

Interaction-based Feature-Driven
Model-Transformations
for Generating E-Forms

Bedir Tekinerdoğan
Bilkent University

Dept. of Computer Engineering
06800 Bilkent, Ankara, Turkey

bedir@cs.bilkent.edu.tr

Namik Aktekin
eMaxx B.V. Hengelo,

P.O. Box 768,
7550 AT, Hengelo, The Netherlands

n.aktekin@exxellence.nl

ABSTRACT
One of the basic pillars in Model-Driven Software Development
(MDSD) is defined by model transformations and likewise several
useful approaches have been proposed in this context. In parallel,
domain modeling plays an essential role in MDSD to support the
definition of concepts in the domain, and support the model
transformation process. In this paper, we will discuss the results of
an e-government project for the generation of e-forms from
feature models. Very often existing model transformation
practices seem to largely adopt a closed world assumption
whereby the transformation definitions of models are defined
beforehand and interaction with the user at run-time is largely
omitted. Our study shows the need for a more interactive
approach in model transformations in which e-forms are generated
after interaction with the end-user. To show the case we illustrate
three different approaches for generation in increasing
complexity: (1) offline model transformation without interaction
(2) model transformation with initial interaction (3) model-
transformation with run-time interaction.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques.

General Terms
Design, Documentation, Performance, Verification

Keywords
Model-driven software development, Feature-oriented modeling,
e-government

1. INTRODUCTION
One of the basic pillars in Model-Driven Development is defined
by model transformations and likewise several useful approaches
have been proposed in this context [6] [1]. In addition it should be
noted that the goals of model-driven development also depend on
the identification and modeling of the right domain concepts. As
such domain analysis plays an essential role in MDSD to support
the definition of concepts in the domain. Domain analysis is a
systematic approach for analyzing and modeling the domain
concepts that are relevant for the stakeholders [2]. One of the
common techniques for domain modeling is feature modeling,
which has been extensively used in domain engineering [2].
Hereby, a feature model is a result of a domain analysis process in
which the common and variant properties of a domain are elicited
and modeled. In addition, the feature model identifies the
constraints on the legal combinations of features. A feature model
can thus be considered as a specification of the family.

In this paper, we report on our experiences of applying feature
modeling to model-driven development. The context of the case is
an e-government project which aims to use information and
communication technology to provide and improve government
services. E-government includes different models including
government-to-government and government-to-citizen. We have
focused on the model of local government-to-citizen which aims
to support the interaction between local and central government
and private individuals. Part of the e-government solutions are
the generation of e-forms (electronic forms) for local
governments. An e-form is the electronic version of its
corresponding paper form. We have applied model-driven
engineering techniques for the automatic generation of e-forms
(electronic forms) from feature models.

This project has shown that feature modeling is an effective
means not only to model the domain of e-forms but also to
support the automatic generation in a model-driven engineering
process. Besides of this observation the results of our study also
presents an additional insight and lessons learned regarding model
transformation practices in general. In particular it appeared that
for defining e-forms offline static single generation is less
suitable. This is because the specific e-forms depend on the user
input and the retrieved data from the data administration services.
In this paper we show three different approaches for generation
with increasing complexity: (1) off line model transformation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. FOSD'09, October 6,
2009 Denver, Colorado, USA Copyright © 2009 ACM 978-1-60558-567-
3/09/10... $10.00

103

without interaction (2) model transformation with initial
interaction (3) model transformation with run-time interaction.
We report on our experiences and lessons learned and propose a
systematic approach for defining model transformations that is
based on an interactive paradigm.

The outline of the paper is structured as follows: In section 2 we
provide the case study on e-form generators for local
governments. In section 3 we show the automatic transformation
process for generating e-forms from feature models. In section 4
we present an interaction-based model transformation. Finally
section 5 presents the conclusions.

2. CASE STUDY – E-FORM GENERATION

2.1 Description
The research has been carried out together with eMAXX which is
a medium-size ICT company in Enschede, The Netherlands [5].
One of the objectives of eMAXX is to produce solutions for e-
government (electronic government). Figure 1 shows an example
interface of e-government gateway of the city Enschede, which
the citizens can access to request services.

Figure 1. Example interface of a local government interface for
supporting e-services

An e-form is simply the electronic version of its corresponding
paper form. E-forms have some benefits over paper forms
including eliminating the cost of printing, storing, and distributing
pre-printed forms. In addition e-forms can be filled out faster
because the programming associated with them can automatically
format, calculate, look up, and validate information for the user.
With digital signatures and routing via e-mail, approval cycle
times can be significantly reduced. Compared to paper forms, e-
forms allow more focus on the business process or underlying
problem for which they are designed (for example, expense
reporting, purchasing, or time reporting). They can understand the
roles and responsibilities of the different participants of the
process and, in turn, automate routing and much of the decision
making necessary to process the form.

Using e-forms on the internet site of the local governments,
citizens can perform requests such as making an appointment,
informing about a movement, requesting a build license, etc.
These services are defined on e-forms that are implemented by
eMAXX. The deployment view is depicted in Figure 2.

Local Government

E-form

government

clerk

Web

Browsers Webserver

E-Form

Template

E-form

Filled out

get citizen

info

MidOffice

Data

Administration

get citizen

info

uses

send

request

Figure 2. E-form generation –manual case

E-forms remain at a web server of a local government. Citizens
can access these web pages through the internet browsers. E-
forms are usually defined over multiple web pages. Once a user
logs in to the system the user can select a number of services
offered by the local government, such as for example notification
of movement. A middleware layer, defined by the MidOffice
server includes functions to access personal data of the registered
users in the local government, which is stored in one or more back
office systems, Data Administration. Based on the selected
product and the user, the information about the user is requested
from the common administration through MidOffice. The
unknown fields are filled out by the user. After the citizen enters
the last field the system needs to generate a report and submit the
request to the government clerk. An important advantage of the
MidOffice is the loose coupling between the interfaces
(presentation) and the back offices (data). Different back office
system can be accessed by different web browsers. The
communication of the client web pages only communicate
through the MidOffice which is responsible for the communication
and distribution logic.

2.2 Problem Statement
In the initial version of the system, e-forms were manually
implemented and deployed on the webserver of local
governments. Moreover, e-forms are statically defined without
taking into account the interaction with the user. A number of
problems with this manual, static development solution can be
identified.

• Lack of reuse of e-forms

First of all, even when we are dealing with the same kind of
service, such as notification of movement, different local
governments might require different kind of e-forms. The
differences might be in the required type of data, the presentation
form or the control flow i.e. the order in which the data is
presented to the citizen. Although the e-forms share much
commonality, the lack of systematic variability management
requires that for each different local government an e-form needs
to be implemented from scratch.

• Maintenance of e-forms

Even after deployment of the e-forms on the web servers, based
on earlier practical experiences, updates might required to the
implemented e-forms in due time. Unfortunately, the maintenance
of the web pages including the e-forms is not trivial and again
requires changes to the requested data, the presentation form or
the control flow.

104

• Need for run-time generation of e-forms

Since the generation of some fields can only be known when a
particular citizen is filling out the e-form, the specific required e-
form can actually only be known at run-time. Because of this
limitation usually the complete e-form is provided to the user,
which complicates the process of filling out the form by the
citizen. The e-form would be easier if only the required
information is presented at the right time.

• Need for interaction by user

Finally, related to the previous third issue, when filling out the e-
form, interaction with the Data Administration might be required
to retrieve data to speed up the process or to complete the e-form.
Unfortunately, in the initial version the interaction is only defined
in the beginning during the authentication step of the citizen.

Regarding the above issues the manual implementation of e-forms
with only weak interaction with citizen and/or back offices is to
some extent doable but certainly not cost effective. To optimize
the development, maintenance and usage of e-forms automated
support is necessary. The main objective here is to increase the
reuse and productivity while developing and maintaining e-forms.
For this, two basic issues need to be addressed. First of all, a
domain model is required for defining e-forms. This domain
model should be easy to understand and to be developed.
Secondly, based on the domain model the target artifacts, that is,
e-forms need to be automatically generated. To address these
issues we have defined three different types of generators in
increasing complexity:

- Generator without interaction. This generator transforms a
feature model to an e-form in which all the required fields
are presented to the end-user. The end-user needs to fill out
all the requested data and the e-form can only be completed
if all the information is entered. Once the e-form is complete
a report is generated and the service request is submitted for
handling.

- Generator with single, initial interaction. This generator is
similar to the previous generator but allows for initial
interaction with the data administration server to retrieve the
values for the fields that can already be defined in the e-form

- Generator with multiple, run-time interaction. This generator
complements the second generator by allowing interaction
with user and data administration during run-time. For this a
number of functions of data administration can be invoked to
speed up the e-form completion process. Because of the
multiple options for invoking functions the generator defines
the related workflow for optimizing the function calls.

Obviously, explicitly addressing interaction in model
transformations is here a key issue. Unfortunately, current model-
driven development practices tend to adopt a more closed-view
approach in which interaction is not explicitly addressed. Our
experiences in this industrial context aim to show both the
necessity for interaction in model-transformations and the role of
feature modeling. In the following sections we elaborate on the
above generators.

3. FEATURE-BASED MODEL
TRANSFORMATION
To address the requirements in the previous section we (1) define
feature models of local governments, and (2) use these to generate
e-forms and reports. Feature models have thus a dual role of
modeling the data and as an intermediate form of e-forms. In the
following we will discuss the first generator process which
automates the e-form generation process but does not include
interaction. In section 3.1 we will first focus on feature modeling
of the services, and in section 3.2 we will discuss how we adopt
and integrate feature models in the model-transformation process.

3.1 Feature Modeling of Services
Different e-forms are implemented for different local
governments but besides of the variations one can easily observe
commonality of requested data. To model the domain for a given
service we define a family feature model. Figure 3 shows, for
example, a feature diagram for a service of a local government,
which is the notification of moving. In fact this feature model
defines the space of requested data that can be implemented on
different e-forms. To put it differently, the feature diagram
represents an intermediate representation for the space of e-forms.

The feature model is already useful for supporting the
implementation of e-forms. Different instantiations of the feature
diagram indicate different definitions of e-forms. An example
instantiation of the family feature diagram in Figure 3 is given in
Figure 4.

Based on the application feature model the corresponding e-form
can be implemented. Herewith, all the mandatory features will
need to be mapped to fields. Optional and alternative features will
be for example realized using check box fields, or radio buttons.
We have defined a set of transformation rules and implemented
these in the transformation definition. A possible corresponding e-
form is depicted in Figure 5.

Figure 3. Family feature diagram of service notification of
movement

Figure 4. Application feature model of service notification of
movement

105

Figure 5. Example E-form based on instantiated feature diagram

3.2 Model Transformations
In principle, feature models can be used for manually
implementing e-forms. However, to support reuse and
productivity, we will aim for automatic generation of e-forms. For
this a generator needs to be defined that takes as input an
instantiation of the feature model and provides as output the
corresponding e-form. As defined in Figure 2, after the citizen
fills out the e-form a report needs to be generated and the request
should be handled. Obviously, here we can easily apply model-
driven techniques to support the reuse and automation goals.

For the given case, at least three different transformations are
required as defined in Figure 6:

 Defining feature model – The domain modeler defines a
feature model of the required services. This is a manual process.

 Application feature model to UI model – The instantiated
feature model of the service, the application feature model, will be
used to generate the UI model representing the e-form.

 UI model to feature model – once the user fills out the required
fields in the form the UI model will be generated to the feature
model.

Feature model to Report model – After all the fields in the e-
form are filled out, and the final feature model is generated, a
report will be generated.

Figure 6. Required transformations for automatic e-form
generations

Figure 7 shows the transformation pattern for generating e-forms
based on feature models. For defining the model transformation
we need to define the source metamodel, the target metamodel
and the transformation definition. In fact, both the source model
and target models are known. The source model, FM1 in Figure 7,
is a feature model, that conforms to a feature metamodel MMFM,
which defines the common concepts for feature models. We have
adopted the metamodel as defined in [3]. The target model UI
defines e-forms, and conforms to a metamodel MMUI. All the
models are represented using XML. The transformation applies
XSLT which is a language for transforming XML documents to
other XML documents. All the models in Figure 7 conform to the
metametamodel MOF.

Figure 7. Transformation pattern for transforming feature model
to UI model (e-form)

Once the citizen has filled out all the fields the final instance of
the feature diagram will be defined, requiring a transformation
from UI model to feature model. This is in principle similar to the
transformation pattern as shown in Figure 7, only the source
model will now be the UI model and the model the feature model.

Figure 8 shows the transformation pattern for generating reports
based on e-forms. Since the e-form is represented as a feature
model the source metamodel is a feature metamodel MMFM, and
the target metamodel is a metamodel for describing reports,
MMR.

Figure 8. Transformation pattern for transforming feature model

to Report

To sum up, this generation process automates the e-form
development process by using feature models. The complete e-

3

2

1

o

106

form is generated and presented to the citizen. Once the citizen
has completed the e-form the report can be generated.

4. MODEL TRANSFORMATION WITH
INTERACTION
In fact the overall model-driven process in section 3 largely
supports the goals for automated development of e-forms.
However, the transformation process in section 3 does not take
into account interaction with the user and the data administration.
The generated e-form is actually statically defined in one step, one
web page is generated, and no interaction is possible with the end-
user or data administration. In fact all the transformation steps in
Figure 6 are executed once. In the following sections we will
define generators that include interactions with the user and data
administration.

4.1 Initial Interaction
The second more refined generator makes use of the calls to the
data administration. After the authentication process and selection
of a particular service the system can already retrieve some
information about the citizen and the selected product and
instantiate part of the feature diagram. As such, the time to fill out
the form, as well as the chance for incomplete forms will be
partially reduced.

Compared to the generation process of the previous section this
generation process includes one more transformation pattern. This
is the transformation from a source feature model to another target
feature model. As such the process of e-form generation requires
the following order of steps:

1. Authentication of user
2. Selecting product service
3. Loading family feature model
4. Call to data administration to retrieve personal details
5. Definition of application feature model based on retrieved

data in step 4
6. Generation of e-form based on application feature model
7. Entering data by user in the e-form of step 6
8. Transformation of e-form to feature model

4.2 Run-time Interaction
The first generator without interaction solves the automation
problem of e-forms. By defining transformations e-forms can be
automatically generated. The second generator allowed initial
interaction with data administration to retrieve data that could be
filled out. As such the e-form completion process time is reduced.
However, both generators generate one complete web page in
which all the fields are shown. Unfortunately, this is not always
suitable since the generation of the specific fields in the e-form
also depends on the data that is entered by the user, or the data is
retrieved from the data administration, at run-time. As such, the
third generator allows run-time interaction with the user and data
administration. In this way, the e-form is generated incrementally
dependent on the input of the end-user. This means that the
instantiation of the family feature diagram is not done after
authentication process but at any time during completing the e-
form. Also multiple web pages including part of the e-form are
generated.

The interaction process is shown in Figure 9. After the
authentication process, the family feature model is retrieved and
the first fields are defined. Then follows a cycle of interaction
with user and data administration in which the application feature
model and likewise the corresponding e-form is specialized. Once
the e-form is complete a report is generated and the request is
submitted. In essence the transformation process is similar to the
alternative without interaction. The main difference is that now
the feature model is specialized multiple times and during the e-
form completion process. Obviously, multiple model
transformations are required to complete the process. In fact, this
process also follows the idea of staged configuration of feature
models as explained in [3].

Figure 9. Transformation pattern for transforming feature model

to UI model (e-form)

4.3 Optimizing Workflow
When interaction with the data administration is supported
functions for data administration are accessed. Many different
functions might be accessed given an application feature model.
For example, the invocation of the function getPersonDetails can
define the values for name, address, and id of the citizen. Further,
each invocation of a function might result in the definition of the
values of different fields.

In essence the aim is to optimize the e-form completion process
and therefore the functions need to be preferably invoked in the
order in which the maximum set of values in the e-form can be
determined. The latter means that the number of fields that the
citizen needs to enter is optimally reduced.

It appears thus that we need to address the workflow explicitly to
optimize the generation process. In the first generator no data
administration function was called at all. In the second generator
only initial call was made to the data administration. As such the
workflow concern was not considered in these two generators. In
the third generator the workflow concern is explicitly considered
by (1) defining the functions that can be invoked (2) defining the
order in which they need to be processed. As such based on the
state of the e-form (and the application feature model) a decision
needs to be made which functions of the data administration need

107

to be called. Different strategies can be adopted for this. We have
adopted a simple fixed, strategy which aims to optimize the
number of model transformations needed. The workflow
definition is defined as depicted in Figure 10.

 Figure 10. Adopted workflow in the interaction-based e-form

generator

Hereby we first check whether mandatory features have been
defined in the feature model. These are then first processed, that is
an e-form is generated with these fields, and data input from the
user is processed resulting in a new feature diagram. The
following step is to select features that are related to functions in
the data administration. The final step is the generation of optional
features. Once all the fields have been entered the report is
generated. In fact this is quite a simple workflow strategy and can
be optimized in different ways. For example, we could prioritize
the functions that result in more input from data administration;
we could define the optimal path of these functions, etc. The full
integration of strategy selection and optimization has been
reserved for the future work.

5. CONCLUSIONS
In this paper we have discussed our experiences with using feature
models for generating e-forms using model driven engineering
techniques. The basic conclusion of this work is that an
appropriate domain model represented as feature diagrams
provides a solid basis for the space of alternative target models. In
our case the target models were basically e-forms. Using the
conventional model transformation pattern we have defined four
different kinds of model transformations: feature model to feature
model, feature model to e-form, e-form to feature model, feature
model to report. All these transformations supported the
automation process of e-forms and as such improved reuse and
productivity. In addition we have pinpointed the necessity for
interaction in generating e-forms. This is because the e-form is not
only defined by the selected service but also defined by the
entered answers in the e-form or the retrieved information from
the data administration. To cope with this issue, model
transformations could not remain static and/or offline but had to
be integrated in the run-time e-form completion process. Based on

the input at important steps in the e-form completion process the
application feature model was regenerated and in accordance with
this the e-form updated. It also appeared that hereby the order in
which the functions of the data administration are accessed, i.e.
the workflow, have an impact on the e-form completion process.
In alignment with this issue, we have shortly discussed the notion
of workflow concern. Our future work will focus on the
interaction aspects in model transformations in general. We think
that the lessons that we have derived from the considered project
should be considered from a general and broader perspective. In
particular the issue of interaction in the model-transformation
process is a topic that needs further investigation.

ACKNOWLEDGMENTS
We would like to thank Mehmet Aksit, Anton Boerma and
Richard Scholten for earlier support and discussions about this
work.

REFERENCES
[1] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, A.

Lindow. Model Transformations? Transformation Models!,
MoDELS2006, Springer LNCS, Vol. 4199, pp. 440-452,
2006.

[2] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications, Addison Wesley, 2000.

[3] K. Czarnecki, S. Helsen and U. Eisenecker, Staged
Configuration Through Specialization and Multi-Level
Configuration of Feature Models, Software Process
Improvement and Practice, special issue on Software
Variability: Process and Management", vol. 10, pp. 143-169,
2005.

[4] Eclipse Modeling Framework Web Site,
http://www.eclipse.org/emf/

[5] eMaxx B.V. Hengelo, P.O. Box 768, 7550 AT, Hengelo,
The Netherlands. http://exxellence.nl/

[6] D.S. Frankel. Model-Driven Architecture, Wiley Publishing
Inc., 2003.

108

