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ABSTRACT
One of the critical problems associated with emerging chip
multiprocessors (CMPs) is the management of on-chip shared
cache space. Unfortunately, single processor centric data lo-
cality optimization schemes may not work well in the CMP
case as data accesses from multiple cores can create conflicts
in the shared cache space. The main contribution of this
paper is a compiler directed code restructuring scheme for
enhancing locality of shared data in CMPs. The proposed
scheme targets the last level shared cache that exist in many
commercial CMPs and has two components, namely, allo-
cation, which determines the set of loop iterations assigned
to each core, and scheduling, which determines the order in
which the iterations assigned to a core are executed. Our
scheme restructures the application code such that the dif-
ferent cores operate on shared data blocks at the same time,
to the extent allowed by data dependencies. This helps to
reduce reuse distances for the shared data and improves on-
chip cache performance. We evaluated our approach using
the Splash-2 and Parsec applications through both simula-
tions and experiments on two commercial multi-core ma-
chines. Our experimental evaluation indicates that the pro-
posed data locality optimization scheme improves inter-core
conflict misses in the shared cache by 67% on average when
both allocation and scheduling are used. Also, the execution
time improvements we achieve (29% on average) are very
close to the optimal savings that could be achieved using a
hypothetical scheme.
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1. INTRODUCTION
Several factors including increasing complexities of single

core architectures, increasing power consumption, verifica-
tion/ validation costs due to these complexities, and the de-
sire to extract increasing levels of parallelism have led to
the emergence of chip multiprocessors (CMPs). All major
chip manufacturers today are producing multi-core chips [1,
28, 41, 44, 35, 31, 37, 30, 29]. CMPs will not only be the
processors used in laptop and desktop machines, but they
will also be the mainstream components for next-generation
large-scale parallel machines targeted at high-performance
applications. CMPs have the potential to provide several or-
ders of magnitude increase in performance for a wide range
of important applications using both thread-level parallelism
and instruction-level parallelism on a fabric which enables
very fast inter-processor communication.

One of the critical issues in CMPs is the management of
the shared on-chip cache space (L2 or L3). This is not a triv-
ial task as data accesses from different processors (cores) can
create conflicts in the shared cache, which can in turn reduce
overall performance significantly. For example, a data access
from one core can displace a data element brought to the
shared cache by another core. As a result, when the displaced
data element is requested again (a reuse) by any core, we in-
cur a cache miss. While such inter-core conflicts can occur
frequently when the involved cores are executing threads that
belong to different applications, it has been shown [51] that
shared cache conflicts are frequent even across the threads
of the same application that are mapped to different cores.
Unfortunately, many of the existing OS-level or architecture-
level shared cache partitioning schemes [52, 14, 45, 46] tend
to increase potential conflicts among the threads that belong
to the same application. The main reason for this is the fact
that most such schemes partition a given cache space across
competing applications by distributing cache-ways. For ex-
ample, a multi-threaded application can get, say, 4 ways after
a 16-way set-associative shared cache is partitioned across
concurrently-executing applications. Obviously, fewer ways
mean in general a higher number of inter-core conflict misses
across the threads of the application, which makes proper
management of per-application cache space even more im-
portant.

One impact of conflicts in the shared on-chip cache is that
the same data element may have to be brought to the cache

505



Figure 1: Target CMP architecture.

more than once by different cores. Clearly, in the ideal case,
we want a data element to be brought to the shared cache
space only once, i.e., all reuses of the data should take place
while it resides in the on-chip cache space. Unfortunately,
both limited cache space and conflicts in data access patterns
of different threads may not always allow this ideal case to
be achieved. Our goal in this paper is to restructure a given
application code such that the number of inter-core1 conflict
misses is reduced. In this paper, we say that an “inter-core
conflict miss” occurs when a data displaced from the shared
cache by a core (e.g., through an access to some other data)
is later requested by a different core. Specifically, this paper
makes the following contributions:
• For a set of multi-threaded applications executing on

shared cache based CMPs, we present a distribution of data
reuse distances. We also associate this distribution with ap-
plication performance (inter-core conflict misses and execu-
tion latency). Our experiments with Splash-2 [56] and two
Parsec [8] applications show that inter-core conflict misses
constitute nearly 51% of total L2 misses on average. We
also quantify the maximum potential benefits that could be
obtained from a hypothetical scheme that eliminates all inter-
core conflict misses in the L2. Our results indicate that elimi-
nating inter-core cache misses completely can reduce parallel
execution time by 33% on average.
• We present a compiler based code restructuring scheme

oriented toward minimizing the number of inter-core conflict
misses. The unique characteristic of this scheme is that, using
two complementary steps (allocation, which determines the
set of loop iterations assigned to each core, and scheduling,
which determines the order in which the iterations assigned
to a core are executed), it restructures the application code
such that different cores operate on shared data blocks at the
same time, to the extent allowed by data dependencies. This
in turn helps us to reduce reuse distances for the shared data,
and reduces the number of inter-core conflict misses.
• We quantify the effectiveness of this scheme with regards

to improving parallel execution performance and discuss how
close it comes to a hypothetical scheme. We also compare the
proposed compiler scheme against a state-of-the-art locality-
enhancing technique. To test the performance of our scheme
and compare it to the state-of-the-art, we performed ex-
periments with a simulation framework (based on SIMICS
[49] and GEMS [40]) as well as on two commercial multi-
core machines (an AMD quad-core [44] and an Intel six-core
[27]). Our experimental evaluation indicates that the pro-
posed data locality optimization scheme reduces inter-core
conflict misses in the shared cache by 67% on average when
both allocation and scheduling are used. Also, the execution
time improvements we achieve (29% on average) are very
close to optimal savings.

2. TARGET CMP ARCHITECTURE, APPLI-

CATION DOMAIN, AND OUR GOAL
Our target CMP, shown in Figure 1 for the case of 4 cores,

is a shared memory based multi-core architecture, each core

1Since in our experiments we use one thread per core, we
use the terms intra-core and intra-thread interchangeably,
and similarly, the terms inter-core and inter-thread are used
interchangeably.

Figure 2: Different cases regarding data reuse ex-
ploitation. (a) original case, (b) exploiting only intra-
core reuse, (c) exploiting both intra-core and inter-
core reuses (result generated by our approach).

having private L1 instruction and data caches, and all cores
sharing an on-chip unified L2 cache. We assume that a MESI-
like protocol [23] is employed to ensure data coherence across
the L1 caches. Note that shared L2 is the last line of defense
in this architecture, and therefore maximizing its hit rate is
critical for high performance. We would like to mention that
our approach is also applicable to the CMP architectures in
which L3 is the last line of defense (instead of L2), as in
the case of two commercial multi-core machines for which we
later report experimental results.

Our application domain is array-based, loop-intensive, multi-
threaded applications, frequently used in scientific computing
as well as in embedded image/video processing. To evaluate
the impact of our approach, we use all the benchmarks from
the Splash-2 suite [56] and two array-intensive applications
from Parsec [8].

Our goal in this work is to improve data reuse in the last
level of cache of the CMP. We achieve this by re-organizing
data accesses considering how different cores access the shared
data elements, which helps reduce the number of inter-core
conflict misses (defined in Section 1). Consider the two-core
execution scenario depicted in Figure 2 for illustration pur-
poses, assuming that each of x1, x2, x3, y1, y2 and y3 de-
notes a set of loop iterations (and each set contains a similar
number of iterations). Assume further that x1, x2 and x3

share data elements among them, and similarly, y1, y2, and
y3 access common data elements. This figure shows three al-
ternate execution strategies, assuming all are allowable based
on data dependencies. In each case, the time is assumed to
flow from top to bottom, e.g., in (a), core 1 first executes x1,
then y2, and finally, x2.

In (a), we show the execution pattern before any data lo-
cality optimization (i.e., the original case). In (b) on the
other hand, we illustrate the situation when only intra-core
locality optimization is applied. In this case, each core tries
to reuse the same data as soon as possible, by scheduling the
sets that share data one after another. For example, in core
1, x1 and x2 are executed one after another, and similarly,
in core 2, y1 and y3 are executed successively. However, one
can also observe that inter-core data reuse is not very good in
this case, e.g., x1 and x3 are executed in different steps (and
similarly y2 and y3). Finally, (c) depicts the case in which
both intra-core reuse and inter-core reuse are enhanced. In
particular, x1 and x3 are scheduled together, and y2 and y3

are scheduled together. Our proposed approach tries to ob-
tain the scenario in (c) using both allocation (deciding which
iteration sets should be assigned to each core) and schedul-
ing (deciding the execution order of these sets in each core).
In more general terms, when different cores share the same
data element, we want them to access that data element at
similar times, so that the shared data can be reused while
it is in the shared cache. The longer the distance between
two successive accesses (reuses) to the same data, the higher
the chances that the second access will incur a miss in the
shared cache (i.e., an inter-core conflict miss can displace the
data from the shared cache before it gets reused). The re-
sults of our experiments presented in Section 4 show that
contribution of such misses to overall L2 misses can be very
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Cores 8 four-issue processors
L1 Cache 8 Split I/D, each 32KB, 2-way,

64B line, 3-cycle latency, write-back
L2 Cache Unified, 4MB, 32-way,

64B line, 22-cycle latency
Main Memory 4GB, 300-cycle latency
Data Blocks Size 32 KB

Orientation row-wise

Table 1: System configuration parameters.

Application L1 L2 Cycles
Name Miss Rate Miss Rate (×106)

Barnes 6.2% 54.5% 865.3
FMM 16.6% 71.2% 933.6

LU 11.3% 66.8% 702.2
Ocean 18.1% 49.1% 597.5

Radiosity 7.6% 61.3% 880.8
Raytrace 13.9% 42.6% 592.1
Volrend 16.1% 37.2% 631.9

Water 5.3% 57.1% 911.4
Cholesky 9.8% 36.6% 826.5

FFT 18.2% 33.0% 923.7
Radix 22.5% 68.4% 774.2

Freqmine 4.4% 29.4% 628.4
BodyTrack 6.1% 38.7% 711.7

Table 2: Important characteristics of our bench-
marks.

high, and therefore, reducing such misses can improve CMP
performance significantly.

3. EXPERIMENTAL SETUP
Most of our experiments have been performed using a sim-

ulation environment built upon SIMICS [49] and use the tim-
ing model from GEMS [40]. SIMICS is a full system simula-
tion platform, capable of simulating multi-core systems and
boot and run operating systems and commercial workloads.
Our major simulation parameters and their default values
are given in Table 3 (the concept of “data block” will be ex-
plained later). In this study, we used all the applications
from the Splash-2 [56] benchmark suite (written originally
using the Pthread Library [48]), and two array-based appli-
cations in the Parsec suite [8] (Freqmine, and BodyTrack)
whose threads share data (both written in OpenMP). The
important characteristics of these benchmarks, under the ar-
chitectural values listed in Table 3, are presented in Table 3.
Since the original dataset sizes of these applications are not
very big for typical L2/L3 capacities of modern CMPs, we in-
creased their dataset sizes. For example, in Barnes, instead of
working with 16K particles (original input), we worked with
512K particles. Similarly, in Water, we used an input size
of 4,096 molecules (instead of 512 molecules of the original
case). As a result, the dataset sizes of our applications range
between 61MB (Water) and 273MB (FMM). We also note
from Table 3 that the L2 performance of these applications
is not very good, giving an average miss rate of 49%.

In addition to simulation based analysis, we also used two
commercial multi-core machines to evaluate our compiler-
based approach. The first commercial platform we used is
Quad-Core AMD Opteron [44], in which each of the four cores
have a private L2 cache of 512KB and all cores share an on-
chip L3 cache of 2MB. The second commercial machine we
used, Intel Dunnington, has six 45-nanometer Penryn-class
cores integrated onto a single die. Each pair of Penryn cores
shares 3MBs of L2 cache, and each of the six cores can ac-
cess 12MBs of L3 cache. Note that, in both these systems,
L3 is the last line of defense. In experiments with AMD and
Intel machines, we use compilers provided by vendors with
the highest optimization-level. For example, in AMD, we
used O3, which includes loop-fusion, loop-interchange, and
software-prefetching. In our simulations on the other hand,
all the code versions tested exercise the same low-level gcc
compiler with O3 and data prefetching is on.

for(i1=1;i1<N;i1++)
for(i2=0;i2<N-1;i2++)
U[i1][i2] = (V[i1-1][i2]+V[i1][i2+1])/2

4. EVALUATION OF ORIGINAL APPLICA-

TIONS
Figure 3 gives a distribution of reuse distances of the orig-

inal multi-threaded applications without any modification
(using the values given in Table 3 and each core executing
a single thread of the application). A bar for distance range
[x− y] in this graph indicates the fraction of the data reuses
that fall between x cycles and y cycles. For example, if a data
element is used by a core in cycle z1 and requested again in cy-
cle z2 by the same or a different core, this reuse contributes to
the bar [x−y] if x ≤ z2−z1 ≤ y. Clearly, from a data locality
perspective, we want most reuses to have short distances, so
that we can catch the data at the time of reuse in the shared
cache. The results in this bar chart show a balanced distri-
bution of reuse distances. To have a better understanding
of this distribution, we also collected statistics for intra-core
reuses and inter-core reuses separately, and present them in
Figures 4 and 5, respectively. For our purposes, intra-core
reuse corresponds to the reuse of a data element by the same
core, while inter-core reuse means the reuse of the same ele-
ment by different cores. We see from Figure 4 that intra-core
reuse distances are not very high; in fact, most of intra-core
reuses fall between 0 and 5,000 cycles. In contrast, the inter-
core reuse distances tend to have very high values: more than
65% of inter-core data reuses have a distance more than 5,000
cycles. These results indicate that, when a core uses a data
element, it is very likely that it will reuse it soon. In con-
trast, when a core uses an element, the next use of the same
element by another core is typically not very close.

We also quantified the contribution of inter-core L2 conflict
misses to the total L2 misses. The first bar for each appli-
cation in Figure 6 gives this contribution, which averages in
51%. The second bar in the same figure gives the upper-
bound for improvement in execution time if all inter-core
conflict misses in L2 could be eliminated using a hypothetical
scheme. We see that the average saving in execution cycles
when all applications are considered is nearly 33%. Obvi-
ously, a realistic scheme cannot achieve all these savings as it
may not be able to eliminate all inter-core misses in L2. Still,
these results clearly indicate that there is a large scope for
potential performance improvement by exploiting data reuse
in the shared on-chip cache. We later show that our proposed
approach comes close to this theoretical upper-bound.

5. SHARED CACHE AWARE CODE RESTRUC-

TURING
In the following discussion, we focus on a loop nest which

may have multiple loops. Iterations of some of these loops
can be fully parallel (i.e., no loop-carried data dependencies
[21]), whereas other iterations are sequential.

Our approach optimizes each loop nest in isolation. Con-
sider, as an example, the nested loop on the left. In this
loop, (i1, i2) combination can take different values. In the
discussion below, we use the term “loop iteration” to refer to
such a combination. That is, in a multi-loop nest, an iter-

ation is a vector and is represented by ~I. Note that in this
example all iterations can be executed in parallel. However,
if the first right-hand-side reference was U [i1 −1][i2] (instead
of V [i1 − 1][i2]), not all combinations (iterations) could be
executed in parallel due to data dependencies. We want to
emphasize that we are not proposing a new parallelism ex-
traction scheme in this work. Rather, given a parallelization
(which may choose to run only fully-parallel loops in par-
allel, or (in addition) some sequential loops in parallel and
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Figure 3: Distribution of all reuse
distances.

Figure 4: Distribution of intra-core
reuse distances.

Figure 5: Distribution of inter-core
reuse distances.

maintain correctness in this case through synchronization),
we describe how to enhance shared L2 (or L3) behavior by
distributing iterations to cores and reorganizing their execu-
tion order. In this way, we want to achieve both intra-core
locality and inter-core locality. More specifically, the only in-
put we get from the prior phases in compilation is the set of
loop iterations (some of which may be dependent on others)
that will be executed in parallel by available cores.

We distinguish between two related problems in data lo-
cality optimization for CMPs. The first problem, which we
call allocation, determines the processor core to execute a
given loop iteration. That is, it distributes the loop itera-
tions across available cores. The second problem, termed as
scheduling, decides the execution order of loop iterations as-
signed to the cores. In this paper, we consider two scenarios.
In the first scenario, we assume that our approach performs
both allocation and scheduling. In the second scenario, we as-
sume that the loop iterations have already been distributed
across the cores (i.e., the allocation step has already been
performed), and only scheduling is to be carried out.

5.1 Background
In this work, we use sets to represent the data elements ma-

nipulated by loops as well as the iterations of the loops. The
restructured loops are also represented as sets, from which
we generate code. Specifically, these sets contain Presburger
formulas [43]. The Presburger formulas are a class of logical
formulas built from affine constraints over integer variables,
logical connectives (∨, ∧, ¬), and quantifiers (∃ and ∀). In
this work, we employ the Omega Library [42] to manipulate
iteration and data sets, which are described using the Pres-
burger formulas. However, individual loop iterations, array
(data) elements (i.e., their indices), and mappings between
iterations and data are represented using vectors and matri-
ces, which are embedded into our Presburger sets. As an
example, for a loop nest where i1 is the outer loop and i2
is the inner loop, vector ~I = (i1 i2)

T represents different
iterations for different values of i1 and i2. The set of all iter-
ations in a loop nest is represented using φ. Similarly, indices
of array elements accessed by loop iterations are represented
by matrices and vectors. For example, assuming again that
i1 is the outer loop and i2 is the inner loop, a reference such

as U [i1 + 1][i2 − 1] is represented using ξ~I + ~ζ, where ξ is the
two-by-two identity matrix and ζ is (1 − 1)T . We use R
to represent a reference, which is a mapping from iterations
to data. Therefore, for the reference above, we can write

R(~I) = (i1 + 1 i2 − 1)T . We use the symbol ℜ to repre-
sent the set of all references in a loop nest. The set of data
elements accessed by a given reference R can be expressed

using the following Presburger set {~d| ∃~I ∈ φ : R(~I) = ~d},

which means this set holds all data elements (~d) that can be

accessed using R in some iteration (~I).

Figure 6: Contribution of inter-core conflict misses
to total L2 misses and potential savings.

Figure 7: An example access pattern (iteration-to-
data mapping) and forming different iteration blocks.
We have four data blocks (λ1 through λ4), and the it-
erations that are mapped to the same iteration block
access exactly the same set of data blocks.

5.2 Integrated Allocation and Scheduling
Let λ be the set of data (array) elements accessed by the

loop nest. We start by dividing this set into d subsets, λ1, λ2,
· · · , λd, called data blocks. This is a logical partitioning (i.e.,
data are not physically divided into blocks) and is only used
for code restructuring purposes.2 Similarly, the set of loop it-
erations to be allocated and scheduled (φ) is partitioned into
2d − 1 subsets, called iteration blocks. Each of these itera-
tion blocks is assigned a tag, which captures the set of data
blocks accessed by the iterations in that block. More specif-
ically, T (φ), the tag of iteration block φ, is a d-bit vector,

2Data blocks can come from different arrays. For example, in
a loop that accesses two arrays, we may have 100 blocks, 40
covering the first array and 60 covering the second one. We
assume that all the data blocks are of the same size except
maybe those at the end of arrays. Also, our data blocks
are row-wise, i.e., a data block of size L holds L consecutive
elements from an array.
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whose kth bit is set to 1 if φ accesses (a data element from)
λk; otherwise, it is set to 0 (note that all iterations in an
iteration block access exactly the same set of data blocks).
Therefore, the tag associated with an iteration block summa-
rizes the data access pattern of the iterations it holds. It is
also to be noted that in general different iteration blocks can
have different number of iterations. In the rest of this section,
we use φT to represent an iteration block with tag T . Con-
sequently, our iteration blocks can be written as φT1 , φT2 ,

φT3 , · · · , φ
T
2d

−1 . As an example, assuming for illustrative
purposes we have 4 data blocks, φ1100 indicates an iteration
block that accesses only the first and second data blocks (see

Figure 7). That is, if ~I ∈ φ1100, this means ~I accesses both
of the first two data blocks and does not access the last two
data blocks. Note that φT1 , φT2 , φT3 , · · · , φ

T
2d

−1 are disjoint
and they collectively cover the entire set of iterations (φ).

An important point to note at this juncture is that, we con-
sider the data block-size as an input to the compiler. We use
a simple heuristic to determining block-size. The main poten-
tial issue is that the selected size maybe such that the total
size of the data blocks accessed by an iteration block maybe
larger than shared cache capacity. The maximum number
of blocks is accessed when the tag is all 1s. By taking into
account this possibility, shared cache capacity and number of
array-references in the loop-body, we calculate the maximum
block-size that will not allow an iteration group to access data
that exceeds the cache capacity. In most of our loop nests,
this value turned out to be around 32KB. Therefore we use
32KB as the default block size in this paper.

We now explain how to compute φT for a given tag T and
set of data blocks λ1, λ2, · · · , λd. Without loss of generality,
let us assume that T = < t1t2 · · · tq−1tqtq+1 · · · td > = <
11 · · · 110 · · · 0 >, (i.e., the first q entries are 1 and the rest
are 0). We can express φT using the following Presburger
set:

φT = {~I | ~I ∈ φ and ∃R1,R2, · · ·Rq,∈ ℜ :

Rj(~I) ∈ λj (1 ≤ j ≤ q) and

¬(∃Rk ∈ ℜ : Rk(~I) ∈ λk (q + 1 ≤ k ≤ d))}.

We first describe the case when the iterations to be allocated
to cores and scheduled have no dependencies, that is, they
are fully parallel. We later discuss how our baseline allo-
cation/scheduling scheme can be extended to accommodate
data dependencies across iteration blocks.

5.2.1 Dependence Free Case
We are given a set of loop iterations that do not have any

dependencies among them, and our goal is to distribute them
over available cores and schedule them for minimizing inter-
core conflict misses in the shared L2. An important observa-
tion we can make is that, more similar the tags of two iter-
ations blocks, more similar their data access patterns. “Sim-
ilarity” in this context can be captured and represented us-
ing the Hamming Distance, which is the number of positions
for which the corresponding bits are different. So, lower the
Hamming Distance between the tags of two different itera-
tion blocks, more similar their data access patterns (i.e., they
manipulate similar set of data blocks). Consider, for exam-
ple, iteration blocks φ1000 and φ1100. The Hamming Distance
between their tags is 1. The iterations in the first iteration
block access only the first data block, whereas those in the
second iteration block access only the first two data blocks.
Clearly, there may be data shared between these two groups
of iterations. On the other hand, we do not expect iteration
blocks φ0011 and φ1100 to share any data, as they access dis-
joint sets of data blocks (their tags have a Hamming Distance
of 4).

Based on this observation, we can summarize our inte-

1: divide data into d blocks λ1, λ2, · · · , λd

2: compute iteration blocks φT1 , φT2 , φT3 , · · · , φ
T
2d

−1

3: G := sorted set of iteration blocks based on Hamming Distance
4: step := 1
5: while there are nodes in G to be scheduled do
6: φT := next-node(G)
7: for (p:=1; p≤P ; p++) do

8: allocation(p,step) := share(φT ,p)
9: end for
10: step := step + 1

11: remove φT from G
12: end while
13: for (p:=1; p≤P ; p++) do
14: emit-code(p,allocation(p,1),allocation(p,2),allocation(p,3),· · · )
15: end for

Figure 8: Integrated allocation/scheduling algorithm
for the dependence-free case.

grated allocation-scheduling algorithm as follows. We visit
the iteration blocks starting with the one that has the lowest
tag value. At each step, we visit an iteration block. When an
iteration block is visited, we distribute the iterations in that
block across available processor cores. That is, if there are L
iterations in an iteration block and P cores in the CMP, the
first ⌊L/P ⌋ iterations are assigned to the first core, the next
⌊L/P ⌋ iterations are assigned to the second core, and so on
(the excess iterations, if any, can be given to the last core).
After the iterations of an iteration block are assigned to cores
in this fashion, we move to the next iteration block. This next
block is selected such that the Hamming Distance between
the tag of the current block and the tag of the next block is
minimum among all possible alternatives. From a given core
perspective, the set of iterations allocated for it from step
m + 1 are added to those allocated from step m. In the rest
of our discussion, we use δ(T1, T2) to denote the Hamming
Distance between tags T1 and T2. Note that the iterations
assigned to a core form that core’s allocation, whereas the
scheduling order of iterations in a core is the order in which
iterations are assigned (i.e., corresponding to the steps of the
algorithm in Figure 5.2.1, as will be explained shortly).

It should be observed that some of the iteration blocks may
be empty (i.e., there may not be any iteration that accesses a
particular subset of data blocks). In any case, our approach
tries to minimize the Hamming Distance between the tags
of the successively-scheduled iteration blocks. The difference
is that, if some iteration blocks are empty, the Hamming
Distance between the tags of the successively-scheduled iter-
ation blocks can be more than 1. If on the other hand all
iteration blocks have some iterations (at least P iterations,
where P being the number of cores), we can always achieve
a Hamming Distance of 1 for each core, as we move from one
scheduling step to another.

Figure 5.2.1 gives the pseudo-code for the algorithm that
implements our scheme. Each neighboring pair of iteration
blocks in G have tags that have the minimum Hamming Dis-
tance. In this algorithm, share(φT ,p) returns the subset of
iterations in φT to be allocated for core p, and allocation(.)
is the data structure that holds these elements at each step.
emit-code(.) generates output code from this data structure
(in our implementation, it invokes the code-gen(.) utility of
the Omega Library [42], as all the sets are maintained as
Presburger sets throughout the entire compilation process)3.
Finally, next-node(.) returns the next node (iteration block)
to be scheduled. As stated above, this node is selected such
that the Hamming Distance between the tag of this node and
the tag of the previous node is minimum (like Gray Codes).

Note that, as far as the shared L2 cache is concerned, this

3Our current implementation generates a separate loop nest
for each allocation(p,step). Further optimizations are possi-
ble to minimize the number of nests generated.
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algorithm is expected to improve both intra-core locality and
iter-core locality. First, at any given step m of the code in
Figure 5.2.1, the set of iterations assigned to different cores
have the same data access patterns (the same tag), (i.e., they
access the same set of data blocks). Consequently, chances
for converting inter-core data reuse to inter-core locality (L2
cache hit) are very high. In other words, this helps us reduce
the reuse distance for the shared data. Second, as we move
from step m to step m + 1, we can expect that some of the
data used in step m will also be used in step m + 1 since the
corresponding tags have the minimum Hamming Distance.
Therefore, our scheme (the algorithm in Figure 5.2.1) exploits
both intra-step and inter-step data reuses.

5.2.2 Case with Dependences
In this case, we are given a set of loop iterations that will

be executed in parallel, and some of these iterations may be
dependent on others. There are changes to be made to the
algorithm in Figure 5.2.1 when there are data dependencies
between loop iterations. Clearly, when there are data depen-
dencies between loop iterations, we may not always be able to
schedule next the iteration block whose tag has the minimum
Hamming Distance from the tag of the currently-scheduled it-
eration block. We define an iteration block dependence graph

G as follows. Each iteration block φT is represented using
a node vT in G, and there is an edge from node vT1

(which
represents iteration block φT1) to node vT2

(which represents

iteration block φT2) iff ∃~I1, ~I2 and ∃R1,R2 ∈ ℜ : ~I1 ∈ φT1

and ~I2 ∈ φT2 and ~I1 � ~I2 and R2(~I2) = R1(~I1), assuming
that either R1 or R2 is a write-reference and � means “lex-
icographically smaller than or equal to”. Suppose that vT1

represents the last iteration block that has been processed so
far (i.e., its iterations have been distributed across processor
cores). We define a set of schedulable iteration blocks for
vT1

(denoted S(vT1
)) as the set of iteration blocks that can

start execution when vT1
finishes. The next node vT2

to be
processed is selected such that vT2

belongs to S(vT1
) and, for

any other node vT3
∈ S(vT1

), we have δ(T1, T2) ≤ δ(T1, T3).
That is, among all schedulable nodes, we select the one whose
tag has the minimum Hamming Distance from the tag of the
currently-scheduled node. It needs to be noted that, once G
is built, we can employ any scheduling algorithm (such as list
scheduling [21]) and use the Hamming Distance metric as the
tie-breaker when there are more than one schedulable nodes.
Once a node (iteration block) is scheduled, the iterations it
contains are distributed over available cores, as explained
in the case of dependence-free case. Figure 9 illustrates an
example application of our integrated allocation-scheduling
scheme. The figure also highlights the allocation of core 2.
In the rest of this section, when no confusion occurs, we use
the terms “node” and “iteration block” interchangeably.

However, there are still two problems we need to address.
First, for a given tag T , the iterations in φT can have data de-
pendencies amongst themselves, preventing us from execut-
ing all of them in parallel using multiple cores. Our solution
to this problem is as follows. We divide φT into s subsets:
φT

1 , φT
2 , · · · ,φT

s . Each subset is small enough so that all its
iterations can be scheduled together (i.e., there is no circular
dependence which can be formulated using Presburger sets,
between any (φT

m, φT
n ), where m 6= n). Such a division is

always possible since we can have only one iteration in each
subset in the extreme case. However, in general, we still want
to keep the size of each subset as large as possible to reduce
the number of subsets and the associated scheduling and code
generation costs. This partitioning, which can be formulated
using Presburger sets, is applied to all φT s whose iterations
are dependent on each other. After this partitioning, the
newly-generated nodes are added to the iteration block de-
pendence graph (G), and the allocation and scheduling are

carried out as explained earlier.
Handling Cyclic Dependencies. The last problem to
address is due to potential cyclic dependencies across the it-
eration blocks. Note that iterations are placed into iteration
blocks based only on their data block access patterns. As a
result, we can have cyclic dependencies between two iteration
blocks. Unless all the cycles are eliminated, it is not possible
to schedule an iteration block dependence graph. An exam-
ple cyclic graph is illustrated in Figure 10(a). Observe that
there are at least two ways of eliminating a given cycle from
an iteration block dependence graph. First, we can merge the
nodes involved in the dependence cycle into one node. Sec-
ond, we can split some of the nodes involved in the cycle so
that the cycle can be eliminated. Figures 10(b) and (c) illus-
trate node merging and node splitting, respectively, for the
example iteration block dependence graph in Figure 10(a).
Both these techniques have their drawbacks. The tag of the
merged node is the bit-wise union of the tags of the nodes
involved in the cycle. Consequently, the merged node (iter-
ation block) may not exhibit very good data locality (in the
extreme case, it can access all the data blocks manipulated
by the loop nest being optimized). While node splitting does
not have this problem, it increases the number of nodes in
the graph which in turn may affect the size of the output
code. Consequently, both these techniques should be applied
with care. In particular, we need to minimize the number of
merge and split operations in converting a cyclic graph to a
non-cyclic one. Below, we discuss a solution to this problem.
After preliminary experiments with these two techniques that
can eliminate cycles, we found that node splitting generally
performs better. Therefore, in the remainder of this discus-
sion, we focus on node splitting.

The question that we need to address is: “What is the
minimum number of nodes to split to make a cyclic graph
non-cyclic?” Our approach to this problem uses the feed-
back vertex set problem [22], which is a graph-theoretical NP-
complete problem. Given an undirected graph G = (V, E),
the feedback vertex set problem returns the minimum set of
nodes such that removal of those nodes makes the resulting
graph cycle-free. Karp was the first one to show that this
problem is NP-complete on directed graphs; but it is known
today that the undirected version is also NP-complete. For-
tunately, there exist several heuristic algorithms proposed in
the literature for the feedback vertex set problem. In this
work, we use the heuristic discussed in [17]. Since the details
of this linear heuristic are beyond the scope of this paper, we
do not discuss them here.

Our approach for handling the cyclic graphs operates as
follows. We first invoke the algorithm in [17] to determine the
minimum set of nodes to be removed from the graph to make
it cycle-free. We use J to denote this set. Then, for each of
these nodes, we try node splitting to see whether the node
can be split satisfactorily. What is meant by “satisfactorily”
in this context is that, although in theory we can always
split a node into two or more nodes, the particular split we
are interested in has the properties explained below.

Assume that φT ∈ J is the node to be split (i.e., it is one
of the nodes returned by the algorithm in [17]). Let V be the
set of nodes from which there are dependences to node φT .
That is, for each member φTv of V, there is a dependence
from φTv to φT . Assume further that W is the set of nodes
to which we have dependences from φT . In other words, we
have a dependence from φT to each node φTw of W. Suppose
now that φT is divided into two sub-nodes: φT1 and φT2 . We
call this split “satisfactory” if the following three conditions
are satisfied after the split:

• No dependence goes from any φTv ∈ V to φT2 . Put it
another way, all in-coming dependences of original φT

are directed to φT1 .
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Figure 9: Allocation and schedul-
ing for an example iteration
block dependence graph (upper-
left) with five iteration blocks.
With our scheme, the total Ham-
ming Distance is 4. The figure also
shows an alternate legal schedule
which gives a total Hamming Dis-
tance of 10.

Figure 10: (a) A sample iteration
block dependence graph with two
cycles. (b) Node merging. (c)
Node splitting. In (b) and (c) the
newly-created nodes are colored
black.

Figure 11: An example showing the
details of our node splitting strategy.

1: divide data into d blocks λ1, λ2, · · · , λd

2: compute iteration blocks φT1 , φT2 , φT3 , · · · , φ
T
2d

−1

3: build iteration block dependence graph G
4: if there are intra-node dependences then

5: for each φT with intra-node dependences do

6: break φT into sub-nodes with no cyclic dependences
7: update G
8: end for
9: end if
10: while there are cyclic dependences do
11: H := feedback-vertex-set(G)

12: for each φT ∈ H do

13: if check(φT ) then

14: split(φT ) and update G
15: end if
16: end for
17: end while
18: step := 1
19: while there are nodes in G to be scheduled do
20: φT := next-node(G)
21: for (p:=1; p≤P ; p++) do

22: allocation(p,step) := share(φT ,p)
23: end for
24: step := step + 1

25: remove φT from G
26: end while
27: for (p:=1; p≤P ; p++) do
28: emit-code(p,allocation(p,1),allocation(p,2),allocation(p,3),· · · )
29: end for

Figure 12: Integrated allocation/scheduling algo-
rithm for the case with dependences.

• No dependence goes from any φT1 to any φTw of W. In
other words, all out-going dependences of original φT

are directed from φT2 .

• No dependence exists between φT1 and φT2 .

Our approach tries to find two sets (iteration blocks) φT1

and φT2 such that φT1 ∪ φT2 = φT and they satisfy all three
conditions listed above. While we do not present the details
due to space concern, this partitioning problem is also formu-
lated using Presburger sets. Our approach tries to find such
a split for all nodes in J . If all splits are satisfactory, then we
are done. If not, we update the graph with the satisfactory
splits made so far, and run the algorithm in [17] again to find
alternate nodes to split.

Figure 11(a) gives an example cyclic dependence graph,
and Figure 11(b) shows the node selected by the algorithm

in [17]. Figure 11(c) depicts the state of the graph when this
node is removed, and Figure 11(d) shows the situation after
split. The in-coming and out-going dependences of the node
removed (and split) are highlighted in Figure 11(e). In this
figure, the four iterations contained by the node are marked
using e, f , g and h. Finally, Figure 11(f) shows the details
of how two new nodes (marked as x and y) are created after
splitting (these are the same x and y nodes in Figure 11(d)).
The pseudo-code for our integrated allocation-scheduling al-
gorithm that handles the case with data dependencies is given
in Figure 5.2.2. In this code check(φT ) returns true if φT can
be satisfactorily split. It is also important to emphasize that
our scheme is good from a load balance perspective as well.
This is because, for each φT , we divide the iterations in it as
equally as possible among the available processor cores.

5.2.3 Example
We illustrate our scheme using a simple example. The orig-

inal loop in Figure 14 accesses two arrays U and V . Assum-
ing that our CMP contains 4 cores, a simple parallelization
of this loop would be to assign equal iterations to each core,
as illustrated in Figure 15 for core p. Under this default par-
allelization, if the arrays are divided into 4 data blocks each,
then at any given time, elements from all 8 data blocks are
accessed. This can lead to conflicts in the L2 cache (note that
the loop bound is very small for the purpose of illustration).
Figure 13 shows the different iteration blocks that are formed
according to the access tags. Each tag in this case is a 8-bit
vector with the kth bit set to 1 if the iteration block accesses
the kth block. The iterations can be separated into 10 iter-
ation blocks corresponding to the tags shown. The iteration
blocks corresponding to the remaining tags are not shown as
they are empty.

The next step in our scheme is to schedule the iteration
blocks such that the temporally contiguous blocks have the
lowest Hamming Distance possible. In this particular exam-
ple, there exist no data dependences between the different
iteration blocks and hence we can order the iteration blocks
in any manner. The schedule of iteration blocks shown in
Figure 13 (which goes from top to bottom) leads to the low-
est total Hamming Distance possible. This is because each
iteration block differs from the preceding and succeeding it-
eration blocks by a Hamming Distance of exactly 1.

We now discuss the distribution of each iteration block to
our 4 cores. In this example, the iteration block φ10001000
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Blk# Tag Iterations Core 1 Core 2 Core 3 Core 4
1 10001000 4→20 4→7 8→11 12→15 16→20
2 10001100 21→24 21 22 23 24
3 01001100 25→28 25 26 27 28
4 01000100 29→45 29→32 33→36 37→40 41→45
5 01000110 46→49 46 47 48 49
6 00100110 50→53 50 51 52 53
7 00100010 54→70 54→57 58→61 62→65 66→70
8 00100011 71→74 71 72 73 74
9 00010011 75→78 75 76 77 78
10 00010001 79→95 79→82 83→86 87→90 91→95

Figure 13: Tags, iteration-to-iteration block map-
ping, and scheduling. Columns one, two and three
show the iteration block number, tag and iterations
in the block, respectively. Columns four through 7
show which iterations from each iteration block are
assigned for execution on each core. For each core,
the schedule goes from top to bottom.

for( i = 4; i < 96; i++){
U[i] = V[i-4] + V[i-3] + V[i-2]+ V[i-1] + V[i]

+ V[i+1] + V[i+2] + V[i+3] + V[i+4];
}

Figure 14: Original sequential loop.

consisting of 16 iterations is scheduled first. Each core is as-
signed 4 iterations. Next, iteration block φ10001100 consisting
of 4 iterations is distributed such that each core is assigned
one iteration. Similarly, each iteration block is distributed as
shown in Figure 13. Each core therefore is assigned a specific
subset of iterations to execute. The code corresponding to
core 1 is shown in Figure 16. Codes for the other cores can
be generated in a similar fashion. Note that, our approach
reduces the reuse distance to shared data (which reside on
data block boundaries).

It is important to emphasize that, since the original loop
does not have data dependences, we have the flexibility to
start scheduling from any iteration block we want (as long
as we minimize the Hamming Distance between the tags of
the successively-scheduled iteration blocks). Note also that,
if in the original code in Figure 14 the left and right hand
side arrays were the same, we would have data dependences,
which would force a particular scheduling order for the itera-
tion blocks (from left to right in this case). Even in this case
however, it is still possible to achieve the minimum Hamming
Distance as we move from one iteration block to the next.

5.3 Scheduling for Fixed Allocation
In some cases, we may not have the flexibility to assign

iterations to processor cores. For example, a prior phase
in compilation may have already performed this assignment
based on some objective function (e.g., to maximize inter-core
parallelism, improve load balance, etc). However, even under
this fixed allocation scenario, we still have the flexibility of
changing the execution order of loop iterations assigned to a
core. Further, by tuning the execution order of iterations for
each core in a symbiotic manner, we may be able to improve
data locality in the shared on-chip cache.

Without loss of generality, let us assume that we have P
cores, and φ(p) represents the set of iterations assigned to
core p, where 1 ≤ p ≤ P . As before, we divide the data into
blocks, λ1, λ2, · · · , λd. The set of loop iterations assigned
to core p (φ(p)) is partitioned into 2d − 1 subsets, and as
usual, each partition (iteration block) is assigned a tag which
represents the set of data blocks it accesses. We use φ(p)T to
represent an iteration block of core p with tag T . As before,

for( i = 4 + (p-1)*23; i < 4*p*23-1; i++){
U[i] = V[i-4] + V[i-3] + V[i-2]+ V[i-1] + V[i]

+ V[i+1] + V[i+2] + V[i+3] + V[i+4];
}

Figure 15: Default parallelization.

for( i = 4; i < 8; i++){
U[i] = V[i-4] + V[i-3] + V[i-2]+ V[i-1] + V[i]

+ V[i+1] + V[i+2] + V[i+3] + V[i+4];
}
U[21] = V[17] + V[18] + V[19]+ V[20] + V[21]

+ V[22] + V[23] + V[24] + V[25];
U[25] = V[21] + V[22] + V[23]+ V[24] + V[25]

+ V[26] + V[27] + V[28] + V[29];
for( i = 29; i < 33; i++){

U[i] = V[i-4] + V[i-3] + V[i-2]+ V[i-1] + V[i]
+ V[i+1] + V[i+2] + V[i+3] + V[i+4];

}
U[46] = V[42] + V[43] + V[44]+ V[45] + V[46]

+ V[47] + V[48] + V[49] + V[50];
U[50] = V[46] + V[47] + V[48]+ V[49] + V[50]

+ V[51] + V[52] + V[53] + V[54];
for( i = 54; i < 58; i++){

U[i] = V[i-4] + V[i-3] + V[i-2]+ V[i-1] + V[i]
+ V[i+1] + V[i+2] + V[i+3] + V[i+4];

}
U[71] = V[67] + V[68] + V[69]+ V[70] + V[71]

+ V[72] + V[73] + V[74] + V[75];
U[75] = V[71] + V[72] + V[73]+ V[74] + V[75]

+ V[76] + V[77] + V[78] + V[79];
for( i = 79; i < 83; i++){

U[i] = V[i-4] + V[i-3] + V[i-2]+ V[i-1] + V[i]
+ V[i+1] + V[i+2] + V[i+3] + V[i+4];

}

Figure 16: Output code generated for core 1.

we discuss the dependence-free case and the case with data
dependences separately.

5.3.1 Dependence-Free Case
In this case, for each core, we are given a set of dependence-

free iterations assigned to them (we do not change this allo-
cation). At a high level, our approach can be summarized
as reordering the set of loop iterations assigned to each core
such that the iteration sets that access the same data blocks
are scheduled at the same time as much as possible. For ex-
ample, in order to have good shared cache locality, all the
following sets should be scheduled concurrently:

φ(1)T , φ(2)T , φ(3)T , · · ·φ(P )T ,

for any given tag T . It is important to note that, as we move
from the current iteration block (tagged T1) to the next one
(say T2), we need to ensure that δ(T1, T2) is minimum. While
it is possible that, for different cores, different iteration blocks
may be empty, in practice the impact of this may not be very
significant. This is because, for each core, our approach tries
to schedule the iteration blocks assigned to it using Hamming
Distance as the optimization metric.

5.3.2 Case with Dependences
As in the previous subsection, we assume that loop iter-

ations have already been allocated to cores. However, now
there may be dependences across these loop iterations. This
case is challenging, because, unlike the case with the inte-
grated allocation/scheduling problem where we schedule one
node (from the iteration block dependence graph) at a time
(and distribute its iterations across all cores), in this case
we have P different schedules (one per core). As a result,
data dependences can exhibit complex patterns (e.g., we can
have dependences flowing from one core to another, as illus-
trated in Figure 18). Our problem formulation for this case
starts with defining schedulable iteration block sets for cores.
Let Sp denote the set of schedulable nodes for core p, where
1 ≤ p ≤ P . Initially, we select, for core p, φTp from Sp such
that

P

p

P

q,q 6=p
δ(Tp, Tq) is minimized. Informally, we select

an iteration block (to schedule) from each core such that the
sum of the Hamming Distances between the tags of each pair
is minimized.

This will clearly help to reduce reuse distances in this first
step (in the ideal case, in a given step, the tags of the iteration
blocks scheduled from different cores will be the same). After
these first set of iteration blocks are scheduled, we update the
set of schedulable iteration blocks for each core. The next set
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1: divide data into d blocks λ1, λ2, · λd

2: for (p:=1; p≤P ; p++) do
3: compute Sp

4: end for
5: step := 1
6: for (p:=1; p≤P ; p++) do

7: φTp := next-node-1(Sp)

8: end for
9: while there are nodes in any Sp to be scheduled do

10: step := step + 1
11: for (p:=1; p≤P ; p++) do

12: φTp := next-node-2(Sp)

13: allocation(p,step) := φTp

14: remove φT from Sp

15: end for
16: end while
17: for (p:=1; p≤P ; p++) do
18: emit-code(p,allocation(p,1),allocation(p,2),allocation(p,3),· · · )
19: end for

Figure 17: Scheduling algorithm for the fixed alloca-
tion.

Application Graph Number Increase
Name Size of Splits in Code Size

Barnes (206,497) 71 53%
FMM (313,779) 88 67%

LU (194,382) 39 63%
Ocean (428,760) 91 49%

Radiosity (187,411) 55 72%
Raytrace (259,823) 81 86%
Volrend (406,918) 76 96%

Water (112,339) 34 38%
Cholesky (108,467) 29 51%

FFT (395,991) 86 66%
Radix (337,882) 47 58%

Freqmine (211,573) 57 69%
BodyTrack (376,886) 83 72%

Table 3: Important statistics regarding our inte-
grated allocation/scheduling scheme.

of iteration blocks to get scheduled (φTp for core p) is selected
such that

P

p

P

q,q 6=p
δ(Tp, Tq) +

P

p
δ(Tp, Tp′) is minimized,

where Tp′ represents the tag of the iteration block scheduled
for core p in the previous step. Note that while the first term
in this expression captures sum of the Hamming Distances of
the tags of the iteration blocks scheduled in the current step,
the second term represents sum (across all cores) of the Ham-
ming Distances between the tags of the currently scheduled
block and the previous block. In this way, we exploit both
data reuse across the iterations scheduled for different cores
in the same scheduling step and data reuse for a given core as
we move from the current stage to the next. While there may
be alternate cost formulations, we found that this formula-
tion is easy to implement and works very well in practice.
Figure 18 also illustrates the schedule our approach chooses
for the scenario shown.

The algorithm in Figure 5.3.2 gives the pseudo-code for this
scheduling strategy. Note that we do not explicitly show the
code that identifies cycles and eliminates them (it is very sim-
ilar to that in Figure 5.2.2). Note also that select-node-1(.)
and select-node-2(.) are different from each other. Specif-
ically, as explained above, select-node-1(.) selects iteration
blocks to be scheduled (for each p) considering the Hamming
Distances among the tags in the same step, whereas select-
node-2(.) considers the tags in both the current step and the
previous step. In addition, select-node-2(.) does not select
the node with the minimum Hamming Distance if doing so
reduces parallelism. In other words, our scheduling scheme
tries to schedule an iteration block for each core at each step
if it is possible to do so. Among all alternatives that satisfy
this constraint, it selects the one that minimizes the Ham-
ming Distance, as explained above.

6. IMPLEMENTATION AND EVALUATION
We used two software infrastructures, SUIF [26] and Omega

Library [42], to implement our approach. Specifically, once
the input program is read by SUIF, we build our data and
iteration sets and transform them using the Omega Library.
The Omega Library, which is a polyhedral tool that manip-
ulated Presburger formulas, is also used for generating the
output code for each core, which is subsequently converted
to the internal SUIF structures. At a high level, our approach
is implemented as part of a source-to-source translator. In
the first step during compilation, we analyze the code and
obtain, for each loop nest, the set of iterations that will be
executed in parallel (φ). As mentioned earlier, some of these
iterations may have dependences which have to be enforced.
In our integrated scheme, we determine both assignment of
iterations to cores and scheduling of iterations for each core
(re-writing the parallel sections of the code when necessary).
In the scheduling for the fixed allocation scheme however, we
kept the same iteration-to-core mapping implied by the origi-
nal Pthread/OpenMP based version (to quantify the benefits
coming solely from optimized data locality). Note that all the
versions tested using simulator exercise the same low-level gcc
compiler with the O3 optimization level.

We first present the detailed results collected through our
SIMICS-based simulation platform (the memory timing model
is from GEMS [40], which enables detailed cycle-accurate
simulation). However, before discussing our improvements
in reuse distances, cache misses and execution cycles, we
want to present statistics regarding the behavior of our ap-
proach. The second column in Table 3 gives, for our in-
tegrated scheme, the size of the iteration block dependence
graph for our applications in the (nodes,edges) format. The
next column gives the number of split operations performed
during compilation, and under the fourth column we present
the percentage increase in code size as a result our integrated
allocation/scheduling scheme. Recall that we generate a sep-
arate loop nest for each allocation of a core in each step during
scheduling, and this leads to an increase in code sizes. We see
that the average increase in code size (with respect to original
applications) is about 63%. In our experiments below, unless
explicitly specified, we used the values of the simulation pa-
rameters shown in Table 3. The increase in compilation time
due to our approach (over the case without our optimization)
was about 35% when averaged over all applications.

Recall that Figures 4 and 5 present the distribution of
intra-core and inter-core reuse distances, respectively, for the
original applications. We now present in Figure 19 the dis-
tribution of inter-core reuse distances when our integrated
allocation-scheduling scheme is used. We note that, as com-
pared to the distribution in Figure 5, this new distribution
is much better as most of the data reuses have very short
distances. In comparison, Figure 20 presents the distribution
of reuse distances under the fixed allocation case. While, as
expected, these results are not as good as those in Figure 19,
they are still much better than those in Figure 5. Overall,
we see that our scheduling and allocation schemes are very
successful in reducing the reuse distances for the L2-resident
data.

While these reductions in reuse distances are encouraging,
it is also important to quantify their impact on L2 cache
misses and execution cycles. The reductions in inter-core
conflict misses in L2 due to our approach (over the original
applications) are presented in Figure 21. We see that, on av-
erage, our integrated scheme reduces inter-core cache misses
by 67%, and our scheduling under fixed allocation achieves
an L2 miss reduction of 51%. However, since inter-core con-
flict misses in L2 are not the sole contributor of execution
time, we also present overall execution time savings with our
schemes (in Figure 22), over the original applications. The
last bar in this figure represents the optimal savings and is
reproduced from Figure 6. We observe that our integrated
scheme and scheduling under fixed allocation result in av-
erage performance improvements of 29% and 24%, respec-
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Figure 18: Left: a scenario with
two cores and eight iteration
blocks. Right: the result of our
scheduling.

Figure 19: Distribution of inter-core
reuse distances with the integrated
scheme.

Figure 20: Distribution of inter-core
reuse distances with the scheduling
for fixed allocation.

Figure 21: Reduction in inter-core
conflict misses.

Figure 22: Execution time im-
provements with our scheme (sim-
ulation).

Figure 23: Execution time im-
provements with the integrated
scheme (AMD and Intel).

tively. Considering that the average optimal saving is around
33%, these results are very good. We want to mention that
the remaining performance difference between our approach
and the optimal results are mostly due to data dependencies.
That is, in several cases, data dependencies prevented our
scheduler from eliminating some L2 misses. We also noticed
that a better scheduler could cut more misses in some loop
nests in our applications.

As mentioned earlier, we also conducted experiments on
two commercial multi-core platforms (we gave cache details of
these machines in Section 3). The bar-chart in Figure 23 gives
the execution time improvement—over original applications
when using the highest optimization flag in each machine—
when our integrated allocation/scheduling scheme is used.
The average improvements we obtain are 22% in AMD and
18% in Dunnington, when all 13 applications are considered.
To sum up, the results obtained through both simulation
and real-platform experiments clearly show that restructur-
ing loop iterations for exploiting sharing in L2/L3 can be very
beneficial in practice.

We also compared our approach to a state-of-the-art intra-
core data locality optimization strategy. In this alternate
scheme, after the conventional parallelization step, for each
loop nest of each thread, we use a set of locality-enhancing
transformations to maximize cache performance. More specif-
ically, each loop nest of each thread is optimized indepen-
dently using well-known loop restructurings such as loop per-
mutation and tiling (tile sizes are determined after experi-
menting with several values). Note that, in many cases, such
extensive intra-core locality optimizations generate better re-
sults than the locality optimizations supported by current
commercial compilers. An example comparing this alternate
approach (intra-core scheme) and our approach was given

earlier in Figure 2. Figure 24 presents the percentage im-
provements in execution cycles, under the default values of
our simulation parameters, this alternate scheme brings over
the original codes. For ease of comparison, we also repro-
duce the results with our schemes. We see from these results
that there is a huge performance difference between optimiz-
ing intra-core reuse alone and optimizing both intra-core and
inter-core reuse (as in the case of our approach). In terms
of average performance improvements, optimizing intra-core
reuse alone (which is not effective in eliminating inter-core
conflict misses) brings only 13% improvement, which is much
lower than the average saving achieved by our integrated
scheme (29%). This is because the original applications al-
ready have good single thread data access patterns. In fact,
intra-core reuse distances are mostly on the lower side, as has
already been discussed. Instead, significant benefits can be
obtained by symbiotically reorganizing and scheduling data
accesses by considering all threads together, which is achieved
by our scheme.

In the rest of our experiments, we vary the values of some
of our simulation parameters, and study their impact. Recall
that the results presented and discussed so far are collected
using the base simulation parameters given in Table 3. Fig-
ure 25 shows the results with different L2 associativities and
the number of cores (the values of all other parameters are as
given in Table 3). Each bar in this graph represents a value
(percentage improvement in execution latency) when aver-
aged over all 13 applications we have. When we increase the
number of cores, our percentage savings increase. This is be-
cause the behavior of the original applications gets worse with
the increased core count (the data accesses are spread more,
creating more inter-core conflict misses). Since the results in
Figure 25 are with respect to the original case, we observe
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an improvement with increasing core count. Our second ob-
servation is that our approach performs better with smaller
associativities. As we reduce associativity, the chances for
data access conflicts in L2 increase, and code restructuring
for reorganizing accesses to shared data becomes more im-
portant.

We next evaluate the impact of data block size in our
results. This is an important parameter as it determines
the formation of iteration blocks, which in turn determines
the shape of dependencies. As indicated in Table 3, the de-
fault data block size used in our experiments so far is 32KB.
The results with different block sizes are given in Figure 26.
Clearly, as we reduce the data block size, we achieve better
savings. This is because a smaller block size enables finer
granular distribution of iterations into iteration blocks, i.e.,
we can group them more accurately. Consequently, we do
a better job during scheduling. For example, when we re-
duce the block size from 32KB to 8KB, the average savings
with our integrated scheme jump from 29% to 39%. While
this certainly motivates for smaller block sizes, one may also
want to consider the impact on code size. Small block sizes
means more increase in size of the generated code. Conse-
quently, if code size is a concern, one may not want to work
with very small data blocks. As stated earlier, with our de-
fault data block size, the increase in code size was about 63%
on average. We also found that with a data block size of
8KB, the increase in code size jumped to nearly 224%.

7. DISCUSSION OF RELATED WORK
Related work on locality optimizations for single core sys-

tems is mostly based on loop transformations. In [55] Wolf
and Lam define reuse vectors and reuse spaces, and show
how these concepts can be exploited by an iteration space
optimization technique. Li [38] also uses reuse vectors to de-
tect the dimensions of the loop nest that carry some form
of reuse. Carr et al [11] employ a simple metric to re-order
computation to enhance data locality. Zhang et al [57] study
reference affinity, which characterizes a group of data that
are always accessed together in computation. Tiling is also
a well-known technique for enhancing data locality [34, 36].
Previous research [12] also discusses how code restructuring
can be used for improving data locality in embedded appli-
cations. Cierniak and Li [20] were among the first to offer a
scheme that unifies loop and data transformations.

Chatterjee et al [13] use Presburger formulas to express
cache misses including the state of the cache in each loop nest.
Andrade et al [4] propose a framework to model the cache
behavior of codes with indirections using analytical models.
Srikantaiah et al [51] present a shared cache management
approach called set pinning, and propose a new classification
system for cache misses. Sorenson and Flanagan [50] propose
a cache characterization scheme using locality surfaces to pre-
dict cache miss rates. Ghosh et al [25] propose Cache Miss
Equations (CME), a framework to express memory reference
and cache conflict behavior in terms of sets of equations. Vera
et al [54] discuss a scheme that estimates the solution of the
CMEs by using sampling techniques.

A critical challenge faced by CMP hardware designers is
how to efficiently manage the on-chip shared resources such
as caches and register files. Previous work in this category
includes [7, 18, 47]. Ballapuram et al [5] analyze the internal
and external snoop behavior in a CMP system. They pro-
pose Selective Snoop Probe (SSP) and Essential Snoop Probe
(ESP), where the snoopy cache coherence protocol is relaxed.
Baskaran et al [6] present automatic data management for
on-chip memories, where buffers are seated in on-chip (lo-
cal) memories for holding portions of the data accessed. In
[16], the authors focus on careful scheduling of threads to
minimize destructive interactions on shared on-chip caches.
Our approach is different from these previous studies as we

focus on automated compiler-directed restructuring of data
accesses for parallel applications targeting better L2 cache
locality.

Anderson et al [2] propose a transformation technique that
makes data elements accessed by the same processor contigu-
ous in the shared address space. Chen and Sheu [15] mini-
mize interprocessor communication by first dividing the iter-
ation space into blocks without inter-block communication,
and then assigning data and iterations to processors. Tim
et al [53] propose a general data partitioning heuristic that
considers both parallelism and communication cost. Several
research groups address partitioning and scheduling prob-
lem for multiprocessors using tiling [3, 24]. In [33], authors
present a profile-guided compiler technique for cache-aware
partitioning of iteration spaces of parallel loops. Bondhugula
et al [10] propose an automatic polyhedral source-to-source
transformation framework to optimize a given code for both
parallelism and locality. Kandemir [32] presents a data local-
ity optimization scheme for CMPs which uses reuse-vectors
(in a linear-algebraic framework) and can therefore only han-
dle codes in which compiler can extract data reuse vectors
accurately. It cannot handle any of the codes used in this
submission. In comparison, our approach uses polyhedral
arithmetic which is more general. Bikshandi et al [9] propose
Hierarchically Tiled Arrays (HTAs) that enable direct manip-
ulation of tiles for parallel program improvement as well as
achieving locality. Liao et al [39] introduce a parallel compiler
for the Brook streaming language with aggressive data and
computation transformations. Chu and Mahlke [19] propose
a compiler-directed approach to partition data and computa-
tion across multiple clusters in a locality aware fashion. Our
work is complementary to many of these prior studies as it
can be used in conjunction with them. In fact, they can be
used in the same application: our approach can handle loop-
nests with outer-loop parallelism and [19] can be used for
the nests with inner-loop/intra-loop parallelism.

8. FUTURE WORK AND CONCLUDING RE-

MARKS
This paper has presented and evaluated a compiler based

data locality optimization scheme for shared L2 (or L3) based
CMPs. The proposed scheme determines both assignment of
loop iterations to processor cores and the order in which the
iterations assigned to each core will be executed. The goal
is to bring accesses to shared data from different cores to-
gether, thereby reducing inter-core conflict misses. We tested
this scheme using all applications from the Splash-2 bench-
mark suite and two applications from Parsec. The results col-
lected, through both simulation and experiments on a quad-
core AMD and six-core Intel multi-core machines, show that
the proposed scheme is very successful in bringing together
the loop iterations that access shared data blocks. In this
way, different cores operate on the data they share at around
the same time. This helps to reduce reuse distances for shared
data and, as a result, improves the performance of the shared
on-chip cache. Our future work includes experimenting with
different data block orientations (e.g., column-wise, diagonal)
and with other commercial CMP systems. Work is also un-
derway in integrating our approach with compiler techniques
that try to automatically extract parallelism from sequential
codes.
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