

Managing Aspect Orderings
to Support Multiple Quality Concerns

Bedir Tekinerdoğan

Bilkent University
Dept. of Computer Engineering
06800 Bilkent, Ankara, Turkey

bedir@cs.bilkent.edu.tr

Ersin Er

Hacettepe University
Dept. of Computer Engineering
06800 Beytepe, Ankara, Turkey

ersin.er@cs.hacettepe.edu.tr

ABSTRACT
When multiple aspects are composed undesired behavior may
emerge due to the interference of aspects. Different interference
management approaches have been proposed including detection
and resolution of the conflicting aspects. It appears that the
majority of the existing approaches have basically focused on
functional correctness, whereby orderings of aspects are evaluated
with respect to assumed contractual specification. Although
functional correctness is an important quality concern also other
quality concerns such as evolvability, reuse and reliability can
demand a specific ordering. As such, the resulting possible set of
orderings might need to be further reduced. In this paper we
discuss the impact of other quality concerns than functional
correctness, on the required orderings of aspects. Based on a
domain analysis of existing approaches we provide a feature
model and complementary to this a metamodel for defining aspect
interference management approaches for multiple quality
concerns.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques.

General Terms
Design, Documentation, Performance, Verification

Keywords
Aspect interference, metamodeling, aspect ordering, quality
concerns

1. INTRODUCTION
Aspect-Oriented Software Development (AOSD) provides
abstractions to separate and modularize crosscutting concerns into
aspects and compose these later in the base code [1]. If multiple
aspects are composed, aspects can interact in the base code. This
does not pose a problem if the aspects are orthogonal to each
other, that is, if their order of processing does not impact the
behavior of the interacting aspects. It has been shown, though,
that the interaction of aspects can lead to undesired behavior due

to the so-called interference of aspects [9][12]. Aspects interfere
with each other if the order of processing the aspects is
semantically relevant for the final result [5].

In recent years several studies have been carried out to address the
aspect interference problem and a relatively broad insight has
been gained on this topic. To cope with this problem several
aspect interference detection and resolution approaches have been
proposed. The proposed techniques for solving the aspect
interference problem are usually dependent on the type of
interference [12]. For example, static analysis techniques have
been proposed to identify potential shared join-points of the
aspects. To detect indirect interaction of aspects through data
variables, dataflow analysis and tracing techniques can be applied.
To detect interference based on semantic properties contractual
specifications of aspects together with model checking techniques
can be applied [12].

Despite the different interpretations of interference and the
different techniques that are proposed, we can observe that all
these approaches aim to order the composition of aspects
explicitly to prevent undesired interference. A further analysis of
the literature shows that the majority of the existing aspect
interference approaches have mainly focused on functional
correctness as a key motivation for aspect ordering. This means
that either implicitly or explicitly it is assumed that an aspect has
to adhere to some contractual specifications that define the
semantic properties of the aspect.

Yet, although functional correctness is an important concern, if
not the most important one, it appears that the ordering of aspects
might also be of importance for different quality concerns such as
evolvability, reuse, availability and performance. This means that
aspects might (also) need to be ordered or reordered for these
quality concerns. The main theme of this paper, as such, is that for
ordering aspects not only functional correctness but each relevant
quality concern should be explicitly and separately addressed. We
think that this observation can further support the research on
aspect composition, aspect interference and aspect interference
detection and resolution problems.

Based on the existing research on aspect interference problem we
first provide a domain model that defines the space of the aspect
interference problem and the proposed techniques. The domain
model will be presented as a feature model and does not only
summarize existing work but may also help to detect new
problems and aspect interference management approaches.
Further, using a case study and a set of example scenarios we will
define the motivation for ordering aspects for multiple quality

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOM’09, March 2, 2009, Charlottesville, VA, USA.
Copyright 2009 ACM 978-1-60558-451-5/09/03...$5.00.

13

concerns. Finally, we provide a metamodel and a generic process
for defining aspect interference management approaches for
multiple quality concerns.

The outline of the paper is structured as follows: In section 2 we
provide the feature model for aspect interference problem and the
related techniques. In section 3 we show the impact of aspect
ordering on concerns other than functional correctness. In section
4 we define the metamodel for ordering aspects for multiple
quality concerns, and define the process for applying the
metamodel. Section 5 will provide the related work. Finally,
section 6 provides the conclusions.

2. ASPECT INTERACTION
In recent years, several researchers have focused on the aspect
interference problem, and this has resulted in several approaches
and herewith a better understanding of the problem. To depict the
space of the problem we will define feature diagrams for Aspect
Composition, Relation among Aspects, Aspect Interference and
Inference Detection. A feature diagram is a tree in which the root
represents the domain concept being described and the remaining
nodes denote features. Features of a concept can be mandatory,
alternative, or optional [2]. The feature diagrams that we present
in the following are the result of a thorough domain analysis to the
existing aspect interference management approaches.

The first and top level feature diagram is the one for Aspect
Composition, which is depicted in Figure 1. Aspect Composition
concept can be characterized using the features Composition
Time, Composition Scheme, and Composition Result. Composition
Time refers to the time of weaving the aspect, which can be
basically at compile time, load time and run-time. Composition
Scheme refers to whether the aspects are composed sequentially or
concurrently [4]. Composition Result defines whether the aspects
interact or not. The interaction might be direct on shared
joinpoints or indirect through data members. Further, the
interaction might lead to interference.

Figure 1. Top-level feature diagram of aspect composition

When aspects interact with each other it is important to know the
possible relations among these aspects. Figure 2 defines the
feature diagram for Aspectual Element Relations. Aspectual
Element is either an aspect or advice. This is to denote that several
interference management approaches consider composition of
aspectual elements either at the granularity level of aspects and/or
at the granularity level of advices. Aspectual elements have a
relation with the base code (application), which can be spectative,
regulative or invasive [8]. Aspects are spectative if they only
query the state of the base system but do not change it. Aspects
are regulative if they can alter the control flow of the base system.
Finally, invasive aspects can alter both the control flow and the

state of the base system. Invasive aspects can be further
characterized by augmentation, narrowing, or replacement [11].
This means that aspectual elements can either augment the base
code or narrow its functionality or replace it all together.

Figure 2. Feature diagram for aspect relations

The feature Inter-Aspect Relation defines the relation among
aspects in an interaction. Aspectual elements can be dependent or
independent from each other. In case of independency we can
distinguish between strong independency and application
independency [3]. In case of strong independency the aspects are
independent for all programs. Application independence relates to
independence of aspects for a given particular program. This
implies that the same set of aspects could be dependent for a
different program.

The feature Dependency Type defines the way aspects depend on
each other. In principle four different dependency types can be
distinguished, conflict, mutex, reinforcement, and dependency
[12]. Aspects conflict with each other if they negatively affect
each other’s behavior. Mutex implies that the aspects cannot be
composed together. Reinforcement occurs if an aspect positively
influences the functionality of another aspect. Dependency implies
that an aspect requires being composed together with another
aspect.

Figure 3. Feature diagram of aspect interference

Figure 3 represents the feature diagram for Aspect Interference
which can be characterized using three sub-features source of
interference type, interference type, and scope of interference.
Source of interference can be either data or control flow related
[7][9]. Interference type is either syntactic or semantic. Scope of
interference can be generic, domain specific or application
specific [5].

Figure 4 represents the feature diagram for Inference Detection
which is characterized by three features time of detection,
technique and aspect interference. The latter one is reused from
the feature diagram as presented in Figure 3. The feature time of
detection defines the time when the interference is detected.
Basically, we can distinguish among pre-weaving, weaving time
and post-weaving time. The feature approach defines the applied

14

approaches for detecting interferences. It includes three sub-
features analysis scheme, target of analysis and technique. The
analysis scheme can be done using static analysis [8] without
executing the program. However, some interference problems
cannot be detected statically and for these dynamic analysis can
be applied. Hereby the interference is detected while executing the
program or part of the program. The target of analysis could be
either the interference related to data or control flow,
corresponding to dataflow analysis and control flow analysis
respectively. The feature method defines particular approaches to
detect interference problems. These methods range from theorem
proving to resource modeling approaches.

Figure 4. Feature diagram for conflict detection

3. ASPECT ORDERING FOR OTHER
QUALITY CONCERNS
3.1 Quality Concerns
In the following we will show that also other quality concerns
than functional correctness might demand a specific ordering. For
this, let us first consider the feature diagram in Figure 5 for
ordering aspectual elements for quality concerns.

Figure 5. Feature diagram for ordering aspectual elements for

quality concerns
Ordering Aspectual Elements can be done for various quality
concerns such as functional correctness, availability and
performance. We will discuss these in the following subsection.
The aspects might need to be ordered according to some strategy.
This could be through search in a order space, using heuristics-
based strategy or any other strategy. In fact, every ordering of
aspects can have an impact on the considered quality concerns.
We distinguish the following three impacts of ordering aspectual
elements on a quality concern:

• no impact, the ordering does not matter.

• impeding, the specific ordering has a negative impact on the
quality concern. For example, it might result in incorrect
situation (correctness), lower performance or decrease
availability.

• supporting, the specific ordering has a positive impact on the
quality concern. For example, it might result in better
performance, better availability or performance.

3.2 Example Scenarios
In the following subsections we will provide examples of quality
concerns that require a specific ordering of aspects.

3.2.1 Example: Ordering for Availability
In general availability indicates the degree to which a system is
available. When composing aspects, the order of the included
aspects should not unnecessarily reduce the availability of the
system. Let us discuss how the order can impede the availability.
In general availability might be impeded due to failures in the
system. The formula for availability is given as follows:

 Availability = MTTF / (MTTF +MTTR)

MTTF and MTTR stand for the mean time to failure and the mean
time to recover, respectively. To maximize the availability of the
overall system, MTTF of separate modules must be kept high and
MTTR must be kept low. An important heuristic might be that for
having a low MTTR it is necessary to perform the recovery
actions as soon as the failure is detected, and do not execute
additional tasks that will be undone by recovery actions anyhow.
This might imply that aspect Recovery needs to be invoked earlier
than other aspects in order not to waste time for imposing other
aspects that will be undone by the recovery aspect later on. As
such, considering the orderings of aspects from availability
perspective it makes sense to put the recovery aspect as early as
possible. Note that other orderings where Recovery aspect is not
put early on, might still be valid from the functional correctness
concern perspective. The reasoning about Availability will further
restrict the orderings. This is not only of importance to increase
availability but has also a practical benefit in dramatically
reducing the number of feasible ordering alternatives.

3.2.2 Example: Ordering for Resource Usage
Optimization
Very often resource usage plays an important role in programs,
and effort is spent to optimize the programs to that the resources
are used efficiently. In this context, the ordering of aspects might
have a direct impact on the resource usage. For this example let us
consider the two aspects, Transaction Management and
Authorization. Transaction Management ensures consistency of a
system before and after the execution of certain operations which
are considered as atomic units of work. Authorization is a process
that establishes whether an authenticated user has sufficient
permissions to access certain resources. Both Transaction
Management and Authorization aspects can be considered as
spectative aspects as defined in Figure 2, and as such do not
change state variables in the system. Moreover, unless it is
explicitly stated for a system, they do not interfere in any way
from a functional correctness perspective. So the order of
execution of Transaction Management and Authorization do not
lead to a conflicting situation with respect to correctness criteria.
However, when we consider Resource Usage Optimization as a

15

quality concern, then it may be more appropriate to execute
Authorization aspect first. The reason for this is that Authorization
aspect can conditionally interrupt the execution of the aspect
(ordering) chain in case of unauthorized access. For such a case, if
Authorization is executed after Transaction Management, the
system resources will be wasted by initiating an unnecessary
transaction.

3.2.3 Example: Ordering for Robustness and
Evolvability
In general every system has to cope with evolutionary
requirements. One of the key concerns in such situations is to
anticipate on the changing requirements and define a robust
system. In aspect-oriented systems we can encounter both the
evolution of base code and the evolution of aspects. If we are
dealing with a single aspect, then the need for evolution of base
code, might require the change of the pointcuts of the
corresponding aspect. This is usually referred to as the fragile
pointcut problem. Several techniques have been proposed to
support the robustness of the pointcuts and to avoid the fragility of
aspects. However, if we are dealing with a composition of aspects
then this problem might have a larger impact. In case one or more
aspects in the aspect ordering evolves, then this might have a
further impact on the robustness of pointcuts of other aspects in
the chain. In this perspective, we can term the problem as fragile
ordering of aspects, which can be defined as the situation in
which the aspect ordering needs to be broken due to evolution of
either the base code or the aspect code. This is not an imaginary
problem, because as we have seen before, aspects might have a
dependency relation with each other. To release or relieve this
problem, aspects might need to be reordered.

4. METAMODEL FOR ORDERING
ASPECTS
In the previous sections we have provided a domain model for
aspect compositions and the interference problems and
approaches. In addition we have indicated the need for
considering multiple quality concerns. In this section we provide a
metamodel that can be used to define aspect interference
management approaches and the generic process for applying it.

4.1 Metamodel
The metamodel is depicted in Figure 6. Hereby, AspectualElement
is an implementation of crosscutting unit, which may be of
different granularity such as an aspect or an advice.
AspectualElements are managed by AspectualElementManager
which adds, removes or updates aspectual elements to the
AspectualElementList. The AspectualElementList is ordered by
the OrderManager to manage the interference of aspectual
elements. OrderManager considers one or more QualityConcerns,
which is modeled by QualityModel. OrderManager uses
InterferenceModel and AspectualModel to order
AspectualElements. AspectualModel represents the abstraction of
AspectualElement with respect to QualityModel. While
QualityModel represents a general abstraction of QualityConcern,
AspectualModel represents a specific abstraction of
AspectualElement with respect to the general QualityModel.
InterferenceModel uses QualityModel and AspectualModel to
define either the feasible or the conflicting orderings of
AspectualElements with respect to the considered
QualityConcerns. For this InterferenceModel can use different

techniques such as rules, predicates, regular expressions,
automata, or temporal logic [5].

Figure 6. Metamodel for Ordering Aspects based on multiple
quality concerns

4.2 Process for applying metamodel
The metamodel of Figure 6 defines the general concepts that can
be used to define multiple aspect interference approaches.
Obviously, to define a particular approach each concept should be
specified concretely. In this paper we do not elaborate on defining
a specific approach. Instead, we will define a generic process that
can be instantiated to define a concrete aspect interference
approach. The process is depicted in Figure 7.

Figure 7. Generic process for aspect interference management for

multiple quality concerns
The first step in the process is the identification of quality
concerns which are derived from the requirements. Based on the
identified quality concerns, quality models are defined. The step
define aspectual models takes as input the quality models and the
aspects and as such result in aspectual models. Aspects are
derived from the step identify aspects which uses requirements
and domain knowledge. The step define interference model takes
as input the quality models and the aspectual models and provides

16

an interference model. The interference model can be used for
realizing the ordering of aspects in the application.
Note that this generic process aims also to cover the existing
aspect interference approaches in the literature. In addition we can
define a specific process based on this generic process. For this
we need to select the specific features from the feature diagram in
section 2. For example we could define an interference
management system for the quality concerns correctness and
availability. We could consider different kind of aspects, adopt
specific interference modeling techniques, use different ordering
strategies etc.

5. RELATED WORK
As a result of a domain analysis process in this paper we have
provided feature models that represent the key features of aspect
interference management approaches. To the best of our
knowledge this has not been defined before. In the literature we
could identify several surveys on aspect interference management
approaches such as defined in [7]. We have analyzed these and
other publications on specific approaches to define the domain
model.
To define the aspect orderings it is very important to know the
properties of aspects. In this way the analysis on the interaction of
aspects will be supported. For analyzing the aspects the Network
of Excellence on AOSD deliverable “A domain analysis of key
concerns – known and new candidates” [10] provides an
invaluable resource of key aspects. The deliverable includes both
traditionally known crosscutting concerns (persistence, security,
context awareness and mobility) and more recent candidate
crosscutting concerns (agent technology and coordination).
Obviously one of the related key domains that are relevant for the
approach that we presented in this paper is the domain of quality
attributes. A lot has been published about different quality
concerns and its measurement. In this context, ISO 9126 is an
international standard for the evaluation of software quality [6].
The standard is divided into four parts: quality model, external
metrics, internal metrics and quality in use metrics. The quality
model established in the first part of the standard, classifies
software quality in a structured set of characteristics and sub-
characteristics.

6. CONCLUSIONS
If aspects are composed together in a system, they may interact. If
aspects interact, they may semantically interfere. Interference of
aspects is bad because they can violate functional correctness.
Despite most of the aspect interference management approaches
have indeed focused on functional correctness, it appears that
aspect interactions are also important for other quality concerns
such as availability, performance and evolvability. Since most
quality concerns are non-functional and cannot be easily
expressed as functional requirements, they need to be addressed
explicitly to define feasible aspect orderings. This was the main
theme of this paper. When considering aspect orderings we have
to take multiple quality concerns into account. To support our
statement we have first provided the domain model for aspect
interaction and aspect interference and showed that despite the
broad knowledge on aspect interference management, the current
trend is basically on functional correctness. We have used a
number of example scenarios to show the requirements of
different quality concerns on aspect orderings. We have given the
examples for correctness, availability, resource usage and

evolvability. Obviously other quality concerns could be provided
here. For this a more focused analysis to each quality concern is
required. We have defined a metamodel that aims to reflect the
existing approaches for managing aspect interactions and which
can be used to define new aspect interference management
approaches. To support the definition of specific aspect
interference management approaches we have defined a generic
process for realizing the metamodel.
We hope that our study paves the way for a further study towards
the impact of orderings of aspect to other quality concerns than
just functional correctness. In particular, the requirements of
different quality concerns on aspect ordering, needs further
investigation. When we are dealing with multiple quality
concerns, sooner or later we have also to consider the trade-off
among these quality concerns. We have not elaborated on this
trade-off analysis of quality concerns yet, but we consider this as
our future work. Finally, since aspect interference management is
hard to define manually, we will focus on tool development based
on the metamodel.

7. REFERENCES
[1] AOSD-Europe. European Network of Excellence on Aspect-

Oriented Software Development. European Commission
grant IST-2-004349.

[2] Czarnecki, K. and Eisenecker. U. Generative Programming:
Methods, Tools, and Applications, Addison Wesley, 2000.

[3] Douence, R. and Fradet, P. A framework for the detection
and resolution of aspect interactions. In GPCE: ACM
SIGPLAN/ SIGSOFT Conference, GPCE 2002, Lecture
Notes in Computer Science, Pittsburgh, US, October,6 2002..

[4] Douence, R., Le Botlan, D., Noyé,J., and Südholt, M.
Concurrent aspects. In Proc.of the 5th international
Conference on Generative Programming and Component
Engineering, Portland, USA, October 22 - 26, 2006).

[5] Dürr, P., Staijen,T., Bergmans, L. and Aksit, M. Reasoning
about semantic conflicts between aspects. In EIWAS ’05:
The 2nd European Interactive Workshop on Aspects in
Software, Brussel, Belgium, September, 1-2, 2005.

[6] International Organization for Standardization. Software
Engineering — Product Quality — Part 1: Quality Model.
ISO/IEC 9126-1:2001(E), Geneva, Switzerland, 2001.

[7] S. Katz et. al. Detecting Interference among Aspects, NoE
AOSD Deliverable, D116, 2007.

[8] Katz, S. A Survey of Verification and Static Analysis for
Aspects, AOSD Europe Milestone M8.1, July 2005.

[9] Leavens, G. T. and Clifton, C. Foundations of aspect-
oriented languages workshops. In Foundations of Aspect-
Oriented Languages Workshop, AOSD, 2003-2008.

[10] Loughran, N., et al. A domain analysis of key concerns -
known and new candidates, NoE AOSD Deliverable D

[11] Rinard, M., Salcianu,A. and Bugrara, S. A classification
system and analysis for interactions in aspect-oriented
programs. In Foundations of Software Engineering (FOSE).
ACM, Oct. 2004.

[12] Sanen, F., Truyen, E., Joosen, W., Loughran, N., Rashid, A.
Jackson, A. Nedos, A. and Clarke, S. Study on interaction
issues. AOSD-Europe Deliverable 44. March 2006.

17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

