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Abstract— In this study, the effects of adding independent noise
to observations of a suboptimal detector are studied for M -ary
hypothesis-testing problems according to the minimax criterion.
It is shown that the optimal additional noise can be represented
by a randomization of at most M signal values under certain
conditions. In addition, a convex relaxation approach is proposed
to obtain an accurate approximation to the noise probability dis-
tribution in polynomial time. Furthermore, sufficient conditions
are presented to determine when additional noise can or cannot
improve the performance of a given detector. Finally, a numerical
example is presented.

Index Terms— Hypothesis-testing, minimax, detection, stochas-
tic resonance, noise-enhanced detection.

I. INTRODUCTION

Although noise commonly degrades performance of a sys-

tem, outputs of some nonlinear systems can be improved by

injecting additional noise to their inputs [1]-[13]. Such im-

provements can be considered in the framework of stochastic

resonance (SR), which can be regarded as the observation of

“noise benefits” related to signal transmission in nonlinear

systems [13]-[17].

Improvements that can be obtained via additional inde-

pendent noise can be in various forms, such as an increase

in output signal-to-noise ratio (SNR) [1], [4], [5] or mutual

information [6]-[11], a decrease in probability of decision

error [18], or an increase in probability of detection under

a constraint on probability of false-alarm [12], [13], [15],

[19], [20]. In [19], it is shown by an example that detection

performance of a suboptimal detector can be improved by

adding white Gaussian noise for the problem of detecting a

constant signal in Gaussian mixture noise. Also, it is shown

in [18] that the optimal noise that minimizes the probability

of decision error has a constant value, and a Gaussian mixture

example is used to illustrate the improvability of a detector.

In [12], a theoretical framework for investigating the effects

of additional independent noise on suboptimal detectors is

established according to the Neyman-Pearson criterion. Suf-

ficient conditions on improvability and non-improvability of

a suboptimal detector via additional independent noise are

derived, and it is proven that optimal additional noise can be

generated by a randomization of at most two discrete signals,

which is an important result since it greatly simplifies the

calculation of the optimal noise probability density function

(PDF). An optimization theoretic framework is provided in

[13] for the same problem, which also proves the two mass

point structure of the optimal additional noise PDF, and, in

addition, states that an optimal additional noise may not exist

in certain scenarios.

The study in [12] is extended to variable detectors in [20],

and similar observations as in the fixed detector case are made.

In addition, the theoretical framework in [12] is applied to

sequential detection and parameter estimation problems in [21]

and [22], respectively. In [21], a binary sequential detection

problem is studied, and additional noise that reduces at least

one of the expected sample sizes for the sequential detec-

tion system is obtained. In [22], improvability of estimation

performance via additional noise is illustrated under certain

conditions for various estimation criteria, and the form of the

optimal noise PDF is obtained in each case. The effects of

additional noise are investigated also for detection of weak

sinusoidal signals and for locally optimally detectors. In [23]

and [24], detection of a weak sinusoidal signal is studied, and

improvements on detection performance are investigated. In

addition, [25] studies the optimization of noise and detector

parameters of locally optimal detectors for the problem of

detecting a small amplitude sinusoid in non-Gaussian noise.

The study in [20] utilizes the results in [12] and [18] in

order to investigate optimal additional noise for suboptimal

variable detectors in the Bayesian and minimax frameworks.

Although the formulation of optimal additional noise is studied

for a binary hypothesis-testing problem in [20], no studies

have investigated M -ary hypothesis problems according to the

minimax criterion. The main contributions of our study can be

summarized as follows:

• Formulation of a generic optimization problem for ob-

taining optimal additional independent noise in an M -

ary hypothesis-testing problem according to the minimax-

criterion.

• Characterization of optimal additional independent noise

as a discrete random variable with at most M mass points

under certain conditions.

• Derivation of sufficient conditions to determine when

additional independent noise can or cannot improve de-

tection performance in the the minimax sense.

• Convex relaxation [26] of the optimal additional indepen-
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dent noise problem in order to obtain close-to-optimal

solutions in polynomial time.

The remainder of the paper is organized as follows. In

Section II, the formulation of optimal additional noise is pro-

vided for an M -ary hypothesis-testing problem according to

the minimax criterion. Then, it is shown in Section III that the

optimal additional noise can be represented by a randomization

of no more than M signal levels under certain conditions. In

addition, a convex relaxation approach is proposed to obtain

an accurate approximation to the noise PDF in polynomial

time. Also, sufficient conditions are provided regarding the

improvability and non-improvability of a given detector via

additional independent noise. Finally, numerical examples are

presented in Section IV and concluding remarks are made in

Section V.

II. PROBLEM FORMULATION AND MOTIVATION

Consider the following M -ary hypothesis-testing problem:

Hi : pX
i (x) , i = 0, 1, . . . , M − 1 , (1)

where pX
i (x) represents the PDF of the observation under

hypothesis Hi and the observation (measurement) x is a vector

with K components; i.e., x ∈ R
K .

A generic decision rule can be defined as

φ(x) = i , if x ∈ Γi , (2)

for i = 0, 1, . . . , M − 1, where Γ0, Γ1, . . . ,ΓM−1 form a

partition of the observation space Γ [27], [28].

In the minimax approach, the prior probabilities of the

hypotheses are unknown. However, each decision is associated

with a known cost value, and the aim is to minimize the

maximum of the average costs of the decision rule conditioned

on different hypotheses [27]. More formally, let Cji ≥ 0
represent the cost of choosing Hj when Hi is true. Then,

the average cost of decision rule φ conditioned on Hi being

the true hypothesis is calculated as

Ri(φ) =

M−1∑
j=0

CjiPi(Γj) , (3)

where Pi(Γj) represents the probability of choosing Hj

when Hi is the true hypothesis. This quantity, Ri(φ), is

called the conditional risk of φ given Hi [27]. In the

minimax framework, the aim is to reduce the maximum

of the conditional risks for different hypotheses as much

as possible. In other words, in the minimax framework,

the performance metric for a decision rule is specified as

max{R0(φ), R1(φ), . . . , RM−1(φ)}.

In certain scenarios, addition of independent noise to obser-

vations, as shown in Fig. 1, can improve the performance of a

suboptimal decision rule (detector) [12], [13], [19]. In such

cases, instead of the original observation x, a noise-added

version of that, y = x + n, is used by the detector, where

n represents the additional noise term. Although a scenario

as in Fig. 1 is considered in this study, the results can be

extended to the cases in which a nonlinear transformation of

Fig. 1. Independent noise n is added to observation x in order to improve
the performance of the detector, φ(·) .

the noise-added observation is performed before the detector

[12].

The main motivation for observation modification as in Fig.

1 can be explained as follows. In many cases, the optimal

detector based on the calculation of likelihood functions is

difficult to obtain or requires intense computations [12], [27].

Therefore, a suboptimal detector can be preferred in some

practical scenarios. However, the performance of a suboptimal

detector may need to be improved in order to meet certain

systems requirements. One way to improve the performance

of a suboptimal detector without altering the detector structure

is to modify its measurements as in Fig. 1 [12]. Although

calculation of optimal additional noise results in complexity

increase for the suboptimal detector, the overall computational

complexity is still considerably lower than that of an optimal

detector based on likelihood function calculations. This is

because the optimal detector needs to perform calculations

related to the likelihood functions for each decision, whereas

the suboptimal detector with modified observations needs to

update the optimal additional noise whenever the statistics

of the hypotheses change. For example, in a binary com-

munications system, the optimal detector needs to calculate

the likelihood ratio for each symbol, whereas a suboptimal

detector as in Fig. 1 needs to update n only when the channel

statistics change, which can be constant during a large number

of symbols for slowly varying channels [29].

In this study, the aim is to obtain optimal additional noise

PDF pN (·) that minimizes the maximum of the conditional

risks for a given decision rule. In other words, the optimal

additional noise is searched for according to the minimax

criterion. This problem can be formulated as

p
opt
N (n) = arg min

pN (n)
max

i∈{0,1,...,M−1}
Ry

i (φ) , (4)

where Ry
i (φ) represents the conditional risk of φ given Hi

when the noise-modified observation y is used; that is,

Ry
i (φ) =

M−1∑
j=0

CjiP
y
i (Γj) , (5)

with Py
i (Γj) representing the probability that y ∈ Γj when

Hi is true.

III. NOISE-ENHANCED HYPOTHESIS-TESTING

In this section, calculation of the optimal additional noise in

(4) is studied, and its statistical characterization is provided. In



addition, sufficient conditions on the improvability and non-

improvability of detection via additional independent noise are

presented.

In order to investigate the solution of the optimization

problem in (4), we first express the conditional risk Ry
i (φ)

in (5) as follows:

Ry
i (φ) =

M−1∑
j=0

Cji

∫
Γj

pY
i (z)dz . (6)

Since X and N are independent, the PDF of Y = X+N can

be obtained as the convolution of the PDFs of X and N . Then,

(6) can be manipulated to derive the following expressions:

Ry
i (φ) =

M−1∑
j=0

Cji

∫
Γj

∫
RK

pN (n)pX
i (z − n) dn dz (7)

=
M−1∑
j=0

Cji

∫
RK

pN (n)

∫
Γj

pX
i (z − n) dz dn (8)

=
M−1∑
j=0

Cji E{Fij(N)} (9)

= E{Fi(N)} , (10)

where

Fij(n)
.
=

∫
Γj

pX
i (z − n)dz (11)

and

Fi(n)
.
=

M−1∑
j=0

CjiFij(n) . (12)

Then, the optimization problem in (4) becomes

min
pN (·)

max
i∈{0,1,...,M−1}

E{Fi(N)} . (13)

Note that under uniform cost assignment (UCA); that is, when

Cji = 1 for j �= i, and Cji = 0 for j = i [27], the conditional

risk can be evaluated from (9) as

Ry
i (φ) = 1 − E{Fii(N)} . (14)

Then, (13) can be expressed as

max
pN (·)

min
i∈{0,1,...,M−1}

E{Fii(N)}. (15)

Although it is quite difficult to perform a search over all

possible noise PDFs in (13), the following proposition states

that the search can be performed over the set of discrete

probability distributions with at most M mass points in many

practical scenarios.

Proposition 1: Define set U as

U = {(u0, u1, . . . , uM−1) : u0 = F0(n), u1 = F1(n),

. . . , uM−1 = FM−1(n) , for a � n � b} , (16)

where n ∈ R
K , and a � n � b means that aj ≤ nj ≤ bj for

j = 1, . . . , K.

Assume that the additional noise n satisfies a � n � b and

U is a closed subset of R
M . Then, the optimal additional noise

PDF in (4) can be expressed as

p
opt
N (n) =

M−1∑
i=0

λi δ(n − ni) , (17)

where
∑M−1

i=0 λi = 1 and λi ≥ 0 for i = 0, 1, . . . , M − 1.

Proof: Please see Appendix A.

The first assumption in the proposition, which states that

the additional noise values satisfy a � n � b, is realistic

for practical systems since arbitrarily large or arbitrarily small

signal levels cannot be generated at the detector. In other

words, the maximum and minimum possible noise values

determine b and a, respectively, in practice. Regarding the

assumption that U is a closed set, one sufficient condition is

to have F0(n), F1(n), . . . , FM−1(n) as continuous functions.

In that case, the mapping from [a, b] to R
M defined by

G(n) = (F0(n), F1(n), . . . , FM−1(n)), becomes continuous.

Hence, U becomes a closed set. For example, when the PDFs

are continuous for all hypotheses, (11) and (12) imply that

G(n) is continuous.

The main implication of Proposition 1 is that an optimal

additional noise can be represented by a randomization of no

more than M different signal levels. Under certain conditions,

such as the following one, the optimal noise PDF can be

guaranteed to include even less than M mass points.

Corollary 1: Let S1 and S2 represent two sets such that S1∩
S2 = ∅ and S1 ∪ S2 = {0, 1, . . . , M − 1}. If max

i∈S2

Fi(n) ≤
min
i∈S1

Fi(n) ∀n, then the optimal noise PDF contains at most

|S1| mass points.1

Proof: Under the conditions in the corollary, the conditional

risks indexed by S2 do not have any effects on the minimax

risk, since the other conditional risks determine the maximum

risk for all possible additional noise values. Therefore, the

result in the corollary directly follows from Proposition 1. �

Based on Proposition 1, the optimization problem in (13)

can be expressed as

min
{nj ,λj}

M−1

j=0

max
i∈{0,1,...,M−1}

M−1∑
j=0

λj Fi(nj)

subject to

M−1∑
j=0

λj = 1

λj ≥ 0 , j = 0, 1, . . . , M − 1 . (18)

Although (18) is significantly simpler than (13), it can still

be a non-convex optimization problem in general. Therefore,

global optimization techniques, such as particle-swarm opti-

mization (PSO) [30], [31], genetic algorithms and differential

evolution [32] can be applied to obtain the optimal additional

noise PDF. As an alternative approach, we provide an ap-

proximate formulation that results in a convex optimization

problem. Assume that additional noise n can take only finitely

many known values specified by ñ1, . . . , ñL, and the aim is

1Here, |S1| denotes the number of elements in set S1.



to determine the weights λ̃1, . . . , λ̃L of those possible noise

values. Then, (13) can be expressed, after some manipulation,

as the following optimization problem:

min
t,{λ̃j}L

j=1

t

subject to

L∑
j=1

λ̃j Fi(ñj) ≤ t , i = 0, 1, . . . , M − 1

L∑
j=0

λ̃j = 1 ,

λ̃j ≥ 0 , j = 1, . . . , L . (19)

The optimization problem in (19) is a linearly constrained

linear programming (LCLP) problem, which can be solved

in polynomial time [26]. Also, as L is increased (as the

optimization is performed over more noise values), the solution

of the optimization problem in (19) gets closer to the optimal

solution of (13).

Finally, the issue of determining whether additional inde-

pendent noise can improve the performance of a given detector

without actually solving the optimization problem in (13) is

addressed. In the following, sufficient conditions are presented

for the improvability and the non-improvability of a given

detector via the use of additional independent noise.

Proposition 2: Define J(n) = max
i∈{0,1,...,M−1}

Fi(n). If

n0 = arg min
n

J(n) is non-zero, then the detector is improv-

able.

Proof: Consider that the noise with PDF pN (n) = δ(n −
n0) is added to observation x. Then, the maximum of the

conditional risks becomes max
i

Ry
i (φ) = max

i
Fi(n0) =

J(n0). Since n0 = arg min
n

J(n) �= 0, J(n0) < J(0) =

max
i

Fi(0) = max
i

Ri(φ). In other words, max
i

Ry
i (φ) <

max
i

Ri(φ); hence, the detector is improvable. �

Proposition 3: Let k = arg max
i

Fi(0). If arg min
n

Fk(n)

is equal to zero, then the detector is non-improvable.

Proof: The statement k = arg max
i

Fi(0) means that in

the absence of additional noise, the kth conditional risk is

the maximum one; hence, it determines the overall risk in the

minimax framework. If arg min
n

Fk(n) is equal to zero, it

means that addition of noise cannot reduce the kth conditional

risk. Since the kth conditional risk cannot be reduced by any

additional noise and it is the maximum one among all the

conditional risks, the performance of the detector cannot be

improved. �

The results in Proposition 2 and Proposition 3 can be used

to determine when it is necessary to tackle the optimization

problem in (13) to obtain the optimal additional noise PDF. For

example, when the non-improvability condition in Proposition

3 is satisfied, it is directly concluded that p
opt
N (n) = δ(n).

IV. NUMERICAL RESULTS

In this section, numerical examples are provided in order

to investigate the theoretical results obtained in the previous
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Fig. 2. Maximum of the conditional risks versus η for the original and the
noise-modified detectors for A = 1, B = 2.5, σ = 0.1, w1 = 0.5 and
w2 = 0.5.

section. A ternary hypothesis-testing problem is considered

with the following PDFs:

pX
0 (x) = w1γ(x;−A, σ2) + w2γ(x; A, σ2)

pX
1 (x) = w1γ(x;−A + B, σ2) + w2γ(x; A + B, σ2)

pX
2 (x) = w1γ(x;−A − B, σ2) + w2γ(x; A − B, σ2) (20)

where

γ(x; μ, σ2)
.
=

1√
2πσ2

exp

(
− (x − μ)2

2σ2

)
. (21)

The decision rule is described as follows:

φ(x) =

⎧⎪⎨
⎪⎩

0 , −η < x < η

1 , x ≥ η

2 , x ≤ −η

, (22)

where η is a constant. Under UCA, the conditional risks can

be obtained from (3), after some manipulation, as

R0(φ) = 1 − w1

[
Q

(−η + A

σ

)
− Q

(
η + A

σ

)]

− w2

[
Q

(−η − A

σ

)
− Q

(
η − A

σ

)]

R1(φ) = 1 − w1 Q

(
η + A − B

σ

)
− w2 Q

(
η − A − B

σ

)

R2(φ) = 1 − w1 Q

(
η − A − B

σ

)
− w2 Q

(
η + A − B

σ

)
.

Similarly, Fii(n) can be calculated from (11) for i = 0, 1, 2
and the optimization problem in (15) can be solved to obtain

optimal additional noise.

Fig. 2 plots the maximum of conditional risks for the

original and the noise-modified detectors with respect to η

in (22) when the parameters are taken as A = 1, B = 2.5,

w1 = 0.5, w2 = 0.5 and σ = 0.1. From the figure, it is
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observed that for certain values of η, the performance can be

improved via the addition of independent noise. For example,

for η = 1.8, the improvement ratio, defined as the ratio

between max
i∈{0,1,2}

Ri(φ) and max
i∈{0,1,2}

Ry
i (φ), is equal to 2.

As another example, for η = 2.4, the improvement ratio is

calculated as 1.52.

In Fig. 3, the probability distributions of the optimal addi-

tional noise components are illustrated for η = 1.2, η = 1.8
and η = 2.4 based on the parameter settings for Fig. 2. It is

observed that the optimal noise PDFs for η = 2.4, η = 1.8
and η = 1.2 contain 2, 3 and 1 mass points, respectively, in

accordance with Proposition 1. Also, it is noted that since the

detector is non-improvable for η = 1.2, the optimal noise turns

out to be zero.

Finally, Fig. 4 and Fig. 5 illustrate the performance of the

original and the noise-modified detectors for η = 1.8 and

η = 2.4, respectively, versus the standard deviation parameter

in (20). The other parameters are set to A = 1, B = 2.5, w1 =
0.5 and w2 = 0.5. It is observed that as the standard deviation

increases, the improvement ratios become smaller, and after a

certain value, the detectors become non-improvable.

V. CONCLUSIONS

In this study, the effects of adding independent noise to

observations have been investigated for M -ary hypothesis-

testing problems in the minimax framework. First, the cal-

culation of optimal additional noise has been formulated as

an optimization problem, and it has been proven that the

optimal additional noise can be represented as a discrete

random variable with at most M mass points under certain

conditions. In addition, an approximate technique to calculate

the optimal additional noise has been presented as a convex

optimization problem. Finally, sufficient conditions have been

presented to specify when additional independent noise can
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or cannot improve the performance of a given detector, and a

numerical example has been presented.

APPENDIX

A. Proof of Proposition 1

An approach similar those in [12] and [33] is employed in

the proof of the proposition. Let V represent the convex hull

of U in (16) [34]. From (11) and (12), it is observed that U is

a bounded set. Since it is also closed by the assumption in the

proposition, U is a compact set. Therefore, its convex hull, V ,

is a closed subset of R
M [34].



Next, define W as

W =
{

(w0, w1, . . . , wM−1) : wi = E{Fi(n)} ,

i = 0, 1, . . . , M − 1, ∀ pN (n), a � n � b
}

, (23)

where pN (n) is the PDF of the additional independent noise.

Since for any vector random variable Θ taking values in set

Ω, its expected value E{Θ} is in the convex hull of Ω [33], it

is concluded from (16) and (23) that W is in the convex hull

V of U ; that is, V ⊇ W . In addition, since V is defined as the

convex hull of U , each element of V can be expressed as v =∑NL

l=1 λl (F0(nl), F1(nl), . . . , FM−1(nl)), where
∑NL

l=1 λl =
1, and λl ≥ 0 ∀l. However, each v is also an element of W

since it can be obtained for pN (n) =
∑NL

l=1 λl δ(n − nl).
Hence, V ⊆ W . Since V ⊆ W and V ⊇ W , it is concluded

that W = V . Therefore, Carathéodory’s theorem [35], [36]

implies that any point in V (or, W ) can be expressed as the

convex combination of at most (M + 1) points in U as the

dimension of U is smaller than or equal to M (c.f. (16)).

Since the aim is to minimize the maximum of the conditional

risks, the optimal solution must correspond to the boundary

of W . Since W (or, V ) is a closed set as mentioned at the

beginning of the proof, it contains its own boundary. Since any

point at the boundary of W can be expressed as the convex

combination of at most M elements in U [35], an optimal

noise PDF can be represented by a discrete random variable

with M mass points as in (17). �
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