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Abstract—The multilevel fast multipole algorithm (MLFMA)
provides accurate and efficient solutions of electromagnetic scat-
tering problems involving large and complicated structures. On
the other hand, whenever applicable, accelerations provided by
approximation techniques can be useful to further improve the ef-
ficiency of solutions. In this paper, we present a hybrid technique,
which combines the physical-optics (PO) method and MLFMA
for efficient scattering computations of three-dimensional objects.
We show that, with a careful choice of MLFMA and PO regions
on the structure, the number of unknowns can be reduced and
solutions can be accelerated significantly, without sacrificing the
accuracy. The proposed hybrid technique is easy to implement
by modifying existing MLFMA codes.

I. INTRODUCTION

Surface integral equations provide accurate solutions elec-

tromagnetic scattering problems involving complicated struc-

tures with metallic surfaces [1]. Simultaneous discretizations

of integral equations and the scatterer lead to N×N dense ma-

trix equations, which can be solved iteratively. For large-scale

problems, matrix-vector multiplications can be performed ef-

ficiently by the multilevel fast multipole algorithm (MLFMA)

in O (N log N) time using O (N log N) memory [2]. Due

to its low computational complexity, MLFMA provides the

solution of electromagnetics problems discretized with large

numbers of unknowns on relatively inexpensive computing

platforms [3],[4]. On the other hand, real-life scenarios often

require multiple solutions involving different illuminations

and frequencies. In those cases, accelerations provided by

approximation techniques, such as the physical optics (PO),

can be useful to improve the efficiency of solutions. For

example, in order to reduce the number of unknowns, PO

currents can be introduced on smooth and large surfaces of

the object, where the PO approximation is feasible.

In this paper, we present a hybrid technique, which is based

on a careful combination of PO and MLFMA for accurate and

efficient scattering computations of three-dimensional complex

targets. Similar to other hybrid techniques in the literature [5]–

[12], integral equations (i.e., MLFMA) are applied only on

critical regions, such as edges, tips, corners, cavities, and

shadow boundaries, where the PO approximation cannot pro-

vide accurate solutions. Surface currents in those regions

are solved efficiently using MLFMA, whereas the remaining

currents are approximated via PO. Given a complicated object,

we carefully determine the MLFMA and PO regions such

that the number of unknowns is minimized, without signifi-

cantly deteriorating the accuracy of results. Effectiveness of

the developed implementation is demonstrated on scattering

problems involving various airborne targets, such as the stealth

Flamme [13].

II. IMPLEMENTATION OF A HYBRID MLFMA-PO

TECHNIQUE

For numerical solutions of integral-equation formulations,

the electric current J induced on the surface of the target

is expanded in a series of basis functions, such as the Rao-

Wilton-Glisson (RWG) functions [14], as

J(r) =
N∑

n=1

anbn(r), (1)

where bn is the nth basis function with a spatial support of

Sn. Testing the boundary conditions on the surface using a set

of testing functions tm for m = 1, . . . , N , we obtain N × N
dense matrix equations in the form of

N∑
n=1

Zmnan = vm (m = 1, 2, ..., N). (2)

Elements of the impedance matrix and the right-hand-side vec-

tor are derived for the electric-field integral equation (EFIE)

and the magnetic-field integral equation (MFIE) as

ZE
mn = ik

∫

Sm

dr tm(r) ·
∫

Sn

dr′ bn(r′)g(r, r′) (3)

+
i

k

∫

Sm

dr tm(r) ·
∫

Sn

dr′∇′ · bn(r′)∇g(r, r′) (4)

vE
m = −η−1

∫

Sm

dr tm(r) · Einc(r) (5)
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Fig. 1. Stealth airborne target Flamme; (a) top view, (b) side view, (c) isometric view, and (d) back view.

and

ZM
mn =

∫

Sm

dr tm(r) · n̂ ×
∫

PV,Sn

dr′ bn(r′) ×∇′g(r, r′)

− 1
2

∫

Sm

dr tm(r) · bn(r) (6)

vM
m = −

∫

Sm

dr tm(r) · n̂ × Hinc(r), (7)

respectively, where PV indicates the principal value of the

integral, Sm is the spatial support of the mth testing function,

k = ω
√

με is the wavenumber, and

g (r, r′) =
exp (ik |r − r′|)

4π |r − r′| (8)

represents the homogeneous-space Green’s function. In this

paper, we use the combined-field integral equation (CFIE),

which is the convex combination of EFIE and MFIE [15],[16],

i.e.,

ZC
mn = αmZE

mn + (1 − αm)ZM
mn (9)

vC
mn = αmvE

m + (1 − αm) vM
m (10)

for 0 ≤ αm ≤ 1.

In our hybrid MLFMA-PO technique, PO currents are

initially expanded in a series of basis functions as

JPO(r) = 2n̂ × Hinc(r) =
NP O∑
n=1

anbn(r), (11)

where the expansion coefficients for n = 1, . . . , NPO are

obtained by solving a sparse matrix equation in the form of

NP O∑
n=1

Imnan = wm (m = 1, 2, ..., NPO) . (12)

In (12),

Imn =
∫

Sm

dr tm (r) · bn (r) (13)

and wm = −2vM
m . After PO coefficients are determined,

they are radiated to MLFMA regions via a matrix-vector

multiplication, i.e.,

ym =
NP O∑
n=1

Zmnan

(m = NPO + 1, NPO + 2, ..., N) , (14)

which can be performed efficiently via MLFMA. Finally,

coefficients in MLFMA regions are calculated by solving the

reduced matrix equation

N∑
n=NP O+1

Zmnan = vm − ym

(m = NPO + 1, NPO + 2, ..., N) (15)

using a Krylov-subspace algorithm accelerated with MLFMA.

We note that MLFMA implementations for the matrix-vector

multiplication in (14) and the matrix equation in (15) use

different tree structures. Using the hybrid MLFMA-PO tech-

nique, the number of unknowns is reduced from N to

(N − NPO). The extra cost is only due to the solution of

the extremely-sparse matrix equation in (12), which requires

negligible time and memory. As demonstrated in the next

section, the choice of MLFMA and PO regions is critical in

terms of accuracy and efficiency.

III. RESULTS

As an example, we consider the solution of scattering

problems involving the stealth airborne target Flamme depicted

in Fig 1. The nose of the target is directed towards the x axis,

and the target is illuminated by a plane wave propagating on

the x-y plane at 140◦ angle from the x axis with the electric
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Fig. 2. Induced currents on the surface of the Flamme at (a) 7.5 GHz, (b) 7.9 GHz, (c) 8.3 GHz, and (d) 8.9 GHz computed with MLFMA. A cavity
resonance is observed inside the jet outlet at 7.9 GHz.

field polarized in the z direction. Discretization of the target

with 3 mm triangles leads to matrix equations involving 78,030

unknowns. Iterative solutions are performed by using the least-

squares QR algorithm. Fig. 2 presents the induced electric

current on the surface of the Flamme at 7.5 GHz, 7.9 GHz,

8.3 GHz, and 8.9 GHz, computed via MLFMA. We observe a

cavity resonance inside the jet outlet at 7.9 GHz, which makes

the problem difficult to handle via the PO approximation.

Fig. 3 presents the radar cross section (RCS in dBms) of

the Flamme at 7.9 GHz as a function of the bistatic angle on

the x-y plane. In addition to MLFMA and PO solutions, RCS

values are obtained by using the MLFMA-PO hybrid technique

with various choices for MLFMA and PO regions. Specifically,

MLFMA is employed inside the jet outlet, as well as in buffer

regions around sharp edges of the target. Fig. 3(a) shows

that the PO technique is significantly inaccurate and cannot

provide accurate results, except for a limited range close to

the forward-scattering direction. Using MLFMA in 0.1λ buffer

regions around edges (in addition to the jet outlet) reduces the

average CPU time per iteration from 0.14 minutes to 0.05

minutes, corresponding to 65% reduction with respect to the

full MLFMA. However, as depicted in Fig. 3(b), accuracy

is not improved compared to the PO technique. When the

MLFMA regions around edges are enlarged to 0.5λ, we

observe a significant improvement in the accuracy of the

hybrid technique, as shown in Fig. 3(c). In this case, the

number of unknowns solved with MLFMA is 44,772, and the

average CPU time per iteration is reduced to 0.09 minutes.

Finally, as presented in Fig. 3(d), enlarging buffer regions to

0.8λ further improves the accuracy of the hybrid technique, but

the efficiency drops due to the increasing number of unknowns

solved by MLFMA.

IV. CONCLUSION

We present a hybrid MLFMA-PO technique for efficient

scattering computations of three-dimensional complex targets.

The proposed technique can accelerate solutions compared to

full MLFMA without sacrificing the accuracy of results, and

it is easy to implement by modifying existing MLFMA codes.
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