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I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Nevzat G. Gençer
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ABSTRACT

A NEW TIME–FREQUENCY ANALYSIS

TECHNIQUE FOR NEUROELECTRIC SIGNALS

D. İlhan Tüfekçi

M.S. in Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Orhan Arıkan

August 2002

In the presence of external stimuli, the functioning brain emits neuroelectrical

signals which can be recorded as the Event Related Potential (ERP) signals.

To understand the brain cognitive functions, ERP signals have been the sub-

ject matter of many applications in the field of cognitive psychophysiology.

Due to the non–stationary nature of the ERP signals, commonly used time

or frequency analysis techniques fail to capture the time–frequency domain

localized nature of the ERP signal components. In this study, the newly de-

veloped Time–Frequency Component Analyzer (TFCA) approach is adapted

to the ERP signal analysis. The results obtained on the actual ERP signals

show that the TFCA does not have a precedent in resolution and extraction

of uncontaminated individual ERP signal components. Furthermore, unlike

the existing ERP analysis techniques, the TFCA based analysis technique can

reliably measures the subject dependent variations in the ERP signals, which
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opens up new possibilities in the clinical studies. Thus, TFCA serves as an

ideal tool for studying the intricate machinery of the human brain.

Keywords: Event Related Potentials, ERP, Oscillatory Brain Signals, EEG,

Brain Signal Analysis, Time–Frequency Signal Analysis, Event Related Oscil-

lations, ERO
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ÖZET

NÖRO–ELEKTRİKSEL SİNYALLER İÇİN YENİ BİR

ZAMAN–FREKANS ANALİZ TEKNİḠİ

D. İlhan Tüfekçi

Elektrik ve Elektronik Mühendisliḡi Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Orhan Arıkan

Aḡustos 2002

Dış uyarıcıların varlıǧında, çalışan beyin Olay-İlişkili Potansiyel (OİP)

sinyalleri olarak kaydedilebilen nöro-elektriksel sinyaller yayar. Beynin

bilişsel fonksiyonlarını anlamak amacıyla, OİP sinyalleri bilişsel psikofizyoloji

alanındaki birçok uygulamanın konusu olmuştur. Çokça kullanılan zaman

veya frekans analiz teknikleri, OİP sinyallerinin duraǧan olmayan yapısı ne-

deniyle, OİP sinyal bileşenlerinin zaman-frekans doǧasını ortaya çıkaramamak-

tadır. Bu çalışmada, yeni geliştirilen Zaman-Frekans Bileşen Çözümleyicisi

(TFCA), OİP sinyal analizine uyarlanmıştır. Gerçek OİP sinyallerinden elde

edilen sonuçlar, TFCA’ya dayalı OİP analizinin çözünürlük ve kirlenmemiş OİP

sinyal bileşenlerinin çıkartılmasında emsalinin bulunmadıǧını göstermektedir.

Ayrıca var olan OİP analiz tekniklerinden farklı olarak TFCA’ya dayalı analiz

tekniǧi, klinik çalışmalarda yeni imkanlar yaratacak olan OİP sinyallerindeki

deneǧe dayalı deǧişimleri güvenilir şekilde ölçebilmektedir. Böylece, TFCA
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insan beyninin karmakarışık mekanizmasının incelenmesinde, ideal bir araç

olarak kullanılabilecektir.

Anahtar Kelimeler: Olay-İlişkili Potansiyel, OİP, Salınımlı Beyin Sinyal-

leri, EEG, Beyin Sinyal Analizi, Zaman-Frekans Sinyal Analizi, Olay İlişkili

Salınımlar, ERP, ERO
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Chapter 1

INTRODUCTION

The brain emits neuro–electric signals which can be recorded from the scalp of

the intact organisms. These neuro-electric signals consist of the spontaneous

activity of the brain, the electroencephalgoram (EEG), and its responses to

external or internal stimuli, the event related potentials (ERP). The analysis

of EEG-ERP signals have been the subject matter of many applications in the

field of cognitive psychophysiology.

Brain is a biological, dynamic and non–linear system, where spontaneous

electrical activity of the brain changes permanently, even without changes in

external conditions [1, 2]. Various properties of the brain system shown in

Fig. 1.1 are analyzed using the relationship between the input (i.e., controlled

stimulus) and the output (i.e., recorded brain signal) signals of this system to

explore the dynamics behind the cognitive brain functions. The recorded brain

signals, EEG and ERP, consist of rhythmic activities (oscillations) in several
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Figure 1.1: Conceptual block diagram of the brain.

frequency ranges [1,3–7]. These oscillations may be triggered by external stim-

uli or internal hidden sources such as cognitive loading. Current hypothesis

states that EEG and ERP are the superposition of these oscillations which are

related to different cognitive or behavioral processes of the brain [1, 3–9].

EEG-ERP components may depend on many factors such as the location of

the recording electrode, the type of the stimulus, and behavioral or sleep–wake

state of the subject.

1.1 Previous Work

ERP signals are recorded from various sites of the brain of a test subject for a

number of sweeps where in each sweep an external stimulus is applied to the

subject. To average out the noise and EEG signal, sweeps are time–domain

averaged in most of the studies [1, 4, 5, 7, 9–11]. Depending on the subject,

the type of the stimulus and the task that the subject should accomplish the

morphology of the ERP signals change [5, 11].

One of the most commonly used ERP analysis technique is based on the

identification of the peaks in the averaged ERP signal. This provides a crude

temporal description of the ERP signals. The identified ERP peaks have been

extensively explored in cognitive psychophysiology: ERP peak at a latency
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around 200 millisecond (msec), N200, where N denotes the negative amplitude,

is related to attention [5,7,12–14]. The amplitude of the positive peak, P300, at

around 300 msec represents the allocation of attentional resources and is thus

closely related to updating of memory for stimulus recognition and working

memory [12,13,15].

Pattern classification techniques are also used in the temporal analysis of

ERP signals, where in unsupervised classifications [16–18], proximity of signal

patterns are determined by various statistical distance metrics. On the other

hand supervised classifications [19] are based on a learning procedure that uses

a set of sample patterns. In a statistical pattern recognition approach devel-

oped by Utku and colleagues [20], stepwise multivariate analysis of variance is

used to determine the real data points that discriminated between the brain

responses to different stimuli. One of the disadvantages of these temporal sta-

tistical approaches is that they require a large group of test subjects for optimal

efficiency, which is rarely the case in electrophysiological studies of the brain.

The temporal morphology of the time–domain ERP signal does not in-

dicate characteristics of the underlying neural or cognitive functions of the

brain, therefore frequency domain analysis techniques are also applied to the

ERP signals. It is conjectured that the ERP is a compound signal with oscil-

latory components that do not overlap in frequency. These oscillatory compo-

nents are called as event related oscillations (ERO) [1,3–10]. In order to iden-

tify the frequency bands corresponding to each ERO component, amplitude

frequency characteristic (AFC) of ERP is computed by using the one–sided

Fourier transform. The ERP waveform is filtered with response–adaptive dig-

ital filters where the cut-off frequencies of the filters are determined from the

3



consecutive dips in the AFC [1]. In [5, 7], the effect of digital filtered ERP to

the morphology of the ERP peaks, basically N200 and P300, is investigated

under various cognitive paradigms.

Spectral properties of non–stationary signals such as ERPs are time-

varying, therefore digital filtering is not adequate in analyzing them. Short

time Fourier transform (STFT) is used to explore the non–stationary struc-

ture of the ERP signal, however the constant window size used in STFT limits

the resolution. In [21], STFT with a Hamming window is used to explore

the oscillatory components of EEG-ERP signal. Recently wavelet transform is

used by neuroscientists [1,22–27]. Since it uses longer windows at low frequen-

cies and shorter windows at high frequencies, the wavelet transform is better

suited to the ERP analysis than the digital filtering. Wavelet coefficients at

different scales corresponding to different frequency intervals are used to re-

construct phase–locked ERP signals in time domain. Wavelet transform can

be viewed as the decomposition of the signal into dilated, scaled and shifted

wavelets, therefore the selected wavelet should have similar characteristics with

the ERP signals. For the brain signals quadratic B-spline wavelets are widely

used [1,22,26]. However, frequency resolution of the wavelet transform is poorer

at lower scales, thus preventing an accurate analysis of components that are

close in their frequency supports [28]. Moreover selected mother wavelet may

not be the optimum one for all ERP signals under different paradigms and test

subjects.

The analysis of the ERP signals by conventional methods reveals that they

can be modelled as superposition of some oscillatory and non–stationary signal

components, which are well localized in time and frequency. It is well known
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that time–frequency signal processing is the natural tool for the analysis of this

type of non–stationary signals with localized time–frequency supports. Since

time–frequency representations provide the distribution of the signal energy

as a joint function of both time and frequency, they present a more com-

plete picture than the aforementioned approaches. In [21], STFT and Wigner

distribution (WD) is used in the analysis of the EEG signals and the two are

compared in terms of their resolution and level of undesired cross–term contam-

ination. To provide a high resolution description of the time–frequency features

of the recorded ERP signals by smoothing out the cross–term interference in

the WD, smoothed Wigner distribution has been utilized in [29]. To emphasize

the low–energy but high frequency features, a sub-band decomposition of the

ERP signal into six levels is performed. Then, the time–frequency analysis on

each sub-band signal is obtained. Finally, the obtained time-frequency distri-

butions corresponding to each of the six sub-band signals are fused by using a

frequency weighting to provide the overall time-frequency representation. The

obtained results provided a picture of the ERP signal in time-frequency domain

and has led to deeper understanding with respect to brain dynamics [29].

Recently, by utilizing a novel fractional domain warping concept, a very

high resolution time–frequency representation, which is coined as the Time–

Frequency Component Analyzer (TFCA), is developed [30]. By conducting

Wigner analysis on adaptively chosen warped fractional Fourier domains, the

TFCA provides the time–domain representation of the constituent components

of the composite signal with unprecedented accuracy, which is of prime im-

portance in the analysis of the ERP signals. The TFCA makes use of fast

digital signal processing algorithms, and it provides not only an overall time-

frequency representation of the ERP signals [31] but also the time-frequency

5



representations corresponding to the individual signal components for detailed

post-processing. On the individual time-frequency representations; time cen-

ter, frequency center, time spread, and frequency spread of each component

can be estimated, moreover time–frequency support of each component can be

computed. This unique feature of the TFCA based analysis provides a robust

description of the individual ERP signal components. Another unique fea-

ture of the TFCA based time-frequency analysis is that, the identified signal

components can be extracted from the recorded ERP signal very accurately.

1.2 Outline of the Thesis

In this thesis, recently developed TFCA algorithm is applied to the recorded

brain signals. In Chapter 2, stimuli, test subjects and the paradigms used in

the recording phase of the ERP signals are explained. Having observed that

recorded brain signals are contaminated by the 50 Hz line signal, we developed

a method for line signal removal also in Chapter 2.

The most widely used conventional analysis methods; digital filtering and

wavelet based methods are discussed in Chapter 3. In the presentation of

the results of these methods, averaged target and nontarget ERP signals of

a test subject called ‘FEBE’ recorded by the Prof. Sirel Karakaş’s cognitive

psychophysiology research team under the Oddball–Easy paradigm are mainly

used.

In Chapter 4, ERP signal analysis based on the TFCA technique is dis-

cussed. The TFCA provides high resolution time–frequency representation of

multi–component signals as shown on a synthetic signal with 3 components.
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After the introduction of the TFCA, the results of the TFCA on the real ERP

signals recorded by the Cognitive Psychophysiology Research Unit of Hacettepe

University are presented in Chapter 5. Then, the thesis is concluded in Chap-

ter 6.
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Chapter 2

Data Acquisition

Present study analyzes the neuroelectric responses of test subjects, which are

recorded in the Cognitive Psychophysiology Research Unit of Hacettepe Uni-

versity (for the laboratory schema refer to Appendix A) from various sites of

the 10-20 system (Fig. 2.1) using an electrode cap system. The signal is am-

plified, analog filtered, A/D converted and recorded by a Nihon Kohden EEG

4418K [32]. The recordings only from the Fz site of the 10-20 system is inves-

tigated in this study. In the 10–20 international system of electrode placement

on the skull of the test subject given in Fig. 2.1 (a), percentages represent

proportions of the measured distance basically from the nasion to the inion

and between the preauricular points. Fz recording site is located in between

F3 and F4 as shown in the dorsal view of the brain in Fig. 2.1 (b).
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(a) (b)

Figure 2.1: (a) 10–20 International System of electrode placement on the skull
of the test subject. (b) Dorsal view of the brain. Fz recording site is located
in between F3 and F4.

2.1 Stimuli

The auditory stimuli had 10 msec rise/fall time, 50 msec duration, and were

presented over the headphones at 65 dB SPL (sound pressure level). Two types

of auditory stimuli were used: the target stimulus is a short duration (50 msec)

sinusoid with a frequency of 2 kHz, and the nontarget stimulus is again a short

duration (50 msec) sinusoid with a frequency of either 1 or 1.9 kHz depending

on the experimental paradigm. The target stimuli were embedded randomly

within a series of nontarget stimuli in all the paradigms. The probability of

the target stimuli was 0.2 and that of nontarget stimuli 0.8.

The recording of the EEG-ERP signals is illustrated in Fig. 2.2. A recording

for a test subject consists of a number of sweeps with a duration of 2048 msec.

The stimulus frequency, task and the number of target/nontarget sweeps used

in the standard experimental paradigms of the cognitive psychophysiology are

listed in Table 2.1.
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Continuous
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is different for target
and nontarget

Continuous
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Depending on the type of the stimulus

1. target frame/sweep/epoch
2. nontarget frame/sweep/epoch

50 msec

Figure 2.2: Data acquisition scheme of the EEG-ERP signals.

2.2 Paradigms

Cognitive psychophysiology has a number of standard experimental paradigms

and studies make use of these paradigms to produce different cognitive states.

The paradigms differ from each other by the stimulus frequencies and the

Stimulus Frequency Number of Sweeps
Paradigm Target Nontarget Task Target Nontarget Total

(kHz) (kHz)
Oddball–Easy 2 1 Count Nt

a 30 125 155
Oddball–Hard 2 1.9 Count Nt 33 132 165

Mismatch Negativity 2 1 Unrelated 42 213 255

a Nt = Number of target stimuli

Table 2.1: Stimulus frequency, task and number of target/nontarget sweeps
used in the standard experimental paradigms of the cognitive psychophysiology.
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task the test subject should carry out as shown in Table 2.1. In this study,

Oddball–Easy recordings are mainly analyzed, however Oddball–Hard and mis-

match negativity results for the TFCA based analysis will also be presented in

Chapter 5.

2.2.1 Oddball–Easy (OB-ES)

In this paradigm, the target stimulus frequency is 2 kHz while the nontarget

one is 1 kHz. The task of the test subject is to discriminate the target stimuli

amongst the nontargets and to report the total number of the target stimuli

at the end of the experimental session.

2.2.2 Oddball–Hard (OB-HD)

In Oddball–Hard (OB-HD), there is a shorter frequency separation between

the target and nontarget stimuli: targets are 2 kHz, however nontargets are

1.9 kHz. Before running the Oddball paradigms where the subject performed

recognition tasks, a practice series of stimuli were presented that illustrated

the task conditions. The subject was asked to perform the task during the

practice session until his/her performance was perfect or nearly so. Subject was

encouraged to perform the counting task accurately during the experimental

tasks and she was given feedback on the accuracy of her performance at the

completion of the session.

Cognitive state of the Oddball paradigms involves the allocation of atten-

tion and short–term memory processes and decision for response [5].
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2.2.3 Mismatch Negativity (MMN)

Mismatch negativity has the same target and nontarget stimuli as the OB-ES.

However in this case, the subject is supposed to do an unrelated task that is

used to direct attention away from the auditory stimuli. The unrelated task is

the digits of ascending or descending order printed on a paper. Every now and

then, a digit would be skipped. The subject is requested to read the digits,

count the number of the interruptions and at the end of the session report the

total number.

MMN requires sensory memory for change detection and involves pre–

attentional and pre–conscious processing [5].

2.3 Participants

The recorded data at Cognitive Psychophysiological Research Unit of

Hacettepe University is obtained from 42 paid subjects (16 males, 26 females)

who volunteered and gave written consent to participate in the study. The

subjects reported themselves free of neurological or psychiatric problems and

reported themselves as not taking medication at the time of testing or not

having recently stopped taking such medication. Hearing levels of the test

subjects were assessed through computerized audiometric testing before the

experimental procedures. Individuals with hearing deficits were not employed

in the study.
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2.4 Recording and Artifact Removal

The neuroelectric responses were recorded from 15 recording sites of the 10-

20 system. The present study reports the findings from only the midline Fz

recording site. Recordings were made using a commercial electrode cap sys-

tem (Electro-Cap) of appropriate size. Electrodes were referenced to linked

earlobes with forehead as the ground. Bipolar recording were made of electro-

ocular (EOG) and electromyographic (EMG) activity for artifact rejection. In

the following sections, EEG (pre-stimulus activity) and ERP (post-stimulus

response) that have been recorded for target and nontarget stimuli will col-

lectively be called as a frame. The frames were amplified and filtered with a

bandpass between 0.16 - 70 Hz (3 dB down, 12 dB /octave). The frames were

recorded for a total of 2048 msec, 1024 msec of which served as the prestim-

ulus baseline, the EEG, and the remaining post-stimulus signal is the ERP.

The frames were digitized with a sampling rate of 500 Hz. EEG/ERP data

acquisition, analysis, and storage were achieved by a commercial system (Brain

Data 2.92).

The recorded frames that contained artifacts were rejected first by an on-

line and later an off-line technique. The on-line rejection was accomplished

by the EEG/ERP data acquisition software that rejected all frames where the

recorded frame exceeded ± 50µV . This occurred for the frames that contained

muscle activity. In the off-line procedure, single sweep EOG recordings were

visually studied and trials with eye-movement or blink artifacts were rejected.

Hence the number of the target/nontarget sweeps used in the analysis of the

ERP signals may be lower than those listed in Table 2.1.
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Figure 2.3: Illustration of the EEG/ERP recording. (a) contains the first 15
sweeps, (b) the sweeps numbered 16-30, and (c) the last 15 sweeps. Some
sweeps containing artifacts such as sweeps numbered 25, 156, and 164 are not
considered. The averaged target and nontarget artifact–free sweeps are shown
in (d) and (e) respectively.
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Figure 2.4: Analysis schemes for the target/nontarget ERP sweeps.

The recorded continuous ERP signal is divided into target and nontarget

sweeps depending on the type of the stimuli applied during the sweep. Only

the first 30 and the last 15 sweeps of the ERP signal recorded under the OB–

HD paradigm are shown in Fig. 2.3 (a), (b) and (c) where the sweep numbers

are given at the top of the figures. OB–HD paradigm contains 165 sweeps,

therefore the total recording time of the ERP signal is 165 ∗ 2.048 ∼= 337

seconds. Note that to comply with the previous literature on the ERP analysis,

the y–axis is plotted downwards. Once the sweeps containing the artifacts such

as the ones numbered 25, 156, and 164 are removed from the signal, the target

average shown in Fig. 2.3 (d) is obtained by averaging the artifact–free target
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Figure 2.5: Averaged target (a) and nontarget (b) response for the test subject
‘FEBE’.

sweeps and the nontarget average in (e) by averaging the artifact–free nontarget

sweeps.

As shown in Fig. 2.4, the recorded target or nontarget sweeps can be ana-

lyzed in different ways. The artifact–free target or nontarget sweeps belonging

only to a test subject can be averaged, or the ensemble average of all the test

subjects can be used in the studies.

In this study, the target and nontarget average of a test subject named

‘FEBE’ under Oddball–Easy paradigm will be mainly studied. Examples of
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other paradigms belonging to individual subjects or ensemble averages will also

be given. For ‘FEBE’, there were 22 artifact–free frames for target stimuli;

accordingly 22 artifact–free frames for nontarget stimuli were selected from the

middle third portion of the nontarget sequence. The chosen artifact–free frames

of the test subject were averaged to obtain an individual target/nontarget

average frame which is shown in Fig. 2.5 (a) for the target frame and (b) for

the nontarget one. The average target frame consists of a negative peak within

the 70-120 msec latency window called the N100; a second negative peak within

the 150-280 msec window, called the N200; and a positive peak at the 260-400

msec window, called the P300 as shown with arrows in Fig. 2.5 (a). The

average nontarget frame given in Fig. 2.5 (b), has a negative peak within the

70-120 msec latency window, the N100. The activity in the range of 150-280

msec window (N200) is insignificant while that at the 260-400 msec window

(P300) is nonexistent.

2.4.1 Line Signal Removal

Although the data acquisition system has a notch filter used for removing 50-

Hz power-line signal, it is not activated during recording, because its activation

may result in removing desired components around 50 Hz, i.e., gamma response

(Refer to Table 3.1). This 50 Hz power-line contamination signal is removed

from each sweep by estimating its phase and amplitude from the EEG (pre-

stimulus response) of each sweep before any averaging is done. The assumption

is that the phase and the amplitude of the line signal will not change signif-

icantly on the ERP phase taking place after the application of the stimulus.

The Cognitive Psychophysiological Research Unit of Hacettepe University is
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Figure 2.6: Frequency response of the frame before (solid line) and after
(dashed line) the removal of the line signal contamination.

furnished with power–line regulators providing stable line frequency over time.

The estimate of the phase of the line signal, φ̂, is obtained from

φ̂ = arg max
φ

∣∣∣∣∣
N−1∑
n=0

w[n]× EEG[n]× l[n]

∣∣∣∣∣ , (2.1)

where l[n] = cos (2πfln/fs + φ), EEG[n] is the pre-stimulus response contain-

ing N = 512 samples and w[n] is an appropriately chosen window function. In

this equation fl = 50 Hz is the line and fs = 500 Hz is the sampling frequency.

Defining l̂[n] = cos (2πfln/fs + φ̂); the estimate of the amplitude, α̂, is found

by minimizing J(α, φ̂)

J(α, φ̂) =
N−1∑
n=0

w[n]× (EEG[n]− α l̂[n])2 , (2.2)

with respect to α. Estimated amplitude is found from

∂J

∂α

∣∣∣∣
α̂

= 0 ⇒ α̂ =

∑N−1
n=0 w[n]× EEG[n]× l̂[n]∑N−1

n=0 w[n]× l̂[n]2
. (2.3)
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Figure 2.7: Pre–stimulus (a) and post–stimulus (b) time signals before (solid
line) and after (dashed line) the removal of the line signal contamination.

Among a number of different windows, w[n], such as rectangular, exponential

and raised cosine, rectangular window has been used based on the obtained

results. The resultant estimated line signal is re–constructed as

le[n] = α̂ cos (2πfln/fs + φ̂) , (2.4)

and subtracted from the whole sweep (frame). Frequency responses of the

original and line signal removed brain responses of the selected sweep are shown

in Fig. 2.6. The 50 Hz oscillatory activity obvious in the original ERP signal

shown in Fig. 2.7 (a) and (b) as solid lines, does not exist in the line signal

removed ERP signal (dashed lines) for not only the pre–stimulus response (a)

but also the post-stimulus one (b).
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Chapter 3

Conventional Analysis

Techniques

In the analysis of EEG-ERP signals, digital filtering and wavelet based tech-

niques are widely used by neuroscientists [1, 7, 8, 10, 13,22,33–36]. These tech-

niques are explained in this chapter due to their wide usage in cognitive psy-

chophysiology. Only the ‘FEBE’ results of these techniques will be presented.

3.1 The AFC and Digital Filtering Based

Analysis

The amplitude frequency characteristics (AFC)1 of the system is computed

by the application of the one-sided Fourier transform to the derivative of the

1G(f) is also called as transient frequency response characteristics (TRFC) since it is
obtained from the transient response of the system [1].
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Name Delta Theta Alpha Beta Gamma
Frequency(Hz) [0.5-4] [4-8] [8-13] [16-30] [30-60]

Table 3.1: General frequency supports of the Event Related Oscillations
(EROs) [1].

transient response, c(t), the average target or nontarget ERP, as

|G(f)| =
∣∣∣∣
∫ ∞

0

d{c(t)}
dt

e−j2πft dt

∣∣∣∣ . (3.1)

The numerical evaluation of the AFC was accomplished by using the fast

Fourier transform (FFT) algorithm. The oscillatory behavior of the AFC is

smoothed out by taking its running average with a Hanning window. Denoting

the samples of the AFC as G[n], the smoothing is achieved by

G[0] = 0.5G[0] + 0.5G[1] , (3.2)

G[n] = 0.25G[n− 1] + 0.5G[n] + 0.25G[n + 1] n = 1, 2, . . . , N − 1 ,

G[N ] = 0.5G[N − 1] + 0.5G[N ] ,

where N is the number of samples in the AFC and is 512. The smoothing is

done over the logarithmic frequency scale. AFC of the target and nontarget

frames are shown in Fig. 3.1 (a) and (b) for the frequency range [1-100] Hz,

respectively. The AFCs are normalized so that the amplitude at 1 Hz is equal

to 0 dB. Note that the frequency scale is logarithmic.

In order to separate the signal components in the recorded frame, dig-

ital filtering (DF) techniques have been commonly used. The idea is that

the individual signal components occupy different frequency bands, which are

separated from each other in identifiable dips in the AFC (spectrum) of the

recorded frame [1, 22]. Therefore, four or five individual frequency bands are
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Figure 3.1: AFCs of the average target (a) and nontarget (b) frames of ‘FEBE’
with frequency ranges of EROs overlaid.

identified corresponding to the spectral dips of the consecutive dominant peaks

of the AFC, as given in Table 3.1. Once, the spectral supports of the desired

components are determined, finite impulse response (FIR) filters are accord-

ingly designed to perform the required DF operation. For the ‘FEBE’ case, the

frequency bands determined from the AFCs given in Fig. 3.1 are listed in Ta-

ble 3.2. Filtered target frames (EROs) shown in Fig. 3.2 (a)-(e) demonstrated

Oscillatory Component Delta Theta Alpha Beta Gamma
Target Frequency Ranges (Hz) [0.1-3.9] [4-9] [9.1-13] [13.1-27] [27.1-44]

Nontarget Frequency Ranges (Hz) [0.1-2.4] [2.5-8.5] [8.6-11] [11.1-25] [25.1-44]

Table 3.2: Frequency supports of the EROs of the target and nontarget frames
of ‘FEBE’ obtained from the AFCs shown in Fig. 3.1.
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Figure 3.2: Delta, Theta, Alpha, Beta and Gamma signals (EROs) are given in
(a)-(e) for the target frame and in (f)-(j) for the nontarget frame, respectively.
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amplitude enhancement upon stimulation and ongoing pre–stimulus activity.

In a similar manner, filtered nontarget frames are shown in Fig. 3.2 (f)-(j).

3.2 Wavelet Decomposition Based Analysis

Spectral properties of non-stationary signals such as recorded ERP frames are

time–varying, therefore digital filtering alone is not adequate in analyzing them.

Wavelet transform has recently been used by neuro-scientists, since it has better

time-scale localization with respect to digital filtering for the purpose of either

the extraction of individual ERP components [22–25,37] or noise removal [38].

Wavelet transformation can be viewed as a signal decomposition into a set

of basis functions, called wavelets, that are obtained from a single prototype

wavelet by time shifts, dilation and scaling. Wavelet analysis can also be

viewed as the correlation of the original signal with the dilated-scaled wavelets,

therefore scaling function should have similar characteristics with the analyzed

signal. For the ERP signals, quadratic B–spline wavelets are widely used [22,

26,38]. Quadratic B–spline wavelets form a base in L2, they are not orthogonal,

but symmetric, smooth and have compact support.

The wavelet decomposition and reconstruction equations for a signal x[n]

are given as

C(j, k) =
∑
n∈Z

x[n] ψd
j,k[n] (3.3)

x̃[n] =
∑
j∈Z

∑

k∈Z

C(j, k)ψr
j,k[n] , (3.4)
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Figure 3.3: Wavelet decomposition (analysis) and reconstruction (synthesis)
structure.

where C(j, k)s are the wavelet coefficients and x̃[n] is the reconstructed signal.

In Equations 3.3 and 3.4, ψd
j,k is the decomposition and ψr

j,k is the reconstruction

wavelet satisfying the biorthogonality condition:

∑
n

ψd
j,k[n] ψr

j′,k′ [n] =





1 if j = j′ or k = k′

0 otherwise
. (3.5)

ψr,d
j,k is the dyadic scaled, dilated and shifted version of the mother wavelet ψr,d:

ψr,d
j,k [n] = 2−j/2ψr,d(2−jn− k), j, k ∈ N, n ∈ Z . (3.6)

Wavelet decomposition and reconstruction structure is shown in Fig. 3.3.

The frequency response of the high–pass and low–pass filters used in the

decomposition are given in Fig. 3.4 (a) and in the reconstruction in (b). De-

composition scaling and wavelet functions can be observed in Fig. 3.5 (a) and

(b), respectively, and those for the reconstruction in (c) and (d). The low–pass

and high–pass filter coefficients used in the decomposition and reconstruction

of the EEG-ERP signals are shown in Table 3.3.
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Figure 3.5: Scaling (a) and wavelet (b) functions used in the decomposition
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ld hd lr hr

-10 -0.0007 0 0 -0.0007
-9 0.0020 0 0 -0.0020
-8 0.0051 0 0 0.0051
-7 -0.0206 0 0 0.0206
-6 -0.0141 0 0 -0.0141
-5 0.0991 0 0 -0.0991
-4 0.0123 0 0 0.0123
-3 -0.3202 0 0 0.3202
-2 0.0021 -0.1768 0.1768 0.0021
-1 0.9421 0.5303 0.5303 -0.9421
0 0.9421 -0.5303 0.5303 0.9421
1 0.0021 0.1768 0.1768 -0.0021
2 -0.3202 0 0 -0.3202
3 0.0123 0 0 -0.0123
4 0.0991 0 0 0.0991
5 -0.0141 0 0 0.0141
6 -0.0206 0 0 -0.0206
7 0.0051 0 0 -0.0051
8 0.0020 0 0 0.0020
9 -0.0007 0 0 0.0007

Table 3.3: Coefficients of the low–pass and high–pass decomposition (ld, hd)
and reconstruction (lr, hr) filters.
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Figure 3.6: Successive decomposition of a signal into approximations and de-
tails.
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Name Delta Theta Alpha Beta Gamma
Details D9 + D8 + D7 D6 D5 D4 D3

Frequency(Hz) [0.49-3.91] [3.91-7.81] [7.81-15.62] [15.62-31.25] [31.25-62.5]

Table 3.4: Approximate frequency supports of the EROs obtained from the
quadratic B–spline wavelet decomposition down to the 9th level.

A signal x[n] ≡ A0[n], can be successively decomposed into approximations

Aj and details Dj as shown in Fig. 3.6 where j is the level of the decomposition

[39]:

Aj−1[n] = Aj[n] + Dj[n] . (3.7)

Approximations give a low frequency representation of the signal and details

a high frequency representation:

Aj[n] =
∑

k

Aj−1[k]φj,k[n] (3.8)

Dj[n] =
∑

k

Dj−1[k]ψj,k[n] . (3.9)

The frequency content of the original signal occupies the band [0-Fs/2]

where Fs (Fs = 500 Hz for the recorded frames) is the sampling frequency.

The frequency band of the approximation at level j is [0-Fs/2
j+1], and that of

the detail at level j is [Fs/2
j+1-Fs/2

j] as shown in Fig. 3.6. Therefore the details

having the frequency bands listed in Table 3.4 are identified as the oscillatory

components (EROs) of the ERP signals where wavelet decomposition down to

the 9th level is done.

The results of the wavelet analysis for the target frame are shown in Fig. 3.7

(a)-(d) where the EROs; delta, theta, alpha and beta signals (gamma not shown

here) are plotted respectively. Similarly, reconstructed EROs for the nontarget

frame are given in Fig. 3.7 (e)-(h).
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Figure 3.7: Quadratic B-spline wavelet based ERP signal analysis results for
‘FEBE’ target and nontarget frames. Delta, theta, alpha and beta signals in
the approximate frequency bands given in Table 3.4 are reconstructed for both
the target ( shown in (a), (b), (c), (d) ) and nontarget frames ( shown in (e),
(f), (g), (h) ), respectively.
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As it is detailed in Chapter 5, the wavelet based analysis does not provide

an accurate time–frequency domain description of individual ERP signal com-

ponents, and cannot extract the individual ERP signal components from the

recorded ERP signals.

More powerful wavelet based analysis techniques such as nonuniform sub-

band decomposition [40] can be used in the analysis of the ERP signals. Differ-

ent decimation factors are used in nonuniform subband decomposition where

the frequency ranges of the signal components are to be pre–determined. AFC

can be used to identify the frequency supports of the individual signal com-

ponents, however as shown in Chapter 5 TFCA provides the most accurate

time–frequency support identification of the individual components of the ERP

signals.
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Chapter 4

ERP Analysis Based on the

TFCA

Time–frequency signal processing is the natural tool for the analysis of non–

stationary signals such as ERP signals. Since time–frequency representations

provide the distribution of the signal energy as a joint function of both time

and frequency, they present a more complete picture of the signal than the

aforementioned approaches, namely digital filtering and wavelet based analysis

techniques.

In this chapter, a recent algorithm developed by Özdemir and Arıkan [30],

which makes use of a novel fractional domain warping concept [41] and obtains

a very high resolution time–frequency representation, is described. This new

algorithm, which is coined as Time–Frequency Component Analyzer (TFCA)

[30], provides not only the time–domain representation of the components of

the composite signal but also their individual time–frequency distributions with
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unprecedented accuracy, which is of prime importance in the analysis of the

ERP signals.

4.1 Overview of Time–Frequency Signal Anal-

ysis

Among the time–frequency representations developed so far, the Wigner dis-

tribution (WD) [42–45] is widely used because of its nice theoretical properties

such as preservation of the marginals and high auto–term concentration espe-

cially for signals with linear time–frequency supports. The WD Wx(t, f) of a

signal x(t) is defined by the following integral 1 [45]

Wx(t, f)
∆
=

∫
x(t + t′/2)x∗(t− t′/2)e−2πft′ dt′ , (4.1)

where (t, f) denotes the time and frequency coordinate.

Because of the bilinearity of the WD evident from the definition given in

Eq. 4.1, the interpretability of the WD is greatly diminished by the existence

of cross–Wigner terms in the WD of multi–component signals and/or signals

with non–linear time–frequency supports [45, 46]. Cross–terms limit the use

of the WD on some important applications including the analysis of the ERP

signals. In the WD of a multi–component signal, cross–terms might partially

or completely overlap with the auto–components making the detection of the

time–frequency supports of the auto–components very difficult or even impos-

sible.

1All the integrals are from −∞ to ∞ unless otherwise stated.
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The Wigner distribution of a multi–component signal x(t) =
M∑
i=1

si(t) with

M components si(t), 1 ≤ i ≤ M can be expressed as:

Wx(t, f) =

∫ ∑
i

si(t + t′/2)
∑

k

s∗k(t− t′/2)e−2πft′ dt′

=
∑

i

∫
si(t + t′/2)s∗i (t− t′/2)e−2πft′ dt′

+
∑

i,k i 6=k

∫
si(t + t′/2)s∗k(t− t′/2)e−2πft′ dt′ , (4.2)

which can be simplified into

Wx(t, f) =
∑

i

Wsi
(t, f) + 2

∑

i,k i<k

Re{Wsisk
(t, f)} , (4.3)

where Wsi
(t, f), 1 ≤ i ≤ M are the auto–components of the WD and

Wsisk
(t, f), 1 ≤ i, k ≤ M, i < k are the cross–Wigner terms. The number

of the auto–components in Eq. 4.3 is M , while the number of the cross–terms

is M(M − 1)/2.

For a 3 component signal x(t) =
∑3

i=1 si(t) as illustrated in Fig. 4.1, there

will be 3 cross–Wigner terms. Cross–Wigner terms arising from the interaction

of the individual auto–components of the signal are called as cross-cross terms

(Ws1s2 , Ws1s3 , and Ws2s3 in Fig. 4.1) and those arising due to the non-linear

time–frequency support of the auto-component as auto–cross terms as can

be seen inside the Ws3 in Fig. 4.1. The cross–terms are highly oscillatory,

might have a peak value as high as twice that of the auto–components [46,47]

and lie at mid–time and mid–frequency of the auto–components. For the WD

illustrated in Fig. 4.1, the support of the cross–cross term Ws1s2(t, f) is confined

to the following interval:

Ws1s2(t, f) = 0 for





t outside [ t1+t3
2

, t2+t4
2

]

f outside [f1+f3

2
, f2+f4

2
]

, (4.4)
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Figure 4.1: Illustration of the geometry of the cross–cross and auto–cross
Wigner terms on the time–frequency plane. Cross-cross terms exist in be-
tween auto–components in the WD. As seen inside the Ws3 , auto–cross terms
arise due to the nonlinear time–frequency support of the components.

where [t1, t2], [t3, t4] are the time–domain and [f1, f2], [f3, f4] are the frequency–

domain supports of the components s1(t) and s2(t), respectively.

To have a practically useful time–frequency distribution, the cross–terms

should be suppressed. Low–pass filtering of the WD will reduce the cross–term

interference because of the oscillatory nature of the cross–terms, on the other

hand will broaden the time–frequency support of the auto–term concentration,

hence resulting in resolution degradation. The broadening of the auto–terms

may cause closely spaced components to be identified as only one component.

The time–frequency distributions obtained by 2-D low-pass filtering of the WD

are known as Cohen’s bilinear class of time–frequency representations [45, 46]

and in this case the time–frequency distribution TFx(t, f) of a signal x(t) is
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given by

TFx(t, f) ,
∫ ∫

κ(ν, τ)Ax(ν, τ)e−j2π(νt+τf) dν dτ , (4.5)

where the smoothing function κ(ν, τ) is usually called as the kernel of the dis-

tribution and the symmetric ambiguity function Ax(ν, τ) is the inverse Fourier

transform of the WD:

Ax(ν, τ) =

∫ ∫
Wx(t, f)ej2π(νt+τf) dt df . (4.6)

A fixed kernel κ(ν, τ) can provide the 2-D smoothing well only for a limited

class of signals, therefore the kernel must be adapted to the characteristics

of input signal to obtain a data–adaptive smoothing [48]. Relying on the fact

that cross–terms lie away from the origin, and auto–terms lie around the origin

in the ambiguity plane [46] data dependent kernels are designed by analyzing

the geometry of the auto and cross terms in the ambiguity plane. Although

computationally expensive, this approach provides better time–frequency rep-

resentations.

Although not belonging to the Cohen’s bilinear class of time–frequency dis-

tributions, a recently developed algorithm by Özdemir and Arıkan [30] named

Time–Frequency Component Analyzer (TFCA), provides the most desirable

features of a useful distribution: very high auto–term concentration with neg-

ligible cross–term interference whether the individual signal components have

linear or curved time–frequency supports. A distinct feature of the new algo-

rithm is that, it provides the time–domain representation of the constituent

components of the composite signal with unprecedented accuracy, which is

of prime importance in the analysis of the ERP signals. Moreover, the TFCA

provides the corresponding representations for the extracted signal components
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for detailed post–processing which may include computation of statistical pa-

rameters from the individual time–frequency supports of the components such

as the time center, frequency center, time–spread and the frequency spread.

Another favorable feature of the TFCA is that, it has a fast and efficient digital

implementation for discrete–time signals.

4.2 The TFCA Technique

The flow–chart of the TFCA technique is given in Fig. 4.2 and the steps of

the algorithm are described in the following sections. The analytic signal is

used in the TFCA to get rid of the cross–term interference arising from the

interaction of the symmetric positive and negative frequency components of

the real signals.

As seen from the flow chart of TFCA ( Fig. 4.2 ), the time–frequency sup-

port and spine of the auto–components of the multi–component signal x(t) are

identified from the Wigner distribution Wx(t, f). Therefore digital computa-

tion of the WD whose definition is given in Eq. 4.1 is required. Although a num-

ber of different discrete–time/frequency Wigner distribution definitions [49,50]

exists, TFCA technique uses an efficient one to compute the WD samples along

arbitrary line segments on the time–frequency plane [51].

Prior to obtaining the samples of the WD, x(t) is scaled so that its WD

support is approximately confined into a circle with radius ∆x/2 centered at

the origin. Assuming x(t) has approximate time and bandwidth ∆t and ∆f

respectively, the required scaling is x(t/s) where s =
√

∆f/∆t. Scaling is done

to obtain an equally valid approximation of the WD and to be able to use the
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Figure 4.2: The flow–chart of the Time Frequency Component Analyzer
(TFCA) technique.
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fast fractional Fourier transform (FrFT) algorithm given in [52]. The relation

between the WD and FrFT will be evident in the next section.

4.2.1 Computation of the WD Along Arbitraty Line

Segments

The WD slices and the Radon transform of the ambiguity function are related

to each other by the projection slice theorem [53]. As shown in Eq. 4.6, the

ambiguity function Ax(ν, τ) is the 2-D inverse Fourier transform of the WD

and it can be written in terms of the signal x(t) as

Ax(ν, τ) =

∫
x(t + τ/2)x∗(t− τ/2)ej2πνt dt . (4.7)

From the projection slice theorem [53], Wx(λ cos φ, λ sin φ), the radial slice

of the Wigner distribution of a signal x(t) which makes an angle φ with the

time axis, can be expressed as:

Wx(λ cos φ, λ sin φ) =

∫
Qx(r, φ)e−j2πrλ dr , (4.8)

where Qx(r, φ), the Radon transform of the ambiguity function, is defined as

Qx(r, φ) =

∫
Ax(r cos φ− s sin φ, r sin φ + s cos φ) ds . (4.9)

From Eq. 4.8, it is obvious that the radial slice of the Wigner distribution is the

FT of the Radon transform of the ambiguity function Qx(r, φ) with respect to

the radial variable r. An efficient computational algorithm that relates Qx(r, φ)

to the (a − 1)th order fractional Fourier transform of the signal, x(a−1)(t), is

described in Appendix B.1:

Qx(r, φ) = x(a−1)(
r

2
)x∗(a−1)(−

r

2
) , (4.10)
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where a = 2φ
π

.

The ath order fractional Fourier transform (FrFT) is a linear operation

defined by [52]

xa(t) = {Fax}(t) ,
∫

Ka(t, t
′)x(t′) dt′ , (4.11)

where a ∈ <, 0 < |a| < 2 and Ka(t, t
′), the kernel of the transformation, is

given by the following set of equations:

Ka(t, t
′) = Aφ exp

[
jπ(t2 cot φ− 2tt′ csc φ + t′2 cot φ)

]
, (4.12)

Aφ =
e−jπsgn(sin φ)/4+jφ/2

√
| sin φ| ,

φ =
aπ

2
.

The transformation kernel of FrFT is δ(t) for a = 0, thus 0th order FrFT is the

function itself. For a = 1, kernel becomes the complex exponential e−j2πtt′ and

1st order FrFT is the ordinary Fourier transform. Various other properties of

the FrFT can be found in [52,54].

In a more general case, where the samples of the WD of x(t) is to be

computed along an arbitrary line segment Lw (see Fig. 4.3) parameterized as

LW = {(t, f)|t = t0 + λ cos φ, f = f0 + λ sin φ, λi ≤ λ ≤ λf} , (4.13)

where (t0, f0) is an arbitrary point on Lw and φ is the angle that Lw makes

with the time axis, we express the non–radial slice of the WD of x(t) as a radial

slice of the WD of another function y(t).

Substitution of (t, f) values given in the Lw parametrization into the defi-

nition of the WD (Eq. 4.1)

Wx(t0 + λ cos φ, f0 + λ sin φ) =

∫
x(t0 + λ cos φ + t′/2)x∗(t0 + λ cos φ− t′/2)

e−j2π(f0+λ sin φ)t′ dt′ , (4.14)
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Figure 4.3: Illustration of the radial and non–radial slices in the computation
of the Wigner distribution.

is obtained. From the time–frequency shift invariance of the WD distribution

[47], stating that for y(t) = x(t + t0)e
−j2πf0t

Wy(t, f) = Wx(t + t0, f + f0) , (4.15)

the non–radial slice of the WD in Eq. 4.14 is equivalent to the radial slice of

the WD of the function y(t) = x(t + t0)e
−j2πf0t:

Wx(t0 + λ cos φ, f0 + λ sin φ) ≡ Wy(λ cos φ, λ sin φ) . (4.16)

As seen from Fig. 4.3, radial and non-radial slices are in parallel. From the

projection slice theorem, the non–radial slice of the WD of x(t) can be obtained

from Qy(r, φ) as

Wx(t0 + λ cos φ, f0 + λ sin φ) =

∫
Qy(r, φ)e−j2πrλ dr . (4.17)
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The efficient computation of Qy(r, φ) is possible through the following relation-

ship (see Appendix B.1):

Qy(r, φ) = y(a−1)(
r

2
)y∗(a−1)(−

r

2
) , (4.18)

where a = φ/(π/2). Appendix B.1 also contains the formulation that relates

Qy(r, φ) to the (a− 1)th FrFT of the original signal x(t):

Qy(r, φ) = x(a−1)(
r

2
+ d)x∗(a−1)(−

r

2
+ d) , (4.19)

where in polar format (d, φ + π/2) is the closest point on the non–radial slice

of the WD to the origin as shown in Fig. 4.3.

The discrete approximation of the integral in Eq. 4.17 can be obtained

by using its Riemann sum and discretizing the frequency variable λ. The

chirp transform algorithm used in this discrete approximation is described in

Appendix C.

In the special case when φ = π/2, a is 1, therefore the order of the FrFT

in Eq. 4.19 becomes 0. The 0th order FrFT of a function is the function itself.

Since the non–radial slice is perpendicular to the time axis, d = 0, Eq. 4.19

becomes

Qy(r,
π

2
) = x(

r

2
)x∗(−r

2
) . (4.20)

In this case r is the time variable, and this function is used in the computation

of the WD on rectangular grids.

4.2.2 Directional Smoothing of The WD

To eliminate the cross–terms that may exist in the Wigner distribution of a

multi–component signal, low–pass filtering may be applied at the expense of
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broadening of the auto–components. However auto–components may not have

a low–pass characteristics along all orientations [48]. Özdemir and Arıkan pro-

posed the directional smoothing algorithm of the Wigner distribution (DSWD)

[48] by using low–pass filters with data-adaptive cut–off frequencies.

As detailed in the previous section, the non–radial slice of the WD of x(t)

is equivalent to the radial slice of the WD of y(t), Wy. By denoting the radial

slice of Wy as SLC[Wy](λ, φ) ≡ Wy(λ cos φ, λ sin φ), the slice of the filtered

Wigner distribution s(λ, φ) is obtained from

s(λ, φ) = h(λ)
λ
? SLC[Wy](λ, φ) . (4.21)

where h(t) is the impulse response of the real smoothing filter. Equation 4.8

indicates that the inverse Fourier transform (FT) of SLC[Wy](λ, φ) is Qy(r, φ),

therefore taking the inverse FT of Eq. 4.21 gives

S(r, φ) = H(r)Qy(r, φ) , (4.22)

where S(r, φ) is the inverse FT of the slice s(λ, φ) with respect to the radial

variable λ, and H(r) is the inverse FT of the smoothing filter h(t). This

filtering process of Qy(r, φ) can be applied to different slices where the cut–

off frequencies of H(r) are adaptively determined from the auto–component

location on Qy(r, φ).

4.2.3 Warped Time–Frequency Analysis

Time–frequency distribution of an auto–component with a curved time–

frequency support will be cluttered with auto–cross terms [46]. To obtain

clutter–free time–frequency representations of these components, the TFCA

uses the fractional domain warping concept [30,41].
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Mathematically, warping is the operation of replacing the time dependence

of a signal x(t), with a warping function ζ(t). For the invertibility of the warp-

ing operation, ζ(t) should be chosen as a one–to–one function. To approximate

the effect of warping on the samples of a continuous signal, the warping func-

tion is chosen as a differentiable one [41].

For a frequency modulated (FM) signal x(t),

x(t) = A(t)ej2πφ(t) , (4.23)

where A(t) is the nonnegative amplitude and φ(t) is the phase, by choosing the

warping function as the inverse of the phase [41]:

ζ(t) = φ−1(fst) fs > 0 , (4.24)

where fs is an arbitrary scaling constant, the warped function xζ(t) takes the

following form

xζ(t) = A(ζ(t))ej2πfst , (4.25)

which is an amplitude modulated (AM) signal with carrier frequency fs. Gen-

eralization of the time–domain warping to fractional domains produced the

fractional domain warping concept [41], where, instead of warping the time

signal x(t), the ath (a ∈ <) order FrFT of the signal xa(t) is warped by the

following set of equations:

xa(t) = {Fax}(t) ,
∫

Ka(t, t
′)x(t′) dt′ (4.26)

xa,ζ(t) = xa(ζ(t)) . (4.27)

The fractional domain warping makes use of the rotation property of the

FrFT which states that, the WD of the ath order FrFT of a signal is the same
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Figure 4.4: Time–domain signal x(t) of the nonlinear-chirp given in (a) has the
WD shown in (b). The WD (d) of the ath order FrFT of x(t), xa(t) given in
(c) is the 0.85 ∗ π/2 counter–clockwise rotated WD of (b).
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as the WD of the original signal rotated by an angle of aπ/2 radians in the

clock–wise direction [52, 53]. Time–domain warping may not be useful for

the processing of a signal that does not have a single–valued instantaneous

frequency such as the non–linear chirp shown in Fig. 4.4 (a), on the other

hand its ath order FrFT (a = −0.85 in this case) may be suitable for such a

processing as shown in Fig. 4.4 (c) and (d). The order of the FrFT, a, is selected

in such a way that the time–frequency support of xa(t), or equivalently that of

x(t) rotated by aπ/2 radians in the clock–wise direction have a single–valued

instantaneous frequency with respect to time. Hence, the invertibility of the

warping operation is assured, because the rotated spine ψa(t) is a single valued

function of time as shown in Fig. 4.5.

For the non–linear chirp whose WD is shown in Fig. 4.4 (b), a = −0.85.

Thus, the WD is rotated aπ/2 = −0.85 ∗ π/2 radians (-76.5 degrees) in the

clock–wise direction which is equivalent to 0.85 ∗ π/2 radians (76.5 degrees)

counter clock–wise rotation.

4.2.4 Warping Function

In TFCA, the warping function is found from a spine, ψa(t), which is an ap-

proximation to the instantaneous frequency of xa(t). The spine can be obtained

either from an instantaneous frequency estimation algorithm or by manually

marking some of its coordinates (ti, fi), 1 ≤ i ≤ N on the time–frequency

plane. For the sake of simplicity, the points of the spine are manually specified

by using a user–friendly GUI of the TFCA, and they are connected by using

spline interpolation.
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Figure 4.5: The original spine ψ(t) shown in (a), which is an approximation to
the instantaneous frequency, isn’t a single–valued function of time where the
rotated spine, ψa(t), in (b) is, a = −0.85.

Equation 4.24 states the relationship between the warping function and the

phase of the FM signal. The instantaneous frequency, fi(t) of a signal is the

derivative of its phase φ(t): fi(t) = dφ(t)/dt. Thus, assuming that the time

support of the signal is limited to [t1, tN ], the phase can be obtained from the

instantaneous frequency by integration:

φ(t) =

∫ t

t1

fi(t) dt, t ≤ tN . (4.28)

Since the spine is an approximation of the instantaneous frequency of xa(t),

the inverse of the warping function, the phase is computed by

Γ(t) =

∫ t

t1

[ψa(t
′) + δf ] dt′ , t1 ≤ t ≤ tN (4.29)

ζ−1(t) = Γ(t)/fψa + t1 , t1 ≤ t ≤ tN (4.30)

fψa = Γ(tN)/(tN − t1) , (4.31)

where fψa is the mean of the spine and δf is the required frequency shift on

the spine to make it a strictly positive function of time. Since ψa(t) + δf is a

strictly positive function of time, Γ(t) defined in Eq. 4.29 is a monotonically
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Figure 4.6: Warped signal x
δf

a,ζ(t) (δf = 1) given in (a) has an almost linear
time–frequency support parallel to the time axis (b).

increasing function, therefore its inverse, the warping function

ζ(t) = Γ−1(fψa(t− t1)) , t1 ≤ t ≤ tN , (4.32)

exists and it is unique.

In time–frequency analysis, when the frequency shift δf used in Eq. 4.29 is

nonzero, instead of warping xa(t) it is more appropriate to warp the frequency

modulated version of it x
δf
a (t) , ej2πδf txa(t) whose spine is ψa(t) + δf . In this

case, the warping operation defined in Eq. 4.26 becomes

x
δf
a (t) = ej2πδf t {Fax}(t) (4.33)

x
δf

a,ζ(t) = e−j2πδf t x
δf
a (ζ(t)) . (4.34)

The warped version, x
δf

a,ζ(t) of the signal xa(t) shown in Fig. 4.4, is given in

Fig. 4.6 (a).
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4.2.5 DSWD of Warped Component

After the warping operation, the time–frequency support of the warped signal

x
δf

a,ζ(t) given in Fig. 4.6 (a) is localized around the line segment (λ, fψa), t1 ≤
λ ≤ tN , hence it becomes almost linear as shown in Fig. 4.6 (b). The WD

of this mono–component signal with linear time–frequency support is a high–

resolution time–frequency description with negligible auto–cross term interfer-

ence. On the other hand, due to the cross–cross terms that may reside on

the warped component for more general multi–component signals and additive

noise on the WD plane, the performance of the WD may decrease. Therefore

the time–frequency distribution, T Fxa,ζ
(t, f) , of the warped signal x

δf

a,ζ(t) is

computed by directionally smoothing the slices of the WD as detailed in Sec-

tion 4.2.2.

From the directionally smoothed WD slice of the warped signal on the line

segment (λ, fψa), t1 ≤ λ ≤ tN , the slice of the time–frequency distribution

T F xa(t, f) lying on the spine ψa(t) is computed as

T F xa(ζ(λ), ψ(ζ(λ))) = T F xa,ζ
(λ, fψa), t1 ≤ λ ≤ tN . (4.35)

The other slices of T F xa(t, f) lying ∆ψ away from the spine ψa(t) as shown

in Fig. 4.5 (b), are obtained by using the frequency shifting property of the

time–frequency distribution obtained by the TFCA:

T F xa(t, f + ∆ψ) = T F ya(t, f) , (4.36)

where ya(t) is the linearly frequency modulated version of xa(t): ya(t) =

xa(t)e
j2π∆ψt. In this case, instead of the signal xa(t), its frequency modulated

version ya(t) should be warped. Combining Equations 4.35 and 4.36 gives

T F xa(ζ(λ), ∆ψ + ψ(ζ(λ))) = T F ya,ζ
(λ, fψa), t1 ≤ λ ≤ tN . (4.37)
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Figure 4.7: When the rotation effect of the FrFT is removed from the direc-
tionally smoothed WD given in (a) by rotating it −aπ/2 (76.5 degrees) radians
clock–wise, the high resolution time–frequency distribution of the original sig-
nal given in (b) is obtained.

Equation 4.37 is used to compute the slice of the distribution T Fxa,ζ
(t, f) on a

curve parameterized as (t(λ), f(λ)) = (ζ(λ), ψ(ζ(λ)) + ∆ψ). By using different

values of ∆ψ, the TFCA can provide different slices of the time–frequency

distribution of xa(t), thus time–frequency representation of xa(t) on a region of

time–frequency plane can be obtained. By using the GUI of the TFCA, the user

selects this region manually. The high resolution time–frequency distribution

obtained for xa(t) is shown in Fig. 4.7 (a).

To remove the rotation effect induced by the FrFT, each slice of T F xa(t, f)

is rotated back by aπ/2 radians counter clock–wise, and the slices of the time–

frequency representation T F x(t, f) of x(t) are obtained from

T F x(tr(λ), fr(λ)) = T F xa(ζ(λ), ψ(ζ(λ)) + ∆ψ) , (4.38)

where (tr(λ), fr(λ)) defines a new curve in the time–frequency plane parame-

terized with the variable λ:

tr(λ) = ζ(λ) cos(aπ/2)− (ψ(ζ(λ)) + ∆ψ) sin(aπ/2)
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fr(λ) = ζ(λ) sin(aπ/2) + (ψ(ζ(λ)) + ∆ψ) cos(aπ/2) . (4.39)

The resultant time–frequency distribution of x(t) obtained by rotating

T F xa(t, f) given in Fig. 4.7 (a) aπ/2 radians counter clock–wise is shown in

Fig. 4.7 (b).

4.2.6 Time–Frequency Masking

After the warping and DSWD operations, the obtained time–frequency dis-

tribution T Fxa,ζ
(t, f) has an almost linear time–frequency support which is

free of cross–terms. To extract this component from the overall signal a time–

frequency mask, whose parameters are defined by the time–frequency support

of the component, is applied to the signal. Firstly, a frequency domain mask,

H1(f) with a support equal to the frequency axis projection of the component

is applied to the warped signal x
δf

a,ζ(t) . Then to the resultant signal, a time–

domain mask, h2(t) with a support equal to the projection of the component

on the time–axis, is applied to obtain the estimate of the component:

x̂
δf

a,ζ(t) = h2(t) [h1(t) ∗ x
δf

a,ζ(t)] , (4.40)

where h1(t) is the inverse Fourier transform of the frequency–domain mask

H1(f). After estimating the warped time–domain component an estimate of

the original component can be obtained.
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4.2.7 Estimation of the Time–Domain Components

Having obtained the time–domain estimate x̂
δf

a,ζ(t), the estimate of the original

component, x̂(t) can be computed by the following set of equations:

x̂
δf
a (t) = ej2πδf ζ−1(t)x̂

δf

a,ζ(ζ
−1(t)) (4.41)

x̂a(t) = e−j2πδf tx̂
δf
a (t) (4.42)

x̂(t) = {F−ax̂a(t)}(t) , (4.43)

where Eq. 4.41 inverts the warping operation, Eq. 4.42 removes the frequency

modulation δf , and Eq. 4.43 takes the (−a)th order FrFT of x̂a(t).

4.3 Multi–Component Signal Analysis in TFCA

Previous section described the TFCA technique for a mono–component signal.

For a multi–component signal, TFCA starts with the identification of one of

the components on the time–frequency plane as shown in the flowchart of the

algorithm, Fig. 4.2. The identified component should be free of cross–terms. It

was stated in Section 4.1 that cross–terms lie in mid–time and mid-frequency

of the auto–components, therefore by selecting the outer–most component in

the time–frequency plane we assure that it is cross–term free. After processing

the selected auto–component, TFCA obtains its time–domain estimate and

subtracts it from the original signal. The steps of the algorithm are iterated for

each component on the residual signal. The time–frequency representations of

each component are fused to obtain the composite time–frequency distribution

of the multi–component signal at the end.

51



−5 0 5
−1

0

1

time

R
ea

l(s
1(t

))

(a)

−5 0 5
−1

0

1

time

R
ea

l(s
2(t

))

(b)

−5 0 5
−2

0

2

time

R
ea

l(s
3(t

))

(c)

−5 0 5
−3

0

3

time

R
ea

l(x
(t

))

(d)

Figure 4.8: Synthetic signal x(t) =
∑3

i=1 si(t) (d) used in the performance
illustration of the TFCA is composed of a linear chirp (a), s1(t), a non–linear
chirp (b), s2(t), and a constant frequency modulated signal (c), s3(t).

To illustrate the performance of the TFCA, a synthetic signal x(t) =
∑3

i=1 si(t) with 3 components is analyzed. The components are chosen such

that s1(t) is a linear, s2(t) is a hyperbolic and s3(t) is a constant frequency

modulated signal and all have Gaussian modulated amplitudes. The individ-

ual components and the multi–component signal x(t) are shown in Fig. 4.8.

From the WD of x(t) shown in Fig. 4.9 (a), it is evident that the third com-

ponent s3(t) is completely immersed under cross–cross terms arising from the

interaction of s1(t) and s2(t). Notice also the auto–cross terms of the hyperbolic

frequency modulated component s2(t).

After the examination of the WD of x(t) given in Fig. 4.9 (a), s1(t) is se-

lected as the first component to be analyzed, it lies at the periphery of the

Wigner plane, hence it is not contaminated by the existence of cross–cross

terms. After the extraction of the estimate of the first component ŝ1(t), the

52



−10

−5

0

5

10

15

20

time

fr
eq

ue
nc

y

(a)

−5 0 5
0

1

2

3

4

5

−10

−5

0

5

10

time

fr
eq

ue
nc

y

(b)

−5 0 5
0

1

2

3

4

5

0

1

2

3

4

5

6

time

fr
eq

ue
nc

y

(c)

−5 0 5
0

1

2

3

4

5

0

2

4

6

8

10

time

fr
eq

ue
nc

y

(d)

−5 0 5
0

1

2

3

4

5

Figure 4.9: In the WD of the synthetic signal given in Fig. 4.8 (d), s3(t) is
immersed under cross–cross term interference. WD of the residual signals after
the extraction of ŝ1(t) and ŝ2(t) are given in (b) and (c), respectively. TFCA
provides high–resolution time–frequency distribution of the synthetic multi–
component signal as shown in (d).
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residual signal r(t) = x(t) − ŝ1(t) has the WD shown in Fig. 4.9 (b). Now

the time–frequency support of s3(t) can be identified easily. In the second

iteration, the component that has the hyperbolic frequency modulation is ex-

tracted leaving the WD in Fig. 4.9 (c). Third and the last component is easily

extracted. Thus, TFCA provided the composite time–frequency distribution

for the synthetic multi–component signal x(t) as shown in Fig. 4.9 (d). The

time–domain estimates of the extracted components ŝ1(t), ŝ2(t) and ŝ3(t) with

the estimation errors are plotted in Fig. 4.10. Notice that the estimation er-

rors are very small. As illustrated in this simulation, the TFCA provides very

accurate time–domain representation of the components.

4.4 Estimation of Time–Frequency Center and

Spread of Extracted Components

The time–frequency representations of the individual components of a multi–

component signal obtained by the TFCA may be visually suspected or statis-

tical descriptors that distinguishes components from each other are obtained.

For this purpose time–frequency center, time spread, and frequency spread of

each component are computed. Here the idea is that the center and spread

values of different components can be used for comparison in clinical studies.

For a component image, W , with a size of [M, N ], time–center tm of the

component is found from

tm =

∑N−1
n=0

∑M−1
m=0 t[n] |W [m,n]|∑N−1

n=0

∑M−1
m=0 |W [m,n]| , (4.44)
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Figure 4.10: Time–domain components extracted by TFCA from the multi–
component synthetic signal x(t): ŝ1(t), ŝ2(t), ŝ3(t), and x̂(t) are given in (a)-(d)
and the errors in (e)-(h), respectively.
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Comp #1 Comp #2 Comp #3
s1(t) ŝ1(t) error s2(t) ŝ2(t) error s3(t) ŝ3(t) error

tm (msec) 798 779 19 0 -40.7 40.7 -156 -176.2 20.2
tv (msec) 1740 1436 304 2523 2195 328 442 319.4 122.6
fm (Hz) 3.75 3.7 0.05 1.35 0.9 0.45 2.32 2.3 0.02
fv (Hz) 0.53 0.58 0.05 0.57 0.54 0.03 0.26 0.25 0.01
area 1.22 1.31 0.90

Table 4.1: Estimated time center (tm), frequency center (fm), time spread (tv)
and frequency spread (fv) of the extracted components compared to those of
the individual original components of the synthetic signal.

where t[n], 0 ≤ n ≤ N − 1 denotes the time samples. Time spread tv of the

component is computed from

t2v =

∑N−1
n=0

∑M−1
m=0 (t[n]− tm)2 |W [m,n]|∑N−1

n=0

∑M−1
m=0 |W [m,n]| . (4.45)

In a similar manner, frequency center fm of the component is found from

fm =

∑N−1
n=0

∑M−1
m=0 f [m] |W [m,n]|∑N−1

n=0

∑M−1
m=0 |W [m,n]| , (4.46)

where f [m], 0 ≤ m ≤ M − 1 denotes the frequency samples and spread fv of

the component from

f 2
v =

∑N−1
n=0

∑M−1
m=0 (f [m]− fm)2 |W [m,n]|∑N−1
n=0

∑M−1
m=0 |W [m,n]| . (4.47)

As shown in Table 4.1, the obtained estimates of the statistical descriptors

for the synthetic test signal are highly accurate.

4.5 Time–Frequency Support Identification

Similar to the statistical information obtained in the previous section, time–

frequency support of the components can also be used in the classification of the
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Figure 4.11: Morphological edge detection based time–frequency support iden-
tification algorithm.

morphology of the ERP signals under different paradigms. Although visual in-

spection is always an alternative, numerical computation of the time–frequency

supports of the components provides a robust and objective information. In

the proposed TFCA based ERP analysis the support is automatically identi-

fied by using a well known morphological edge detection algorithm [55] whose

block diagram is shown in Fig. 4.11.

The TFCA provides time–frequency representations of the individual com-

ponents which are almost free of cross–terms. There may exist some residing

cross–term interference especially for the components having nonlinear time–

frequency supports. To alleviate the destructive effect of these terms on our

contour extraction algorithm, image is eroded with a 3× 3 structuring matrix

E which determines the neighborhood of the erosion operation. The rule of

the erosion is:

• If every pixel in the input pixel’s neighborhood is 1, the output pixel =

1. Otherwise, the output pixel is 0.

Images that TFCA produces does not contain much noise, therefore erosion

works well. On the eroded image, dilation is done with a 3 × 3 structuring

matrix D. The rule of the dilation is:
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• If any pixel in the input pixel’s neighborhood is 1, the output pixel = 1.

Otherwise, the output pixel is 0.

Hence, some pixels belonging to the component on the image, but turned to 0

by erosion is recovered. Erosion and dilation structuring matrices are

E =




0 0 1

1 m1 1

1 1 1


 , D =




0 0 1

0 m1 1

0 1 1


 . (4.48)

where the circled entries are the center pixels. The state (i.e., 1 or 0) of any

pixel in the output image is determined by applying the erosion or dilation rule

to the neighborhood of the selected pixel by overlaying the structuring matrix

in the input image so that the center pixel of the matrix is the selected one.

This analysis is carried out for all of the pixels in the input image to obtain

the output dilated or eroded image. Notice that only the neighborhood pixels

corresponding to the nonzero entries in the structuring matrices, D, and E are

considered.

The required edge detection is performed by finding the discontinuities in

the eroded and dilated binary image. The resultant contours of the compo-

nents of the synthetic signal are shown in Fig. 4.12 (a)-(c) superimposed on

their time–frequency representations provided by TFCA. In Fig. 4.12 (d), the

supports of the components are shown together.

Alternatively, the TF supports of the extracted signal components could

be identified by using active contour models (snake algorithm) [56–58]. The

snake algorithm requires the determination of an initial closed contour which

is dynamically adapted to minimize an energy term. The energy depends on
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Figure 4.12: TFCA time–frequency representations of the components of the
synthetic signal x(t): ŝ1(t), ŝ2(t), ŝ3(t) are given in (a), (b) and (c), respectively,
with their time–frequency supports overlaid. In (d), time–frequency supports
are shown together.

the snake and the image pixels, the snake lies on. The convergence of the

algorithm depends on the initial contour and energy coefficients. In general,

energy coefficients can be experimentally determined.

The area of the time–frequency support of the individual components can

also be used as a statistical descriptor. Areas obtained for the estimated com-

ponents of the synthetic signal are available in Table 4.1.

Other statistical descriptors that distinguishes components from each other

such as instantaneous frequency can be obtained from the extracted TFCA

components as well.
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Chapter 5

Results Obtained on Real ERP

Signals

A Matlab graphical user interface (GUI) is designed to perform the proposed

TFCA based ERP signal analysis technique on real ERP signals recorded by

the Cognitive Psychophysiology Research Unit of Hacettepe University. In this

section, following the introduction of the GUI, the results of the TFCA based

ERP analysis are presented. Some of the obtained results are compared with

those provided by the classical ERP analysis techniques (Chapter 3) as well.

5.1 Graphical User Interface

To be able to apply the TFCA technique on the real ERP signals, a user

friendly graphical user interface is designed using Matlab. Screen shot of this
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Figure 5.1: Main screen of the user friendly GUI designed for the TFCA based
ERP signal analysis.

GUI, which is currently used in the Cognitive Psychophysiology Research Unit

of Hacettepe University, is available in Fig. 5.1.

By means of the developed GUI, the ERP analysis based on the TFCA has

gained the following functionalities:

• ERP signals to be analyzed can be selected interactively.

• Conventional analysis techniques such as digital filtering and wavelet

based analysis can be conducted on the selected ERP signals. The fre-

quency supports of the EROs are determined from the AFC interactively

as shown in Fig. 5.2.
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Figure 5.2: Frequency support determination of the EROs from the GUI by
using the AFC.

• Time–frequency support and the spine of the components are determined

on the WD plane by the user.

• In case of any error, the program returns to the beginning of the analysis

of the component.

• 50 Hz line signal contamination is removed interactively where the con-

tamination free averaged signals are produced as well as shown in Fig. 5.3

(a).

• Signal specific parameters such as length and sampling frequency can be

changed as shown in Fig. 5.3 (b).

• Display parameters can be determined by the user as shown in Fig. 5.3

(b).

• Any signal whose time–frequency support is determined interactively by

the user can be extracted from the ERP signal.
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(a) (b)

Figure 5.3: Line signal contamination removal window (a) and parameter win-
dow (b).

• The time–domain extracted components of the TFCA and conventional

analysis based techniques are written to text files for possible further

usage.

The developed GUI has made possible the application of the TFCA to the

ERP signals.

5.2 OB-ES Paradigm Results

The results of the conventional analysis techniques of the target and nontar-

get average frames for ‘FEBE’ signals under OB-ES paradigm were given in

Section 3.1 and Section 3.2. In this section, the detailed TFCA based analysis

of these ERP signals are presented. The results are compared to those of the

conventional analysis techniques as well.

The WD of the averaged target frame of ‘FEBE’ is shown in Fig. 5.4 (a)

where the cross terms significantly cluttered the actual components resulting

in a low quality description. The time–frequency representations of the com-

ponents obtained from the TFCA based analysis of the averaged target frame
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Figure 5.4: The WD of the averaged target frame shown in (a) is contaminated
by the existence of cross terms. After the extraction of the first component
(b), the steps of the extraction of the second component are shown in (c)-(f).
(g) is the residual WD and (h) is the time–frequency representation obtained
by TFCA.
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Figure 5.5: TFCA extracted time–domain components of the averaged target
frame of ‘FEBE’ are given in (a) and (b) respectively, with their sum in (c).
The residual signal in (d) is noise like.

are shown in Fig. 5.4 (b) and (f). Fig. 5.4 (c) contains the WD of the residual

signal after the first component is extracted with the spine drawn as an over-

lay. Warping operation is performed on the rotated WD with the rotated spine

given in Fig. 5.4 (d). Time–frequency mask for the resultant warped second

component is shown in (e). After the extraction of the two components, the

WD of the residual signal is noise like (g). For the target frame, the intermedi-

ate steps of the TFCA algorithm are shown only for the second component. For

the sake of brevity, these intermediate steps of the TFCA based ERP analysis

will not be presented in the analysis of the remaining data.

The TFCA algorithm provides not only very clean and sharp time-frequency

characterization of the two ERP signal components as shown in Fig. 5.4 (b)

and Fig. 5.4 (f) respectively, but also it extracts these components from the

averaged target frame as shown in Fig. 5.5 (a) and Fig. 5.5 (b). Furthermore,
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the TFCA provides the clean and sharp composite time-frequency distribution

shown in Fig. 5.4 (h). The residual time–domain signal of the TFCA based

analysis of the target ERP signal can be observed in Fig. 5.5 (d).

The results of the TFCA based ERP analysis on the averaged nontarget

frame for the test subject ‘FEBE’ are shown in Fig. 5.6. The original WD shown

in Fig. 5.6 (a) contains cross–term interference. The time–frequency represen-

tations of the two components provided by TFCA are given in Fig. 5.6 (b)

and (d), respectively. Extracted time–domain components for the nontarget

averaged frame are shown in Fig. 5.7 (a) and (b). As seen in Fig. 5.5 (d) and

Fig. 5.7 (d), once the components obtained from the TFCA are subtracted

from the averaged target and nontarget frames, the resultant residual signals

become noise like as they should be. This observation is also supported by the

computed WDs of the residual signals shown in Fig. 5.4 (g) and 5.6 (e).

Comparison of the target and nontarget results shown in Fig. 5.4 and

Fig. 5.6 respectively, clearly demonstrates the differences of the ERP responses

under these two different cases. Although both frames consist of two individ-

ual signal components, both the time–frequency representations and the con-

figuration of the components are significantly different. These findings can

be clearly seen by comparing the composite time–frequency representations

shown in Fig. 5.4(h) and Fig. 5.6(f) respectively and the time–frequency sup-

ports of the components shown in Fig. 5.8. Especially the difference in the

time–frequency representations of the stimulus related second components for

the target (Fig. 5.4 (f)) and nontarget (Fig. 5.6 (d)) cases is obvious.
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Figure 5.6: The WD of the averaged nontarget frame shown in (a) is con-
taminated by the existence of cross–terms. After the extraction of the first
component (b), the residual WD becomes (c). Once the second component
shown in (d) is also extracted by TFCA, final residual WD becomes noise like
as shown in (e). The composite time–frequency representation of the averaged
nontarget frame (f) is a high resolution one.
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Figure 5.7: TFCA extracted time–domain components of the averaged nontar-
get frame of ‘FEBE’ are given in (a) and (b) respectively, with their sum in
(c) and the residual signal in (d).
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Figure 5.8: Time-frequency supports of the extracted target (a) and nontarget
(b) components for ‘FEBE’.
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Target Nontarget
Comp # 1 2 1 2
tm (msec) 261 286 181 138
tv (msec) 383 104 504 75
fm (Hz) .41 4.8 .22 6.3
fv (Hz) .22 2 .52 1.2
area 2.225 1.776 2.24 1.395

Table 5.1: Time center (tm), frequency center (fm), time spread (tv), frequency
spread (fv) and area of the time–frequency support of the extracted compo-
nents of the target and nontarget ‘FEBE’ frames.

Estimated time–frequency center and spread of the components for the

target and nontarget frames are given in Table 5.1 with the area of their time–

frequency supports. These estimated statistical descriptors differ for target

and nontarget frames. The ability to clearly differentiate the responses corre-

sponding to the target and nontarget cases is a very important property of the

TFCA based ERP signal analysis.

Wigner distributions of the wavelet reconstructed target frame for the ap-

proximate frequency bands [4-8] Hz and [0.5-4] Hz are shown in Fig. 5.9 (a) and

(b), respectively. When compared with the TFCA result for the second ERP

component given in Fig. 5.4 (f), it can be seen that the wavelet based analysis

could not isolate the second ERP component as a single entity. In the wavelet

based analysis the higher frequency part of the second ERP component is cap-

tured as part of the theta signal, and the lower frequency part of the second

ERP component is captured as part of the delta signal. Similarly, for the digital

filtering based analysis shown in Fig. 5.9 (c) and (d), the lower frequency part

of the second ERP component in the frequency band [0.1-3.9] Hz is captured

as part of the delta signal, and the higher frequency part of the second ERP
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Figure 5.9: As shown in the WDs of the wavelet reconstructed signals of the
target frame for the [4-8] Hz band (a) and for the [0.5-4] Hz band (b), the
wavelet based analysis splits the second ERP component obtained by the TFCA
( shown in Fig. 5.4(f) ) into the delta and theta signals, respectively. The WDs
of the digital filtered target frame for the frequency bands of [4-9] and [0.1-
3.9] Hz shown in (c) and (d), similarly reveal that part of the second ERP
component is captured by the theta signal and part of it by the delta signal.
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Figure 5.10: Original average target ERP signal (a), composite time–frequency
representation obtained by TFCA (b) and estimated individual time–domain
components (c) and (d) for the test subject ‘EMYI’.

component in the frequency band [4-9] Hz is captured as part of the theta sig-

nal. Moreover in both methods, the theta and delta signals are contaminated

by the existence of noise at all times. The provided results demonstrate clearly

that the wavelet and digital filtering (DF) based ERP analysis fails to isolate

the existing ERP components, and fails to extract them from the averaged

target and nontarget frames. Furthermore, the obtained time–frequency rep-

resentations of the wavelet and DF based analysis are not as clean and sharp

as the ones provided by the TFCA.

5.2.1 Results for Different Test Subjects

Cognitive psychophysiology studies the test subject and paradigm specific mor-

phology of the ERP signals [5, 13, 34]. To investigate the variability of the

obtained results with respect to test subjects, the ERP signals of test subjects
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Figure 5.11: Original average target ERP signal (a), composite time–frequency
representation obtained by TFCA (b) and extracted individual time–domain
components (c), (d) and (e) for the test subject ‘ORGU’.

‘EMYI’, ‘ORGU’, ‘OZBE’ and ‘TATA’ recorded under the OB-ES paradigm

are analyzed by the TFCA based ERP analysis technique.

The original averaged target ERP signals for the mentioned test subjects

are shown in Figures 5.10-5.13 (a). The time–frequency representations of these

averaged target signals obtained from TFCA are given in Figures 5.10-5.13 (b)

with their time–frequency supports overlaid. The time–frequency representa-

tions of each test subject are different from each other. Figure 5.10 (c) and

(d) contains the estimated time–domain components for ‘TATA’. In the Fig-

ures 5.11 to 5.13 (c), (d) and (e), estimated three time–domain components for

‘ORGU’, ‘OZBE’ and ‘TATA’ are shown respectively.

The second component for ‘EMYI’ and the third components for the other

test subjects are related to the stimuli, therefore they have no pre–stimulus

response. On the other hand the EROs obtained from conventional analysis

techniques contains not only post–stimulus but also pre–stimulus activation.
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Figure 5.12: Original average target ERP signal (a), time–frequency represen-
tation obtained by TFCA (b) and estimated individual time–domain compo-
nents (c), (d) and (e) for the test subject ‘OZBE’.
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Figure 5.13: Original average target ERP signal (a), time–frequency represen-
tation obtained by TFCA (b) and estimated individual time–domain compo-
nents (c), (d) and (e) for the test subject ‘TATA’.
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‘EMYI’ ‘ORGU’ ‘OZBE’ ‘TATA’
Comp # 1 2 1 2 3 1 2 3 1 2 3
tm (msec) 468 204 351 275 156 416 178 118 303 347 160
tv (msec) 415 152 350 249 70 271 200 55 265 170 65
fm (Hz) .56 1.8 .17 1.8 6.2 .36 2.4 6.8 .13 2 6.8
fv (Hz) .68 .67 .32 .41 1.5 .32 .42 1.3 .2 .57 1.3
area 1.64 2.21 2.30 2.13 1.90 1.94 1.74 1.29 0.91 1.24 0.80

Table 5.2: Time–frequency center, time spread and frequency spread of the
components obtained from the ERP signals of the test subjects under OB-ES
paradigm.

Instead of analyzing the amplitudes and latencies of the peaks to the stimu-

lus as done in conventional analysis techniques, computed statistical descriptors

given in Table 5.2 can be used in clinical studies. The statistical descriptors

for each estimated component differs with respect to test subjects.

5.3 Results for Ensemble Averages

The time–frequency representations of the ensemble averages of the test sub-

jects under MMN and OB-HD paradigms obtained by the TFCA are studied in

this thesis as well. Ensemble averages are obtained by averaging the responses

of the individual test subjects.

Ensemble target average signal under MMN is shown in Fig. 5.14 (a) while

that of the nontarget signal in Fig. 5.15 (a). The ensemble target average under

OB-HD is also available in Fig. 5.16 (a). The time–frequency representations

obtained by TFCA are shown in Figures 5.14-5.16 (b) with the time–frequency

supports overlaid. The estimated time–domain components are also given in

the figures.
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Figure 5.14: Original ERP signal (a), time–frequency representation obtained
by TFCA (b) and estimated individual time–domain components (c) and (d)
for the ensemble target average under MMN paradigm.
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Figure 5.15: Original ERP signal (a), time–frequency representation obtained
by TFCA (b) and estimated individual time–domain components (c) and (d)
for the ensemble nontarget average under MMN paradigm.
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Figure 5.16: Original ERP signal (a), time–frequency representation obtained
by TFCA (b) and estimated time–domain components (c), (d) and (e) for the
ensemble target average under OB-HD paradigm.

The estimated statistical descriptors of the TFCA components obtained for

the ensemble averaged ERP signals are given in Table 5.3.

Time–frequency distributions provided by the TFCA differ from each other

for different test subjects and paradigms. Especially the stimulus related sec-

ond component can be easily distinguished. Time–frequency supports and the

estimated statistical descriptors for the OB-ES given in Section 5.2.1, and those

for the ensemble averaged OB-HD and MMN cases support our observations.

MMN Target MMN Nontarget OB-HD Nontarget
Comp # 1 2 1 2 1 2 3
tm (msec) 485 105 330 120 392 278 165
tv (msec) 272 31 306 54 404 178 84
fm (Hz) .31 5.8 .53 5.9 .34 2.1 6.8
fv (Hz) .35 3.4 .36 2.5 .36 .4 1.9
area 1.63 1.23 1.20 1.33 1.91 1.17 1.13

Table 5.3: Time–frequency center, time spread and frequency spread of the
components obtained from the ERP signals for the ensemble average of the
test subjects under MMN and OB-HD paradigms.
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The difference in the structure of the time–frequency representations obtained

by TFCA with respect to test subjects and paradigms is the most powerful

feature of the TFCA based ERP signal analysis.

5.4 Variability in a Single Test Subject

Having observed that test subjects produce different time–frequency represen-

tations in the TFCA, we want to analyze the averages of different sweeps of

the same test subject. Since the sweeps of the ERP signals are very noisy,

the number of the artifact–free target sweeps (i.e., 20) is not adequate for this

analysis, whereas the number of the nontarget sweeps (i.e., 100) is. For this

purpose the TFCA results of the averages of the odd and even numbered non-

target sweeps shown in Fig. 5.17 (a) of the test subject ‘YEUN’ are compared

to each other. As shown in Fig. 5.17 (b) and (c) for the odd and even numbered

averages respectively, the time–frequency representations provided by TFCA

for the two cases are similar to each other except for the low–frequency first

component.

Since the behavior and biological state of the test subject may change dur-

ing recording, difference in between the low–frequency first components is ex-

pected. As the statistical descriptors given in Table 5.4 and the overlaid time–

frequency supports shown in Fig. 5.17 (d) indicate, the difference between the

stimulus related second component of the two is negligible as expected.
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Figure 5.17: TFCA results of the averages of the odd and even numbered
sweeps of ‘YEUN’. In (a), the dashed line shows the even numbered sweeps’ av-
erage, and solid line the odd numbered. (b) and (c) contain the time–frequency
representations provided by TFCA for the odd and even numbered sweep av-
erages, respectively, while (d) the overlaid time–frequency supports of the two
cases.

Odd Even
Comp # 1 2 1 2
tm (msec) 423.5 151.2 219.3 159.5
tv (msec) 247.5 54.6 355 53.6
fm (Hz) .36 4.9 .48 5.2
fv (Hz) .35 1.5 .41 1.7
area .9275 1.298 2.246 1.212

Table 5.4: Statistical descriptors for the averages of odd and even numbered
nontarget sweeps of ‘YEUN’.
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Chapter 6

CONCLUSIONS

In this thesis, a new ERP analysis technique based on Time–Frequency Compo-

nent Analyzer (TFCA) [30] is proposed. The TFCA makes use of a novel frac-

tional domain warping concept to provide very high resolution time–frequency

representations of the individual ERP components. TFCA not only provides

the cross–term free time–frequency distributions of the components but also ex-

tracts their highly accurate time–domain estimates from the multi–component

ERP signal. Statistical parameters obtained from the time–frequency distribu-

tions of the components provide robust, quantative and objective information

about the ERP signals, thus the test subjects, which may be used in clinical

studies.

Since ERP signals are non–stationary composite signals, conventional anal-

ysis techniques which uses only time or frequency domain methods are not

suited to their analyses. Unlike the conventional analyses, the TFCA is able

to capture the localized time–frequency support of the ERP signals. Whereas,
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wavelet and digital filtering based analysis techniques often split the individ-

ual components of the ERP signals into two or more oscillatory signals with

nonoverlapping frequency supports. Furthermore the TFCA also provides re-

liable estimates to the individual ERP signal components.

Neither the time–domain description based on the peaks of the ERP signal,

nor the frequency–domain description based on the digital filtering can capture

the true nature of the existing components of the ERP signals. The TFCA

works on the time–frequency domain to capture the non–stationary nature of

the ERP components. Unlike the results obtained by using conventional ERP

analysis techniques, the poststimulus response obtained in TFCA does not

contain a prestimulus activation.

Conventional analysis techniques tries to extract information from the ERP

signals based on the amplitudes and latencies of the peaks in the signal. ERP

analysis based on the TFCA replaces this kind of analysis scheme with either

the visual study of the time–frequency representations provided by TFCA or

the quantitative comparison of the statistical descriptors obtained from the

extracted individual components of the ERP signals.

Not only the time–frequency representations but also the statistical descrip-

tors obtained by the TFCA differs with respect to test subjects and paradigms

which is the most powerful feature of the TFCA based ERP signal analysis.

This feature may be used in the evaluation of the brain function, brain-behavior

relationships, impairments in cognitive functioning in psychiatric disorders and

ERP-drug interaction.
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The TFCA provides very similar results for the averages of different sweeps

of the same test subject which indicates the conformity of the TFCA based

ERP results.

In conclusion, the TFCA does not have a precedent in resolution and ex-

traction of the individual components of the ERP signal components. The

TFCA based ERP signal anaylsis technique may thus be regarded as an ideal

tool for studying the intricate machinery of the human brain.

Future work on the ERP analysis can be focused on the spatial analysis

of the recordings from various sites of the electro–cap system. Automatic

identification of the time–frequency support and spine of the signal components

in TFCA requires further research as well.

The TFCA can be adapted not only to ERP signal analysis as it is done

in this thesis, but also to the analysis of other biomedical signals, especially

those where a stimulus is applied to the underlying biological subject, such

as myoelectric signals, electrocardiogram (ECG) and magnetoencephalogram

(MEG).
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APPENDIX A

Laboratory Schema

All the brain signals analyzed in this study are recorded from the Cognitive Psy-

chophysiology Research Unit of Hacettepe University whose laboratory schema

is given in Fig. A.1. A ’Nihon Kohden EEG 4418K’ [32] is used in recording

the neuroelectric responses of the brain, which are processed by the commercial

system, Brain Data 2.92.
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Figure A.1: The Block Diagram of the Cognitive Psychophysiology Research
Unit of Hacettepe University.
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APPENDIX B

Fractional Fourier Transform

Wigner distribution of a signal on a radial slice is the Fourier transform (FT) of

the ambiguity function of that signal where the ambiguity function can be re-

lated to the (a−1)th order FrFT of the signal. This Appendix first explores the

relationship between the Radon transform of the ambiguity function (RAFT)

of a signal x(t) and its FrFT. Hence the computation of the WD on a radial

slice requires the efficient digital computation of the FrFT whose algorithm [30]

is given in Section B.2.

B.1 Relationship Between RAFT and FrFT

The ambiguity function is the 2-D inverse Fourier Transform of the Wigner

distribution:

Ax(ν, τ) ,
∫ ∫

Wx(t, f)ej2π(νt+τf) dt df (B.1)

92



=

∫
x(t + τ/2)x∗(t− τ/2)ej2πνt dt . (B.2)

The Radon-ambiguity function transform (RAFT) of a signal x(t) is the

Radon transform of its ambiguity function and it can be written as

Qx(r, φ) =

∫
Ax(r cos φ− s sin φ, r sin φ + s cos φ) ds , (B.3)

where (r, φ) are the polar format variables. Substitution of Eq. B.2 into Eq. B.3

gives

Qx(r, φ) =

∫ ∫
x(t + τ/2)x∗(t− τ/2)ej2πνt

∣∣∣∣
ν=r cos φ−s sin φ, τ=r sin φ+s cos φ

dt ds , (B.4)

Qx(r, φ) =

∫ ∫
x(t +

r sin φ + s cos φ

2
)x∗(t− r sin φ + s cos φ

2
)ej2π(r cos φ−s sin φ)t dt ds .

Making the following change of variables:


 t1

t2


 =


 1 +1

2
cos φ

1 −1
2
cos φ





 t

s


 + 1

2
r sin φ


 1

−1




dt1 dt2 = | cos φ|dt ds ,

the equation becomes

Qx(r, φ) =

∫ ∫
x(t1)x

∗(t2)ejπ[−(t21−t22) tan φ+(t1+t2)r sec φ] 1

| cos φ|dt1 dt2 . (B.5)

From the definition of Aφ given in Eq. 4.12,

1

| cos φ| = |Aφ−π/2e
−jπ(r/2)2 tan φ|2 , (B.6)

is obtained. By the substitution of Eq. B.6 into Eq. B.5, Qx(r, φ) becomes
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Qx(r, φ) =
[∫

Aφ−π/2e
jπ(−(r/2)2 tan φ+rt1 sec φ−t21 tan φ)x(t1) dt1

]
[∫

Aφ−π/2e
−jπ((r/2)2 tan φ+rt2 sec φ+t22 tan φ)x(t2) dt2

]∗

=
[{F (a−1)y}(r/2)

] [{F (a−1)y}(−r/2)
]∗

= x(a−1)(r/2) x∗(a−1)(−r/2)

where (a− 1) = 2φ
π
− 1 is the FrFT order.

The previous equation is valid for radial line segments. For the computation

of the RAFT on non–radial line segments as shown in Fig. 4.3 and reproduced

here for the sake of completeness as Fig. B.1, a new function y(t) = x(t +

t0)e
−j2πf0t is introduced.

As shown in Fig. B.1, the radial slice of y(t) is equivalent to the non–radial

slice of x(t). Thus the RAFT of y(t), Qy(r, φ), can be written as

Qy(r, φ) = y(a−1)(
r

2
) y∗(a−1)(−

r

2
) . (B.7)

To express Qy(r, φ) in terms of the original signal x(t), we first relate the

FrFT of y(t) to the FrFT of x(t) by using the properties of the FrFT [52,54]:

y(a−1)(t) = Cejϕ(t)x(a−1)(t− t0 sin φ + f0 cos φ) , (B.8)

where unit magnitude complex constant C and linear phase factor ϕ(t) are

given as

C = ejπ cos φ(f2
0 sin φ+t0 cos φ+f0t0 sin φ) (B.9)

ϕ(t) = 2πt(f0 sin φ + t0 cos φ) . (B.10)

(t0, f0) can be selected as any point on the Lw, to simplify Eq. B.8, (t0, f0) ,

(−d sin φ, d cos φ) is chosen to be the closest point on Lw to the origin. In this
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Figure B.1: Illustration of the radial and non–radial slices in the computation
of the WD (Same as Fig. 4.3).

case ϕ(t) = 0 becomes zero and Eq. B.8 takes the following form

y(a−1)(t) = Cx(a−1)(t + d) . (B.11)

Finally by substituting this relation into Eq. B.7, we obtain the desired expres-

sion for Qy(r, φ):

Qy(r, φ) = x(a−1)(
r

2
+ d) x∗(a−1)(−

r

2
+ d) . (B.12)

B.2 Fast Fractional Fourier Transform Algo-

rithm

Given x(n/∆x), m = −N/2 ≤ n ≤ N/2, this algorithm computes

x(m∆x/(2N) + d) ,m = −N,−N + 1, . . . , N − 1 [30]. It is assumed that

x(t) is scaled before obtaining its samples so that its WD is confined into a
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circle with diameter ∆x ≤
√

N .

Steps of the algorithm:

Interpolate the input samples by 2:

a
′
= (a + 2 mod 4)− 2 % After the modulo operation, |a′| ∈ [−2, 2)

if |a′| ∈ [0.5, 1.5] then

a
′′

= a
′

else

a
′′

= (a
′
+1 mod 4)−2 % After the modulo operation, |a′| ∈ (0.5, 1.5)

end if

φ
′′

= π
2

a
′′

α
′′

= cot φ
′′

β
′′

= csc φ
′′

Aφ
′′ = exp(−jπsgn(sinφ

′′
)/4+jφ

′′
/2)

|sinφ′′ |1/2

% Compute the following sequences

c1[m] = e
jπ[( α

′′

4∆2
x
− β

′′
4N

)m2−β
′′

d
∆x

m]
m = −N,−N + 1, . . . , N − 1

c2[m] = ejπ β
′′

4N
m2

m = −2N,−2N + 1, . . . , 2N − 1

c3[m] = ejπ[α
′′
(∆x
2N

m+d)2− β
′′

4N
m2] m = −N,−N + 1, . . . , N − 1

g[m] = c1[m]x(m/2∆x) m = −N,−N + 1, . . . , N − 1

ha
′′ (m∆x/(2N)) =

A
φ
′′

2∆x
c3[m](c2 ? g)[m] m = −N,−N + 1, . . . , N − 1

if |a′| ∈ [0.5, 1.5] then

xa(m∆x/(2N) + d) = ha′′ (m∆x/(2N))

else

% Compute samples of the ordinary FT using FFT.

xa(m∆x/(2N) + d) = {F1ha
′′}(m∆x/(2N) + d)

end if
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APPENDIX C

Chirp Transform Algorithm

The radial slice of the WD at an angle φ can be written as the FT of the Radon

ambiguity function transform (RAFT) Qx(r, φ) with respect to the radial vari-

able r

Wx(λ, φ) =

∫
Qx(r, φ)e−j2πrλ dr , (C.1)

where RAFT is related to the (a− 1)th order FrFT of the signal x(t) as

Qx(r, φ) = x(a−1)(r/2) x∗(a−1)(−r/2) , (C.2)

as shown in Appendix B.1. The computation of the radial slice of the WD

requires the digital computation of the FT given in Eq. C.1.

Prior to obtaining the samples of the WD, x(t) is scaled so that its WD

support is approximately confined into a circle with radius ∆x/2 centered at

the origin. Assuming x(t) has approximate time and bandwidth ∆t and ∆f

respectively, the required scaling is x(t/s) where s =
√

∆f/∆t. After the

scaling, double–sided bandwidth of Qx(r, φ) becomes 2∆x. Denoting the nth

sample of the RAFT given in Eq. C.2 as q[n] , x(a−1)(n/2∆x) x∗(a−1)(−n/2∆x),
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and writing the integral in Eq. C.1 as its uniform Riemann summation, we

obtain

Wx(λ, φ) =
1

2∆x

N−1∑
n=−N

q[n]e−j πλn
∆x , −∆x ≤ λ < ∆x , (C.3)

where the ambiguity function is sampled at a rate 1/2∆x. To obtain the M

uniformly spaced samples of Wx(λ, φ) on an arbitrarily positioned segment of a

radial slice [λi, λf ], we substitute λ = λi + k∆λ, k = 0, 1, . . . , M − 1 in Eq. C.3

Wx(λi + k∆λ, φ) =
1

2∆x

N−1∑
n=−N

q[n]e−j πn
∆x

λi+k∆λ , (C.4)

where ∆λ =
λf−λi

M−1
is the sampling interval of the frequency variable λ. Rear-

ranging the terms in Eq. C.4 gives

Wx(λi + k∆λ, φ) =
1

2∆x

N−1∑
n=−N

(q[n]e−jπ
λi
∆x

n)e−jπ
∆λ
∆x

kn . (C.5)

Defining two new sequences g[n] and W as

g[n] =
1

2∆x

q[n]e−jπ
λi
∆x

n (C.6)

W = e−jπ
∆λ
∆x , (C.7)

we obtain

Wx(λi + k∆λ, φ) =
N−1∑

n=−N

g[n]W kn , k = 0, 1, . . . , M − 1 . (C.8)

Using the identity kn = 1
2
[n2+k2−(k−n)2] in Eq. C.8, we obtain an alternative

expression for Wx(λi + k∆λ, φ):

Wx(λi +k∆λ, φ) = W k2/2

N−1∑
n=−N

W−(k−n)2/2(g[n]W n2/2) , k = 0, 1, . . . , M−1 .

(C.9)

This expression can be computed from the chirp z-Transform algorithm whose

details can be found at [59].

98


