
978-1-4244-5023-7/09/$25.00 ©2009 IEEE

September 14-16, 2009
METU
Northern Cyprus Campus332

A Path-Quality-Aware Peer-to-Peer File Sharing
Protocol for Mobile Ad-hoc Networks: Wi-Share

Efe Karasabun∗, Doğuş Ertemür†, Seyhun Sarıyıldız†, Metin Tekkalmaz∗ and Ibrahim Korpeoglu∗

∗†Department of Computer Engineering, Bilkent University, Ankara, Turkey
Email: ∗{efe, metint, korpe}@cs.bilkent.edu.tr, †{dertemur, seyhuns}@alumni.bilkent.edu.tr

Abstract—Peer-to-peer networks are rather well-studied and
currently there are numerous systems based on peer-to-peer
principles running on the Internet. On the other hand peer-
to-peer networks for mobile ad-hoc networks have attracted
attention only in the recent years. In this paper, we propose
a novel peer-to-peer file sharing system particularly designed
for mobile ad-hoc networks. The proposed system, namely Wi-
Share, has both network and application layer aspects enabling
efficient search and download of the shared files. Wi-Share uses
reactive routing for the search operation combined with source
discovery and uses the routing tables constructed during the
search operation for the download operation. In order to increase
the overall efficiency of the file sharing in the network, Wi-
Share applies techniques to reduce the required traffic and to
increase efficient parallelism of the download operation. These
techniques include filtering search results, preferring the higher
quality routing paths, using partitioned download scheme and
allowing the nodes that have joined to the network recently to
contribute to the ongoing downloads. Wi-Share is implemented to
work on mobile computers and the results of several experiments
are also presented in the paper.

I. INTRODUCTION

Peer-to-peer (P2P) file sharing applications designed and
implemented for the Internet has been very successful and
popular throughout Internet users since the mid-90s. Ad-hoc
networks, which provide decentralized, mobile and infrastruc-
tureless communication, have also been evolving since the
mid-90s by the standardization and increased availability of the
wireless adapters (e.g. 802.11). The system proposed in this
paper, naming Wi-Share, aims to provide an efficient solution
for P2P file sharing in mobile ad-hoc networks, which involves
specialized routing and application layer protocols.

At the network layer, the routing protocol proposed in this
paper aims to maintain the overall throughput as high as
possible for the whole network by finding optimum paths
while trying to minimize the use of power resources. At
the application layer, on the other hand, mechanism such as
filtering and parallel downloads, decrease the bandwidth usage
and increase download efficiency. Hence, an efficient medium
is provided for the fundamental P2P file sharing operations,
which are search and download.

II. RELATED WORK

As far as P2P file sharing is considered, Napster [1] appears
to be one of the earliest and most popular applications. The
main idea behind Napster is a central server that stores index

information (i.e. filename and address pairs), which is used to
answer queries about where the files are stored on the Internet.
Napster enables easy location lookup by using a central server,
but it is affected by the typical weaknesses of centralized
systems.

Napster is designed for the Internet and it is not suitable
for mobile ad-hoc networks (MANETs) due to the dynamic
nature of such networks and lack of infrastructure. A recent
work [9] analyze and test the performance of Gnutella [2] on a
MANET using AODV and OLRS as the underlying MANET
routing protocols. They conclude that Gnutella working on
top of MANET routing protocols is not suitable for MANETs
because of the unnecessary network overhead generated by
Gnutella and because Gnutella is not suitable to handle cases
specific to MANETs such as node mobility and network
partitioning. Therefore they suggest a cross-layer optimization
for the Gnutella protocol. This cross-layer optimization in-
volves integrating Gnutella specific messages to the periodic
messages exchanged by the OLRS protocol to achieve better
peer discovery and route selection leading to less network
overhead and more resistance to node mobility and network
partitioning. However, the main shortcoming of this approach
is that it does not consider the residual battery power levels
and the data traffic generated in the network when selecting
routes.

ORION, described in [5] and as a P2P file sharing approach
for MANETs, employs flooding for the file queries. The query
results are returned selectively, hence duplicate results are
avoided for the same file. During the file transfer phase,
the caches constructed while querying the files are used for
routing. The main difference of Wi-Share from ORION is that
Wi-Share considers the quality of the paths being used for the
download operation. Wi-Share’s approach allows better net-
work utilization by considering the power levels of the nodes
and amount of data transfer being performed. Consideration of
power level and amount of data being relayed is an important
feature in battery constrained mobile ad hoc networks. Another
P2P file sharing system for wireless ad-hoc networks based on
distributed hash tables is proposed in [10]. The same study also
includes experimental results comparing the proposed system
and the flooding-based systems. As presented in [10], flooding
based solutions for P2P file sharing in mobile ad-hoc networks
are superior to the distributed hash table based solutions as
long as the mobility in the network is high.

322

333

III. WI-SHARE P2P FILE SHARING PROTOCOL

A. Search Operation

The search operation consists of making a search with one
or more keywords in the P2P file sharing system and obtaining
the corresponding search results. Wi-Share uses a reactive (i.e.
on-demand) routing approach for the search operation. The
search operation involves the route discovery phase in which
search requests are flooded through the network as the user
initiates the search. The routing protocol used in Wi-Share
has similarities with both ad-hoc on-demand distance vector
routing (AODV) [4] and dynamic source routing (DSR) [3].
How these approaches combined while propagating the search
request packets and search result packets through the network
is explained in the subsequent sections.

1) Search Request Packet Propagation: The search request
packet is composed of the unique search request broadcast
id that is constructed using the current system time in mil-
liseconds plus some random number, search keywords, the
path indicating the nodes that the search request packet has
traversed so far and an “availability parameter” set by each
of those nodes. The availability parameter of a node consists
of its current available power, its path distance to the node
requesting the search, and the amount of total data it has
sent, received or forwarded recently. The availability parameter
is used to find out the quality of a path, as explained in
Section III-B, and consequently to make routing decisions,
since it reflects the status of the node in terms of how much
it may contribute to the new downloads.

When a node receives a search request packet, there are
three operations that it should perform. First is to update its
routing table, which stores the “next hop” information for
various destinations, by using the path information obtained
from the search request packet. This is called reverse path
establishment and explained in Section III-A2. Second, if the
receiver node has matching files with the search keywords,
it prepares a search result packet and sends it to the search
request packet initiator as explained in Section III-A3. Third,
each receiver node of the search request packet broadcasts the
search request packet to its neighbors. Before broadcasting
the packet, the receiver node adds itself and its availability
parameter to the path that the search request packet goes
through. This way the quality of the path on which the search
request packet flows can be identified and analyzed.

Algorithm 1 shows the steps that a node follows when it
receives a search request packet. In the algorithm, id is the
unique identifier of the search request, kw is the keywords
currently being searched for, path is the path that the search
request packet has traveled so far, and availability is the
availability parameters of the nodes on the path. Furthermore,
cache is the search request cache, cache[id] is a cache entry
corresponding to the search request with identifier id, and∑

availability represents the path quality computed using
availability. Therefore, cache stores path quality values for
each search request received by the node.

A node discards a search request packet if the node has

Algorithm 1 Search request packet propagation
1: func ProcessSearchRequest(id, kw, path, availability)
2: if path is new or

∑
availability of path is better then

3: update routing table
4: end if
5: if (cache[id] /∈ cache) or

(
∑

availability is better than cache[id]) then
6: cache← cache ∪ cache[id]
7: cache[id] ←

∑
availability

8: if ∃ a file with kw then
9: send search result packet

10: end if
11: broadcast search request packet
12: end if

broadcast due to the same request before and the current
receive path is not better than the one caused the previous
broadcast. This approach is applied in order to reduce the
overhead of the search broadcasts while still promoting the
most available routes. Nodes recognize previous broadcasts
using a search request cache. Entries of the search request
cache are deleted after a timeout period. See Figure 1 for a
sample search request propagation scenario.

Searc
hReq

uest(i
d,kw,

path[
A,B,C

,D],...
)

[Disca
rded]

Searc
hReq

uest(i
d,kw,

path[
A,B,C

],...)

[Disca
rded]

A B C D E

Search
Reque

st(id,k
w,path

[A],...)

Search
Reque

st(id,k
w,path

[A,B],.
..)

Search
Reque

st(id,k
w,path

[A,B,C
],...)

Search
Reque

st(id,k
w,path

[A,B,C
,D],...)

Searc
hReq

uest(i
d,kw,

path[
A,B],.

..)

[Disca
rded]

Searc
hReq

uest(i
d,kw,

path[
A,B,C

,D,E],
...)

[Disca
rded]

Fig. 1. Our search algorithm is based on classic flooding operation, however
some precautions are taken to minimize negative effects of flooding and save
resources of the network. Search request packets are broadcast only if not
done so before or the current receive path is better than the path caused the
previous broadcast.

The search request packets are processed at the application
layer of Wi-Share, since the keywords can be processed and
the availability parameter can be obtained at this layer of the
protocol stack. It is important to note here that although the
packets used in search operation goes up to the application
layer, the download operation takes place at the network layer
of the protocol stack making the download operation relatively
fast as explained in Section III-C.

2) Reverse Path Establishment: When a node receives a
search request packet, it establishes a reverse link to the node
which has initiated the search operation. The quality of the
path between the current node and the node that has initiated
the search is computed from the availability parameters of
each node on the path, which are obtained from the search
request packet. The reverse link establishment is done by
setting the “next hop” information of the node initiating the
search request as shown in the sample scenario depicted in
Figure 2. Reverse path establishment is shown between lines
2 and 4 of Algorithm 1.

323

334

A B C D E

SearchRequest

(id,kw,path[A],avl[A])
SearchRequest

(id,kw,path[A,B],avl[A,B])

SearchRequest

(id,kw,path[A,B,C],avl[A,B,C])

SearchRequest

(id,kw,path[A,B,C,D],avl[A,B,C,D])

Routing Tables

D. N.H. P.Q.

A B f(avl[A,B])
B B f(avl[B])

A C f(avl[A,B,C])
B C f(avl[B,C])
C C f(avl[C])

A D f(avl[A,B,C,D])
B D f(avl[B,C,D])
C D f(avl[C,D])
D D f(avl[D])

A A f(avl[A])

D. N.H. P.Q. D. N.H. P.Q. D. N.H. P.Q.

D.
N.H.
P.Q.

avl[k,l]

Links Established
Destination
Next Hop
Path Quality
Availability of nodes k and l

Fig. 2. A sample reverse path establishment scenario. The figure presents
how the nodes update their routing tables as the search request packet travels
through the network. Each node extracts the path information of the packet and
finds possible routes to different destinations. Those routes are compared with
current routing table entries. If a new route is found for a specific destination,
an entry is created. If a better route, in terms of the path quality, is found
for an existing destination, current entry of the destination is replaced with
an entry describing the better route.

It is important to note that when a search request packet
comes to any node, that node extracts the path information
and obtains the availability parameters towards the nodes
included in the packet. If the obtained availability parameters
towards some destination is better than the prior availability
parameters that are known towards that destination, than the
new availability parameters are used to decide on the new next
hop towards that destination. How the availability parameters
are used to select paths and route packets is explained in
detail in Section III-B. This approach allows the intermediate
nodes to use fresher and better paths when relaying packets
for ongoing download operations.

3) Search Result Packet Propagation: If a node has files
that correspond to a received search request packet, it creates
a search result packet and sends the search result packet
by using the reverse of the path indicated inside the search
request packet. Such a reverse path is assumed to lead to
the node which has initiated the search operation, since Wi-
Share assumes symmetric links between the nodes. The search
result packet is composed of search request identifier, list of
the files that corresponds to the search keyword, the path of
the search request packet and the availability parameters of
each node in the path. The search result packet is propagated
back to the search owner as explained in Algorithm 2. In
the Algorithm 2, different from Algorithm 1, path contains
all the nodes between the source (i.e. node containing the
files matching the keywords) and the destination (i.e. node
that initiated the search). Additionally, file is the list of files
matching the keywords in the corresponding search request.
Nodes receiving search result packet applies filtering, as
explained in Section III-A5, if necessary.

4) Forward Path Establishment: While the search result
packet is sent back to the node which has initiated the search
request, forward links between the nodes on the path and the
node which has initiated the search result packet is established.
The forward path establishment is similar to the reverse path

Algorithm 2 Search result packet propagation
1: func ProcessSearchResult(id, file, path, availability)
2: if path is new or

∑
availability of path is better then

3: update routing table
4: end if
5: target← first element of path
6: if target 6= current-node then
7: filter file
8: if file 6= ∅ then
9: forward search result packet to the next hop in path

10: end if
11: end if

establishment with the difference that forward path establish-
ment is done by setting the routing table entries at the nodes
relaying the search result packet destined to the search result
source. If the node already has a routing table entry destined
to the search result source, then the node decides whether
to update routing information by comparing the quality of
the previous and the current paths. If the quality of the new
path is higher than the one in the routing table, then the
routing table entry is updated accordingly as explained in the
sample scenario depicted in Figure 3. Lines between 2 and 4
corresponds to forward path establishment in Algorithm 2.

A B C D E

SearchResult

(id,files,path[E,D,C,B,A],avl[E,D,C,B])

SearchResult

(id,files,path[E,D,C,B,A],avl[E,D,C])

SearchResult

(id,files,path[E,D,C,B,A],avl[E,D])

SearchResult

(id,files,path[E,D,C,B,A],avl[E])

Routing Tables

D. N.H. P.Q.

E D f(avl[D,E])
D D f(avl[D])

E C f(avl[C,D,E])
D C f(avl[C,D])
C C f(avl[C])

E B f(avl[B,C,D,E])
D B f(avl[B,C,D])
C B f(avl[B,C])
B B f(avl[B])

E E f(avl[E])

D. N.H. P.Q.D. N.H. P.Q.D. N.H. P.Q.

D.
N.H.
P.Q.

avl[k,l]

Links Established
Destination
Next Hop
Path Quality
Avilability of nodes k and l

Fig. 3. A sample forward path establishment scenario. Node E, the search
result packet source, prepares the packet by filling matching files, full path
of the result packet, which is the reverse of corresponding search request
packet’s path, and its own availability parameter. Then it sends the packet to
the next node according the path, which is node D. Each node on the path
appends its own availability parameter, filters the matching files and passes
the packet to the next node. They also maintain the route information about
the network as they process the search result packets. As an example, node
B learns paths to nodes C, D and E with a single packet.

5) Filtering: While the search result packets are sent to
the node which has initiated the search operation, in order
not to waste resources and bandwidth, intermediate nodes are
required to check whether they already have the files contained
in the received search result packet. If any of those files is
available in the relaying node, the node removes those entries
from the search result packet and forwards the remaining
ones. This operation is called filtering. By the use of filtering,
the files that the intermediate nodes have will travel less
and therefore the intermediate nodes are no more required
to make unnecessary routing. This idea is borrowed from the

324

335

ORION Search Algorithm [5]. (See Figure 4). Forward path
establishment is shown in line 9 of Algorithm 2.

A B C
SearchResult
(id,files[file1],path[B,A],...)

SearchResult
(id,files[file1,file2],path[C,B,A],...)

Shared Files Shared Files

- file1 - file1
- file2

1 2

3
SearchResult
(id,files[file2],path[C,B,A],...)

Fig. 4. A sample filtering scenario. Assume that node A issues a search for
which file1 and file2 are valid responses. First, node B responds the search
request of node A with file1. Next, node C responds with two files, file1
and file2 through node B. Since it is not reasonable to download file1 from
both nodes B and C, node B filters the search result packet of node C before
forwarding it, in order to hide the unnecessary results.

B. Path Quality, Path Cost Computation and Availability Pa-
rameters

The use of availability parameter introduced by Wi-Share is
a novel approach for making better routing decisions in terms
of the efficiency of the whole ad-hoc network. Availability
parameters of the nodes on a path are used to compute
the quality of that path, which, in turn, is used as a basis
for routing decisions. Therefore, routing decisions are based
on three parameters; the length of the paths, the available
(residual) power levels on the paths and traffic load on the
paths. Path quality combines these parameters to achieve
fairness and efficiency for all nodes.

The quality of a path is inverse of its cost which is computed
as in (1), where PC is the path cost, HopCount is the number
of hops between the nodes, Batterymin is the battery level
of the node with the least battery power on the path, and
Trafficmax is the traffic load of the node with the highest
load. Ch, Cb, and Ct are hop count, battery level and traffic
load constants respectively.

PC = Ch ×HopCount
+ Cb × (100−Batterymin)
+ Ct × Trafficmax

(1)

The default values of the constants are selected as to adjust
the PC value in a way to respond the possible ranges of
hop count, battery level and traffic load. Generally we have
observed that the hop count is in the range [0-10], battery level
is in the range [0-100] and traffic load (measured in packets
per second) is in the range [0-600].

The reason why Wi-Share uses the above mentioned pa-
rameters for routing decisions is because these parameters are
observable at each node without incurring any overhead to
the protocol. Link quality metrics such as ETX [6] (expected
transmission count), which is the expected number of trans-
missions a node requires to successfully transmit a packets to a
neighbour, ML [7] (minimum loss), which is based on finding
the routes with the lowest end-to-end loss probability and
ENT [8] (effective number of transmissions), which measures
the number of successive retransmissions per link considering
the variance, requires that peridic link quality control packets
are broadcast to neighbours. Broadcasting of periodic control

packets would have caused extra network overhead at Wi-
Share protocol which works on an reactive basis rather than a
pro-active basis.

Figure 5 shows how the availability parameter, and conse-
quently the path costs, allows to select a better path avoiding
congestion on a single node and using up battery from a single
node.

A

B

C

D

E

F
Battery 70
Traffic 0

Battery 30
Traffic 300

Battery 90
Traffic 300

Battery 50
Traffic 0

Battery 80
Traffic 0

Fig. 5. In the network, there is an ongoing data transfer between nodes C
and E. When the node A searches the network for a file that is only shared by
nodes C and F, it receives replies from up to 3 different paths. If the search
request packet following path C-A arrives to node C before the search request
packet following path C-D-B-A, then search result packets are sent back from
both paths. Otherwise the search result packet is sent only to follow path C-
A, since the PC value of this path is computed to be lower on node C (see
Algorithm 1). Similarly, F either sends the search result packet(s) to follow
only F-D-B-A or to follow both F-D-B-A and F-D-C-A. Please note that the
search result packet sent to follow path F-D-C-A does not arrive to node A,
due to filtering (see Section III-A5). Also note that the PC values for each
path is as follows; C-A: 49, C-D-B-A: 55, F-D-B-A: 19 and F-D-C-A: 49.
Hence the file is downloaded from node F on path F-D-B-A, if single source
is preferred, or it is downloaded from nodes C and F on paths F-D-B-A and
C-A, if parallel download is preferred. The constants are chosen as Ch = 3,
Cb = 0.4, and Ct = 0.06 in this scenario as they are determined through
the extensive real life experiments.

C. Download

Our download scheme benefits from the routes set up during
the forward and backward path establishment phases of the
search operation. Using the availability parameter, the routes
are set up according to the quality of the path. Therefore, after
the search operation, each node on the download path has the
best possible next node information in its routing table for the
corresponding download operation.

The node initiating the search operation does not start the
download operation as soon as it receives the first search result
packet, rather it waits for a period of time. During this period,
we assume that the search result packets from relatively higher
quality paths may also arrive. Therefore, after this waiting
period, the download begins using the highest quality paths
established during the search operation.

It is important to note that the download of a file takes
place by the use of TCP. Since during our search protocol the
necessary routing table entries are set, the reliable transmission
of the files can be performed by TCP.

1) Download by Partitioning Scheme: The download op-
eration supported by Wi-Share uses the partitioning concept.
Whenever a file is to be downloaded, it is divided into a
number of partitions which is determined by its size. The
reason for partitioning is to reduce the amount of loss when

325

336

a download from a node is interrupted. If the files were not
partitioned, in case of a disconnection, the whole file would
require to be retransmitted. But with the use of partitioning,
in such a case, only the partitions that have not transferred yet
require to be transmitted. Partitioning also enables download
of a file from different sources on different paths in parallel.

2) Periodic Search Requests During Download: During a
download operation, the downloading node issues periodic
search requests for the file being downloaded. Benefit of
these requests is twofold: First, the availability information
in the search and result packets enable update of the routing
tables using the most recent availability parameters of the
nodes. Hence, the best routes are chosen during the download.
Second, if a new node sharing the file being downloaded has
joined to the network after the download started, it sends
search result packets in order to contribute to the ongoing file
transfer. Participation of a new node to an ongoing download
is possible due to the partitioning scheme as well as periodic
search requests.

3) Route Maintenance: Wi-Share requires that each routing
table entry has a timeout value. The timeout value is refreshed
periodically if there is an active download using that routing
table entry. If no active download is performed using a given
routing table entry, then that entry is deleted when the timeout
value reaches zero.

Wi-Share relies on the TCP communication protocol dur-
ing the download operation as explained in Section III-C.
Therefore when a connection breaks during the download
operation, the two end point nodes of the download operation
are informed about the disconnectivity by the use of TCP
timeout mechanism. The routing table entries of intermediate
nodes that were used by the disconnected download are deleted
automatically after the timeout.

When the download operation of a particular file cannot be
performed from any node in the ad hoc network, Wi-Share
requires that the search operation is initiated. This will ensure
that new paths to destination will be found that will better
reflect the current status of the ad hoc network. However,
during a download operation, which has multiple sources,
in case of disconnections from the sources if at least one
connection is alive, Wi-Share benefits from the periodic search
request mechanism as explained in Section III-C2.

IV. EXPERIMENT RESULTS

In order to evaluate the performance of the proposed proto-
col, several experiments were conducted. Since the proposed
protocol was implemented along with a front-end application,
the experiments were carried out on a testbed, which consists
of nine notebook computers. The testbed was constructed in
an area covering the 3rd, 4th, and 5th floors of the Bilkent
University, Engineering Building. The nodes (i.e. notebook
computers) in the network were carefully arranged to have
the topology depicted in Figure 6. Increasing the number of
nodes in the network resulted in more connections, reducing
the average length of paths between the nodes. Therefore, the
number of nodes in the network was kept at nine, which was

found to be the optimum for the given area. It should be
noted that many other 802.11b/g networks were active in the
same vicinity, which probably affected the performance of the
experiments. But in order to minimize the deviations the exper-
iments are held on a weekend, since the 802.11b/g activity was
expected to be less compared to a weekday. Same experiments
were repeated several times and the averages of the results of
those experiments were assumed to be the final results. In the
following experiments the default values for the constants are
chosen as follows: Ch = 3, Cb = 0.4, and Ct = 0.06. The
constants that are chosen are determined through the extensive
tests performed in the real-life environment with the developed
Wi-Share application. During the tests it is observed that these
constants are efficient in making the best routing decisions. It
should again be noted that a smaller PC values corresponds
to a higher quality path and a path with the smallest PC is
selected as the primary path.

Fig. 6. Topology of the experimental network

Mainly two groups of experiments were carried. The first
was related to the search performance and the second was
related to the download performance of the protocol, both of
which are described in the following subsections. In order to
perform controlled search and download, each node in the
network contained a file having a unique name with a common
prefix (e.g. “Node0”, “Node1”, “Node2”, etc.). Hence, search
or download of a file from a specific node was possible using
the unique filename and similarly search or download of a file
from all the nodes was possible using the common part of the
filename.

A. Search Performance

First, the searches were initiated from Node 6 using key-
words targeted for specific files. Therefore, each search caused
a reply from a single node. The average reply arrival times
varied between 0.2 and 0.9 seconds which were almost linearly
proportional to the number of hops between the node that
initiated the search (i.e. Node 6) and the node that replied.
The average reply arrival times are shown in Figure 7. Please
note that, in the figure different nodes having the same hop
distance from Node 6 are shown separately. In the second
experiment, the search was again initiated from Node 6. But
different from the first experiment, the keyword was chosen
such as (i.e. “Node”) the search caused replies from all the
nodes. As shown in Figure 7, this time the reply arrival times
increased slightly, where the longest arrival time was around
4 seconds. The main reason for the increase in the arrival
times is the increased amount of search replies which increased

326

337

the bandwidth usage and possibly caused more collisions with
other search replies and search requests.

Node 0
 1-hop

Node 1
2-hops

Node 7
3-hops

Node 2
3-hops

Node 5
4-hops

Node 3
4-hops

Node 4
5-hops

Node 8
5-hops

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Reply f rom one
node per search

Reply f rom all
nodes per search

S
ea

rc
h

R
ep

ly
 A

rr
iv

al
 T

im
e

(s
ec

.)

Fig. 7. Search reply arrival times

The overhead due to the searches were also observed in
the experiments. Search request packets, which contain the
search IDs, keywords, path and availability information, and
search reply packets, which contain IDs of the corresponding
searches, search results (i.e. file names), path and availability
information, constitute the overhead. Figure 8 depicts the
search overhead for the first search experiment in which
a single node replied for each search request. The search
overhead was measured between about 14 and 35 KB and
it was observed that in general, as the hop count between the
node initiating the search and the node replying the search,
the overhead increased.

Node 0
 1-hop

Node 1
2-hops

Node 7
3-hops

Node 2
3-hops

Node 5
4-hops

Node 3
4-hops

Node 4
5-hops

Node 8
5-hops

0

10000

20000

30000

40000

O
ve

rh
ea

d
(b

yt
es

)

Fig. 8. Search overhead

B. Download Performance

In the download experiment, download of a file, which is
1 604 376 bytes (u1.53 MB) long, was initiated from Node 6.
Similar to the search experiments, each node had the same
file with a unique name, hence the source node could be
controlled. For example, if the performance of a download
from Node 0 was under examination, the file with the name
“Node0” was downloaded. Figure 9 depicts the download
times of the file from 1-, 2-, 3-, 4- and 5-hops ahead, which
correspond to nodes 0, 1, 2, 3, and 4 respectively.

V. CONCLUSION AND FUTURE WORK

The routing protocol that is proposed in this paper is aimed
to support an ad-hoc network which is used for a P2P file

Node 0
 1-hop

Node 1
2-hops

Node 2
3-hops

Node 3
4-hops

Node 4
5-hops

00:00:00

00:00:40

00:01:20

00:02:00

0

15000

30000

45000

D
ow

nl
oa

d
Ti

m
e

(m
m

:s
s)

O
ve

rh
ea

d
(b

yt
es

)

Download times Overhead

Fig. 9. File is downloaded from one node at a time

sharing system. During the search phase of the protocol,
the necessary entries are inserted to the routing table in the
intermediate nodes. The routing decisions are determined upon
the availability parameter of the path which identifies the
path’s usability in terms of the power resources of the nodes,
number of hops to be traversed, and the data traffic. By
the use of availability parameter and filtering, the best paths
are built during the search phase. The download phase of
the protocol benefits from the use of download partitioning
scheme and contribution of newly joined nodes to ongoing
data transmissions. By using such a search and download
mechanism our protocol is aimed to work efficiently for ad-
hoc networks supporting P2P file sharing systems.

As for the future work we will be performing comprehensive
simulations along with the testbed to further observe the
performance of Wi-Share.

REFERENCES

[1] Napster protocol specification, 2007. Online. Available:
http://opennap.sourceforge.net/

[2] Gnutella A Protocol for a Revolution, 2007. Online . Available:
http://rfc-gnutella.sourceforge.net

[3] D. Johnson and D. Maltz, Dynamic source routing in ad-hoc wireless
networks, in Proceedings of SIGCOMM96, ACM, California, USA,
August 1996.

[4] C. Perkins, E. Belding-Royer, and S. Das, Ad hoc On-demand Distance
Vector (AODV) routing, July 2003, RFC 3561.

[5] A. Klemm, C. Lindemann, and O. P. Waldhorst, A special-purpose peer-
to-peer file sharing system for mobile ad hoc networks, in Vehicular
Technology Conference, 2003, vol. 4, October 2003, pp. 27582763.

[6] R. Draves, J. Padhye, and B. Zill, Routing in Multi-Radio, Multi-Hop
Wireless Mesh Networks, ACM MobiCom, Sept. 2004, pp. 11428.

[7] D. Passos et al., Mesh Network Performance Measurements, Intl. Info.
and Telecommun. Technologies Symp., Dec. 2006

[8] C. E. Koksal and H. Balakrishnan, Quality-Aware Routing Metrics For
Time-Varying Wireless Mesh Networks, IEEE JSAC, vol. 24, no. 11,
Nov. 2006, pp. 198494

[9] M. Conti, E. Gregori, G. Turi, A Cross-Layer Optimization of Gnutella
for Mobile Ad Hoc Networks, MobiHoc ’05: Proceedings of the 6th
ACM international symposium on Mobile ad hoc networking and
computing., pp. 343 - 354 2005

[10] H. Sözer, M. Tekkalmaz, and I. Korpeoglu, A Peer-to-Peer File Search
and Download Protocol for Wireless Ad-Hoc Networks, Computer
Communications (2008), doi: 10.1016/j.comcom.2008.09.004

327

