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Abstract— Robust stabilization problem is considered for
time varying time delay systems, where the system parameters
are scheduled along a measurable signal trajectory. A switching
control approach is proposed for a class of parameter varying
systems, where candidate controllers are designed for robust
stabilization at certain operating regions. A dwell time based
hysteresis switching logic is proposed to guarantee the stability
of the switched parameter varying time delay system in the
whole operating range. It is shown that if the parameter
variation is slow enough (upper bound of the time derivative
is determined in terms the dwell time for the switched delay
system), then the system is stable with the proposed switched
controllers.

I. INTRODUCTION

Many time varying time delay systems can be described as

parameter varying systems where the system parameters are

scheduled along a measurable parameter trajectory [20], [24],

[27]. An example of parameter varying time delay systems is

the data congestion control model for TCP networks, where

all the parameters of the dynamical model, including the time

delay RTT (round trip time), are dependent on instantaneous

queue length at the bottleneck network node [14], [28].

The analysis and control of LPV (Linear Parameter

Varying) delay free systems have been discussed widely,

among which two important methods are (1) gain scheduling

method, and (2) switching control method. We refer to [24]

for a general review on gain scheduling control methods.

Additional gain scheduling design examples can be found in

[1], [20]. Alternatively, the switching control method offers

a new look into the design of complex control systems (e.g.

nonlinear systems, parameter varying systems and uncertain

systems), where the controller parameters are updated in a

discrete fashion based on the switching logic. We refer to

[6], [7], [11], [12], [19] and references therein for hybrid

system stability analysis and switching control synthesis for

systems without time delays.

There are also various recent results on LPV time delay

systems [17], [21], [27]. Gain scheduling analysis and syn-

thesis methods were investigated in [27]. In [21] stability and

stabilizability were discussed for discrete time switched time

delay systems; [17] considered similar stability problem in
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continuous time domain. Note that [21] and [17] are trajec-

tory dependent results without taking admissible switching

signals into considerations.

The present paper proposes a switching control method for

robust stabilization of parameter varying time delay systems.

The results of [2] are used for deriving state feedback

controllers guaranteeing robust stability of the system in

the neighborhoods of selected operating intervals. Then, a

switching rule is developed to cover the whole operating

range. More precisely, the paper derives a dwell time based

stability condition for switched time varying time delay

systems, which can be seen as an extension of [30]. Based

on the parameter trajectory, a switching logic with hysteresis

(determined by the dwell time) is proposed.

The paper is organized as follows. The switching control

architecture considered for LPV time delay systems is de-

scribed in Section II. In Section III, the main results on robust

stabilization of LPV time delay systems are presented. The

results are illustrated with a numerical example in Section

IV, followed by concluding remarks in Section V.

II. PROBLEM DEFINITION

Consider the following linear parameter varying time delay

systems Σθ for t ≥ 0:

Σθ :

{

ẋ(t) = A(θ)x(t) + Ā(θ)x(t − τ(θ)) +B(θ)u(t)
x0(ξ) = φ(ξ), ∀ξ ∈ [−τmax, 0]

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is

control input, τ(θ) denotes the parameter varying time-delay

satisfying 0 < τ(θ) ≤ τmax. The LPV time delay system

Σθ depends on a parameter θ(t), where θ(t) ∈ R is assumed

to be continuously differentiable and θ ∈ Θ where Θ is a

compact set.

In the present paper, we propose to construct a family

of stabilizers designed at selected operating points θ = θi,

i = 1, 2, ..., l, and perform controller switching for the above

LPV time delay system, which allows for larger operating

range of the LPV system. The candidate controllers are

chosen from a controller set {Ki : i = 1, 2, ..., l}, where

Ki is a state feedback controller designed for θ = θi, which

robustly stabilizes the LPV time delay systems for

θ ∈ Θi := [θ−i , θ
+
i ]. (2)

An obvious necessary condition for stability of the switched

system is

Θ ⊆
l

⋃

i=1

Θi. (3)
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Fig. 1. The switched feedback control system

The feedback system equation can be written as:

Σq :

{

ẋ(t) = Ac
q(t)(θ)x(t) + Ā(θ)x(t − τ(θ)), t ≥ 0

x0(ξ) = φ(ξ), ∀ξ ∈ [−τmax, 0]
(4)

where Ac
q(t)(θ) = A(θ)+B(θ)Kq(t) and q(t) is a piecewise

switching signal taking values on the set F := {1, 2, ..., l},

i.e. q(t) = kj , kj ∈ F , for ∀t ∈ [tj , tj+1), where tj , j ∈
Z

+ ∪ {0}, is the jth switching time instant which applies

controller Kkj
, u = Kkj

x for θ ∈ Θkj
.

In any arbitrary switching interval t ∈ [tj , tj+1), we

denote τkj
(θ) := τ(θ), for θ ∈ Θkj

, and we assume

A(θ) = Akj
+ ∆A(θ),∆A(θ) := Dkj

Fkj
(θ)Ekj

,

Ā(θ) = Ākj
+ ∆Ā(θ),∆Ā(θ) := D̄kj

F̄kj
(θ)Ēkj

,

B(θ) = Bkj
+ ∆B(θ),∆B(θ) := Dkj

Fkj
(θ)EB

kj

where we further assume that

Fkj
(θ)TFkj

(θ) ≤ I and F̄kj
(θ)T F̄kj

(θ) ≤ I

It is clear that the trajectory of Σq in any arbitrary

switching interval t ∈ [tj , tj+1) can be expressed:

Σkj
:







ẋ(t) = (Ac
kj

+ ∆Ac
kj

(θ))x(t)

+ (Ākj
+ ∆Ā(θ))x(t − τkj

(θ))
xtj

(ξ) = φj(ξ), ∀ξ ∈ [−τ̄kj
, 0],

(5)

where 0 < τ̄kj
:= max τkj

(θ), for θ ∈ Θkj
, φj(ξ) is defined

as:

φj(ξ) =

{

x(tj + ξ) −τ̄kj
≤ ξ < 0

limh→0− x(tj + h), ξ = 0
(6)

and

Ac
kj

= Akj
+Bkj

Kkj
,

∆Ac
kj

= Dkj
Fkj

(θ)Ec
kj
,

Ec
kj

= Ekj
+ EB

kj
Kkj

(7)

In the following section, we will establish sufficient con-

ditions on the stability of the switched systems (4), as well

as the robust stabilization of LPV time delay systems (1).

III. MAIN RESULTS

First we define the notation used in this section: as usual

‖ ·‖ denotes the Euclidean norm in R
n, and for a continuous

function f ∈ C([t− r, t],Rn) we define

|f |[t−r,t] := sup
t−r≤θ≤t

‖f(θ)‖.

As in [30], we say that the switched time-delay system Σq

described by (4) is stable if there exists a continuous strictly

increasing function ᾱ : R
+ → R

+ with ᾱ(0) = 0 such that

‖x(t)‖ ≤ ᾱ(|x|[t0−τmax,t0]), ∀t ≥ t0 ≥ 0, (8)

along the trajectory of (4). Furthermore, Σq is asymptotically

stable when Σq is stable and limt→+∞ x(t) = 0.

For switched time delay systems described by (4), each

switching candidate system can be described by (5). Con-

struct the Lyapunov-Razumikhin function

Vkj
(xj , t) = xT

j (t)Pkj
xj(t), t ∈ [tj , tj+1] (9)

for (5), then we have

κkj
‖xj(t)‖2 ≤ Vkj

(t, xj) ≤ κ̄kj
‖xj(t)‖2, ∀xj ∈ R

n, (10)

where κkj
:= σmin[Pkj

] > 0 denotes the smallest singular

value of Pkj
and κ̄kj

:= σmax[Pkj
] > 0 the largest singular

value of Pkj
.

The first order model transformation [9] of (5) results in

ẋj(t) = (Ac
kj

+ ∆Ac
kj

(θ) + Ākj
+ ∆Ā(θ))xj(t)

−(Ākj
+ ∆Ā(θ))

∫ 0

−τkj

[(Ac
kj

+ ∆Ac
kj

(θ + ϕ))xj(t+ ϕ)

+ (Ākj
+ ∆Ā(θ + ϕ))x(t + ϕ− τkj

)]dϕ (11)

where the initial condition ψj(t) is defined as ψj(t) =
xj−1(t), t ∈ [tj −2τ̄kj

, tj ] for j ∈ Z
+, and ψ0(t) defined by

ψ0(t) =

{

φ(t), t ∈ [−τmax, 0]
φ(−τmax), t ∈ [−2τmax,−τmax)

By using the Lyapunov-Razumikhin function (9), we obtain

the time derivative of Vkj
(t, xj(t)) along the trajectory of

(11)

V̇kj
(t, xj) = xT

j (t)Hkj
(θ)xj(t) + hkj

(t, xj) (12)

where

Hkj
(θ) =Pkj

(Ac
kj

+ ∆Ac
kj

(θ) + Ākj
+ ∆Ā(θ))

+ (Ac
kj

+ ∆Ac
kj

(θ) + Ākj
+ ∆Ā(θ))TPkj

(13)

and

hkj
(t, xj)=−

∫ 0

−τkj

[2xT
j (t)Pkj

(Ākj
+ ∆Ā(θ))

((Ac
kj

+ ∆Ac
kj

(θ + ϕ))xj(t+ ϕ)

+ (Ākj
+ ∆Ā(θ + ϕ))x(t + ϕ− τkj

))]dϕ.
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Following similar arguments to [2] and assuming existence

of a constant pkj
> 1 satisfying Vkj

(t + ϕ, xj(t + ϕ)) <
pkj

Vkj
(t, xj(t)) for ∀ϕ ∈ [−2τ̄kj

, 0], we obtain

V̇kj
(t, xj) ≤ −xT

j (t)Skj
xj(t), (14)

with

Skj
:= − {S1 + S2 + S3 + γkj

Pkj
Dkj

DT
kj
Pkj

(15)

+ γ̄kj
Pkj

D̄kj
D̄T

kj
Pkj

+ γ̄−1
kj
ĒT

kj
Ēkj

+ 2τ̄kj
pkj

Pkj

+ τ̄kj
Pkj

(Ākj
(Qkj

+ Q̄kj
)ĀT

kj
+ ǫkj

D̄kj
D̄T

kj
)Pkj

},

where

S1 = Pkj
(Akj

+Bkj
Kkj

+ Ākj
)

+(Akj
+Bkj

Kkj
+ Ākj

)TPkj

S2 = γ−1
kj

(Ekj
+ EB

kj
Kkj

)T (Ekj
+ EB

kj
Kkj

)

S3 = τ̄kj
Pkj

Ākj
(Qkj

+ Q̄kj
)ĒT

kj
(ǫkj

I − Ēkj
(Qkj

+Q̄kj
)ĒT

kj
)−1Ēkj

(Qkj
+ Q̄kj

)ĀT
kj
Pkj

and γkj
> 0, γ̄kj

> 0, ǫkj
> 0 are arbitrary positive scalars,

and Qkj
> 0, Q̄kj

> 0 are chosen such that

((Ac

kj
+ ∆A

c

kj
(θ + ϕ))T

Q
−1

kj
((Ac

kj
+ ∆A

c

kj
(θ + ϕ)) ≤ Pkj

(Ākj
+ ∆Ā(θ + ϕ))T

Q̄
−1

kj
(Ākj

+ ∆Ā(θ + ϕ)) ≤ Pkj
.

Now our goal is to find the matrices and free variables

satisfying the above inequalities. For this purpose we use

standard techniques from the literature: define Xkj
= P−1

kj
,

then by using Schur complement and Razumikhin theorem,

we have the following result, which is a special version of

Theorem 3.2 of [2].
Lemma 3.1: The time varying time delay system (5) is

robustly stable if there exist Xkj
> 0, Qkj

> 0, Q̄kj
> 0,

Ykj
, and scalars γkj

> 0, γ̄kj
> 0, ǫkj

> 0, ρkj
> 0,

ρ̄kj
> 0, such that





Xkj
Xkj

AT

kj
+ Y T

kj
BT

kj
Xkj

ET

kj
+ Y T

kj
(EB

kj
)T

⋆ Qkj
− ρkj

Dkj
DT

kj
0

⋆ ⋆ ρkj
I



 ≥ 0

(16)





Xkj
Xkj

ĀT

kj
Xkj

ĒT

kj

⋆ Q̄kj
− ρ̄kj

D̄kj
D̄T

kj
0

⋆ ⋆ ρ̄kj
I



 ≥ 0 (17)









Mkj
R12 Xkj

ĒT

kj
R14

⋆ −γkj
I 0 0

⋆ ⋆ −γ̄kj
I 0

⋆ ⋆ ⋆ Nkj









< 0 (18)

where

R12 := Xkj
ET

kj
+ Y T

kj
(EB

kj
)T

R14 := τ̄kj
Ākj

(Qkj
+ Q̄kj

)ĒT
kj

Mkj
= (Akj

+ Ākj
)Xkj

+ Xkj
(Akj

+ Ākj
)T

+ γkj
Dkj

D
T

kj
+ γ̄kj

D̄kj
D̄

T

kj
+ Bkj

Ykj
+ Y

T

kj
B

T

kj

+ τ̄kj
ǫkj

D̄kj
D̄

T

kj
+ τ̄kj

Ākj
(Qkj

+ Q̄kj
)ĀT

kj
+ 2τ̄kj

pkj
Xkj

,

Nkj
= −τ̄kj

(ǫkj
I − Ēkj

(Qkj
+ Q̄kj

)ĒT

kj
),

and ⋆ denotes the transpose of the symmetric term in sym-

metric matrices. Furthermore, the state feedback controller

Kkj
= Ykj

X−1
kj

is robustly stabilizing Σkj
, (5). �

Note that we can select

wkj
:= σmin[Skj

] > 0 (19)

such that

V̇kj
(t, xj) < −wkj

‖xj‖2 (20)

Now we are ready to state the main result on stability

of the switched LPV time delay system (4). For a given

positive constant τD, the switching signal set based on the

dwell time τD is denoted by S[τD], where for any switching

signal q(t) ∈ S[τD], the distance between any consecutive

discontinuities of q(t), tj+1 − tj , j ∈ Z
+ ∪ {0}, is larger

than τD [10], [22].

Theorem 3.2: Consider switched LPV time delay system

(4) with l state feedback controllers designed for θ ∈ Θi,

i ∈ F as described by (2) and (3), where each controller

Kkj
, kj ∈ F , is a robustly stabilizing controller derived

from Lemma 3.1. Let the dwell time be defined by

τD := T ∗ + 2τmax, where

T ∗ := λµ⌊λ− 1

p̄− 1
+ 1⌋, (21)

with p̄ := minkj∈F{pkj
} > 1, ⌊·⌋ being the floor integer

function, and

λ := max
kj∈F

κ̄kj

κkj

, (22)

and

µ := max
kj∈F

κ̄kj

wkj

. (23)

Then system (4) is asymptotically stable for any switching

rule q(t) ∈ S[τD].
Proof. Here we give a sketch of the proof which follows

the same arguments made in [30]. First, it can be shown that

there exists a constant 0 < α < 1, such that

|xj |[tj+T̄ ,tj+1] ≤ αδj (24)

with δ0 is defined as δ0 := |ψ|[−2τmax,0] = |φ|[−τmax,0].

Now recall that tj+1−tj > τD . Therefore tj+1−tj ≥ T̄+
2τmax ≥ T̄ + 2τ̄kj+1

. Also notice that ψj+1(t) = xj(t), t ∈
[tj+1 − 2τ̄kj+1

, tj+1]. We have

|ψj+1|[tj+1−2τ̄kj+1
,tj+1] = |xj |[tj+1−2τ̄kj+1

,tj+1]

≤ |xj |[tj+T̄ ,tj+1] ≤ αδj := δj+1. (25)

Therefore we obtain a convergent sequence {δi}, i =
0, 1, 2, . . . , where δi = αiδ0.

Meanwhile, Proposition 3.2 of [30] implies

|xj |[t−2τ̄kj
,t] ≤

√

κ̄kj

κkj

|xj |[tj−2τ̄kj
,tj], ∀t ∈ [tj , tj+1]. (26)
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Hence

sup
t∈[tj,tj+1]

‖xj(t)‖

≤ sup
t∈[tj,tj+1]

|xj |[t−2τ̄kj
,t] ≤

√
λ|xj |[tj−2τ̄kj

,tj ]

≤
√
λδj = αj

√
λδ0, (27)

which implies the asymptotic stability of the switched time

delay system Σq, (4), with the switching signal q(t) ∈ S[τD].

As depicted in Figure 2, two possible switching schemes

[29] are (a) critical-point switching, (b) hysteresis switching.

For the critical-point switching, the stability of the closed-

loop system cannot be guaranteed. In fact, in the worst case

where θ(t) oscillates within a neighborhood of ci,i+1, fast

switching or chattering will happen, which may violate the

dwell time requirement. The following corollary provides a

sufficient condition for the hysteresis switching scheme over

robustly stabilizing controller set {K1, . . . ,Kl}.

Κ

Κ

t

K

K

(a)

(b)

i+1

i+1

i+1

i, i+1

++

d i, i+1

i
−
i

K i

K i

c

∆

θ

θ

θθθ

θ(t)

∆ i
i+1

θ i+1
−

Fig. 2. Switching logic

Corollary 3.3: Consider the switched system Σq , (4), with

hysteresis switching over the controller set {K1, . . . ,Kl}.

Assume that the operating range Θi obeys (3) and the

controllers Ki are designed according to Lemma 3.1. Then,

a sufficient condition for asymptotic stability of (4) is

|θ̇(t)| < min
i∈F

{ |di,i+1|
τD

}, (28)

where di,i+1 = Θi ∩ Θi+1 is the ith hysteresis interval as

shown in Figure 2 (b) and τD is the dwell time given in

Theorem 3.2.

Proof. For simplicity, we consider only two neighboring

controllers, i.e. Ki and Ki+1 in switching time interval

[tj , tj+1), j ∈ Z
+ ∪ {0}. As discussed in Theorem 3.2,

tj+1 − tj > τD should be satisfied to guarantee stability of

the switching system, which requires the currently working

controller Ki to hold on for an amount of time time at least

τD . In the worst case of switching where θ(t) oscillates

around the center of the interval di,i+1, with amplitude

|di,i+1|/2, the condition |θ̇(t)| < di,i+1/τD is sufficient to

guarantee stability of the switched system.

IV. NUMERICAL EXAMPLE

In this section we consider an LPV system which cannot

be stabilized by a single controller using the technique of [2].

By separating the region of operation into two overlapping

intervals and designing two controllers (one for each interval)

as proposed in [2], and using hysteresis switching between

these two controllers, as proposed in Corollary 3.3, it is

possible to stabilize the overall system for the whole region

of operation.

Let the parameters of (1) be given as

A(θ) =

[

−2.5 − 1θ −0.75− 0.5θ
−1 −1.95 + 0.1θ

]

Ā(θ) =

[

−1 0
−0.2 − 0.5θ −1

]

B(θ) = [ 1 1 ]T

τ(θ) = 0.15 − 0.05θ and θ(t) = cos(ωot). Clearly if ωo is

too large then (28) is not satisfied. We will discuss switched

controller design for this system and try to determine how

large ωo can get. In order to answer this question, first robust

stability regions must be determined in the parameter space,

and then a dwell time must be computed.

Note that θ ∈ [−1 , 1] = Θ. Let θ = 0 in the

above matrices to define the nominal values of A, Ā and

τ̄ = maxθ∈Θ = 0.2. Further define

E =

[

1 0.5
0 0.1

]

Ē =

[

0 0
0.5 0

]

, EB =

[

0
0

]

,

and D = D̄ = I , to cover the matrices in the whole

parameter space. With these parameters, Robust Control

Toolbox of Matlab cannot find a feasible solution to the

LMIs of [2], summarized in Lemma 3.1. This means that

a single state feedback controller cannot be found using this

approach, for the whole range of θ ∈ [−1 , 1].
In the light of this observation define θ1 = 0.5, θ2 = −0.5

and two parameter intervals

Θ1 = [−0.1 , 1] Θ2 = [−1 , 0.1]

for which two separate controllers K1 and K2 are to be

designed and switched according to the hysteresis curve

depicted in Figure 2. For this purpose we define two nominal

systems and uncertainty bounds and try to find solutions to

the LMIs of Lemma 3.1:

A1 =

[

−3 −1
−1 −1.9

]

Ā1 =

[

−1 0
−0.45 −1

]

A2 =

[

−2 −0.5
−1 −2

]

Ā2 =

[

−1 0
0.05 −1

]

E1 = E2 =

[

0.6 0.3
0 0.06

]

Ē1 = Ē2 =

[

0 0
0.3 0

]

D1 = D2 = D̄1 = D̄2 = I , and τ̄1 = maxθ∈Θ1
= 0.155

sec., τ̄2 = maxθ∈Θ2
= 0.20 sec. For these systems Robust

Control Toolbox of Matlab can solve the LMIs with the free

parameters p1 = p2 = 2.9, and the resulting controllers

K1 = [1.201 0.816] K2 = [0.147 0.407]
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gives a dwell time τD = 0.83 sec. For this example the size

of the intersection Θ1 ∩ Θ2 is |d1,2| = 0.2. Therefore, we

can guarantee stability for

|θ̇| < 0.2/0.83 ≈ 0.24 .

This means that we can allow ωo = supt≥0 |θ̇(t)| to be in

the interval ωo ∈ (0 , 0.24). In order to enlarge this range

of allowable ωo we can try increasing |d1,2|, which requires

higher values for the entries of Ei and Ēi, i = 1, 2. On the

other hand, increasing the entries of these matrices lead to

higher τD which in return decreases the size of |θ̇|. With

all the other parameters fixed we were able to increase the

entries of Ei’s and Ēi’s by a factor (1 + δ) with δ = 0.1,

that leads to |d1,2| = 0.32, with the corresponding τD =
0.98 sec., so the largest allowable ωo can be increased to

0.32/0.98 = 0.33 rad/sec. The table given below illustrates

the effect of δ on the ratio |d1,2|/τD.

δ 0 0.03 0.05 0.10 0.12 0.15

p1 = p2 2.9 2.67 2.44 1.86 1.70 1.60

τD 0.83 0.89 0.91 0.98 1.20 1.61

|d1,2|/τD 0.24 0.27 0.28 0.33 0.29 0.24

We should also mention that the dwell time computation

depends heavily on the selection of the free parameters

pi’s; unfortunately, it is not easy to determine the best pi’s

minimizing τD. In the computations for above table we took

p1 = p2 and searched for the minimum dwell time. However,

a smaller τD might be possible to obtain by doing a brute-

force search over the two dimensional space of (p1, p2).

V. CONCLUSIONS

By an extension of [30], a dwell time based hysteresis

switching control mechanism is proposed for stabilization of

parameter varying time delay systems. The results of [2] are

used to compute memoryless state feedback controllers so

that robust stability is achieved for intersecting operating in-

tervals which cover the whole parameter space. The approach

is illustrated with a numerical example.

Since the approach of [30] is valid for stability of systems

under arbitrary switching, there is some conservatism in our

main result; because, hysteresis switching mechanism is not

an arbitrary switching when we have three or more candidate

systems. Possible future studies include conservatism analy-

sis in this approach. Also, output feedback design, and delay

in the feedback loop versions of the same problem are open

for future studies.
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