.32 58.51 8.34 108.17 0.58
0 1 1 1 17 35.30 47.26 7.53 90.09 0.07 36.50 45.81 7.61 89.92 0.54
0 1 1 1 18 28.86 51.38 7.48 87.72 0.07 30.84 48.91 7.60 87.36 0.57
0 1 1 1 19 27.47 43.50 5.77 76.74 0.08 29.14 41.37 5.88 76.40 0.59
0 1 1 1 20 34.53 43.93 6.85 85.31 0.12 35.05 43.22 6.89 85.15 0.60
0 1 1 1 21 36.92 45.62 5.91 88.45 0.08 35.98 44.64 5.85 86.46 0.58
0 1 1 1 22 35.27 51.50 6.77 93.53 0.06 36.12 50.54 6.81 93.46 0.64
0 1 1 1 23 44.23 56.76 7.53 108.52 0.06 47.22 52.97 7.75 107.94 0.53
0 1 1 1 24 36.83 51.76 7.84 96.43 0.11 37.10 48.32 7.86 93.28 0.52
0 1 1 1 25 32.00 50.14 7.56 89.71 0.08 33.22 48.70 7.64 89.56 0.55
0 1 1 2 1 23.45 46.91 7.58 77.95 0.19 25.46 40.49 7.72 73.67 0.60
0 1 1 2 2 29.60 65.92 8.14 103.66 0.11 36.49 46.38 8.73 91.59 0.59
0 1 1 2 3 39.71 52.39 9.99 102.09 0.10 39.93 52.13 10.01 102.07 0.55
0 1 1 2 4 43.96 49.89 7.49 101.34 0.07 42.89 49.00 7.43 99.32 0.57
0 1 1 2 5 35.77 72.58 7.78 116.12 0.07 39.39 53.35 8.12 100.85 0.56
0 1 1 2 6 33.27 52.83 9.85 95.96 0.09 33.82 52.13 9.90 95.85 0.56
0 1 1 2 7 51.59 48.64 9.83 110.06 0.12 40.10 50.04 8.96 99.10 0.58
0 1 1 2 8 37.15 49.10 7.52 93.76 0.05 38.73 47.18 7.63 93.53 0.59
0 1 1 2 9 40.70 49.64 7.08 97.42 0.09 41.26 48.93 7.12 97.30 0.59
0 1 1 2 10 49.51 49.73 9.26 108.49 0.15 41.96 51.26 8.77 101.99 0.51
0 1 1 2 11 32.01 52.31 7.42 91.74 0.09 35.83 44.28 7.66 87.76 0.56
0 1 1 2 12 59.58 65.07 11.42 136.07 0.12 59.74 64.89 11.43 136.07 0.62
0 1 1 2 13 42.63 49.81 7.73 100.17 0.09 41.20 46.43 7.64 95.27 0.58
0 1 1 2 14 35.76 49.94 8.94 94.65 0.13 36.24 46.50 8.99 91.72 0.65
0 1 1 2 15 36.11 47.38 9.36 92.84 0.14 36.24 47.22 9.37 92.83 0.66
0 1 1 2 16 43.49 57.75 8.38 109.62 0.10 44.00 57.20 8.42 109.61 0.54
0 1 1 2 17 36.43 47.84 7.49 91.77 0.06 37.53 46.58 7.57 91.68 0.51
0 1 1 2 18 34.29 48.00 7.68 89.98 0.11 34.28 47.66 7.68 89.62 0.57
0 1 1 2 19 32.41 43.62 5.77 81.79 0.06 34.40 41.24 5.89 81.53 0.57
0 1 1 2 20 37.69 44.99 6.88 89.56 0.12 38.32 42.67 6.93 87.92 0.61
0 1 1 2 21 38.46 45.52 5.80 89.78 0.08 39.11 44.76 5.84 89.70 0.61
0 1 1 2 22 36.77 65.78 6.37 108.93 0.05 44.00 50.50 6.81 101.31 0.50
0 1 1 2 23 39.03 57.68 7.49 104.19 0.06 41.17 54.99 7.62 103.79 0.61
0 1 1 2 24 37.81 50.18 7.74 95.74 0.09 38.77 49.06 7.81 95.64 0.64
0 1 1 2 25 33.36 46.90 7.76 88.02 0.11 33.73 46.50 7.80 88.01 0.61
0 1 2 0 1 46.47 44.11 7.51 98.09 0.05 46.82 43.73 7.53 98.07 0.52
0 1 2 0 2 59.52 50.84 8.45 118.81 0.06 59.74 50.59 8.46 118.80 0.66
0 1 2 0 3 72.16 57.14 9.68 138.97 0.04 72.64 56.61 9.70 138.95 0.48
0 1 2 0 4 60.16 53.19 7.22 120.58 0.05 60.51 52.82 7.23 120.56 0.53
0 1 2 0 5 61.09 55.10 8.03 124.22 0.06 61.34 54.83 8.04 124.21 0.53
0 1 2 0 6 65.77 56.70 9.62 132.08 0.06 66.15 56.27 9.64 132.06 0.54
0 1 2 0 7 66.14 54.59 8.66 129.39 0.08 66.44 54.25 8.68 129.37 0.52
0 1 2 0 8 51.52 49.35 7.50 108.37 0.06 51.52 49.33 7.50 108.36 0.52
0 1 2 0 9 60.72 50.86 7.01 118.59 0.06 61.34 50.13 7.05 118.52 0.52
0 1 2 0 10 65.78 56.23 8.47 130.48 0.06 66.41 55.53 8.50 130.44 0.56
0 1 2 0 11 54.31 46.18 7.56 108.04 0.04 54.49 45.98 7.57 108.04 0.52
0 1 2 0 12 82.07 71.03 11.09 164.19 0.07 83.28 69.65 11.15 164.09 0.47
0 1 2 0 13 63.16 49.67 7.42 120.25 0.07 63.27 49.55 7.43 120.25 0.51
0 1 2 0 14 57.78 49.23 8.81 115.83 0.07 57.85 49.17 8.82 115.83 0.54
0 1 2 0 15 50.41 50.27 9.18 109.85 0.07 50.96 49.64 9.21 109.81 0.60
0 1 2 0 16 77.82 59.68 8.28 145.77 0.06 77.86 59.63 8.28 145.77 0.55
0 1 2 0 17 60.72 47.84 7.49 116.06 0.06 60.87 47.69 7.50 116.06 0.53
0 1 2 0 18 59.86 52.34 7.44 119.63 0.07 60.79 51.27 7.48 119.54 0.56
0 1 2 0 19 51.83 43.95 5.75 101.53 0.06 51.95 43.82 5.76 101.53 0.58
0 1 2 0 20 53.01 48.09 6.61 107.71 0.06 53.91 47.05 6.66 107.63 0.49
0 1 2 0 21 57.65 46.53 5.74 109.92 0.05 57.99 46.15 5.76 109.90 0.58
0 1 2 0 22 68.05 51.71 6.76 126.52 0.05 68.20 51.55 6.76 126.51 0.47
0 1 2 0 23 68.20 57.68 7.49 133.36 0.06 69.04 56.74 7.53 133.31 0.51
0 1 2 0 24 58.20 52.51 7.61 118.32 0.07 58.80 51.84 7.65 118.29 0.54
0 1 2 0 25 53.29 50.14 7.56 110.99 0.04 53.39 50.04 7.57 110.99 0.52
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DP-based Heuristic Math. Model
N Ct TF RDD r# Tard Tool Mach Total CPU Tard Tool Mach Total CPU
0 1 2 1 1 50.69 43.57 7.54 101.80 0.07 50.63 43.47 7.54 101.64 0.52
0 1 2 1 2 60.37 51.14 8.44 119.95 0.05 61.47 49.71 8.51 119.68 0.65
0 1 2 1 3 74.66 57.22 9.67 141.55 0.05 75.28 56.53 9.71 141.52 0.61
0 1 2 1 4 57.90 53.19 7.22 118.32 0.06 58.08 53.00 7.23 118.31 0.49
0 1 2 1 5 60.70 55.06 8.03 123.79 0.07 61.18 54.53 8.06 123.76 0.59
0 1 2 1 6 62.34 55.69 9.67 127.70 0.06 62.75 55.23 9.69 127.67 0.53
0 1 2 1 7 65.66 53.99 8.69 128.35 0.09 65.89 53.74 8.71 128.34 0.49
0 1 2 1 8 53.45 49.68 7.49 110.62 0.06 53.77 49.33 7.50 110.61 0.56
0 1 2 1 9 59.92 50.86 7.01 117.79 0.06 60.74 49.90 7.06 117.70 0.54
0 1 2 1 10 67.53 56.16 8.48 132.17 0.07 68.71 54.80 8.54 132.05 0.52
0 1 2 1 11 59.70 46.15 7.56 113.41 0.05 59.97 45.86 7.57 113.40 0.48
0 1 2 1 12 82.66 70.97 11.09 164.72 0.06 84.33 69.05 11.18 164.56 0.48
0 1 2 1 13 61.71 49.67 7.42 118.80 0.06 61.92 49.44 7.43 118.79 0.54
0 1 2 1 14 59.57 49.23 8.81 117.61 0.07 59.64 49.15 8.82 117.61 0.50
0 1 2 1 15 50.25 50.27 9.18 109.70 0.05 50.61 49.87 9.20 109.67 0.58
0 1 2 1 16 76.31 59.68 8.28 144.27 0.06 76.38 59.61 8.28 144.27 0.47
0 1 2 1 17 60.81 47.84 7.49 116.14 0.05 60.96 47.68 7.50 116.14 0.53
0 1 2 1 18 56.72 52.34 7.44 116.49 0.06 58.25 50.56 7.51 116.32 0.54
0 1 2 1 19 49.12 43.87 5.76 98.74 0.06 49.72 43.21 5.79 98.71 0.53
0 1 2 1 20 52.58 48.09 6.61 107.29 0.06 53.36 47.21 6.65 107.22 0.53
0 1 2 1 21 54.28 46.53 5.74 106.55 0.06 54.80 45.95 5.77 106.52 0.59
0 1 2 1 22 67.59 51.61 6.76 125.97 0.05 68.00 51.16 6.78 125.94 0.52
0 1 2 1 23 72.89 57.68 7.49 138.05 0.07 73.66 56.83 7.53 138.02 0.55
0 1 2 1 24 56.51 52.51 7.61 116.63 0.06 57.11 51.84 7.65 116.60 0.51
0 1 2 1 25 58.45 50.14 7.56 116.16 0.06 58.64 49.94 7.57 116.15 0.52
0 1 2 2 1 41.32 43.58 7.57 92.47 0.08 41.64 42.50 7.59 91.73 0.51
0 1 2 2 2 56.91 49.98 8.49 115.39 0.06 57.12 49.75 8.51 115.38 0.61
0 1 2 2 3 61.88 56.91 9.69 128.48 0.07 63.31 55.23 9.79 128.32 0.59
0 1 2 2 4 63.33 53.19 7.22 123.75 0.06 63.56 52.95 7.23 123.74 0.52
0 1 2 2 5 62.99 55.10 8.03 126.13 0.05 63.35 54.70 8.05 126.10 0.56
0 1 2 2 6 57.03 56.15 9.64 122.82 0.08 58.08 54.97 9.71 122.76 0.57
0 1 2 2 7 62.33 53.64 8.78 124.74 0.07 61.72 53.18 8.74 123.65 0.58
0 1 2 2 8 55.92 48.75 7.53 112.21 0.09 56.16 48.50 7.55 112.20 0.52
0 1 2 2 9 59.63 51.04 7.00 117.67 0.05 60.12 50.48 7.03 117.63 0.48
0 1 2 2 10 66.52 54.97 8.53 130.03 0.05 66.56 54.93 8.54 130.03 0.48
0 1 2 2 11 58.31 46.30 7.55 112.16 0.05 58.37 46.23 7.56 112.16 0.49
0 1 2 2 12 91.35 71.03 11.09 173.46 0.06 92.85 69.32 11.17 173.34 0.50
0 1 2 2 13 61.61 49.67 7.42 118.70 0.06 61.86 49.40 7.43 118.69 0.51
0 1 2 2 14 61.02 48.74 8.88 118.64 0.08 60.41 48.50 8.85 117.76 0.51
0 1 2 2 15 57.28 50.27 9.18 116.73 0.05 57.88 49.61 9.21 116.69 0.63
0 1 2 2 16 72.18 59.68 8.28 140.14 0.05 72.48 59.35 8.30 140.13 0.53
0 1 2 2 17 60.21 47.84 7.49 115.55 0.05 60.55 47.47 7.51 115.53 0.51
0 1 2 2 18 54.68 50.03 7.55 112.26 0.10 55.27 49.29 7.59 112.15 0.56
0 1 2 2 19 50.42 43.88 5.75 100.05 0.05 50.98 43.27 5.78 100.03 0.51
0 1 2 2 20 60.03 45.01 6.95 111.98 0.06 54.59 46.75 6.68 108.02 0.60
0 1 2 2 21 55.91 46.53 5.74 108.18 0.05 56.45 45.93 5.77 108.14 0.48
0 1 2 2 22 71.40 51.64 6.76 129.81 0.06 71.83 51.17 6.78 129.79 0.52
0 1 2 2 23 65.74 57.68 7.49 130.90 0.04 67.27 55.88 7.57 130.72 0.55
0 1 2 2 24 56.48 51.85 7.69 116.02 0.09 56.38 51.03 7.69 115.10 0.53
0 1 2 2 25 51.86 50.14 7.56 109.57 0.05 52.66 49.25 7.61 109.52 0.57
1 0 0 0 1 21.14 50.31 9.41 80.86 0.16 22.68 47.98 9.52 80.18 0.80
1 0 0 0 2 18.67 46.74 10.22 75.62 0.18 21.36 42.37 10.45 74.18 0.85
1 0 0 0 3 19.73 49.57 12.27 81.57 0.20 21.38 46.35 12.42 80.15 0.88
1 0 0 0 4 8.54 40.13 8.65 57.31 0.16 10.43 37.21 8.81 56.45 0.72
1 0 0 0 5 14.67 48.53 9.28 72.47 0.18 17.26 44.74 9.49 71.49 0.91
1 0 0 0 6 11.07 50.54 11.49 73.09 0.19 14.42 44.20 11.86 70.47 0.94
1 0 0 0 7 15.08 41.42 10.01 66.52 0.14 16.71 38.93 10.16 65.80 0.91
1 0 0 0 8 11.30 44.46 9.12 64.88 0.15 13.59 41.32 9.31 64.22 0.70
1 0 0 0 9 20.83 49.49 13.37 83.69 0.17 21.98 46.91 13.46 82.35 0.86
1 0 0 0 10 11.65 36.63 10.29 58.57 0.22 11.50 35.08 10.28 56.85 0.72
1 0 0 0 11 15.58 42.62 9.38 67.58 0.16 16.82 40.78 9.46 67.06 0.79
1 0 0 0 12 12.80 46.72 9.94 69.46 0.16 14.74 44.10 10.10 68.94 0.81
1 0 0 0 13 14.57 48.75 11.93 75.25 0.18 17.02 45.19 12.18 74.38 0.86
1 0 0 0 14 11.99 38.73 9.94 60.65 0.17 13.58 36.49 10.07 60.14 0.70
1 0 0 0 15 14.75 45.93 10.00 70.68 0.15 16.75 43.00 10.15 69.89 0.74
1 0 0 0 16 13.88 43.78 10.40 68.06 0.15 15.72 40.98 10.59 67.29 0.75
1 0 0 0 17 16.10 39.74 11.96 67.80 0.31 16.13 38.62 11.96 66.71 0.91
1 0 0 0 18 14.47 35.92 7.46 57.85 0.18 16.31 33.29 7.60 57.19 0.74
1 0 0 0 19 10.32 39.77 8.88 58.97 0.18 11.89 37.20 9.01 58.10 0.74
1 0 0 0 20 21.03 43.39 9.49 73.92 0.15 22.45 41.51 9.58 73.54 0.81
1 0 0 0 21 14.22 46.67 9.91 70.80 0.17 15.94 44.22 10.04 70.19 0.84
1 0 0 0 22 15.61 46.56 10.24 72.41 0.18 18.39 42.33 10.53 71.25 0.85
1 0 0 0 23 13.50 39.79 11.54 64.83 0.33 10.62 39.12 11.20 60.94 0.92
1 0 0 0 24 12.70 46.20 9.94 68.84 0.17 15.13 42.58 10.15 67.86 0.83
1 0 0 0 25 8.91 34.25 10.01 53.16 0.16 10.81 31.00 10.21 52.02 0.83
1 0 0 1 1 24.21 47.94 9.75 81.91 0.23 23.00 45.81 9.68 78.49 0.95
1 0 0 1 2 21.72 44.37 10.53 76.61 0.28 20.40 42.57 10.44 73.41 1.00
1 0 0 1 3 23.69 48.78 12.27 84.74 0.26 25.19 46.72 12.40 84.30 0.95
1 0 0 1 4 12.70 40.13 8.65 61.48 0.17 15.05 36.56 8.86 60.48 0.91
1 0 0 1 5 14.76 48.62 9.27 72.66 0.17 16.82 45.83 9.41 72.06 0.93
1 0 0 1 6 20.00 45.53 12.12 77.66 0.53 20.27 41.41 12.16 73.84 1.03
1 0 0 1 7 15.31 41.42 10.01 66.75 0.16 17.61 38.03 10.24 65.87 0.93
1 0 0 1 8 19.79 41.86 9.42 71.07 0.36 17.98 41.76 9.30 69.03 0.83
1 0 0 1 9 23.92 46.55 13.60 84.08 0.33 23.80 45.26 13.60 82.66 0.89
1 0 0 1 10 22.93 35.55 10.63 69.11 0.30 17.54 35.52 10.28 63.34 0.83
1 0 0 1 11 21.92 40.47 9.85 72.25 0.27 19.21 38.35 9.67 67.23 0.93
1 0 0 1 12 21.58 45.61 10.13 77.32 0.21 21.89 43.26 10.19 75.34 0.94
1 0 0 1 13 15.96 48.75 11.93 76.64 0.18 18.95 44.03 12.29 75.26 0.97
1 0 0 1 14 19.41 38.73 9.94 68.07 0.16 20.89 36.62 10.06 67.57 0.82
1 0 0 1 15 23.28 45.93 10.00 79.21 0.16 25.38 42.94 10.16 78.48 0.87
1 0 0 1 16 13.68 44.30 10.70 68.69 0.34 12.96 40.22 10.68 63.86 0.83
1 0 0 1 17 16.30 40.12 11.84 68.26 0.38 17.25 38.69 11.95 67.90 0.94
1 0 0 1 18 14.23 36.42 7.43 58.08 0.15 16.44 33.08 7.61 57.14 0.83
1 0 0 1 19 15.89 36.09 9.14 61.12 0.41 16.92 34.77 9.26 60.95 0.96
1 0 0 1 20 25.40 43.39 9.49 78.28 0.17 28.24 39.41 9.72 77.36 0.84
1 0 0 1 21 18.45 43.56 10.09 72.11 0.26 18.63 43.35 10.12 72.09 0.89
1 0 0 1 22 16.49 46.01 10.33 72.83 0.17 18.37 42.45 10.52 71.34 0.91
1 0 0 1 23 13.80 40.61 11.07 65.48 0.37 14.60 39.49 11.16 65.25 1.00
1 0 0 1 24 20.05 43.15 10.53 73.73 0.27 17.66 40.13 10.42 68.21 0.97
1 0 0 1 25 20.01 32.70 10.12 62.83 0.29 20.66 31.77 10.17 62.59 0.90
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DP-based Heuristic Math. Model
N Ct TF RDD r# Tard Tool Mach Total CPU Tard Tool Mach Total CPU
1 0 0 2 1 35.31 45.57 10.38 91.25 0.32 25.80 44.82 9.83 80.45 1.05
1 0 0 2 2 37.01 46.85 10.21 94.08 0.16 39.25 43.72 10.36 93.32 0.99
1 0 0 2 3 37.49 44.90 13.02 95.41 0.65 32.04 44.84 12.63 89.51 1.12
1 0 0 2 4 27.09 38.25 8.77 74.11 0.38 27.85 37.19 8.84 73.88 0.85
1 0 0 2 5 58.07 42.42 10.86 111.35 0.50 31.70 44.26 9.62 85.57 1.04
1 0 0 2 6 37.99 43.81 12.68 94.48 0.69 30.15 42.93 12.05 85.13 1.08
1 0 0 2 7 23.71 40.78 10.15 74.64 0.18 24.58 37.79 10.27 72.64 1.05
1 0 0 2 8 33.96 41.21 9.49 84.65 0.44 31.80 41.45 9.34 82.59 0.91
1 0 0 2 9 46.83 47.64 13.44 107.90 0.27 48.09 45.78 13.55 107.42 1.21
1 0 0 2 10 19.23 34.73 10.54 64.50 0.58 17.68 34.37 10.40 62.45 0.98
1 0 0 2 11 34.02 41.18 10.28 85.47 0.62 23.18 38.23 9.83 71.23 0.98
1 0 0 2 12 34.97 46.23 10.02 91.23 0.19 35.63 44.35 10.12 90.10 0.96
1 0 0 2 13 23.75 43.58 13.01 80.33 0.75 17.42 42.85 12.54 72.81 1.01
1 0 0 2 14 27.06 37.02 10.33 74.41 0.42 25.80 35.00 10.25 71.05 0.87
1 0 0 2 15 29.97 45.93 10.00 85.90 0.15 32.19 42.93 10.17 85.29 0.96
1 0 0 2 16 28.46 39.75 10.83 79.04 0.34 27.30 39.94 10.71 77.95 1.15
1 0 0 2 17 22.33 38.64 12.00 72.97 0.71 22.73 38.07 12.05 72.85 1.13
1 0 0 2 18 29.04 32.00 7.77 68.81 0.41 28.60 31.60 7.77 67.96 1.00
1 0 0 2 19 20.62 36.88 9.25 66.75 0.33 19.70 35.09 9.26 64.04 1.02
1 0 0 2 20 38.46 41.92 9.58 89.96 0.28 39.72 40.21 9.67 89.61 0.91
1 0 0 2 21 30.52 46.08 10.40 87.01 0.43 26.78 42.24 10.26 79.28 1.06
1 0 0 2 22 25.05 46.56 10.24 81.85 0.14 27.16 43.73 10.42 81.31 1.02
1 0 0 2 23 17.40 39.86 11.25 68.51 0.66 17.47 39.53 11.25 68.25 1.09
1 0 0 2 24 30.89 46.11 10.50 87.50 0.40 25.93 40.65 10.50 77.08 1.07
1 0 0 2 25 24.93 32.73 10.35 68.01 0.65 25.25 32.17 10.37 67.79 0.93
1 0 1 0 1 71.34 50.43 9.40 131.17 0.12 72.03 49.51 9.44 130.98 0.71
1 0 1 0 2 75.19 47.11 10.20 132.50 0.13 75.58 46.61 10.21 132.40 0.71
1 0 1 0 3 84.01 50.75 12.16 146.92 0.15 84.31 50.36 12.18 146.84 0.73
1 0 1 0 4 45.85 40.35 8.63 94.83 0.15 46.68 39.33 8.67 94.68 0.71
1 0 1 0 5 66.36 48.68 9.27 124.31 0.12 66.54 48.47 9.27 124.28 0.70
1 0 1 0 6 64.24 50.54 11.49 126.27 0.14 65.19 49.27 11.53 125.99 0.71
1 0 1 0 7 67.88 41.42 10.01 119.32 0.14 68.05 41.23 10.02 119.29 0.62
1 0 1 0 8 63.37 44.46 9.12 116.94 0.13 63.38 44.45 9.12 116.95 0.66
1 0 1 0 9 87.44 50.40 13.29 151.12 0.13 88.39 49.18 13.33 150.90 0.74
1 0 1 0 10 63.49 37.91 10.07 111.47 0.11 63.50 37.91 10.07 111.47 0.59
1 0 1 0 11 66.79 42.62 9.38 118.79 0.13 67.23 42.05 9.39 118.67 0.65
1 0 1 0 12 69.27 46.72 9.94 125.94 0.12 69.36 46.63 9.94 125.93 0.62
1 0 1 0 13 66.26 48.75 11.93 126.94 0.13 66.59 48.33 11.95 126.87 0.69
1 0 1 0 14 67.64 38.73 9.94 116.31 0.10 67.76 38.60 9.94 116.30 0.64
1 0 1 0 15 76.43 45.93 10.00 132.36 0.11 76.64 45.70 10.01 132.34 0.62
1 0 1 0 16 58.63 44.39 10.36 113.38 0.14 58.94 44.01 10.37 113.32 0.67
1 0 1 0 17 48.64 43.66 11.59 103.89 0.15 50.16 41.60 11.70 103.46 0.79
1 0 1 0 18 58.97 36.42 7.43 102.82 0.12 59.18 36.17 7.44 102.80 0.61
1 0 1 0 19 54.96 39.77 8.88 103.61 0.13 55.58 38.94 8.90 103.42 0.67
1 0 1 0 20 78.39 43.39 9.49 131.27 0.15 78.69 43.03 9.51 131.23 0.69
1 0 1 0 21 67.39 46.67 9.91 123.97 0.15 67.73 46.27 9.93 123.93 0.77
1 0 1 0 22 62.29 46.33 10.25 118.87 0.16 62.40 46.16 10.26 118.82 0.60
1 0 1 0 23 48.40 45.13 10.77 104.30 0.15 49.22 44.06 10.81 104.10 0.75
1 0 1 0 24 63.39 46.72 9.91 120.02 0.13 63.54 46.55 9.92 120.01 0.63
1 0 1 0 25 54.12 34.41 10.00 98.53 0.13 54.60 33.85 10.02 98.47 0.72
1 0 1 1 1 68.49 50.43 9.40 128.32 0.14 69.08 49.68 9.43 128.19 0.77
1 0 1 1 2 75.18 47.08 10.20 132.46 0.14 75.81 46.30 10.22 132.33 0.66
1 0 1 1 3 83.94 50.75 12.16 146.86 0.14 84.61 49.90 12.20 146.71 0.80
1 0 1 1 4 50.14 40.38 8.63 99.16 0.16 50.87 39.51 8.67 99.04 0.76
1 0 1 1 5 71.75 48.68 9.27 129.70 0.13 72.02 48.39 9.28 129.68 0.75
1 0 1 1 6 56.76 50.54 11.49 118.79 0.14 57.74 49.19 11.53 118.46 0.81
1 0 1 1 7 69.30 41.42 10.01 120.73 0.13 69.57 41.10 10.02 120.69 0.78
1 0 1 1 8 68.02 44.46 9.12 121.60 0.13 68.05 44.44 9.12 121.60 0.58
1 0 1 1 9 87.49 50.40 13.29 151.18 0.13 88.54 49.05 13.34 150.93 0.80
1 0 1 1 10 67.08 37.91 10.07 115.05 0.12 67.12 37.87 10.07 115.05 0.58
1 0 1 1 11 61.10 42.62 9.38 113.10 0.14 61.58 41.99 9.40 112.97 0.67
1 0 1 1 12 72.47 46.72 9.94 129.13 0.14 72.62 46.56 9.95 129.12 0.70
1 0 1 1 13 62.50 48.75 11.93 123.18 0.15 62.86 48.34 11.95 123.14 0.74
1 0 1 1 14 74.34 38.73 9.94 123.00 0.13 74.57 38.46 9.95 122.97 0.68
1 0 1 1 15 80.51 45.93 10.00 136.44 0.15 80.85 45.55 10.01 136.41 0.66
1 0 1 1 16 56.01 44.39 10.36 110.75 0.14 56.43 43.86 10.38 110.67 0.74
1 0 1 1 17 52.13 43.66 11.59 107.38 0.16 53.09 42.48 11.65 107.22 0.89
1 0 1 1 18 60.46 36.42 7.43 104.31 0.12 60.63 36.22 7.44 104.29 0.62
1 0 1 1 19 52.53 39.77 8.88 101.18 0.15 53.14 38.96 8.90 101.00 0.71
1 0 1 1 20 86.79 43.39 9.49 139.68 0.17 87.13 43.00 9.51 139.64 0.75
1 0 1 1 21 68.89 46.67 9.91 125.47 0.15 69.24 46.27 9.93 125.43 0.78
1 0 1 1 22 65.11 46.56 10.24 121.91 0.14 65.47 46.14 10.26 121.87 0.76
1 0 1 1 23 54.21 45.13 10.77 110.11 0.15 55.04 44.08 10.81 109.93 0.78
1 0 1 1 24 62.16 46.67 9.91 118.74 0.13 62.45 46.34 9.93 118.71 0.73
1 0 1 1 25 76.30 34.41 10.00 120.71 0.14 76.62 34.06 10.01 120.69 0.63
1 0 1 2 1 69.69 50.43 9.40 129.52 0.14 70.63 49.21 9.45 129.29 0.89
1 0 1 2 2 98.21 47.12 10.20 155.53 0.13 98.72 46.50 10.22 155.43 0.82
1 0 1 2 3 94.35 49.58 12.22 156.15 0.22 94.24 49.56 12.22 156.02 0.85
1 0 1 2 4 69.41 40.44 8.63 118.47 0.12 69.94 39.82 8.65 118.41 0.75
1 0 1 2 5 84.81 48.68 9.27 142.76 0.14 85.29 48.13 9.29 142.71 0.79
1 0 1 2 6 72.70 50.54 11.49 134.73 0.13 74.39 48.28 11.59 134.26 0.87
1 0 1 2 7 70.05 41.42 10.01 121.48 0.14 70.63 40.72 10.04 121.40 0.84
1 0 1 2 8 80.69 44.46 9.12 134.27 0.14 80.92 44.20 9.13 134.25 0.73
1 0 1 2 9 116.56 50.40 13.29 180.24 0.12 117.44 49.34 13.33 180.10 0.97
1 0 1 2 10 61.10 37.91 10.07 109.08 0.13 61.28 37.71 10.08 109.07 0.64
1 0 1 2 11 67.31 42.62 9.38 119.31 0.13 67.72 42.12 9.39 119.22 0.67
1 0 1 2 12 88.56 46.72 9.94 145.22 0.13 89.02 46.18 9.97 145.17 0.80
1 0 1 2 13 66.01 48.75 11.93 126.69 0.14 66.41 48.28 11.95 126.64 0.72
1 0 1 2 14 71.59 38.73 9.94 120.26 0.14 72.03 38.21 9.96 120.20 0.69
1 0 1 2 15 89.88 45.93 10.00 145.80 0.13 90.36 45.37 10.02 145.75 0.72
1 0 1 2 16 63.56 44.39 10.36 118.30 0.14 64.28 43.46 10.41 118.14 0.84
1 0 1 2 17 63.33 42.17 11.68 117.18 0.27 63.41 42.08 11.69 117.18 0.91
1 0 1 2 18 69.18 36.42 7.43 113.03 0.14 69.71 35.80 7.46 112.97 0.82
1 0 1 2 19 62.52 39.77 8.88 111.17 0.13 63.30 38.77 8.92 111.00 0.76
1 0 1 2 20 99.06 43.39 9.49 151.94 0.15 99.45 42.94 9.51 151.90 0.75
1 0 1 2 21 76.39 46.67 9.91 132.97 0.16 76.92 46.06 9.94 132.92 0.76
1 0 1 2 22 75.98 46.56 10.24 132.78 0.14 76.64 45.78 10.28 132.70 0.75
1 0 1 2 23 63.46 45.13 10.77 119.36 0.15 64.45 43.88 10.83 119.16 0.93
1 0 1 2 24 66.26 46.57 9.92 122.75 0.16 67.02 45.67 9.96 122.64 0.83
1 0 1 2 25 84.75 34.41 10.00 129.16 0.12 85.10 34.02 10.01 129.13 0.71
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DP-based Heuristic Math. Model
N Ct TF RDD r# Tard Tool Mach Total CPU Tard Tool Mach Total CPU
1 0 2 0 1 147.57 50.43 9.40 207.40 0.11 147.72 50.27 9.41 207.39 0.60
1 0 2 0 2 178.89 47.31 10.19 236.40 0.10 179.02 47.17 10.20 236.38 0.69
1 0 2 0 3 199.41 50.75 12.16 262.33 0.11 199.46 50.71 12.17 262.33 0.64
1 0 2 0 4 115.69 40.45 8.63 164.77 0.12 115.69 40.45 8.63 164.77 0.64
1 0 2 0 5 161.36 48.68 9.27 219.30 0.08 161.36 48.68 9.27 219.31 0.54
1 0 2 0 6 157.61 50.54 11.49 219.64 0.10 157.85 50.28 11.49 219.63 0.59
1 0 2 0 7 161.98 41.42 10.01 213.41 0.09 161.98 41.42 10.01 213.41 0.63
1 0 2 0 8 143.34 44.46 9.12 196.92 0.11 143.34 44.46 9.12 196.92 0.71
1 0 2 0 9 210.44 50.40 13.29 274.12 0.11 210.44 50.40 13.29 274.12 0.59
1 0 2 0 10 158.38 37.91 10.07 206.36 0.09 158.38 37.91 10.07 206.36 0.56
1 0 2 0 11 145.75 42.62 9.38 197.74 0.10 145.85 42.51 9.38 197.74 0.58
1 0 2 0 12 166.26 46.72 9.94 222.92 0.10 166.26 46.72 9.94 222.92 0.54
1 0 2 0 13 161.21 48.75 11.93 221.88 0.11 161.21 48.75 11.93 221.88 0.68
1 0 2 0 14 155.28 38.73 9.94 203.94 0.11 155.28 38.73 9.94 203.95 0.59
1 0 2 0 15 169.89 45.93 10.00 225.82 0.10 169.89 45.93 10.00 225.82 0.57
1 0 2 0 16 146.89 44.39 10.36 201.63 0.10 146.89 44.39 10.36 201.64 0.57
1 0 2 0 17 123.24 43.66 11.59 178.49 0.11 123.25 43.65 11.59 178.49 0.61
1 0 2 0 18 137.15 36.42 7.43 181.01 0.09 137.15 36.42 7.44 181.01 0.63
1 0 2 0 19 139.50 39.77 8.88 188.15 0.11 139.63 39.62 8.88 188.13 0.63
1 0 2 0 20 175.25 43.39 9.49 228.14 0.12 175.25 43.39 9.49 228.14 0.56
1 0 2 0 21 162.12 46.67 9.91 218.70 0.09 162.12 46.67 9.91 218.70 0.62
1 0 2 0 22 148.72 46.56 10.24 205.52 0.11 148.72 46.56 10.24 205.52 0.59
1 0 2 0 23 136.37 45.13 10.77 192.27 0.12 136.40 45.10 10.77 192.27 0.58
1 0 2 0 24 150.33 46.83 9.91 207.06 0.11 150.33 46.83 9.91 207.06 0.62
1 0 2 0 25 153.48 34.41 10.00 197.89 0.11 153.48 34.41 10.00 197.89 0.63
1 0 2 1 1 146.28 50.43 9.40 206.11 0.13 146.45 50.25 9.41 206.11 0.71
1 0 2 1 2 172.71 47.34 10.19 230.24 0.09 172.83 47.21 10.19 230.23 0.59
1 0 2 1 3 204.07 50.75 12.16 266.99 0.10 204.13 50.69 12.17 266.99 0.47
1 0 2 1 4 123.78 40.45 8.63 172.86 0.11 123.81 40.42 8.63 172.85 0.57
1 0 2 1 5 164.44 48.68 9.27 222.39 0.10 164.44 48.68 9.27 222.39 0.61
1 0 2 1 6 147.04 50.54 11.49 209.07 0.12 147.32 50.24 11.50 209.05 0.64
1 0 2 1 7 163.57 41.42 10.01 215.00 0.10 163.59 41.40 10.01 215.00 0.68
1 0 2 1 8 146.79 44.46 9.12 200.37 0.11 146.79 44.46 9.12 200.37 0.64
1 0 2 1 9 211.72 50.40 13.29 275.40 0.09 211.75 50.37 13.29 275.40 0.64
1 0 2 1 10 161.14 37.91 10.07 209.11 0.10 161.14 37.91 10.07 209.11 0.54
1 0 2 1 11 139.36 42.62 9.38 191.36 0.09 139.45 42.53 9.38 191.36 0.57
1 0 2 1 12 165.88 46.72 9.94 222.54 0.10 165.88 46.72 9.94 222.54 0.58
1 0 2 1 13 159.31 48.75 11.93 219.98 0.11 159.33 48.72 11.93 219.98 0.57
1 0 2 1 14 159.92 38.73 9.94 208.58 0.11 159.92 38.73 9.94 208.58 0.57
1 0 2 1 15 172.39 45.93 10.00 228.31 0.12 172.43 45.88 10.00 228.31 0.58
1 0 2 1 16 142.76 44.39 10.36 197.51 0.10 142.80 44.35 10.36 197.51 0.54
1 0 2 1 17 129.09 43.66 11.59 184.34 0.11 129.16 43.59 11.59 184.34 0.69
1 0 2 1 18 134.06 36.42 7.43 177.91 0.10 134.06 36.42 7.44 177.91 0.50
1 0 2 1 19 137.45 39.77 8.88 186.10 0.09 137.55 39.66 8.88 186.09 0.61
1 0 2 1 20 190.22 43.39 9.49 243.10 0.11 190.24 43.37 9.49 243.10 0.64
1 0 2 1 21 159.11 46.67 9.91 215.69 0.10 159.11 46.67 9.91 215.69 0.60
1 0 2 1 22 150.93 46.56 10.24 207.74 0.12 150.96 46.53 10.24 207.74 0.68
1 0 2 1 23 146.51 45.13 10.77 202.41 0.10 146.57 45.07 10.77 202.41 0.58
1 0 2 1 24 148.03 46.83 9.91 204.76 0.11 148.03 46.83 9.91 204.76 0.55
1 0 2 1 25 167.78 34.41 10.00 212.19 0.11 167.78 34.41 10.00 212.19 0.57
1 0 2 2 1 140.41 50.43 9.40 200.24 0.12 140.64 50.18 9.41 200.23 0.67
1 0 2 2 2 185.34 47.32 10.19 242.85 0.11 185.48 47.16 10.20 242.84 0.62
1 0 2 2 3 190.02 50.75 12.16 252.94 0.11 190.16 50.60 12.17 252.93 0.66
1 0 2 2 4 125.95 40.45 8.63 175.03 0.11 126.06 40.33 8.63 175.02 0.60
1 0 2 2 5 159.19 48.68 9.27 217.14 0.10 159.26 48.61 9.27 217.14 0.61
1 0 2 2 6 156.72 50.54 11.49 218.75 0.11 157.03 50.20 11.50 218.72 0.64
1 0 2 2 7 154.47 41.42 10.01 205.90 0.13 154.54 41.35 10.01 205.90 0.56
1 0 2 2 8 153.95 44.46 9.12 207.52 0.13 153.95 44.46 9.12 207.52 0.59
1 0 2 2 9 225.92 50.40 13.29 289.60 0.11 226.06 50.24 13.29 289.60 0.67
1 0 2 2 10 135.33 37.91 10.07 183.30 0.10 135.33 37.91 10.07 183.30 0.56
1 0 2 2 11 137.80 42.62 9.38 189.80 0.12 137.94 42.46 9.38 189.79 0.58
1 0 2 2 12 169.74 46.72 9.94 226.40 0.12 169.74 46.72 9.94 226.40 0.63
1 0 2 2 13 155.27 48.75 11.93 215.95 0.10 155.34 48.67 11.93 215.95 0.54
1 0 2 2 14 145.41 38.73 9.94 194.08 0.11 145.45 38.69 9.94 194.08 0.57
1 0 2 2 15 175.59 45.93 10.00 231.52 0.10 175.68 45.83 10.00 231.52 0.69
1 0 2 2 16 134.49 44.39 10.36 189.24 0.11 134.53 44.35 10.36 189.24 0.55
1 0 2 2 17 129.43 43.66 11.59 184.68 0.12 129.53 43.56 11.59 184.68 0.70
1 0 2 2 18 133.15 36.42 7.43 177.01 0.12 133.17 36.40 7.44 177.01 0.57
1 0 2 2 19 143.44 39.77 8.88 192.09 0.12 143.53 39.67 8.88 192.08 0.60
1 0 2 2 20 179.85 43.39 9.49 232.74 0.12 179.96 43.29 9.50 232.74 0.62
1 0 2 2 21 153.62 46.67 9.91 210.21 0.12 153.67 46.62 9.91 210.20 0.65
1 0 2 2 22 151.59 46.56 10.24 208.39 0.13 151.64 46.50 10.25 208.39 0.60
1 0 2 2 23 143.89 45.13 10.77 199.79 0.10 143.97 45.04 10.77 199.78 0.62
1 0 2 2 24 140.53 46.83 9.91 197.27 0.12 140.57 46.78 9.91 197.27 0.64
1 0 2 2 25 170.41 34.41 10.00 214.82 0.11 170.45 34.37 10.00 214.82 0.61
1 1 0 0 1 47.78 135.34 11.82 194.93 0.16 58.00 120.43 12.38 190.81 1.11
1 1 0 0 2 50.22 128.84 13.00 192.05 0.32 46.84 115.39 12.82 175.05 1.21
1 1 0 0 3 47.37 141.36 15.31 204.04 0.32 49.69 128.90 15.45 194.04 1.12
1 1 0 0 4 47.64 109.90 12.44 169.98 0.35 40.85 95.84 12.03 148.71 1.12
1 1 0 0 5 36.92 136.36 11.64 184.92 0.23 49.52 117.97 12.30 179.79 1.17
1 1 0 0 6 52.33 130.38 15.51 198.21 0.39 43.24 120.94 15.01 179.18 1.21
1 1 0 0 7 38.31 116.86 12.79 167.97 0.30 42.74 106.13 13.06 161.93 1.12
1 1 0 0 8 29.17 127.29 11.28 167.74 0.24 41.41 108.39 11.96 161.76 1.07
1 1 0 0 9 43.59 138.58 16.10 198.27 0.23 52.31 120.92 16.63 189.86 1.28
1 1 0 0 10 30.17 107.96 12.65 150.78 0.24 31.30 99.78 12.72 143.80 1.07
1 1 0 0 11 45.40 119.93 12.34 177.67 0.24 46.02 109.65 12.38 168.05 1.26
1 1 0 0 12 32.07 143.13 12.28 187.47 0.24 44.60 125.61 12.92 183.14 1.15
1 1 0 0 13 60.63 141.68 16.44 218.74 0.42 46.81 128.81 15.66 191.28 1.27
1 1 0 0 14 28.93 114.70 11.85 155.48 0.20 38.14 101.55 12.38 152.06 1.06
1 1 0 0 15 33.62 131.68 12.10 177.41 0.18 42.84 119.27 12.55 174.66 1.06
1 1 0 0 16 44.02 106.38 13.60 163.99 0.49 44.29 105.34 13.62 163.24 1.06
1 1 0 0 17 64.86 99.11 17.34 181.31 0.58 43.25 96.47 15.68 155.40 1.34
1 1 0 0 18 35.82 97.13 9.40 142.35 0.25 38.51 87.35 9.54 135.40 1.11
1 1 0 0 19 38.25 108.62 11.88 158.74 0.33 38.39 94.15 11.88 144.43 1.07
1 1 0 0 20 40.95 127.42 10.99 179.36 0.19 51.64 110.43 11.55 173.62 1.15
1 1 0 0 21 41.92 131.08 12.72 185.72 0.27 48.29 115.23 13.06 176.58 1.21
1 1 0 0 22 45.41 123.08 12.94 181.43 0.32 43.93 114.87 12.85 171.66 1.15
1 1 0 0 23 51.65 113.26 15.02 179.92 0.44 35.11 105.21 13.95 154.26 1.18
1 1 0 0 24 38.69 126.10 12.81 177.60 0.28 42.32 112.50 13.01 167.83 1.08
1 1 0 0 25 40.90 91.84 13.37 146.11 0.44 31.06 92.08 12.79 135.93 1.09
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DP-based Heuristic Math. Model
N Ct TF RDD r# Tard Tool Mach Total CPU Tard Tool Mach Total CPU
1 1 0 1 1 44.39 133.52 11.93 189.84 0.29 53.39 119.49 12.43 185.30 1.24
1 1 0 1 2 43.79 132.47 12.60 188.87 0.27 46.82 116.11 12.78 175.71 1.38
1 1 0 1 3 68.77 137.99 16.28 223.04 0.35 55.50 127.53 15.52 198.56 1.22
1 1 0 1 4 41.22 110.24 11.89 163.36 0.31 42.81 96.40 12.00 151.21 1.27
1 1 0 1 5 88.48 120.45 13.81 222.74 0.38 50.58 117.15 12.36 180.08 1.34
1 1 0 1 6 51.91 159.19 15.72 226.81 0.37 42.92 117.21 15.24 175.37 1.48
1 1 0 1 7 41.89 117.53 13.06 172.48 0.31 41.08 106.68 13.04 160.81 1.25
1 1 0 1 8 33.42 128.16 11.24 172.82 0.21 47.56 107.33 12.01 166.90 1.32
1 1 0 1 9 56.97 121.94 16.92 195.83 0.39 50.63 122.06 16.57 189.25 1.29
1 1 0 1 10 46.84 106.14 13.27 166.24 0.29 40.46 96.44 12.92 149.83 1.10
1 1 0 1 11 45.62 119.41 12.52 177.55 0.27 46.31 106.04 12.56 164.91 1.27
1 1 0 1 12 53.61 150.93 13.31 217.85 0.37 51.35 120.08 13.22 184.65 1.19
1 1 0 1 13 81.46 138.56 17.69 237.72 0.69 47.58 123.03 16.02 186.63 1.39
1 1 0 1 14 52.29 107.42 12.79 172.50 0.30 44.93 101.08 12.41 158.41 1.12
1 1 0 1 15 61.09 144.92 13.15 219.16 0.27 52.96 115.44 12.74 181.15 1.20
1 1 0 1 16 45.37 115.15 13.96 174.49 0.44 41.05 104.45 13.68 159.18 1.29
1 1 0 1 17 78.03 110.25 17.86 206.14 0.60 44.29 94.96 15.81 155.05 1.42
1 1 0 1 18 35.58 97.18 9.39 142.15 0.24 37.96 87.82 9.53 135.31 1.16
1 1 0 1 19 61.41 97.57 13.17 172.15 0.50 40.31 90.39 12.10 142.79 1.26
1 1 0 1 20 41.22 128.20 10.89 180.31 0.21 51.92 112.44 11.46 175.82 1.26
1 1 0 1 21 54.36 127.44 13.37 195.17 0.33 47.44 115.99 13.03 176.47 1.28
1 1 0 1 22 53.08 118.03 13.44 184.55 0.43 46.05 111.20 13.09 170.34 1.28
1 1 0 1 23 52.58 134.33 14.77 201.69 0.33 38.20 106.09 13.89 158.18 1.37
1 1 0 1 24 35.89 126.45 12.72 175.06 0.32 42.76 110.50 13.12 166.38 1.20
1 1 0 1 25 47.28 94.31 12.94 154.53 0.31 42.53 94.08 12.67 149.28 1.20
1 1 0 2 1 54.05 130.26 12.36 196.67 0.26 55.46 119.27 12.44 187.17 1.24
1 1 0 2 2 73.85 128.18 13.06 215.10 0.31 68.13 115.87 12.80 196.79 1.35
1 1 0 2 3 94.68 158.49 17.03 270.20 0.56 59.08 128.22 15.53 202.83 1.37
1 1 0 2 4 60.33 135.11 11.93 207.38 0.35 57.30 98.95 11.87 168.12 1.35
1 1 0 2 5 97.62 133.00 13.71 244.33 0.51 61.14 119.29 12.27 192.70 1.34
1 1 0 2 6 80.02 153.63 16.26 249.91 0.50 59.12 114.94 15.41 189.47 1.42
1 1 0 2 7 55.83 115.02 13.59 184.45 0.33 51.08 101.08 13.38 165.53 1.33
1 1 0 2 8 71.25 143.15 12.36 226.76 0.40 60.69 106.05 12.10 178.83 1.31
1 1 0 2 9 80.68 133.03 17.03 230.74 0.39 74.40 119.69 16.71 210.80 1.39
1 1 0 2 10 40.22 108.90 13.16 162.27 0.56 37.95 94.72 13.03 145.69 1.17
1 1 0 2 11 59.30 116.10 13.01 188.41 0.33 49.33 107.53 12.49 169.34 1.29
1 1 0 2 12 64.90 158.07 13.02 236.00 0.32 65.53 122.46 13.11 201.10 1.32
1 1 0 2 13 70.66 147.73 17.05 235.45 0.52 43.50 128.06 15.73 187.28 1.32
1 1 0 2 14 62.27 121.69 13.29 197.25 0.47 45.28 100.35 12.46 158.09 1.22
1 1 0 2 15 46.86 159.57 11.95 218.38 0.27 58.10 117.90 12.65 188.64 1.34
1 1 0 2 16 82.52 128.30 15.46 226.28 0.60 55.56 99.77 14.02 169.34 1.31
1 1 0 2 17 79.00 119.98 17.39 216.37 0.77 48.74 97.79 15.62 162.14 1.44
1 1 0 2 18 40.09 99.41 9.15 148.65 0.26 47.77 86.79 9.59 144.15 1.06
1 1 0 2 19 57.74 113.47 12.66 183.87 0.82 41.81 93.00 11.99 146.79 1.28
1 1 0 2 20 80.22 117.95 12.22 210.40 0.31 65.26 110.04 11.59 186.88 1.35
1 1 0 2 21 89.14 118.68 14.63 222.45 0.50 53.61 114.23 13.14 180.98 1.35
1 1 0 2 22 89.29 110.96 14.63 214.89 0.52 53.69 114.87 12.87 181.43 1.25
1 1 0 2 23 82.13 131.41 15.78 229.32 0.63 41.10 108.21 13.79 163.10 1.46
1 1 0 2 24 62.13 118.08 13.81 194.02 0.43 52.79 106.92 13.34 173.05 1.33
1 1 0 2 25 72.59 93.05 13.71 179.35 0.53 48.22 96.19 12.57 156.98 1.21
1 1 1 0 1 101.89 135.56 11.81 249.25 0.16 107.40 128.19 12.03 247.63 1.04
1 1 1 0 2 98.05 137.53 11.95 247.52 0.14 102.88 131.61 12.11 246.60 1.00
1 1 1 0 3 109.03 150.89 14.55 274.47 0.14 113.22 145.79 14.70 273.71 1.04
1 1 1 0 4 69.51 117.50 11.12 198.13 0.14 76.75 107.71 11.44 195.90 1.00
1 1 1 0 5 96.09 137.04 11.61 244.75 0.15 101.13 130.90 11.78 243.81 1.14
1 1 1 0 6 92.47 143.72 14.08 250.28 0.13 99.92 134.07 14.39 248.37 1.10
1 1 1 0 7 90.50 123.33 12.33 226.16 0.14 93.48 119.74 12.44 225.66 0.93
1 1 1 0 8 86.59 128.16 11.24 225.99 0.14 93.60 119.26 11.50 224.36 1.01
1 1 1 0 9 110.18 142.83 15.73 268.73 0.17 116.93 134.22 16.00 267.15 1.03
1 1 1 0 10 82.12 113.01 12.16 207.29 0.14 84.77 109.84 12.26 206.87 0.85
1 1 1 0 11 91.83 125.75 11.77 229.34 0.15 96.52 120.00 11.94 228.46 1.05
1 1 1 0 12 94.41 143.67 12.26 250.34 0.14 98.75 138.43 12.40 249.58 0.94
1 1 1 0 13 89.50 156.35 14.52 260.36 0.17 99.83 142.14 14.99 256.95 1.11
1 1 1 0 14 89.05 115.48 11.82 216.35 0.12 91.71 112.37 11.91 216.00 0.97
1 1 1 0 15 101.23 131.68 12.10 245.01 0.14 105.37 126.34 12.26 243.96 0.93
1 1 1 0 16 81.52 128.39 12.59 222.51 0.16 87.36 121.14 12.82 221.32 1.04
1 1 1 0 17 80.01 113.78 14.94 208.74 0.30 77.48 109.92 14.80 202.20 1.18
1 1 1 0 18 79.75 101.57 9.02 190.34 0.14 82.83 97.85 9.12 189.79 0.86
1 1 1 0 19 73.94 116.49 11.04 201.48 0.17 81.68 106.49 11.33 199.50 0.92
1 1 1 0 20 100.99 128.20 10.89 240.08 0.13 105.90 122.11 11.06 239.07 0.94
1 1 1 0 21 91.94 136.37 12.25 240.56 0.16 98.91 127.62 12.52 239.05 1.00
1 1 1 0 22 85.00 134.43 12.00 231.43 0.15 89.88 128.18 12.20 230.26 1.04
1 1 1 0 23 71.88 130.00 12.86 214.74 0.18 79.99 118.55 13.24 211.78 1.17
1 1 1 0 24 90.00 130.47 12.32 232.79 0.14 94.94 124.53 12.50 231.97 0.98
1 1 1 0 25 72.24 109.19 12.06 193.48 0.13 75.35 105.24 12.17 192.77 0.91
1 1 1 1 1 99.33 135.59 11.81 246.73 0.13 106.05 126.91 12.09 245.05 1.07
1 1 1 1 2 97.02 137.58 11.94 246.55 0.14 101.99 131.70 12.11 245.80 1.01
1 1 1 1 3 107.54 150.89 14.55 272.98 0.14 113.40 143.79 14.78 271.97 1.01
1 1 1 1 4 73.63 117.62 11.12 202.36 0.17 79.95 109.80 11.36 201.11 1.10
1 1 1 1 5 101.90 137.18 11.60 250.68 0.15 106.05 132.39 11.74 250.17 1.06
1 1 1 1 6 83.99 143.61 14.09 241.68 0.16 91.48 133.43 14.41 239.33 1.19
1 1 1 1 7 91.48 123.33 12.33 227.15 0.14 94.23 120.05 12.43 226.71 0.97
1 1 1 1 8 91.04 128.16 11.24 230.44 0.15 97.97 119.43 11.50 228.90 1.04
1 1 1 1 9 109.48 142.74 15.73 267.96 0.15 116.90 132.82 16.06 265.78 1.09
1 1 1 1 10 85.33 113.01 12.16 210.50 0.14 88.56 109.23 12.28 210.07 0.91
1 1 1 1 11 85.28 125.75 11.77 222.79 0.14 90.90 118.66 11.99 221.55 1.02
1 1 1 1 12 97.13 143.67 12.26 253.05 0.12 101.90 137.99 12.42 252.31 1.01
1 1 1 1 13 97.87 165.24 14.95 278.06 0.25 95.99 143.62 14.94 254.54 1.12
1 1 1 1 14 94.73 115.30 11.82 221.86 0.13 98.95 110.22 11.99 221.16 1.06
1 1 1 1 15 105.04 131.68 12.10 248.82 0.13 108.93 126.88 12.24 248.04 1.00
1 1 1 1 16 89.03 124.91 13.06 227.01 0.19 86.37 117.56 12.98 216.90 1.14
1 1 1 1 17 80.86 135.43 14.63 230.93 0.23 81.09 111.77 14.73 207.59 1.13
1 1 1 1 18 81.22 101.57 9.02 191.81 0.13 84.49 97.66 9.12 191.28 1.00
1 1 1 1 19 71.37 116.49 11.04 198.90 0.16 78.44 107.77 11.29 197.50 1.10
1 1 1 1 20 109.31 128.20 10.89 248.40 0.13 114.55 121.88 11.07 247.50 1.04
1 1 1 1 21 93.03 136.37 12.25 241.65 0.15 99.46 128.19 12.50 240.15 1.04
1 1 1 1 22 88.42 134.44 12.00 234.86 0.16 93.34 128.18 12.20 233.71 0.97
1 1 1 1 23 77.79 130.07 12.86 220.72 0.15 87.18 117.60 13.28 218.06 1.14
1 1 1 1 24 88.16 130.39 12.32 230.88 0.14 94.92 122.10 12.59 229.60 1.04
1 1 1 1 25 94.67 109.24 12.06 215.97 0.14 98.28 104.87 12.19 215.34 0.95
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N Ct TF RDD r# Tard Tool Mach Total CPU Tard Tool Mach Total CPU
1 1 1 2 1 99.67 135.55 11.81 247.03 0.15 106.05 127.23 12.08 245.36 1.11
1 1 1 2 2 120.54 137.55 11.94 270.03 0.15 126.20 130.81 12.14 269.15 1.07
1 1 1 2 3 116.06 150.91 14.55 281.52 0.16 125.05 139.95 14.93 279.94 1.12
1 1 1 2 4 93.08 117.62 11.12 221.81 0.16 100.43 108.49 11.42 220.33 1.12
1 1 1 2 5 113.53 137.19 11.60 262.32 0.14 119.04 130.73 11.79 261.56 1.05
1 1 1 2 6 98.29 143.71 14.08 256.08 0.17 106.98 132.50 14.47 253.95 1.08
1 1 1 2 7 90.89 123.33 12.33 226.56 0.16 96.46 116.67 12.57 225.70 1.09
1 1 1 2 8 102.71 128.16 11.24 242.11 0.15 110.13 118.92 11.52 240.57 1.05
1 1 1 2 9 139.01 142.99 15.72 297.73 0.15 145.49 135.05 15.98 296.52 1.19
1 1 1 2 10 78.06 113.01 12.16 203.23 0.13 83.83 105.61 12.43 201.87 1.00
1 1 1 2 11 91.74 125.75 11.77 229.25 0.12 97.91 118.30 12.00 228.21 1.08
1 1 1 2 12 111.62 143.67 12.26 267.54 0.14 118.58 135.08 12.53 266.18 1.08
1 1 1 2 13 90.02 156.35 14.52 260.89 0.15 98.14 146.04 14.84 259.01 1.10
1 1 1 2 14 90.92 115.13 11.83 217.88 0.16 95.84 108.90 12.04 216.79 1.12
1 1 1 2 15 113.74 131.68 12.10 257.52 0.14 117.83 126.66 12.25 256.73 1.00
1 1 1 2 16 92.32 125.11 12.94 230.37 0.22 93.78 116.17 13.04 222.99 1.05
1 1 1 2 17 96.83 112.57 14.98 224.38 0.40 90.55 112.42 14.70 217.67 1.26
1 1 1 2 18 88.71 101.57 9.02 199.29 0.13 93.32 96.06 9.18 198.56 0.95
1 1 1 2 19 109.11 115.96 11.91 236.99 0.31 88.30 107.25 11.32 206.87 1.01
1 1 1 2 20 121.16 128.20 10.89 260.25 0.15 127.09 121.09 11.10 259.28 1.12
1 1 1 2 21 100.16 136.37 12.25 248.78 0.15 108.59 126.12 12.59 247.29 1.09
1 1 1 2 22 105.82 131.04 12.36 249.21 0.24 105.29 124.55 12.36 242.20 1.13
1 1 1 2 23 82.13 158.92 12.60 253.65 0.23 93.99 118.82 13.23 226.04 1.19
1 1 1 2 24 90.55 130.35 12.32 233.22 0.15 97.09 122.24 12.58 231.92 1.05
1 1 1 2 25 102.93 109.27 12.05 224.26 0.15 106.82 104.62 12.20 223.64 1.05
1 1 2 0 1 180.92 135.89 11.80 328.61 0.12 183.13 133.34 11.86 328.33 0.88
1 1 2 0 2 203.81 137.87 11.94 353.62 0.12 204.51 137.13 11.95 353.59 0.82
1 1 2 0 3 226.30 151.46 14.53 392.29 0.11 226.67 151.05 14.54 392.27 0.81
1 1 2 0 4 143.22 118.03 11.11 272.36 0.11 143.89 117.30 11.12 272.32 0.81
1 1 2 0 5 193.07 137.81 11.59 342.47 0.10 193.42 137.45 11.60 342.46 0.75
1 1 2 0 6 189.46 144.00 14.07 347.54 0.12 190.57 142.80 14.10 347.47 0.91
1 1 2 0 7 185.77 123.13 12.34 321.23 0.12 185.81 123.07 12.34 321.21 0.80
1 1 2 0 8 168.24 128.16 11.24 307.64 0.11 170.27 125.89 11.30 307.46 0.81
1 1 2 0 9 236.14 143.57 15.71 395.42 0.10 236.73 142.93 15.72 395.38 0.83
1 1 2 0 10 177.72 113.01 12.16 302.89 0.11 177.98 112.73 12.17 302.88 0.69
1 1 2 0 11 172.68 125.75 11.77 310.19 0.12 173.58 124.76 11.79 310.14 0.89
1 1 2 0 12 192.96 143.67 12.26 348.88 0.09 193.35 143.25 12.27 348.87 0.86
1 1 2 0 13 187.70 156.35 14.52 358.57 0.11 190.02 153.77 14.58 358.36 0.85
1 1 2 0 14 177.18 116.07 11.80 305.04 0.10 177.36 115.87 11.81 305.04 0.76
1 1 2 0 15 196.23 131.68 12.10 340.01 0.10 196.90 130.95 12.12 339.96 0.75
1 1 2 0 16 172.15 128.39 12.59 313.14 0.10 172.63 127.88 12.60 313.11 0.81
1 1 2 0 17 146.89 124.51 14.23 285.63 0.12 149.91 120.90 14.34 285.15 0.87
1 1 2 0 18 159.55 101.57 9.02 270.14 0.11 160.10 100.98 9.03 270.10 0.87
1 1 2 0 19 160.51 116.49 11.04 288.04 0.11 161.67 115.23 11.07 287.97 0.84
1 1 2 0 20 200.14 128.20 10.89 339.23 0.11 200.27 128.06 10.89 339.23 0.74
1 1 2 0 21 189.17 136.37 12.25 337.79 0.10 189.64 135.88 12.26 337.77 0.76
1 1 2 0 22 173.17 134.90 11.98 320.04 0.12 174.33 133.57 12.01 319.92 0.83
1 1 2 0 23 163.85 130.58 12.84 307.28 0.11 165.50 128.76 12.89 307.14 0.85
1 1 2 0 24 179.37 130.88 12.31 322.56 0.11 180.28 129.91 12.33 322.52 0.76
1 1 2 0 25 173.41 109.68 12.04 295.14 0.11 173.57 109.51 12.05 295.13 0.67
1 1 2 1 1 179.33 135.97 11.79 327.10 0.12 181.30 133.75 11.85 326.90 0.83
1 1 2 1 2 197.60 137.88 11.94 347.41 0.10 198.75 136.64 11.97 347.35 0.84
1 1 2 1 3 230.83 151.46 14.53 396.82 0.10 231.45 150.80 14.55 396.80 0.90
1 1 2 1 4 151.05 118.04 11.11 280.19 0.11 152.14 116.87 11.14 280.14 0.83
1 1 2 1 5 195.97 137.70 11.59 345.26 0.10 196.91 136.69 11.61 345.22 0.81
1 1 2 1 6 178.53 144.00 14.07 336.61 0.11 180.49 141.82 14.13 336.44 0.92
1 1 2 1 7 187.09 123.33 12.33 322.76 0.11 187.50 122.90 12.34 322.74 0.84
1 1 2 1 8 171.24 128.16 11.24 310.64 0.11 174.22 124.76 11.33 310.30 0.87
1 1 2 1 9 237.21 143.58 15.71 396.50 0.13 238.10 142.62 15.73 396.45 0.80
1 1 2 1 10 180.44 113.01 12.16 305.61 0.10 180.82 112.60 12.17 305.59 0.75
1 1 2 1 11 166.42 125.75 11.77 303.93 0.12 167.14 124.99 11.79 303.91 0.81
1 1 2 1 12 192.45 143.67 12.26 348.37 0.10 193.25 142.81 12.28 348.33 0.77
1 1 2 1 13 185.80 156.35 14.52 356.67 0.11 188.02 153.88 14.58 356.48 0.81
1 1 2 1 14 181.56 116.10 11.80 309.46 0.12 182.15 115.47 11.82 309.44 0.70
1 1 2 1 15 198.31 131.68 12.10 342.09 0.09 200.14 129.62 12.15 341.91 0.86
1 1 2 1 16 167.70 128.39 12.59 308.69 0.11 169.01 126.97 12.63 308.61 0.85
1 1 2 1 17 152.52 124.51 14.23 291.26 0.13 156.19 120.17 14.36 290.73 0.91
1 1 2 1 18 156.41 101.57 9.02 267.00 0.09 156.97 100.97 9.03 266.97 0.73
1 1 2 1 19 158.51 116.49 11.04 286.05 0.10 159.52 115.43 11.07 286.01 0.81
1 1 2 1 20 214.79 128.20 10.89 353.89 0.11 215.76 127.17 10.91 353.85 0.82
1 1 2 1 21 186.00 136.37 12.25 334.62 0.11 186.91 135.38 12.27 334.56 0.73
1 1 2 1 22 174.97 134.90 11.98 321.85 0.12 176.96 132.64 12.04 321.64 0.75
1 1 2 1 23 173.94 130.58 12.84 317.36 0.14 175.75 128.59 12.89 317.23 0.80
1 1 2 1 24 176.89 130.95 12.31 320.15 0.10 177.86 129.92 12.33 320.11 0.83
1 1 2 1 25 187.60 109.59 12.05 309.24 0.11 188.15 109.00 12.06 309.20 0.79
1 1 2 2 1 173.37 135.92 11.80 321.08 0.12 175.79 133.15 11.87 320.81 0.93
1 1 2 2 2 209.95 137.90 11.94 359.78 0.11 211.26 136.49 11.97 359.72 0.82
1 1 2 2 3 216.25 151.39 14.54 382.18 0.12 217.85 149.61 14.58 382.04 0.89
1 1 2 2 4 151.92 117.90 11.11 280.93 0.14 156.11 113.13 11.25 280.49 1.05
1 1 2 2 5 190.03 137.63 11.59 339.26 0.10 192.16 135.31 11.65 339.12 0.91
1 1 2 2 6 187.85 144.00 14.07 345.93 0.11 189.85 141.73 14.13 345.72 0.98
1 1 2 2 7 177.73 123.33 12.33 313.39 0.12 178.75 122.20 12.36 313.31 0.82
1 1 2 2 8 178.41 128.16 11.24 317.81 0.12 181.59 124.54 11.34 317.46 0.96
1 1 2 2 9 250.95 143.50 15.71 410.16 0.12 252.53 141.76 15.75 410.05 0.91
1 1 2 2 10 154.35 113.01 12.16 279.52 0.10 155.70 111.53 12.20 279.43 0.80
1 1 2 2 11 164.58 125.75 11.77 302.09 0.11 165.94 124.27 11.80 302.01 0.90
1 1 2 2 12 196.02 143.67 12.26 351.95 0.11 197.51 142.03 12.30 351.84 0.83
1 1 2 2 13 181.10 156.35 14.52 351.97 0.12 184.99 151.96 14.64 351.59 0.89
1 1 2 2 14 167.13 115.86 11.81 294.80 0.11 167.90 115.03 11.83 294.76 0.84
1 1 2 2 15 201.37 131.68 12.10 345.15 0.13 203.38 129.44 12.16 344.97 0.76
1 1 2 2 16 159.19 128.39 12.59 300.17 0.11 161.07 126.34 12.65 300.06 0.85
1 1 2 2 17 152.96 124.51 14.23 291.71 0.12 156.09 120.90 14.34 291.33 0.98
1 1 2 2 18 155.23 101.57 9.02 265.82 0.13 156.28 100.43 9.04 265.75 0.77
1 1 2 2 19 164.56 116.49 11.04 292.09 0.12 165.48 115.50 11.06 292.05 0.80
1 1 2 2 20 203.90 128.20 10.89 342.99 0.11 205.44 126.54 10.93 342.92 0.81
1 1 2 2 21 180.08 136.37 12.25 328.70 0.13 181.92 134.32 12.30 328.55 0.84
1 1 2 2 22 175.43 134.90 11.98 322.31 0.12 177.47 132.55 12.04 322.06 0.84
1 1 2 2 23 170.95 130.58 12.84 314.37 0.13 173.75 127.44 12.93 314.12 1.02
1 1 2 2 24 169.18 130.88 12.31 312.37 0.11 171.02 128.89 12.36 312.28 0.86
1 1 2 2 25 190.05 109.63 12.05 311.72 0.11 191.01 108.60 12.07 311.68 0.76
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C.1 Cost Values

Sequential PSGA[DP-based Algo.] PSGA[Math. Model]
N Ct TF RDD r# Tard Tool Mach Total Tard Tool Mach Total Tard Tool Mach Total
0 0 0 0 1 10.16 7.62 11.4 29.18 2.79 13.91 7.82 24.52 2.52 14.24 7.72 24.49
0 0 0 0 2 39.01 6.84 10.07 55.92 2.13 13.64 6.55 22.32 2.14 13.54 6.58 22.25
0 0 0 0 3 38.97 8.14 11.99 59.1 4.11 16.22 7.93 28.25 4.2 15.98 7.98 28.16
0 0 0 0 4 30.98 7.08 10.6 48.66 3.05 17.33 6.23 26.61 3.1 17.36 6.21 26.66
0 0 0 0 5 36.63 6.62 9.62 52.87 3.39 13.67 6.05 23.11 3.29 13.67 6.06 23.03
0 0 0 1 1 7.37 7.62 11.4 26.39 1.34 14.05 7.78 23.16 1.24 13.66 7.89 22.79
0 0 0 1 2 14.07 6.84 10.07 30.97 1.92 12.88 6.75 21.55 1.77 12.73 6.8 21.3
0 0 0 1 3 24.53 8.14 11.99 44.66 2.42 15.87 7.97 26.26 2.12 16.1 7.88 26.09
0 0 0 1 4 22.78 7.08 10.6 40.46 3.22 16.55 6.34 26.11 2.77 15.78 6.53 25.08
0 0 0 1 5 163.78 6.62 9.62 180.02 2.15 13.26 6.15 21.56 2.36 12.87 6.25 21.48
0 0 0 2 1 43.2 7.62 11.4 62.22 1.08 12.97 8.12 22.18 0.72 12.88 8.15 21.75
0 0 0 2 2 13.62 6.84 10.07 30.53 0.77 13.51 6.48 20.75 0.77 13.5 6.48 20.75
0 0 0 2 3 17.9 8.14 11.99 38.03 1.53 14.96 8.26 24.75 1.14 14.93 8.26 24.33
0 0 0 2 4 21.17 7.08 10.6 38.85 1.97 14.01 6.93 22.9 2.22 13.57 7.04 22.83
0 0 0 2 5 165.99 6.62 9.62 182.23 0.84 15.38 5.62 21.84 0.48 15.12 5.67 21.27
0 0 1 0 1 37.87 7.62 11.4 56.89 6.83 17.43 7.06 31.33 6.79 17.31 7.05 31.15
0 0 1 0 2 65.16 6.84 10.07 82.07 5.92 16.31 6.02 28.26 5.57 16.68 5.97 28.23
0 0 1 0 3 66.01 8.14 11.99 86.14 9.31 20.06 7.25 36.61 9.27 19.56 7.33 36.15
0 0 1 0 4 55 7.08 10.6 72.68 10.47 19.18 5.92 35.58 9.59 19.23 5.97 34.79
0 0 1 0 5 50.28 6.62 9.62 66.52 7.71 15.92 5.63 29.27 7.29 16.47 5.56 29.32
0 0 1 1 1 18.49 7.62 11.4 37.51 5.77 16.3 7.25 29.32 5.11 16.95 7.14 29.19
0 0 1 1 2 27.03 6.84 10.07 43.94 4.69 16.38 6.01 27.09 4.04 16.1 6.05 26.19
0 0 1 1 3 43.9 8.14 11.99 64.02 7.03 19.86 7.22 34.1 6.15 20.03 7.12 33.29
0 0 1 1 4 42.22 7.08 10.6 59.9 8.66 19.56 5.98 34.19 8.36 18.96 6.03 33.35
0 0 1 1 5 187.11 6.62 9.62 203.35 4.57 17.83 5.34 27.74 6.01 15.24 5.73 26.98
0 0 1 2 1 94.59 7.62 11.4 113.61 3.42 16.98 7.14 27.54 3.39 16.32 7.24 26.94
0 0 1 2 2 26.67 6.84 10.07 43.57 5.11 16.78 5.86 27.75 4.35 16.39 5.98 26.72
0 0 1 2 3 34.01 8.14 11.99 54.14 4.74 20.23 7.22 32.19 4.67 19.86 7.23 31.77
0 0 1 2 4 42.55 7.08 10.6 60.23 5.58 18.91 6.1 30.59 5.67 18.32 6.19 30.18
0 0 1 2 5 189.53 6.62 9.62 205.77 6.74 19.37 5.18 31.28 6.4 15.9 5.66 27.96
0 0 2 0 1 84.78 7.62 11.4 103.8 19.81 18.89 6.91 45.6 18.85 19.32 6.88 45.05
0 0 2 0 2 98.42 6.84 10.07 115.33 16.31 18.38 5.77 40.46 17.05 18.19 5.78 41.02
0 0 2 0 3 100.45 8.14 11.99 120.57 24.11 22.22 7.07 53.4 24.04 22.16 7.1 53.29
0 0 2 0 4 92.38 7.08 10.6 110.06 25.84 21.37 5.77 52.99 24.56 21.85 5.76 52.17
0 0 2 0 5 68.87 6.62 9.62 85.11 18.41 18.75 5.37 42.53 18.01 19.18 5.3 42.49
0 0 2 1 1 42.7 7.62 11.4 61.72 18.28 19.36 6.8 44.44 17.23 19.84 6.73 43.8
0 0 2 1 2 45.63 6.84 10.07 62.54 13.88 18.96 5.71 38.55 14.19 19.25 5.68 39.11
0 0 2 1 3 71.66 8.14 11.99 91.79 19.65 22.36 6.9 48.91 22.7 22.06 7 51.75
0 0 2 1 4 68.74 7.08 10.6 86.42 24.39 23.35 5.56 53.3 24.72 21.53 5.79 52.05
0 0 2 1 5 212.18 6.62 9.62 228.42 18.68 18.65 5.26 42.59 17.86 17.96 5.39 41.2
0 0 2 2 1 127.1 7.62 11.4 146.12 17.94 19 6.95 43.89 16.26 19.49 6.81 42.56
0 0 2 2 2 47.69 6.84 10.07 64.59 16.92 18.67 5.73 41.33 16.43 18.56 5.77 40.76
0 0 2 2 3 58.49 8.14 11.99 78.61 20.05 22.45 6.91 49.41 16.87 22.31 6.99 46.17
0 0 2 2 4 71.29 7.08 10.6 88.97 25.6 20.59 5.89 52.09 24.87 20.36 5.95 51.18
0 0 2 2 5 195.46 6.62 9.62 211.7 21.28 18.52 5.35 45.15 20.76 18.35 5.35 44.47
0 1 0 0 1 81.87 13.75 20.06 115.68 11.12 32.73 11.78 55.63 11.68 31.97 11.9 55.55
0 1 0 0 2 129.95 12 17.63 159.58 10.99 30.6 10 51.59 10.6 30.78 9.98 51.35
0 1 0 0 3 134.66 14.62 21.47 170.75 16.24 39.24 11.6 67.08 15.08 38.29 11.75 65.13
0 1 0 0 4 93.6 12.92 18.95 125.47 15.46 39.78 9.59 64.83 15.58 37.86 9.86 63.3
0 1 0 0 5 92.55 12.2 17.31 122.07 12.46 33.59 9.3 55.35 13.53 31.39 9.56 54.47
0 1 0 1 1 41.25 13.75 20.06 75.05 9.07 33.62 11.55 54.24 11 30.37 12.16 53.53
0 1 0 1 2 54.91 12 17.63 84.54 8.56 31.39 9.85 49.8 8.19 31.3 9.86 49.35
0 1 0 1 3 95.13 14.62 21.47 131.22 14.99 40.67 11.15 66.81 12.88 39.76 11.35 63.99
0 1 0 1 4 73.65 12.92 18.95 105.52 16.07 45.47 8.71 70.25 14.67 38.13 9.82 62.62
0 1 0 1 5 315.74 12.2 17.31 345.26 11.15 33.7 9.17 54.02 11.89 31.48 9.48 52.86
0 1 0 2 1 146.72 13.75 20.06 180.53 9.41 29.79 12.3 51.49 8.64 30.25 12.17 51.06
0 1 0 2 2 61.65 12 17.63 91.28 5.43 33.74 9.4 48.58 7.12 31.72 9.62 48.46
0 1 0 2 3 78.34 14.62 21.47 114.44 8.89 40.14 11.41 60.44 9.14 39.21 11.56 59.91
0 1 0 2 4 77.01 12.92 18.95 108.88 11.24 37.5 9.94 58.68 11.08 36.61 10.05 57.74
0 1 0 2 5 309.34 12.2 17.31 338.86 9 41.86 8.12 58.97 12.14 33.56 9.16 54.85
0 1 1 0 1 127.16 13.75 20.06 160.96 19.48 35.95 11.34 66.77 19.6 35.53 11.4 66.53
0 1 1 0 2 162.42 12 17.63 192.05 18.39 34.01 9.58 61.98 18.37 33.98 9.59 61.95
0 1 1 0 3 169.22 14.62 21.47 205.31 23.51 44.83 11 79.34 23.94 44.52 11.02 79.48
0 1 1 0 4 123.85 12.92 18.95 155.72 26.56 43.32 9.29 79.18 27.49 41.98 9.4 78.87
0 1 1 0 5 110.36 12.2 17.31 139.88 20.46 36.58 9.01 66.05 20.43 35.5 9.15 65.08
0 1 1 1 1 66.03 13.75 20.06 99.84 18.15 36.2 11.18 65.53 16.78 36 11.27 64.05
0 1 1 1 2 73.78 12 17.63 103.41 15.19 34.84 9.47 59.5 15.54 33.75 9.58 58.87
0 1 1 1 3 122.51 14.62 21.47 158.6 21.83 48.09 10.36 80.28 21.95 44.95 10.75 77.65
0 1 1 1 4 99.67 12.92 18.95 131.54 26.09 43.61 9.19 78.89 26.22 41.7 9.49 77.41
0 1 1 1 5 340.44 12.2 17.31 369.96 21.33 38.07 8.6 68 18.32 35.27 9.14 62.73
0 1 1 2 1 206.93 13.75 20.06 240.74 13.3 38.06 10.99 62.35 14.49 34.86 11.52 60.87
0 1 1 2 2 83.17 12 17.63 112.8 15.5 39.59 8.86 63.95 14.84 37.72 9.02 61.57
0 1 1 2 3 103.53 14.62 21.47 139.62 19.64 45.12 10.8 75.57 18.72 42.86 11.09 72.67
0 1 1 2 4 104.62 12.92 18.95 136.49 22.26 44.17 9.19 75.63 20.7 45.03 9.24 74.97
0 1 1 2 5 334.32 12.2 17.31 363.84 23.29 40.31 8.28 71.88 21.38 37.11 8.85 67.34
0 1 2 0 1 182.73 13.75 20.06 216.54 34.74 39.37 11.06 85.16 34.57 39.65 11 85.22
0 1 2 0 2 199.04 12 17.63 228.67 31.34 37.52 9.31 78.17 31.84 36.97 9.36 78.17
0 1 2 0 3 207.75 14.62 21.47 243.84 43.74 47.71 10.74 102.19 43.64 47.88 10.76 102.28
0 1 2 0 4 167.62 12.92 18.95 199.49 44.2 45.99 9.19 99.37 43.53 45.2 9.35 98.08
0 1 2 0 5 132.98 12.2 17.31 162.5 35.51 38.36 8.92 82.79 35.94 37.63 8.99 82.55
0 1 2 1 1 100.22 13.75 20.06 134.03 31.97 42.45 10.76 85.18 32.51 40.55 10.94 84
0 1 2 1 2 98.35 12 17.63 127.99 29.52 37.78 9.28 76.58 29.65 37.44 9.3 76.4
0 1 2 1 3 156.03 14.62 21.47 192.12 39.1 48.91 10.58 98.59 39.87 47.84 10.61 98.31
0 1 2 1 4 130.59 12.92 18.95 162.46 47.06 45.86 8.99 101.91 45.19 43.79 9.38 98.35
0 1 2 1 5 367.5 12.2 17.31 397.02 35.43 39.81 8.66 83.9 34.35 38.19 8.81 81.34
0 1 2 2 1 240.03 13.75 20.06 273.84 32.13 42.8 10.59 85.53 32.45 39.69 10.98 83.12
0 1 2 2 2 109.48 12 17.63 139.11 29.96 39.29 9.11 78.37 28.83 38.66 9.16 76.64
0 1 2 2 3 136.19 14.62 21.47 172.28 36.46 48.73 10.54 95.72 36.01 46.8 10.74 93.54
0 1 2 2 4 136.54 12.92 18.95 168.41 44.7 44.72 9.28 98.7 43.77 44.07 9.41 97.26
0 1 2 2 5 334.16 12.2 17.31 363.68 37.67 40.52 8.66 86.85 37.2 39.13 8.82 85.15
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Sequential PSGA[DP-based Algo.] PSGA[Math. Model]
N Ct TF RDD r# Tard Tool Mach Total Tard Tool Mach Total Tard Tool Mach Total
1 0 0 0 1 49.86 12.83 18.56 81.25 6.2 28.21 11.54 45.95 5.51 28.51 11.42 45.44
1 0 0 0 2 95.21 16.14 24.39 135.75 7.39 36.83 14.95 59.18 6.32 36.41 15 57.74
1 0 0 0 3 98.49 14.74 22.2 135.44 7.36 36.84 12.92 57.12 7.34 35.84 13.17 56.35
1 0 0 0 4 90.39 13.31 19.59 123.29 6.27 40.25 10 56.52 7.57 35.68 10.6 53.85
1 0 0 0 5 65.55 11.95 17.32 94.82 4.98 31.2 9.53 45.72 5.14 28.52 10.02 43.68
1 0 0 1 1 37.08 12.83 18.56 68.47 2.1 30.05 11.01 43.17 2.53 28.37 11.37 42.27
1 0 0 1 2 54.71 16.14 24.39 95.24 1.7 38.43 14.64 54.78 2.74 35.29 15.23 53.26
1 0 0 1 3 106.38 14.74 22.2 143.33 2.6 35.3 13.04 50.94 4.43 31.42 13.86 49.71
1 0 0 1 4 205.18 13.31 19.59 238.08 7.73 39.84 9.94 57.51 3.77 36.37 10.54 50.69
1 0 0 1 5 97.39 11.95 17.32 126.67 4.03 32.95 9.36 46.33 4.17 27.99 10.12 42.28
1 0 0 2 1 37.97 12.83 18.56 69.36 1.03 28.25 11.52 40.8 1.82 25.3 12.13 39.25
1 0 0 2 2 122.31 16.14 24.39 162.84 4.05 38.82 14.56 57.43 1.77 33.26 15.72 50.75
1 0 0 2 3 203.83 14.74 22.2 240.78 2.68 36.78 13 52.47 1.2 34.82 13.29 49.31
1 0 0 2 4 78.05 13.31 19.59 110.95 6.11 40.26 10.03 56.4 2.84 33.74 10.98 47.55
1 0 0 2 5 100.71 11.95 17.32 129.98 7.19 32.49 9.44 49.12 3.42 28.1 10.11 41.63
1 0 1 0 1 121.03 12.83 18.56 152.43 22.75 34.75 10.7 68.2 20.69 33.04 10.87 64.6
1 0 1 0 2 213.69 16.14 24.39 254.22 22.84 45.58 13.71 82.12 22.31 45.1 13.78 81.19
1 0 1 0 3 177.27 14.74 22.2 214.22 25.98 44.52 12.2 82.7 26.29 44.45 12.14 82.88
1 0 1 0 4 130.92 13.31 19.59 163.82 23.63 45.23 9.73 78.59 22.65 43.59 9.77 76
1 0 1 0 5 112.58 11.95 17.32 141.86 17.48 37.84 8.88 64.2 16.8 36.21 9.03 62.05
1 0 1 1 1 107.76 12.83 18.56 139.15 17.28 35.48 10.41 63.17 15.66 36.33 10.33 62.31
1 0 1 1 2 114.19 16.14 24.39 154.72 17.13 45.76 13.72 76.61 20.3 47.21 13.76 81.27
1 0 1 1 3 188.56 14.74 22.2 225.51 12.32 43.87 11.92 68.11 11.7 42.84 12.03 66.57
1 0 1 1 4 267.22 13.31 19.59 300.12 23.23 45.97 9.63 78.83 21.4 46.57 9.55 77.52
1 0 1 1 5 159.56 11.95 17.32 188.84 17.48 38.54 8.9 64.92 12.63 36.04 9.02 57.69
1 0 1 2 1 86.06 12.83 18.56 117.45 10.8 34.97 10.51 56.28 7.53 34.79 10.49 52.81
1 0 1 2 2 254.44 16.14 24.39 294.97 22.91 49.23 13.45 85.59 23.79 48.72 13.52 86.03
1 0 1 2 3 321.67 14.74 22.2 358.62 16.1 47 12.07 75.17 16.42 47.3 12.02 75.75
1 0 1 2 4 136.31 13.31 19.59 169.21 23.81 44.65 9.7 78.16 22.47 44.42 9.81 76.7
1 0 1 2 5 164.4 11.95 17.32 193.67 22.03 39.15 8.63 69.81 19.61 38.8 8.68 67.1
1 0 2 0 1 242.41 12.83 18.56 273.8 65.39 37.54 10.46 113.4 65.23 36.83 10.42 112.48
1 0 2 0 2 386.35 16.14 24.39 426.88 83.66 51.53 13.4 148.59 82.33 50.31 13.55 146.2
1 0 2 0 3 284.98 14.74 22.2 321.93 76.92 49.55 11.96 138.43 76.92 49.55 11.96 138.43
1 0 2 0 4 207.79 13.31 19.59 240.69 74.53 47.36 9.65 131.54 74.39 47.5 9.62 131.52
1 0 2 0 5 180.52 11.95 17.32 209.79 59.78 40.24 8.69 108.71 60.03 39.92 8.73 108.69
1 0 2 1 1 229.44 12.83 18.56 260.83 63.95 39.29 10.07 113.31 64.18 37.55 10.27 112
1 0 2 1 2 217.97 16.14 24.39 258.51 98.48 50.3 13.56 162.34 89.25 51.04 13.5 153.79
1 0 2 1 3 299.03 14.74 22.2 335.97 79.51 51.28 11.46 142.24 77.9 50.76 11.48 140.14
1 0 2 1 4 338.38 13.31 19.59 371.28 81.71 47.44 9.53 138.68 81.93 48.25 9.52 139.71
1 0 2 1 5 239.8 11.95 17.32 269.08 75.32 39.05 8.86 123.22 70.76 39.22 8.88 118.86
1 0 2 2 1 173.66 12.83 18.56 205.05 62.38 37.42 10.37 110.17 59.56 37.61 10.33 107.5
1 0 2 2 2 431.57 16.14 24.39 472.1 110.49 51.4 13.31 175.21 105.18 50.73 13.37 169.29
1 0 2 2 3 463.88 14.74 22.2 500.83 88.94 49.45 11.87 150.27 91.4 50.62 11.76 153.77
1 0 2 2 4 215.83 13.31 19.59 248.73 81.87 47.17 9.55 138.59 85.27 47.45 9.58 142.29
1 0 2 2 5 250.44 11.95 17.32 279.71 77.19 40.4 8.59 126.19 72.29 40.83 8.54 121.66
1 1 0 0 1 273.52 22.92 32.81 329.24 24.87 71.29 15.88 112.04 23.96 65.51 16.91 106.38
1 1 0 0 2 427.41 28.12 41.51 497.03 26.83 102.01 18.92 147.77 27.53 87.9 20.75 136.18
1 1 0 0 3 366.22 26.18 38.93 431.33 32.15 103.98 17 153.13 33.34 86.16 18.8 138.3
1 1 0 0 4 276.33 23.65 34.55 334.54 34.63 98.04 14.39 147.06 31.4 89.98 15.09 136.47
1 1 0 0 5 225.94 21.7 31.23 278.88 26.91 85.33 13.5 125.73 25.33 72.31 14.82 112.47
1 1 0 1 1 241.82 22.92 32.81 297.54 19.99 77.57 15.09 112.65 18.43 70.1 16.05 104.58
1 1 0 1 2 227.6 28.12 41.51 297.23 20.94 101.96 18.87 141.77 20.4 94.5 19.76 134.66
1 1 0 1 3 391.84 26.18 38.93 456.95 18.45 100.32 17.16 135.93 21.3 85.72 18.74 125.76
1 1 0 1 4 455.05 23.65 34.55 513.26 34.61 99.36 14.08 148.04 27.16 90.06 14.86 132.08
1 1 0 1 5 270.99 21.7 31.23 323.92 28.97 86.02 13.19 128.18 21.98 72.9 14.4 109.29
1 1 0 2 1 209.36 22.92 32.81 265.08 11.41 78 15.05 104.45 8.77 75.21 15.33 99.31
1 1 0 2 2 452.51 28.12 41.51 522.14 12.83 102 18.87 133.7 9.87 94.79 19.84 124.49
1 1 0 2 3 622.85 26.18 38.93 687.96 20.88 109.63 16.11 146.63 17.01 93.41 17.96 128.39
1 1 0 2 4 267.38 23.65 34.55 325.58 41.29 99.7 13.87 154.85 23.46 88.93 14.86 127.25
1 1 0 2 5 285.41 21.7 31.23 338.34 30.27 93.84 12.13 136.24 15.61 87.36 12.83 115.81
1 1 1 0 1 396.72 22.92 32.81 452.45 42.3 79.9 15.46 137.66 42.02 75.65 15.86 133.53
1 1 1 0 2 595.57 28.12 41.51 665.2 52.49 106.79 19.12 178.39 53.84 105.18 19.24 178.27
1 1 1 0 3 472.71 26.18 38.93 537.81 60.41 105.85 17.19 183.44 57.32 105.48 17.31 180.11
1 1 1 0 4 324.9 23.65 34.55 383.11 64.01 100.14 14.28 178.43 58.89 98.56 14.5 171.95
1 1 1 0 5 292.11 21.7 31.23 345.05 48.86 90.56 13.44 152.86 45.27 84.55 14.03 143.85
1 1 1 1 1 351.31 22.92 32.81 407.03 41.25 86.85 14.6 142.69 35.19 86.3 15.04 136.52
1 1 1 1 2 324.41 28.12 41.51 394.03 51.83 115.91 18.35 186.1 49.95 105.96 19.06 174.98
1 1 1 1 3 500.8 26.18 38.93 565.91 39.47 116.36 16.34 172.16 42.27 110.57 16.83 169.68
1 1 1 1 4 522.17 23.65 34.55 580.37 57.49 115.98 13.2 186.67 53.09 105.83 13.99 172.92
1 1 1 1 5 346.76 21.7 31.23 399.69 47.95 98.61 12.5 159.06 42.19 94.73 13.15 150.08
1 1 1 2 1 305.73 22.92 32.81 361.46 21.81 103.85 13.32 138.98 25.31 94.44 13.95 133.7
1 1 1 2 2 627.86 28.12 41.51 697.49 56.07 131.61 16.61 204.29 40.42 131.26 17.34 189.03
1 1 1 2 3 763.2 26.18 38.93 828.31 43.55 126.07 15.87 185.49 44.36 123.04 16.19 183.6
1 1 1 2 4 345.74 23.65 34.55 403.95 56.64 117.15 13.17 186.97 49.08 111.93 13.35 174.36
1 1 1 2 5 363.8 21.7 31.23 416.74 59.36 98.57 12.18 170.1 45.84 106.73 11.73 164.3
1 1 2 0 1 545.87 22.92 32.81 601.59 86.48 87.32 15.29 189.08 81.67 89.43 15.13 186.23
1 1 2 0 2 794.16 28.12 41.51 863.79 118.35 120.82 18.43 257.61 122.69 122.35 18.22 263.26
1 1 2 0 3 601.74 26.18 38.93 666.85 121.38 120.25 16.65 258.29 122.41 117.52 16.85 256.77
1 1 2 0 4 418.39 23.65 34.55 476.59 118.7 114.37 13.74 246.81 114.91 111.53 13.79 240.23
1 1 2 0 5 372.68 21.7 31.23 425.61 98.22 102.41 12.77 213.4 90.83 95.07 13.47 199.37
1 1 2 1 1 505.1 22.92 32.81 560.83 85.68 86.05 14.86 186.58 87.07 88.66 14.78 190.51
1 1 2 1 2 458.99 28.12 41.51 528.62 131.11 125.09 17.94 274.14 126.49 124.57 17.85 268.91
1 1 2 1 3 634.13 26.18 38.93 699.23 112.63 126.37 16.12 255.12 110.15 125.93 16.25 252.32
1 1 2 1 4 597.27 23.65 34.55 655.48 125.72 112.62 13.61 251.96 120.99 112.88 13.78 247.66
1 1 2 1 5 435.88 21.7 31.23 488.82 107.45 101.34 12.35 221.14 102.88 97.93 12.77 213.58
1 1 2 2 1 422.26 22.92 32.81 477.98 81.28 94.92 14.06 190.26 78.73 92.76 14.34 185.82
1 1 2 2 2 823.98 28.12 41.51 893.6 141.4 122.89 18.04 282.33 138.61 126.57 17.7 282.87
1 1 2 2 3 919.04 26.18 38.93 984.15 124.79 117.3 16.5 258.59 121.65 124.91 16.06 262.61
1 1 2 2 4 437.63 23.65 34.55 495.83 121.72 114.85 13.49 250.06 123.87 108.81 13.66 246.34
1 1 2 2 5 454.2 21.7 31.23 507.14 100.27 103.39 11.94 215.59 104.93 97.21 12.55 214.69
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C.2 CPU Time Values

N Ct TF RDD r# Sequential PSGA[DP-based Algo.] PSGA[Math. Model]
0 0 0 0 1 11.2 114.8 367.1
0 0 0 0 2 9.8 122.4 364.3
0 0 0 0 3 13.9 102.0 366.5
0 0 0 0 4 16.3 83.6 371.7
0 0 0 0 5 14.4 108.5 382.4
0 0 0 1 1 12.6 128.1 373.9
0 0 0 1 2 11.7 136.8 379.4
0 0 0 1 3 14.8 129.5 380.8
0 0 0 1 4 16.8 82.9 372.1
0 0 0 1 5 10.2 10.2 392.4
0 0 0 2 1 8.5 135.2 390.7
0 0 0 2 2 9.1 120.5 374.7
0 0 0 2 3 14.5 151.7 388.9
0 0 0 2 4 11.8 11.8 391.9
0 0 0 2 5 10.2 104.1 385.9
0 0 1 0 1 11.8 60.7 342.4
0 0 1 0 2 9.6 72.2 339.5
0 0 1 0 3 13.1 47.1 333.6
0 0 1 0 4 16.0 40.6 350.4
0 0 1 0 5 14.1 49.8 356.3
0 0 1 1 1 12.5 81.7 346.4
0 0 1 1 2 10.8 76.0 352.0
0 0 1 1 3 14.4 61.4 355.5
0 0 1 1 4 16.6 43.3 350.2
0 0 1 1 5 11.3 49.9 368.7
0 0 1 2 1 11.2 81.7 364.4
0 0 1 2 2 10.8 77.4 334.5
0 0 1 2 3 13.8 64.5 345.3
0 0 1 2 4 13.1 40.8 340.6
0 0 1 2 5 9.9 48.0 352.9
0 0 2 0 1 11.3 37.7 310.6
0 0 2 0 2 11.3 37.6 303.9
0 0 2 0 3 12.7 36.6 307.2
0 0 2 0 4 14.7 33.5 320.3
0 0 2 0 5 13.2 35.2 324.2
0 0 2 1 1 11.2 36.9 302.8
0 0 2 1 2 11.0 38.0 304.2
0 0 2 1 3 13.4 37.8 300.6
0 0 2 1 4 16.1 33.6 319.3
0 0 2 1 5 10.3 34.4 327.0
0 0 2 2 1 10.3 41.3 305.5
0 0 2 2 2 9.8 39.8 303.0
0 0 2 2 3 13.0 39.3 321.4
0 0 2 2 4 14.7 33.4 308.1
0 0 2 2 5 10.2 34.9 314.5
0 1 0 0 1 11.8 142.3 393.9
0 1 0 0 2 11.4 120.4 399.4
0 1 0 0 3 12.9 114.6 395.6
0 1 0 0 4 16.0 101.5 408.2
0 1 0 0 5 14.5 105.5 408.8
0 1 0 1 1 12.9 156.1 397.4
0 1 0 1 2 11.7 135.7 407.6
0 1 0 1 3 14.5 126.8 395.0
0 1 0 1 4 17.7 82.6 405.8
0 1 0 1 5 10.3 10.3 417.9
0 1 0 2 1 10.7 144.0 401.9
0 1 0 2 2 12.7 129.5 398.2
0 1 0 2 3 13.6 125.4 399.1
0 1 0 2 4 13.3 13.3 422.7
0 1 0 2 5 9.9 94.3 415.2
0 1 1 0 1 12.2 90.1 372.3
0 1 1 0 2 11.6 76.4 382.6
0 1 1 0 3 13.1 75.9 370.3
0 1 1 0 4 16.2 50.3 387.8
0 1 1 0 5 14.4 59.1 393.3
0 1 1 1 1 12.2 97.8 375.0
0 1 1 1 2 12.0 86.7 381.8
0 1 1 1 3 14.0 80.3 377.1
0 1 1 1 4 17.8 58.1 386.4
0 1 1 1 5 11.1 63.2 391.2
0 1 1 2 1 10.2 108.8 378.5
0 1 1 2 2 10.9 77.8 369.7
0 1 1 2 3 13.7 77.6 383.7
0 1 1 2 4 14.2 43.6 373.2
0 1 1 2 5 10.4 44.5 390.9
0 1 2 0 1 10.6 38.2 340.0
0 1 2 0 2 10.3 37.4 345.8
0 1 2 0 3 12.5 37.9 343.4
0 1 2 0 4 13.7 35.2 360.1
0 1 2 0 5 13.1 35.5 363.9
0 1 2 1 1 11.0 41.7 332.2
0 1 2 1 2 9.9 40.5 348.6
0 1 2 1 3 12.1 44.9 342.0
0 1 2 1 4 14.1 34.9 356.1
0 1 2 1 5 10.8 36.8 352.1
0 1 2 2 1 9.7 55.7 335.5
0 1 2 2 2 9.3 47.8 338.2
0 1 2 2 3 13.1 42.4 346.5
0 1 2 2 4 12.7 34.2 341.1
0 1 2 2 5 10.1 39.9 356.8
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N Ct TF RDD r# Sequential PSGA[DP-based Algo.] PSGA[Math. Model]
1 0 0 0 1 73.2 275.2 508.8
1 0 0 0 2 57.3 329.9 609.1
1 0 0 0 3 63.7 229.4 586.6
1 0 0 0 4 77.1 186.3 605.1
1 0 0 0 5 75.0 243.8 578.8
1 0 0 1 1 56.2 281.4 573.0
1 0 0 1 2 57.2 290.5 687.4
1 0 0 1 3 59.2 347.5 721.3
1 0 0 1 4 36.8 274.6 674.8
1 0 0 1 5 48.8 237.0 617.3
1 0 0 2 1 57.9 456.1 638.1
1 0 0 2 2 52.9 476.3 748.1
1 0 0 2 3 47.5 406.0 753.1
1 0 0 2 4 79.8 358.7 719.7
1 0 0 2 5 45.4 326.2 701.8
1 0 1 0 1 48.7 87.0 432.0
1 0 1 0 2 55.2 121.6 536.1
1 0 1 0 3 60.6 96.0 507.4
1 0 1 0 4 69.1 92.6 525.8
1 0 1 0 5 73.3 92.8 483.1
1 0 1 1 1 57.5 125.7 442.4
1 0 1 1 2 43.9 141.7 492.6
1 0 1 1 3 47.6 123.3 548.0
1 0 1 1 4 39.5 85.7 509.4
1 0 1 1 5 54.1 83.4 476.1
1 0 1 2 1 60.4 166.8 483.9
1 0 1 2 2 57.6 201.5 507.9
1 0 1 2 3 55.9 114.2 497.8
1 0 1 2 4 79.1 94.8 483.7
1 0 1 2 5 46.5 86.0 498.1
1 0 2 0 1 58.0 70.1 376.8
1 0 2 0 2 47.6 69.3 401.9
1 0 2 0 3 56.9 70.5 401.9
1 0 2 0 4 64.3 70.0 412.8
1 0 2 0 5 69.6 70.6 418.4
1 0 2 1 1 47.6 72.0 385.4
1 0 2 1 2 50.6 73.7 430.6
1 0 2 1 3 52.6 67.9 390.2
1 0 2 1 4 41.3 71.2 422.7
1 0 2 1 5 52.2 68.2 410.9
1 0 2 2 1 50.2 77.5 395.8
1 0 2 2 2 43.7 71.2 418.7
1 0 2 2 3 47.2 73.3 425.2
1 0 2 2 4 68.1 71.3 436.3
1 0 2 2 5 43.3 67.2 418.8
1 1 0 0 1 50.5 332.5 735.4
1 1 0 0 2 44.2 347.5 820.0
1 1 0 0 3 49.1 305.7 824.9
1 1 0 0 4 74.0 225.7 816.7
1 1 0 0 5 69.2 255.1 804.4
1 1 0 1 1 56.1 331.6 737.4
1 1 0 1 2 46.2 325.3 811.2
1 1 0 1 3 63.9 333.2 859.8
1 1 0 1 4 41.0 237.5 818.2
1 1 0 1 5 55.8 265.4 804.3
1 1 0 2 1 66.7 428.1 794.1
1 1 0 2 2 55.4 465.0 819.3
1 1 0 2 3 54.2 299.2 850.4
1 1 0 2 4 75.3 264.7 837.3
1 1 0 2 5 50.3 311.2 798.8
1 1 1 0 1 47.6 156.0 639.1
1 1 1 0 2 41.6 179.4 710.4
1 1 1 0 3 60.5 109.1 713.4
1 1 1 0 4 65.4 108.6 705.5
1 1 1 0 5 66.9 102.0 712.5
1 1 1 1 1 43.0 146.9 616.5
1 1 1 1 2 54.3 148.8 715.3
1 1 1 1 3 56.4 142.7 734.6
1 1 1 1 4 41.9 92.1 717.4
1 1 1 1 5 56.6 90.4 685.7
1 1 1 2 1 61.1 133.8 581.1
1 1 1 2 2 51.8 107.2 599.0
1 1 1 2 3 50.5 98.6 627.5
1 1 1 2 4 73.4 104.3 663.7
1 1 1 2 5 51.6 119.5 603.0
1 1 2 0 1 46.2 73.3 516.1
1 1 2 0 2 48.9 73.9 547.4
1 1 2 0 3 56.0 72.7 576.5
1 1 2 0 4 61.4 70.5 593.4
1 1 2 0 5 69.2 72.2 570.9
1 1 2 1 1 38.0 79.5 518.7
1 1 2 1 2 45.2 74.6 557.7
1 1 2 1 3 43.7 71.4 541.7
1 1 2 1 4 41.4 74.0 573.0
1 1 2 1 5 51.6 71.5 561.7
1 1 2 2 1 46.3 85.5 556.7
1 1 2 2 2 40.9 79.9 545.0
1 1 2 2 3 43.6 79.3 573.1
1 1 2 2 4 64.8 73.5 592.0
1 1 2 2 5 49.1 75.9 596.9



Appendix D

Statistical Analysis of Results

D.1 Analysis of The Problem with a Given Se-
quence

Cost Pairs Mean N Std. Deviation Std. Error Mean
1 DP-based Algo 134.41 900 86.52 2.88

Math Model 131.40 900 85.47 2.84

Table D.1: Paired samples statistics for DP-based algorithm and Math Model
solved in GAMS

Cost Pairs N Correlation Sig.
1 DP-based Algo & Math Model 900 0.995 0.000

Table D.2: Paired samples correlations for DP-based algorithm and Math Model
solved in GAMS

95% CI of Difference
Cost Pairs St Dev S.E. Mean Lower Upper t Sig.

1 DP-based Algo & Math Model 8.29 0.28 2.46 3.54 10.88 0.000

Table D.3: Paired samples test results for DP-based algorithm and Math Model
solved in GAMS

98
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Source Dependent variables Sum of squares DF Mean Square F Sig.
Corrected Model DP-based Algo 6460870.17 35 184596.29 594.44 0.000

Math Model 6322880.48 35 180653.73 639.73 0.000
Intercept DP-based Algo 16259042.75 1 16259042.75 52357.56 0.000

Math Model 15539585.80 1 15539585.80 55028.32 0.000
N DP-based Algo 3193768.11 1 3193768.11 10284.61 0.000

Math Model 3015682.77 1 3015682.77 10679.05 0.000
Ct DP-based Algo 1480828.57 1 1480828.57 4768.58 0.000

Math Model 1312562.50 1 1312562.50 4648.01 0.000
TF DP-based Algo 1170138.30 2 585069.15 1884.05 0.000

Math Model 1367883.87 2 683941.93 2421.95 0.000
RDD DP-based Algo 8101.71 2 4050.85 13.04 0.00

Math Model 2731.90 2 1365.95 4.84 0.008

Table D.4: Test of Between-Subjects Effects for the cost values of DP-based
algorithm and Math Model solved in GAMS

95% CI of Difference
Dependent Variable Mean S.E. Mean Lower Upper
DP-based Algo 134.41 0.59 133.25 135.56
Math Model 131.40 0.56 130.30 132.50

Table D.5: Estimated Marginal Grand Mean for the cost values of two stage
algorithm and proposed PSGAs

95% CI of Difference
Dependent Variable N Mean S.E. Mean Lower Upper
DP-based Algo 0 74.84 0.83 73.21 76.47

1 139.98 0.83 192.35 195.61
Math Model 0 73.51 0.79 71.96 75.07

1 189.29 0.79 187.73 190.84

Table D.6: Estimated Marginal Mean by the factor N for the cost values of
DP-based algorithm and Math Model solved in GAMS

95% CI of Difference
Dependent Variable Ct Mean S.E. Mean Lower Upper
DP-based Algo 0 93.84 0.83 92.21 95.47

1 174.97 0.83 173.34 176.60
Math Model 0 93.21 0.79 91.66 94.77

1 169.59 0.79 168.03 171.14

Table D.7: Estimated Marginal Mean by the factor Ct for DP-based algorithm
and Math Model solved in GAMS
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95% CI of Difference
Dependent Variable TF Mean S.E. Mean Lower Upper
DP-based Algo 0 94.90 1.02 92.91 96.90

1 126.23 1.02 124.24 128.23
2 182.09 1.02 180.09 184.08

Math Model 0 87.16 0.97 85.26 89.07
1 125.02 0.97 123.12 126.92
2 182.02 0.97 180.11 183.92

Table D.8: Estimated Marginal Mean by the factor TF for DP-based algorithm
and Math Model solved in GAMS

95% CI of Difference
Dependent Variable RDD Mean S.E. Mean Lower Upper
DP-based Algo 0 131.291 1.02 129.29 133.29

1 133.47 1.02 131.48 135.47
2 138.46 1.02 136.46 140.46

Math Model 0 129.71 0.97 127.80 131.61
1 130.70 0.97 128.79 132.60
2 133.79 0.97 131.89 135.70

Table D.9: Estimated Marginal Mean by the factor RDD for DP-based algorithm
and Math Model solved in GAMS

Time Pairs Mean N Std. Deviation Std. Error Mean
1 DP-based Algo 0.14 900 0.11 0.004

Math Model 0.72 900 0.24 0.008

Table D.10: Paired samples statistics for CPU times of DP-based algorithm and
Math Model solved in GAMS

Cost Pairs N Correlation Sig.
1 DP-based Algo & Math Model 900 0.746 0.000

Table D.11: Paired samples correlations for CPU times of DP-based algorithm
and Math Model solved in GAMS

95% CI of Difference
Cost Pairs St Dev S.E. Mean Lower Upper t Sig.

1 DP-based Algo & Math Model 0.17 0.005 -0.59 -0.57 -100.99 0.000

Table D.12: Paired samples test results for CPU times of DP-based algorithm
and Math Model solved in GAMS
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Source Dependent variables Sum of squares DF Mean Square F Sig.
Corrected Model DP-based Algo 8.71 35 0.25 78.61 0.000

Math Model 48.59 35 1.39 396.06 0.000
Intercept DP-based Algo 18.27 1 18.27 5766.39 0.000

Math Model 471.22 1 471.22 134428.82 0.000
N DP-based Algo 2.68 1 2.68 845.58 0.000

Math Model 26.86 1 26.86 7661.55 0.000
Ct DP-based Algo 0.19 1 0.19 59.45 0.000

Math Model 6.87 1 6.87 1959.75 0.000
TF DP-based Algo 3.60 2 1.80 568.84 0.000

Math Model 7.73 2 3.87 1104.61 0.000
RDD DP-based Algo 0.30 2 0.15 48.05 0.000

Math Model 0.61 2 0.30 86.70 0.000

Table D.13: Test of Between-Subjects Effects for the cost values of DP-based
algorithm and Math Model solved in GAMS

95% CI of Difference
Dependent Variable Mean S.E. Mean Lower Upper
DP-based Algo 0.142 0.002 0.14 0.146
Math Model 0.724 0.002 0.72 0.727

Table D.14: Estimated Marginal Grand Mean for the CPU times of two stage
algorithm and proposed PSGAs

95% CI of Difference
Dependent Variable N Mean S.E. Mean Lower Upper
DP-based Algo 0 0.09 0.003 0.08 0.09

1 0.20 0.003 0.19 0.20
Math Model 0 0.55 0.003 0.54 0.55

1 0.87 0.003 0.89 0.90

Table D.15: Estimated Marginal Mean by the factor N for the CPU times of
DP-based algorithm and Math Model solved in GAMS

95% CI of Difference
Dependent Variable Ct Mean S.E. Mean Lower Upper
DP-based Algo 0 0.13 0.003 0.12 0.12

1 0.16 0.003 0.15 0.16
Math Model 0 0.64 0.003 0.63 0.64

1 0.81 0.003 0.80 0.81

Table D.16: Estimated Marginal Mean by the factor Ct for the CPU times of
DP-based algorithm and Math Model solved in GAMS
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95% CI of Difference
Dependent Variable TF Mean S.E. Mean Lower Upper
DP-based Algo 0 0.23 0.003 0.22 0.24

1 0.11 0.003 0.10 0.12
2 0.08 0.003 0.08 0.09

Math Model 0 0.84 0.003 0.83 0.85
1 0.72 0.003 0.71 0.73
2 0.61 0.003 0.61 0.62

Table D.17: Estimated Marginal Mean by the factor TF for the CPU times of
DP-based algorithm and Math Model solved in GAMS

95% CI of Difference
Dependent Variable RDD Mean S.E. Mean Lower Upper
DP-based Algo 0 0.12 0.003 0.12 0.13

1 0.14 0.003 0.13 0.14
2 0.17 0.003 0.16 0.17

Math Model 0 0.69 0.003 0.69 0.70
1 0.72 0.003 0.72 0.73
2 0.76 0.003 0.75 0.76

Table D.18: Estimated Marginal Mean by the factor RDD for the CPU times of
DP-based algorithm and Math Model solved in GAMS
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D.2 Analysis of The Original Problem

Cost Pairs Mean N Std. Deviation Std. Error Mean
1 Sequential 246.40 180 191.98 14.31

PSGA[DP-Algo] 93.35 180 62.87 4.68
2 Sequential 246.40 180 191.98 14.31

PSGA[Math Model] 90.42 180 61.32 4.57
3 PSGA[DP-Algo] 93.35 180 62.87 4.68

PSGA[Math Model] 90.42 180 61.32 4.58

Table D.19: Paired samples statistics for the sequential algorithm and proposed
PSGAs

Cost Pairs N Correlation Sig.
1 Sequential & PSGA[DP-Algo] 180 0.895 0.000
2 Sequential & PSGA[Math Model] 180 0.895 0.000
3 PSGA[DP-Algo] & PSGA[Math Model] 180 0.997 0.000

Table D.20: Paired samples correlations for the sequential algorithm and proposed
PSGAs

95% CI of Difference
Cost Pairs St Dev S.E. Mean Lower Upper t Sig.

1 Sequential & PSGA[DP-Algo] 138.54 10.32 132.66 173.42 14.82 0.000
2 Sequential & PSGA[Math Model] 139.89 10.43 135.40 176.55 14.95 0.000
3 PSGA[DP-Algo] & PSGA[Math Model] 4.68 0.35 2.24 3.62 8.39 0.000

Table D.21: Paired samples test results for PSGA parameter sets
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Source Dependent variables Sum of squares DF Mean Square F Sig.
Corrected Model Sequential 5136740.55 35 146764.01 14.46 0.000

PSGA[DP-Algo] 675598.10 35 19302.80 86.61 0.000
PSGA[Math Model] 642144.45 35 18346.98 84.99 0.000

Intercept Sequential 10928342.66 1 10928342.65 1077.18 0.000
PSGA[DP-Algo] 1568789.70 1 1568789.70 7039.3 0.000
PSGA[Math Model] 1471746.45 1 1471746.45 6817.75 0.000

N Sequential 2306545.09 1 2306545.09 227.35 0.000
PSGA[DP-Algo] 292351.51 1 292351.51 1311.81 0.000
PSGA[Math Model] 264796.78 1 264796.78 1226.65 0.000

Ct Sequential 1662564.60 1 1662564.60 163.87 0.000
PSGA[DP-Algo] 200263.42 1 200263.42 898.60 0.000
PSGA[Math Model] 181260.16 1 181260.16 839.67 0.000

TF Sequential 508777.60 2 254388.80 25.07 0.000
PSGA[DP-Algo] 111396.73 2 55698.37 249.92 0.000
PSGA[Math Model] 122346.78 2 61173.39 283.38 0.000

RDD Sequential 45300.87 2 22650.44 2.23 0.111
PSGA[DP-Algo] 50.92 2 25.46 0.11 0.892
PSGA[Math Model] 38.61 2 19.31 0.09 0.914

Table D.22: Test of Between-Subjects Effects for the cost values of sequential
algorithm and proposed PSGAs

95% CI of Difference
Dependent Variable Mean S.E. Mean Lower Upper
Sequential 246.40 7.51 231.56 261.23
PSGA[DP-Algo] 93.36 1.11 91.16 95.56
PSGA[Math Model] 90.42 1.09 88.26 92.59

Table D.23: Estimated Marginal Grand Mean for the cost values of the sequential
algorithm and proposed PSGAs

95% CI of Difference
Dependent Variable N Mean S.E. Mean Lower Upper
Sequential 0 133.20 10.62 112.21 154.19

1 359.60 10.62 338.61 380.58
PSGA[DP-Algo] 0 53.06 1.57 49.94 56.17

1 133.66 1.57 130.54 136.76
PSGA[Math Model] 0 52.07 1.55 49.01 55.13

1 128.78 1.55 125.72 131.83

Table D.24: Estimated Marginal Mean by the factor N for the cost values of the
sequential algorithm and proposed PSGAs

95% CI of Difference
Dependent Variable Ct Mean S.E. Mean Lower Upper
Sequential 0 150.29 10.62 129.31 171.28

1 342.51 10.62 321.52 363.49
PSGA[DP-Algo] 0 60.00 1.57 56.89 63.11

1 126.71 1.57 123.60 129.82
PSGA[Math Model] 0 58.69 1.55 55.63 61.75

1 122.16 1.55 119.10 125.22

Table D.25: Estimated Marginal Mean by the factor Ct for the cost values of the
sequential algorithm and proposed PSGAs
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95% CI of Difference
Dependent Variable TF Mean S.E. Mean Lower Upper
Sequential 0 184.07 13.00 158.37 209.78

1 241.14 13.00 215.44 266.84
2 313.98 13.00 288.28 339.68

PSGA[DP-Algo] 0 67.09 1.93 63.27 70.89
1 86.22 1.93 82.41 90.03
2 126.76 1.93 122.95 130.57

PSGA[Math Model] 0 62.52 1.90 58.78 66.28
1 83.49 1.90 79.74 87.24
2 125.25 1.90 121.50 123.00

Table D.26: Estimated Marginal Mean by the factor TF for the cost values of
the sequential algorithm and proposed PSGAs

95% CI of Difference
Dependent Variable RDD Mean S.E. Mean Lower Upper
Sequential 0 233.38 13.00 207.67 259.08

1 237.09 13.00 211.39 262.79
2 268.73 13.00 243.03 243.43

PSGA[DP-Algo] 0 92.98 1.93 89.17 96.79
1 92.98 1.93 89.17 96.79
2 94.11 1.93 90.30 97.92

PSGA[Math Model] 0 90.84 1.90 87.10 94.60
1 89.78 1.90 86.03 93.53
2 90.65 1.90 86.90 94.40

Table D.27: Estimated Marginal Mean by the factor RDD for the cost values of
the sequential algorithm and proposed PSGAs

Time Pairs Mean N Std. Deviation Std. Error Mean
1 Sequential 33.71 180 22.65 1.69

PSGA[DP-Algo] 119.29 180 98.74 7.36
2 Sequential 33.71 180 22.65 1.69

PSGA[Math Model] 480.23 180 154.16 11.49
3 PSGA[DP-Algo] 119.29 180 98.74 7.36

PSGA[Math Model] 480.23 180 154.16 11.49

Table D.28: Paired samples statistics for CPU times of the sequential algorithm
and proposed PSGAs

Cost Pairs N Correlation Sig.
1 Sequential & PSGA[DP-Algo] 180 0.511 0.000
2 Sequential & PSGA[Math Model] 180 0.748 0.000
3 PSGA[DP-Algo] & PSGA[Math Model] 180 0.771 0.000

Table D.29: Paired samples correlations for the CPU times of the sequential
algorithm and proposed PSGAs
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95% CI of Difference
Cost Pairs St Dev S.E. Mean Lower Upper t Sig.

1 Sequential - PSGA[DP-Algo] 89.31 6.66 -98.71 -72.44 -12.87 0.000
2 Sequential - PSGA[Math Model] 138.03 10.29 -466.82 -426.21 -43.40 0.000
3 PSGA[DP-Algo] - PSGA[Math Model] 100.25 7.47 -375.68 -346.19 -48.30 0.000

Table D.30: Paired samples test results for the CPU times of the sequential
algorithm and proposed PSGAs

Source Dependent variables Sum of squares DF Mean Square F Sig.
Corrected Model Sequential 84818.946 35 2423.40 49.55 0.000

PSGA[DP-Algo] 1581396.43 35 45182.75 39.69 0.000
PSGA[Math Model] 4162208.99 35 118920.26 186.62 0.000

Intercept Sequential 204579.92 1 204579.92 4183.18 0.000
PSGA[DP-Algo] 2561428.28 1 2561428.28 2250.29 0.000
PSGA[Math Model] 41511244.48 1 41511244.48 65141.49 0.000

N Sequential 81597.33 1 81597.33 1668.47 0.000
PSGA[DP-Algo] 440827.227 1 440827.23 387.28 0.000
PSGA[Math Model] 2520620.70 1 2520620.70 3955.48 0.000

Ct Sequential 63.21 1 63.21 1.29 0.257
PSGA[DP-Algo] 1430.42 1 1430.42 1.26 0.264
PSGA[Math Model] 418413.63 1 418413.63 656.59 0.013

TF Sequential 441.50 2 220.75 25.07 0.000
PSGA[DP-Algo] 778085.33 2 389042.61 249.92 0.000
PSGA[Math Model] 703989.99 2 351995.00 283.38 0.000

RDD Sequential 868.79 2 434.40 8.88 0.000
PSGA[DP-Algo] 13259.93 2 6629.97 5.82 0.004
PSGA[Math Model] 2949.05 2 1474.52 2.31 0.103

Table D.31: Test of Between-Subjects Effects for the CPU times of the sequential
algorithm and proposed PSGAs

95% CI of Difference
Dependent Variable Mean S.E. Mean Lower Upper
Sequential 33.71 0.521 32.68 34.74
PSGA[DP-Algo] 119.29 2.51 114.32 124.26
PSGA[Math Model] 480.23 1.88 476.51 483.95

Table D.32: Estimated Marginal Grand Mean for the CPU times of the sequential
algorithm and proposed PSGAs

95% CI of Difference
Dependent Variable N Mean S.E. Mean Lower Upper
Sequential 0 12.42 0.73 10.96 13.88

1 55.00 0.73 53.55 56.46
PSGA[DP-Algo] 0 69.80 3.56 62.77 76.83

1 168.78 3.56 161.75 175.81
PSGA[Math Model] 0 361.89 2.66 356.63 367.15

1 598.56 2.66 593.30 603.82

Table D.33: Estimated Marginal Mean by the factor N for CPU times of the
sequential algorithm and proposed PSGAs



APPENDIX D. STATISTICAL ANALYSIS OF RESULTS 107

95% CI of Difference
Dependent Variable Ct Mean S.E. Mean Lower Upper
Sequential 0 34.30 0.74 32.85 35.76

1 33.12 0.74 31.66 34.57
PSGA[DP-Algo] 0 116.47 3.56 109.44 123.50

1 122.11 3.56 115.08 129.14
PSGA[Math Model] 0 432.01 2.66 426.75 437.27

1 528.44 2.66 523.18 533.70

Table D.34: Estimated Marginal Mean by the factor Ct for the CPU times of the
sequential algorithm and proposed PSGAs

95% CI of Difference
Dependent Variable TF Mean S.E. Mean Lower Upper
Sequential 0 35.32 0.90 33.53 37.10

1 34.23 0.90 32.45 36.02
2 31.59 0.90 29.80 33.37

PSGA[DP-Algo] 0 209.84 4.36 201.23 218.45
1 92.23 4.36 83.68 100.90
2 55.74 4.36 47.13 64.34

PSGA[Math Model] 0 560.07 3.26 553.63 566.51
1 473.25 3.26 466.81 479.69
2 407.36 3.26 400.92 413.80

Table D.35: Estimated Marginal Mean by the factor TF for the CPU times of
the sequential algorithm and proposed PSGAs

95% CI of Difference
Dependent Variable RDD Mean S.E. Mean Lower Upper
Sequential 0 36.46 0.90 34.68 38.25

1 31.09 0.90 29.30 32.87
2 33.59 0.90 31.80 35.37

PSGA[DP-Algo] 0 111.53 4.36 102.92 120.138
1 115.09 4.36 106.48 123.70
2 131.25 4.36 122.64 139.86

PSGA[Math Model] 0 474.60 3.26 468.16 481.05
1 482.11 3.26 475.67 488.55
2 483.97 3.26 477.52 490.41

Table D.36: Estimated Marginal Mean by the factor RDD for the CPU times of
the sequential algorithm and proposed PSGAs
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