
Practical Threshold Signatures with Linear

Secret Sharing Schemes�

İlker Nadi Bozkurt, Kamer Kaya��, and Ali Aydın Selçuk

Department of Computer Engineering
Bilkent University

Ankara 06800, Turkey
{bozkurti,kamer,selcuk}@cs.bilkent.edu.tr

Abstract. Function sharing deals with the problem of distribution of
the computation of a function (such as decryption or signature) among
several parties. The necessary values for the computation are distributed
to the participating parties using a secret sharing scheme (SSS). Several
function sharing schemes have been proposed in the literature, with most
of them using Shamir secret sharing as the underlying SSS. In this pa-
per, we investigate how threshold cryptography can be conducted with
any linear secret sharing scheme and present a function sharing scheme
for the RSA cryptosystem. The challenge is that constructing the secret
in a linear SSS requires the solution of a linear system, which normally
involves computing inverses, while computing an inverse modulo ϕ(N)
cannot be tolerated in a threshold RSA system in any way. The thresh-
old RSA scheme we propose is a generalization of Shoup’s Shamir-based
scheme. It is similarly robust and provably secure under the static ad-
versary model. At the end of the paper, we show how this scheme can
be extended to other public key cryptosystems and give an example on
the Paillier cryptosystem.

Keywords: Linear secret sharing, threshold cryptography, function
sharing.

1 Introduction

The secure storage of the private keys of a cryptosystem is an important problem.
Possession of a highly sensitive key by an individual may not be desirable as the
key can easily be lost or as the individual may not be fully trusted. Giving
copies of the key to more than one individual increases the risk of compromise.
A solution to this problem is to give shares of the key to several individuals,
forcing them to cooperate to find the secret key. This not only reduces the risk
of losing the key but also makes compromising the key more difficult. In threshold
� This work is supported in part by the Turkish Scientific and Technological Research

Agency (TÜBİTAK), under grant number 108E150.
�� Supported by the Turkish Scientific and Technological Research Agency (TÜBİTAK)

Ph.D. scholarship.

B. Preneel (Ed.): AFRICACRYPT 2009, LNCS 5580, pp. 167–178, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

168 İ.N. Bozkurt, K. Kaya, and A.A. Selçuk

cryptography, secret sharing deals with this problem, namely, sharing a highly
sensitive secret among a group of n users such that only when a sufficient number
t of them come together can the secret be reconstructed. Well-known secret
sharing schemes (SSS) in the literature include Shamir [17] based on polynomial
interpolation, Blakley [2] based on hyperplane geometry, and Asmuth-Bloom [1]
based on the Chinese Remainder Theorem.

A shortcoming of secret sharing schemes is the need to reveal the secret shares
during the reconstruction phase. The system would be more secure if the subject
function can be computed without revealing the secret shares or reconstructing
the secret. This is known as the function sharing problem. A function sharing
scheme requires distributing the function’s computation according to the under-
lying SSS such that each part of the computation can be carried out by a different
user and then the partial results can be combined to yield the function’s value
without disclosing the individual secrets. Several protocols for function sharing
have been proposed in the literature [4,5,6,7,18,10,16]. Nearly all these protocols
use Shamir secret sharing as the underlying SSS.

1.1 Secret Sharing Schemes

The problem of secret sharing and the first solutions were introduced in 1979
independently by Shamir [17] and Blakley [2]. A (t, n)-secret sharing scheme is
used to distribute a secret d among n people such that any coalition of size t or
more can construct d but smaller coalitions cannot.

Shamir secret sharing is based on polynomial interpolation over a finite field.
It uses the fact that we can find a secret polynomial of degree t− 1 given t data
points. To generate a polynomial f(x) =

∑t−1
i=0 aix

i, a0 is set to the secret value
and the coefficients a1 to at−1 are assigned random values in the field. The value
f(i) is given to user i. When t out of n users come together, they can construct
the polynomial using Lagrange interpolation and can find the secret.

Blakley secret sharing scheme has a different approach based on hyperplane
geometry: To implement a (t, n) threshold scheme, each of the n users is given
a hyperplane equation in a t dimensional space over a finite field such that
each hyperplane passes through a certain point. The intersection point of the
hyperplanes is the secret. When t users come together, they can solve the system
of equations to find the secret.

Both Shamir and Blakley are linear threshold secret sharing schemes: As
Karnin et al. [11] observed, Shamir SSS is a subclass of a broader class of linear
secret sharing. The polynomial share computation can be represented as a matrix
multiplication by using a Vandermonde matrix. Similarly, the secret and the
shares of the Blakley SSS can be represented as a linear system Ax = y where
the matrix A and the vector y are obtained from the hyperplane equations.

1.2 Function Sharing Schemes

Function sharing is the concept of distributing the computation of a function
such that when a sufficient number of users come together they can compute

Practical Threshold Signatures with Linear Secret Sharing Schemes 169

the value of the function without revealing their secret shares. This problem is
related to secret sharing as the secret values needed for partial computations are
distributed using secret sharing.

Several solutions for sharing the RSA, ElGamal, and Paillier private key op-
erations have been proposed in the literature [4,5,6,7,9,12,13,16,18]. Almost all
of these schemes have been based on the Shamir SSS.

The additive nature of the Lagrange’s interpolation formula used in the com-
bining phase of Shamir’s scheme makes it an attractive choice for function shar-
ing, but it also provides several challenges. One of the most significant challenges
is the computation of inverses in Zϕ(N) for the division operations in Lagrange’s
formula, while ϕ (N) should not be known by the users. There are two main
difficulties in this respect:

1. An inverse x−1 will not exist modulo ϕ (N) if gcd (x, ϕ(N)) �= 1.
2. Even when x−1 exists it should not be computable by a user, since that

would enable computing ϕ (N).

Early solutions to this problem, albeit not very efficient, were given in [4,16].
Afterwards an ingenious solution was given by Shoup [18] where he removed the
need of taking inverses in Lagrange interpolation altogether.

Shoup’s practical RSA scheme has inspired similar works on different cryp-
tosystems. Fouque et al. [9] proposed a similar Shamir-based threshold solution
for the Paillier cryptosystem and used it in e-voting and lottery protocols. Later,
Lysyanskaya and Peikert [13] improved this work and obtained a threshold Pail-
lier encryption scheme secure under the adaptive security model. The current
paper is also inspired by Shoup’s work.

1.3 Our Contribution

In this work, we show how to generalize Shoup’s ideas to do function sharing with
any linear SSS, and we give a robust threshold RSA signature scheme. A linear
SSS, where the solution is based on solving a linear system, naturally requires
computing inverses for reconstructing the secret. We show how to utilize such
a system for function sharing while avoiding computation of inverses modulo
ϕ(N) completely.

We also discuss how this approach can be applied to other public key cryp-
tosystems and show an example on the Paillier decryption function.

2 Linear Secret Sharing Schemes

A linear (t, n) threshold secret sharing scheme can be defined as follows: Let A
be a full-rank public n× t matrix with entries chosen from F = Z

∗
m for a prime

m. Let x = (x1, x2, . . . , xt)T be a secret vector from F t. Let aij denote the entry
at the ith row and jth column of the matrix A.

170 İ.N. Bozkurt, K. Kaya, and A.A. Selçuk

2.1 Dealing Phase

The dealer chooses a secret vector x ∈ F t where the first entry x1 is set to the
secret value (the RSA private key d in our case) and the values of the other
coordinates are set randomly from the field F . The ith user will get a his share
yi ∈ F ,

yi = ai1x1 + ai2x2 + . . . + aitxt. (1)

For a (t, n) threshold scheme there will be n such shares, and hence we will have
an n × t linear system

Ax = y. (2)

The dealer then sends the secret value of yi to user i for 1 ≤ i ≤ n and makes
the matrix A public.

2.2 Share Combining Phase

Share combining step is simply finding the solution of a linear system of equa-
tions. Suppose that a coalition S = {i1, . . . , it} of users come together. They
form a matrix AS using their equations and solve

ASx = yS , (3)

where yS is the vector of the secret shares of the users. The secret is found as
the first coordinate of the solution.

3 Sharing RSA Signature Computation

In this section, we describe our threshold RSA signature scheme which works
with any linear SSS in general.

3.1 Setup

In the RSA setup phase, choose the RSA primes p = 2p′ + 1 and q = 2q′ + 1,
where p′ and q′ are large primes. Compute the RSA modulus as N = pq. Let
m = p′q′. The public key e is chosen as a prime number, details of which will be
explained in the next section. After choosing e, the private key d is computed
such that ed ≡ 1 (mod m). Then the dealer shares the private key d among n
users using a linear threshold SSS described in Section 2.

The dealer also chooses v as a generator of QN , where QN is the subgroup of
squares in Z

∗
N . He computes and broadcasts

vi = vyi ∈ QN , (4)

for 1 ≤ i ≤ n, which are the verification keys to be used in the proofs of
correctness of the partial signatures, where yi is the secret share of user i.

Practical Threshold Signatures with Linear Secret Sharing Schemes 171

3.2 Signing

Let H(.) be a hash function mapping input messages to Z
∗
N and let w = H(M) ∈

Z
∗
N be the hashed message to be signed. Assume a coalition S of size t wants to

obtain the signature s = wd mod N .

Generating partial signatures. Let S = {i1, . . . , it} be the coalition of t
users, forming the linear system

ASx = yS .

Let cij be the ij-th cofactor of matrix AS and let CS be the adjugate matrix,

CS =

⎛

⎜
⎜
⎜
⎝

c11 c21 . . . ct1

c12 c22 . . . ct2

...
...

. . .
...

c1t c2t . . . ctt

⎞

⎟
⎟
⎟
⎠

.

If we denote the determinant of AS by ΔS we have,

ASCS = CSAS = ΔSIt, (5)

where It denotes the t × t identity matrix.
For our scheme, each user i ∈ S computes his partial signature as

si = w2ci1yi mod N. (6)

Verifying partial signatures. Each user computes and publishes a proof of
correctness for the verification of his partial signature. The proof of correctness
of the partial signature of user i is a proof that the discrete logarithm of s2

i to
the base

s̃i = w4ci1 mod N (7)
is the same as the discrete logarithm of vi to the base v. To prove this, a protocol
by Shoup [18] which is a non-interactive version of Chaum and Pedersen’s [3]
interactive protocol is used:

Let L(n) be the bit-length of n. Let H ′ be a hash function, whose output is
an L1-bit integer, where L1 is a secondary security parameter. To construct the
proof of correctness, user i chooses a random number r ∈ {0, 1, . . . , 2L(N)+2L1 −
1}, computes

v′ = vr mod N,

s′ = s̃r
i mod N,

D = H ′(v, s̃i, vi, s
2
i , v

′, s′),
σ = yiD + r.

Then user i publishes his proof of correctness as (σ, D).
To verify this proof of correctness, one checks whether

D
?= H ′(v, s̃, vi, s

2
i , v

σv−D
i , s̃σ

i s−2D
i).

172 İ.N. Bozkurt, K. Kaya, and A.A. Selçuk

Combining partial signatures. To combine the partial signatures, we simply
compute

s =
∏

i∈S
si mod N. (8)

Note that, by equation (5), we have

s = wd δ mod N, (9)

where
δ = 2 ΔS . (10)

Given that e is a prime number relatively prime to ΔS , it is easy to compute
the signature s = wd mod N from s. Take

s = sawb mod N, (11)

where a and b are integers such that

δa + eb = 1, (12)

which can be obtained by the extended Euclidean algorithm on δ and e.

4 Choosing e

The choice of e is critical in the setup phase because the solution depends on e
and ΔS being relatively prime. To achieve this, we can either choose a special
matrix whose determinant is known to be relatively prime to e, or choose e as a
sufficiently large prime according to t and n so that the probability that ΔS is
divisible by e will be negligible for any coalition S.

4.1 Choosing e probabilistically

The probability of a random integer’s being divisible by a prime e is 1/e. So, if
we have a (t, n) threshold scheme, the probability that the determinant of none

of the
(
n
t

)
AS matrices will be divisible by e is

(
1 − 1

e

)(n
t). If we take e � (

n
t

)
,

we have
(

1 − 1
e

)(n
t)

≈ 1 . (13)

4.2 Choosing a Vandermonde Matrix as the Coefficient Matrix

A simple choice for the matrix A that enables us to guarantee that e will be
relatively prime to the determinant of the coefficient matrix is to choose the
rows of the matrix A as the rows of a Vandermonde matrix. Note that this is
exactly the case for Shamir secret sharing. Then AS will have the following form
for a coalition S of size t:

Practical Threshold Signatures with Linear Secret Sharing Schemes 173

AS =

⎛

⎜
⎜
⎜
⎝

1 a1 a2
1 . . . at−1

1

1 a2 a2
2 . . . at−1

2
...

...
...

. . .
...

1 at a2
t . . . at−1

t

⎞

⎟
⎟
⎟
⎠

The determinant of the Vandermonde matrix is nonzero, provided that no
two rows are identical, and is given by the following formula:

|AS | =
t∏

i,j=1,i<j

(ai − aj) (14)

Without loss of generality take (a1, a2, . . . , an) = (1, 2, . . . , n). Obviously,
t∏

i,j=1,i<j

(ai − aj) |
n∏

i,j=1,i<j

(ai − aj).

We also have,
n∏

i,j=1,i<j

(ai − aj) = 1α12α2 . . . (n − 1)αn−1 (15)

for some α1, α2, . . . , αn−1. Hence by choosing e as a prime greater than or equal
to n we can guarantee that the determinant of any AS will be relatively prime
to e.

5 Security Analysis

Now we will prove that the proposed threshold RSA signature scheme is secure
provided that the standard RSA signature is secure. We assume a static ad-
versary model in the sense that the adversary controls exactly t − 1 users and
chooses them at the beginning of the attack. The adversary obtains all secret in-
formation of the corrupted users along with the public parameters of the system.
She can control the actions of the corrupted users, asking for partial signatures
of messages of her choice but cannot corrupt any other user in due course.

First we will analyze the proof of correctness. Then using this analysis we will
prove that the proposed threshold signature scheme is secure.

5.1 Analysis of the Proof of Correctness

For generating and verifying the proof of correctness, the following properties
hold:

Completeness. If the ith user is honest then the proof succeeds since

vσv−D
i = vyiDvrv−D

i = vr = v′

and
s̃σ

i s−2D
i = w4ci1(yiD+r)w−4ci1yiD = sr = s′.

174 İ.N. Bozkurt, K. Kaya, and A.A. Selçuk

Soundness. To prove the soundness of the proof of correctness, we have to show
that the adversary cannot construct a valid proof of correctness for an incorrect
share, except with negligible probability. Let (σ, D) be a valid proof of correctness
for a message w and partial signature si. We have D = H ′(v, s̃i, vi, s

2
i , v

′, s′),
where

s̃i = w4ci1 , v′ = vσv−D
i , s′ = s̃σ

i s−2D
i .

Obviously s̃i, vi, s2
i , v′ and s′ all lie in Qn and we know that v is a generator of

Qn. So we have

s̃i = vα, vi = vyi , s2
i = vβ , v

′
= vγ , s′ = vμ,

for some integers α, β, γ, μ. From this we have,

σ − Dyi ≡ γ (mod m) (16)
σα − Dβ ≡ μ (mod m). (17)

From equations (16) and (17) we get,

D(β − yiα) ≡ αγ − μ (mod m). (18)

A share is correct, if and only if,

β ≡ yiα (mod m). (19)

If (19) does not hold, then it does not hold either mod p′ or mod q′ and so (18)
uniquely determines D mod p′ or D mod q′. But the distribution of D is uniform
in the random oracle model, so this happens with negligible probability.

Zero knowledge simulatability. To prove zero knowledge simulatability, we
will use the random oracle model for the hash function and construct a sim-
ple simulator that simulates the adversary’s view without knowing the value
yi. When an uncorrupted user wants to create a proof (σ, D) for a message
w and partial signature si, the simulator chooses D ∈ {0, . . . , 2L1 − 1} and
σ ∈ {0, . . . , 2L(N)+2L1 − 1} at random and defines the value of the random
oracle at (v, s̃i, vi, s

2
i , v

σv−D
i , s̃σ

i s−2D
i) to be D. Note that, the value of the

random oracle is not defined at this point with all but negligible probability.
When the adversary queries the oracle, if the value of the oracle was already
set the simulator returns that value, otherwise it returns a random value. It is
obvious that the output of this simulator is statistically indistinguishable from
real output.

5.2 Security of the Proposed Signature Scheme

To reduce the problem of the security of the proposed threshold signature scheme
to that of the standard RSA signature, the following proof constructs another
simulator.

Practical Threshold Signatures with Linear Secret Sharing Schemes 175

Theorem 1. In the random oracle model for H ′, the proposed threshold signa-
ture scheme is a secure threshold signature scheme (robust and non-forgeable)
under the static adversary model given that the standard RSA signature scheme
is secure.

Proof. We will simulate the threshold protocol with no information on the secret
where the output of the simulator is indistinguishable in the adversary’s view.
Afterwards, we will show that the secrecy of the private key d is not disrupted
by the values obtained by the adversary. Thus, if the threshold RSA scheme is
not secure, i.e. an adversary who controls t− 1 users can forge signatures in the
threshold scheme, one can use this simulator to forge a signature in the standard
RSA signature scheme.

Let i1, . . . , it−1 be the set of corrupted players. To simulate the adversary’s
view, we simply choose the yij values belonging to the set of corrupted players at
random from the set {0, . . . , �N/4	−1}. The corrupted players’ secret key shares
are random numbers in the set {0, . . . , m−1}. Once these values are chosen, the
values yi for the uncorrupted players are completely determined modulo m, but
cannot easily be computed. However, given w, s ∈ Z

∗
N with se = w, we can easily

compute sit for an uncorrupted user it as

sit = w2ct1yit = s2ΔSw−2
∑ t−1

j=1 cj1yij . (20)

Note the dependence of ΔS and cj1 values on the coalition {i1, . . . , it−1, it}.
Using this technique, we can generate the values v, v1, . . . , vn, and also gener-

ate any share si of a signature, given the standard RSA signature. These values
produced by the simulator and the proof of correctness given in this section are
computationally indistinguishable from the real ones. Hence, the threshold RSA
signature scheme based on a linear SSS is secure given that the standard RSA
signature scheme is secure.
�

6 Application to Other PKCs

So far, we investigated only how to share the RSA signature function by using
a linear SSS. The same approach can also be used to share the RSA decryp-
tion function since the signature and decryption functions are mostly identical.
Besides RSA, the proposed approach can also be used to share other public
key cryptosystems where the private key is used in the exponent, such as the
ElGamal [8], Naccache-Stern [14] and the Paillier [15] decryption functions.

Below, as an example, we describe how our approach can be utilized for shar-
ing the Paillier decryption function. The scheme works along the same lines as
Fouque et al.’s extension [9] of Shoup’s work to the Paillier cryptosystem.

6.1 The Paillier Cryptosystem

The Paillier PKC is based on the properties of Carmichael function over ZN2

where N is an RSA composite. Security of the cryptosystem is based on the
intractability of computing discrete logarithms in ZN2 without the Carmichael
number λ(N).

176 İ.N. Bozkurt, K. Kaya, and A.A. Selçuk

Key Generation. Let N = pq where p and q are large prime integers. Let g
be an arbitrary element from ZN2 such that its order is a multiple of N . Let
λ = (p − 1)(q − 1)/2 denote the the Carmichael function for N . The public and
private keys are (N, g) and λ, respectively.

Encryption. Let w be the message to be encrypted. Choose a random r ∈ ZN2

and compute the ciphertext as

s = gwrN mod N2.

Decryption. The plaintext is obtained by

w =
L(sλ mod ZN2)
L(gλ mod ZN2)

mod N

where L(x) = (x − 1)/N for x ≡ 1 (mod N).
Paillier proved that this scheme is semantically secure under the assumption

that it is hard to detect whether a given random element in ZN2 is an N -residue.
The cryptosystem possesses the following homomorphic properties:

E(w1 + w2) = E(w1).E(w2)

E(k.w) = E(w)k.

6.2 Sharing the Paillier Decryption Function

Since λ(N) must be kept secret, the inverse computation problem is similar to
the one we encountered while sharing the RSA signature function. Our threshold
Paillier scheme is given below:

Key Generation. In the Paillier setup phase, choose two safe primes p = 2p′+1
and q = 2q′ + 1, where p′ and q′ are large primes and gcd (N, ϕ(N)) = 1 for
N = pq. Let m = p′q′. Let β ∈R Z

∗
N and (a, b) ∈R ZN × Z

∗
N . Compute

g = (1 + N)a × bN mod N2.

Share the private key d = βm among n users with modulo Nm by using the
linear SSS. Let

θ = L
(
gβm

)
= aβm mod N.

Set the public key as (g, N, θ). Choose v as a generator of QN2 , where QN2 is
the cyclic group of squares in ZN2 . Compute the verification keys

vi = vyi ∈ QN2

for 1 ≤ i ≤ n as before.

Encryption. Let w be the message to be encrypted. Choose a random r ∈ ZN2

and compute the ciphertext as s = gwrN mod N2. Let m = p′q′.

Practical Threshold Signatures with Linear Secret Sharing Schemes 177

Decryption. Let s be the ciphertext to be decrypted and S = {i1, . . . , it}
denote a coalition of t users that will compute the plaintext together. Let AS be
the coalition matrix and CS be the corresponding adjugate matrix, respectively,
as in Section 3. Each member i ∈ S computes his partial value as

si = s2ci1yi mod N2

where ci1 is the ith element of the first row of CS . He also generates a proof of
correctness which is used to prove that the discrete logarithm of s2

i to the base
s̃ = w4ci1 is the same as the discrete logarithm of vi to the base v. Note that the
proof is now working on a cyclic group of unknown order mN .

After the partial decryptions are obtained, the combining algorithm computes
the plaintext

w =
L

(∏
i∈S si mod N2

)

2ΔSθ
mod N.

Note that
∏

i∈S
si ≡ s2ΔSβm

≡ g2ΔSβmw

≡ (1 + N)2ΔSaβmw

≡ 1 + 2ΔSaβmwN

≡ 1 + 2ΔSθwN (mod N2).

7 Conclusion

We showed how to do threshold cryptography with linear secret sharing in gen-
eral. We presented a robust RSA threshold signature scheme based on a linear
SSS. The proposed signature scheme generalizes Shoup’s threshold RSA signa-
ture based on Shamir secret sharing, and is as efficient and practical as Shoup’s
scheme.

Besides RSA, this approach can be extended to other public key cryptosystems
where the private key is used in the exponent. As an example we demonstrated
how Paillier decryption function can be shared by this approach. ElGamal and
Naccache-Stern knapsack cryptosystems are some other systems that can benefit
from the proposed solution.

Acknowledgements

We would like to thank Ahmet Güloǧlu for informative discussions and his com-
ments on this paper. We would also like to thank anonymous AfricaCrypt referees
for their valuable comments which significantly helped to improve the paper.

178 İ.N. Bozkurt, K. Kaya, and A.A. Selçuk

References

1. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. In-
formation Theory 29(2), 208–210 (1983)

2. Blakley, G.: Safeguarding cryptographic keys. In: Proc. of AFIPS National Com-
puter Conference (1979)

3. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

4. Desmedt, Y.: Some recent research aspects of threshold cryptography. In: Okamoto,
E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 158–173. Springer, Heidelberg (1998)

5. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

6. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer,
Heidelberg (1992)

7. Desmedt, Y., Frankel, Y.: Homomorphic zero-knowledge threshold schemes over
any finite abelian group. SIAM Journal on Discrete Mathematics 7(4), 667–679
(1994)

8. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory 31(4), 469–472 (1985)

9. Fouque, P.A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001)

10. Huang, H.F., Chang, C.C.: A novel efficient (t,n) threshold proxy signature scheme.
Information Sciences 176(10), 1338–1349 (2006)

11. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE
Transactions on Information Theory 29, 35–41 (1983)

12. Kaya, K., Selçuk, A.A.: Threshold cryptography based on Asmuth–Bloom secret
sharing. Information Sciences 177(19), 4148–4160 (2007)

13. Lysyanskaya, A., Peikert, C.: Adaptive security in the threshold setting: From
cryptosystems to signature schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 331–350. Springer, Heidelberg (2001)

14. Naccache, D., Stern, J.: A new public key cryptosystem. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg (1997)

15. Paillier, P.: Public key cryptosystems based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (1999)

16. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function se-
curely? In: Proc. of STOC 1994, pp. 522–533 (1994)

17. Shamir, A.: How to share a secret? Comm. ACM 22(11), 612–613 (1979)
18. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.

LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

	Practical Threshold Signatures with Linear Secret Sharing Schemes
	Introduction
	Secret Sharing Schemes
	Function Sharing Schemes
	Our Contribution

	Linear Secret Sharing Schemes
	Dealing Phase
	Share Combining Phase

	Sharing RSA Signature Computation
	Setup
	Signing

	Choosing e
	Choosing e probabilistically
	Choosing a Vandermonde Matrix as the Coefficient Matrix

	Security Analysis
	Analysis of the Proof of Correctness
	Security of the Proposed Signature Scheme

	Application to Other PKCs
	The Paillier Cryptosystem
	Sharing the Paillier Decryption Function

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

