
Incomplete Software Requirements and Assumptions Made by Software Engineers

Özlem Albayrak
Department. of Computer Technology and
Information Systems, Bilkent University,

06800 Bilkent, Ankara, Turkey
ozlemal@bilkent.edu.tr

Hülya Kurtoğlu1, Mert Bıçakçı2

Department. of Software Engineering,
STM Defence Technologies Engineering Inc.

06800 Bilkent, Ankara, Turkey
1 hbozkurt@stm.com.tr, 2 mbicakci@stm.com.tr

Abstract—Many software engineers make implicit assumptions

when working with incomplete software requirements. To

study assumptions made by software engineers while

converting incomplete requirements to software design or to

implementation phase deliverables, we conducted an

experiment with 251 software engineers from eight companies.

The results of this empirical study showed that how software

engineers responded (using source code, pseudo code, or

prototype) to an incomplete requirement significantly

impacted the number of explicit assumptions they made. We

studied relationships between the number of explicit

assumptions and the engineers’ experience and educational

backgrounds. On average, non-computer-background

engineers made more explicit assumptions than computer-

background graduates. We found a significant relationship

between the engineers’ experience and the number of explicit

assumptions made. We discuss the results and their

implications.

Keywords-incomplete software requirements;assumption

I. INTRODUCTION

In principle, a system’s functional software requirements
specification (SRS) should be both complete and consistent.
However, in practice, for large and complex systems, it is
impossible to achieve consistent and complete requirements
[1]. Poor and incomplete SRS and inadequate requirements
management are among the main reasons for project failure
[2, 3, 4, 5, 6, 7, 8]. Poor requirements, even well managed,
cause projects to fail [9]. Previous empirical studies
conducted over a variety of software projects revealed that
inadequate, inconsistent, incomplete, or ambiguous
requirements are numerous and have a critical impact on the
quality of the resulting software [10]. Empirical studies have
shown that half of the errors identified at the development
stage are due to inaccurate and incomplete requirements [11,
12] and early user involvement is related to better
requirements quality [13]. According to some studies,
incomplete requirements are the single largest cause of
software project failure [5, 14].

In agile development, creating complete and consistent
requirements documents is seen as infeasible or, at least not
cost effective [15]. Agile requirements engineering is more
dynamic and adaptive than following a formal procedure to
produce a complete specification that accurately describes
the system [16]. While not all software projects are suitable
for agile development, SRS are critical for the success of

most software projects [17]. An SRS is complete only if it
includes all significant requirements, whether they relate to
functionality, performance, design constraints, attributes, or
external interfaces.

In real life, not all software requirements are complete
and most software engineers proceed to develop software
even when they face low-quality or incomplete software
requirements. Previous research has studied ways to perform
successful requirements engineering activities and has also
studied their relationship with other processes [18, 19, 20].
The ultimate goal is to avoid generating incomplete, low-
quality software requirements. If we cannot avoid such
requirements, we should definitely avoid accepting them as
complete, using implicit assumptions.

According to our literature survey, this study is the first
one that attempts to quantify how software engineers treat
incomplete requirements. It studies the relationship between
software engineers’ tendencies to make explicit assumptions
and their preferences on how they proceed to design or
implementation phases (using source code, pseudo code, or
prototype). The study is composed of two parts: a
quantitative experiment and qualitative post-interviews.

The remainder of this paper is organized as follows:
Section 2 provides background information regarding
incomplete requirements and implicit assumptions. Section 3
presents the experimental design, including the research
questions, hypotheses, the subjects, and the variables. The
results of the study are explained in Section 4. In Section 5,
we discuss some possible threats to the validity of the study.
We discuss results of the study in Section 6. Section 7
concludes the paper and presents proposals for future work.

II. BACKGROUND

Requirements engineering (RE) is the process by which
the requirements are determined [21]. RE process-
improvement methods typically work with explicit process
models with explicit document definitions [22]. The best
way to develop a high-quality software system with minimal
effort is to capture the requirements correctly the first time
[17]. Without a well-written requirements specification, there
is no way to validate that the system meets users’ original
needs [5]. Thus, it is highly recommended that an SRS be
unambiguous and complete.

Previous studies in RE on how to avoid incomplete
requirements suggest conceptual models for incomplete
requirement descriptions, and frameworks merging

2009 16th Asia-Pacific Software Engineering Conference

1530-1362/09 $26.00 © 2009 IEEE

DOI 10.1109/APSEC.2009.39

333

incomplete and inconsistent views [23, 24, 25, 26]. Missing
requirements discovery and taming ambiguity in natural
language requirements were studied [27, 28]. Despite these
efforts, software engineers are still faced with incomplete
requirements. Requirements are not fully collected, in part
due to the lack of a formal process or structure to support the
analyst in eliciting all the available information [29].

In this study, we analyzed if the engineers’ preferred way
to deal with an incomplete software requirement is related to
the number of assumptions they make explicitly.

In the literature, it is acknowledged that the requirements
should be explicitly elicited, negotiated and documented, and
then followed through in design and implementation [30].
We call the missing information between the incomplete
software requirement and the complete software requirement
the ‘requirement gap.’ A requirement gap can be filled by:
information retrieved from the stakeholder, explicit or
implicit assumptions made by the software engineers.

The first way is the best. Implicit assumptions should be
avoided. When engineers make assumptions explicitly, they
are aware of which gap they fill and how they fill the gap. As
a result, they can share this explicit or recorded information
with the stakeholders. In the case of implicit assumptions,
engineers perceive the requirement as complete and continue
the software development with their perceived requirements.
When software engineers fill the gaps with information not
shared and, hence, not confirmed by the user, they have
made implicit assumptions, which may be the primary source
of many user change requests, reworks, validity problems,
and even project failures. Recent research studied various
factors related to the assumptions made by the engineers
[30,31,32].

We studied the impact of the engineers’ working
experience on the number of explicit assumptions made by
the engineers. Up to 60% of individuals employed in the
computer industry do not have computer-related education
[33]. This figure motivated us to better understand the impact
of educational background on the type of assumptions made
in the case of incomplete requirements.

III. EXPERIMENT DESCRIPTION

A. Research Questions and Hypotheses

The primary research question that motivated this study
was:

1. Do the ways software engineers respond to
incomplete requirements impact the number of
explicit assumptions they make while attempting to
complete the gaps in the requirements?

The secondary research question was:
2. Do working experience and educational background

of the software engineers impact the number of
implicit assumptions made by the software
engineers?

To investigate these research questions, a more-detailed
set of three hypotheses was defined.

• H1a: The number of explicit assumptions made by
software engineers is affected by the engineers’

preferred way to respond (code, pseudo code, or
prototype).

• H2a: The number of explicit assumptions made by
software engineers is affected by the engineers’
working experience.

• H3a: The number of explicit assumptions made by
software engineers is affected by the engineers’
educational background (computer related or non-
computer related).

B. Variables

There were three independent variables measured to
determine their impact on the one dependent variable.
Independent variables are the engineers’:

• Preferred way to respond to an incomplete
requirement,

• Working experience (number of years worked)
• Educational background (whether computer related

or non-computer related).
The dependent variable is the number of implicit

assumptions made by the software engineer while
responding to the given requirement.

C. Design

1) Subjects: We formed a convenience sample
composed of mostly CMMI Level 3 companies, one
company was CMMI Level 5. We collected data from a
total of 251 software engineers, 8 companies, and 39
projects. All subjects were from the same country, Turkey.

TABLE I. BACKGROUND AND EXPERIENCE DETAILS

Educational Background # avgexp

Computer Related
 CS
 CTIS
 CTP
 SwE

134
6
2
1

143

4.7
1.8
2.5
6

Others
 Electrical & Electronics Eng.
 Mathematics
 Physics
 Electronic Communication
 Statistics
 Aerospace
 Economics
 Mechanics
 Nuclear
 Total

56
5
4
3
3
1
1
1
1

75

218

5
7
8.5
7
4.5
8
17
10
21

CS: Computer Science, SwE: Software Engineering
CTIS: Computer Technology and Information Systems
CTP: Computer Technology and Programming
avgexp: average working years’ experience

Prior to our survey, we had conducted interviews with
the software development directors of the companies. During
the interviews, we described the purpose and procedure of
the study to the directors. The directors then selected project
managers of current software development projects. Finally,
the participants were selected by these project managers. All
projects were ongoing, and at different phases of the
software development lifecycle. Each participant was

334

currently involved in one project only. The participants did
not receive any compensation for participation.

Out of 251 returned results, 33 had missing data in the
background and/or experience fields. Hence, we removed
such responses from our analysis regarding the secondary
research question. A detailed breakdown of the subjects’
backgrounds and average experience is shown in Table 1.

2) Artifacts: We used a generic and simple requirement
written in natural language with different types of gaps
seeded. (Figure 1). The artifact was initially used in a prior
study in a university setting [2].

For the following software requirement, do one of the
following three alternatives:

1. Draw prototype screens for at least two inputs you
enter.

2. Write source code in any programming language
you know (C/C#, Java...).

3. Write pseudo code.

For any positive number entered by the user, the

program should display a list of even numbers less than

the input.

PLEASE LIST ANY QUESTIONS/ASSUMPTIONS YOU
HAVE FOR YOUR SOLUTION.

Figure 1. Question delivered in the study

TABLE II. GAP TYPES AND RELATED ASSUMPTIONS

The gaps are easy to identify in the study’s delivered

question. In real life, however, identification of gaps may be
a more difficult problem. Hence, the used artifact may not be
appropriate. We suggest to readers planning to replicate this
study to develop and/or use better artifacts (See Section 5 for
more detail).

There were different gap types seeded to the above
requirement. Table 2 summarizes the gap types and related
assumptions.

Their background, experience, university, degree, and
current project codes were also asked of the participants.

3) Procedure: The artifact was delivered to the selected
participants as a hardcopy document. The subjects were

forbidden to ask questions during the study. While
delivering the artifact, it was emphasized that writing any
questions and/or assumptions was very important.

On average, it took the participants 15 minutes to
complete the exercise. We collected the hardcopy answers
from the software directors and analyzed the collected data.
After the analysis we conducted post-interviews with the
participants and later, in a group meeting environment,
delivered presentations about the seeded gap types and
discussed the study results.

The subjects who did not write anything on paper
implicitly reflected their assumptions regarding design and
implementation studies. We considered written assumptions
and questions as explicit assumptions.

IV. RESULTS

Approximately half of the participants (51%) selected
coding to respond to the question. 28% of the subjects used
pseudo code, and 12% used prototyping. About 9% (20) of
the participants used more than one way to answer the
question. Only two subjects listed their assumptions without
using any one of the ways suggested in the question.

The gap type explicitly stated by most of the participants
was found to be the gap about the stopping condition, while
the gap regarding the prompt was found as the gap with the
least number of explicit assumptions written for it (Figure 2).

0.442

0.335

0.163

0.076
0.052 0.044 0.036

0.004
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Stopping

Condition

Input Type Validation Order Format Application

Type

Error

Messages

Prompt

Figure 2. Average number of explicit assumptions versus gap type

We observed that many subjects did not progress to the
software development phase without making explicit
assumptions regarding stopping condition, input type and
validation gaps.

We used SPSS 15.0 to perform the statistical analysis.
For all statistical tests reported in this paper, we have used an
alpha value of 0.05. The results show that both the responses
of the participants and their working experience significantly
impacted the number of explicit assumptions they made.

A. Impact of Response (H1)

Table 3 provides descriptive statistics about the subjects’
answers regarding explicit assumptions.

To observe the relationship between the subjects’
preferences and their tendency to complete gaps using
implicit assumptions, we used one-way ANOVA. All of the
assumptions of ANOVA were satisfied.

Gap Type Related Assumption/Question

Input type Is the type of input integer, double, float?
Prompt Which text messages are displayed to the user?
Order Is the order of the list ascending or descending?
Format What is the format of the output list?
Application
type

Is it a console, windows, or Web application?

Error
messages

Which errors are displayed, and how would
errors be handled?

Stopping
condition

What is the stopping condition while listing?

Validation How is input validation realized?
Other Any other assumptions/questions

335

TABLE III. DESCRIPTIVE STATISTICS: RESPONSE

Response Mean Std. Deviation N

code 1.47 1.646 128

pseudo code 1.69 1.527 71

prototype 1.27 1.639 30

all 1.00 1.247 10

code + prototype 1.00 1.528 7

code + pseudo code .00 .000 2

none 4.50 3.536 2

Prototype + pseudo code 4.00 . 1

Total 1.50 1.628 251

TABLE IV. TEST OF THE ANOVA (RESPONSE TYPE)

Explicit Assumption

Sum of

Squares
df

Mean

Square
F Sig.

Between Groups 37.324 7 5.332 2.072 .047

Within Groups 625.425 243 2.574

Total 662.749 251

R Squared = 0.056 (Adjusted R Squared=0.029

The ANOVA was significant F (7. 243) = 2.072, p =

0.47, η2 = 0.056 (Table 4). 5.60% of variance in the number
of explicit assumption is explained by the preferred response
type of the subjects. This result allows null hypothesis to be
rejected in favor of H1a. The preferred response of
participated software engineers to the given incomplete
requirement impacts the number of explicit assumptions
made by the subjects.

Table 5 shows the average number of explicit
assumptions per gap type with respect to response types
mostly selected by the participants. All the engineers used
implicit assumptions to fill the prompt gap.

TABLE V. AVERAGE NUMBER OF EXPLICIT ASSUMPTIONS WITH
RESPECT TO RESPONSE TYPE

 Response Type

Gap Type code
pseudo

code
prototype all

Prompt .000 .000 .000 .000

Validation .172 .155 .133 *.200

Error Messages .008 .056 .100 .000

Application Type

.039 .028 .133 .000

Format .055 .056 .067 .000

Input Type .359 .380 .200 .100

Order .078 .085 .067 .000

Stopping
Condition

.461 .493 .300 .300

Other .297 .437 .267 .400

Max 0 4 3 1

*Underlined values in Table 6 are the maximum values of the average
number of explicit assumptions corresponding to gap types. The Max row
presents the number of underlined maximum scores per the participant’s
preferred way.

The ways subjects prefer to respond and the types of gaps

were found to be related. The group that used prototyping
had more explicit assumptions regarding format, error
messages, and application type.

None of the participants who preferred writing source
code reached the maximum score for any of the gap types.
The participants who used pseudo code reached the
maximum scores for gap types regarding input type, order,
stopping conditions, and others. The participants who
selected prototyping obtained the highest scores for non-
functional requirements).

B. Impact of Experience (H2)

Table 6 provides descriptive statistics about the subjects’
working experience in years and the number of explicit
assumptions made.

TABLE VI. DESCRIPTIVE STATISTICS: EXPERIENCE

 Mean Std. Deviation N

Assumption 1.468 1.663 218

Experience 4.981 4.184 218

Linear regression analysis was conducted to evaluate the
prediction of the number of explicit assumptions (numexp)
from the subjects’ working experience. The regression
equation for the number of explicit assumptions is

numexp = 0.068*experience + 1.130 (1)

2.9% of variance in numexp is accounted for by its linear
relationship with experience. The ANOVA was significant, F
(1, 216) = 6.484, p<0.05 (Table 7).

TABLE VII. TEST OF THE ANOVA (EXPERIENCE)

Explicit Assumption

Sum of

Squares
df

Mean

Square
F Sig.

Regression 17.495 1 17.495 6.484 .012

Residual 582.780 216 2.698

Total 600.275 217

C. Impact of Educational Background (H3)

As shown in Table 2, we used two categories for the
subjects’ background: computer-related and others. There
were 143 participants from computer-related and 75 from
other backgrounds.

Figure 3 shows a box plot of educational background and
number of explicit assumptions made by the participating
software engineers. The box plot shows that the mean of
explicit assumptions made by the participants with other
backgrounds are more than of those with computer-related
backgrounds.

336

Background

OtherComputer Related

#

o
f

E
x
p
l
i
c
i
t

A
s
s
u
m
p
t
i
o
n
s

10,00

8,00

6,00

4,00

2,00

0,00

112

184

188

203
105

126

Figure 3. Educational background

A one-way analysis of variance was conducted to
evaluate the relationship between educational background
and number of explicit assumptions. The independent
variable of background included two levels: computer-
related and others. The dependent variable was the number
of explicit assumptions. The ANOVA was not significant. F
(1, 216) = 1.638, p = 0.202 (Table 8).

TABLE VIII. TEST OF THE ANOVA (RESPONSE TYPE)

Explicit Assumption

Sum of

Squares
df

Mean

Square
F Sig.

Between Groups 4.518 1 4.518 1.638 .202

Within Groups 595.758 216 2.758

Total 600.275 217

R Squared = 0.008 (Adjusted R Squared=0.003)

V. THREATS TO VALIDITY

As with any empirical study, there are various threats to
validity that must be discussed. In this section we discuss the
internal and external validity of our study. Internal validity is
defined as the soundness of the conceptual relationships
within a study.

The first threat is the threat of subject characteristics (or
selection bias). We selected a convenience sample of eight
companies. The subjects were selected by the project
managers at these companies. Thus, we had no control over
the selection of the subjects. The specific subjects who
participated in the study could be the major reason for the
observed results. This threat was alleviated to some degree
by the fact that selected companies mostly had similar
CMMI levels.

The second threat to the internal validity of this study is
the threat of data-collector characteristics. At each company,
different collectors collected data from the subjects. The
characteristics of the data collectors might have affected
results. In addition, the data collector may have
unconsciously distorted the data in such a way as to make
certain outcomes more likely, leading to data collector bias
threat.

Approximately 14% of the subjects did not fill in the
background and/or experience fields of the study. This may
be considered to be a threat of loss of subjects.

Some subjects from two of the companies (E and H) had
taken RE-related training two weeks before this study was
conducted. We can consider this training as an unplanned
event that may have affected the subjects’ responses. Thus,
history threat may be another threat of this study’s internal
validity.

External validity is defined as the degree to which results
from the study can be generalized and provide insight.

The representativeness of the artifact is a threat to
external validity. We used a very simple, textbook-sample-
like artifact which had been previously used in a university
setting [2]. We selected this generic artifact to make sure that
all the subjects were equally familiar with the requirement.
Since it was simple, it did not take much time for the
subjects to complete. The artifact used in this study may not
be reflective of an actual requirements document. A more
realistic instrument could be considered for future studies.

The last threat is common to all empirical studies. It
cannot be assumed that the results will always generalize
beyond the setting in which the study was conducted. Thus,
for more confidence in the results, the study should be
replicated.

VI. DISCUSSION OF RESULTS

It is natural that the percentage of the engineers who
adopted prototyping is low, because the given artifact was so
simple. It is interesting that the engineers who responded
using coding did not score the maximum of average number
of explicit assumptions made in any one of the gap types.

During the post-interviews, the engineers stated that they
make explicit assumptions when a gap occurs while tracing
their algorithms. By means of post-interviews, we
determined that the software engineers preferred implicit
assumptions when the requirement gap has a minimal cost to
update. For example, changing the message text that will
appear as a prompt or updating the format of the output was
found to be easy-to-do and less-costly updates. Instead of
asking the users, the engineers reflected their implicit
assumptions about the requirement when they proceeded
with what they thought is or should be part of the
requirement. In the case of rework, the engineers believed
that it is not costly or time consuming to update their
proposed solution. Of the interviewed engineers, 65% stated
that assuming the prompt and format implicitly saves time.

The software engineers generally avoided making
implicit assumptions regarding gaps that may change the
algorithm and flow of the program, such as the stopping
condition of a loop, input type, and validation rules.
Interviewed engineers believed that changing the algorithm
is an expensive update to do; thus, implicitly filling gaps
related to such updates should be avoided.

Only 4% of the engineers made explicit assumptions to
fill gaps related to format, application type, and error
handling. After the study, most of the engineers agreed that
these gaps may cause expensive updates when assumed
implicitly.

337

More than 90% of the engineers filled the order gap
implicitly. When interviewed, most of these engineers stated
that they did not even realize that they were filling a gap.
They assumed that their implicit assumption was the default
behavior.

The subjects who mostly develop safety critical systems
had the maximum number of explicit assumptions for the
input type gap. The subjects currently transforming a console
application to a web-based system scored the maximum
number of explicit assumptions regarding the format gap
type.

During the post-interviews, the engineers first stated that
the type of input and the format of output could be solved at
low cost. We demonstrated the intended question as a
children’s game, where children enter a number as a string,
and the output is listed in different shapes. After the demo,
almost 100% of the engineers admitted that for this question,
input type and format might also be expensive to update.
Thus, they all agreed that implicit assumptions should be
avoided for filling any type of requirement gap and that the
cost of filling the gap be determined based on the
application’s needs.

The subjects’ former approach is similar to agile
development. Agile practices usually omit the details and
postpone the expenses for gathering them until the
requirement needs to be fulfilled in the next iteration.

In this study, we found that those who used prototyping
used better material (information from user and explicit
assumptions) to fill in the gaps related to error messages,
application type and format requirements. Thus, prototyping
can be a good option for such requirement gaps. We also
observed that engineers who preferred pseudo codes filled
the input type, order, stopping condition gaps better than the
others.

VII. CONCLUSION AND FUTURE WORK

We studied software engineers’ tendencies to make
explicit assumptions and their preferred ways to complete
incomplete requirements. We conducted a large scale
experiment for quantitative analysis and structured meetings
for qualitative analysis.

We’ve found that the way engineers respond to an
incomplete requirement and the engineers’ working
experience significantly impact the number of explicit
assumptions made by the engineers. Between the engineers’
backgrounds and the number of explicit assumptions made,
we did not observe a significant relationship.

To complete a given incomplete requirement for gaps
related to error messages, application type, and formatting
requirements, prototyping, and for other gaps pseudo codes
were found to be a better way than using a programming
language. Further studies may concentrate on types of gaps
and their relationship to software engineers’ preferences.

Future studies may focus on organizational, project, and
customer-related variables. Further studies may study how
software engineers complete incomplete requirements within
different variables of software engineering.

We observed that training plays a crucial role; the
companies that received formal RE training before the study

scored the top two grades regarding the number of explicit
assumptions.

REFERENCES

[1] Sommerville, I., Software Engineering, Addison-Wesley, 2007.

[2] A. M. Salem, and M.O. Darter, “Requirement Analysis: A Practical
Object-Oriented Approach”, Journal of Computational Methods in
Science and Engineering, IOS Press, vol. 6, Issue 1, 2006, pp.191-
204.

[3] B.H.C. Cheng, and J.M. Atlee, “Research Directions in Requirements
Engineering”, Future of Software Engineering (FOSE ’07), 23-25
May 2007, pp. 285-303.

[4] Zagajsek, K. Separovic, and Z. Car, “Requirements Management
Process Model for Software Development Based on Legacy System
Functionalities”, 9th International Conference on
Telecommunications, (ConTel 2007), 13-15 June 2007 pp.115-122

[5] H.F. Hoffman, and F. Lehner, “Requirements Engineering as a
Success Factor in Software Projects”, IEEE Software, vol. 18, no. 4,
2001, pp.58-66.

[6] H. Saiedian, and R. Dale, “Requirements Engineering: Making the
Connection Between the Software Developer and Customer”,
Information and Software Technology, vol. 42, no. 6, 2000, pp.419-
428.

[7] M. Agrawal, and K. Chari, “Software Effort, Quality, and Cycle
Time:A Study of CMM Level 5 Projects”, IEEE Transactions on
Software Engineering, vol. 33, no. 3, March 2007, pp.145-156.

[8] M. I. Kamata, and T. Tamai, “How Does Requirements Quality
Relate to Project Success or Failure?”, Proceedings of the 15th
International Requirements Engineering Conference, 2007 IEEE, pp.
69-78.

[9] R. Darimont, E. Delor, J. L. Roussel and A. Rifaut, “Requirements
Engineering with Grail/Kaos: Tell the Requirements, All the
Requirements, and Nothing Else but the Requirements”, Proceedings
of the IEEE Joint International Conference on Requirements
Engineering (RE’02), 2002, p.299.

[10] A. van Lamsweerde, and E. Letier, “From Object Orientation to Goal
Orientation: A Paradigm Shift for Requirements Engineering”
RISSEF 2002, Springer-Verlag Berlin Heidelberg, 2004, pp. 325–340

[11] R. B. Rowen, “Software Project Management Under Incomplete and
Ambiguous Specifications”, IEEE Transactions on Engineering
Management, vol. 37, no.1, Feb. 1990, pp.10–21.

[12] S. Lauesen, and O. Vinter, “Preventing Requirement Defects”,
Proceedings of the Sixth International Workshop on Requirements
Engineering: Foundations of Software Quality, REFSQ 2000,
Stockholm, Sweden, 2000.

[13] S. Kujala, M. Kauppinen, L. Lehtona, and T. Kojo, “The Role of User
Involvement in Requirements Quality and Project Success”,
Proceedings of the 13th IEEE International Conference on
Requirements Engineering, 2005, pp. 75-84.

[14] J. Noppen, P. Broek, and Akşit, M., “Software Development With
Imperfect Information”, Soft Computing, vol. 12, no. 1 / January,
2008, Springer Ferlag, pp. 3-28.

[15] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements Engineering
and Agile Software Development”, Proceedings of the Twelfth IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE’03), 2003, pp.308-313

[16] L. Cao, and B. Ramesh, “Agile Requirements Engineering Practices:
An Empirical Study”, IEEE Software, 2008, pp.60-67.

[17] O. Dieste, N. Juristo, and F. Shull, “Understanding the Customer:
What Do We Know About Requirements Elicitation?,” IEEE
Software, vol. 25, no. 2, 2008, pp. 11-13.

[18] A. Loconsole, “Empirical Studies on Requirement Management
Measures”, Proceedings of the 26th International Conference on
Software Engineering (ICSE04), 23-28 May 2004, pp. 42-44.

338

[19] D. Damian, and J. Chisan, “An Empirical Study of the Complex
Relationships between Requirements Engineering Processes and
Other Processes that Lead to Payoffs in Productivity, Quality, and
Risk Management”, IEEE Transactions on Software Engineering, vol.
32, no. 7, July 2006, pp.433-453.

[20] J. Doerr, B. Paech, and M. Koehler, “Requirements Engineering
Process Improvement Based on an Information Model”, Proceedings

of International Conference on Requirements Engineering (RE04),
IEEE Computer Society Press, Los Alamitos, USA, 2004, pp. 70-79.

[21] E. Kuwana, J. D. Herbsleb, “Representing Knowledge in
Requirements Engineering: An Empirical Study of What Software
Engineers Need to Know”, Proceedings of IEEE International
Symposium on Requirements Engineering, 1992, pp.273-276.

[22] F. Leung, N. Bolloju, “Analyzing the Quality of Domain Models
Developed by Novice Systems Analysts”, Proceedings of HICSS’05 -
doi.ieeecomputersociety.org 2005. pp.188-195.

[23] M. Hallmann, ”An Operational Requirement Description Model for
Open Systems”, Proceedings of the 10th International Conference on
Software Engineering, 11-15 April 1988, pp.286-295.

[24] A. M. Hickey, and A. Davis, “A Unified Model of Requirements
Elicitation”, Journal of Management Information Systems, vol. 20 ,
no. 4 , 2004, pp.65-84.

[25] M. Sabetzadeh, S. Easterbrook, “An Algebraic Framework for
Merging Incomplete and Inconsistent Views”, 13th International
Conference on Requirements Engineering, RE 2005,2005, pp. 306-
315.

[26] M. Sabetzadeh, S. Easterbrook, “View Merging in the Presence of
Incompleteness and Inconsistency”, Requirements Eng, 2006, 11: pp.
174–19328 E. Kamsties, and B. Paech, “Taming Ambiguity in
Natural Language Requirements”, Proceedings of the International

Conference on System and Software Engineering and their
Applications, December 5-8, Paris, 2000.

[27] S. W. Lee, D. C. Rine, “Missing Requirements and Relationship
Discovery through Proxy Viewpoints Model”, Proceedings of the
2004 ACM symposium on Applied Computing, 2004, pp.1513 –
1518.

[28] J. Yoo, J. Catanio, R. Paul, and M. Bieber, “Relationship Analysis In
Requirements Engineering”, Requirements Eng, 2004, vol. 9, pp.
238–247.

[29] A. Katasonov, and M. Sakkinen, “Requirements quality Control: A
Unifying Framework”, Requirements Eng, 2006 11, pp. 42–57.

[30] O. Albayrak, M. Bicakci, and H. Bozkurt, “A Study to Observe
Relations Between Software Engineers’ Responses to Incomplete
Requirements and Requirements Volatility”, International Conference
on Software Engineering Theory and Practice, (SETP 2009), Orlando,
July 2009, pp.1-7.

[31] O. Albayrak, D. Albayrak, and T. Kilic, “Are Software Engineers’s
Responses to Incomplete Requirements Related to Project
Characteristics”, Proceedings of The 2nd International Conference
on, the Applications of Digital Information and Web Technologies
(ICADIWT 2009), London, 4-6 August 2009, pp.114-129.

[32] O. Albayrak, “Two Challenges of Teaching Systems Analysis and
Design to Undergraduate Software Engineers”, in Systems Analysis
and Design for Advanced Modeling Methods: Best Practices, A.
Bajaj and S. Wrycza, Eds., IGI Global Publishing, 2009, pp.68-87.

[33] T. C. Lethbridge, J. D. Herrera, R.J. LeBlanc, and J. B. Thompson,
“Improving Software Practice through Education: Challenges and
Future Trends,” Proc. 29th International Conference Software
Engineering, Future of Software Eng. 2007, Track, pp.12-28.

339

