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Abstract—We propose direct and iterative versions of approxi-
mate Schur preconditioners to increase robustness and efficiency
of iterative solutions of dielectric problems formulated with sur-
face integral equations. The performance of these preconditioners
depends on the availability of fast and approximate solutions
to reduced matrix systems. We show that sparse-approximate-
inverse techniques provide a suitable mechanism for this purpose.
The proposed preconditioners are demonstrated to significantly
improve convergence rates of dielectric problems formulated with
two different surface integral equations.

I. INTRODUCTION
Discretization of surface integral-equation formulations

of dielectric problems leads to dense, complex, and non-
hermitian linear systems. Those linear systems have an explicit
2× 2 partitioned structure in the form of[

A11 A12

A21 A22

]
·

[
vJ

vM

]
=

[
b1

b2

]
or A · v = b, (1)

where A ∈ C
2N×2N ,A11,A12,A21, and A22 ∈ C

N×N , vJ

and vM are N × 1 coefficient vectors of the Rao-Wilton-
Glisson [1] basis functions expanding the equivalent electric
and magnetic electric currents, respectively. In (1), b1 and
b2 represent N × 1 excitation vectors obtained by testing the
incident electric and magnetic fields. Since the system matrices
in (1) are dense, it is customary to use iterative methods
for the solutions and to employ the multilevel fast multipole
algorithm (MLFMA) [2] to accelerate the dense matrix-vector
multiplications (MVMs).
We consider preconditioning of linear systems that arise

from the combined tangential formulation (CTF) and the
electric and magnetic current combined-field integral equation
(JMCFIE), which is a combination of CTF and the combined
normal formulation (CNF) [3]–[5]. Being a first-kind integral
equation, CTF produces more accurate results than other
integral-equation formulations, but solving the resulting linear
system is difficult without effective preconditioning. Similar to
the case in perfect-electric-conductor (PEC) problems, being
a combined formulation, JMCFIE is very efficient for solving
large-scale problems [6]. Accuracy of the solutions obtained
via JMCFIE, however, can be significantly poorer than those

of CTF [7]. Moreover, when the dielectric constant of the
problem increases, JMCFIE matrices tend to be less well-
conditioned. Hence, effective preconditioning is indispensable
for accurate and efficient solutions of dielectric problems.
To provide a fast MVM, MLFMA decomposes the dense

coefficient matrix as A = ANF + AFF , where AFF denotes
the far-field matrix and ANF the near-field matrix. Only ANF

is stored in the memory, hence, we use this sparse matrix as
the preconditioning matrix (i.e., the matrix from which the
preconditioner is to be constructed). Then, preconditioners are
obtained with some approximations to the Schur complement
reduction [8], which decouples the solution of a partitioned
linear system to the solutions of reduced systems with the (1,1)
partition and the Schur complement. We show how to solve
these systems approximately and efficiently by employing
sparse-approximate-inverse (SAI) techniques [9].

II. SURFACE INTEGRAL EQUATIONS FOR DIELECTRIC
PROBLEMS

Recently, significant progress has been made in devising
new integral-equation formulations that are suitable for iter-
ative solutions of dielectric problems [3]–[5]. Among these
formulations, we will briefly review CTF, which produces the
most accurate results, and JMCFIE, which requires smallest
iteration counts for large problem sizes [6].

A. CTF
Surface formulations that are free of internal-resonance

problems can be obtained by combining integral equations of
the outer and the inner regions of the object. For example, CTF
[3] is defined by combining inner (I) and outer (O) versions
of the tangential electric-field integral equation (T-EFIE) and
the tangential magnetic-field integral equation (T-MFIE), i.e.,

1

η1

T-EFIE-O+
1

η2

T-EFIE-I,

η1T-MFIE-O+ η2T-MFIE-I,
(CTF) (2)

where η1 and η2 are the impedances of the outer and inner
regions, respectively. In (2), the identity terms of inner and
outer integral equations cancel each other, and CTF turns out
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to be a first-kind integral equation that has a smooth kernel
[7]. The smoothing property of the kernel results in coefficient
matrices that are far from being diagonally dominant and
that have poor conditioning. On the other hand, due to this
smoothing property of its kernel, CTF has a better solution
accuracy compared to normal formulations, such as CNF.

B. JMCFIE
By using a normal electric-field integral equation (N-EFIE)

and a normal magnetic-field integral equation (N-MFIE),
second-kind normal formulations can be obtained, such as
CNF [3]. Even though the singular kernels and the identity
terms of normal formulations lead to more diagonally domi-
nant matrices and better conditioning than CTF, accuracy of
such formulations can be much worse than that of CTF.
Compared to CNF, JMCFIE is a more accurate second-kind

integral-equation formulation, which is obtained by combining
CTF and CNF as [5]

JMCFIE = αCTF+ βCNF, (3)

where 0 ≤ α ≤ 1 and β = 1 − α. In addition to being more
accurate than CNF, the matrix systems of JMCFIE formulation
are more stable and can be solved usually in fewer iterations,
compared to those of CNF [6].
However, both the solution accuracy and the conditioning

of JMCFIE decrease as the dielectric constant increases [7].
When object surfaces have sharp edges and corners, they also
have negative effects on the accuracy of JMCFIE. Therefore,
when the dielectric constant is high and/or the surface of the
object has non-smooth sections, the accuracy of JMCFIE can
be much poorer than the accuracy of CTF [7]. Therefore,
preconditioning is a critical issue for accurate and efficient
electromagnetics simulations of dielectric objects. If, in some
cases, the accuracy of the normal formulations and JMCFIE
are unacceptable, then one may have to employ CTF, for
which the solutions are tough to obtain without effective
preconditioning. For high dielectric constants, JMCFIE tends
to produce matrices that are not well-conditioned, necessitating
the application of effective preconditioners.

III. ASP
For the solution of the preconditioning system[

ANF
11

ANF
12

ANF
21

ANF
22

]
·

[
x

y

]
=

[
f

g

]
, (4)

we use the method of Schur complement reduction that
reduces the solution of (4) to the solution of the following
two systems. First, y is found using

S · y = g −ANF
21

·
(
ANF

11

)−1

· f , (5)

where
S = ANF

22
−ANF

21
·
(
ANF

11

)−1

·ANF
12

(6)

is the Schur complement matrix. Then, x can be computed by
solving

ANF
11

· x = f −ANF
12

· y. (7)

Approximate solutions of (5) and (7) can serve as useful
preconditioners. These solutions can be obtained either directly
or iteratively, i.e., either by directly approximating the inverses
of ANF

11
and S or by employing an iterative solver. We call

the former “approximate Schur preconditioner (ASP)” and the
latter “iterative ASP (IASP)”. Note that approximate inverses
or incomplete LU (ILU) factors are still required as “inner”
preconditioners for efficient IASP implementations. Hence, for
both ASP and IASP, the effectiveness of the preconditioner
depends on devising fast approximations for the (1,1) partition
ANF

11
and the Schur complement S [10].

A. Approximating the Inverse of the (1,1) Partition
Since the exact inversion of the sparse matrix ANF

11
is too

expensive, we can use SAIs to approximate the inverse of
ANF

11
. We use the same pattern of ANF

11
for the approximate

inverse, hence, their memory consumptions are the same.
Advantages of using SAIs over ILU factors are robustness
and ease of parallelization. Furthermore, by using the block
structure of the the near-field matrix, we can eliminate the
high setup time of SAI.
In Fig. 1, we depict the extreme eigenvalues bounding the

spectra for matrices M11 · A
NF
11
, where M11 denotes the

SAI of ANF
11
. These eigenvalues are obtained with no-restart

GMRES [11]. The geometry is a 4λ-diameter sphere involving
29,742 unknowns. We see that eigenvalues are very tightly
clustered around the point (1,0) for JMCFIE. For CTF, we see
a slightly looser clustering than JMCFIE. Also note that the
spectra of ANF

11
are not significantly affected with the increase

of the dielectric constant.
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Fig. 1. Eigenvalues of M11 · ANF
11

for dielectric constants of 4 and 12.

B. Approximating the Inverse of the Schur Complement
The approximation for the inverse of the Schur complement

matrix is more delicate than that of ANF
11
. Furthermore, the

approximation level provided to the solution of the system
involving S should be similar to the approximation level
provided to the solution of the system involving ANF

11
[12].
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As a first choice, we can approximate the inverse of the
Schur complement matrix as

S
−1

≈
(
ANF

22

)−1

≈M22, (8)

assuming that the first term in the RHS of (6) is the dominant
term in the Schur complement. Since ANF

22
= ANF

11
for CTF

and JMCFIE, M22 = M11, and we can use the same SAI of
the (1,1) partition for the Schur complement as well. In Fig. 2,
we evaluate this approximation by depicting the boundary
eigenvalues of matrices M22 ·S. We observe that the spectra
of JMCFIE are significantly scattered compared to those in
Fig. 1 with a high dielectric constant. Similar to JMCFIE,
but to a lesser extent, the spectra of CTF are also scattered.
However, we can useM22 as an inner preconditioner of IASP,
provided that the dielectric constant of a problem is not very
high.
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Fig. 2. Eigenvalues of M22 · S for dielectric constants of 4 and 12.

As another choice, we can generate an explicit SAI for S

that involves the second term of the Schur complement by
employing incomplete matrix-matrix multiplications. First, we
compute a sparse approximation to S in the form of

S̃ = A
NF

22
−A

NF

21
�M11 �A12, (9)

where � denotes an incomplete matrix-matrix multiplication
obtained by retaining the near-field sparsity pattern. Then, the
approximation is performed as

S−1 ≈ S̃−1 ≈MSchur, (10)

where MSchur denotes a SAI approximation to the inverse
of S̃. The incomplete matrix-matrix multiplication can be
performed in O(N) time using the ikj loop order of the block
matrix-matrix multiplication [13] since the block entries of
the near-field partitions are stored row-wise. This operation
is detailed with a pseudocode in Fig. 3. Note that the “if”
statement in the innermost loop ensures that a block of Cij is
updated only if clusters i and j are in the near-field of each

other. This way, the near-field sparsity pattern is preserved for
the product partition C.

C = 0

for each lowest-level cluster i do
for each cluster k ∈ N (i) do
for each cluster j ∈ N (k) do
if j ∈ N (i) then

C ij = C ij + Dik · Ekj

endif
endfor

endfor
endfor

Fig. 3. Incomplete matrix-matrix multiplication of C = D · E, where C,
D, and E are block near-field partitions having the same sparsity pattern.
Cij denotes the block of the near-field partition C that corresponds to the
interaction of the cluster i with cluster j. N (i) denotes the clusters that are
in the near-field zone of cluster i.

We evaluate the approximation (10) in Fig. 4. It is clear
that MSchur provides a more successful approximation to
the inverse of the Schur complement S than M22. When we
compare Figs. 1 and 4, we observe that the approximation
level provided by MSchur is close to that of M11.
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Fig. 4. Eigenvalues of MSchur · S for dielectric constants of 4 and 12.

IV. NUMERICAL RESULTS
In our experiments, we use the generalized minimal resid-

ual method (GMRES) [14] with no restart as the iterative
solver. We note that there is a significant difference between
the performances of GMRES and other non-optimal solvers,
such as biconjugate gradient stabilized, for the solutions of
dielectric problems [6]. Iterations are performed until the norm
of the initial residual is reduced by a factor of 10−3. Solutions
are started with a zero initial guess and terminated if 1,000
iterations are reached. We use α = β = 0.5 for the JMCFIE
formulation.
We compare no-preconditioner (No PC), a four-partition

block-diagonal preconditioner (4PBDP) [6], and an ILU-type

46



preconditioner (ILU(0) or ILUT [14]) with ASP and IASP.
4PBDP is a simple preconditioner constructed using only the
self interactions of the last-level clusters in each partition. For
JMCFIE, we select ILU(0) among the ILU-type precondition-
ers since JMCFIE shows some kind of diagonal dominance.
For CTF, we employ the dual-threshold ILUT preconditioner,
which has proven to be a robust and effective preconditioner
for the PEC case [15]. We set threshold values so that ILUT
uses up the same amount of memory with ILU(0) and the
near-field matrix [15]. For IASP, we use M11 (approximate
inverse of the (1,1) partition) as the sole inner preconditioner,
hence, the memory requirement of IASP is only one-fourth
of that of the ILU-type preconditioners. For ASP, we use
MSchur for the Schur complement instead ofM11, hence, the
memory requirement of ASP is half of that of the ILU-type
preconditioners. In order to provide an indication about the
optimality of the preconditioners, we also present the iteration
counts for the case where the whole near-field matrix ANF is
solved exactly by an LU factorization.

Fig. 5. The sphere problem used in the numerical experiments. The dielectric
constant of the problem is 4.

In Fig. 5, we depict the sphere problem, which has a dielec-
tric constant of 4. In Figs. 6 and 7, we show the experiments
carried out with this problem. For CTF, 4PBDP decelerates
the convergence rate, since CTF is far from being diagonally
dominant. ILUT also do not provide a significant improvement
over No PC. A similar observation has been reported before
and it was shown that ILUT is also ineffective in a finite-
element implementation of the Navier-Stokes equations [8].
On the other hand, both 4PBDP and ILU(0) significantly
improves convergence rates of JMCFIE matrices, compared to
No PC. However, both ASP and IASP performs much better
than other preconditioners for CTF and JMCFIE. For both
formulations, IASP performs significantly better than ASP, and
the iteration counts of IASP become very close to those of LU.
For IASP, we use a 0.1 residual error and at most three inner
iterations, hence, the application cost of this preconditioner
is modest. As a result, IASP also significantly improves the
solution times compared to ASP.
Then, we comment on the setup time of preconditioners.

The algorithm given in Fig. 3 performs incomplete matrix-
matrix multiplications very fast, and as a result there is a

minor difference between the construction times M11 and
MSchur. For example, for the large sphere problem that
involves 540,450 unknowns, setup time of M11 is only 5.7
minutes and that of MSchur is 6.2 minutes. As Fig. 7 reveals,
these times are negligible compared to the iteration times.
ILU(0) also has a negligible setup time. However, ILUT
requires substantial setup time when the number of unknowns
is large. For the largest sphere problem, for example, setup of
ILUT requires 220 minutes.
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Fig. 6. Number of iterations for the sphere problem obtained with various
preconditioners.
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Fig. 7. Total solution times (setup of the preconditioner and iterations) for
the sphere problem obtained with various preconditioners.

Next, we consider a lens problem shown in Fig. 8, which
has a higher dielectric constant of 12 [16]. We use ASP for
this problem since M22 becomes a poor approximation to the
inverse of the Schur complement for high dielectric constants
as shown in Fig. 2. In Figs. 9 and 10, we show the iteration
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Fig. 8. The lens problem used in the numerical experiments. The dielectric
constant of the problem is 12.

counts and solution times related to a series of problems
between 30 GHz and 120 GHz, with increasing numbers of
unknowns from 38,466 to 632,172. Performances of 4PBDP
and ILU-type preconditioners for this problem are similar to
their performances for the sphere problem. However, ASP
preconditioner produces iteration counts that are very close to
those of LU for this problem, and we do not need to use IASP.
For both CTF and JMCFIE, ASP solves the lens problems
significantly faster than ILU-type preconditioners and with
only half as much memory.

104 105 106
101

102

103
CTF

Number of Unknowns

N
um

be
r o

f I
te

ra
tio

ns

104 105 106
101

102

103
JMCFIE

Number of Unknowns

No PC
4PBDP
ILU
ASP
LU

Fig. 9. Number of iterations for the lens problem obtained with various
preconditioners.

V. CONCLUSIONS
We have developed robust Schur complement precondition-

ers (ASP and IASP) for dielectric problems formulated with
surface integral equations . The success of those precondi-
tioners depends on the approximate and fast computations of
the inverses of the near-field (1,1) partition and the Schur
complement. For the (1,1) partition, we employ a SAI, which
uses the same sparsity pattern of the partition. For the Schur
complement, we can use the same SAI, provided that the
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Fig. 10. Total solution times (setup of the preconditioner and iterations) for
the lens problem obtained with various preconditioners.

solutions with these systems are found iteratively (IASP)
and the dielectric constant of the problem is not very high.
This way, we reduce the memory requirement by four fold,
compared to ILU-type preconditioners that have the same
sparsity ratio as the near-field matrix. For high dielectric
constants, however, we need a better approximation for the
Schur complement. We showed that this approximation can
be obtained via incomplete matrix-matrix multiplications.
The proposed ASP preconditioners have negligible setup

times and low memory requirements. They render difficult
dielectric problems solvable for both the first-kind CTF and
the second-kind JMCFIE formulations.
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