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Abstract—We consider fast and accurate solutions of electro-
magnetics problems involving three-dimensional photonic crys-
tals (PhCs). Problems are formulated with the combined tan-
gential formulation (CTF) and the electric and magnetic current
combined-field integral equation (JMCFIE) discretized with the
Rao-Wilton-Glisson functions. Matrix equations are solved it-
eratively by the multilevel fast multipole algorithm. Since PhC
problems are difficult to solve iteratively, robust preconditioning
techniques are required to accelerate iterative solutions. We show
that novel approximate Schur preconditioners enable efficient
solutions of PhC problems by reducing the number of iterations
significantly for both CTF and JMCFIE.

I. INTRODUCTION

Photonic crystals (PhCs) are artificial structures, which are

usually constructed by periodically arranging dielectric unit

cells, such as periodic slabs and a perforated PhC waveguide

depicted in Fig. 1. Those structures exhibit frequency-selective

electromagnetic responses, i.e., their electromagnetic transmis-

sion properties change rapidly as a function of frequency.

For example, the PhC structure involving periodic rectangular

slabs in Fig. 1(a) is usually transparent, but it becomes opaque

and inhibits the transmission of electromagnetic waves in some

frequency bands [1]. This structure can be used as a filter in

microwave circuits and antenna systems. The perforated PhC

structure in Fig. 1(b) is also frequency-selective, and it can

be used as an efficient waveguide to change the direction of

electromagnetic waves [2].

In this study, we consider fast and accurate solutions of

electromagnetics problems involving three-dimensional PhCs,

such as depicted in Fig. 1. Problems are formulated with the

combined tangential formulation (CTF) [3] and the electric

and magnetic current combined-field integral equation (JM-

CFIE) [4], discretized with the Rao-Wilton-Glisson (RWG)

functions [5]. Matrix equations are solved iteratively using

the multilevel fast multipole algorithm (MLFMA) [6], and

iterative solutions are accelerated via novel approximate Schur

preconditioners (ASPs). We extensively investigate solutions

of PhC problems in terms of accuracy and efficiency. We show

that ASPs reduce the number of iterations significantly for both

CTF and JMCFIE.

(a) (b)

Fig. 1. Two types of PhC problems considered in this paper; (a) periodic
slabs and (b) perforated PhC waveguide.

II. SURFACE FORMULATIONS FOR DIELECTRIC PROBLEMS

In the literature, various dielectric formulations are available

for the solution of dielectric problems. Among many choices,

CTF and JMCFIE are usually most suitable formulations in

terms of accuracy and efficiency [7]. CTF is a modified

and more stable version of the well-known Poggio-Miller-

Chang-Harrington-Wu-Tsai (PMCHWT) formulation [3]. This

formulation is practically a first-kind integral equation, and

it produces ill-conditioned matrix equations without precon-

ditioning. Nevertheless, accuracy of CTF is excellent, even

when it is discretized with low-order basis functions, such

as the RWG functions. On the other hand, JMCFIE is a

second-kind integral equation and it usually produces better-

conditioned matrix equations compared to CTF. Unfortunately,

the accuracy of JMCFIE can be poor, especially when it is

discretized with low-order basis functions, due to the excessive

discretization error of the identity operator [8]. In addition, the

accuracy of JMCFIE further deteriorates as the contrast of the

object increases and/or the object involves sharp edges and

corners [9].

Discretizations of integral-equation formulations for homo-

geneous objects lead to 2N × 2N dense matrix equations in

the form of[
Z̄11 Z̄12

Z̄21 Z̄22

]
·
[

aJ

aM

]
=

[
v1

v2

]
, or Z̄ · a = v, (1)

where Z̄ ∈ C
2N×2N and Z̄11, Z̄12, Z̄21, Z̄22 ∈ C

N×N .

Solutions of (1) via Krylov-subspace algorithms provide ex-

pansion coefficients aJ and aM for equivalent electric and
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magnetic currents, respectively. Using expansion coefficient,

scattered electric and magnetic fields can be calculated every-

where.

Matrix-vector multiplications (MVMs) required by iterative

algorithms can be performed efficiently with O(N log N)
complexity using MLFMA. This method is based on the

calculation of interactions between basis and testing functions

in a group-by-group manner in a multilevel scheme. In the

case of dielectric problems, MLFMA must be applied for both

inner and outer media [7].

III. APPROXIMATE SCHUR PRECONDITIONERS

Both CTF and JMCFIE lead to non-hermitian and indefinite

systems, whose iterative solutions may not converge easily

without preconditioning. Being a second-kind integral equa-

tion, JMCFIE leads to diagonally-dominant matrices so that

simple block-diagonal preconditioners can be effective [7].

However, CTF does not provide diagonally-dominant matrices,

and its efficient solutions may require strong preconditioners

constructed from all available interactions in MLFMA, i.e.,

near-field matrices.

Preconditioning techniques for systems similar to (1) are

usually studied in the context of generalized-saddle-point

problems [10]–[15]. Approximating the dense matrix in (1)

by a sparse near-field matrix Z̄NF , preconditioners developed

for saddle-point problems can be used for integral-equation

solutions of dielectric problems. In general, those precondi-

tioners are obtained with some approximations to the Schur

complement reduction, which decomposes the solution of a

2 × 2 partitioned near-field system[
Z̄NF

11 Z̄NF
12

Z̄NF
21 Z̄NF

22

]
·
[
x
y

]
=

[
f
g

]
, (2)

into solutions of two systems, i.e.,

Z̄NF
11 · x = f − Z̄NF

12 · y (3)

S̄ · y = g − Z̄NF
21 · (Z̄NF

11

)−1 · f , (4)

where

S̄ = Z̄NF
22 − Z̄NF

21 · (Z̄NF
11

)−1 · Z̄NF
12 . (5)

Success of those preconditioners depend on fast and efficient

solutions of (3) and (4). Hence, we need effective approxima-

tions to the inverse of Z̄NF
11 , as well as the inverse of S̄.

One can use the sparse-approximate inverse (SAI) of Z̄NF
11 ,

i.e.,

M̄11 ≈ [
Z̄NF

11

]−1
, (6)

in (4) and (5). Then, the solution of (3) can be written as

x ≈ M̄11 ·
(
f − Z̄NF

12 · y)
. (7)

However, a good approximation to y is required in (7).

Consequently, we also need to develop a good approximation

to the Schur complement matrix.

We note that, in many applications involving partitioned

systems, the partition Z̄NF
22 is identically zero, or it consists

of very small elements compared to elements in other parti-

tions [10]. Unfortunately, this is not valid for matrix equations

TABLE I
PHC PROBLEMS

PERIODIC SLABS

Problem Slab Size (m) Number of Walls Unknowns

S1 0.41×2×2 5 38,700

S2 0.41×2×2 10 77,400

S3 0.41×4×4 5 131,460

S4 0.41×4×4 10 262,920

PERFORATED PhC WAVEGUIDE

Problem Size (cm) Number of Holes Unknowns

P1 0.6×5×5 18 14,226

P2 0.6×5×10 38 27,798

P3 0.6×15×20 272 162,420

P4 0.6×26×34 828 475,782

obtained from CTF and JMCFIE, and we are unable use many

techniques developed for those cases in the literature. In our

case, an applicable method can be using a Krylov-subspace

solver to obtain an approximate solution of the system in (4).

MVMs with S̄ can be performed by approximating the inverse

of Z̄NF
11 with M̄11. However, a robust preconditioner for S̄

is still required.

One option is to ignore the second term in (5) and to approx-

imate the inverse of the Schur complement by M̄22, i.e., SAI

of Z̄NF
22 . For both CTF and JMCFIE, Z̄NF

22 = Z̄NF
11 , hence

M̄11 can also provide an approximation to the inverse of the

Schur complement S̄. Hence, one can find an approximation

to y as

y ≈ M̄11 ·
(
g − Z̄NF

21 · M̄11 · f
)
, (8)

which can be used in (7). We call the resulting preconditioner

defined by (7) and (8) as ASP. M̄11 can also be used

as a preconditioner for iterative solutions of (3) and (4),

provided that M̄11 is used instead of exact inverses in (5)

and (4). In this case, the preconditioner is called iterative

ASP (IASP). We note that a flexible solver is required for

IASP since the effective preconditioner changes from iteration

to iteration [16]. Finally, if M̄11 does not provide a good

approximation to S̄, a better approximation to the inverse of

the Schur complement can be obtained via incomplete MVMs,

as detailed in [17].

IV. RESULTS

Table I lists PhC problems involving periodic slabs and

perforated PhC waveguides considered in this paper. All struc-

tures are located in free space and illuminated by a Hertzian

dipole. The relative permittivity of PhCs involving periodic

slabs is 4.8, and they are expected to resonate at 300 MHz.

Those structures are investigated at 250 MHz, 300 MHz, and

350 MHz. Perforated PhC waveguides have relative permit-

tivities of 12.0 and they are investigated at 8.25 GHz, i.e.,

at the frequency for the most efficient transmission. Problems

are formulated with both CTF and JMCFIE. Periodic slabs are

discretized with λ/10 triangles, where λ is the wavelength in

free space. Perforated PhC slabs require finer triangulations

with λ/20 triangles for accurate modelling of air holes.
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Fig. 2. Number of iterations for the solution of periodic-slab problems listed
in Table I.

Iterative solutions are performed by the generalized-minimal-

residual (GMRES) method [16] without a restart. The relative

residual error for the convergence is set to 10−3. Iterations are

started with a zero initial guess and terminated at maximum

1000th iteration.

Fig. 2 depicts the solution of periodic-slab problems at

300 MHz. We compare iteration counts when solutions are

accelerated with a four-partition block-diagonal precondi-

tioner (4PBDP) [7], ILU-type preconditioners (ILU(0) for

JMCFIE and ILUT for CTF) [16]), and IASP, in addition to

the no-preconditioner (NP) case. Solutions employing 4PBDP

are omitted for CTF since they do not converge. In addition,

CTF solutions do not converge for large problems without

preconditioning or when using ILU(0). In the case of IASP, we

use only M̄11 as the inner preconditioner so that the amount

of memory required by this preconditioner is 1/4 of that of

ILU-type preconditioners. Fig. 2 shows that IASP provides

the most efficient solutions of periodic-slab problems.

Fig. 3 depicts the solution of perforated-PhC problems.

In this case, we omit ILU-type preconditioners since their

memory requirement is excessively large for the largest two

problems. In addition, 4PBDP is again omitted for CTF due

to nonconvergent solutions. Fig. 3 shows that ASP, which

employs incomplete MVMs, significantly accelerates iterative

solutions of CTF. ASP is also very effective for JMCFIE and

reduces the number of iterations significantly, compared to

solutions without preconditioning and with 4PBDP. We note

that the largest problem in Fig. 3 cannot be solved without

using ASP.

Fig. 4 presents power transmission results for the periodic-

slabs problem S2. The power transmission is calculated point-

wise around dielectric slabs, and the transmission properties

of the structure is investigated at 250 MHz, 300 MHz, and

350 MHz. We observe that the structure is transparent at

250 MHz and 350 MHz, i.e., the power transmission is unity in

the transmission region on the left-hand side of the structure.
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Fig. 3. Number of iterations for the solution of perforated-PhC problems
listed in Table I.

At 300 MHz, however, the structure becomes opaque and a

shadowing occurs. We also note that there are discrepancies

between results obtained by using CTF and JMCFIE; this is

mostly due to the inaccuracy of JMCFIE.

Fig. 5 presents near-zone magnetic fields for the perforated-

PhC problem P4. The total magnetic field is calculated point-

wise inside and outside the structure in order to demonstrate

the transmission of electromagnetic waves from the left-hand

side to the bottom. For this problem, we observe that results

obtained by using CTF and JMCFIE are significantly different.

This is due to the deteriorating accuracy of JMCFIE in the case

of complicated structures and relatively high contrasts.

Finally, in order to show that the inconsistency between CTF

and JMCFIE results is due to the inaccuracy of JMCFIE, we

consider the solution of an electromagnetics problem involving

a 0.6 cm × 7 cm × 10 cm perforated PhC waveguide. The

problem is formulated with CTF and JMCFIE discretized by

using λ/20 and λ/40 triangles. Fig. 6 presents the magnetic

field at 8.25 GHz. We observe that results obtained by JMCFIE

change drastically when the discretization is refined. Specifi-

cally, JMCFIE results become consistent with CTF results for

the dense discretization.

V. CONCLUDING REMARKS

In this paper, we consider MLFMA solutions of electromag-

netics problems involving three-dimensional PhCs formulated

with CTF and JMCFIE. In addition to MLFMA, robust pre-

conditioning techniques are required in order to solve PhC

problems efficiently. We show that novel ASPs accelerate

iterative solutions significantly and they enable the analysis

of relatively large PhC structures.
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Fig. 4. Power transmission for a PhC involving periodic slabs (S2 in Table I) at 250 MHz, 300 MHz, and 350 MHz, obtained by using (a) CTF and
(b) JMCFIE.
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Fig. 5. Near-zone magnetic fields for a perforated PhC waveguide (P4 in Table I) illuminated by a Hertzian dipole radiating from x = −0.25 cm. The
problem is formulated with (a) CTF and (b) JMCFIE.

85



x (cm)

y 
(c

m
)

 

 

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
CTF (λ /20)

x (cm)

y 
(c

m
)

JMCFIE (λ /20)

 

 

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

(a) (b)

x (cm)

y 
(c

m
)

 

 

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
CTF (λ /40)

x (cm)

y 
(c

m
)

 

 

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.04

−0.02

0

0.02

0.04

0.06

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
JMCFIE (λ /40)

(c) (d)

Fig. 6. Near-zone magnetic fields for a perforated PhC waveguide involving 7 × 10 holes illuminated by a Hertzian dipole. Solutions are obtained with
(a) CTF and λ/20 triangulation, (b) JMCFIE and λ/20 triangulation, (c) CTF and λ/40 triangulation, and (d) JMCFIE and λ/40 triangulation.
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